Sample records for aerosolized red tide

  1. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G

    2010-05-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Aerosolized red-tide toxins (brevetoxins) and asthma.

    PubMed

    Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Bean, Judy A; Wanner, Adam; Reich, Andrew; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William M; Baden, Daniel G

    2007-01-01

    With the increasing incidence of asthma, there is increasing concern over environmental exposures that may trigger asthma exacerbations. Blooms of the marine microalgae, Karenia brevis, cause red tides (or harmful algal blooms) annually throughout the Gulf of Mexico. K brevis produces highly potent natural polyether toxins, called brevetoxins, which are sodium channel blockers, and possibly histamine activators. In experimental animals, brevetoxins cause significant bronchoconstriction. In humans, a significant increase in self-reported respiratory symptoms has been described after recreational and occupational exposures to Florida red-tide aerosols, particularly among individuals with asthma. Before and after 1 h spent on beaches with and without an active K brevis red-tide exposure, 97 persons >or= 12 years of age with physician-diagnosed asthma were evaluated by questionnaire and spirometry. Concomitant environmental monitoring, water and air sampling, and personal monitoring for brevetoxins were performed. Participants were significantly more likely to report respiratory symptoms after K brevis red-tide aerosol exposure than before exposure. Participants demonstrated small, but statistically significant, decreases in FEV(1), midexpiratory phase of forced expiratory flow, and peak expiratory flow after exposure, particularly among those participants regularly using asthma medications. No significant differences were detected when there was no Florida red tide (ie, during nonexposure periods). This study demonstrated objectively measurable adverse changes in lung function from exposure to aerosolized Florida red-tide toxins in asthmatic subjects, particularly among those requiring regular therapy with asthma medications. Future studies will assess these susceptible subpopulations in more depth, as well as the possible long-term effects of these toxins.

  3. Aerosolized Red-Tide Toxins (Brevetoxins) and Asthma

    PubMed Central

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Bean, Judy A.; Wanner, Adam; Reich, Andrew; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William M.; Baden, Daniel G.

    2009-01-01

    Background With the increasing incidence of asthma, there is increasing concern over environmental exposures that may trigger asthma exacerbations. Blooms of the marine microalgae, Karenia brevis, cause red tides (or harmful algal blooms) annually throughout the Gulf of Mexico. K brevis produces highly potent natural polyether toxins, called brevetoxins, which are sodium channel blockers, and possibly histamine activators. In experimental animals, brevetoxins cause significant bronchoconstriction. In humans, a significant increase in self-reported respiratory symptoms has been described after recreational and occupational exposures to Florida red-tide aerosols, particularly among individuals with asthma. Methods Before and after 1 h spent on beaches with and without an active K brevis red-tide exposure, 97 persons ≥ 12 years of age with physician-diagnosed asthma were evaluated by questionnaire and spirometry. Concomitant environmental monitoring, water and air sampling, and personal monitoring for brevetoxins were performed. Results Participants were significantly more likely to report respiratory symptoms after K brevis red-tide aerosol exposure than before exposure. Participants demonstrated small, but statistically significant, decreases in FEV1, midexpiratory phase of forced expiratory flow, and peak expiratory flow after exposure, particularly among those participants regularly using asthma medications. No significant differences were detected when there was no Florida red tide (ie, during nonexposure periods). Conclusions This study demonstrated objectively measurable adverse changes in lung function from exposure to aerosolized Florida red-tide toxins in asthmatic subjects, particularly among those requiring regular therapy with asthma medications. Future studies will assess these susceptible subpopulations in more depth, as well as the possible long-term effects of these toxins. PMID:17218574

  4. Personal exposure to aerosolized red tide toxins (brevetoxins).

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Naar, Jerome; Irvin, C Mitch; Su, Wei-Chung; Fleming, Lora E; Kirkpatrick, Barbara; Pierce, Richard H; Backer, Lorraine C; Baden, Daniel G

    2010-06-01

    Florida red tides occur annually in the Gulf of Mexico from blooms of the marine dinoflagellate, Karenia brevis, which produces highly potent natural polyether toxins, brevetoxins. Several epidemiologic studies have demonstrated that human exposure to red tide aerosol could result in increased respiratory symptoms. Environmental monitoring of aerosolized brevetoxins was performed using a high-volume sampler taken hourly at fixed locations on Siesta Beach, Florida. Personal exposure was monitored using personal air samplers and taking nasal swab samples from the subjects who were instructed to spend 1 hr on Sarasota Beach during two sampling periods of an active Florida red tide event in March 2005, and in May 2008 when there was no red tide. Results showed that the aerosolized brevetoxins from the personal sampler were in modest agreement with the environmental concentration taken from a high-volume sampler. Analysis of nasal swab samples for brevetoxins demonstrated 68% positive samples in the March 2005 sampling period when air concentrations of brevetoxins were between 50 to 120 ng/m(3) measured with the high-volume sampler. No swab samples showed detectable levels of brevetoxins in the May 2008 study, when all personal samples were below the limit of detection. However, there were no statistical correlations between the amounts of brevetoxins detected in the swab samples with either the environmental or personal concentration. Results showed that the personal sample might provide an estimate of individual exposure level. Nasal swab samples showed that brevetoxins indeed were inhaled and deposited in the nasal passage during the March 2005 red tide event.

  5. Overview of Aerosolized Florida Red Tide Toxins: Exposures and Effects

    PubMed Central

    Fleming, Lora E.; Backer, Lorraine C.; Baden, Daniel G.

    2005-01-01

    Florida red tide is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red tide toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red tide toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red tide toxins. PMID:15866773

  6. Overview of aerosolized Florida red tide toxins: exposures and effects.

    PubMed

    Fleming, Lora E; Backer, Lorraine C; Baden, Daniel G

    2005-05-01

    Florida red tide is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red tide toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red tide toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red tide toxins.

  7. Exposure and effect assessment of aerosolized red tide toxins (brevetoxins) and asthma.

    PubMed

    Fleming, Lora E; Bean, Judy A; Kirkpatrick, Barbara; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Nierenberg, Kate; Backer, Lorraine C; Wanner, Adam; Reich, Andrew; Zhou, Yue; Watkins, Sharon; Henry, Mike; Zaias, Julia; Abraham, William M; Benson, Janet; Cassedy, Amy; Hollenbeck, Julie; Kirkpatrick, Gary; Clarke, Tainya; Baden, Daniel G

    2009-07-01

    In previous studies we demonstrated statistically significant changes in reported symptoms for lifeguards, general beach goers, and persons with asthma, as well as statistically significant changes in pulmonary function tests (PFTs) in asthmatics, after exposure to brevetoxins in Florida red tide (Karenia brevis bloom) aerosols. In this study we explored the use of different methods of intensive ambient and personal air monitoring to characterize these exposures to predict self-reported health effects in our asthmatic study population. We evaluated health effects in 87 subjects with asthma before and after 1 hr of exposure to Florida red tide aerosols and assessed for aerosolized brevetoxin exposure using personal and ambient samplers. After only 1 hr of exposure to Florida red tide aerosols containing brevetoxin concentrations > 57 ng/m(3), asthmatics had statistically significant increases in self-reported respiratory symptoms and total symptom scores. However, we did not see the expected corresponding changes in PFT results. Significant increases in self-reported symptoms were also observed for those not using asthma medication and those living >/= 1 mile from the coast. These results provide additional evidence of health effects in asthmatics from ambient exposure to aerosols containing very low concentrations of brevetoxins, possibly at the lower threshold for inducing a biologic response (i.e., toxicity). Consistent with the literature describing self-reported symptoms as an accurate measure of asthmatic distress, our results suggest that self-reported symptoms are a valuable measure of the extent of health effects from exposure to aerosolized brevetoxins in asthmatic populations.

  8. Inland Transport of Aerosolized Florida Red Tide Toxins.

    PubMed

    Kirkpatrick, Barbara; Pierce, Richard; Cheng, Yung Sung; Henry, Michael S; Blum, Patricia; Osborn, Shannon; Nierenberg, Kate; Pederson, Bradley A; Fleming, Lora E; Reich, Andrew; Naar, Jerome; Kirkpatrick, Gary; Backer, Lorraine C; Baden, Daniel

    2010-02-01

    Florida red tides, an annual event off the west coast of Florida, are caused by the toxic dinoflagellate, Karenia brevis. K. brevis produces a suite of potent neurotoxins, brevetoxins, which kill fish, sea birds, and marine mammals, as well as sickening humans who consume contaminated shellfish. These toxins become part of the marine aerosol, and can also be inhaled by humans and other animals. Recent studies have demonstrated a significant increase in symptoms and decrease lung function in asthmatics after only one hour of beach exposure during an onshore Florida red tide bloom.This study constructed a transect line placing high volume air samplers to measure brevetoxins at sites beginning at the beach, moving approximately 6.4 km inland. One non-exposure and 2 exposure studies, each of 5 days duration, were conducted. No toxins were measured in the air during the non-exposure period. During the 2 exposure periods, the amount of brevetoxins varied considerably by site and by date. Nevertheless, brevetoxins were measured at least 4.2 kilometers from the beach and/or 1.6 km from the coastal shoreline. Therefore, populations sensitive to brevetoxins (such as asthmatics) need to know that leaving the beach may not discontinue their environmental exposure to brevetoxin aerosols.

  9. Occupational exposure to aerosolized brevetoxins during Florida red tide events: effects on a healthy worker population.

    PubMed

    Backer, Lorraine C; Kirkpatrick, Barbara; Fleming, Lora E; Cheng, Yung Sung; Pierce, Richard; Bean, Judy A; Clark, Richard; Johnson, David; Wanner, Adam; Tamer, Robert; Zhou, Yue; Baden, Daniel G

    2005-05-01

    Karenia brevis (formerly Gymnodinium breve) is a marine dinoflagellate responsible for red tides that form in the Gulf of Mexico. K. brevis produces brevetoxins, the potent toxins that cause neurotoxic shellfish poisoning. There is also limited information describing human health effects from environmental exposures to brevetoxins. Our objective was to examine the impact of inhaling aerosolized brevetoxins during red tide events on self-reported symptoms and pulmonary function. We recruited a group of 28 healthy lifeguards who are occupationally exposed to red tide toxins during their daily work-related activities. They performed spirometry tests and reported symptoms before and after their 8-hr shifts during a time when there was no red tide (unexposed period) and again when there was a red tide (exposed period). We also examined how mild exercise affected the reported symptoms and spirometry tests during unexposed and exposed periods with a subgroup of the same lifeguards. Environmental sampling (K. brevis cell concentrations in seawater and brevetoxin concentrations in seawater and air) was used to confirm unexposed/exposed status. Compared with unexposed periods, the group of lifeguards reported more upper respiratory symptoms during the exposed periods. We did not observe any impact of exposure to aerosolized brevetoxins, with or without mild exercise, on pulmonary function.

  10. Aerosolized Red Tide Toxins (Brevetoxins) and Asthma: Continued health effects after 1 hour beach exposure.

    PubMed

    Kirkpatrick, Barbara; Fleming, Lora E; Bean, Judy A; Nierenberg, Kate; Backer, Lorraine C; Cheng, Yung Sung; Pierce, Richard; Reich, Andrew; Naar, Jerome; Wanner, Adam; Abraham, William M; Zhou, Yue; Hollenbeck, Julie; Baden, Daniel G

    2011-01-01

    Blooms of the toxic dinoflagellate, Karenia brevis, produce potent neurotoxins in marine aerosols. Recent studies have demonstrated acute changes in both symptoms and pulmonary function in asthmatics after only 1 hour of beach exposure to these aerosols. This study investigated if there were latent and/or sustained effects in asthmatics in the days following the initial beach exposure during periods with and without an active Florida red tide.Symptom data and spirometry data were collected before and after 1 hour of beach exposure. Subjects kept daily symptom diaries and measured their peak flow each morning for 5 days following beach exposure. During non-exposure periods, there were no significant changes in symptoms or pulmonary function either acutely or over 5 days of follow-up. After the beach exposure during an active Florida red tide, subjects had elevated mean symptoms which did not return to the pre-exposure baseline for at least 4 days. The peak flow measurements decreased after the initial beach exposure, decreased further within 24 hours, and continued to be suppressed even after 5 days. Asthmatics may continue to have increased symptoms and delayed respiratory function suppression for several days after 1 hour of exposure to the Florida red tide toxin aerosols.

  11. Aerosolized Red Tide Toxins (Brevetoxins) and Asthma: Continued health effects after 1 hour beach exposure

    PubMed Central

    Kirkpatrick, Barbara; Fleming, Lora E; Bean, Judy A; Nierenberg, Kate; Backer, Lorraine C; Cheng, Yung Sung; Pierce, Richard; Reich, Andrew; Naar, Jerome; Wanner, Adam; Abraham, William M; Zhou, Yue; Hollenbeck, Julie; Baden, Daniel G

    2010-01-01

    Blooms of the toxic dinoflagellate, Karenia brevis, produce potent neurotoxins in marine aerosols. Recent studies have demonstrated acute changes in both symptoms and pulmonary function in asthmatics after only 1 hour of beach exposure to these aerosols. This study investigated if there were latent and/or sustained effects in asthmatics in the days following the initial beach exposure during periods with and without an active Florida red tide. Symptom data and spirometry data were collected before and after 1 hour of beach exposure. Subjects kept daily symptom diaries and measured their peak flow each morning for 5 days following beach exposure. During non-exposure periods, there were no significant changes in symptoms or pulmonary function either acutely or over 5 days of follow-up. After the beach exposure during an active Florida red tide, subjects had elevated mean symptoms which did not return to the pre-exposure baseline for at least 4 days. The peak flow measurements decreased after the initial beach exposure, decreased further within 24 hours, and continued to be suppressed even after 5 days. Asthmatics may continue to have increased symptoms and delayed respiratory function suppression for several days after 1 hour of exposure to the Florida red tide toxin aerosols. PMID:21499552

  12. Reported respiratory symptom intensity in asthmatics during exposure to aerosolized Florida red tide toxins.

    PubMed

    Milian, Alexyz; Nierenberg, Kate; Fleming, Lora E; Bean, Judy A; Wanner, Adam; Reich, Andrew; Backer, Lorraine C; Jayroe, David; Kirkpatrick, Barbara

    2007-09-01

    Florida red tides are naturally occurring blooms of the marine dinoflagellate, Karenia brevis. K. brevis produces natural toxins called brevetoxins. Brevetoxins become part of the marine aerosol as the fragile, unarmored cells are broken up by wave action. Inhalation of the aerosolized toxin results in upper and lower airway irritation. Symptoms of brevetoxin inhalation include: eye, nose, and throat irritation, coughing, wheezing, chest tightness, and shortness of breath. Asthmatics appear to be more sensitive to the effects of inhaled brevetoxin. This study examined data from 97 asthmatics exposed at the beach for 1 hour during K. brevis blooms, and on separate occasions when no bloom was present. In conjunction with extensive environmental monitoring, participants were evaluated utilizing questionnaires and pulmonary function testing before and after a 1-hour beach walk. A modified Likert scale was incorporated into the questionnaire to create respiratory symptom intensity scores for each individual pre- and post-beach walk. Exposure to Florida red tide significantly increased the reported intensity of respiratory symptoms; no significant changes were seen during an unexposed period. This is the first study to examine the intensity of reported respiratory symptoms in asthmatics after a 1-hour exposure to Florida red tide.

  13. Initial Evaluation of the Effects of Aerosolized Florida Red Tide Toxins (Brevetoxins) in Persons with Asthma

    PubMed Central

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Bean, Judy A.; Wanner, Adam; Dalpra, Dana; Tamer, Robert; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William; Clark, Richard; Zhou, Yue; Henry, Michael S.; Johnson, David; Van De Bogart, Gayl; Bossart, Gregory D.; Harrington, Mark; Baden, Daniel G.

    2005-01-01

    Florida red tides annually occur in the Gulf of Mexico, resulting from blooms of the marine dinoflagellate Karenia brevis. K. brevis produces highly potent natural polyether toxins, known as brevetoxins, that activate voltage-sensitive sodium channels. In experimental animals, brevetoxins cause significant bronchoconstriction. A study of persons who visited the beach recreationally found a significant increase in self-reported respiratory symptoms after exposure to aerosolized Florida red tides. Anecdotal reports indicate that persons with underlying respiratory diseases may be particularly susceptible to adverse health effects from these aerosolized toxins. Fifty-nine persons with physician-diagnosed asthma were evaluated for 1 hr before and after going to the beach on days with and without Florida red tide. Study participants were evaluated with a brief symptom questionnaire, nose and throat swabs, and spirometry approved by the National Institute for Occupational Safety and Health. Environmental monitoring, water and air sampling (i.e., K. brevis, brevetoxins, and particulate size distribution), and personal monitoring (for toxins) were performed. Brevetoxin concentrations were measured by liquid chromatography mass spectrometry, high-performance liquid chromatography, and a newly developed brevetoxin enzyme-linked immunosorbent assay. Participants were significantly more likely to report respiratory symptoms after Florida red tide exposure. Participants demonstrated small but statistically significant decreases in forced expiratory volume in 1 sec, forced expiratory flow between 25 and 75%, and peak expiratory flow after exposure, particularly those regularly using asthma medications. Similar evaluation during nonexposure periods did not significantly differ. This is the first study to show objectively measurable adverse health effects from exposure to aerosolized Florida red tide toxins in persons with asthma. Future studies will examine the possible chronic

  14. Initial evaluation of the effects of aerosolized Florida red tide toxins (brevetoxins) in persons with asthma.

    PubMed

    Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Bean, Judy A; Wanner, Adam; Dalpra, Dana; Tamer, Robert; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William; Clark, Richard; Zhou, Yue; Henry, Michael S; Johnson, David; Van De Bogart, Gayl; Bossart, Gregory D; Harrington, Mark; Baden, Daniel G

    2005-05-01

    Florida red tides annually occur in the Gulf of Mexico, resulting from blooms of the marine dinoflagellate Karenia brevis. K. brevis produces highly potent natural polyether toxins, known as brevetoxins, that activate voltage-sensitive sodium channels. In experimental animals, brevetoxins cause significant bronchoconstriction. A study of persons who visited the beach recreationally found a significant increase in self-reported respiratory symptoms after exposure to aerosolized Florida red tides. Anecdotal reports indicate that persons with underlying respiratory diseases may be particularly susceptible to adverse health effects from these aerosolized toxins. Fifty-nine persons with physician-diagnosed asthma were evaluated for 1 hr before and after going to the beach on days with and without Florida red tide. Study participants were evaluated with a brief symptom questionnaire, nose and throat swabs, and spirometry approved by the National Institute for Occupational Safety and Health. Environmental monitoring, water and air sampling (i.e., K. brevis, brevetoxins, and particulate size distribution), and personal monitoring (for toxins) were performed. Brevetoxin concentrations were measured by liquid chromatography mass spectrometry, high-performance liquid chromatography, and a newly developed brevetoxin enzyme-linked immunosorbent assay. Participants were significantly more likely to report respiratory symptoms after Florida red tide exposure. Participants demonstrated small but statistically significant decreases in forced expiratory volume in 1 sec, forced expiratory flow between 25 and 75%, and peak expiratory flow after exposure, particularly those regularly using asthma medications. Similar evaluation during nonexposure periods did not significantly differ. This is the first study to show objectively measurable adverse health effects from exposure to aerosolized Florida red tide toxins in persons with asthma. Future studies will examine the possible chronic

  15. Reported Respiratory Symptom Intensity in Asthmatics During Exposure to Aerosolized Florida Red Tide Toxins

    PubMed Central

    Milian, Alexyz; Nierenberg, Kate; Fleming, Lora E.; Bean, Judy A.; Wanner, Adam; Reich, Andrew; Backer, Lorraine C.; Jayroe, David; Kirkpatrick, Barbara

    2010-01-01

    Florida red tides are naturally occurring blooms of the marine dinoflagellate, Karenia brevis. K. brevis produces natural toxins called brevetoxins. Brevetoxins become part of the marine aerosol as the fragile, unarmored cells are broken up by wave action. Inhalation of the aerosolized toxin results in upper and lower airway irritation. Symptoms of brevetoxin inhalation include: eye, nose, and throat irritation, coughing, wheezing, chest tightness, and shortness of breath. Asthmatics appear to be more sensitive to the effects of inhaled brevetoxin. This study examined data from 97 asthmatics exposed at the beach for 1 hour during K. brevis blooms, and on separate occasions when no bloom was present. In conjunction with extensive environmental monitoring, participants were evaluated utilizing questionnaires and pulmonary function testing before and after a 1-hour beach walk. A modified Likert scale was incorporated into the questionnaire to create respiratory symptom intensity scores for each individual pre- and post-beach walk. Exposure to Florida red tide significantly increased the reported intensity of respiratory symptoms; no significant changes were seen during an unexposed period. This is the first study to examine the intensity of reported respiratory symptoms in asthmatics after a 1-hour exposure to Florida red tide. PMID:17885863

  16. Environmental exposures to Florida red tides: Effects on emergency room respiratory diagnoses admissions.

    PubMed

    Kirkpatrick, Barbara; Fleming, Lora E; Backer, Lorraine C; Bean, Judy A; Tamer, Robert; Kirkpatrick, Gary; Kane, Terrance; Wanner, Adam; Dalpra, Dana; Reich, Andrew; Baden, Daniel G

    2006-10-01

    Human exposure to Florida red tides formed by Karenia brevis, occurs from eating contaminated shellfish and inhaling aerosolized brevetoxins. Recent studies have documented acute symptom changes and pulmonary function responses after inhalation of the toxic aerosols, particularly among asthmatics. These findings suggest that there are increases in medical care facility visits for respiratory complaints and for exacerbations of underlying respiratory diseases associated with the occurrence of Florida red tides.This study examined whether the presence of a Florida red tide affected the rates of admission with a respiratory diagnosis to a hospital emergency room in Sarasota, FL. The rate of respiratory diagnoses admissions were compared for a 3-month time period when there was an onshore red tide in 2001 (red tide period) and during the same 3-month period in 2002 when no red tide bloom occurred (non-red tide period). There was no significant increase in the total number of respiratory admissions between the two time periods. However, there was a 19% increase in the rate of pneumonia cases diagnosed during the red tide period compared with the non-red tide period. We categorized home residence zip codes as coastal (within 1.6 km from the shore) or inland (>1.6 km from shore). Compared with the non-red tide period, the coastal residents had a significantly higher (54%) rate of respiratory diagnoses admissions than during the red tide period. We then divided the diagnoses into subcategories (i.e. pneumonia, bronchitis, asthma, and upper airway disease). When compared with the non-red tide period, the coastal zip codes had increases in the rates of admission of each of the subcategories during the red tide period (i.e. 31, 56, 44, and 64%, respectively). This increase was not observed seen in the inland zip codes.These results suggest that the healthcare community has a significant burden from patients, particularly those who live along the coast, needing emergency

  17. Gastrointestinal Emergency Room Admissions and Florida Red Tide Blooms.

    PubMed

    Kirkpatrick, Barbara; Bean, Judy A; Fleming, Lora E; Kirkpatrick, Gary; Grief, Lynne; Nierenberg, Kate; Reich, Andrew; Watkins, Sharon; Naar, Jerome

    2010-01-01

    Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure.This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period.These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken.

  18. Gastrointestinal Emergency Room Admissions and Florida Red Tide Blooms

    PubMed Central

    Kirkpatrick, Barbara; Bean, Judy A; Fleming, Lora E; Kirkpatrick, Gary; Grief, Lynne; Nierenberg, Kate; Reich, Andrew; Watkins, Sharon; Naar, Jerome

    2009-01-01

    Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure. This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period. These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken. PMID:20161425

  19. Florida Red Tide Toxins (Brevetoxins) and Longitudinal Respiratory Effects in Asthmatics.

    PubMed

    Bean, Judy A; Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Nierenberg, Kate; Reich, Andrew; Cheng, Yung Sung; Wanner, Adam; Benson, Janet; Naar, Jerome; Pierce, Richard; Abraham, William M; Kirkpatrick, Gary; Hollenbeck, Julie; Zaias, Julia; Mendes, Eliana; Baden, Daniel G

    2011-09-01

    Having demonstrated significant and persistent adverse changes in pulmonary function for asthmatics after 1 hour exposure to brevetoxins in Florida red tide (Karenia brevis bloom) aerosols, we assessed the possible longer term health effects in asthmatics from intermittent environmental exposure to brevetoxins over 7 years. 125 asthmatic subjects were assessed for their pulmonary function and reported symptoms before and after 1 hour of environmental exposure to Florida red tide aerosols for upto 11 studies over seven years. As a group, the asthmatics came to the studies with normal standardized percent predicted pulmonary function values. The 38 asthmatics who participated in only one exposure study were more reactive compared to the 36 asthmatics who participated in ≥4 exposure studies. The 36 asthmatics participating in ≥4 exposure studies demonstrated no significant change in their standardized percent predicted pre-exposure pulmonary function over the 7 years of the study. These results indicate that stable asthmatics living in areas with intermittent Florida red tides do not exhibit chronic respiratory effects from intermittent environmental exposure to aerosolized brevetoxins over a 7 year period.

  20. Exacerbation of asthma by Florida "red tide" during an ocean sailing trip.

    PubMed

    Steensma, David P

    2007-09-01

    A 36-year-old man with adult-onset nonallergic triad asthma developed acute bronchospasm and copious sputum production during an offshore sailing excursion on the Gulf Coast of Florida. Symptoms were linked to proximity to blooms of the marine dinoflagellate Karenia brevis (red tide) and heavy aerosolized brevetoxin exposure, and symptoms recurred during rechallenge. Patients with respiratory disease who are planning a visit to red tide-prone seaside areas should be cautioned to bring their pulmonary medications, and clinicians should be aware that reactive airway symptoms may be triggered by exposure to red tide.

  1. Florida Red Tide Knowledge and Risk Perception: Is there a need for tailored messaging?

    PubMed

    Kirkpatrick, Barbara; Kohler, Kate; Byrne, Margaret M; Studts, Jamie

    2014-02-01

    Harmful algal blooms of the toxic dinoflagellate, Karenia brevis , occur throughout the Gulf of Mexico. Recent research efforts sponsored by the National Institute of Environmental Health Sciences (NIEHS) and others found that Florida red tide causes both acute and possibly chronic health effects from the toxic aerosols. Florida red tide also demonstrated significant social and economic impacts to both coastal residents and visitors. In conjunction with the research, persistent outreach efforts were conducted over the 11 year period. The goal of this project was to assess potential needs for tailored messaging needed among different red tide information user groups. Survey participants included 303 local residents, both with asthma and without, and 'snowbirds (seasonal residents that reside in the Sarasota area for more than 3 months but less than 6 months/year), also both with asthma and without. The questionnaire assessed Florida red tide knowledge and risk perception regarding Florida red tide using items drawn from two previously published surveys to allow comparison. Our results reveal that overall knowledge of Florida red tide has not changed. We found that knowledge was consistent across our selected groups and also did not vary by age, gender and education level. However, knowledge regarding consumption of seafood during Florida red tide has declined. Risk perception increased significantly for people who have asthma. Individuals responsible for public health communication regarding Florida red tide and human health concerns need to continue to pursue more effective outreach messages and delivery methods.

  2. Florida Red Tide Knowledge and Risk Perception: Is there a need for tailored messaging?

    PubMed Central

    Kirkpatrick, Barbara; Kohler, Kate; Byrne, Margaret M.; Studts, Jamie

    2013-01-01

    Harmful algal blooms of the toxic dinoflagellate, Karenia brevis, occur throughout the Gulf of Mexico. Recent research efforts sponsored by the National Institute of Environmental Health Sciences (NIEHS) and others found that Florida red tide causes both acute and possibly chronic health effects from the toxic aerosols. Florida red tide also demonstrated significant social and economic impacts to both coastal residents and visitors. In conjunction with the research, persistent outreach efforts were conducted over the 11 year period. The goal of this project was to assess potential needs for tailored messaging needed among different red tide information user groups. Survey participants included 303 local residents, both with asthma and without, and ‘snowbirds (seasonal residents that reside in the Sarasota area for more than 3 months but less than 6 months/year), also both with asthma and without. The questionnaire assessed Florida red tide knowledge and risk perception regarding Florida red tide using items drawn from two previously published surveys to allow comparison. Our results reveal that overall knowledge of Florida red tide has not changed. We found that knowledge was consistent across our selected groups and also did not vary by age, gender and education level. However, knowledge regarding consumption of seafood during Florida red tide has declined. Risk perception increased significantly for people who have asthma. Individuals responsible for public health communication regarding Florida red tide and human health concerns need to continue to pursue more effective outreach messages and delivery methods. PMID:24563634

  3. Concentration and Particle Size of Airborne Toxic Algae (Brevetoxin) Derived from Ocean Red Tide Events

    PubMed Central

    Cheng, Yung Sung; Mcdonald, Jacob D.; Kracko, Dean; Irvin, C. Mitch; Zhou, Yue; Pierce, Richard H.; Henry, Michael S.; Bourdelaisa, Andrea; Naar, Jerome; Baden, Daniel G.

    2009-01-01

    Red tides in the Gulf of Mexico are formed by blooms of the dinoflagellate Karenia brevis, which produces brevetoxins (PbTx). Brevetoxins can be transferred from water to air in the wind-powered whitecapped waves during red tide episodes. Inhalation exposure to marine aerosol containing PbTx causes respiratory problems. A liquid chromatograph/ tandem mass spectrometric method was developed for the detection and quantitation of several PbTxs in ambient samples collected during red tide events. This method was complemented by a previously developed antibody assay that analyzes the entire class of PbTx compounds. The method showed good linearity, accuracy, and reproducibility, allowing quantitation of PbTx compounds in the 10 pg/m3 range. Air concentrations of PbTxs and brevenal for individual samples ranged from 0.01 to 80 ng/m3. The particle size showed a single mode with a mass median diameter between 6 and 10 μm, which was consistent for all of the PbTx species that were measured. Our results imply that individual PbTxs were from the same marine aerosol or from marine aerosol that was produced from the same process. The particle size indicated the likelihood of high deposition efficiency in the respiratory tract with the majority of aerosol deposited in the upper airways and small but not insignificant deposition in the lower airways. PMID:15954221

  4. Red Tide off Texas Coast

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Red tides (algae) bloomed late this summer along a 300-mile stretch of Texas' Gulf Coast, killing millions of fish and shellfish as well as making some people sick. State officials are calling this the worst red tide bloom in 14 years. The algae produces a poison that paralyzes fish and prevents them from breathing. There is concern that the deadly algae could impact or even wipe out this year's oyster harvest in Texas, which usually peaks during the Thanksgiving and Christmas holidays. The red tides were first observed off the Texas coast in mid-August and have been growing steadily in size ever since. Red tides tend to bloom and subside rapidly, depending upon changes in wind speed and direction, water temperature, salinity, and rainfall patterns (as the algae doesn't do as well in fresher water). This true-color image of the Texas Gulf Coast was acquired on September 29, 2000, by the Moderate-resolution Imaging Spectroradiometer (MODIS) flying aboard NASA's Terra spacecraft. The red tide can be seen as the dark reddish discoloration in the ocean running southwest to northeast along the coast. In this scene, the bloom appears to be concentrated north and east of Corpus Christi, just off Matagorda Island. The image was made at 500-meter resolution using a combination of MODIS' visible bands 1 (red), 4 (green), and 3 (blue). The city of Houston can be seen clearly as the large, greyish cluster of pixels to the north and west of Galveston Bay, which is about mid-way up the coastline in this image. Also visible in this image are plumes of smoke, perhaps wildfires, both to the north and northeast of Houston. For more information about red tides, refer to the Texas Red Tide Web site. Image courtesy Andrey Savtchenko, MODIS Data Support Team, and the MODIS Ocean Team, NASA's Goddard Space Flight Center

  5. Frontiers in Outreach and Education: The Florida Red Tide Experience.

    PubMed

    Nierenberg, Kate; Hollenbeck, Julie; Fleming, Lora E; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C; Currier, Robert; Kirkpatrick, Barbara

    2011-05-01

    To enhance information sharing and garner increased support from the public for scientific research, funding agencies now typically require that research groups receiving support convey their work to stakeholders. The National Institute of Environmental Health Sciences-(NIEHS) funded Aerosolized Florida Red Tide P01 research group (Florida Red Tide Research Group) has employed a variety of outreach strategies to meet this requirement. Messages developed from this project began a decade ago and have evolved from basic print material (fliers and posters) to an interactive website, to the use of video and social networking technologies, such as Facebook and Twitter. The group was able to track dissemination of these information products; however, evaluation of their effectiveness presented much larger challenges. The primary lesson learned by the Florida Red Tide Research Group is that the best ways to reach specific stakeholders is to develop unique products or services to address specific stakeholders needs, such as the Beach Conditions Reporting System. Based on the experience of the Group, the most productive messaging products result when scientific community engages potential stakeholders and outreach experts during the very initial phases of a project.

  6. Frontiers in Outreach and Education: The Florida Red Tide Experience

    PubMed Central

    Nierenberg, Kate; Hollenbeck, Julie; Fleming, Lora E.; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C.; Currier, Robert; Kirkpatrick, Barbara

    2011-01-01

    To enhance information sharing and garner increased support from the public for scientific research, funding agencies now typically require that research groups receiving support convey their work to stakeholders. The National Institute of Environmental Health Sciences-(NIEHS) funded Aerosolized Florida Red Tide P01 research group (Florida Red Tide Research Group) has employed a variety of outreach strategies to meet this requirement. Messages developed from this project began a decade ago and have evolved from basic print material (fliers and posters) to an interactive website, to the use of video and social networking technologies, such as Facebook and Twitter. The group was able to track dissemination of these information products; however, evaluation of their effectiveness presented much larger challenges. The primary lesson learned by the Florida Red Tide Research Group is that the best ways to reach specific stakeholders is to develop unique products or services to address specific stakeholders needs, such as the Beach Conditions Reporting System. Based on the experience of the Group, the most productive messaging products result when scientific community engages potential stakeholders and outreach experts during the very initial phases of a project. PMID:21532966

  7. The Art of Red Tide Science

    PubMed Central

    Hall, Emily R.; Nierenberg, Kate; Boyes, Anamari J.; Heil, Cynthia A.; Flewelling, Leanne J.; Kirkpatrick, Barbara

    2012-01-01

    Over the years, numerous outreach strategies by the science community, such as FAQ cards and website information, have been used to explain blooms of the toxic dinoflagellate, Karenia brevis that occur annually off the west coast of Florida to the impacted communities. Many state and federal agencies have turned to funded research groups for assistance in the development and testing of environmental outreach products. In the case of Florida red tide, the Fish and Wildlife Research Institute/Mote Marine Laboratory (MML) Cooperative Red Tide Agreement allowed MML to initiate a project aimed at developing innovative outreach products about Florida red tide. This project, which we coined “The Art of Red Tide Science,” consisted of a team effort between scientists from MML and students from Ringling College of Art and Design. This successful outreach project focused on Florida red tide can be used as a model to develop similar outreach projects for equally complex ecological issues. PMID:22712002

  8. The Art of Red Tide Science.

    PubMed

    Hall, Emily R; Nierenberg, Kate; Boyes, Anamari J; Heil, Cynthia A; Flewelling, Leanne J; Kirkpatrick, Barbara

    2012-05-01

    Over the years, numerous outreach strategies by the science community, such as FAQ cards and website information, have been used to explain blooms of the toxic dinoflagellate, Karenia brevis that occur annually off the west coast of Florida to the impacted communities. Many state and federal agencies have turned to funded research groups for assistance in the development and testing of environmental outreach products. In the case of Florida red tide, the Fish and Wildlife Research Institute/Mote Marine Laboratory (MML) Cooperative Red Tide Agreement allowed MML to initiate a project aimed at developing innovative outreach products about Florida red tide. This project, which we coined "The Art of Red Tide Science," consisted of a team effort between scientists from MML and students from Ringling College of Art and Design. This successful outreach project focused on Florida red tide can be used as a model to develop similar outreach projects for equally complex ecological issues.

  9. Florida Red Tide Perception: Residents versus Tourists

    PubMed Central

    Nierenberg, Kate; Byrne, Margaret; Fleming, Lora E.; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C.; Tanga, Elvira; Dalpra, Dana R.; Kirkpatrick, Barbara

    2010-01-01

    The west coast of Florida has annual blooms of the toxin-producing dinoflagellate, Karenia brevis with Sarasota, FL considered the epicenter for these blooms. Numerous outreach materials, including Frequently Asked Question (FAQ) cards, exhibits for local museums and aquaria, public beach signs, and numerous websites have been developed to disseminate information to the public about this natural hazard. In addition, during intense onshore blooms, a great deal of media attention, primarily via newspaper (print and web) and television, is focused on red tide. However to date, the only measure of effectiveness of these outreach methods has been counts of the number of people exposed to the information, e.g., visits to a website or number of FAQ cards distributed. No formal assessment has been conducted to determine if these materials meet their goal of informing the public about Florida red tide. Also, although local residents have the opinion that they are very knowledgeable about Florida red tide, this has not been verified empirically. This study addressed these issues by creating and administering an evaluation tool for the assessment of public knowledge about Florida red tide. A focus group of Florida red tide outreach developers assisted in the creation of the evaluation tool. The location of the evaluation was the west coast of Florida, in Sarasota County. The objective was to assess the knowledge of the general public about Florida red tide. This assessment identified gaps in public knowledge regarding Florida red tides and also identified what information sources people want to use to obtain information on Florida red tide. The results from this study can be used to develop more effective outreach materials on Florida red tide. PMID:20824108

  10. Florida Red Tide Perception: Residents versus Tourists.

    PubMed

    Nierenberg, Kate; Byrne, Margaret; Fleming, Lora E; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C; Tanga, Elvira; Dalpra, Dana R; Kirkpatrick, Barbara

    2010-09-01

    The west coast of Florida has annual blooms of the toxin-producing dinoflagellate, Karenia brevis with Sarasota, FL considered the epicenter for these blooms. Numerous outreach materials, including Frequently Asked Question (FAQ) cards, exhibits for local museums and aquaria, public beach signs, and numerous websites have been developed to disseminate information to the public about this natural hazard. In addition, during intense onshore blooms, a great deal of media attention, primarily via newspaper (print and web) and television, is focused on red tide. However to date, the only measure of effectiveness of these outreach methods has been counts of the number of people exposed to the information, e.g., visits to a website or number of FAQ cards distributed. No formal assessment has been conducted to determine if these materials meet their goal of informing the public about Florida red tide. Also, although local residents have the opinion that they are very knowledgeable about Florida red tide, this has not been verified empirically. This study addressed these issues by creating and administering an evaluation tool for the assessment of public knowledge about Florida red tide. A focus group of Florida red tide outreach developers assisted in the creation of the evaluation tool. The location of the evaluation was the west coast of Florida, in Sarasota County. The objective was to assess the knowledge of the general public about Florida red tide. This assessment identified gaps in public knowledge regarding Florida red tides and also identified what information sources people want to use to obtain information on Florida red tide. The results from this study can be used to develop more effective outreach materials on Florida red tide.

  11. Public perceptions of Florida red tide risks.

    PubMed

    Kuhar, Sara E; Nierenberg, Kate; Kirkpatrick, Barbara; Tobin, Graham A

    2009-07-01

    This research integrates theoretical frameworks of risk perception, social amplification of risk, and the role of place-specific contexts in order to explore the various perceptions surrounding Florida red tides. Florida red tides are naturally occurring events that are increasing in frequency, duration, and severity. This has implications for public health, the local economy, and ecosystem health. While many of the negative impacts of Florida red tides are not easily controlled, some of the secondary impacts may be mitigated through individuals' responses. However, public perception and consequent reactions to Florida red tides have not been investigated. This research uses questionnaire surveys, and semi-structured interviews, to explore the various perceptions of the risk surrounding red tides. Surveys and interviews were conducted along two Florida west coast beaches. The results indicate that the underlying foundations of the social amplification of the risk framework are applicable to understanding how individuals form perceptions of risk relative to red tide events. There are key differences between the spatial locations of individuals and corresponding perceptions, indicating that place-specific contexts are essential to understanding how individuals receive and interpret risk information. The results also suggest that individuals may be lacking efficient and up-to-date information about Florida red tides and their impacts because of inconsistent public outreach. Overall, social and spatial factors appear to be influential as to whether individuals amplify or attenuate the risks associated with Florida red tides.

  12. Public Perceptions of Florida Red Tide Risks

    PubMed Central

    Kuhar, Sara E.; Nierenberg, Kate; Kirkpatrick, Barbara; Tobin, Graham A.

    2009-01-01

    This research integrates theoretical frameworks of risk perception, social amplification of risk, and the role of place-specific contexts in order to explore the various perceptions surrounding Florida red tides. Florida red tides are naturally occurring events that are increasing in frequency, duration, and severity. This has implications for public health, the local economy, and ecosystem health. While many of the negative impacts of Florida red tides are not easily controlled, some of the secondary impacts may be mitigated through individuals’ responses. However, public perception and consequent reactions to Florida red tides have not been investigated. This research uses questionnaire surveys, and semi-structured interviews, to explore the various perceptions of the risk surrounding red tides. Surveys and interviews were conducted along two Florida west coast beaches. The results indicate that the underlying foundations of the social amplification of the risk framework are applicable to understanding how individuals form perceptions of risk relative to red tide events. There are key differences between the spatial locations of individuals and corresponding perceptions, indicating that place-specific contexts are essential to understanding how individuals receive and interpret risk information. The results also suggest that individuals may be lacking efficient and up-to-date information about Florida red tides and their impacts because of inconsistent public outreach. Overall, social and spatial factors appear to be influential as to whether individuals amplify or attenuate the risks associated with Florida red tides. PMID:19392675

  13. In Brief: Red tide Web site

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Kumar, Mohi

    2008-06-01

    The U.S. National Oceanic and Atmospheric Administration has established the NOAA New England Red Tide Information Center to help people understand the significant red tides that are predicted to form there later this spring. The site (http://www.oceanservice.noaa.gov/redtide) will provide a summary of the current red tide situation and its potential harmful impacts on humans and animals and will serve as a central repository of information. The site also will have direct links to news releases, changes to relevant federal fishing regulations, links to closures of shellfish waters, and links to state agency Web sites with localized information. In addition, the site will have information about NOAA's scientific response effort as well as information from several other sources including NOAA's major response partner, the Woods Hole Oceanographic Institution (WHOI). On 24 April, WHOI scientists, using forecast models developed with NOAA funding support, predicted ``that excess winter precipitation has set the stage for a harmful algal bloom similar to the historic red tide of 2005.'' That bloom shut down shellfish beds from the Bay of Fundy to Martha's Vineyard for several months.

  14. Some dinophycean red tide plankton species generate a superoxide scavenging substance.

    PubMed

    Sato, Emiko; Niwano, Yoshimi; Matsuyama, Yukihiko; Kim, Daekyung; Nakashima, Takuji; Oda, Tatsuya; Kohno, Masahiro

    2007-03-01

    Recent studies indicate that some raphidophycean red tide flagellates produce substances able to scavenge superoxide, whereas there have been no reports on superoxide scavenger production by dinophycean red tide flagellates. In this study, we examined the superoxide-scavenging activity of aqueous extracts from dinophycean red tide flagellates, Gymnodinium spp., Scrippsiella trochoidea, and Karenia sp., by a luminol analog L-012-dependent chemiluminescence (CL) method and an electron spin resonance (ESR)-spin trapping method, and compared the activity to that of raphidophycean red tide flagellates, Chattonella spp., Heterosigma akashiwo, and Fibrocapsa japonica. In the experiment applying the L-012-dependent CL method, only the aqueous extracts from raphidophycean red tide flagellates showed superoxide-scavenging activity. On the other hand, applying the ESR-spin trapping method, we found that the aqueous extracts from dinophycean red tide flagellates also showed superoxide-scavenging activity. This is the first report on the production of a superoxide-scavenger by dinophycean red tide flagellates.

  15. [Study of red tide spectral characteristics and its mechanism].

    PubMed

    Cui, Ting-Wei; Zhang, Jie; Ma, Yi; Sun, Ling

    2006-05-01

    In situ spectral data of different red tide, whose dominant species are leptocylindrus danicus, chattonella marina, skeletonema costatum, and mesodinium rubrum, were acquired by above water method utilizing spectrometer manufactured by FieldSpec Dual VNIR (USA). It is emphasized that the characteristic reflectance peak lying between 687 and 728 nm can be used to distinguish between red tide and normal sea water. Also the spectral discrepancy between different dominant species of red tide is pointed out, which could be utilized to identify certain red tide species by remote sensing technique. Mechanisms of phytoplankton red tide spectra peaks and vales are given. Spectral characteristics of mesodinium rubrum, a kind of protozoan, may be related to its symbiotic alga in its body and phytoplankton pigment crumb. So, research on ingestion preference, symbiotic property with algae, and fluorescence emission character of such symbiotic algae under normal temperature may be helpful for the deep understanding of mechanism of mesodinium rubrum spectra.

  16. Research on red tide occurrences using enclosed experimental ecosystems in west Xiamen Harbor, China—Relationship between various factors and red tide occurrences

    NASA Astrophysics Data System (ADS)

    Lin, Yu; Harrison, P. J.

    2000-06-01

    A series of enclosed ecosystem experiments were conducted in a land-based tank near the seaside of West Xiamen Harbor. The results of experiments conducted in different seasons and years showed a repeatable phytoplankton succession. In this relatively stable ecosystem with added nutrients and trace metals, diatoms dominated initially, dinoflagellates dominated in the later stage, and dinoflagellate red tides eventually occurred. Vitamin B12 enrichment may speed up this succession process. Stirring the water column could stop this process. Soluble Mn at a level of 3 4 μg/L in seawater, which also is the existing concentration of soluble Mn in Xiamen Harbor seawater, is sufficient for the multiplication of algae and occurrence of red tide. The present study showed that excessive soluble Mn in Xiamen Harbor cannot cause red tide, and that Fe was one of the important factors causing diatiom red tide in this present study.

  17. The recognition of ocean red tide with hyper-spectral-image based on EMD

    NASA Astrophysics Data System (ADS)

    Zhao, Wencang; Wei, Hongli; Shi, Changjiang; Ji, Guangrong

    2008-05-01

    A new technique is introduced in this paper regarding red tide recognition with remotely sensed hyper-spectral images based on empirical mode decomposition (EMD), from an artificial red tide experiment in the East China Sea in 2002. A set of characteristic parameters that describe absorbing crest and reflecting crest of the red tide and its recognition methods are put forward based on general picture data, with which the spectral information of certain non-dominant alga species of a red tide occurrence is analyzed for establishing the foundation to estimate the species. Comparative experiments have proved that the method is effective. Meanwhile, the transitional area between red-tide zone and non-red-tide zone can be detected with the information of thickness of algae influence, with which a red tide can be forecast.

  18. Detecting the red tide based on remote sensing data in optically complex East China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohui; Pan, Delu; Mao, Zhihua; Tao, Bangyi; Liu, Qiong

    2012-09-01

    Red tide not only destroys marine fishery production, deteriorates the marine environment, affects coastal tourist industry, but also causes human poison, even death by eating toxic seafood contaminated by red tide organisms. Remote sensing technology has the characteristics of large-scale, synchronized, rapid monitoring, so it is one of the most important and most effective means of red tide monitoring. This paper selects the high frequency red tides areas of the East China Sea as study area, MODIS/Aqua L2 data as the data source, analysis and compares the spectral differences in the red tide water bodies and non-red tide water bodies of many historical events. Based on the spectral differences, this paper develops the algorithm of Rrs555/Rrs488> 1.5 to extract the red tide information. Apply the algorithm on red tide event happened in the East China Sea on May 28, 2009 to extract the information of red tide, and found that the method can determine effectively the location of the occurrence of red tide; there is a good corresponding relationship between red tide extraction result and chlorophyll a concentration extracted by remote sensing, shows that these algorithm can determine effectively the location and extract the red tide information.

  19. [Temporal and spatial distribution of red tide in Yangtze River Estuary and adjacent waters].

    PubMed

    Liu, Lu-San; Li, Zi-Cheng; Zhou, Juan; Zheng, Bing-Hui; Tang, Jing-Liang

    2011-09-01

    The events of red tide were collected in Yangtze River Estuary and adjacent waters from 1972 to 2009. Based on geographic information system (GIS) analysis on the temporal and spatial distribution of red tide, the distribution map was generated accordingly. The results show: (1) There are three red tide-prone areas, which are outside the Yangtze River estuary and the eastern of Sheshan, Huaniaoshan-Shengshan-Gouqi, Zhoushan and the eastern of Zhujiajian. The red tide occurred 174 times in total, in which there were 25 times covered the area was larger than 1 000 km2. After 2000, the frequency of red tide were significantly increasing; (2) The frequent occurrence of red tide was in May (51% of total occurrence) and June (20% of total occurrence); (3) In all of the red tide plankton, the dominant species were Prorocentrum danghaiense, Skeletonema costatum, Prorocentrum dantatum, Nactiluca scientillans. The red tides caused by these species were 38, 35, 15, 10 times separately.

  20. Risk in daily newspaper coverage of red tide blooms in Southwest Florida

    PubMed Central

    Li, Zongchao; Garrison, Bruce; Ullmann, Steven G.; Kirkpatrick, Barbara; Fleming, Lora E.; Hoagland, Porter

    2016-01-01

    This study investigated newspaper coverage of Florida red tide blooms in four metropolitan areas of Southwest Florida during a 25-year period, 1987-2012. We focused on how journalists framed red tide stories with respect to environmental risk, health risk, and economic risk. We determined risk to be a key factor in this news coverage, being an aspect of coverage of red tide itself in terms of environmental risk, tourism risk, and public health risk. The study found that red tide news coverage is most often framed as an environmental story. PMID:27087790

  1. Risk in daily newspaper coverage of red tide blooms in Southwest Florida.

    PubMed

    Li, Zongchao; Garrison, Bruce; Ullmann, Steven G; Kirkpatrick, Barbara; Fleming, Lora E; Hoagland, Porter

    This study investigated newspaper coverage of Florida red tide blooms in four metropolitan areas of Southwest Florida during a 25-year period, 1987-2012. We focused on how journalists framed red tide stories with respect to environmental risk, health risk, and economic risk. We determined risk to be a key factor in this news coverage, being an aspect of coverage of red tide itself in terms of environmental risk, tourism risk, and public health risk. The study found that red tide news coverage is most often framed as an environmental story.

  2. Illness associated with red tide--Nassau County, Florida, 2007.

    PubMed

    2008-07-04

    A "red tide" is a harmful algal bloom that occurs when toxic, microscopic algae in seawater proliferate to a higher-than-normal concentration (i.e., bloom), often discoloring the water red, brown, green, or yellow. Red tides can kill fish, birds, and marine mammals and cause illness in humans. Florida red tide is caused by the dinoflagellate Karenia brevis, which produces toxins called brevetoxins and is most commonly found in the Gulf of Mexico; however, K. brevis blooms also can occur along the Atlantic coast. On September 25, 2007, a cluster of respiratory illnesses was reported to the Nassau County Health Department (NCHD) in northeastern Florida. All of the ill persons were employed at a beach restoration worksite by a dredging company operating at Fernandina Beach; they reported symptoms of eye or respiratory irritation (e.g., coughing, sneezing, sniffling, and throat irritation). NCHD and the Florida Department of Health promptly conducted epidemiologic and environmental investigations and determined the illnesses likely were associated with exposure to a red tide along the Atlantic coast. These actions highlight the importance of rapid investigation of health concerns with potential environmental causes to enable timely notification of the public and prevent further illness.

  3. [Analysis on characteristics of red tide in Fujian coastal waters during the last 10 years].

    PubMed

    Li, Xue-Ding

    2012-07-01

    There were 161 red tide events collected during the last 10 years from 2001 to 2010 in Fujian coastal waters. Comprehensive analysis was performed using statistical methods and the results indicated the following characteristics of the temporal and spatial distribution of red tide in Fujian coastal waters: (1) Outbreaks of red tide often occurred between April and September, and the peak period was in May and June. Most red tide events lasted for 2 to 4 days, and the affected area was below 50 square kilometers. The first outbreak of red tide tended to occur earlier in recent years, and the lasting time became longer. (2) There were 20 species of organisms causing the red tides in Fujian coastal waters, among which 10 species were Bacillariophyta, 9 species were Dinophyta and 1 species was Protozoa. Prorocentrum donghaiense was the most frequent cause of red tides, followed by Noctiluca scintillans, Skeletonema costatum and Chaetoceros sp.. The species caused red tides obeyed the succession law and there were always new species involved. (2) In terms of spatial distribution, outbreaks of red tides mainly occurred in the coastal waters of Ningde, Fuzhou and Xiamen. The species causing red tides were Prorocentrum donghaiense and Noctiluca in the coastal waters in the north of Pingtan, Fujian Province, Skeletonema costatum and Chaetoceros in the coastal waters in the south of Pingtan, Fujian Province. The comprehensive analysis of the characteristics of red tides during the last 10 years is expected to provide scientific and reasonable basis for the prevention, reduction and forecast of red tides in Fujian coastal waters.

  4. Atmospheric Transport of Nutrient Matter during a Red Tide Event

    NASA Astrophysics Data System (ADS)

    Tian, R.; Weng, H.; Lin, Q.

    2017-12-01

    Harmful algal blooms (HABs) resulting from an explosive increase in algae population have become a global problem in coastal marine environment. During 3rd -8th, May of 2006, large-scale, mixed prorocentrum dentatum stein and skeletonema costatum bloom developed in those water off the coast of Zhejiang province (Zhoushan city and Liuheng Island) of China. Using Global Nested Air Quality Prediction Modeling System (GNAQPMS), we find an atmospheric transport of considerable nutrient matter (nitrate, ammonium, Fe (Ⅱ)) to East China Sea (ECS) before the red tide event. It be inferred that the atmospheric transport of nutrient matter is a significant source of nutrient matter in the water of East China Sea whose hydrological setting is dominated by oligotrophic Taiwan Warm Current in spring. Such atmospheric transport of nutrient matter is likely a cause factor of red tide in the coast of East China Sea, especially during dust event. The study provides new information for discovering the occurring mechanism of the red tides in ECS and the essential parameters for the red tide research.

  5. [Mechanisms of removing red tide organisms by organo-clays].

    PubMed

    Cao, Xi-Hua; Song, Xiu-Xian; Yu, Zhi-Ming; Wang, Kui

    2006-08-01

    We tested the influence of the preparation conditions of the quaternary ammonium compounds (QACs) modified clays on their capacities to remove red tide organisms, then discussed the mechanisms of the organo-clays removing red tide organisms. Hexadecyltrimethylammonium (HDTMA) improved the capacity of clays to flocculate red tide algae, and the HDTMA in metastable state enhanced the toxicity of the clay complexes to algae. The capacities of the organo-clays correlated with the toxicity and the adsorbed amount of the QACs used in clays modification, but as the incubation time was prolonged the stability of the organo-clays was improved and the algal removal efficiencies of the clay complexes decreased. When the adsorbed HDTMA was arranged in different clays in which the spatial resistance was different, there was more HDTMA in metastable state in the three-layer montmorillonite. Because of the homo-ion effect the bivalent or trivalent metal ions induced more HDTMA in metastable state and the corresponding organo-clays had high capacities to remove red tide organisms. When the reaction temperature was 60 degrees C the adsorbed HDTMA was easily arranged on cation exchange sites, if the temperature rose or fell the metastable HDTMA would increase so that the capacity of the clays was improved.

  6. Research on High Accuracy Detection of Red Tide Hyperspecrral Based on Deep Learning Cnn

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Ma, Y.; An, J.

    2018-04-01

    Increasing frequency in red tide outbreaks has been reported around the world. It is of great concern due to not only their adverse effects on human health and marine organisms, but also their impacts on the economy of the affected areas. this paper put forward a high accuracy detection method based on a fully-connected deep CNN detection model with 8-layers to monitor red tide in hyperspectral remote sensing images, then make a discussion of the glint suppression method for improving the accuracy of red tide detection. The results show that the proposed CNN hyperspectral detection model can detect red tide accurately and effectively. The red tide detection accuracy of the proposed CNN model based on original image and filter-image is 95.58 % and 97.45 %, respectively, and compared with the SVM method, the CNN detection accuracy is increased by 7.52 % and 2.25 %. Compared with SVM method base on original image, the red tide CNN detection accuracy based on filter-image increased by 8.62 % and 6.37 %. It also indicates that the image glint affects the accuracy of red tide detection seriously.

  7. Changes in Work Habits of Lifeguards in Relation to Florida Red Tide.

    PubMed

    Nierenberg, Kate; Kirner, Karen; Hoagland, Porter; Ullmann, Steven; Leblanc, William G; Kirkpatrick, Gary; Fleming, Lora E; Kirkpatrick, Barbara

    2010-05-01

    The marine dinoflagellate, Karenia brevis, is responsible for Florida red tides. Brevetoxins, the neurotoxins produced by K. brevis blooms, can cause fish kills, contaminate shellfish, and lead to respiratory illness in humans. Although several studies have assessed different economic impacts from Florida red tide blooms, no studies to date have considered the impact on beach lifeguard work performance. Sarasota County experiences frequent Florida red tides and staffs lifeguards at its beaches 365 days a year. This study examined lifeguard attendance records during the time periods of March 1 to September 30 in 2004 (no bloom) and March 1 to September 30 in 2005 (bloom). The lifeguard attendance data demonstrated statistically significant absenteeism during a Florida red tide bloom. The potential economic costs resulting from red tide blooms were comprised of both lifeguard absenteeism and presenteeism. Our estimate of the costs of absenteeism due to the 2005 red tide in Sarasota County is about $3,000. On average, the capitalized costs of lifeguard absenteeism in Sarasota County may be on the order of $100,000 at Sarasota County beaches alone. When surveyed, lifeguards reported not only that they experienced adverse health effects of exposure to Florida red tide but also that their attentiveness and abilities to take preventative actions decrease when they worked during a bloom, implying presenteeism effects. The costs of presenteeism, which imply increased risks to beachgoers, arguably could exceed those of absenteeism by an order of magnitude. Due to the lack of data, however, we are unable to provide credible estimates of the costs of presenteeism or the potential increased risks to bathers.

  8. A Plan to Develop a Red Tide Warning System for Seawater Desalination Process Management

    NASA Astrophysics Data System (ADS)

    Kim, Tae Woo; Yun, Hong Sik

    2017-04-01

    The holt of the seawater desalination process for fifty five days due to the eight-month long red tide in 2008 in the Persian Gulf, the Middle East, had lost about 10 billion KRW. The POSCO Seawater Desalination facility, located in Gwangyang Bay Area in the Southern Sea, has produced 30,000 tons of fresh water per day since 2014. Since there has been an incident of red time in the area for three months in August, 2012, it is necessary to establish a warning system for red tide that threatens the stable operation of the seawater desalination facility. A red tide warning system can offer the seawater desalination facility manager customized services on red tide information and potential red tide inflow to the water intake. This study aimed to develop a red tide warning system in Gwangyang Bay Area by combining RS, modeling and monitoring technologies, which provides red tide forecasting information with which to effectively control the seawater desalination process. Using the proposed system, the seawater desalination facility manager can take phased measures to cope with the inflow of red tide. ACKNOWLEDGMENTS This research was supported by a grant(16IFIP-C088924-03) from Industrial Facilities & Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of the Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA). This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2014R1A1A2054975).

  9. [Retrieve of red tide distributions from MODIS data based on the characteristics of water spectrum].

    PubMed

    Qiu, Zhong-Feng; Cui, Ting-Wei; He, Yi-Jun

    2011-08-01

    After comparing the spectral differences between red tide water and normal water, we developed a method to retrieve red tide distributions from MODIS data based on the characteristics of red tide water spectrum. The authors used the 119 series of in situ observations to validate the method and found that only one observation has not been detected correctly. The authors then applied this method to MODIS data on April 4, 2005. In the research areas three locations of red tide water were apparently detected with the total areas about 2 000 km2. The retrieved red tide distributions are in good agreement with the distributions of high chlorophyll a concentrations. The research suggests that the method is available to eliminating the influence of suspended sediments and can be used to retrieve the locations and areas of red tide water.

  10. [Algorithms of multiband remote sensing for coastal red tide waters].

    PubMed

    Mao, Xianmou; Huang, Weigen

    2003-07-01

    The spectral characteristics of the coastal waters in East China Sea was studied using in situ measurements, and the multiband algorithms of remote sensing for bloom waters was discussed and developed. Examples of red tide detection using the algorithms in the East China Sea were presented. The results showed that the algorithms could provide information about the location and the area coverage of the red tide events.

  11. Population dynamics of red tide dinoflagellates

    NASA Astrophysics Data System (ADS)

    Wyatt, Timothy; Zingone, Adriana

    2014-03-01

    Sea-surface discolorations due to high concentrations of phytoplankton are called red tides. Their ecological significance is a long standing puzzle, and they are sometimes considered pathological. Here we propose that many red tides, particularly but not exclusively those composed of certain autotrophic dinoflagellates, are presexual/sexual swarms, essential links in their complex life cycles. This view provides a rationale for the appearance of these organisms in thin surface layers, and helps explain their ephemeral nature. We suggest that further understanding of this phenomenon, and of phytoplankton ecology in general, would benefit from attention to the 'net reproductive value‧ (r) over the whole life cycle as well as to the division rate (μ) of the vegetative phase. It is argued that r is strategically adapted to seasonal cycles and long term environmental variability, while μ reflects tactical needs (timing) and constraints (grazers, parasites) on vegetative growth.

  12. Characterization of marine aerosol for assessment of human exposure to brevetoxins.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Irvin, Clinton M; Pierce, Richard H; Naar, Jerome; Backer, Lorraine C; Fleming, Lora E; Kirkpatrick, Barbara; Baden, Dan G

    2005-05-01

    Red tides in the Gulf of Mexico are commonly formed by the fish-killing dinoflagellate Karenia brevis, which produces nine potent polyether brevetoxins (PbTxs). Brevetoxins can be transferred from water to air in wind-powered white-capped waves. Inhalation exposure to marine aerosol containing brevetoxins causes respiratory symptoms. We describe detailed characterization of aerosols during an epidemiologic study of occupational exposure to Florida red tide aerosol in terms of its concentration, toxin profile, and particle size distribution. This information is essential in understanding its source, assessing exposure to people, and estimating dose of inhaled aerosols. Environmental sampling confirmed the presence of brevetoxins in water and air during a red tide exposure period (September 2001) and lack of significant toxin levels in the water and air during an unexposed period (May 2002). Water samples collected during a red tide bloom in 2001 showed moderate-to-high concentrations of K. brevis cells and PbTxs. The daily mean PbTx concentration in water samples ranged from 8 to 28 microg/L from 7 to 11 September 2001; the daily mean PbTx concentration in air samples ranged from 1.3 to 27 ng/m(3). The daily aerosol concentration on the beach can be related to PbTx concentration in water, wind speed, and wind direction. Personal samples confirmed human exposure to red tide aerosols. The particle size distribution showed a mean aerodynamic diameter in the size range of 6-12 microm, with deposits mainly in the upper airways. The deposition pattern correlated with the observed increase of upper airway symptoms in healthy lifeguards during the exposure periods.

  13. HPLC pigment analysis of marine phytoplankton during a red tide occurrence in Tolo Harbour, Hong Kong.

    PubMed

    Wong, C Kwan; Wong, C Kim

    2003-09-01

    A red tide was detected in the inner parts of Tolo Harbour, Hong Kong, in November 2000. Water samples were collected from a fixed station at the centre of the red tide patch for microscopic analysis of phytoplankton community composition and high performance liquid chromatography (HPLC) analysis of phytoplankton pigments. At the peak of the red tide on 24 November 2000, phytoplankton was dominated by the dinoflagellate Scrippsiella trochoidea. The red tide began to decline at the end of November and, by 1 December 2000, the phytoplankton was dominated by diatoms. Chlorophylls and carotenoids in water samples were analysed using HPLC pigment separation technique. Dinoflagellates were indicated by the signature pigment peridinin. Significant correlation (r=0.999) was found between the peridinin concentration and dinoflagellate density. A decrease in peridinin and an increase in fucoxanthin, a major carotenoid in diatoms, marked the shift in phytoplankton composition at the end of the red tide. HPLC analysis also revealed the occurrence of minor phytoplankton groups that are difficult to identify by light microscopy. Red tide monitoring and study of red tide dynamics in Hong Kong have been based on cell counting and spectrophotometric or fluorometric measurement of chlorophyll a. HPLC pigment analysis provides an effective alternative for investigating phytoplankton dynamics during red tide and other algal blooms.

  14. Study on Interaction Between Diurnal Tide and Atmospheric Aerosols Observed by Mars Climate Sounder

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Li, T.

    2016-12-01

    The increased local time coverage observed by Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter (MRO) can enable direct extraction of thermal tides in Mars middle atmosphere with reduced aliasing. Using temperature profiles from Mars year (MY) 30 to 32, we study the latitudinal and seasonal variations of tides and stationary planetary waves with zonal wave numbers s = 1-3. The amplitude of the migrating diurnal tide (DW1) has strong semiannual variations both in the equatorial region and in the Southern Hemisphere (SH) middle latitudes. Aerosols widely distributed in the atmosphere of Mars, namely, dust and water ice also show apparent diurnal variations, which may be caused by a dynamical process of tidal vertical wind. Tidal response in dust abundance indicates an annual variation with maximum amplitude in aphelion seasons while the background abundance of dust peaks in perihelion seasons when global dust storm occurs frequently, which suggests that extremely large abundance of dust may restrain its own tidal response. Water ice abundance in the middle latitudes has a semiannual variation which is similar to the thermal diurnal tide. In addition, the diurnal heating rate of aerosols is calculated and Hough decomposition is performed to estimate the radiative effect of aerosols on diurnal tide.

  15. Review of Florida Red Tide and Human Health Effects

    PubMed Central

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Walsh, Cathy J.; Nierenberg, Kate; Clark, John; Reich, Andrew; Hollenbeck, Julie; Benson, Janet; Cheng, Yung Sung; Naar, Jerome; Pierce, Richard; Bourdelais, Andrea J; Abraham, William M.; Kirkpatrick, Gary; Zaias, Julia; Wanner, Adam; Mendes, Eliana; Shalat, Stuart; Hoagland, Porter; Stephan, Wendy; Bean, Judy; Watkins, Sharon; Clarke, Tainya; Byrne, Margaret; Baden, Daniel G.

    2010-01-01

    This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue—one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people. PMID:21218152

  16. Review of Florida Red Tide and Human Health Effects.

    PubMed

    Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Walsh, Cathy J; Nierenberg, Kate; Clark, John; Reich, Andrew; Hollenbeck, Julie; Benson, Janet; Cheng, Yung Sung; Naar, Jerome; Pierce, Richard; Bourdelais, Andrea J; Abraham, William M; Kirkpatrick, Gary; Zaias, Julia; Wanner, Adam; Mendes, Eliana; Shalat, Stuart; Hoagland, Porter; Stephan, Wendy; Bean, Judy; Watkins, Sharon; Clarke, Tainya; Byrne, Margaret; Baden, Daniel G

    2011-01-01

    This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people.

  17. [Relationships between pollutants discharge and red tide occurrence in Shenzhen eastern coast].

    PubMed

    Jiang, Tian-jiu; Niu, Tao; Ying, Wen-ye

    2007-05-01

    The study on the effects of pollutants discharge on red tide occurrence in eastern sea area of Shenzhen showed that the occurrence frequency of dinoflagellate red tide had significant positive correlations with the net discharge of total nitrogen (TN) and total phosphorous (TP) as well as the N/P ratio of the discharge. The thresholds of net discharged TN and TP were estimated to be 3.917 x 10(3) t and 2.123 x 10(4) t, respectively. No significant correlation was observed between diatom red tide and alongshore pollutants discharge. An example was given to illustrate the means of pollutants discharge control.

  18. Hurricanes, submarine groundwater discharge, and Florida's red tides

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin; Muller-Karger, Frank E.; Swarzenski, Peter W.

    2006-06-01

    A Karenia brevis Harmful Algal Bloom affected coastal waters shallower than 50 m off west-central Florida from January 2005 through January 2006, showing a sustained anomaly of ~1 mg chlorophyll m-3 over an area of up to 67,500 km2. Red tides occur in the same area (approximately 26-29°N, 82-83°W) almost every year, but the intense 2005 bloom led to a widespread hypoxic zone (dissolved oxygen <2 mg L-1) that caused mortalities of benthic communities, fish, turtles, birds, and marine mammals. Runoff alone provided insufficient nitrogen to support this bloom. We pose the hypothesis that submarine groundwater discharge (SGD) provides the missing nutrients, and indeed can trigger and support the recurrent red tides off west-central Florida. SGD inputs of dissolved inorganic nitrogen (DIN) in Tampa Bay alone are ~35% of that discharged by all central Florida rivers draining west combined. We propose that the unusual number of hurricanes in 2004 resulted in high runoff, and in higher than normal SGD emerging along the west Florida coast throughout 2005, initiating and fueling the persistent HAB. This mechanism may also explain recurrent red tides in other coastal regions of the Gulf of Mexico.

  19. Hurricanes, submarine groundwater discharge, and Florida's red tides

    USGS Publications Warehouse

    Hu, C.; Muller-Karger, F. E.; Swarzenski, P.W.

    2006-01-01

    A Karenia brevis Harmful Algal Bloom affected coastal waters shallower than 50 m off west-central Florida from January 2005 through January 2006, showing a sustained anomaly of ???1 mg chlorophyll m-3 over an area of up to 67,500 km2. Red tides occur in the same area (approximately 26-29??N, 82-83??W) almost every year, but the intense 2005 bloom led to a widespread hypoxic zone (dissolved oxygen <2 mg L-1) that caused mortalities of benthic communities, fish, turtles, birds, and marine mammals. Runoff alone provided insufficient nitrogen to support this bloom. We pose the hypothesis that submarine groundwater discharge (SGD) provides the missing nutrients, and indeed can trigger and support the recurrent red tides off west-central Florida. SGD inputs of dissolved inorganic nitrogen (DIN) in Tampa Bay alone are ???35% of that discharged by all central Florida rivers draining west combined. We propose that the unusual number of hurricanes in 2004 resulted in high runoff, and in higher than normal SGD emerging along the west Florida coast throughout 2005, initiating and fueling the persistent HAB. This mechanism may also explain recurrent red tides in other coastal regions of the Gulf of Mexico. Copyright 2006 by the American Geophysical Union.

  20. Temporal and spatial distribution of red tide outbreaks in the Yangtze River Estuary and adjacent waters, China.

    PubMed

    Liu, Lusan; Zhou, Juan; Zheng, Binghui; Cai, Wenqian; Lin, Kuixuan; Tang, Jingliang

    2013-07-15

    Between 1972 and 2009, evidence of red tide outbreaks in the Yangtze River Estuary and adjacent waters was collected. A geographic information system (GIS) was used to analyze the temporal and spatial distribution of these red tides, and it was subsequently used to map the distribution of these events. The results show that the following findings. (1) There were three red tide-prone areas: outside the Yangtze River Estuary and the eastern coast of Sheshan, the Huaniaoshan-Shengshan-Gouqi waters, and the Zhoushan areas and eastern coast of Zhujiajian. In these areas, red tides occurred 174 total times, 25 of which were larger than 1000 km(2) in areal extent. After 2000, the frequency of red tide outbreaks increased significantly. (2) During the months of May and June, the red tide occurrence in these areas was 51% and 20%, respectively. (3) Outbreaks of the dominant red tide plankton species Prorocentrum dong-haiense, Skeletonema costatum, Prorocentrum dantatum, and Noctiluca scientillan occurred 38, 35, 15, and 10 times, respectively, during the study interval. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Red Tide Strands South African Rock Lobsters

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide. The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine. The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra

  2. Red Tide Strands South African Rock Lobsters

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide.

    The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine.

    The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington

  3. Risk in Daily Newspaper Coverage of Red Tide Blooms in Southwest Florida

    ERIC Educational Resources Information Center

    Li, Zongchao; Garrison, Bruce; Ullmann, Steven G.; Kirkpatrick, Barbara; Fleming, Lora E.; Hoagland, Porter

    2015-01-01

    This study investigated newspaper coverage of Florida red tide blooms in four metropolitan areas of Southwest Florida during a 25-year period, 1987-2012. We focused on how journalists framed red tide stories with respect to environmental risk, health risk, and economic risk. We determined risk to be a key factor in this news coverage, being an…

  4. [Research on airborne hyperspectral identification of red tide organism dominant species based on SVM].

    PubMed

    Ma, Yi; Zhang, Jie; Cui, Ting-wei

    2006-12-01

    Airborne hyperspectral identification of red tide organism dominant species can provide technique for distinguishing red tide and its toxin, and provide support for scaling the disaster. Based on support vector machine(SVM), the present paper provides an identification model of red tide dominant species. Utilizing this model, the authors accomplished three identification experiments with the hyperspectral data obtained on 16th July, and 19th and 25th August, 2001. It is shown from the identification results that the model has a high precision and is not restricted by high dimension of the hyperspectral data.

  5. Mass stranding of marine birds caused by a surfactant-producing red tide.

    PubMed

    Jessup, David A; Miller, Melissa A; Ryan, John P; Nevins, Hannah M; Kerkering, Heather A; Mekebri, Abdou; Crane, David B; Johnson, Tyler A; Kudela, Raphael M

    2009-01-01

    In November-December 2007 a widespread seabird mortality event occurred in Monterey Bay, California, USA, coincident with a massive red tide caused by the dinoflagellate Akashiwo sanguinea. Affected birds had a slimy yellow-green material on their feathers, which were saturated with water, and they were severely hypothermic. We determined that foam containing surfactant-like proteins, derived from organic matter of the red tide, coated their feathers and neutralized natural water repellency and insulation. No evidence of exposure to petroleum or other oils or biotoxins were found. This is the first documented case of its kind, but previous similar events may have gone undetected. The frequency and amplitude of red tides have increased in Monterey Bay since 2004, suggesting that impacts on wintering marine birds may continue or increase.

  6. Mass Stranding of Marine Birds Caused by a Surfactant-Producing Red Tide

    PubMed Central

    Jessup, David A.; Miller, Melissa A.; Ryan, John P.; Nevins, Hannah M.; Kerkering, Heather A.; Mekebri, Abdou; Crane, David B.; Johnson, Tyler A.; Kudela, Raphael M.

    2009-01-01

    In November-December 2007 a widespread seabird mortality event occurred in Monterey Bay, California, USA, coincident with a massive red tide caused by the dinoflagellate Akashiwo sanguinea. Affected birds had a slimy yellow-green material on their feathers, which were saturated with water, and they were severely hypothermic. We determined that foam containing surfactant-like proteins, derived from organic matter of the red tide, coated their feathers and neutralized natural water repellency and insulation. No evidence of exposure to petroleum or other oils or biotoxins were found. This is the first documented case of its kind, but previous similar events may have gone undetected. The frequency and amplitude of red tides have increased in Monterey Bay since 2004, suggesting that impacts on wintering marine birds may continue or increase. PMID:19234604

  7. Study of ocean red tide multi-parameter monitoring technology based on double-wavelength airborne lidar system

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Wang, Xinming; Liang, Kun

    2010-10-01

    For monitoring and forecasting of the ocean red tide in real time, a marine environment monitoring technology based on the double-wavelength airborne lidar system is proposed. An airborne lidar is father more efficient than the traditional measure technology by the boat. At the same time, this technology can detect multi-parameter about the ocean red tide by using the double-wavelength lidar.It not only can use the infrared laser to detect the scattering signal under the water and gain the information about the red tise's density and size, but also can use the blue-green laser to detect the Brillouin scattering signal and deduce the temperature and salinity of the seawater.The red tide's density detecting model is firstly established by introducing the concept about the red tide scattering coefficient based on the Mie scattering theory. From the Brillouin scattering theory, the relationship about the blue-green laser's Brillouin scattering frequency shift value and power value with the seawater temperature and salinity is found. Then, the detecting mode1 of the saewater temperature and salinity can be established. The value of the red tide infrared scattering signal is evaluated by the simulation, and therefore the red tide particles' density can be known. At the same time, the blue-green laser's Brillouin scattering frequency shift value and power value are evaluated by simulating, and the temperature and salinity of the seawater can be known. Baed on the multi-parameters, the ocean red tide's growth can be monitored and forecasted.

  8. Analysis of change of red tide species in Yodo River estuary by the numerical ecosystem model.

    PubMed

    Hayashi, Mitsuru; Yanagi, Tetsuo

    2008-01-01

    Occurrence number of red tides in Osaka Bay in Japan is more than 20 cases every year. Diatom red tide was dominant in Osaka Bay, but the non-diatom red tide was dominant in early 1990s. Therefore, the material cycling in Yodo River estuary in Osaka Bay during August from 1991 to 2000 was analyzed by using the numerical ecosystem model and field observation data to clarify the reasons of change in red tide species. Year-to-year variation in calculated concentration ratio of diatom to non-diatom corresponds to the variation in observed ratio of red tide days of diatom to non-diatom. Limiting nutrient of primary production is phosphate over the period. Diatom dominated from 1991 to 1993, but it was difficult for non-diatom to grow due to the limitation by physical condition. Non-diatom was able to grow because of good physical and nutrient conditions from 1994 to 1996. And diatom dominated again under the good physical condition, and phosphorus supply was not enough for non-diatom to grow from 1998 to 2000. Phosphate concentration in the lower layer of Yodo River estuary was important to the variation in red tide species in the upper layer of Yodo River estuary.

  9. [Discrimination of Red Tide algae by fluorescence spectra and principle component analysis].

    PubMed

    Su, Rong-guo; Hu, Xu-peng; Zhang, Chuan-song; Wang, Xiu-lin

    2007-07-01

    Fluorescence discrimination technology for 11 species of the Red Tide algae at genus level was constructed by principle component analysis and non-negative least squares. Rayleigh and Raman scattering peaks of 3D fluorescence spectra were eliminated by Delaunay triangulation method. According to the results of Fisher linear discrimination, the first principle component score and the second component score of 3D fluorescence spectra were chosen as discriminant feature and the feature base was established. The 11 algae species were tested, and more than 85% samples were accurately determinated, especially for Prorocentrum donghaiense, Skeletonema costatum, Gymnodinium sp., which have frequently brought Red tide in the East China Sea. More than 95% samples were right discriminated. The results showed that the genus discriminant feature of 3D fluorescence spectra of Red Tide algae given by principle component analysis could work well.

  10. [Removal efficiency of red tide organisms by modified clay and its impacts on cultured organisms].

    PubMed

    Cao, Xi-hua; Song, Xiu-xian; Yu, Zhi-ming

    2004-09-01

    Removal efficiencies of Prorocentrum donghaiense (Prorocentrum dentatum) by Hexadecyltrimethylammonium (HDTMA) bromide and organo-clay modified by HDTMA were identified. Moreover the toxicity of the unbound HDTMA and HDTMA plus clay to aquacultural organisms, Penaeus japonicus, was also tested. The results suggested that (1) The unbound HDTMA had an excellent ability to remove the red tide organisms. However, its strong toxicity to Penaeus japonicus would restrict its practical use in red tide control. (2) The toxicity of HDTMA could be remarkably decreased by addition of clay and the organo-clay complex had a good ability to removal red tide organisms. At the same time the availability of organo-clay to remove the red tide of P. donghaiense and Heterosigma akashiwo in the lab-imitated cultures were studied. The results indicated that the organo-clay complex could remove 100% P. donghaiense at the dosage of 0.03 g/L and effectively control H. akashiwo at 0.09 g/L while the survival rate of Penaeus japonicus larvae, which were cultured in the red tide seawater, is kept 100%. According to the results in laboratory, the mesocosm tests (CEPEX) in East China Sea were conducted in April and May of 2003. The removal efficiencies of original clay, organic clay and inorganic clay were compared during the CEPEX tests. The results revealed that both inorganic clay and organic clay could remove red tide organisms more effectively than the original clay.

  11. [Applications of three-dimensional fluorescence spectrum of dissolved organic matter to identification of red tide algae].

    PubMed

    Lü, Gui-Cai; Zhao, Wei-Hong; Wang, Jiang-Tao

    2011-01-01

    The identification techniques for 10 species of red tide algae often found in the coastal areas of China were developed by combining the three-dimensional fluorescence spectra of fluorescence dissolved organic matter (FDOM) from the cultured red tide algae with principal component analysis. Based on the results of principal component analysis, the first principal component loading spectrum of three-dimensional fluorescence spectrum was chosen as the identification characteristic spectrum for red tide algae, and the phytoplankton fluorescence characteristic spectrum band was established. Then the 10 algae species were tested using Bayesian discriminant analysis with a correct identification rate of more than 92% for Pyrrophyta on the level of species, and that of more than 75% for Bacillariophyta on the level of genus in which the correct identification rates were more than 90% for the phaeodactylum and chaetoceros. The results showed that the identification techniques for 10 species of red tide algae based on the three-dimensional fluorescence spectra of FDOM from the cultured red tide algae and principal component analysis could work well.

  12. Assessing change of environmental dynamics by legislation in Japan, using red tide occurrence in Ise Bay as an indicator.

    PubMed

    Suzuki, Chika

    2016-01-30

    Tokyo Bay, Ise Bay, and the Seto Inland Sea are the total pollutant load control target areas in Japan. A significant correlation between the incidence of red tides and water quality has been observed in the Seto Inland Sea (Honjo, 1991). However, while red tides also occur in Ise Bay and Tokyo Bay, similar correlations have not been observed. Hence, it is necessary to understand what factors cause red tides to effectively manage these semi-closed systems. This study aims to investigate the relationship between the dynamics of the Red Tide Index and nitrogen regulation as well as phosphorus regulation, even in Ise Bay where, unlike Tokyo Bay, there are few observation items, by selecting a suitable objective variable. The introduction of a new technique that uses the Red Tide Index has revealed a possibility that the total pollution load control has influenced the dynamics of red tide blooms in Ise Bay. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Red tides in the Gulf of Mexico: Where, when, and why?

    PubMed Central

    Walsh, J. J.; Jolliff, J. K.; Darrow, B. P.; Lenes, J. M.; Milroy, S. P.; Remsen, A.; Dieterle, D. A.; Carder, K. L.; Chen, F. R.; Vargo, G. A.; Weisberg, R. H.; Fanning, K. A.; Muller-Karger, F. E.; Shinn, E.; Steidinger, K. A.; Heil, C. A.; Tomas, C. R.; Prospero, J. S.; Lee, T. N.; Kirkpatrick, G. J.; Whitledge, T. E.; Stockwell, D. A.; Villareal, T. A.; Jochens, A. E.; Bontempi, P. S.

    2010-01-01

    [1] Independent data from the Gulf of Mexico are used to develop and test the hypothesis that the same sequence of physical and ecological events each year allows the toxic dinoflagellate Karenia brevis to become dominant. A phosphorus-rich nutrient supply initiates phytoplankton succession, once deposition events of Saharan iron-rich dust allow Trichodesmium blooms to utilize ubiquitous dissolved nitrogen gas within otherwise nitrogen-poor sea water. They and the co-occurring K. brevis are positioned within the bottom Ekman layers, as a consequence of their similar diel vertical migration patterns on the middle shelf. Upon onshore upwelling of these near-bottom seed populations to CDOM-rich surface waters of coastal regions, light-inhibition of the small red tide of ~1 ug chl l–1 of ichthytoxic K. brevis is alleviated. Thence, dead fish serve as a supplementary nutrient source, yielding large, self-shaded red tides of ~10 ug chl l–1. The source of phosphorus is mainly of fossil origin off west Florida, where past nutrient additions from the eutrophied Lake Okeechobee had minimal impact. In contrast, the P-sources are of mainly anthropogenic origin off Texas, since both the nutrient loadings of Mississippi River and the spatial extent of the downstream red tides have increased over the last 100 years. During the past century and particularly within the last decade, previously cryptic Karenia spp. have caused toxic red tides in similar coastal habitats of other western boundary currents off Japan, China, New Zealand, Australia, and South Africa, downstream of the Gobi, Simpson, Great Western, and Kalahari Deserts, in a global response to both desertification and eutrophication. PMID:20411040

  14. Development and Application of an Acoustic System for Harmful Algal Blooms (HABs, Red Tide) Detection using an Ultrasonic Digital Sensor

    NASA Astrophysics Data System (ADS)

    Kim, Hansoo; Kang, Donhyug; Jung, Seung Won

    2018-03-01

    The overgrowth of phytoplankton leads to negative effects such as harmful algal blooms (HABs, also called red tides) in marine environments. The HAB species Cochlodinium polykrikoides ( C. polykrikoides) appears frequently in Korea during summer. In this study, we developed a real-time acoustic detection and remote-control system to detect red tides using an ultrasonic digital sensor. In the laboratory, the acoustic signals increased as the number of cells increased. At the same time, for field application, we deployed the system near the southern coast of Korea, where red tides frequently occurred in summer seasons 2013-2015. The system developed here detected red tides in situ, with a good correlation between the acoustic signals and C. polykrikoides populations. These results suggest that it may be useful for early detection of red tides.

  15. A Hybrid Remote Sensing Approach for Detecting the Florida Red Tide

    NASA Astrophysics Data System (ADS)

    Carvalho, G. A.; Minnett, P. J.; Banzon, V.; Baringer, W.

    2008-12-01

    Harmful algal blooms (HABs) have caused major worldwide economic losses commonly linked with health problems for humans and wildlife. In the Eastern Gulf of Mexico the toxic marine dinoflagellate Karenia brevis is responsible for nearly annual, massive red tides causing fish kills, shellfish poisoning, and acute respiratory irritation in humans: the so-called Florida Red Tide. Near real-time satellite measurements could be an effective method for identifying HABs. The use of space-borne data would be a highly desired, low-cost technique offering the remote and accurate detection of K. brevis blooms over the West Florida Shelf, bringing tremendous societal benefits to the general public, scientific community, resource managers and medical health practitioners. An extensive in situ database provided by the Florida Fish and Wildlife Conservation Commission's Research Institute was used to examine the long-term accuracy of two satellite- based algorithms at detecting the Florida Red Tide. Using MODIS data from 2002 to 2006, the two algorithms are optimized and their accuracy assessed. It has been found that the sequential application of the algorithms results in improved predictability characteristics, correctly identifying ~80% of the cases (for both sensitivity and specificity, as well as overall accuracy), and exhibiting strong positive (70%) and negative (86%) predictive values.

  16. [Spectrum simulation based on data derived from red tide].

    PubMed

    Liu, Zhen-Yu; Cui, Ting-Wei; Yue, Jie; Jiang, Tao; Cao, Wen-Xi; Ma, Yi

    2011-11-01

    The present paper utilizes the absorption data of red tide water measured during the growing and dying course to retrieve imaginary part of the index of refraction based on Mie theory, carries out the simulation and analysis of average absorption efficiency factors, average backscattering efficiency factors and scattering phase function. The analysis of the simulation shows that Mie theory can be used to reproduce the absorption property of Chaetoceros socialis with an average error of 11%; the average backscattering efficiency factors depend on the value of absorption whose maximum value corresponds to the wavelength range from 400 to 700 nanometer; the average backscattering efficiency factors showed a maximum value on 17th with a low value during the outbreak of red tide and the minimum on 21th; the total scattering, weakly depending on the absorption, is proportional to the size parameters which represent the relative size of cell diameter with respect to the wavelength, while the angle scattering intensity is inversely proportional to wavelength.

  17. Nutrient and chlorophyll a anomaly in red-tide periods of 2003-2008 in Sishili Bay, China

    NASA Astrophysics Data System (ADS)

    Hao, Yanju; Tang, Danling; Yu, Long; Xing, Qianguo

    2011-05-01

    Sishili Bay is the most important aquiculture and tourism area for the city of Yantai, China; however, red tides occurred frequently and have caused huge economic losses in this bay in recent years. To gain a better understanding of the local ecological environments in the bay, we conducted this research between 2003 and 2008 to analyze variations in nutrients and chlorophyll (chl- a) during high frequency red tide period (May to September). The results show that the chl- a concentration increased from 2.70 in 2003 to 7.26 mg/m3 in 2008, while the concentration of total inorganic nitrogen (TIN) and silicate (SiO3-Si) increased lineally from 5.18 and 1.45 μmol/L in 2003 to 18.57 and 9.52 μmol/L in 2008, respectively, and the annual phosphate (PO4-P) varied between 0.15 and 0.46 μmol/L. Special attention was given to a red tide in August 2007 occurred when water temperature was high and nutrient concentrations increased sharply because of a heavy rainfall. Overall, the results show the P limitation in Sishili Bay, and reveal that red tides were caused by eutrophication from terrestrial inputs and local warm weather, particularly during rainy periods. Therefore, to control red tide, greater efforts should be made to reduce sewage discharges into Sishili Bay, particularly during rainfall seasons.

  18. Physical-biological coupling induced aggregation mechanism for the formation of high biomass red tides in low nutrient waters.

    PubMed

    Lai, Zhigang; Yin, Kedong

    2014-01-01

    Port Shelter is a semi-enclosed bay in northeast Hong Kong where high biomass red tides are observed to occur frequently in narrow bands along the local bathymetric isobars. Previous study showed that nutrients in the Bay are not high enough to support high biomass red tides. The hypothesis is that physical aggregation and vertical migration of dinoflagellates appear to be the driving mechanism to promote the formation of red tides in this area. To test this hypothesis, we used a high-resolution estuarine circulation model to simulate the near-shore water dynamics based on in situ measured temperature/salinity profiles, winds and tidal constitutes taken from a well-validated regional tidal model. The model results demonstrated that water convergence occurs in a narrow band along the west shore of Port Shelter under a combined effect of stratified tidal current and easterly or northeasterly wind. Using particles as dinoflagellate cells and giving diel vertical migration, the model results showed that the particles aggregate along the convergent zone. By tracking particles in the model predicted current field, we estimated that the physical-biological coupled processes induced aggregation of the particles could cause 20-45 times enhanced cell density in the convergent zone. This indicated that a high cell density red tide under these processes could be initialized without very high nutrients concentrations. This may explain why Port Shelter, a nutrient-poor Bay, is the hot spot for high biomass red tides in Hong Kong in the past 25 years. Our study explains why red tide occurrences are episodic events and shows the importance of taking the physical-biological aggregation mechanism into consideration in the projection of red tides for coastal management. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Florida Red Tides, Manatee Brevetoxicosis, and Lung Models

    PubMed Central

    Kirkpatrick, Barbara; Colbert, Debborah E.; Dalpra, Dana; Newton, Elizabeth A. C.; Gaspard, Joseph; Littlefield, Brandi; Manire, Charles

    2010-01-01

    In 1996, 149 Florida manatees, Trichechus manatus latirostris, died along the southwest coast of Florida. Necropsy pathology results of these animals indicated that brevetoxin from the Florida red tide, Karenia brevis, caused their death. A red tide bloom had been previously documented in the area where these animals stranded. The necropsy data suggested the mortality occurred from chronic inhalation and/or ingestion. Inhalation theories include high doses of brevetoxin deposited/stored in the manatee lung or significant manatee sensitivity to the brevetoxin. Laboratory models of the manatee lungs can be constructed from casts of necropsied animals for further studies; however, it is necessary to define the breathing pattern in the manatee, specifically the volumes and flow rates per breath to estimate toxin deposition in the lung. To obtain this information, two captive-born Florida manatees, previously trained for husbandry and research behaviors, were trained to breathe into a plastic mask placed over their nares. The mask was connected to a spirometer that measured volumes and flows in situ. Results reveal high volumes, short inspiratory and expiratory times and high flow rates, all consistent with observed breathing patterns. PMID:26448968

  20. Survival and growth of Cochlodinium polykrikoides red tide after addition of yellow loess.

    PubMed

    Lee, Young Sik; Kim, Jung Dong; Lim, Weol Ae; Lee, Sam Geun

    2009-11-01

    We examined the survival rate of Cochlodinium polykrikoides after yellow loess addition and conducted culture experiments to investigate the possibility that red tides maybe caused by C. polykrikoides individuals that are precipitated when loess is added. At least 15% of the C. polykrikoides cells that precipitated to the bottom layer either by the addition of loess or no addition survived for 1 week at all growth phases, rather than disappearing immediately after precipitating. However no live cells were observed after 20 days, regardless of phase or loess addition. In the exponential phase, the number of C. polykrikoides cells increased to >2886 cells ml(-1) after loess was added. However in the stationary phase, the number of cells did not increase until 18 days. In the exponential phase, those C. polykrikoides that survived precipitation caused by scattering loess on cultures did not appear to have the ability to cause red tides again because of the short red tide periods in the field, long lag time after loess addition, and low survival rate after loess addition.

  1. Notes on a Mesodinium rubrum red tide in San Francisco Bay (California, USA)

    USGS Publications Warehouse

    Cloern, James E.; Cole, Brian E.; Hager, Stephen W.

    1994-01-01

    Discrete red patches of water were observed in South San Francisco Bay (USA) on 30 April 1993, and examination of live samples showed that this red tide was caused by surface accumulations of the pigmented ciliate Mesodinium rubrum . Vertical profiles showed strong salinity and temperature stratification in the upper 5 m, peak chlorophyll fluorescence in the upper meter, and differences in the small-scale density structure and fluorescence distribution among red patches. Events preceding this Mesodinium red tide included: (i) heavy precipitation and run-off, allowing for strong salinity stratification; (ii) a spring diatom bloom where the chlorophyll a concentration reached 50 mg m −3 ; (ii) depletions of dissolved inorganic N and Si in the photic zone; and (iv) several days of rapid warming and stabilization of the upper surface layer. These conditions may be general prerequisites for M.rubrum blooms in temperate estuaries.

  2. Viral Lysogeny as a Potential Mechanism for Termination of a Red Tide Event

    NASA Astrophysics Data System (ADS)

    Martinez, S. B.; Kudela, R. M.; Broughton, J.

    2014-12-01

    Red tides are high-biomass blooms in the coastal ocean typically caused by dinoflagellates. While some red tides are harmful (via toxin production, high biomass, and oxygen depletion during decay), they also provide an important source of energy and carbon for other trophic levels. Red tides are often ephemeral, so while it is easy to identify one, what causes these events to terminate can vary. It has been hypothesized that viral lysis and parasitic infection may be important vectors of termination for these blooms. This study sought to compare the decay of one such bloom in Monterey Bay, California to in situ and mesocosm studies where bloom termination was due to viral lysis. To achieve this goal we used MODIS ocean color Level 2 data with spatial resolution of 1km; we identified and averaged RRS from 9 pixels within the northern "red tide incubator" region of Monterey Bay where a dinoflagellate bloom was identified. We applied the quasi-analytical algorithm (QAA) to derive the backscatter coefficient (bbp(λ)), absorption due to chlorophyll (aChl), and the gelbstoff absorption coefficient (ag). Separate equations were used to find the volume scattering function (β(ψ,λ) where ψ =140°) and the particle size distribution hyperbolic slope (ξ). A MODIS satellite time series of five days (during an eight-day period) confirmed optical changes similar to documented shifts in laboratory-controlled experiments examining viral lysis. As predicted from previous results, the decrease in chlorophyll - essentially the deterioration of the algal bloom - resulted in the anticipated decrease in bbp(λ) and VSF values as well as an increase in ξ. aChl and ag were also compared to the Morel 2009 band algorithm for Colored Dissolved Organic Matter (CDOM) and the OC3 band algorithm for chlorophyll concentration. Results indicate that the QAA retrievals cannot be statistically distinguished (using a paired t-test) from the Morel and OC3 band algorithms. Analyzing more bloom

  3. Bilateral mastoiditis from red tide exposure.

    PubMed

    Honner, Samantha; Kudela, Raphael M; Handler, Ethan

    2012-10-01

    Bilateral mastoiditis in adults has previously been reported only in association with diabetes mellitus or immunocompromised patients. To describe a case of bilateral mastoiditis in a healthy adult and to investigate the etiology. A 53-year-old woman presented to the Emergency Department with bilateral otitis externa and mastoiditis after scuba diving during a harmful algal bloom, commonly known as a "red tide." The levels of coliform bacteria recorded at the time and location of her dive exceeded health regulatory limits and correlate with her atypical culture results. Elevated bacterial counts that result from harmful algal blooms may account for this rare infection. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. [Nutrient distribution and its relationship with occurrence of red tide in coastal area of East China Sea].

    PubMed

    Han, Xiurong; Wang, Xiulin; Sun, Xia; Shi, Xiaoyong; Zhu, Chenjian; Zhang, Chuansong; Lu, Rong

    2003-07-01

    Nutrient (NO3(-)-N, PO4(3-)-P, Sio3(2-)-Si, NH4(+)-N, etc.) concentrations in coastal area of East China Sea were measured during April 25 to May 2, 2002, and the relationship between the spatial distribution of the nutrients and the red tide occurrence in the studied area was analyzed. The results showed that compared to the 1st class seawater quality of the national standard, the concentrations of dissolved inorganic nitrogen (DIN) and PO4(-)-P were 46% and 60% higher, respectively, showing that the studied area, especially the Changjiang River estuary and the Hangzhou Bay, was at a disadvantage of eutrophication. Furthermore, the nutrient concentrations inshore were much higher than those offshore, and the isolines nearly paralleled with the coastline, meaning that the nutrient distributions were mainly influenced by terrestrial discharges. It also showed that the relatively high concentrations of nutrients, especially DIN and PO4(3-)-P, might result in the red-tide occurrence. However, the red tide did not occur in the area with the highest concentrations of the nutrients, further demonstrating that the eutrophication was not the unique environmental factor inducing red-tide occurrence.

  5. Long-term dynamics of freshwater red tide in shallow lake in central Japan.

    PubMed

    Hirabayashi, Kimio; Yoshizawa, Kazuya; Yoshida, Norihiko; Ariizumi, Kazunori; Kazama, Futaba

    2007-01-01

    The aim of this study is to clarify the long-term dynamics of the red tide occurring in Lake Kawaguchi. The measurement of environmental factors and water sampling were carried out monthly at a fixed station in Lake Kawaguchi's center basin from April 1993 to March 2004. On June 26, 1995, the horizontal distribution ofPeridinium bipes was investigated using a plastic pipe, obtaining 0∼1-m layers of water column samples at 68 locations across the entire lake. P. bipes showed an explosive growth and formed a freshwater red tide in the early summer of 1995, when the nutrient level was higher than those in the other years, particularly the phosphate concentration in the surface layer. The dissolved total phosphorus (DTP) concentration was sufficient forP. bipes growth in that year. In the study of its horizontal distribution,P. bipes was found at all the locations. The numbers of cells per milliliter ranged from 67 to 5360, averaging 1094±987 cells/ml, with particularly high densities along the northern shore. Since then,P. bipes has annually averaged about 25 cells/ml in Lake Kawaguchi. We observed that the red tide caused byP. bipes correlates with a high DTP concentration in Lake Kawaguchi.

  6. Isolation and purification of antialgal compounds from the red alga Gracilaria lemaneiformis for activity against common harmful red tide microalgae.

    PubMed

    Sun, Ying-Ying; Meng, Kun; Su, Zhen-Xia; Guo, Gan-Lin; Pu, Yin-Fang; Wang, Chang-Hai

    2017-02-01

    Seven antialgal compounds (1-7) were successfully isolated from the red alga Gracilaria lemaneiformis through a combination of silica gel column chromatography and repeated preparative thin-layer chromatography. On the basis of the spectral data, the compounds were identified as gossonorol (1), 7,10-epoxy-ar-bisabol-11-ol (2), glycerol monopalmitate (3), stigmasterol (4), 15-hydroxymethyl-2, 6, 10, 18, 22, 26, 30-heptamethyl-14-methylene-17-hentriacontene (5), 4-hydroxyphenethyl alcohol (6), and margaric acid (7). These seven compounds were isolated from G. lemaneiformis for the first time, while the compounds 4, 6, and 7 were isolated from marine macroalgae for the first time. Furthermore, a quantitative relationship between the inhibition of algal growth and the concentration of each antialgal compound was determined and important parameters for future practical HAB control, e.g., EC 50-96h , were also obtained. The results indicated that isolated compounds 1-7 possess selective antialgal activity against the growth of several red tide microalgae (including Amphidinium carterae, Heterosigma akashiwo, Karenia mikimitoi, Phaeocystis globsa, Prorocentrum donghaiense, and Skeletonema costatum). Their antialgal activity against test red tide microalgae has not been previously reported. Furthermore, the EC 50-96h of one or more of the compounds towards the tested red microalgae was not only significantly less than 10 μg/mL but also was smaller than that of the characteristic antialgal agent potassium dichromate. The study demonstrates that compounds 1-7 possess significant application potential as antialgal agents against several harmful red tide microalgae.

  7. Monitoring red tide with satellite imagery and numerical models: a case study in the Arabian Gulf.

    PubMed

    Zhao, Jun; Ghedira, Hosni

    2014-02-15

    A red tide event that occurred in August 2008 in the Arabian Gulf was monitored and assessed using satellite observations and numerical models. Satellite observations revealed the bloom extent and evolution from August 2008 to August 2009. Flow patterns of the bloom patch were confirmed by results from a HYCOM model. HYCOM data and satellite-derived sea surface temperature data further suggested that the bloom could have been initiated offshore and advected onshore by bottom Ekman layer. Analysis indicated that nutrient sources supporting the bloom included upwelling, Trichodesmium, and dust deposition while other potential sources of nutrient supply should also be considered. In order to monitor and detect red tide effectively and provide insights into its initiation and maintenance mechanisms, the integration of multiple platforms is required. The case study presented here demonstrated the benefit of combing satellite observations and numerical models for studying red tide outbreaks and dynamics. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Sesquiterpenoids with antialgal activity against the common red tide microalgae from marine macroalga Porphyra yezoensis.

    PubMed

    Sun, Ying-Ying; Xing, Jing-Zeng; Zhang, Jian-Shuo; Zhou, Wen-Jing; Pu, Yin-Fang

    2018-03-01

    Previous studies showed that methanol extracts from Porphyra yezoensis significantly inhibited Karenia mikimitoi and Skeletonema costatum. Five sesquiterpenoids (1-5) were successfully isolated from this marine macroalga through a combination of silica gel column chromatography and repeated preparative thin-layer chromatography in this paper. Their structure was identified as gossonorol (1), 7,10-epoxy-ar-bisabol-11-ol (2), cyclonerodiol (3), cadinol, (4) and 4-cadinen-1-ol (5) on the basis of spectroscopic data. These sesquiterpenoids were isolated from Porphyra yezoensis for the first time, and cyclonerodiol (3) and cadinol (4) isolated from marine macroalgae for the first time. Further, a quantitative relationship between the inhibition of algal growth and the concentration of each antialgal sesquiterpenoid (gossonorol, 7,10-epoxy-ar-bisabol-11-ol and cyclonerodiol) was determined and important parameters, e.g., EC 50-96h for future practical HAB control are to be obtained. Results showed that three sesquiterpenoids (1-3) had selective antialgal activity against the growth of red tide microalgae (Amphidinium carterae, Heterosigma akashiwo, Karenia mikimitoi, Phaeocystis globosa, Prorocentrum donghaiense, and Skeletonema costatum). More than two test red tide microalgae were significantly inhibited by these three sesquiterpenoids (1-3). Their antialgal activity against red tide microalgae has not been previously reported. Furthermore, EC 50-96h of gossonorol (1) and 7,10-epoxy-ar-bisabol-11-ol (2) for specific test red microalgae were not only significantly less than 10 μg/mL, but also were smaller than/or very close to those of potassium dichromate. Gossonorol (1) and 7,10-epoxy-ar-bisabol-11-ol (2) possessed good application potential than potassium dichromate as a characteristic antialgal agent against the specific harmful red tide microalgae (Heterosigma akashiwo, Phaeocystis globosa, and Prorocentrum donghaiense) (or Heterosigma akashiwo and Karenia

  9. [Distributions of COD and petroleum hydrocarbons and their relationships with occurrence of red tide in East China Sea].

    PubMed

    Zhang, Chuansong; Wang, Xiulin; Shi, Xiaoyong; Han, Xiurong; Sun, Xia; Zhu, Chenjian; Lu, Rong

    2003-07-01

    Based on the data of COD and petroleum hydrocarbons collected in the cruise from April 25 to May 2, 2002 in intensive red tide occurrence areas in East China Sea, the distribution of COD, and petroleum hydrocarbons and the eutrophication index(EI) were analyzed. The results showed that the EI and COD value were both high in coastal water, and decreased gradually away from shore. After the preliminary study on the relationships between correlative factors and occurrence of red tide, it was found that high EI and COD were necessary. There would be great chances for the red tide to break out under conditions that the EI was between 2.5 and 15 and COD concentration was between 0.8 to 1.4 mg.L-1 in seawater, along with the favorable temperature and salinity.

  10. THE RED-TIDE DINOFLAGELLATE, ALEXANDRIUM MONILATUM, SUPPRESSES GROWTH OF MIXED NATURAL PHYTOPLANKTON

    EPA Science Inventory

    Alexandrium monilatum is a large, chain-forming, autotrophic dinoflagellate associated with red-tides and fish kills along the US Gulf of Mexico coast. When cultured inocula of A. monilatum were added to nutrient-amended seawater samples, growth rates and biomass yields of the na...

  11. [Semi-analysis algorithm to retrieve pigment concentrations in the red tide area of the East China Sea].

    PubMed

    Qiu, Zhong-Feng; Xi, Hong-Yan; He, Yi-Jun; Chen, Jay-Chung; Jian, Wei-Jun

    2006-08-01

    For the purpose of detecting and forecasting research of red tides to reduce the loss, a semi-analytic algorithm to retrieve chlorophyll-a concentrations was established in the area where red tides often brought out, according to the data collected during the red tides cruise in the East China Sea in April 2002. In the algorithm, empirical equations were made based on the coefficients from the in-situ data, including the optical properties of the research area. The in-situ data were used to validate the algorithm. The discrepancy of chlorophyll-a absorption coefficients and concentrations are mainly located in the region of 30%. The root mean deviation of the chlorophyll-a concentrations between the observed and the calculated is 0.24, the maximum relative deviation 40.93%, the mean relative deviation 18.83% and the correlation coefficient 0.83. The results show that the precision of the algorithm is high and the algorithm is fit for the research area.

  12. Inhibitory activity of an extract from a marine bacterium Halomonas sp. HSB07 against the red-tide microalga Gymnodinium sp. (Pyrrophyta)

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Li, Fuchao; Liu, Ling; Jiang, Peng; Liu, Zhaopu

    2013-11-01

    In recent years, red tides occurred frequently in coastal areas worldwide. Various methods based on the use of clay, copper sulfate, and bacteria have been successful in controlling red tides to some extent. As a new defensive agent, marine microorganisms are important sources of compounds with potent inhibitory bioactivities against red-tide microalgae, such as Gymnodinium sp. (Pyrrophyta). In this study, we isolated a marine bacterium, HSB07, from seawater collected from Hongsha Bay, Sanya, South China Sea. Based on its 16S rRNA gene sequence and biochemical characteristics, the isolated strain HSB07 was identified as a member of the genus Halomonas. A crude ethyl acetate extract of strain HSB07 showed moderate inhibition activity against Gymnodinium sp. in a bioactive prescreening experiment. The extract was further separated into fractions A, B, and C by silica gel column chromatography. Fractions B and C showed strong inhibition activities against Gymnodinium. This is the first report of inhibitory activity of secondary metabolites of a Halomonas bacterium against a red-tide-causing microalga.

  13. [Study on the kinetics of organo-clay removing red tide organisms].

    PubMed

    Wu, Ping; Yu, Zhi-ming

    2007-07-01

    The kinetics of red tide organisms (Heterosigma akashiwo and Scrippsiella trochoidea) coagulation with clays modified by dialkyl-polyoxyethenyl quaternary ammonium compound (DPQAC) was studied using spectrophotometer and fluorometry, and the effects of different kinds and concentrations of clays, the second component DPQAC added in clays and pH on the coagulation rate were examined. When using spectrophotometer, the coagulation kinetics of red tide organism coagulation with organo-clays is well fit for the bimolecular reaction model; while using fluorometry, it is fit for the hyperbola model much better. Moreover, the results also prove that using fluorometry can avoid the great change of permeance efficiency caused by clays' sedimentation when using spectrophotometer, which has availably avoided the influence of clays' sedimentation and reflected the essential of algal coagulation and sedimentation well and truly. The results of two studying methods show that the coagulation rate is more rapid in the system of kaolin than in that of bentonite; increasing the concentration of clays and DPQAC and increasing pH all can accelerate coagulation, and among those increasing the concentration of DPQAC is the most efficient way of increasing the removal efficiency and coagulation rate.

  14. EVALUATION OF THE EFFECTS ON BENTHIC ORGANISMS FROM CLAY FLOCCULATION OF RED TIDE ORGANISMS

    EPA Science Inventory

    Evaluating the feasibility of controlling red tide using clay flocculation is part of an ECOHAB-funded project. One aspect for the feasibility and future application of clays is the determination of potential negative environmental impacts. The removal of toxin-containing dinofl...

  15. EFFECTS OF RED TIDE (KARENIA BREVIS) ON PISCIVOROUS BIRDS IN SARASOTA BAY, FLORIDA

    EPA Science Inventory

    Red tide will cause changes in the abundance and distribution of fishes, which will be accompanied by changes in the patterns of habitat use by birds. Birds will be affected by exposure to brevetoxin via their prey and they will also face decreased availability of prey during...

  16. Making Space for Red Tide: Discolored Water and the Early Twentieth Century Bayscape of Japanese Pearl Cultivation.

    PubMed

    Ericson, Kjell

    2017-05-01

    "Red tide" has become a familiar shorthand for unusual changes in the color of ocean waters. It is intimately related both to blooms of creatures like dinoflagellates and to the devastating effects they pose to coastal fisheries. This essay tracks the early twentieth century emergence of discolored water as an aquacultural problem, known in Japan as akashio, and its trans-oceanic transformation into the terms and practices of "red tide" in the post-World War II United States. For Japan's "Pearl King" Mikimoto Kōkichi and his contacts in diverse marine scientific communities, the years-long cycle of guarding and cultivating a pearl oyster went together with the ascription of moral qualities to tiny creatures that posed a threat to farmed bayscapes of pearl monoculture. As akashio, discolored water went from curiosity to marine livestock pest, one that at times left dead pearl oysters in its wake. Red tide arose from the sustained study of the mechanisms by which changes in the biological and chemical composition of seawater might become deadly to exclusively-claimed shellfish along Japanese coastlines, but came to be seen as a way to understand aquatic manifestations of harm in other parts of the littoral world.

  17. TOXICITY OF CLAY FLOCCULATION OF RED TIDE ORGANISMS ON BENTHIC ORGANISMS ERF 2001

    EPA Science Inventory

    Toxicity of Clay Flocculation of Red Tide Organisms on Benthic Organisms (Abstract). To be presented at the16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. 1 p. (ERL,GB R854).

    We have eva...

  18. GROWTH RATES, PHYSIOLOGICAL INDICATORS AND ELEMENTAL COMPOSITION OF THE RED-TIDE DINOFLAGELLATE, ALEXANDRIUM MONILATUM

    EPA Science Inventory

    Alexandrium monilatum is a thecate, autotrophic, bioluminescent and chain-forming dinoflagellate. Although it has been known to be associated with red tides and fish kills along the US Gulf of Mexico coast for almost 50 years, little basic physiological information is available f...

  19. Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems

    PubMed Central

    Henry, M. S.

    2009-01-01

    The Florida red tide is a descriptive name for high concentrations of the harmful marine alga, Karenia brevis. Although most prevalent along the south-west Florida coast, periodic blooms have occurred throughout the entire US and Mexico Gulf coasts and the Atlantic coast to North Carolina. This dinoflagellate produces a suite of polyether neurotoxins, called brevetoxins, that cause severe impacts to natural resources, as well as public health. These naturally produced biotoxins may represent one of the most common chemical stressors impacting South Florida coastal and marine ecosystems. Impacts include massive fish kills, marine mammal, sea turtle and sea bird mortalities, benthic community die-off and public health effects from shellfish contamination and inhalation of air-borne toxins. The primary mode of action is binding to voltage-gated sodium channels causing depolarization of nerve cells, thus interfering with nerve transmission. Other effects include immune depression, bronchial constriction and haemolysis. Parent algal toxins are synthesized within the unicellular organism, others are produced as metabolic products. Recent studies into the composition of brevetoxins in cells, water, air and organisms have shown PbTx-2 to be the primary intracellular brevetoxin that is converted over time to PbTx-3 when the cells are ruptured, releasing extracellular brevetoxins into the environment. Brevetoxins become aerosolized by bubble-mediated transport of extracellular toxins, the composition of which varies depending on the composition in the source water. Bivalved molluscs rapidly accumulate brevetoxins as they filter feed on K. brevis cells. However, the parent algal toxins are rapidly metabolized to other compounds, some of which are responsible for neurotoxic shellfish poisoning (NSP). These results provide new insight into the distribution, persistence and impacts of red tide toxins to south-west Florida ecosystems. PMID:18758951

  20. Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems.

    PubMed

    Pierce, R H; Henry, M S

    2008-10-01

    The Florida red tide is a descriptive name for high concentrations of the harmful marine alga, Karenia brevis. Although most prevalent along the south-west Florida coast, periodic blooms have occurred throughout the entire US and Mexico Gulf coasts and the Atlantic coast to North Carolina. This dinoflagellate produces a suite of polyether neurotoxins, called brevetoxins, that cause severe impacts to natural resources, as well as public health. These naturally produced biotoxins may represent one of the most common chemical stressors impacting South Florida coastal and marine ecosystems. Impacts include massive fish kills, marine mammal, sea turtle and sea bird mortalities, benthic community die-off and public health effects from shellfish contamination and inhalation of air-borne toxins. The primary mode of action is binding to voltage-gated sodium channels causing depolarization of nerve cells, thus interfering with nerve transmission. Other effects include immune depression, bronchial constriction and haemolysis. Parent algal toxins are synthesized within the unicellular organism, others are produced as metabolic products. Recent studies into the composition of brevetoxins in cells, water, air and organisms have shown PbTx-2 to be the primary intracellular brevetoxin that is converted over time to PbTx-3 when the cells are ruptured, releasing extracellular brevetoxins into the environment. Brevetoxins become aerosolized by bubble-mediated transport of extracellular toxins, the composition of which varies depending on the composition in the source water. Bivalved molluscs rapidly accumulate brevetoxins as they filter feed on K. brevis cells. However, the parent algal toxins are rapidly metabolized to other compounds, some of which are responsible for neurotoxic shellfish poisoning (NSP). These results provide new insight into the distribution, persistence and impacts of red tide toxins to south-west Florida ecosystems.

  1. [Fluorescence characterization of dissolved organic matter in the East China Sea after diatom red tide dispersion].

    PubMed

    Zhuo, Peng-ji; Zhao, Wei-hong

    2009-05-01

    Fluorescence excitation-emission spectroscopy (EEMS) was employed to analyze the 3-dimensional fluorescence of dissolved organic matter in the East China Sea after diatom red tide dispersion. The relationships between fluorescence peak intensity, and salinity and chlorophyll-a were discussed. The centers of protein-like fluorescence peaks dispersed at Exmax/Exmax = 270-280/290-315 nm (Peak B), 220-230/290-305 nm (Peak D), 230-240/335-350 nm (Peak S) and 280/320 nm (Peak T). Two humic-like peaks appeared at 255-270/435-480 nm (Peak A)and 330-350/420-480 nm (Peak C). High tyrosine-like intensity was observed in diatom red tide dispersion area, and tryptophan-like fluorescence was also found which was lower. High FIB/FIS showed that diatom red tide produced much tyrosine-like matter during dispersion. Peaks S, A and C had positive correlation with one another, and their distributions were similar, which decreased with distance increasing away from the shore. Good negative correlations between peaks S, A and C and salinity suggested that Jiangsu-Zhejiang coastal water was the same source of them. Correlations between fluorescence peak intensity and chlorophyll-a were not remarkable enough to clear the relationship between fluorescence and living algal matter. It was supposed that the living algal matter contributed little to the fluorescence intensity of algal dispersion seawater.

  2. Interactions between the pathogenic bacterium Vibrio parahaemolyticus and red-tide dinoflagellates

    NASA Astrophysics Data System (ADS)

    Seong, Kyeong Ah; Jeong, Hae Jin

    2011-06-01

    Vibrio parahaemolyticus is a common pathogenic bacterium in marine and estuarine waters. To investigate interactions between V. parahaemolyticus and co-occurring redtide dinoflagellates, we monitored the daily abundance of 5 common red tide dinoflagellates in laboratory culture; Amphidinium carterae, Cochlodinium ploykrikoides, Gymnodinium impudicum, Prorocentrum micans, and P. minimum. Additionally, we measured the ingestion rate of each dinoflagellate on V. parahaemolyticus as a function of prey concentration. Each of the dinoflagellates responded differently to the abundance of V. parahaemolyticus. The abundances of A. carterae and P. micans were not lowered by V. parahaemolyticus, whereas that of C. polykrikodes was lowered considerably. The harmful effect depended on bacterial concentration and incubation time. Most C. polykrikoides cells died after 1 hour incubation when the V. parahaemolyticus concentration was 1.4×107 cells ml-1, while cells died within 2 days of incubation when the bacterial concentration was 1.5×106 cells ml-1. With increasing V. parahaemolyticus concentration, ingestion rates of P. micans, P. minimum, and A. carterae on the prey increased, whereas that on C. polykrikoides decreased. The maximum or highest ingestion rates of P. micans, P. minimum, and A. carterae on V. parahaemolyticus were 55, 5, and 2 cells alga-1 h-1, respectively. The results of the present study suggest that V. parahaemolyticus can be both the killer and prey for some red tide dinoflagellates.

  3. Coyote (Canis latrans) and domestic dog (Canis familiaris) mortality and morbidity due to a Karenia brevis red tide in the Gulf of Mexico.

    PubMed

    Castle, Kevin T; Flewelling, Leanne J; Bryan, John; Kramer, Adam; Lindsay, James; Nevada, Cheyenne; Stablein, Wade; Wong, David; Landsberg, Jan H

    2013-10-01

    In October 2009, during a Karenia brevis red tide along the Texas coast, millions of dead fish washed ashore along the 113-km length of Padre Island National Seashore (PAIS). Between November 2009 and January 2010, at least 12 coyotes (Canis latrans) and three domestic dogs (Canis familiaris) died or were euthanized at PAIS or local veterinary clinics because of illness suspected to be related to the red tide. Another red tide event occurred during autumn 2011 and, although fewer dead fish were observed relative to the 2009 event, coyotes again were affected. Staff at PAIS submitted carcasses of four coyotes and one domestic dog from November 2009 to February 2010 and six coyotes from October to November 2011 for necropsy and ancillary testing. High levels of brevetoxins (PbTxs) were measured by enzyme-linked immunosorbent assay in seven of the coyotes and the dog, with concentrations up to 634 ng PbTx-3 eq/g in stomach contents, 545 ng PbTx-3 eq/g in liver, 195 ng PbTx-3 eq/g in kidney, and 106 ng PbTx-3 eq/mL in urine samples. Based on red tide presence, clinical signs, and postmortem findings, brevetoxicosis caused by presumptive ingestion of toxic dead fish was the likely cause of canid deaths at PAIS. These findings represent the first confirmed report of terrestrial mammalian wildlife mortalities related to a K. brevis bloom. The implications for red tide impacts on terrestrial wildlife populations are a potentially significant but relatively undocumented phenomenon.

  4. Responses of a marine red tide alga Skeletonema costatum (Bacillariophyceae) to long-term UV radiation exposures.

    PubMed

    Wu, Hongyan; Gao, Kunshan; Wu, Haiyan

    2009-02-09

    UV radiation (280-400 nm) is known to affect phytoplankton in negative, neutral and positive ways depending on the species or levels of irradiation energy. However, little has been documented on how photosynthetic physiology and growth of red tide alga respond to UVR in a long-term period. We exposed the cells of the marine red tide diatom Skeletonema costatum for 6 days to simulated solar radiations with UV-A (320-400 nm) or UV-A+UV-B (295-400 nm) and examined their changes in photosynthesis and growth. Presence of UV-B continuously reduced the effective photosynthetic quantum yield of PSII, and resulted in complete growth inhibition and death of cells. When UV-B or UV-B+UV-A was screened off, the growth rate decreased initially but regained thereafter. UV-absorbing compounds and carotenoids increased in response to the exposures with UVR. However, mechanisms for photoprotection associated with the increased carotenoids or UV-absorbing compounds were not adequate under the continuous exposure to a constant level of UV-B (0.09 Wm(-2), DNA-weighted). In contrast, under solar radiation screened off UV-B, the photoprotection was first accomplished by an initial increase of carotenoids and a later increase in UV-absorbing compounds. The overall response of this red tide alga to prolonged UV exposures indicates that S. costatum is a UV-B-sensitive species and increased UV-B irradiance would influence the formation of its blooms.

  5. Development of compound microsatellite markers in red-tide-causing dinoflagellate Akashiwo sanguinea (Dinophyceae).

    PubMed

    Cho, S-Y; Nagai, S; Nishitani, G; Han, M-S

    2009-05-01

    We isolated 13 polymorphic microsatellites from the red-tide causing dinoflagellate Akashiwo sanguinea. These loci were highly variable, with between 2 and 10 alleles per locus, and estimated gene diversity ranging from 0.08 to 0.82. These loci have the potential to reveal genetic structure and estimate gene flow among A. sanguinea populations. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.

  6. The red tide toxin, brevetoxin, induces embryo toxicity and developmental abnormalities.

    PubMed Central

    Kimm-Brinson, K L; Ramsdell, J S

    2001-01-01

    Brevetoxins are lipophilic polyether toxins produced by the red tide dinoflagellate Gymnodinium breve, and their neurotoxic effects on adult animals have been documented. In this study, we characterized adverse developmental effects of brevetoxin-1 (PbTx-1) using an exposure paradigm that parallels the maternal oocyte transfer of toxin. Medaka fish (Oryzias latipes) embryos were exposed to PbTx-1 via microinjection of toxin reconstituted in a triolein oil droplet. Embryos microinjected with doses of 0.1-8.0 ng/egg (ppm) of brevetoxin-1 exhibited pronounced muscular activity (hyperkinesis) after embryonic day 4. Upon hatching, morphologic abnormalities were commonly found in embryos at the following lowest adverse effect levels: 1.0-3.0 ppm, lateral curvature of the spinal column; 3.1-3.4 ppm, herniation of brain meninges through defects in the skull; and 3.4-4.0 ppm, malpositioned eye. Hatching abnormalities were also commonly observed at brevetoxin doses of 2.0 ppm and higher with head-first, as opposed to the normal tail-first, hatching, and doses > 4.1 ng/egg produced embryos that developed but failed to hatch. Given the similarity of developmental processes found between higher and lower vertebrates, teratogenic effects of brevetoxins have the potential to occur among different phylogenetic classes. The observation of developmental abnormalities after PbTx-1 exposure identifies a new spectrum of adverse effects that may be expected to occur following exposure to G. breve red tide events. PMID:11335186

  7. Bio-optical characteristics of a red tide induced by Mesodinium rubrum in the Cariaco Basin, Venezuela

    NASA Astrophysics Data System (ADS)

    Guzmán, Laurencia; Varela, Ramón; Muller-Karger, Frank; Lorenzoni, Laura

    2016-08-01

    The bio-optical changes of the water induced by red tides depend on the type of organism present, and the spectral characterization of such changes can provide useful information on the organism, abundance and distribution. Here we present results from the bio-optical characterization of a non-toxic red tide induced by the autotrophic ciliate Mesodinium rubrum. Particle absorption was high [ap(440) = 1.78 m- 1], as compared to measurements done in the same region [ap(440) = 0.09 ± 0.06 m- 1], with detrital components contributing roughly 11% [ad(440) = 0.19 m- 1]. The remainder was attributed to absorption by phytoplankton pigments [aph(440) = 1.60 m- 1]. These aph values were ~ 15 times higher than typical values for these waters. High chlorophyll a concentrations were also measured (52.73 μg L- 1), together with alloxanthin (9.52 μg L- 1) and chlorophyll c (6.25 μg L- 1). This suite of pigment is typical of the algal class Cryptophyceae, from which Mesodinium obtains its chloroplasts. Remote sensing reflectance showed relatively low values [Rrs(440) = 0.0007 sr- 1], as compared to other Rrs values for the region under high bloom conditions [Rrs(440) = 0.0028 sr- 1], with maxima at 388, 484, 520, 596 and 688 nm. Based on the low reflection in the green-yellow, as compared to other red tides, we propose a new band ratio [Rrs(688)/Rrs(564)] to identify blooms of this particular group of organisms.

  8. Mixotrophy in red tide algae raphidophytes.

    PubMed

    Jeong, Hae Jin

    2011-01-01

    Marine raphidophytes are common red tide organisms that are distributed worldwide. They are known to be harmful to other plankton and fish and have often caused large-scale fish mortality in many countries. Thus, the population dynamics of raphidophytes is a critical concern for scientists, the aquaculture industry, and government officers from many countries. Raphidophyte growth and mortality should be investigated to understand bloom dynamics. Raphidophytes were thought to be exclusively autotrophic organisms. However, several recent studies have revealed that raphidophytes are able to feed on heterotrophic and autotrophic bacteria, i.e. raphidophytes are mixotrophic algae. Further, high-resolution video microscopy has revealed the mechanism by which raphidophytes feed on bacteria, which involves capturing prey cells in the mucus excreted by mucocysts and engulfing the cells through mucocysts. These discoveries may influence the conventional view on both raphidophyte bloom dynamics and plankton energy flow and carbon cycling. In the present study, I review prey, feeding mechanisms, and ingestion rates of mixotrophic marine raphidophytes. In addition, I examine the ecological significance of raphidophyte mixotrophy. © 2011 The Author(s). Journal of Eukaryotic Microbiology© 2011 International Society of Protistologists.

  9. Antialgal compounds with antialgal activity against the common red tide microalgae from a green algae Ulva pertusa.

    PubMed

    Sun, Ying-Ying; Zhou, Wen-Jing; Wang, Hui; Guo, Gan-Lin; Su, Zhen-Xia; Pu, Yin-Fang

    2018-08-15

    Nine antialgal active compounds, (i.e. trehalose (1), twenty-two methyl carbonate (2), (-)-dihydromenisdaurilide (3), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (4), isophytol (5), 8-hexadecenol (6), 17-hydroxyheptadecanoic acid (7), trans-asarone (8) and 2-amino-3-mercaptopropanoic acid (9)) were isolated from Ulva pertusa for the first time by sephadex LH-20 column chromatography, silica gel column chromatography and repeated preparative TLC. Except for compound 4, all compounds represented novel isolated molecules from marine macroalgae. Further, antialgal activities of these compounds against Amphidinium carterae, Heterosigma akashiwo, Karenia mikimitoi, Phaeocystis globosa, Prorocentrum donghaiense and Skeletonema costatum were investigated for the first time. Results showed these nine compounds have selectivity antialgal effects on all test red tide microalgae, and antialgal activities against red tide microalgae obviously enhanced with the increase of concentration of antialgal compounds. Based on this, EC 50-96 h values of these nine compounds for six red tide microalgae were obtained for the first time. By analyzing and comparing EC 50-96 h values, it has been determined that seven compounds (1, 3, 4, 6, 7, 8 and 9) showed the superior application potential than potassium dichromate or gossonorol and other six compounds as a characteristic antialgal agent against Heterosigma akashiwo, Karenia mikimitoi and Prorocentrum donghaiense. Overall this study has suggested that green algae Ulva pertusa is a new source of bioactive compounds with antialgal activity. Copyright © 2018. Published by Elsevier Inc.

  10. Blue and red light-induced germination of resting spores in the red-tide diatom Leptocylindrus danicus.

    PubMed

    Shikata, Tomoyuki; Iseki, Mineo; Matsunaga, Shigeru; Higashi, Sho-ichi; Kamei, Yasuhiro; Watanabe, Masakatsu

    2011-01-01

    Photophysiological and pharmacological approaches were used to examine light-induced germination of resting spores in the red-tide diatom Leptocylindrus danicus. The equal-quantum action spectrum for photogermination had peaks at about 440 nm (blue light) and 680 nm (red light), which matched the absorption spectrum of the resting spore chloroplast, as well as photosynthetic action spectra reported for other diatoms. DCMU, an inhibitor of photosynthetic electron flow near photosystem II, completely blocked photogermination. These results suggest that the photosynthetic system is involved in the photoreception process of light-induced germination. Results of pharmacological studies of the downstream signal transduction pathway suggested that Ca(2+) influx is the closest downstream neighbor, followed by steps involving calmodulin, nitric oxide synthase, guanylyl cyclase, protein-tyrosine-phosphatase, protein kinase C and actin polymerization and translation. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  11. Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis.

    PubMed

    Nosenko, Tetyana; Lidie, Kristy L; Van Dolah, Frances M; Lindquist, Erika; Cheng, Jan-Fang; Bhattacharya, Debashish

    2006-11-01

    Current understanding of the plastid proteome comes almost exclusively from studies of plants and red algae. The proteome in these taxa has a relatively simple origin via integration of proteins from a single cyanobacterial primary endosymbiont and the host. However, the most successful algae in marine environments are the chlorophyll c-containing chromalveolates such as diatoms and dinoflagellates that contain a plastid of red algal origin derived via secondary or tertiary endosymbiosis. Virtually nothing is known about the plastid proteome in these taxa. We analyzed expressed sequence tag data from the toxic "Florida red tide" dinoflagellate Karenia brevis that has undergone a tertiary plastid endosymbiosis. Comparative analyses identified 30 nuclear-encoded plastid-targeted proteins in this chromalveolate that originated via endosymbiotic or horizontal gene transfer (HGT) from multiple different sources. We identify a fundamental divide between plant/red algal and chromalveolate plastid proteomes that reflects a history of mixotrophy in the latter group resulting in a highly chimeric proteome. Loss of phagocytosis in the "red" and "green" clades effectively froze their proteomes, whereas chromalveolate lineages retain the ability to engulf prey allowing them to continually recruit new, potentially adaptive genes through subsequent endosymbioses and HGT. One of these genes is an electron transfer protein (plastocyanin) of green algal origin in K. brevis that likely allows this species to thrive under conditions of iron depletion.

  12. Isotopic evidence for dead fish maintenance of Florida red tides, with implications for coastal fisheries over both source regions of the West Florida shelf and within downstream waters of the South Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Walsh, J. J.; Weisberg, R. H.; Lenes, J. M.; Chen, F. R.; Dieterle, D. A.; Zheng, L.; Carder, K. L.; Vargo, G. A.; Havens, J. A.; Peebles, E.; Hollander, D. J.; He, R.; Heil, C. A.; Mahmoudi, B.; Landsberg, J. H.

    2009-01-01

    Toxic Florida red tides of the dinoflagellate Kareniabrevis have downstream consequences of 500-1000 km spatial extent. Fish stocks, shellfish beds, and harmful algal blooms of similar species occupy the same continental shelf waters of the southeastern United States, amounting to economic losses of more than 25 million dollars in some years. Under the aegis of the Center for Prediction of Red tides, we are now developing coupled biophysical models of the conditions that lead to red tides and impacted coastal fisheries, from the Florida Panhandle to Cape Hatteras. Here, a nitrogen isotope budget of the coastal food web of the West Florida shelf (WFS) and the downstream South Atlantic Bight (SAB) reaffirms that diazotrophs are the initial nutrient source for onset of red tides and now identifies clupeid fish as the major recycled nutrient source for their maintenance. The recent isotope budget of WFS and SAB coastal waters during 1998-2001 indicates that since prehistoric times of Timacua Indian settlements along the Georgia coast during 1075, ∼50% of the nutrients required for large red tides of >1 μg chl l -1 of K.brevis have been derived from nitrogen-fixers, with the other half from decomposing dead sardines and herrings. During 2001, >90% of the harvest of WFS clupeids was by large ichthyotoxic red tides of >10 μg chl l -1 of K.brevis, rather than by fishermen. After onset of the usual red tides in summer of 2006 and 2007, the simulated subsequent fall exports of Florida red tides in September 2007 to North Carolina shelf waters replicate observations of just ∼1 μg chl l -1 on the WFS that year. In contrast, the earlier red tides of >10 μg chl l -1 left behind off West Florida during 2006, with less physical export, are instead 10-fold larger than those of 2007. Earlier, 55 fish kills were associated with these coastal red tides during September 2006, between Tampa and Naples. Yet, only six fish kills were reported there in September 2007. With little

  13. Diurnal vertical migration of Cochlodinium polykrikoides during the red tide in Korean coastal sea waters.

    PubMed

    Kim, Young Sug; Jeong, Chang Su; Seong, Gi Tak; Han, In Sung; Lee, Young Sik

    2010-09-01

    The diurnal vertical migration of Cochlodinium polykrikoides (C. polykrikoides), which caused a red tide in the Korean coastal waters of the East Sea/Sea of Japan in September 2003, was examined by determining the time-dependent changes in the density of living cells in relation to the depth of the water column. The ascent of this species into the surface layer (depth of water 2 m) occurred during 1400-1500. The descent started at 1600 and a high distribution rate (86%) at 15-20 m was observed at 0300. During the ascent, the cells were widely distributed at each depth level from 0600 hr and at 0800-1100, the cells were primarily distributed in the middle layer (0-6 m). The concentration of dissolved inorganic nitrogen was generally < or = 2.86 micromol l(-1), but at 1400-1500, the concentration in the surface layer reduced to < or = 0.14 micromol l(-1). Moreover, the concentration gradually increased as the depth increased to > or = 5 m. These results showed that the nutrient-consumption rate associated with the proliferation of C. polykrikoides during a red tide is more influenced by the inorganic-nitrogen resources ratherthan the inorganic-phosphorus compounds.

  14. PHYLOGENETIC RELATIONSHIP OF THE RED TIDE DINOFLAGELLATE GYMNODINIUM BREVE TO OTHER MEMBERS OF THE GENERA GYMNODINIUM AND GYRODINIUM

    EPA Science Inventory

    Phylogenetic relationships between the red-tide dinoflagellate Gymnodinium breve and other members of the genera Gymnodinium and Gyrodinium have not been studied at the molecular level. G. breve is most noted for its production of brevetoxin, which has been linked to extensive f...

  15. Phytoplankton and bacterial community structures and their interaction during red-tide phenomena

    NASA Astrophysics Data System (ADS)

    Ismail, Mona Mohamed; Ibrahim, Hassan Abd Allah

    2017-09-01

    Phytoplankton and bacteria diversity were studied before, during and after red tide phenomena during spring season 2015 in the Eastern Harbour (E.H.) of Alexandria, Egypt. Fifty five species of phytoplankton were identified and represented different distinct classes "Bacillariophyceae; Dinophyceae, Chlorophyceae, Cyanophyceae and Eugelenophyceae". Also, Diatom formed the most dominant group. The average number of the phytoplankton density varied from 4.8 × 104 to 1.1 × 106 cell l-1 during the study period and Skeletonema costatum was the agent causing the red tide. The existence percentages of bacteria ranged from 2.6 to 17.9% on all media tested. The bacterial isolates on the nutrient agar medium represented the highest existence with a total percentage of 43.6%, followed by MSA medium (25.7%), while the lowest percentage was for the AA medium at 7.8%. However, twelve isolates were selected as representative for bacterial community during study interval. Based on the morphological, biochemical, physiological and enzymatic characteristics, the bacterial strains were described. Depending on the 16S rDNA gene sequence, three common antagonists were aligned as: Vibrio toranzoniae strain Vb 10.8, Ruegeria pelagia strain NBRC 102038 and Psychrobacter adeliensis strain DSM 15333. The interaction between these bacteria and S. costatum was studied. The growth of S. costatum was significantly lower whenever each bacterium was present as compared to axenic culture. More specifically, 30% (v/v) of the all tested bacteria showed the strongest algicidal activities, as all S. costatum cells were killed after two days. 10% of R. pelagia and P. adeliensis also showed significant algicidal activities within six days.

  16. Modified MODIS fluorescence line height data product to improve image interpretation for red tide monitoring in the eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin; Feng, Lian

    2017-01-01

    Several satellite-based methods have been used to detect and trace Karenia brevis red tide blooms in the eastern Gulf of Mexico. Some require data statistics and multiple data products while others use a single data product. Of these, the MODIS normalized fluorescence line height (nFLH) has shown its advantage of detecting blooms in waters rich in colored dissolved organic matter, thus having been used routinely to assess bloom conditions by the Florida Fish and Wildlife Conservation Commission (FWC), the official state agency of Florida responsible for red tide monitoring and mitigation. However, elevated sediment concentrations in the water column due to wind storms can also result in high nFLH values, leading to false-positive bloom interpretation. Here, a modified nFLH data product is developed to minimize such impacts through empirical adjustments of the nFLH values using MODIS-derived remote sensing reflectance in the green band at 547 nm. The new product is termed as an algal bloom index (ABI), which has shown improved performance over the original nFLH in both retrospective evaluation statistics and near real-time applications. The ABI product has been made available in near real-time through a Web portal and has been used by the FWC on a routine basis to guide field sampling efforts and prepare for red tide bulletins distributed to many user groups.

  17. The red tide event in El Salvador, August 2001-January 2002.

    PubMed

    Enrique Barraza, José; Armero-Guardado, Julio; Valencia de Toledo, Zobeyda Marisol

    2004-09-01

    A red tide event occurred in El Salvador from August 2001 to January 2002. National health authorities usually measured toxin levels in Ostrea iridescens, however other species were analyzed during this microalgae bloom: Anadara similis, Anadara tuberculosa and Modiolus sp. El Salvador authorities consider 400 mouse units/100 g the highest value that is safe for human health. During this period toxin levels in 0. iridescens and Modiolus sp. increased from values under 400 to 3977 and 15,468 mouse units/100 g, respectively. Persistent and higher levels were recorded in oyster and mussel banks on the west part of the country. The Ministry of Health and Social Assistance treated 41 slight to moderate intoxications associated to bivalve mollusks consumption.

  18. An expert elicitation process to project the frequency and magnitude of Florida manatee mortality events caused by red tide (Karenia brevis)

    USGS Publications Warehouse

    Martin, Julien; Runge, Michael C.; Flewelling, Leanne J.; Deutsch, Charles J.; Landsberg, Jan H.

    2017-11-20

    Red tides (blooms of the harmful alga Karenia brevis) are one of the major sources of mortality for the Florida manatee (Trichechus manatus latirostris), especially in southwest Florida. It has been hypothesized that the frequency and severity of red tides may increase in the future because of global climate change and other factors. To improve our ecological forecast for the effects of red tides on manatee population dynamics and long-term persistence, we conducted a formal expert judgment process to estimate probability distributions for the frequency and relative magnitude of red-tide-related manatee mortality (RTMM) events over a 100-year time horizon in three of the four regions recognized as manatee management units in Florida. This information was used to update a population viability analysis for the Florida manatee (the Core Biological Model). We convened a panel of 12 experts in manatee biology or red-tide ecology; the panel met to frame, conduct, and discuss the elicitation. Each expert provided a best estimate and plausible low and high values (bounding a confidence level of 80 percent) for each parameter in each of three regions (Northwest, Southwest, and Atlantic) of the subspecies’ range (excluding the Upper St. Johns River region) for two time periods (0−40 and 41−100 years from present). We fitted probability distributions for each parameter, time period, and expert by using these three elicited values. We aggregated the parameter estimates elicited from individual experts and fitted a parametric distribution to the aggregated results.Across regions, the experts expected the future frequency of RTMM events to be higher than historical levels, which is consistent with the hypothesis that global climate change (among other factors) may increase the frequency of red-tide blooms. The experts articulated considerable uncertainty, however, about the future frequency of RTMM events. The historical frequency of moderate and intense RTMM (combined) in

  19. Physical and Biological Processes Underlying the Sudden Appearance of a Red-Tide Surface Patch in the Nearshore

    DTIC Science & Technology

    2010-01-01

    DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16...Survey (USGS) programs at Huntington Beach . George Robertson, Marlene Noble, Uwe Send, Steve Weisberg are thanked for their cooperation and assistance...Huntington Beach CA, was dominated by the locally common red-tide 5 forming dinoflagellate Lingulodinium polyedrum (F. Stein). Surface chlorophyll-a

  20. [Microzooplankton herbivory during red tide-frequent-occurrence period in spring in the East China Sea].

    PubMed

    Sun, Jun; Liu, Dongyan; Wang, Zonglin; Shi, Xiaoyong; Li, Ruixiang; Zhu, Mingyuan

    2003-07-01

    Five typical stations in the Changjiang River estuary and adjacent waters of the East China Sea, were chosen as the sites to study phytoplankton growth and microzooplankton ingestion by on-deck-incubation dilution experiment from 25th April to 25th May 2002. The results showed that microzooplankton ingestion was a key process for controlling red tide event. Strombidium sulcatum, Noctiluca scintillans and Mesodinium robudium were dominant microzooplankton species. In this study, the ingestion rate of microzooplankton ranged from 0.28 to 1.13 d-1; ingestion pressure on percentage of phytoplankton standing crop ranged from 35.14% to 811.69%; ingestion pressure on percentage of potential production ranged from 74.04% to 203.25%; and ingestion rate of phytoplankton carbon ranged from 9.58 to 97.91 C.L-1.d-1. The microzooplankton grazing rate, ingestion pressure on percentage of phytoplankton standing crop, and ingestion rate of phytoplankton carbon were higher near coastal area, but lower at open sea, and the microzooplankton ingestion pressure on percentage of phytoplankton potential production was no the contrary. Compared with the similar studies around the world, the ingestion pressure of microzooplankton in the East China Sea was at a higher level. The primary deduction was that Strombidium was the key microzooplankton species on controlling Prorocentrum dentatum, the most important red tide species in the East China Sea.

  1. Algicidal activity of glycerolipids from brown alga Ishige sinicola toward red tide microalgae.

    PubMed

    Hirao, Shotaro; Tara, Kenji; Kuwano, Kazuyoshi; Tanaka, Junji; Ishibashi, Fumito

    2012-01-01

    Bioassay-guided fractionation of a methanol extract of the brown alga, Ishige sinicola, led to the isolation of five algicidal compounds. Their structures were determined to be α-monoglycerides of eicosa-5Z,8Z,11Z,14Z-tetraenoic (arachidonic) acid, octadeca-6Z,9Z,12Z,15Z-tetraenoic acid, linoleic acid and oleic acid, and 1-O-palmitoyl-3-O-(6-sulfo-α-D-quinovopyranosyl)-sn-glycerol on the basis of spectroscopic data and a comparison with the data in the literature. These glycerolipids showed moderate-to-high cell lysis activity against the red tide microalgal species, Heterosigma akashiwo, Karenia mikimotoi and Alexandrium catenella, at a concentration of 20 µg/mL.

  2. A NUMERICAL ANALYSIS OF LANDFALL OF THE 1979 RED TIDE OF KARENIA BREVIS ALONG THE WEST COAST OF FLORIDA. (R827085)

    EPA Science Inventory

    Abstract

    A simple ecological model, coupled to a primitive equation circulation model, is able to replicate the observed alongshore transport of the toxic dinoflagellate Karenia brevis on the West Florida shelf during a fall red tide in 1979. Initial land fall o...

  3. Variable allelopathy among phytoplankton reflected in red tide metabolome.

    PubMed

    Poulin, Remington X; Poulson-Ellestad, Kelsey L; Roy, Jessie S; Kubanek, Julia

    2018-01-01

    Harmful algae are known to utilize allelopathy, the release of compounds that inhibit competitors, as a form of interference competition. Competitor responses to allelopathy are species-specific and allelopathic potency of producing algae is variable. In the current study, the biological variability in allelopathic potency was mapped to the underlying chemical variation in the exuded metabolomes of five genetic strains of the red tide dinoflagellate Karenia brevis using 1 H nuclear magnetic resonance (NMR) spectroscopy. The impacts of K. brevis allelopathy on growth of a model competitor, Asterionellopsis glacialis, ranged from strongly inhibitory to negligible to strongly stimulatory. Unique metabolomes of K. brevis were visualized as chemical fingerprints, suggesting three distinct metabolic modalities - allelopathic, non-allelopathic, and stimulatory - with each modality distinguished from the others by different concentrations of several metabolites. Allelopathic K. brevis was characterized by enhanced concentrations of fatty acid-derived lipids and aromatic or other polyunsaturated compounds, relative to less allelopathic K. brevis. These findings point to a previously untapped source of information in the study of allelopathy: the chemical variability of phytoplankton, which has been underutilized in the study of bloom dynamics and plankton chemical ecology. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Purification and characterization of a novel high molecular weight exotoxin produced by red tide phytoplankton, Alexandrium tamarense.

    PubMed

    Yamasaki, Yasuhiro; Katsuo, Daisuke; Nakayasu, Seiichiro; Salati, Cristina; Duan, JingJing; Zou, Yanan; Matsuyama, Yukihiko; Yamaguchi, Kenichi; Oda, Tatsuya

    2008-01-01

    Our recent studies have demonstrated that the aqueous extract prepared from Alexandrium tamarense, a harmful red tide phytoplankton, showed cytotoxicity on Vero cells. In this study, the toxic substance was purified from the culture supernatant of A. tamarense. Based on the gel-filtration profile, the molecular mass of a purified toxin was estimated to be about 1,000 kDa. On sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, a main band with molecular mass of 1,000 kDa was detected with periodic acid-Schiff (PAS) staining, but no protein bands were detected by Coomassie brilliant blue (CBB) protein staining. Sugar composition analysis of the toxin suggested that the toxin contains galactose, fucose, mannose, N-acetylglucosamine, xylose, and other minor saccharides, whereas no significant levels of amino acids were detected by amino acid analysis. These results suggest that the toxin is a polysaccharide-based compound. The toxin showed cytotoxic effects on various cell lines in a concentration-dependent manner. Among the cell lines tested, U937 cells were the most susceptible to the toxin. In U937 cells treated with the toxin, a typical apoptotic nuclear morphological change and DNA fragmentation were observed. This is the first report demonstrating that a polysaccharide-based toxin isolated from red tide phytoplankton can induce apoptotic cell death. (c) 2008 Wiley Periodicals, Inc.

  5. Physiological response of a red tide alga (Skeletonema costatum) to nitrate enrichment, with special reference to inorganic carbon acquisition.

    PubMed

    Gao, Guang; Xia, Jianrong; Yu, Jinlan; Zeng, Xiaopeng

    2018-02-01

    A classical red tide alga Skeletonema costatum was cultured under various nitrate levels to investigate its physiological response to nitrate enrichment combined with CO 2 limitation. The higher nitrate levels increased content of photosynthetic pigments (Chl a and Chl c), electron transport rate in photosystem II, photosynthetic O 2 evolution, and thus growth rate in S. costatum. On the other hand, the lower CO 2 levels (3.5-4.4 μmol kg -1 seawater) and higher pH (8.56-8.63) values in seawater were observed under higher nitrate conditions. Redox activity of plasma membrane and carbonic anhydrase in S. costatum was enhanced to address the reduced CO 2 level at higher nitrate levels. In addition, the pH compensation point was enhanced and direct HCO 3 - use was induced at higher nitrate levels. These findings indicate that nitrate enrichment would stimulate the breakout of S. costatum dominated red tides via enhancing its photosynthetic performances, and maintain a quick growth rate under CO 2 limitation conditions through improving its inorganic carbon acquisition capability. Our study sheds light on the mechanisms of S. costatum defeating CO 2 limitation during algal bloom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Observations and Modeling of Thermal Structure in the Lower Atmosphere and the Upward Propagation of Tides into the Thermosphere

    NASA Technical Reports Server (NTRS)

    Wilson, R. J.; Kahre, M.

    2017-01-01

    Thermal tides are the atmospheric response to diurnally varying thermal forcing resulting from radiative and convective heat transfer from the surface and from aerosol and gaseous heating within the atmosphere. Tides include sun-synchronous (migrating) waves driven in response to solar heating and additional non-migrating waves resulting from longitudinal variations in the distributions of topography, dust aerosol and water ice clouds. The systematic spatial mapping of temperature over 5 Mars years by the Mars Climate Sounder (MCS) has yielded a well-defined climatology of seasonally-varying temperature structures in the lower atmosphere, from 5 to 80 km. Tide theory and Mars global circulation model (MGCM) simulations are a fruitful framework for relating temperature observations to thermal forcing by aerosol fields [1]. The analysis of density and temperature fields derived from MAVEN IUVS and NGIMS observations have revealed the presence of predominantly zonal wave 2 and 3 features at altitudes of 100-170 km that are almost certainly non-migrating tides propagating upward from the lower atmosphere [2,3]. In this presentation we will use the MCS climatology and MGCM simulations to relate the density variations seen by MAVEN with the seasonally varying tide activity in the lower atmosphere. Large amplitude perturbations in density are most sensitive to the tide components with the longest vertical wavelengths in temperature, which are well resolved in MCS observations.

  7. Thermal Tides During the 2001 Martian Global-Scale Dust Storm

    NASA Technical Reports Server (NTRS)

    Guzewich, Scott D.; Wilson, R. John; McConnochie, Timothy H.; Toigo, Anthony D.; Bandfield, Donald J.; Smith, Michael D.

    2014-01-01

    The 2001 (Mars Year 25) global dust storm radically altered the dynamics of the Martian atmosphere. Using observations from the Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft and Mars WRF general circulation model simulations, we examine the changes to thermal tides and planetary waves caused by the storm. We find that the extratropical diurnal migrating tide is dramatically enhanced during the storm, particularly in the southern hemisphere, reaching amplitudes of more than 20 K. The tropical diurnal migrating tide is weakened to almost undetectable levels. The diurnal Kelvin waves are also significantly weakened, particularly during the period of global expansion at Ls=200deg-210deg. In contrast, the westward propagating diurnal wavenumber 2 tide strengthens to 4-8 K at altitudes above 30km. The wavenumber 1 stationary wave reaches amplitudes of 10-12 K at 50deg-70degN, far larger than is typically seen during this time of year. The phase of this stationary wave and the enhancement of the diurnal wavenumber 2 tide appear to be responses to the high-altitude westward propagating equatorial wavenumber 1 structure in dust mixing ratio observed during the storm in previous works. This work provides a global picture of dust storm wave dynamics that reveals the coupling between the tropics and high-latitude wave responses. We conclude that the zonal distribution of thermotidal forcing from atmospheric aerosol concentration is as important to understanding the atmospheric wave response as the total global mean aerosol optical depth.

  8. Brevisulcatic acids, marine ladder-frame polyethers from the red tide dinoflagellate Karenia brevisulcata in New Zealand.

    PubMed

    Suzuki, Rina; Irie, Raku; Harntaweesup, Yanit; Tachibana, Kazuo; Holland, Patrick T; Harwood, D Tim; Shi, Feng; Beuzenberg, Veronica; Itoh, Yoshiyuki; Pascal, Steven; Edwards, Patrick J B; Satake, Masayuki

    2014-11-21

    The isolation and structural determination of new marine ladder-frame polyethers, brevisulcatic acids-1 (1) and -4 (2) are reported. Brevisulcatic acids were isolated from the dinoflagellate Karenia brevisulcata, which was identified as the causative species of a major red tide event in New Zealand in 1998. The ether ring composition and a β-hydroxy, γ-methylene valeric acid side chain of 1 and 2 are common, but 2 has a γ-lactone as the 5-membered A-ring while 1 is the seco acid analogue. Compound 2 has structural and bioactivity similarities to brevetoxin A.

  9. Isolation, purification, and identification of antialgal substances in green alga Ulva prolifera for antialgal activity against the common harmful red tide microalgae.

    PubMed

    Sun, Ying-ying; Wang, Hui; Guo, Gan-lin; Pu, Yin-fang; Yan, Bin-lun; Wang, Chang-hai

    2016-01-01

    Ten compounds (1~10) were successfully isolated from green algae Ulva prolifera through the combination of silica gel column chromatography, Sephadex LH-20 column chromatography and repeated preparative thin-layer chromatography. These ten compounds showed antialgal activity against red tide microalgae. Among them, compounds 3, 6, and 7 showed stronger antialgal activity against red tide microalgae. Furthermore, their structure was identified on the basis of spectroscopic data. There are three glycoglycerolipids: 1-O-octadecanoic acid-3-O-β-D-galactopyranosyl glycerol (2), 1-O-palmitoyl-3-O-β-D-galactopyranosyl glycerol (4), and 1-O-palmitoyl-2-O-oleoyl-3-O-β-D-galactopyranosyl glycerol (5); two monoglycerides: glycerol monopalmitate (1), 9-hexadecenoic acid, 2,3-dihydroxypropyl ester (3); two terpenoids: loliolide (6) and lsololiolide (7); one lipid-soluble pigments: zeaxanthin (8); one sterol: cholest-5-en-3-ol (9); and one alkaloid: pyrrolopiperazine-2,5-dione (10). These compounds were isolated from U. prolifera for the first time, and compounds 2, 3, 5, and 8 were isolated from marine macroalgae for the first time.

  10. Space station image captures a red tide ciliate bloom at high spectral and spatial resolution.

    PubMed

    Dierssen, Heidi; McManus, George B; Chlus, Adam; Qiu, Dajun; Gao, Bo-Cai; Lin, Senjie

    2015-12-01

    Mesodinium rubrum is a globally distributed nontoxic ciliate that is known to produce intense red-colored blooms using enslaved chloroplasts from its algal prey. Although frequent enough to have been observed by Darwin, blooms of M. rubrum are notoriously difficult to quantify because M. rubrum can aggregate into massive clouds of rusty-red water in a very short time due to its high growth rates and rapid swimming behavior and can disaggregate just as quickly by vertical or horizontal dispersion. A September 2012 hyperspectral image from the Hyperspectral Imager for the Coastal Ocean sensor aboard the International Space Station captured a dense red tide of M. rubrum (10(6) cells per liter) in surface waters of western Long Island Sound. Genetic data confirmed the identity of the chloroplast as a cryptophyte that was actively photosynthesizing. Microscopy indicated extremely high abundance of its yellow fluorescing signature pigment phycoerythrin. Spectral absorption and fluorescence features were related to ancillary photosynthetic pigments unique to this organism that cannot be observed with traditional satellites. Cell abundance was estimated at a resolution of 100 m using an algorithm based on the distinctive yellow fluorescence of phycoerythrin. Future development of hyperspectral satellites will allow for better enumeration of bloom-forming coastal plankton, the associated physical mechanisms, and contributions to marine productivity.

  11. Space station image captures a red tide ciliate bloom at high spectral and spatial resolution

    PubMed Central

    Dierssen, Heidi; McManus, George B.; Chlus, Adam; Qiu, Dajun; Gao, Bo-Cai; Lin, Senjie

    2015-01-01

    Mesodinium rubrum is a globally distributed nontoxic ciliate that is known to produce intense red-colored blooms using enslaved chloroplasts from its algal prey. Although frequent enough to have been observed by Darwin, blooms of M. rubrum are notoriously difficult to quantify because M. rubrum can aggregate into massive clouds of rusty-red water in a very short time due to its high growth rates and rapid swimming behavior and can disaggregate just as quickly by vertical or horizontal dispersion. A September 2012 hyperspectral image from the Hyperspectral Imager for the Coastal Ocean sensor aboard the International Space Station captured a dense red tide of M. rubrum (106 cells per liter) in surface waters of western Long Island Sound. Genetic data confirmed the identity of the chloroplast as a cryptophyte that was actively photosynthesizing. Microscopy indicated extremely high abundance of its yellow fluorescing signature pigment phycoerythrin. Spectral absorption and fluorescence features were related to ancillary photosynthetic pigments unique to this organism that cannot be observed with traditional satellites. Cell abundance was estimated at a resolution of 100 m using an algorithm based on the distinctive yellow fluorescence of phycoerythrin. Future development of hyperspectral satellites will allow for better enumeration of bloom-forming coastal plankton, the associated physical mechanisms, and contributions to marine productivity. PMID:26627232

  12. [Acute toxicity effects of three red tide algae on Brachionus plicatilis].

    PubMed

    Zhou, Wen-Li; Xiao, Hui; Wang, You; Zhai, Hong-Chang; Tang, Xue-Xi

    2008-11-01

    Acute toxicity testing method was used to study effects of different density of Prorocentrum donghaiense, Heterosigma akashiwo and Alexandrium tamarense on mortality rates and population growth parameter of Brachionus plicatilis under controlled experimental conditions. Results showed that 24 h LC50 values of Prorocentrum donghaiense, Heterosigma akashiwo and Alexandrium tamarense treatment to mortality rate of Brachionus plicatilis were 3.56, 1.21 and 0.49 (x 10(4) cells/mL) respectively. Marked density effects were presented when three species of red tide microalga showed their toxicity to Brachionus plicatilis. There were significant inhibitory effects on Brachionus plicatilis when it was exposed to cells of Prorocentrum donghaiense at the concentration of 10(4) cells/mL, filtrate and cell contents of Heterosigma akashiwo at the concentration of 10(5) cells/mL, and cells, filtrate and cell contents of Alexandrium tamarense at the concentration of 10(3) cells/mL respectively. Inhibitory effects of three species of microalga on Brachionus plicatilis were enhanced with increasing of microalgal density.

  13. Sublethal red tide toxin exposure in free-ranging manatees (Trichechus manatus) affects the immune system through reduced lymphocyte proliferation responses, inflammation, and oxidative stress.

    PubMed

    Walsh, Catherine J; Butawan, Matthew; Yordy, Jennifer; Ball, Ray; Flewelling, Leanne; de Wit, Martine; Bonde, Robert K

    2015-04-01

    The health of many Florida manatees (Trichechus manatus latirostris) is adversely affected by exposure to blooms of the toxic dinoflagellate, Karenia brevis. K. brevis blooms are common in manatee habitats of Florida's southwestern coast and produce a group of cyclic polyether toxins collectively referred to as red tide toxins, or brevetoxins. Although a large number of manatees exposed to significant levels of red tide toxins die, several manatees are rescued from sublethal exposure and are successfully treated and returned to the wild. Sublethal brevetoxin exposure may potentially impact the manatee immune system. Lymphocyte proliferative responses and a suite of immune function parameters in the plasma were used to evaluate effects of brevetoxin exposure on health of manatees rescued from natural exposure to red tide toxins in their habitat. Blood samples were collected from rescued manatees at Lowry Park Zoo in Tampa, FL and from healthy, unexposed manatees in Crystal River, FL. Peripheral blood leukocytes (PBL) isolated from whole blood were stimulated with T-cell mitogens, ConA and PHA. A suite of plasma parameters, including plasma protein electrophoresis profiles, lysozyme activity, superoxide dismutase (SOD) activity, and reactive oxygen/nitrogen (ROS/RNS) species, was also used to assess manatee health. Significant decreases (p<0.05) in lymphocyte proliferation were observed in ConA and PHA stimulated lymphocytes from rescued animals compared to non-exposed animals. Significant correlations were observed between oxidative stress markers (SOD, ROS/RNS) and plasma brevetoxin concentrations. Sublethal exposure to brevetoxins in the wild impacts some immune function components, and thus, overall health, in the Florida manatee. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005-2015)

    NASA Astrophysics Data System (ADS)

    Banks, Jamie R.; Brindley, Helen E.; Stenchikov, Georgiy; Schepanski, Kerstin

    2017-03-01

    The inter-annual variability of the dust aerosol presence over the Red Sea and the Persian Gulf is analysed over the period 2005-2015. Particular attention is paid to the variation in loading across the Red Sea, which has previously been shown to have a strong, seasonally dependent latitudinal gradient. Over the 11 years considered, the July mean 630 nm aerosol optical depth (AOD) derived from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) varies between 0.48 and 1.45 in the southern half of the Red Sea. In the north, the equivalent variation is between 0.22 and 0.66. The temporal and spatial pattern of variability captured by SEVIRI is also seen in AOD retrievals from the MODerate Imaging Spectroradiometer (MODIS), but there is a systematic offset between the two records. Comparisons of both sets of retrievals with ship- and land-based AERONET measurements show a high degree of correlation with biases of < 0.08. However, these comparisons typically only sample relatively low aerosol loadings. When both records are stratified by AOD retrievals from the Multi-angle Imaging SpectroRadiometer (MISR), opposing behaviour is revealed at high MISR AODs ( > 1), with offsets of +0.19 for MODIS and -0.06 for SEVIRI. Similar behaviour is also seen over the Persian Gulf. Analysis of the scattering angles at which retrievals from the SEVIRI and MODIS measurements are typically performed in these regions suggests that assumptions concerning particle sphericity may be responsible for the differences seen.

  15. Identification of the toxic compounds produced by Sargassum thunbergii to red tide microalgae

    NASA Astrophysics Data System (ADS)

    Wang, Renjun; Wang, You; Tang, Xuexi

    2012-09-01

    The inhibitory effects of methanol extracts from the tissues of three macroalgal species on the growths of three marine red tide microalgae were assessed under laboratory conditions. Extracts of Sargassum thunbergii (Mertens ex Roth) Kuntz tissue had stronger inhibitory effects than those of either Sargassum pallidum (Turner) C. Agardh or Sargassum kjellmanianum Yendo on the growths of Heterosigma akashiwo (Hada) Hada, Skeletonema costatum (Grev.) Grev, and Prorocentrum micans Ehrenberg. Methanol extracts of S. thunbergii were further divided into petroleum ether, ethyl acetate, butanol, and distilled water phases by liquid-liquid fractionation. The petroleum ether and ethyl acetate fractions had strong algicidal effects on the microalgae. Gas chromatography-mass spectrometry analyses of these two phases identified nine fatty acids, most of which were unsaturated fatty acids. In addition, pure compounds of four of the nine unsaturated fatty acids had effective concentrations below 5 mg/L. Therefore, unsaturated fatty acids are a component of the allelochemicals in S. thunbergii tissue.

  16. Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks.

    PubMed

    Luo, Xin; Jiao, Jiu Jimmy

    2016-10-01

    Multiple tracers, including radium quartet, (222)Rn and silica are used to quantify submarine groundwater discharge (SGD) into Tolo Harbor, Hong Kong in 2005 and 2011. Five geotracer models based on the end member model of (228)Ra and salinity and mass balance models of (226)Ra, (228)Ra, (222)Rn, and silica were established and all the models lead to an estimate of the SGD rate of the same order of magnitude. In 2005 and 2011, respectively, the averaged SGD based on these models is estimated to be ≈ 5.42 cm d(-1) and ≈2.66 cm d(-1), the SGD derived DIN loadings to be 3.5 × 10(5) mol d(-1) and 1.5 × 10(5) mol d(-1), and DIP loadings to be 6.2 × 10(3) mol d(-1) and 1.1 × 10(3) mol d(-1). Groundwater borne nutrients are 1-2 orders of magnitude larger than other nutrient sources and the interannual variation of nutrient concentration in the embayment is more influenced by the SGD derived loadings. Annual DIP concentrations in the harbor water is positively correlated with the precipitation and annual mean tidal range, and negatively correlated with evapotranspiration from 2000 to 2013. Climatologically driven SGD variability alters the SGD derived DIP loadings in this phosphate limited environment and may be the causative factor of interannual variability of red tide outbreaks from 2000 to 2013. Finally, a conceptual model is proposed to characterize the response of red tide outbreaks to climatological factors linked by SGD. The findings from this study shed light on the prediction of red tide outbreaks and coastal management of Tolo Harbor and similar coastal embayments elsewhere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides

    PubMed Central

    Lee, Young-Chul; Jin, EonSeon; Jung, Seung Won; Kim, Yeon-Mi; Chang, Kwang Suk; Yang, Ji-Won; Kim, Si-Wouk; Kim, Young-Ok; Shin, Hyun-Jae

    2013-01-01

    In recent decades, harmful algal blooms (HABs) – commonly known as red tides – have increasingly impacted human health, caused significant economic losses to fisheries and damaged coastal environments and ecosystems. Here, we demonstrate a method to control and suppress HABs through selective algal lysis. The approach harnesses the algicidal effects of aminoclays, which are comprised of a high density of primary amine groups covalently bonded by metal cation backbones. Positively charged colloidals of aminoclays induce cell lysis in HABs within several minutes exposure but have negligible impact on non-harmful phytoplankton, zooplankton and farmed fish. This selective lysis is due to the ammonium characteristics of the aminoclay and the electrostatic attraction between the clay nanoparticles and the algal cells. In contrast, yellow loess clay, a recognized treatment for HABs, causes algal flocs with little cell lysis. Thus, the aminoclay loading can be effective for the mitigation of HABs. PMID:23416422

  18. Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides.

    PubMed

    Lee, Young-Chul; Jin, EonSeon; Jung, Seung Won; Kim, Yeon-Mi; Chang, Kwang Suk; Yang, Ji-Won; Kim, Si-Wouk; Kim, Young-Ok; Shin, Hyun-Jae

    2013-01-01

    In recent decades, harmful algal blooms (HABs) - commonly known as red tides - have increasingly impacted human health, caused significant economic losses to fisheries and damaged coastal environments and ecosystems. Here, we demonstrate a method to control and suppress HABs through selective algal lysis. The approach harnesses the algicidal effects of aminoclays, which are comprised of a high density of primary amine groups covalently bonded by metal cation backbones. Positively charged colloidals of aminoclays induce cell lysis in HABs within several minutes exposure but have negligible impact on non-harmful phytoplankton, zooplankton and farmed fish. This selective lysis is due to the ammonium characteristics of the aminoclay and the electrostatic attraction between the clay nanoparticles and the algal cells. In contrast, yellow loess clay, a recognized treatment for HABs, causes algal flocs with little cell lysis. Thus, the aminoclay loading can be effective for the mitigation of HABs.

  19. ECOHAB - HYDROGRAPHY AND BIOLOGY TO PROVIDE INFORMATION FOR THE CONSTRUCTION OF A MODEL TO PREDICT THE INITIATION, MAINTANENCE AND DISPERSAL OF RED TIDE ON THE WEST COAST OF FLORIDA

    EPA Science Inventory

    This program is part of a larger program called ECOHAB: Florida that includes this study as well as physical oceanography, circulation patterns, and shelf scale modeling for predicting the occurrence and transport of Karenia brevis (=Gymnodinium breve) red tides. The physical par...

  20. Ocean tides

    NASA Technical Reports Server (NTRS)

    Hendershott, M. C.

    1975-01-01

    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  1. Europa Tide Movie

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for Europa Tide Movie

    In this movie Europa is seen in a cutaway view through two cycles of its 3.5 day orbit about the giant planet Jupiter. Like Earth, Europa is thought to have an iron core, a rocky mantle and a surface ocean of salty water. Unlike on Earth, however, this ocean is deep enough to cover the whole moon, and being far from the sun, the ocean surface is globally frozen over. Europa's orbit is eccentric, which means as it travels around Jupiter, large tides, raised by Jupiter, rise and fall. Jupiter's position relative to Europa is also seen to librate, or wobble, with the same period. This tidal kneading causes frictional heating within Europa, much in the same way a paper clip bent back and forth can get hot to the touch, as illustrated by the red glow in the interior of Europa's rocky mantle and in the lower, warmer part of its ice shell. This tidal heating is what keeps Europa's ocean liquid and could prove critical to the survival of simple organisms within the ocean, if they exist.

  2. Toxic red tides and harmful algal blooms: A practical challenge in coastal oceanography

    NASA Astrophysics Data System (ADS)

    Anderson, Donald M.

    1995-07-01

    The debate over the relative value of practical or applied versus fundamental research has heated up considerably in recent years, and oceanography has not been spared this re-evaluation of science funding policy. Some federal agencies with marine interests have always focused their resources on practical problems, but those with a traditional commitment to basic research such as the National Science Foundation have increasingly had to fight to maintain their freedom to fund quality science without regard to practical or commercial applications. Within this context, it is instructive to highlight the extent to which certain scientific programs can satisfy both sides of this policy dilemma—i.e. address important societal issues through advances in fundamental or basic research. One clear oceanographic example of such a program involves the phenomena called "red tides" or "harmful algal blooms". This paper describes the nature and extent of the problems caused by these outbreaks, emphasizing the alarming expansion in their incidence and their impacts in recent years, both in the U.S. and worldwide. The objective is to highlight fundamental physical, biological, and chemical oceanographic question that must be addressed if we are to achieve the practical goal of scientifically based management of fisheries resources, public health, and ecosystem health in regions threatened by toxic and harmful algae.

  3. An 11-year analysis of satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Banks, Jamie; Brindley, Helen; Schepanski, Kerstin; Stenchikov, Georgiy

    2017-04-01

    As enclosed seas bordering two large desert regions, the Saharan and Arabian deserts, the maritime environments of the Red Sea and the Persian Gulf are heavily influenced by the presence of desert dust aerosol. The inter-annual variability of dust presence over the Red Sea is analysed and presented, with respect to the summer-time latitudinal gradient in dust loading, which is at a maximum in the far south of the Red Sea and at a minimum in the far north. Two satellite aerosol optical depth (AOD) products from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the MODerate resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify this loading over the region. Over an eleven-year period from 2005-2015 the July mean SEVIRI AODs at 630 nm vary between 0.48 and 1.45 in the southern half of the Sea, while in the north this varies between 0.22 and 0.66. Inter-retrieval offsets are observed to occur at higher dust loadings, with pronounced positive MODIS-SEVIRI AOD offsets at AODs greater than 1, indicating substantial and systematic differences between the retrievals over the Red Sea at high dust loadings. These differences appear to be influenced in part by the differences in scattering angle range of the satellite measurements, implying that assumptions of particle shape introduce more substantial biases at the highest dust loadings.

  4. Control of the red tide dinoflagellate Cochlodinium polykrikoides by ozone in seawater.

    PubMed

    Shin, Minjung; Lee, Hye-Jin; Kim, Min Sik; Park, Noh-Back; Lee, Changha

    2017-02-01

    The inactivation of C. polykrikoides, a red tide dinoflagellate, by ozonation was investigated in seawater by monitoring numbers of viable and total cells. Parameters affecting the inactivation efficacy of C. polykrikoides such as the ozone dose, initial cell concentration, pH, and temperature were examined. The viable cell number rapidly decreased in the initial stage of the reaction (mostly in 1-2 min), whereas the decrease in total cell number was relatively slow and steady. Increasing ozone dose and decreasing initial cell concentration increased the inactivation efficacy of C. polykrikoides, while increasing pH and temperature decreased the cell inactivation efficacy. The addition of humic acid (a promoter for the ozone decomposition) inhibited the inactivation of C. polykrikoides, whereas bicarbonate ion (an inhibitor for the ozone decomposition) accelerated the C. polykrikoides inactivation. Observations regarding the effects of pH, temperature, humic acid, and bicarbonate ion collectively indicate that the inactivation of C. polykrikoides by ozonation is mainly attributed to oxidative cell damages by molecular ozone, rather than by hydroxyl radical, produced during the ozone decomposition. At high ozone dose (e.g., 5 mg/L), hypobromous acid formed by the reaction of bromide with ozone may partially contribute to cell inactivation. The use of ozone of less than 1 mg/L produced 0.75-2.03 μg/L bromate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Kingdom of the Tides.

    ERIC Educational Resources Information Center

    Carter, Samuel, III

    Areas of discussion are the history of tides, the forces which exert an influence upon the earth's tides, the behavior of tides as modified by terrestrial features, "freak" behavior of tides, the marine life which inhabits tidal areas, the manner in which tides have helped to shape the course of history, how tides affect our lives on a…

  6. On the generation and evolution of internal solitary waves in the southern Red Sea

    NASA Astrophysics Data System (ADS)

    Guo, Daquan; Zhan, Peng; Kartadikaria, Aditya; Akylas, Triantaphyllos; Hoteit, Ibrahim

    2015-04-01

    Satellite observations recently revealed the existence of trains of internal solitary waves in the southern Red Sea between 16.0°N and 16.5°N, propagating from the centre of the domain toward the continental shelf [Da silva et al., 2012]. Given the relatively weak tidal velocity in this area and their generation in the central of the domain, Da Silva suggested three possible mechanisms behind the generation of the waves, namely Resonance and disintegration of interfacial tides, Generation of interfacial tides by impinging, remotely generated internal tidal beams and for geometrically focused and amplified internal tidal beams. Tide analysis based on tide stations data and barotropic tide model in the Red Sea shows that tide is indeed very weak in the centre part of the Red Sea, but it is relatively strong in the northern and southern parts (reaching up to 66 cm/s). Together with extreme steep slopes along the deep trench, it provides favourable conditions for the generation of internal solitary in the southern Red Sea. To investigate the generation mechanisms and study the evolution of the internal waves in the off-shelf region of the southern Red Sea we have implemented a 2-D, high-resolution and non-hydrostatic configuration of the MIT general circulation model (MITgcm). Our simulations reproduce well that the generation process of the internal solitary waves. Analysis of the model's output suggests that the interaction between the topography and tidal flow with the nonlinear effect is the main mechanism behind the generation of the internal solitary waves. Sensitivity experiments suggest that neither tidal beam nor the resonance effect of the topography is important factor in this process.

  7. The inverse problem: Ocean tides derived from earth tide observations

    NASA Technical Reports Server (NTRS)

    Kuo, J. T.

    1978-01-01

    Indirect mapping ocean tides by means of land and island-based tidal gravity measurements is presented. The inverse scheme of linear programming is used for indirect mapping of ocean tides. Open ocean tides were measured by the numerical integration of Laplace's tidal equations.

  8. Pumping bottom water to prevent Korean red tide damage caused by Cochlodinium polykrikoides Margalef.

    PubMed

    Cho, Eun Seob; Moon, Seong Yong; Shu, Young Sang; Hwang, Jae Dong; Youn, Seok Hyun

    2015-09-01

    Cochlodinium polykrikoides Margalef produces annual massive blooms in Korean coastal waters which cause great damage to aquaculture and fisheries. Although various methods have been developed to remove the red tide of C. polykrikoides, release of yellow loess has been regarded as the most desirable technique for mitigation for over 10 years. Each August, strong irradiation generates water column stratification separating warm surface from colder bottom waters. Water from a distance of 0 (St. 1), 5 (St. 2), 10 (St. 3), and 15 m (St. 4) was pumped by running a pump for 0, 10, 30 and 90 min and characterized water temperature, salinity collected, suspended solids, Chl-a, and phytoplankton including C. polykrikoides. After running for 30 min, was temperature and salinity in surface water was similar to those of bottom water, and water column stratification completely reversed after 90 min. Likewise, suspended solids, Chl-a, and total phytoplankton cell density decreased after 30 min, but C. polykrikoides did not show strong removal because of low cell density during sampling. However, the number of C. polykrikoides was significantly diluted (80%) after 90 min. These results suggested that pumping device was as an environmentally-friendly method convenient to be install in fish cages and effective to remove C. polykrikoides stratified water column conditions.

  9. Perigean Spring Tides and Apogean Neap Tides in History

    NASA Astrophysics Data System (ADS)

    Olson, Donald W.

    2012-01-01

    On January 4, 1912 - almost exactly 100 years ago - both a full Moon and a lunar perigee occurred, with these two events separated by only a few minutes of time and with the Earth near perihelion. The resulting lunar distance (356,375 km) on that date stands as the closest approach of the Moon to the Earth in an interval of more than 1400 years. The centennial of this extreme lunar perigee is an appropriate time to consider the effect of lunar distance on the range of ocean tides. At most ocean ports, spring tides of increased range occur near new and full Moon. If a lunar perigee falls near new or full Moon, then perigean spring tides of even greater range are possible. Conversely, if a lunar apogee falls near first quarter or last quarter Moon, then apogean neap tides of unusually reduced range can occur. Examples of perigean spring tides include a near-coincidence of lunar perigee and new Moon in December 1340 that may be related to a plot device in Chaucer's "The Franklin's Tale,” a Canterbury tale that describes an extreme high tide covering the rocks on the coast of Brittany in "the cold and frosty season of December.” Another example, the disaster known as the Bristol Channel Flood, occurred shortly after a lunar perigee and new Moon in January 1607. A German U-boat employed an exceptionally high perigean spring tide shortly after the new Moon of October 1939 to enter Scapa Flow by an unexpected route and sink the HMS Royal Oak. An apogean neap tide prevailed during the amphibious assault of the U. S. Marines at Tarawa in November 1943, making the eventual victory more costly because the landing craft were unable to reach the island and instead grounded on the surrounding reef.

  10. Influence of Solar and Lunar Tides on the Mesopause Region as Observed in Polar Mesosphere Summer Echoes Characteristics

    NASA Astrophysics Data System (ADS)

    Dalin, P.; Kirkwood, S.; Pertsev, N.; Perminov, V.

    2017-10-01

    Long-term observations of polar mesosphere summer echoes (PMSE) from 2002 to 2012 are investigated with the aim to statistically study the effects of solar thermal migrating and lunar gravitational tides on aerosol layers and their environment at altitudes 80-90 km. The solar and lunar tidal periodicities are clearly present in PMSE data. For the first time, both amplitudes and phases of solar and lunar tides are estimated using PMSE data from the ESRAD radar located at Esrange (Sweden). The diurnal, semidiurnal, and terdiurnal solar migrating tides show pronounced periodicities in the PMSE strength and wind velocity components. Lunar tides demonstrate clear oscillations in the PMSE strength and wind velocities as well. "canonical" lunar gravitational tides, corresponding to the lunar gravitational potential, produce rather large amplitudes and are comparable to the solar thermal tides, whereas "noncanonical" lunar oscillations have minor effects on PMSE layers, but are still statistically significant. The influence of diurnal/semidiurnal tides and monthly/semimonthly tidal components is studied separately. Our estimations of solar thermal and lunar tidal amplitudes are in good agreement with those of previous model and experimental studies. A new mechanism of quadratic demodulation of the solar semidiurnal and lunar semidiurnal tides is shown to be valid at the summer mesopause and can explain periodical PMSE oscillations due to the lunar synodic semimonthly tide with period of 14.77 days. Two harmonics with periods of 27.0 and 13.5 days supposedly representing the solar rotation cycle are also clearly present in PMSE data.

  11. A tide prediction and tide height control system for laboratory mesocosms

    PubMed Central

    Long, Jeremy D.

    2015-01-01

    Experimental mesocosm studies of rocky shore and estuarine intertidal systems may benefit from the application of natural tide cycles to better replicate variation in immersion time, water depth, and attendant fluctuations in abiotic and edaphic conditions. Here we describe a stand-alone microcontroller tide prediction open-source software program, coupled with a mechanical tidal elevation control system, which allows continuous adjustment of aquarium water depths in synchrony with local tide cycles. We used this system to monitor the growth of Spartina foliosa marsh cordgrass and scale insect herbivores at three simulated shore elevations in laboratory mesocosms. Plant growth decreased with increasing shore elevation, while scale insect population growth on the plants was not strongly affected by immersion time. This system shows promise for a range of laboratory mesocosm studies where natural tide cycling could impact organism performance or behavior, while the tide prediction system could additionally be utilized in field experiments where treatments need to be applied at certain stages of the tide cycle. PMID:26623195

  12. Oil Spills and Dispersants Can Cause the Initiation of Potentially Harmful Dinoflagellate Blooms ("Red Tides").

    PubMed

    Almeda, Rodrigo; Cosgrove, Sarah; Buskey, Edward J

    2018-05-15

    After oil spills and dispersant applications the formation of red tides or harmful algal blooms (HABs) has been observed, which can cause additional negative impacts in areas affected by oil spills. However, the link between oil spills and HABs is still unknown. Here, we present experimental evidence that demonstrates a connection between oil spills and HABs. We determined the effects of oil, dispersant-treated oil, and dispersant alone on the structure of natural plankton assemblages in the Northern Gulf of Mexico. In coastal waters, large tintinnids and oligotrich ciliates, major grazers of phytoplankton, were negatively affected by the exposure to oil and dispersant, whereas bloom-forming dinoflagellates ( Prorocentrum texanum, P. triestinum, and Scrippsiella trochoidea) notably increased their concentration. The removal of key grazers due to oil and dispersant disrupts the predator-prey controls ("top-down controls") that normally function in plankton food webs. This disruption of grazing pressure opens a "loophole" that allows certain dinoflagellates with higher tolerance to oil and dispersants than their grazers to grow and form blooms when there are no growth limiting factors (e.g., nutrients). Therefore, oil spills and dispersants can act as disrupters of predator-prey controls in plankton food webs and as indirect inducers of potentially harmful dinoflagellate blooms.

  13. Red Tides: Mass casualty and whole blood at sea Red Tides.

    PubMed

    Miller, Benjamin T; Lin, Andrew H; Clark, Susan C; Cap, Andrew P; Dubose, Joseph J

    2018-02-13

    The U.S. Navy's casualty-receiving ships provide remote damage control resuscitation (RDCR) platforms to treat injured combatants deployed afloat and ashore. We report a significant mass casualty incident aboard the USS Bataan, and the most warm fresh whole blood (WFWB) transfused at sea for traumatic hemorrhagic shock since the Vietnam War. Casualty-receiving ships have robust medical capabilities, including a frozen blood bank with packed red blood cells (pRBC) and fresh frozen plasma (FFP). The blood supply can be augmented with WFWB collected from a "walking blood bank" (WBB). Following a helicopter crash, six patients were transported by MV-22 Osprey to the USS Bataan. Patient 1 had a pelvic fracture, was managed with a pelvic binder, and received 4 units of pRBC, 2 units of FFP, and 6 units of WFWB. Patient 2, with a comminuted tibia and fibula fracture, underwent lower extremity four-compartment fasciotomy, and received 4 units of WFWB. Patient 3 underwent several procedures, including left anterior thoracotomy, aortic cross-clamping, exploratory laparotomy, small bowel resection, and tracheostomy. He received 8 units of pRBC, 8 units of FFP, and 28 units of WFWB. Patients 4 and 5 had suspected spine injuries and were managed non-operatively. Patient 6, with open tibia and fibula fractures, underwent lower extremity four-compartment fasciotomy with tibia external fixation and received 1 unit of WFWB. All patients survived aeromedical evacuation to a Role 4 medical facility and subsequent transfer to local hospitals. Maritime military mass casualty incidents are challenging, but the U.S. Navy's casualty-receiving ships are ready to perform RDCR at sea. Activation of the ship's WBB to transfuse WFWB is essential for hemostatic resuscitations afloat. V STUDY TYPE: Case series.

  14. Tides and Decadal Variability

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    2003-01-01

    This paper reviews the mechanisms by which oceanic tides and decadal variability in the oceans are connected. We distinguish between variability caused by tides and variability observed in the tides themselves. Both effects have been detected at some level. The most obvious connection with decadal timescales is through the 18.6-year precession of the moon's orbit plane. This precession gives rise to a small tide of the same period and to 18.6-year modulations in the phase and amplitudes of short-period tides. The 18.6-year "node tide" is very small, no more than 2 cm anywhere, and in sea level data it is dominated by the ocean's natural Variability. Some authors have naively attributed climate variations with periods near 19 years directly to the node tide, but the amplitude of the tide is too small for this mechanism to be operative. The more likely explanation (Loder and Garrett, JGR, 83, 1967-70, 1978) is that the 18.6-y modulations in short-period tides, especially h e principal tide M2, cause variations in ocean mixing, which is then observed in temperature and other climatic indicators. Tidally forced variability has also been proposed by some authors, either in response to occasional (and highly predictable) tidal extremes or as a nonlinear low-frequency oscillation caused by interactions between short-period tides. The former mechanism can produce only short-duration events hardly more significant than normal tidal ranges, but the latter mechanism can in principle induce low-frequency oscillations. The most recent proposal of this type is by Keeling and Whorf, who highlight the 1800-year spectral peak discovered by Bond et al. (1997). But the proposal appears contrived and should be considered, in the words of Munk et al. (2002), "as the most likely among unlikely candidates."

  15. What Causes Tides?

    ERIC Educational Resources Information Center

    Donovan, Deborah

    2004-01-01

    The phenomenon of tides has a faraway source. This rise and fall of the water level over a period of several hours is a result of the gravitational pull of the Moon and the Sun on Earth's oceans. Tides exhibit predictable cycles on daily, monthly, and yearly scales. The magnitude of the tides is dependent on the position of the Earth and Moon in…

  16. [Illumination's effect on the growth and nitrate reductase activity of typical red-tide algae in the East China Sea].

    PubMed

    Li, Hong-mei; Shi, Xiao-yong; Ding, Yan-yan; Tang, Hong-jie

    2013-09-01

    Two typical red-tide algae, Skeletonema costatum and Prorocentrum donghaiense were selected as studied objects. The nitrate reductase activity (NRA) and the growth of the two algae under different illuminations through incubation experiment were studied. The illumination condition was consistent with in situ. Results showed that P. donghaiense and S. costatum could grow normally in the solar radiation ranged from 30-60 W x m(-2), and the growth curve was "S" type. However, when solar radiation was below 9 W x m(-2), the two alga could hardly grow. In the range of 0-60 W x m(-2), three parameters (NRAmax, micro(max), Bf) increased with the increasing of light intensity, indicating that the light intensity can influence the grow of alga indirectly through influencing the nitrate reductase activity. The micro(max) and NRAmax in unite volume of Skeletonema costatum were higher than those of Prorocentrum donghaiense, indicating that Skeletonema costatum can better utilize the nitrate than Prorocentrum donghaiense.

  17. The effects of red tide (Karenia brevis) on reflex impairment and mortality of sublegal Florida stone crabs, Menippe mercenaria.

    PubMed

    Gravinese, Philip M; Kronstadt, Stephanie M; Clemente, Talib; Cole, Cody; Blum, Patricia; Henry, Michael S; Pierce, Richard H; Lovko, Vincent J

    2018-06-01

    The Florida stone crab, Menippe mercenaria, is a major commercial fishery that occurs primarily along Florida's west coast, where harmful algal blooms of Karenia brevis frequently develop. To determine sublethal and lethal effects of K. brevis on M. mercenaria, we exposed sublegal stone crabs to three seawater treatments in laboratory conditions: no K. brevis (control), a low-toxin K. brevis strain (Wilson LT), and a toxic K. brevis (New Pass strain). Total food consumed, reflex impairment and survivorship of each crab was monitored throughout the nine-day experiment. Crabs in the toxic treatment consumed 67% less food. The probability of an individual losing a reflex significantly increased with time (days), and there was a 42% decrease in survivorship in the toxic treatment. This is the first study to demonstrate negative effects of K. brevis on the stone crab, presenting the critical need of further investigation to fully understand how red tide may impact sustainability of the fishery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The effects of nitrogen, phosphorus, vitamins and trace metals on the growth of the red tide organism Prorocentrum Micans

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-Fang; Zhang, Qing; Gong, Min

    1995-12-01

    Laboratory culture experiments showed that <100μ mol/L nitrate, amonium or mixture of amino acids promote the growth of the red tide organism Prorocentrum micans Ehrenb, but that >100μmol/L of ammonium, or mixture of glycine and glutamate was harmful to growth, and that orthophosphate was P. micans’ main phosphorous source in the ocean. Presence of 80μ mol/L EDTA, 0.5 to 1 μmol/L Fe3+, 1.0 to 20.0 μ mol/L Mn2+ 0.1 to 0.4 μmol/L Co2+ in the culture medium could improve the growth of P. micans. Vitamin B1 promoted growth, but vitamin B12 and biotin did not. The estimated minimum cell quotas ( q o) for nitrogen and phosphorus being 0.74 pmole/cell and 0.045 pmole/cell show that phosphorus (more than nitrogen) limits the growth of P. micans in the study area.

  19. Waves: Internal Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1999-01-01

    Oceanic internal tides are internal waves with tidal periodicities. They are ubiquitous throughout the ocean, although generally more pronounced near large bathymetric features such as mid-ocean ridges and continental slopes. The internal vertical displacements associated with these waves can be extraordinarily large. Near some shelf breaks where the surface tides are strong, internal displacements (e.g., of an isothermal surface) can exceed 200 meters. Displacements of 10 meters in the open ocean are not uncommon. The associated current velocities are usually comparable to or larger than the currents of the surface tide. On continental shelves internal tides can occasionally generate packets of internal solitons, which are detectable in remote sensing imagery. Other common nonlinear features are generation of higher harmonics (e.g., 6-hr waves) and wave breaking. Internal tides are known to be an important energy source for mixing of shelf waters. Recent research suggests that they may also be a significant energy source for deep-ocean mixing.

  20. Lanthanides determination in red wine using ultrasound assisted extraction, flow injection, aerosol desolvation and ICP-MS.

    PubMed

    Bentlin, Fabrina R S; dos Santos, Clarissa M M; Flores, Erico M M; Pozebon, Dirce

    2012-01-13

    This paper deals with the determination of the fourteen naturally occurring elements of the lanthanide series in red wine. Ultrasound (US) was used for sample preparation prior lanthanides determination using ICP-MS. Flow injection (FI) and pneumatic nebulization/aerosol desolvation were used for nebulization of aliquots of 50 μL of sample and its subsequent transportation to plasma. Sample preparation procedures, matrix interference and time of sonication were evaluated. Better results for lanthanides in red wine were obtained by sonication with US probe for 90 s and sample 10-fold diluted. The limits of detection of La, Ce, Nd, Sm, Gd, Pr, Eu, Tb, Dy, Ho, Er, Tm, Lu and Yb were 6.57, 10.8, 9.97, 9.38, 2.71, 1.29, 1.22, 0.52, 2.35, 0.96, 2.30, 0.45, 0.24 and 1.35 ng L(-1), respectively. Red wines of different varieties from three countries of South America were discriminated according to the country of origin by means of multivariate analysis of lanthanides concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Altererythrobacter xiamenensis sp. nov., an algicidal bacterium isolated from red tide seawater.

    PubMed

    Lei, Xueqian; Li, Yi; Chen, Zhangran; Zheng, Wei; Lai, Qiliang; Zhang, Huajun; Guan, Chengwei; Cai, Guanjing; Yang, Xujun; Tian, Yun; Zheng, Tianling

    2014-02-01

    A Gram-stain-negative, yellow-pigmented, aerobic bacterial strain, designated LY02(T), was isolated from red tide seawater in Xiamen, Fujian Province, China. Growth was observed at temperatures from 4 to 44 °C, at salinities from 0 to 9% and at pH from 6 to 10. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that the isolate was a member of the genus Altererythrobacter, which belongs to the family Erythrobacteraceae. Strain LY02(T) was related most closely to Altererythrobacter marensis MSW-14(T) (97.2% 16S rRNA gene sequence similarity), followed by Altererythrobacter ishigakiensis JPCCMB0017(T) (97.1%), Altererythrobacter epoxidivorans JCS350(T) (97.1%) and Altererythrobacter luteolus SW-109(T) (97.0%). The dominant fatty acids were C(18 : 1)ω7c, C(17 : 1)ω6c and summed feature 3 (comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c). DNA-DNA hybridization showed that strain LY02(T) possessed low DNA-DNA relatedness to A. marensis MSW-14(T), A. ishigakiensis JPCCMB0017(T), A. epoxidivorans JCS350(T) and A. luteolus SW-109(T) (mean ± SD of 33.2 ± 1.3, 32.1 ± 1.0, 26.7 ± 0.7 and 25.2 ± 1.1 %, respectively). The G+C content of the chromosomal DNA was 61.2 mol%. The predominant respiratory quinone was ubiquinone-10 (Q-10). According to its morphology, physiology, fatty acid composition and 16S rRNA gene sequence data, the novel strain most appropriately belongs to the genus Altererythrobacter, but can readily be distinguished from recognized species. The name Altererythrobacter xiamenensis sp. nov. is proposed (type strain LY02(T) = CGMCC 1.12494(T) = KCTC 32398(T) = NBRC 109638(T)).

  2. Chattonella and Fibrocapsa (Raphidophyceae): First observation of, potentially harmful, red tide organisms in Dutch coastal waters

    NASA Astrophysics Data System (ADS)

    Vrieling, E. G.; Koeman, R. P. T.; Nagasaki, K.; Ishida, Y.; Pererzak, L.; Gieskes, W. W. C.; Veenhuis, M.

    Species of the potentially toxic and red-tide-forming marine-phytoplankton genera Chattonella and Fibrocapsa (Raphidophyceae) were observed for the first time in 1991 in samples taken in Dutch coastal waters; they were again recorded and enumerated in the following years. Chattonella spp. cell numbers varied with the season, with a maximum in May or June in the Dutch Wadden Sea. Cell numbers of Chattonella and F. japonica Toriumi et Takano were up to 6.0·10 3 cells·dm -3 in the Dutch Wadden Sea, except at one station in June 1993 when over 10 4 cells·dm -3Chattonella were counted. In May 1993, a minor bloom (over 2.0·10 5 cells·dm -3) was observed at a station in the southern central North Sea, 100 km northwest of the island of Terschelling. The potentially neurotoxic species Chattonella marina (Subrahmanyan) Hara et Chihara was identified and discriminated from morphologically related species within the class of Raphidophyceae by immunofluorescence. F. japonica could only be clearly identified in live samples; in fixed samples cell morphology was severely affected. The identification of this species was supported by the presence of mucocysts, structures that can be observed readily by optical and electron microscopy.

  3. Cell cycle behavior of laboratory and field populations of the Florida red tide dinoflagellate, Karenia brevis

    NASA Astrophysics Data System (ADS)

    Van Dolah, Frances M.; Leighfield, Tod A.; Kamykowski, Daniel; Kirkpatrick, Gary J.

    2008-01-01

    As a component of the ECOHAB Florida Regional Field Program, this study addresses cell cycle behavior and its importance to bloom formation of the Florida red tide dinoflagellate, Karenia brevis. The cell cycle of K. brevis was first studied by flow cytometry in laboratory batch cultures, and a laboratory mesocosm column, followed by field populations over the 5-year course of the ECOHAB program. Under all conditions studied, K. brevis displayed diel phased cell division with S-phase beginning a minimum of 6 h after the onset of light and continuing for 12-14 h. Mitosis occurred during the dark, and was generally completed by the start of the next day. The timing of cell cycle phases relative to the diel cycle did not differ substantially in bloom populations displaying radically different growth rates ( μmin 0.17-0.55) under different day lengths and temperature conditions. The rhythm of cell cycle progression is independent from the rhythm controlling vertical migration, as similar cell cycle distributions are found at all depths of the water column in field samples. The implications of these findings are discussed in light of our current understanding of the dinoflagellate cell cycle and the development of improved models for K. brevis bloom growth.

  4. Tides and tsunamis

    NASA Technical Reports Server (NTRS)

    Zetler, B. D.

    1972-01-01

    Although tides and tsunamis are both shallow water waves, it does not follow that they are equally amenable to an observational program using an orbiting altimeter on a satellite. A numerical feasibility investigation using a hypothetical satellite orbit, real tide observations, and sequentially increased levels of white noise has been conducted to study the degradation of the tidal harmonic constants caused by adding noise to the tide data. Tsunami waves, possibly a foot high and one hundred miles long, must be measured in individual orbits, thus requiring high relative resolution.

  5. Using an Altimeter-Derived Internal Tide Model to Remove Tides from in Situ Data

    NASA Technical Reports Server (NTRS)

    Zaron, Edward D.; Ray, Richard D.

    2017-01-01

    Internal waves at tidal frequencies, i.e., the internal tides, are a prominent source of variability in the ocean associated with significant vertical isopycnal displacements and currents. Because the isopycnal displacements are caused by ageostrophic dynamics, they contribute uncertainty to geostrophic transport inferred from vertical profiles in the ocean. Here it is demonstrated that a newly developed model of the main semidiurnal (M2) internal tide derived from satellite altimetry may be used to partially remove the tide from vertical profile data, as measured by the reduction of steric height variance inferred from the profiles. It is further demonstrated that the internal tide model can account for a component of the near-surface velocity as measured by drogued drifters. These comparisons represent a validation of the internal tide model using independent data and highlight its potential use in removing internal tide signals from in situ observations.

  6. Barometric Tides from ECMWF Operational Analyses

    NASA Technical Reports Server (NTRS)

    Ray, R. D.; Ponte, R. M.

    2003-01-01

    The solar diurnal and semidiurnal tidal oscillations in surface pressure are extracted from the the operational analysis product of the European Centre for Medium Range Weather Forecasting (ECMWF). For the semidiurnal tide this involves a special temporal interpolation, following Van den Dool and colleagues. The resulting tides are compared with a ground truth tide dataset, a compilation of well-determined tide estimates deduced from long time series of station barometer measurements. These comparisons show that the ECMWF tides are significantly more accurate than the tides deduced from two other widely available reanalysis products. Spectral analysis of ECMWF pressure series shows that the tides consist of sharp central peaks with modulating sidelines at integer multiples of 1 cycle/year, superimposed on a broad cusp of stochastic energy. The integrated energy in the cusp dominates that of the sidelines. This complicates development of a simple model that can characterize the full temporal variability of the tides.

  7. The human health effects of Florida red tide (FRT) blooms: an expanded analysis.

    PubMed

    Hoagland, Porter; Jin, Di; Beet, Andrew; Kirkpatrick, Barbara; Reich, Andrew; Ullmann, Steve; Fleming, Lora E; Kirkpatrick, Gary

    2014-07-01

    Human respiratory and digestive illnesses can be caused by exposures to brevetoxins from blooms of the marine alga Karenia brevis, also known as Florida red tide (FRT). K. brevis requires macro-nutrients to grow; although the sources of these nutrients have not been resolved completely, they are thought to originate both naturally and anthropogenically. The latter sources comprise atmospheric depositions, industrial effluents, land runoffs, or submerged groundwater discharges. To date, there has been only limited research on the extent of human health risks and economic impacts due to FRT. We hypothesized that FRT blooms were associated with increases in the numbers of emergency room visits and hospital inpatient admissions for both respiratory and digestive illnesses. We sought to estimate these relationships and to calculate the costs of associated adverse health impacts. We developed environmental exposure-response models to test the effects of FRT blooms on human health, using data from diverse sources. We estimated the FRT bloom-associated illness costs, using extant data and parameters from the literature. When controlling for resident population, a proxy for tourism, and seasonal and annual effects, we found that increases in respiratory and digestive illnesses can be explained by FRT blooms. Specifically, FRT blooms were associated with human health and economic effects in older cohorts (≥55 years of age) in six southwest Florida counties. Annual costs of illness ranged from $60,000 to $700,000 annually, but these costs could exceed $1.0 million per year for severe, long-lasting FRT blooms, such as the one that occurred during 2005. Assuming that the average annual illness costs of FRT blooms persist into the future, using a discount rate of 3%, the capitalized costs of future illnesses would range between $2 and 24 million. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Annual subsurface transport of a red tide dinoflagellate to its bloom area: Water circulation patterns and organism distributions in the Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, M.A.; Seliger, H.H.

    1978-03-01

    An annual, long range, subsurface transport of Prorocentrum mariae-lebouriae, from the mouth of the Chesapeake Bay to its bloom area in the upper bay, a distance of 240 km, is described and completely documented. Prorocentrum in surface outflowing waters at the mouth of the bay is recruited in late winter into more dense inflowing coastal waters. Strong stratification produced by late winter--early spring surface runoff results in the development of a stable pycnocline. Prorocentrum, now in northward-flowing bottom waters, is retained in these bottom waters. It accumulates in a subsurface concentration maximum below the pycnocline and is transported northward tomore » reach its bloom area in the Patapsco River and north of the Bay Bridge by late spring. The rapidly decreasing depth of the upper bay causes the pycnocline to rise, mixing the previously light-limited Prorocentrum and its nutrient-rich bottom waters to the surface, where rapid growth ensues. Once the dinoflagellate is in surface waters, positive phototaxis, combined with both wind- and tide-driven surface convergences, produce dense surface patches or red tides. Prorocentrum is effectively retained in the bay until late winter by sequential inoculation into the tributary estuaries on the western shore, which exchange relatively slowly with bay waters. By late winter the annual cycle is complete. Prorocentrum is again in surface waters at the mouth of the bay where it is reintroduced into northward-flowing bottom waters. The mechanisms described provide a key to understanding the origins of subsurface chlorophyll maxima and the delivery of toxic dinoflagellates to coastal bloom areas.« less

  9. Testing tidal theory for evolved stars by using red-giant binaries observed by Kepler

    NASA Astrophysics Data System (ADS)

    Beck, P. G.; Mathis, S.; Gallet, F.; Charbonnel, C.; Benbakoura, M.; García, R. A.; do Nascimento, J.-D.

    2018-06-01

    Tidal interaction governs the redistribution of angular momentum in close binary stars and planetary systems and determines the systems evolution towards the possible equilibrium state. Turbulent friction acting on the equilibrium tide in the convective envelope of low-mass stars is known to have a strong impact on this exchange of angular momentum in binaries. Moreover, theoretical modelling in recent literature as well as presented in this paper suggests that the dissipation of the dynamical tide, constituted of tidal inertial waves propagating in the convective envelope, is weak compared to the dissipation of the equilibrium tide during the red-giant phase. This prediction is confirmed when we apply the equilibrium-tide formalism developed by Zahn (1977), Verbunt & Phinney (1995), and Remus, Mathis & Zahn (2012) onto the sample of all known red-giant binaries observed by the NASA Kepler mission. Moreover, the observations are adequately explained by only invoking the equilibrium tide dissipation. Such ensemble analysis also benefits from the seismic characterisation of the oscillating components and surface rotation rates. Through asteroseismology, previous claims of the eccentricity as an evolutionary state diagnostic are discarded. This result is important for our understanding of the evolution of multiple star and planetary systems during advanced stages of stellar evolution.

  10. Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Reed F.; Hammoud, Dima A.; Lackemeyer, Matthew G.

    Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log{submore » 10} PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases. - Highlights: • Small particle aerosol exposure of rhesus results in a severe respiratory disease. • CT findings correlated with peripheral oxygen saturation and monocyte increases. • Virus dissemination was limited and mainly confined to the respiratory tract. • CT provides insight into pathogenesis to aid development of animal models of disease.« less

  11. Ocean tides for satellite geodesy

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1990-01-01

    Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni-solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self-gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no-flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree-2 components of the Mf, P1, and M2 tides with those from numerical and satellite-based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored.

  12. A filterable lytic agent obtained from a red tide bloom that caused lysis of Karenia brevis (Gymnodinum breve) cultures

    USGS Publications Warehouse

    2002-01-01

    A filterable lytic agent (FLA) was obtained from seawater in the southeastern Gulf of Mexico during a red tide bloom that caused lysis of Karenia brevis (formerly Gymnodinium breve) Piney Island. This agent was obtained from <0.2µ  filtrates that were concentrated by ultrafiltration using a 100 kDa filter. The FLA was propagated by passage on K. brevis cultures, and the filtered supernatants of such cultures resulted in K. brevis lysis when added to such cultures. The lytic activity was lost upon heating to 65°C or by 0.02 µm filtration. Epifluorescence and transmission electron microscopy (TEM) of supernatants of K. brevis cultures treated with the lytic agent indicated a high abundance of viral particles (4 × 109 to 7 × 109 virus-like particles [VLPs] ml–1) compared to control cultures (~107 ml–1). However, viral particles were seldom found in TEM photomicrograph thin sections of lysing K. brevis cells. Although a virus specific for K. brevis may have been the FLA, other explanations such as filterable bacteria or bacteriophages specific for bacteria associated with the K. brevis cultures cannot be discounted.

  13. Interplay between the parasite Amoebophrya sp. (Alveolata) and the cyst formation of the red tide dinoflagellate Scrippsiella trochoidea.

    PubMed

    Chambouvet, Aurélie; Alves-de-Souza, Catharina; Cueff, Valérie; Marie, Dominique; Karpov, Sergey; Guillou, Laure

    2011-10-01

    Syndiniales (Alveolata) are marine parasites of a wide range of hosts, from unicellular organisms to Metazoa. Many Syndiniales obligatorily kill their hosts to accomplish their life cycle. This is the case for Amoebophrya spp. infecting dinoflagellates. However, several dinoflagellate species known to be infected by these parasites produce diploid resting cysts as part of their life history. These resting cysts may survive several seasons in the sediment before germinating. How these parasites survive during the dormancy of their host remained an open question. We successfully established infections by Amoebophrya sp. in the red tide dinoflagellate Scrippsiella trochoidea. This host strain was homothallic and able to continuously produce typical calcified cysts covered by calcareous spines. Presence of the parasite significantly speeded up the host cyst production, and cysts produced were the only cells to resist infections. However, some of them were clearly infected, probably earlier in their formation. After 10 months, cysts produced in presence of the parasite were able to germinate and new infective cycles of the parasite were rapidly observed. Thus, a very novel relationship for protists is demonstrated, one in which parasite and host simultaneously enter dormancy, emerging months later to propagate both species. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Spatial variability of trace metals and inorganic nutrients in surface waters of Todos Santos Bay, México in the summer of 2005 during a red tide algal bloom.

    PubMed

    Lares, M L; Marinone, S G; Rivera-Duarte, I; Beck, A; Sañudo-Wilhelmy, S

    2009-05-01

    Dissolved and particulate metals (Ag, Cd, Co, Cu, Ni, and Zn) and nutrients (PO(4), NO(3), and H(4)SiO(4)) were measured in Todos Santos Bay (TSB) in August 2005. Two sources producing local gradients were identified: one from a dredge discharge area (DDA) and another south of the port and a creek. The average concentrations of dissolved Cd and Zn (1.3 and 15.6 nM, respectively) were higher by one order of magnitude than the surrounding Pacific waters, even during upwelling, and it is attributed to the presence of a widespread and long-lasting red tide coupled with some degree of local pollution. A clear spatial gradient (10 to 6 pM), from coast to offshore, of dissolved Ag was evident, indicating the influence of anthropogenic inputs. The particulate fraction of all metals, except Cu, showed a factor of ~3 decrease in concentrations from the DDA to the interior of the bay. The metal distributions were related to the bay's circulation by means of a numerical model that shows a basically surface-wind-driven offshore current with subsurface compensation currents toward the coast. Additionally, the model shows strong vertical currents over the DDA. Principal component analysis revealed three possible processes that could be influencing the metal concentrations within TSB: anthropogenic inputs (Cd, Ag, and Co), biological proceses (NO(3), Zn, and Cu), and upwelling and mixing (PO(4), H(4)SiO(4), Cd, and Ni). The most striking finding of this study was the extremely high Cd concentrations, which have been only reported in highly contaminated areas. As there was a strong red tide, it is hypothesized that the dinoflagellates are assimilating the Cd, which is rapidly remineralized and being concentrated on the stratified surface layers.

  15. The pole tide in deep oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1990-01-01

    The fluid-dynamical theory of the pole tide is examined by describing the oceanic response to the Chandler wobble and assessing its implications for mantle anelasticity and low-frequency ocean dynamics. The Laplace tide equations accounting for bottom friction are given, and a spherical harmonic approach is delineated in which the time-independent portion of the tide height is expanded. Pole-tide height and related inertia products are linearly proportional to wobble amplitude, and the final equations are modified to account for mantle elasticity and oceanic loading. Results for pole tide effects are given for various earth models with attention to the role of boundary constraints. A dynamic effect is identified which lengthens the Chandler period by about 1 day more than static lengthening, a contribution that suggests a vigorous low-frequency response. The values derived are shown to agree with previous models that do not incorporate the effects of the pole tide.

  16. Tides and deltaic morphodynamics

    NASA Astrophysics Data System (ADS)

    Plink-Bjorklund, Piret

    2016-04-01

    Tide-dominated and tide-influenced deltas are not widely recognized in the ancient record, despite the numerous modern and Holocene examples, including eight of the twelve modern largest deltas in the world, like the Ganges-Brahmaputra, Amazon, Chang Jiang, and Irrawadi. Furthermore, tide-dominated or tide-influenced deltas are suggested to be more common in inner-shelf or embayment settings rather than close to or at a shelf edge, primarily because wave energy is expected to be higher and tidal energy lower in outer shelf and shelf-edge areas. Thus, most shelf-edge deltas are suggested to be fluvial or wave dominated. However, there are ancient examples of tide-influenced shelf-edge deltas, indicating that the controls on tidal morphodynamics in deltas are not yet well understood. This paper asks the following questions: (1) How do tides influence delta deposition, beyond creating recognizable tidal facies? (2) Does tidal reworking create specific geometries in delta clinoforms? (3) Does tidal reworking change progradation rates of deltas? (4) Is significant tidal reworking of deltas restricted to inner-shelf deltas only? (5) What are the conditions at which deltas may be tidally influenced or tide-dominated in outer-shelf areas or at the shelf edge? (6) What are the main morphodynamic controls on the degree of tidal reworking of deltas? The paper utilizes a dataset of multiple ancient and modern deltas, situated both on the shelf and shelf edge. We show that beyond the commonly recognized shore-perpendicular morphological features and the recognizable tidal facies, the main effects of tidal reworking of deltas are associated with delta clinoform morphology, morphodynamics of delta lobe switching, delta front progradation rates, and the nature of the delta plain. Strong tidal influence is here documented to promote subaqueous, rapid progradation of deltas, by efficiently removing sediment from river mouth and thus reducing mouth bar aggradation and fluvial delta

  17. Benthic herbivores are not deterred by brevetoxins produced by the red tide dinoflagellate Karenia brevis.

    PubMed

    Sotka, Erik E; McCarty, Amanda; Monroe, Emily A; Oakman, Nicole; Van Dolah, Frances M

    2009-07-01

    Gulf of Mexico blooms of the dinoflagellate Karenia brevis produce neurotoxic cyclic polyethers called brevetoxins. During and after a red tide bloom in southwestern Florida, K. brevis cells lyse and release brevetoxins, which then sink to the benthos and coat the surfaces of seagrasses and their epiphytes. We tested the possibility that these brevetoxin-laden foods alter the feeding behavior and fitness of a common benthic herbivore within Floridean seagrass beds, the amphipod Ampithoe longimana. We demonstrated that coating foods with K. brevis extracts that contain brevetoxins at post-bloom concentrations (1 microg g(-1) drymass) does not alter the feeding rates of Florida nor North Carolina populations of A. longimana, although a slight deterrent effect was found at eight and ten-fold greater concentrations. During a series of feeding choice assays, A. longimana tended not to be deterred by foods coated with K. brevis extracts nor with the purified brevetoxins PbTx-2 and PbTx-3. Florida juveniles isolated with either extract-coated or control foods for 10 days did not differ in survivorship nor growth. A similar lack of feeding response to brevetoxin-laden foods also was exhibited by two other generalist herbivores of the southeastern United States, the amphipod A. valida and the urchin Arbacia punctulata. Given that benthic mesograzers constitute a significant portion of the diet for the juvenile stage of many nearshore fishes, we hypothesize that the ability of some mesograzers to feed on and retain brevetoxins in their bodies indicates that mesograzers may represent an important route of vertical transmission of brevetoxins through higher trophic levels within Gulf of Mexico estuaries.

  18. URGORRI COMPLANATUS GEN. ET SP. NOV. (CRYPTOPHYCEAE), A RED-TIDE-FORMING SPECIES IN BRACKISH WATERS(1).

    PubMed

    Laza-Martínez, Aitor

    2012-04-01

    The morphology, ultrastructure, phylogeny, and ecology of a new red-tide-forming cryptomonad, Urgorri complanatus Laza-Martínez gen. et sp. nov., is described. U. complanatus has been collected in southwestern European estuaries, blooming in the inner reaches of several of them. The estuarine character of the species is also supported by its in vitro salinity preferences, showing a maximum growth rate at 10 psu. U. complanatus is a distinctive species and can be easily distinguished by LM from other known brackish and marine species. Cells are dorsoventrally flattened. The plastid has two anterior lobes. One pyrenoid is located in each of the lobes, and a third one on the posterior part. Thylakoids are arranged in pairs and do not penetrate pyrenoids. The plastid is reddish due to the presence of the phycoerythrin Cr-PE545. An orange discoidal eyespot lies beneath the nucleus, in the posterior ventral face of the plastid. A long furrow runs from the vestibulum, and a gullet is lacking. The periplast is composed of an inner sheet. The nuclear 18S rDNA based molecular analysis reveals U. complanatus is not related to any of the main cryptomonad lineages. Based on ultrastructural and pigment data, the most probable relatives are those merged under the family Geminigeraceae. Its lack of derived characters, together with the presence of characters proposed in previous studies to be primitive, suggests Urgorri could be considered representative of the cryptophycean ancestral character state. © 2012 Phycological Society of America.

  19. Galalctic Tides & the Sinusoidal Potential

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.

    2011-05-01

    The sinusoidal potential is a nonNewtonian alternative to dark matter. Instead of φ = -GM/r we write φ = -(GM/r) cos kor, where ko= 2π/ λo and λo = Ro/20= 400 pc. Evidence for this choice for the "wavelength” λo has been given in one article and many previous meetings of the AAS & DDA. The solar system and nearby stars are trapped in a local groove of width Δr < 400 pc. The rapid alternation of attraction and repulsion within the groove gives very strong Galactic radial tides. The epicyclic period is only 7 Myr . The Keplerian period for comets in the middle of the Oort cloud is also 7 Myr. The 1:1 resonance between material in the groove and the cloud provides a new mechanism for filling the Oort cloud. The Oort cloud is emptied by the same strong radial tides. Evidence is found in the 499 comets with calculated 1/aoriginal in the latest Catalogue of Cometary Orbits (Marsden & Williams 2008). . I separate the comets into 12 classes on the basis of Quality (4 types) and semi-major axis aoriginal . For 10 of the 12 classes radial tides dominate Z-tides. The classic Oort cloud comets (1851-1996) have a particularly strong modulation with galactic longitude. This modulation is exactly in those directions where a radial tide would be important. The equally numerous recent Oort comets (1996-2008) show a different evidence for strong radial tides. The recent comets generally have much larger perihelion distances q than the classic ones. Here the evidence is that a radial tide is removing angular momentum from the orbit and thus bringing the perihelion closer to the earth and to observers.

  20. Mapping hurricane rita inland storm tide

    USGS Publications Warehouse

    Berenbrock, C.; Mason, R.R.; Blanchard, S.F.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of affected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-h intervals from midnight (00:00 hours) through noon (12:00 hours) on 24 September 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared with the extent of flood inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks. ?? 2009 Blackwell Publishing Ltd.

  1. Mapping Hurricane Rita inland storm tide

    USGS Publications Warehouse

    Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.; Simonovic, Slobodan P.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  2. Ocean tides from Seasat-A

    NASA Technical Reports Server (NTRS)

    Hendershott, M. C.; Munk, W. H.; Zetler, B. D.

    1974-01-01

    Two procedures for the evaluation of global tides from SEASAT-A altimetry data are elaborated: an empirical method leading to the response functions for a grid of about 500 points from which the tide can be predicted for any point in the oceans, and a dynamic method which consists of iteratively modifying the parameters in a numerical solution to Laplace tide equations. It is assumed that the shape of the received altimeter signal can be interpreted for sea state and that orbit calculations are available so that absolute sea levels can be obtained.

  3. King Tides and Climate Change

    EPA Pesticide Factsheets

    The highest predicted high tide of the year at a coastal location can bring unusually high water levels and can cause flooding. Learn about these tides including what they are, when they occur, and what they can mean for the future.

  4. Future Change to Tide-Influenced Deltas

    NASA Astrophysics Data System (ADS)

    Nienhuis, Jaap H.; Hoitink, A. J. F. (Ton); Törnqvist, Torbjörn E.

    2018-04-01

    Tides tend to widen deltaic channels and shape delta morphology. Here we present a predictive approach to assess a priori the effect of fluvial discharge and tides on deltaic channels. We show that downstream channel widening can be quantified by the ratio of the tide-driven discharge and the fluvial discharge, along with a second metric representing flow velocities. A test of our new theory on a selection of 72 deltas globally shows good correspondence to a wide range of environments, including wave-dominated deltas, river-dominated deltas, and alluvial estuaries. By quantitatively relating tides and fluvial discharge to delta morphology, we offer a first-order prediction of deltaic change that may be expected from altered delta hydrology. For example, we expect that reduced fluvial discharge in response to dam construction will lead to increased tidal intrusion followed by enhanced tide-driven sediment import into deltas, with implications for navigation and other human needs.

  5. Energetics of global ocean tides from Geosat altimetry

    NASA Technical Reports Server (NTRS)

    Cartwright, David E.; Ray, Richard D.

    1991-01-01

    The present paper focuses on resonance and energetics of the daily tides, especially in the southern ocean, the distribution of gravitational power input of daily and half-daily tides, and comparison with other estimates of global dissipation rates. The present global tidal maps, derived from Geosat altimetry, compare favorably with ground truth data at about the same rms level as the models of Schwiderski (1983), and are slightly better in lunar than in solar tides. Diurnal admittances clearly show Kelvin wave structure in the southern ocean and confirm the resonant mode of Platzman (1984) at 28.5 + or - 0.1 hr with an apparent Q of about 4. Driving energy is found to enter dominantly in the North Pacific for the daily tides and is strongly peaked in the tropical oceans for the half-daily tides. Global rates of working on all major tide constituents except S2 agree well with independent results from analyses of gravity through satellite tracking. Comparison at S2 is improved by allowing for the air tide in gravitational results but suggests deficiencies in all solar tide models.

  6. [Distribution features of chlorophyll a and primary productivity in high frequency area of red tide in East China Sea during spring].

    PubMed

    Zhou, Weihua; Huo, Wenyi; Yuan, Xiangcheng; Yin, Kedong

    2003-07-01

    The distributions of chlorophyll a and primary productivity were determined during April to May 2002 in the East China Sea. The results showed that the average concentration of chlorophyll a was 1.086 mg.m-3 at surface layer, and that nano- and pico-phytoplankton (< 20 microns) dominated the phytoplankton biomass in this sea region during Spring (up to 64% of total chlorophyll a content). Ultra-phytoplankton (< 5 microns) consisted 27% of total phytoplankton biomass. Nutrients and feeding pressure of zooplankton affected the distribution of chlorophyll a and its size-fractionation. The average primary productivity was 10.091 mg.m-3.h-1, while that of red tide tracking stations R-03, RL-01 and RG-01 was 399.984 mg.m-3.h-1. Light and nutrients were the main factors affecting the distributions of chlorophyll a and primary productivity. The station DC-11 had a high concentration of phytoplankton biomass. The surface layer concentration of chlorophyll a and primary productivity were up to 9,082 mg.m-3 and 128,79 mg.m-3.h-1, respectively, but the color of the seawater was normal.

  7. Excitation mechanism of non-migrating tides

    NASA Astrophysics Data System (ADS)

    Miyoshi, Yasunobu; Pancheva, Dora; Mukhtarov, Plamen; Jin, Hidekatsu; Fujiwara, Hitoshi; Shinagawa, Hiroyuki

    2017-04-01

    Using an atmosphere-ionosphere coupled model, the excitation source and temporal (seasonal and interannual) variations in non-migrating tides are investigated in this study. We first focus our attention on temporal variations in eastward moving diurnal tide with zonal wavenumber 3 (DE3), which is the largest of all the non-migrating tides in the mesosphere and lower thermosphere (MLT). Our simulation results indicate that upward propagation of the DE3 excited in the troposphere is sensitive to the zonal mean zonal wind in the stratosphere and mesosphere. The DE3 amplitude is enhanced in the region where the vertical shear of the zonal mean zonal wind is positive (westerly shear). Quasi-2-year variation in the DE3 amplitude in the MLT region is generated by quasi-2-year variation in the zonal mean zonal wind between 40 and 70 km, which is modulated by the stratospheric QBO. The excitation mechanisms of SW3 (westward moving semidiurnal tide with zonal wavenumber 3) and SW1 (westward moving semidiurnal tide with zonal wavenumber 1) are also investigated. During equinoxes, the SW3 and SW1 are excited by tropospheric heating (latent heat release and solar radiative heating) associated with cumulus convection in the tropics, and propagate upward into the MLT region. On the other hand, during solstices, SW3 and SW1 are generated in the winter stratosphere and mesosphere through the nonlinear interaction between the stationary planetary wave and migrating semidiurnal tide, and propagate upward to the lower thermosphere. The excitation sources of other non-migrating tides are also discussed.

  8. Using smartphones for monitoring atmospheric tides

    NASA Astrophysics Data System (ADS)

    Price, Colin; Maor, Ron; Shachaf, Hofit

    2018-09-01

    By 2020 there will be more than 6 billion smartphones around the globe, carried by the public. These smartphones are equipped with sensitive sensors that can be used to monitor our environment (temperature, pressure, humidity, magnetic field, etc.) In this paper we use the pressure sensor (barometer) within smartphones to study atmospheric tides. These tides are produced by the absorption of solar radiation by water vapor in the troposphere, and by ozone in the stratosphere. The strongest tides are the semi-diurnal tides (period of 12 h) with maximum pressure at 9am/9pm and minimum pressure at 3am/3pm. Given the proliferation of smartphones around the globe, this source of environmental data may become extremely useful for scientific research in the near future.

  9. The Global S$_1$ Ocean Tide

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, G. D.

    2003-01-01

    The small S$_1$ ocean tide is caused primarily by diurnal atmospheric pressure loading. Its excitation is therefore unlike any other diurnal tide. The global character of $S-1$ is here determined by numerical modeling and by analysis of Topex/Poseidon satellite altimeter data. The two approaches yield reasonably consistent results, and large ( $ greater than $l\\cm) amplitudes in several regions are further confirmed by comparison with coastal tide gauges. Notwithstanding their excitation differences, S$-1$ and other diurnal tides are found to share several common features, such as relatively large amplitudes in the Arabian Sea, the Sea of Okhotsk, and the Gulf of Alaska. The most noticeable difference is the lack of an S$-1$ Antarctic Kelvin wave. These similarities and differences can be explained in terms of the coherences between near-diurnal oceanic normal modes and the underlying tidal forcings. While gravitational diurnal tidal forces excite primarily a 28-hour Antarctic-Pacific mode, the S$_1$ air tide excites several other near-diurnal modes, none of which has large amplitudes near Antarctica.

  10. New Jersey Tide Telemetry System

    USGS Publications Warehouse

    Hoppe, Heidi L.

    2007-01-01

    Each summer the population of the barrier-island communities of New Jersey increases by tens of thousands. When a coastal storm threatens these communities, the limited number of bridges and causeways that connect the islands with the mainland become overcrowded, making evacuations from the barrier islands to the mainland difficult. Timely evacuation depends on well-defined emergency evacuation plans used in conjunction with accurate flood forecasting and up to the minute (real-time) tide-level information. The 'Great Nor'easter' storm that struck the coastal areas of New Jersey on December 11, 1992, caused about $270 million in insured damages to public and private property (Dorr and others, 1995). Most of the damage was due to tidal flooding and storm surge, which were especially severe along the back bay areas. Comprehensive and reliable tide-level and meteorological data for the back bays was needed to make accurate flood forecasts. Collection of tidal data for the ocean and large bays was adequately covered by the National Oceanic and Atmospheric Administration's National Ocean Service (NOAA's NOS), but in New Jersey little to no data are available for the back-bay areas. The back bays behave quite differently than the ocean as a result of the complex interaction between the winds and the geometry of the inlets and bays. A slow moving Nor'easter can keep tide levels in back bays several feet higher than the ocean tide by not allowing tides to recede, resulting in flooding of bridges and causeways that link the barrier islands to the mainland. The U.S. Geological Survey (USGS), in cooperation with the New Jersey Department of Transportation (NJDOT), designed and installed the New Jersey Tide Telemetry System (NJTTS) with assistance from NOAA's NOS in 1997. This system is part of a statewide network of tide gages, weather stations, and stream gages that collect data in real time. The NJTTS supplies comprehensive, reliable real-time tide-level and meteorological

  11. Propagation Velocity of Solid Earth Tides

    NASA Astrophysics Data System (ADS)

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  12. Mapping the nonstationary internal tide with satellite altimetry

    NASA Astrophysics Data System (ADS)

    Zaron, Edward D.

    2017-01-01

    Temporal variability of the internal tide has been inferred from the 23 year long combined records of the TOPEX/Poseidon, Jason-1, and Jason-2 satellite altimeters by combining harmonic analysis with an analysis of along-track wavenumber spectra of sea-surface height (SSH). Conventional harmonic analysis is first applied to estimate and remove the stationary components of the tide at each point along the reference ground tracks. The wavenumber spectrum of the residual SSH is then computed, and the variance in a neighborhood around the wavenumber of the mode-1 baroclinic M2 tide is interpreted as the sum of noise, broadband nontidal processes, and the nonstationary tide. At many sites a bump in the spectrum associated with the internal tide is noted, and an empirical model for the noise and nontidal processes is used to estimate the nonstationary semidiurnal tidal variance. The results indicate a spatially inhomogeneous pattern of tidal variability. Nonstationary tides are larger than stationary tides throughout much of the equatorial Pacific and Indian Oceans.

  13. Tides in the Black Sea: Observations and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Medvedev, Igor P.

    2018-05-01

    Longterm hourly data from 28 tide gauges were used to examine the main features of tides in the Black Sea. The tides in this basin are directly caused by tide-generating forces and the semidiurnal tides prevail over diurnal tides. Based on the Princeton Ocean Model (POM), a numerical model of tides in the Black Sea and adjacent Sea of Azov was developed and found to be in good agreement with tide gauge observations. Detailed tidal charts for amplitudes and phase lags of the major tidal harmonics in these two seas were constructed. The results of the numerical modelling and observations reveal for the semidiurnal tides the presence of an amphidromy with clockwise rotation and another one with counterclockwise rotation for the diurnal tides, both located in the central part of the sea near the Crimean Peninsula. Therefore, for this part of the sea the amplitudes of harmonics M 2 and K 1 are less than 0.1 cm. Relatively larger M 2 amplitudes are observed on the east and west coasts of the sea (2-3 cm). The maximum amplitude of the harmonic M 2 was found at Karkinit Bay—up to 4.5 cm—while the maximum tidal range varies from 1 cm near the Crimean Peninsula to 18-19 cm in the Dnieper-Bug Estuary and Karkinit Bay. Radiational tides, initiated mainly by sea breezes, make an important contribution to the formation of tidal oscillations in the Dnieper-Bug Estuary.

  14. The black tide model of QSOs

    NASA Technical Reports Server (NTRS)

    Young, P. J.; Shields, G. A.; Wheeler, J. C.

    1977-01-01

    The paper develops certain aspects of a model wherein a QSO is a massive black hole located in a dense galactic nucleus, with its growth and luminosity fueled by tidal disruption of passing stars. Cross sections for tidal disruptions are calculated, taking into account the thermal energy of stars, relativistic effects, and partial disruption removing only the outer layers of a star. Accretion rates are computed for a realistic distribution of stellar masses and evolutionary phases, the effect of the black hole on the cluster distribution is examined, and the red-giant disruption rate is evaluated for hole mass of at least 300 million solar masses, the cutoff of disruption of main-sequence stars. The results show that this black-tide model can explain QSO luminosities of at least 1 trillion suns if the black hole remains almost maximally Kerr as it grows above 100 million solar masses and if 'loss-cone' depletion of the number of stars in disruptive orbits is unimportant.

  15. Quantifying the response of the ORAC aerosol optical depth retrieval for MSG SEVIRI to aerosol model assumptions

    NASA Astrophysics Data System (ADS)

    Bulgin, Claire E.; Palmer, Paul I.; Merchant, Christopher J.; Siddans, Richard; Gonzi, Siegfried; Poulsen, Caroline A.; Thomas, Gareth E.; Sayer, Andrew M.; Carboni, Elisa; Grainger, Roy G.; Highwood, Eleanor J.; Ryder, Claire L.

    2011-03-01

    We test the response of the Oxford-RAL Aerosol and Cloud (ORAC) retrieval algorithm for Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (MSG SEVIRI) to changes in the aerosol properties used in the dust aerosol model, using data from the Dust Outflow and Deposition to the Ocean (DODO) flight campaign in August 2006. We find that using the observed DODO free tropospheric aerosol size distribution and refractive index increases simulated top of the atmosphere radiance at 0.55 μm assuming a fixed aerosol optical depth of 0.5 by 10-15%, reaching a maximum difference at low solar zenith angles. We test the sensitivity of the retrieval to the vertical distribution of the aerosol and find that this is unimportant in determining simulated radiance at 0.55 μm. We also test the ability of the ORAC retrieval when used to produce the GlobAerosol data set to correctly identify continental aerosol outflow from the African continent, and we find that it poorly constrains aerosol speciation. We develop spatially and temporally resolved prior distributions of aerosols to inform the retrieval which incorporates five aerosol models: desert dust, maritime, biomass burning, urban, and continental. We use a Saharan Dust Index and the GEOS-Chem chemistry transport model to describe dust and biomass burning aerosol outflow and compare AOD using our speciation against the GlobAerosol retrieval during January and July 2006. We find AOD discrepancies of 0.2-1 over regions of intense biomass burning outflow, where AOD from our aerosol speciation and GlobAerosol speciation can differ by as much as 50-70%.

  16. Precise comparisons of bottom-pressure and altimetric ocean tides

    NASA Astrophysics Data System (ADS)

    Ray, R. D.

    2013-09-01

    A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets: the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free core-nutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.

  17. Precise Comparisons of Bottom-Pressure and Altimetric Ocean Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    2013-01-01

    A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets : the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free corenutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.

  18. New Miscellaneous Results in Tides from Topex/Poseidon

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, G.; Cartwright, D.; Smith, David E. (Technical Monitor)

    2000-01-01

    This paper describes a variety of new results concerning ocean tides that have been derived from Topex/Poseidon satellite altimeter data. Most of these results are based on new tidal solutions employing nearly 8 years of data. The topics covered include internal tides and long-period tides.

  19. Internal tides in the Solomon Sea

    NASA Astrophysics Data System (ADS)

    Lionel, Tchilibou Michel; Gourdeau, Lionel; Djath, Bugshin; Lyard, Florent; Allain, Damien; Koch Larrouy, Ariane; Yoga Nogroho, Dwi; Morrow, Rosemary

    2017-04-01

    In the south west Pacific, the Solomon Sea lies on the pathway of the Low Latitudes Western Boundary Currents (LLWBCs) that connect the subtropics to the equator. The Solomon Sea have a particular interest in a climatic context, since they are a critical pathway for ENSO and its low frequency modulation. The western Pacific is a place of energetic internal tides generated over its complex bottom topographic features. In the Indonesian Archipelago, they are particularly active in defining the properties of the waters that move from the Pacific to the Indian Ocean. The salinity maximum at the thermocline level, which is characteristic of the South Pacific Tropical Waters (SPTW) flowing within the LLWBCs and feeding the Equatorial UnderCurrent, is largely eroded within the Solomon Sea. Different mechanisms could explain such salt erosion including current/bathymetry interactions, internal tides, and eddy activity. The motivation of this study is to investigate the potential role of internal tides for such water mass transformation. Results from a 1/36° resolution regional model including explicit tides are presented. As a first step, the generation and propagation of internal tides in the Solomon Sea are determined, and the conversion rate from barotropic to baroclinic energy is estimated.

  20. Phosphorus cycling in the red tide incubator region of monterey bay in response to upwelling.

    PubMed

    Mackey, Katherine R M; Mioni, Cécile E; Ryan, John P; Paytan, Adina

    2012-01-01

    This study explores the cycling of phosphorus (P) in the euphotic zone following upwelling in northeastern Monterey Bay (the Red Tide Incubator region) of coastal California, with particular emphasis on how bacteria and phytoplankton that form harmful algal blooms mediate and respond to changes in P availability. In situ measurements of nutrient concentrations, phytoplankton community composition, and cell-specific alkaline phosphatase (AP) activity (determined via enzyme-labeled fluorescence assay) were measured during three cruises. Upwelling led to a 10-fold increase in dissolved inorganic (DIP) in surface waters, reaching ∼0.5 μmol L(-1). This DIP was drawn down rapidly as upwelling relaxed over a period of 1 week. Ratios of nitrate to DIP drawdown (∼5:1, calculated as the change in nitrate divided by the change in DIP) were lower than the Redfield ratio of 16:1, suggesting that luxury P uptake was occurring as phytoplankton bloomed. Dissolved organic (DOP) remained relatively constant (∼0.3 μmol L(-1)) before and immediately following upwelling, but doubled as upwelling relaxed, likely due to phytoplankton excretion and release during grazing. This transition from a relatively high DIP:DOP ratio to lower DIP:DOP ratio was accompanied by a decline in the abundance of diatoms, which had low AP activity, toward localized, spatially heterogeneous blooms of dinoflagellates in the genera Prorocentrum, Ceratium, Dinophysis, Alexandrium, and Scrippsiella that showed high AP activity regardless of ambient DIP levels. A nutrient addition incubation experiment showed that phytoplankton growth was primarily limited by nitrate, followed by DIP and DOP, suggesting that P regulates phytoplankton physiology and competition, but is not a limiting nutrient in this region. AP activity was observed in bacteria associated with lysed cell debris and aggregates of particulate organic material, where it may serve to facilitate P regeneration, as well as affixed to

  1. Phosphorus Cycling in the Red Tide Incubator Region of Monterey Bay in Response to Upwelling

    PubMed Central

    Mackey, Katherine R. M.; Mioni, Cécile E.; Ryan, John P.; Paytan, Adina

    2012-01-01

    This study explores the cycling of phosphorus (P) in the euphotic zone following upwelling in northeastern Monterey Bay (the Red Tide Incubator region) of coastal California, with particular emphasis on how bacteria and phytoplankton that form harmful algal blooms mediate and respond to changes in P availability. In situ measurements of nutrient concentrations, phytoplankton community composition, and cell-specific alkaline phosphatase (AP) activity (determined via enzyme-labeled fluorescence assay) were measured during three cruises. Upwelling led to a 10-fold increase in dissolved inorganic (DIP) in surface waters, reaching ∼0.5 μmol L−1. This DIP was drawn down rapidly as upwelling relaxed over a period of 1 week. Ratios of nitrate to DIP drawdown (∼5:1, calculated as the change in nitrate divided by the change in DIP) were lower than the Redfield ratio of 16:1, suggesting that luxury P uptake was occurring as phytoplankton bloomed. Dissolved organic (DOP) remained relatively constant (∼0.3 μmol L−1) before and immediately following upwelling, but doubled as upwelling relaxed, likely due to phytoplankton excretion and release during grazing. This transition from a relatively high DIP:DOP ratio to lower DIP:DOP ratio was accompanied by a decline in the abundance of diatoms, which had low AP activity, toward localized, spatially heterogeneous blooms of dinoflagellates in the genera Prorocentrum, Ceratium, Dinophysis, Alexandrium, and Scrippsiella that showed high AP activity regardless of ambient DIP levels. A nutrient addition incubation experiment showed that phytoplankton growth was primarily limited by nitrate, followed by DIP and DOP, suggesting that P regulates phytoplankton physiology and competition, but is not a limiting nutrient in this region. AP activity was observed in bacteria associated with lysed cell debris and aggregates of particulate organic material, where it may serve to facilitate P regeneration, as well as affixed to

  2. What can earth tide measurements tell us about ocean tides or earth structure?

    NASA Technical Reports Server (NTRS)

    Baker, T. F.

    1978-01-01

    Current experimental problems in Earth tides are reviewed using comparisons of tidal gravity and tilt measurements in Europe with loading calculations are examples. The limitations of present day instrumentation and installation techniques are shown as well as some of the ways in which they can be improved. Many of the geophysical and oceanographic investigations that are possible with Earth tide measurements are discussed with emphasis on the percentage accuracies required in the measurements in order to obtain new information about Earth or its oceans.

  3. Feeding by phototrophic red-tide dinoflagellates on the ubiquitous marine diatom Skeletonema costatum.

    PubMed

    Du Yoo, Yeong; Jeong, Hae Jin; Kim, Mi Seon; Kang, Nam Seon; Song, Jae Yoon; Shin, Woongghi; Kim, Kwang Young; Lee, Kitack

    2009-01-01

    We investigated feeding by phototrophic red-tide dinoflagellates on the ubiquitous diatom Skeletonema costatum to explore whether dinoflagellates are able to feed on S. costatum, inside the protoplasm of target dinoflagellate cells observed under compound microscope, confocal microscope, epifluorescence microscope, and transmission electron microscope (TEM) after adding living and fluorescently labeled S. costatum (FLSc). To explore effects of dinoflagellate predator size on ingestion rates of S. costatum, we measured ingestion rates of seven dinoflagellates at a single prey concentration. In addition, we measured ingestion rates of the common phototrophic dinoflagellates Prorocentrum micans and Gonyaulax polygramma on S. costatum as a function of prey concentration. We calculated grazing coefficients by combining field data on abundances of P. micans and G. polygramma on co-occurring S. costatum with laboratory data on ingestion rates obtained in the present study. All phototrophic dinoflagellate predators tested (i.e. Akashiwo sanguinea, Amphidinium carterae, Alexandrium catenella, Alexandrium tamarense, Cochlodinium polykrikoides, G. polygramma, Gymnodinium catenatum, Gymnodinium impudicum, Heterocapsa rotundata, Heterocapsa triquetra, Lingulodinium polyedrum, Prorocentrum donghaiense, P. micans, Prorocentrum minimum, Prorocentrum triestinum, and Scrippsiella trochoidea) were able to ingest S. costatum. When mean prey concentrations were 170-260 ng C/ml (i.e. 6,500-10,000 cells/ml), the ingestion rates of G. polygramma, H. rotundata, H. triquetra, L. polyedrum, P. donghaiense, P. micans, and P. triestinum on S. costatum (0.007-0.081 ng C/dinoflagellate/d [0.2-3.0 cells/dinoflagellate/d]) were positively correlated with predator size. With increasing mean prey concentration of ca 1-3,440 ng C/ml (40-132,200 cells/ml), the ingestion rates of P. micans and G. polygramma on S. costatum continuously increased. At the given prey concentrations, the maximum ingestion

  4. Ocean Tide Loading Computation

    NASA Technical Reports Server (NTRS)

    Agnew, Duncan Carr

    2005-01-01

    September 15,2003 through May 15,2005 This grant funds the maintenance, updating, and distribution of programs for computing ocean tide loading, to enable the corrections for such loading to be more widely applied in space- geodetic and gravity measurements. These programs, developed under funding from the CDP and DOSE programs, incorporate the most recent global tidal models developed from Topex/Poscidon data, and also local tide models for regions around North America; the design of the algorithm and software makes it straightforward to combine local and global models.

  5. Fortnightly Ocean Tides, Earth Rotation, and Mantle Anelasticity

    NASA Technical Reports Server (NTRS)

    Ray, Richard; Egbert, Gary

    2012-01-01

    The fortnightly Mf ocean tide is the largest of the long-period tides (periods between 1 week and 18.6 years), but Mf is still very small, generally 2 cm or less. All long-period tides are thought to be near equilibrium with the astronomical tidal potential, with an almost pure zonal structure. However, several lines of evidence point to Mf having a significant dynamic response to forcing. We use a combination of numerical modeling, satellite altimetry, and observations of polar motion to determine the Mf ocean tide and to place constraints on certain global properties, such as angular momentum. Polar motion provides the only constraints on Mf tidal currents. With a model of the Mf ocean tide in hand, we use it to remove the effects of the ocean from estimates of fortnightly variations in length-of-day. The latter is dominated by the earth's body tide, but a small residual allows us to place new constraints on the anelasticity of the earth's mantle. The result gives the first experimental confirmation of theoretical predictions made by Wahr and Bergen in 1986.

  6. Tides and Trends in Higher Education.

    ERIC Educational Resources Information Center

    Fincher, Cameron

    This paper examines changes in American higher education, using the metaphor of ocean tides. The tides of change in the 1980s included public demands for assessment and accountability; fairness and credibility in advantages and benefits; improved quality of education; effectiveness and efficiency; assurance that college graduates were personally…

  7. Coastal Aerosol Distribution by Data Assimilation

    DTIC Science & Technology

    2005-09-30

    Emissions ( FLAMBE ; NASA and ONR funded) make these simulations possible. Similarly, Honrath et al. (2004) used NAAPS to attribute interannual variations...NAAPS/ FLAMBE smoke aerosol optical thickness (AOT) each summer. CO is plotted with red squares, ozone is plotted with blue circles, and smoke AOT is

  8. Dynamic ocean-tide effects on Earth's rotation

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1993-01-01

    This article develops 'broad-band' Liouville equations which are capable of determining the effects on the rotation of the Earth of a periodic excitation even at frequencies as high as semi-diurnal; these equations are then used to predict the rotational effects of altimetric, numerical and 32-constituent spherical harmonic ocean-tide models. The rotational model includes a frequency-dependent decoupled core, the effects of which are especially marked near retrograde diurnal frequencies; and a fully dynamic oceanic response, whose effects appear to be minor despite significant frequency dependence. The model also includes solid-earth effects which are frequency dependent as the result of both anelasticity at long periods and the fluid-core resonance at nearly diurnal periods. The effects of both tidal inertia and relative angular momentum on Earth rotation (polar motion, length of day, 'nutation' and Universal Time) are presented for 32 long- and short-period ocean tides determined as solutions to the author's spherical harmonic tide theory. The lengthening of the Chandler wobble period by the pole tide is also re-computed using the author's full theory. Additionally, using the spherical harmonic theory, tidal currents and their effects on rotation are determined for available numerical and altimetric tide height models. For all models, we find that the effects of tidal currents are at least as important as those of tide height for diurnal and semi-diurnal constituents.

  9. Observations and simulations of the ionospheric lunar tide: Seasonal variability

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.

    2014-07-01

    The seasonal variability of the ionospheric lunar tide is investigated using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations and thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. The present study focuses on the seasonal variability of the lunar tide in the ionosphere and its potential connection to the occurrence of stratosphere sudden warmings (SSWs). COSMIC maximum F region electron density (NmF2) and total electron content observations reveal a primarily annual variation of the ionospheric lunar tide, with maximum amplitudes occurring at low latitudes during December-February. Simulations of the lunar tide climatology in TIME-GCM display a similar annual variability as the COSMIC observations. This leads to the conclusion that the annual variability of the lunar tide in the ionosphere is not solely due to the occurrence of SSWs. Rather, the annual variability of the lunar tide in the ionosphere is generated by the seasonal variability of the lunar tide at E region altitudes. However, compared to the observations, the ionospheric lunar tide annual variability is weaker in the climatological simulations which is attributed to the occurrence of SSWs during the majority of the years included in the observations. Introducing a SSW into the TIME-GCM simulation leads to an additional enhancement of the lunar tide during Northern Hemisphere winter, increasing the lunar tide annual variability and resulting in an annual variability that is more consistent with the observations. The occurrence of SSWs can therefore potentially bias lunar tide climatologies, and it is important to consider these effects in studies of the lunar tide in the atmosphere and ionosphere.

  10. The magnetic tides of Honolulu

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, Erin Joshua

    2013-01-01

    We review the phenomenon of time-stationary, periodic quiet-time geomagnetic tides. These are generated by the ionospheric and oceanic dynamos, and, to a lesser-extent, by the quiet-time magnetosphere, and they are affected by currents induced in the Earth's electrically conducting interior. We examine historical time series of hourly magnetic-vector measurements made at the Honolulu observatory. We construct high-resolution, frequency-domain Lomb-periodogram and maximum-entropy power spectra that reveal a panorama of stationary harmonics across periods from 0.1 to 10000.0-d, including harmonics that result from amplitude and phase modulation. We identify solar-diurnal tides and their annual and solar-cycle sideband modulations, lunar semi-diurnal tides and their solar-diurnal sidebands, and tides due to precession of lunar eccentricity and nodes. We provide evidence that a method intended for separating the ionospheric and oceanic dynamo signals by midnight subsampling of observatory data time series is prone to frequency-domain aliasing. The tidal signals we summarize in this review can be used to test our fundamental understanding of the dynamics of the quiet-time ionosphere and magnetosphere, induction in the ocean and in the electrically conducting interior of the Earth, and they are useful for defining a quiet-time baseline against which magnetospheric-storm intensity is measured.

  11. Geodynamic Effects of Ocean Tides: Progress and Problems

    NASA Technical Reports Server (NTRS)

    Richard, Ray

    1999-01-01

    Satellite altimetry, particularly Topex/Poseidon, has markedly improved our knowledge of global tides, thereby allowing significant progress on some longstanding problems in geodynamics. This paper reviews some of that progress. Emphasis is given to global-scale problems, particularly those falling within the mandate of the new IERS Special Bureau for Tides: angular momentum, gravitational field, geocenter motion. For this discussion I use primarily the new ocean tide solutions GOT99.2, CSR4.0, and TPXO.4 (for which G. Egbert has computed inverse-theoretic error estimates), and I concentrate on new results in angular momentum and gravity and their solid-earth implications. One example is a new estimate of the effective tidal Q at the M_2 frequency, based on combining these ocean models with tidal estimates from satellite laser ranging. Three especially intractable problems are also addressed: (1) determining long-period tides in the Arctic [large unknown effect on the inertia tensor, particularly for Mf]; (2) determining the global psi_l tide [large unknown effect on interpretations of gravimetry for the near-diurnal free wobble]; and (3) determining radiational tides [large unknown temporal variations at important frequencies]. Problems (2) and (3) are related.

  12. The Role of Gravity Waves in Modulating Atmospheric Tides

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G; Chan, K. L.; Porter, H. S.

    1999-01-01

    We discuss results for the diurnal and semidiurnal tides obtained from our 3-D, time dependent numerical spectral model (NMS), extending from the ground up into the thermosphere, which incorporates Hines' Doppler spread parameterization of small scale gravity waves (GW). In the DSP, GW momentum (and energy) are conserved as the waves modulate the background flow and are filtered by the flow.As a consequence, the GW interaction tightly couples the dynamic components of the middle atmosphere with strong non-linear interactions between mean zonal circulation, tides and planetary waves to produce complicated patterns of variability much like those observed. The major conclusions are: (1) Since GW momentum is deposited in the altitude regime of increasing winds, the amplitude of the diurnal tide is amplified and its vertical wavelength is reduced at altitudes between 80 and 120 km. Wave filtering by the mean zonal circulation (with peak velocities during solstice) causes the GW flux to peak during equinox, and this produces a large semi-annual variation in the tide that has been observed on UARS. (2) Without the diurnal tide, the semidiurnal tide would also be modulated in this way. But the diurnal tide filters out the GW preferentially during equinox, so that the semidiurnal tide, at higher altitudes, tends to peak during solstice. (3) Under the influence of GW, the tides are modulated also significantly by planetary waves, with periods between 2 and 30 days, which are generated preferentially during solstice in part due to baroclinic instability.

  13. Cellular component of lavage fluid from broilers with normal versus aerosol-primed airways

    USDA-ARS?s Scientific Manuscript database

    Previously we reported that intratracheal administration of lipopolysaccharide (LPS) elicits pulmonary hypertension (PH) in broilers reared under commercial conditions, in broilers reared in environmental chambers and pre-treated with aerosolized red food colorant # 3 and propylene glycol (Red#3+PG)...

  14. Impact of sea level rise on tide gate function.

    PubMed

    Walsh, Sean; Miskewitz, Robert

    2013-01-01

    Sea level rise resulting from climate change and land subsidence is expected to severely impact the duration and associated damage resulting from flooding events in tidal communities. These communities must continuously invest resources for the maintenance of existing structures and installation of new flood prevention infrastructure. Tide gates are a common flood prevention structure for low-lying communities in the tidal zone. Tide gates close during incoming tides to prevent inundation from downstream water propagating inland and open during outgoing tides to drain upland areas. Higher downstream mean sea level elevations reduce the effectiveness of tide gates by impacting the hydraulics of the system. This project developed a HEC-RAS and HEC-HMS model of an existing tide gate structure and its upland drainage area in the New Jersey Meadowlands to simulate the impact of rising mean sea level elevations on the tide gate's ability to prevent upstream flooding. Model predictions indicate that sea level rise will reduce the tide gate effectiveness resulting in longer lasting and deeper flood events. The results indicate that there is a critical point in the sea level elevation for this local area, beyond which flooding scenarios become dramatically worse and would have a significantly negative impact on the standard of living and ability to do business in one of the most densely populated areas of America.

  15. Can tides influence volcanic eruptions?

    NASA Astrophysics Data System (ADS)

    Girona, T.; Huber, C.

    2015-12-01

    The possibility that the Moon-Sun gravitational force can affect terrestrial volcanoes and trigger eruptions is a controversial issue that has been proposed since ancient times, and that has been widely debated during the last century. The controversy arises mainly from two reasons. First, the days of initiation of eruptions are not well known for many volcanoes, and thus a robust statistical comparison with tidal cycles cannot be performed for many of them. Second, the stress changes induced by tides in the upper crust are very small (10-3 MPa) compared to the tensile strength of rocks (~ 10-1-10 MPa), and hence the mechanism by which tidal stresses might trigger eruptions is unclear. In this study, we address these issues for persistently degassing volcanoes, as they erupt frequently and thus the initiation time of a significant number of eruptions (>30) is well known in several cases (9). In particular, we find that the occurrence of eruptions within ±2 days from neap tides (first and third quarter moon) is lower than 34% (e.g., 29% for Etna, Italy; 28% for Merapi, Indonesia), which is the value expected if eruptions occur randomly with no external influence. To understand this preference for erupting far away from neap tides, we have developed a new lumped-parameter model that accounts for the deformation of magma reservoirs, a partially open conduit, and a gas layer where bubbles accumulate beneath volcanic craters before being released. We demonstrate that this system reservoir-conduit-gas layer acts as an amplifier of the tidal stresses, such that, when a volcano approaches to a critical state, the gas overpressure beneath the crater can reach up to several MPa more during a spring tide (full and new moon) than during a neap tide. This amplification mechanism can explain why active volcanoes are sensitive to the moon cycles.

  16. The Earth Tides.

    ERIC Educational Resources Information Center

    Levine, Judah

    1982-01-01

    In addition to oceans, the earth is subjected to tidal stresses and undergoes tidal deformations. Discusses origin of tides, tidal stresses, and methods of determining tidal deformations (including gravity, tilt, and strain meters). (JN)

  17. Assessing the importance of internal tide scattering in the deep ocean

    NASA Astrophysics Data System (ADS)

    Haji, Maha; Peacock, Thomas; Carter, Glenn; Johnston, T. M. Shaun

    2014-11-01

    Tides are one of the main sources of energy input to the deep ocean, and the pathways of energy transfer from barotropic tides to turbulent mixing scales via internal tides are not well understood. Large-scale (low-mode) internal tides account for the bulk of energy extracted from barotropic tides and have been observed to propagate over 1000 km from their generation sites. We seek to examine the fate of these large-scale internal tides and the processes by which their energy is transferred, or ``scattered,'' to small-scale (high-mode) internal tides, which dissipate locally and are responsible for internal tide driven mixing. The EXperiment on Internal Tide Scattering (EXITS) field study conducted in 2010-2011 sought to examine the role of topographic scattering at the Line Islands Ridge. The scattering process was examined via data from three moorings equipped with moored profilers, spanning total depths of 3000--5000 m. The results of our field data analysis are rationalized via comparison to data from two- and three-dimensional numerical models and a two-dimensional analytical model based on Green function theory.

  18. Fortnightly Earth Rotation, Ocean Tides, and Mantle Anelasticity

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, Gary D.

    2011-01-01

    Sustained accurate measurements of earth rotation are one of the prime goals of Global Geodetic Observing System (GGOS). We here concentrate on the fortnightly (Mf) tidal component of earth-rotation data to obtain new results concerning anelasticity of the mantle at this period. The study comprises three parts: (1) a new determination of the Mf component of polar motion and length-of-day from a multi-decade time series of space-geodetic data; (2) the use of the polar-motion determination as one constraint in the development of a hydrodynamic ocean model of the Mf tide; and (3) the use of these results to place new constraints on mantle anelasticity. Our model of the Mf ocean tide assimilates more than fourteen years of altimeter data from the Topex/Poseidon and Jason-1 satellites. The polar motion data, plus tide-gauge data and independent altimeter data, give useful additional information, with only the polar motion putting constraints on tidal current velocities. The resulting ocean-tide model, plus the dominant elastic body tide, leaves a small residual in observed length-of-day caused by mantle anelasticity. The inferred effective tidal 0 of the anelastic body tide is 90 and is in line with a omega-alpha frequency dependence with alpha in the range 0.2--0.3.

  19. The double high tide at Port Ellen: Doodson's criterion revisited

    NASA Astrophysics Data System (ADS)

    Byrne, Hannah A. M.; Mattias Green, J. A.; Bowers, David G.

    2017-07-01

    Doodson proposed a minimum criterion to predict the occurrence of double high (or double low) waters when a higher-frequency tidal harmonic is added to the semi-diurnal tide. If the phasing of the harmonic is optimal, the condition for a double high water can be written bn2/a > 1 where b is the amplitude of the higher harmonic, a is the amplitude of the semi-diurnal tide, and n is the ratio of their frequencies. Here we expand this criterion to allow for (i) a phase difference ϕ between the semi-diurnal tide and the harmonic and (ii) the fact that the double high water will disappear in the event that b/a becomes large enough for the higher harmonic to be the dominant component of the tide. This can happen, for example, at places or times where the semi-diurnal tide is very small. The revised parameter is br2/a, where r is a number generally less than n, although equal to n when ϕ = 0. The theory predicts that a double high tide will form when this parameter exceeds 1 and then disappear when it exceeds a value of order n2 and the higher harmonic becomes dominant. We test these predictions against observations at Port Ellen in the Inner Hebrides of Scotland. For most of the data set, the largest harmonic of the semi-diurnal tide is the sixth diurnal component, for which n = 3. The principal lunar and solar semi-diurnal tides are about equal at Port Ellen and so the semi-diurnal tide becomes very small twice a month at neap tides (here defined as the smallest fortnightly tidal range). A double high water forms when br2/a first exceeds a minimum value of about 1.5 as neap tides are approached and then disappears as br2/a then exceeds a second limiting value of about 10 at neap tides in agreement with the revised criterion.

  20. Green tree frog (Hyla cinerea) and ground squirrel (Xerospermophilus spilosoma) mortality attributed to inland brevetoxin transportation at Padre Island National Seashore, Texas, 2015

    USGS Publications Warehouse

    Buttke, Danielle E.; Walker, Alicia; Huang, I-Shuo; Flewelling, Leanne; Lankton, Julia S.; Ballmann, Anne E.; Clapp, Travis; Lindsay, James; Zimba, Paul V.

    2018-01-01

    On 16 September 2015, a red tide (Karenia brevis) bloom impacted coastal areas of Padre Island National Seashore Park. Two days later and about 0.9 km inland, 30–40 adult green tree frogs (Hyla cinerea) were found dead after displaying tremors, weakness, labored breathing, and other signs of neurologic impairment. A rainstorm, accompanied by high winds, rough surf, and high tides, which could have aerosolized brevetoxin, occurred on the morning of the mortality event. Frog carcasses were healthy but contained significant brevetoxin in tissues. Tissue brevetoxin was also found in two dead or dying spotted ground squirrels (Xerospermophilus spilosoma) and a coyote (Canis latrans). Rainwater collected from the location of the mortality event contained brevetoxin. Mortality of green tree frog and ground squirrel mortality has not been previously attributed to brevetoxin exposure and such mortality suggested that inland toxin transport, possibly through aerosols, rainfall, or insects, may have important implications for coastal species.

  1. Nonlinearity in rock - Evidence from earth tides

    NASA Technical Reports Server (NTRS)

    Agnew, D. C.

    1981-01-01

    The earth is sinusoidally stressed by tidal forces; if the stress-strain relation for rock is nonlinear, energy should appear in an earth tide record at frequencies which are multiples of those of the larger tidal lines. An examination of the signals to be expected for different nonlinear deformation laws shows that for a nonlinear response without dissipation, the largest anomalous signal should occur at twice the forcing frequency, whereas for nonlinear laws involving dissipation (cusped hysteresis loops) the anomalous signal will be greatest at three times this frequency. The size of the signal in the dissipative case depends on the amount by which dissipation affects the particular response being measured. For measurements of strain tides this depends on whether dissipation is assumed to be present throughout the earth or localized around the point of measurement. An analysis of 5.7 years of strain tide records from Pinon Flat, California, shows a small signal at twice the frequency of the largest (M2) tide.

  2. Global ocean tide models on the eve of Topex/Poseidon

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1993-01-01

    Some existing global ocean tide models that can provide tide corrections to Topex/Poseidon altimeter data are described. Emphasis is given to the Schwiderski and Cartwright-Ray models, as these are the most comprehensive, highest resolution models, but other models that will soon appear are mentioned. Differences between models for M2 often exceed 10 cm over vast stretches of the ocean. Comparisons to 80 selected pelagic and island gauge measurements indicate the Schwiderski model is more accurate for the major solar tides, Cartwright-Ray for the major lunar tides. The adequacy of available tide models for studying basin-scale motions is probably marginal at best.

  3. Organizational Analysis of the TIDES Project and the STAR-TIDES Network Using the 7-S Framework

    DTIC Science & Technology

    2013-04-01

    data, provided some useful rec- ommendations.8 Since that time, TIDES has continued to grow and change. The present study was undertaken to update the...information across platforms and within the secure NDU network. For ex- ample, many contacts made by the Director are preserved within his Blackberry ...the active participation of STAR-TIDES network members, and to grow the network. 5. Skills Skills refers to the talents and abilities of the

  4. Orthogonal stack of global tide gauge sea level data

    NASA Technical Reports Server (NTRS)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly tide gauge sea level data from around the globe are fitted to numerically generated equilibrium tidal data to search for the 18.6 year lunar tide and 14 month pole tide. Both tides are clearly evident in the results, and their amplitudes and phases are found to be consistent with a global equilibrium response. Global, monthly sea level data from outside the Baltic sea and Gulf of Bothnia are fitted to global atmospheric pressure data to study the response of the ocean to pressure fluctuations. The response is found to be inverted barometer at periods greater than two months. Global averages of tide gauge data, after correcting for the effects of post glacial rebound on individual station records, reveal an increase in sea level over the last 80 years of between 1.1 mm/yr and 1.9 mm/yr.

  5. The IERS Special Bureau for Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Chao, B. F.; Desai, S. D.

    2002-01-01

    The Global Geophysical Fluids Center of the International Earth Rotation Service (IERS) comprises 8 special bureaus, one of which is the Special Bureau for Tides. Its purpose is to facilitate studies related to tidal effects in earth rotation. To that end it collects various relevant datasets and distributes them, primarily through its website at bowie.gsfc.nasa.gov/ggfc/tides. Example datasets include tabulations of tidal variations in angular momentum and in earth rotation as estimated from numerical ocean tide models and from meteorological reanalysis products. The web site also features an interactive tidal prediction "machine" which generates tidal predictions (e.g., of UT1) from lists of harmonic constants. The Special Bureau relies on the tidal and earth-rotation communities to build and enlarge its datasets; further contributions from this community are most welcome.

  6. The Global Mode-1 S2 Internal Tide

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongxiang

    2017-11-01

    The global mode-1 S2 internal tide is observed using sea surface height (SSH) measurements from four satellite altimeters: TOPEX/Poseidon, Jason-1, Jason-2, and Geosat Follow-On. Plane wave analysis is employed to extract three mode-1 S2 internal tidal waves in any given 250 km by 250 km window, which are temporally coherent over a 20 year period from 1992 to 2012. Depth-integrated energy and flux of the S2 internal tide are calculated from the SSH amplitude and a conversion function built from climatological hydrographic profiles in the World Ocean Atlas 2013. The results show that the S2 and M2 internal tides have similar spatial patterns. Both S2 and M2 internal tides originate at major topographic features and propagate over long distances. The S2 internal tidal beams are generally shorter, likely because the relatively weaker S2 internal tide is easily overwhelmed by nontidal noise. The northbound S2 and M2 internal tides from the Hawaiian Ridge are observed to travel over 3500 km across the Northeast Pacific. The globally integrated energy of the mode-1 S2 internal tide is 7.8 PJ (1 PJ = 1015 J), about 20% that of M2 (36.4 PJ). The histogram of S2 to M2 SSH ratios peaks at 0.4, consistent with the square root of their energy ratio. In terms of SSH, S2 is greater than M2 in ≈10% of the global ocean and ≥50% of M2 in about half of the global ocean.

  7. Observations of enhanced aerosol longwave radiative forcing over an urban environment

    NASA Astrophysics Data System (ADS)

    Panicker, A. S.; Pandithurai, G.; Safai, P. D.; Kewat, S.

    2008-02-01

    Collocated measurements of sun/sky radiance, aerosol chemical composition and radiative fluxes have been utilized to estimate longwave aerosol radiative forcing over Pune, an Indian urban site during dry winter [Dec2004 to Feb2005] by two methods. Hybrid method which uses observed downwelling and modeled upwelling longwave fluxes for different aerosol loadings yielded a surface forcing of 9.4 Wm-2. Model approach includes utilization of skyradiometer derived spectral aerosol optical properties in the visible and near infra-red wavelengths, modeled aerosol properties in 1.2-40 μm using observed soot and chemical composition data, MODIS water vapor and TOMS column ozone in a radiative transfer model. Estimates from model method showed longwave enhancement of 6.5 and 8.2 Wm-2 at the surface with tropical model atmosphere and temporally varying profiles of temperature and humidity, respectively. Study reveals that about 25% of the aerosol shortwave cooling is being compensated by increase in longwave radiation due to aerosol absorption.

  8. Titan Ice and Dust Experiment (TIDE): Detection and Analysis of Compounds of Interest to Astrobiology in the Lower Atmosphere and Surface of Titan

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Holland Paul M.; Stimac, Robert M.; Kaye, William J.; Takeruchi, Noreshige

    2004-01-01

    The Titan Orbiter Aerorover Mission (TOAM) is a proposed concept for the Solar System Exploration Visions Mission, Titan Explorer, a follow-on to the Cassini-Huygens mission. TOAM would use a Titan polar orbiter and a lighter-than-air aerorover to investigate the surface and atmosphere of Titan. Astrobiology issues will be addressed though TOAM investigations including, for example: Distribution and composition of organics (atmospheric, aerosol, surface); Organic chemical processes, their chemical context and energy sources; and Seasonal variations and interactions of the atmosphere and surface. The TIDE instrument will perform in-situ analyses to obtain comprehensive and sensitive molecular and elemental assays of volatile organics in the atmosphere, oceans and surface. TIDE chemical analyses are conducted by a Gas Chromatograph-Ion Mobility Spectrometer (GC-IMS). This TIDE GC-IMS was a component of the mini-Cometary Ice and Dust Experiment (mini-CIDEX) developed for the chemical analysis of a cometary environment. Both the GC and helium IMS of mini-CIDEX have been further developed to better meet the analytical and operational requirements of the TOAM. application. A Micro-ElectroMechanical System (MEMS) GC and Mini-Cell helium IMS are under development to replace their respective mini-CIDEX components, providing similar or advanced analytical capabilities.

  9. Mesospheric Non-Migrating Tides Generated With Planetary Waves. 1; Characteristics

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    We discuss results from a modeling study with our Numerical Spectral Model (NSM) that specifically deals with the non-migrating tides generated in the mesosphere. The NSM extends from the ground to the thermosphere, incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GWs), and it describes the major dynamical features of the atmosphere including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the excitation sources of the solar migrating tides, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that are comparable in magnitude to those observed. Large non-migrating tides are produced in the diurnal and semi-diurnal oscillations for the zonal mean (m = 0) and in the semidiurnal oscillation for m = 1. In general, significant eastward and westward propagating tides are generated for all the zonal wave numbers m = 1 to 4. To identify the cause, the NSM is run without the solar heating for the zonal mean (m = 0), and the amplitudes of the resulting non-migrating tides are then negligibly small. In this case, the planetary waves are artificially suppressed, which are generated in the NSM through instabilities. This leads to the conclusion that the non-migrating tides are generated through non-linear interactions between planetary waves and migrating tides, as Forbes et al. and Talaat and Liberman had proposed. In an accompanying paper, we present results from numerical experiments, which indicate that gravity wave filtering contributes significantly to produce the non-linear coupling that is involved.

  10. Internal Tide Generation by Steep Topography

    DTIC Science & Technology

    2007-09-01

    acting on the barotropic tide ( Foda and Hill 1998) was incomplete. Kunze will put this work in the context of recent internal tide research and...Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320-327. Foda , M.A., and D.F. Hill, 1998: Nonlinear energy...Bispectral analysis of energy transfer within the two-dimensional ocean internal wave field. . Phys. Oceanogr., 35, 2104-2109. Garrett, C., and E

  11. Refine of Regional Ocean Tide Model Using GPS Data

    NASA Astrophysics Data System (ADS)

    Wang, F.; Zhang, P.; Sun, Z.; Jiang, Z.; Zhang, Q.

    2018-04-01

    Due to lack of regional data constraints, all global ocean tide models are not accuracy enough in offshore areas around China, also the displacements predicted by different models are not consistency. The ocean tide loading effects have become a major source of error in the high precision GPS positioning. It is important for high precision GPS applications to build an appropriate regional ocean tide model. We first process the four offshore GPS tracking station's observation data which located in Guangdong province of China by using PPP aproach to get the time series. Then use the spectral inversion method to acquire eigenvalues of the Ocean Tidal Loading. We get the estimated value of not only 12hour period tide wave (M2, S2, N2, K2) but also 24hour period tide wave (O1, K1, P1, Q1) which has not been got in presious studies. The contrast test shows that GPS estimation value of M2, K1 is consistent with the result of five famous glocal ocean load tide models, but S2, N2, K2, O1, P1, Q1 is obviously larger.

  12. Differences between mean tide level and mean sea level

    NASA Astrophysics Data System (ADS)

    Woodworth, P. L.

    2017-01-01

    This paper discusses the differences between mean tide level (MTL) and mean sea level (MSL) as demonstrated using information from a global tide gauge data set. The roles of the two main contributors to differences between MTL and MSL (the M4 harmonic of the M2 semidiurnal tide, and the combination of the diurnal tides K1 and O1) are described, with a particular focus on the spatial scales of variation in MTL-MSL due to each contributor. Findings from the tide gauge data set are contrasted with those from a state-of-the-art global tide model. The study is of interest within tidal science, but also has practical importance regarding the type of mean level used to define land survey datums. In addition, an appreciation of MTL-MSL difference is important in the use of the historical sea level data used in climate change research, with implications for some of the data stored in international databanks. Particular studies are made of how MTL and MSL might differ through the year, and if MTL is measured in daylight hours only, as has been the practice of some national geodetic agencies on occasions in the past.

  13. Simulation and video animation of canal flushing created by a tide gate

    USGS Publications Warehouse

    Schoellhamer, David H.

    1988-01-01

    A tide-gate algorithm was added to a one-dimensional unsteady flow model that was calibrated, verified, and used to determine the locations of as many as five tide gates that would maximize flushing in two canal systems. Results from the flow model were used to run a branched Lagrangian transport model to simulate the flushing of a conservative constituent from the canal systems both with and without tide gates. A tide gate produces a part-time riverine flow through the canal system that improves flushing along the flow path created by the tide gate. Flushing with no tide gates and with a single optimally located tide gate are shown with a video animation.

  14. Lunar tidal acceleration obtained from satellite-derived ocean tide parameters

    NASA Technical Reports Server (NTRS)

    Goad, C. C.; Douglas, B. C.

    1978-01-01

    One hundred sets of mean elements of GEOS-3 computed at 2-day intervals yielded observation equations for the M sub 2 ocean tide from the long periodic variations of the inclination and node of the orbit. The 2nd degree Love number was given the value k sub 2 = 0.30 and the solid tide phase angle was taken to be zero. Combining obtained equations with results for the satellite 1967-92A gives the M sub 2 ocean tide parameter values. Under the same assumption of zero solid tide phase lag, the lunar tidal acceleration was found mostly due to the C sub 22 term in the expansion of the M sub 2 tide with additional small contributions from the 0 sub 1 and N sub 2 tides. Using Lambeck's (1975) estimates for the latter, the obtained acceleration in lunar longitudal in excellent agreement with the most recent determinations from ancient and modern astronomical data.

  15. The colors of biomass burning aerosols in the atmosphere.

    PubMed

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-06-16

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC.

  16. Tides at the east coast of Lanzarote Island

    NASA Astrophysics Data System (ADS)

    Benavent, M.; Arnoso, J.; Vélez, E. J.

    2012-04-01

    The main goal of this work is the study of the ocean tides at the east coast of Lanzarote (Canary Islands). We have analyzed time series of tide gauge and bottom pressure observations available in the region and we have made a further comparative validation with recent global and local ocean tide models. Lanzarote island shows singular features, with regard its volcanic structure and geomorphological properties and, also, concerning the characteristics of the ocean tides in the surrounding waters. For this reason, this region experiences a great interest in Geodesy and Geodynamics. Particularly, an accurate modelization of the ocean tides is of great importance to correct with high accuracy the effect of the ocean over the multiple geodetic measurements that are being carried out in the Geodynamic Laboratory of Lanzarote, LGL (Vieira et al., 1991; 2006). Furthermore, the analysis of tide gauge and bottom pressure records in this area is of great importance to investigate sea level variations, to evaluate and quantify the causes of these changes and the possible correlation with vertical movements of the Earth's crust. The time series of sea level and bottom pressure data considered in this work are obtained at two different locations of the island and, in each of them, using several sensors at different periods of time. First location is Jameos del Agua (JA) station, which belongs to the LGL. This station is placed in the open ocean, 200 meters distant from the northeastern coast of the island and at 8 meters depth. The observations have been carried out using 3 bottom pressure sensors (Aanderaa WLR7, SAIV TD301A and Aqualogger 210PT) at different periods of time (spanning a total of six years). Second location is Arrecife (AR) station, which is 23 km south of JA station. In this case, the sea level data come from a float tide gauge belonging to the Instituto Español de Oceanografía, installed at the beginning of the loading bay, and a radar tide gauge from the

  17. Tide-surge Interaction Intensified by the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Zhou; Shi, Fengyan; Hong, Hua-Sheng; Shang, Shao-Ping; Kirby, James T.

    2010-06-01

    The Taiwan Strait is a long and wide shelf-channel where the hydrodynamics is extremely complex, being characterized by strong tides, and where storm surges frequently occur during the typhoon season. Obvious oscillations due to tide-surge interaction were observed by tide gauges along the northern Fujian coast, the west bank of the Taiwan Strait, during Typhoon Dan (1999). Numerical experiments indicate that nonlinear bottom friction (described by the quadratic formula) is a major factor to predict these oscillations while the nonlinear advective terms and the shallow water effect have little contribution. It is found that the tide-surge interaction in the northern portion of the Taiwan Strait is intensified by the strait. Simulations based on simplified topographies with and without the island of Taiwan show that, in the presence of the island, the channel effect strengthens tidal currents and tends to align the major axes of tidal ellipses along the channel direction. Storm-induced currents are also strengthened by the channel. The pattern of strong tidal currents and storm-induced currents along the channel direction enhances tide-surge interaction via the nonlinear bottom friction, resulting in the obvious oscillations along the northern Fujian coast.

  18. Ocean tide models for satellite geodesy and Earth rotation

    NASA Technical Reports Server (NTRS)

    Dickman, Steven R.

    1991-01-01

    A theory is presented which predicts tides in turbulent, self-gravitating, and loading oceans possessing linearized bottom friction, realistic bathymetry, and continents (at coastal boundaries no-flow conditions are imposed). The theory is phrased in terms of spherical harmonics, which allows the tide equations to be reduced to linear matrix equations. This approach also allows an ocean-wide mass conservation constraint to be applied. Solutions were obtained for 32 long and short period luni-solar tidal constituents (and the pole tide), including the tidal velocities in addition to the tide height. Calibrating the intensity of bottom friction produces reasonable phase lags for all constituents; however, tidal amplitudes compare well with those from observation and other theories only for long-period constituents. In the most recent stage of grant research, traditional theory (Liouville equations) for determining the effects of angular momentum exchange on Earth's rotation were extended to encompass high-frequency excitations (such as short-period tides).

  19. Use of Multiangle Satellite Observations to Retrieve Aerosol Properties and Ocean Color

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.; Diner, David; Khan, Ralph

    2005-01-01

    A new technique is described for retrieving aerosol over ocean water and the associated ocean color using multiangle satellite observations. Unlike current satellite aerosol retrieval algorithms which only utilize observations at red wavelengths and longer, with the assumption that these wavelengths have a negligible ocean (water-leaving radiance), this new algorithm uses all available spectral bands and simultaneously retrieves both aerosol properties and the spectral ocean color. We show some results of case studies using MISR data, performed over different water conditions (coastal water, blooms, and open water).

  20. The importance of weightlessness and tides in teaching gravitation

    NASA Astrophysics Data System (ADS)

    Galili, I.; Lehavi, Y.

    2003-11-01

    We examine the presentation of the weight, weightlessness, and tides in university-level physics textbooks. Introductory textbooks often do not discuss tidal forces even though their understanding would be useful for understanding weightlessness. The explanations of tides often miss the free gravitational motion of both interacting objects, which is essential for the symmetry of tidal deformation. The shortcomings in the explanations of weightlessness and tides as provided by students and teachers are compared to textbook discussions. We suggest that an explicit discussion of the different definitions of weight and a synergetic presentation of weightlessness and tides might lead to a better understanding of gravitation. Our approach is illustrated by examples of tidal effects appropriate for introductory courses.

  1. Nonlinear Tides in Close Binary Systems

    NASA Astrophysics Data System (ADS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-06-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' >~ 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static "equilibrium" tidal distortion is, however, stable to parametric resonance except for solar binaries with P <~ 2-5 days. (2) For companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N ≈ 103[P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the

  2. Tide Corrections for Coastal Altimetry: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, Gary D.

    2008-01-01

    Knowledge of global oceanic tides has markedly advanced over the last two decades, in no small part because of the near-global measurements provided by satellite altimeters, and especially the long and precise Topex/Poseidon time series e.g. [2]. Satellite altimetry in turn places very severe demands on the accuracy of tidal models. The reason is clear: tides are by far the largest contributor to the variance of sea-surface elevation, so any study of non-tidal ocean signals requires removal of this dominant tidal component. Efforts toward improving models for altimetric tide corrections have understandably focused on deep-water, open-ocean regions. These efforts have produced models thought to be generally accurate to about 2 cm rms. Corresponding tide predictions in shelf and near-coastal regions, however, are far less accurate. This paper discusses the status of our current abilities to provide near-global tidal predictions in shelf and near-coastal waters, highlights some of the difficulties that must be overcome, and attempts to divine a path toward some degree of progress. There are, of course, many groups worldwide who model tides over fairly localized shallow-water regions, and such work is extremely valuable for any altimeter study limited to those regions, but this paper considers the more global models necessary for the general user. There have indeed been efforts to patch local and global models together, but such work is difficult to maintain over many updates and can often encounter problems of proprietary or political nature. Such a path, however, might yet prove the most fruitful, and there are now new plans afoot to try again. As is well known, tides in shallow waters tend to be large, possibly nonlinear, and high wavenumber. The short spatial scales mean that current mapping capabilities with (multiple) nadir-oriented altimeters often yield inadequate coverage. This necessitates added reliance on numerical hydrodynamic models and data assimilation

  3. Storm surge and tide interaction: a complete paradigm

    NASA Astrophysics Data System (ADS)

    Horsburgh, Kevin; Williams, Jane; Proctor, Robert

    2014-05-01

    Globally, 200 million people live on coastal floodplains and about 1 trillion worth of assets lie within 1 metre of mean sea level. Any change in the statistics of flood frequency or severity would impact on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. This has been shown previously by analytical models but not as yet confirmed by fully non-linear models of the continental shelf. We present results from an operational model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are generally greater when tidal range is low. Our results contradict the absence of any such correlation observed in the complete record of UK tide gauge data. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that operational models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge

  4. Storm Surge and Tide Interaction: A Complete Paradigm

    NASA Astrophysics Data System (ADS)

    Horsburgh, K.

    2014-12-01

    Estimates show that in 2005, in the largest 136 coastal cities, there were 40 million people and 3,000 billion of assets exposed to 1 in 100 year coastal flood events. Mean sea level rise will increase this exposure to 150 million people and 35,000 billion of assets by 2070. Any further change in the statistics of flood frequency or severity would impact severely on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. We present results from a storm surge model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are greater when tidal range is low. Our results contradict the absence of any such correlation in tide gauge records. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that flood forecasting models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge model

  5. Analysis of Remote Sensing Data Reveals the Correlation of Anomalies between Aerosol Optical Depth and Chlorophyll-a Concentrations in the Red Sea Area

    NASA Astrophysics Data System (ADS)

    Coria, J.; Bonilla, J., III; Li, W.; El-Askary, H. M.; Qurban, M.; Garay, M. J.; Kalashnikova, O. V.

    2017-12-01

    The Red Sea has one of the highest salinities and one of the most diverse ecosystems in the world. We wanted to investigate how chlorophyll-a contributes to this diverse ecosystem. From 2002 to 2015, we observed an increase in aerosol optical depth (AOD) levels which we believed contributed to an increase in chlorophyll-a concentration levels. Focusing on the Red Sea we used the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua platforms in order to acquire the data necessary for our research. After gathering the monthly data for the chlorophyll-a concentration and AOD for this period we normalized the data in order to find correlations between the two parameters. We found that there was a continuous increase in AOD from 2002 to 2015. Inversely we found that there was an overall decrease in chlorophyll-a concentration during this same time period. However, there was a correlation between AOD anomalies and chlorophyll-a anomalies that did not follow the decreasing trend of chlorophyll-a. These findings exemplified a two-month lag between the AOD anomalies and chlorophyll-a concentration anomalies. This shows that the increase in AOD has a significant impact on the chlorophyll-a conentration anomalies which in turn contributes to the overall greenness of the Red Sea. This is significant because there are many cities surrounding the Red Sea that depend on this diverse ecosystem as a stable food source.

  6. Seasonal and inter-annual variability of aerosol optical properties during 2005-2010 over Red Mountain Pass and Impact on the Snow Cover of the San Juan Mountains

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Gautam, R.; Painter, T. H.

    2011-12-01

    Growing body of evidence suggests the significant role of aerosol solar absorption in accelerated seasonal snowmelt in the cryosphere and elevated mountain regions via snow contamination and radiative warming processes. Characterization of aerosol optical properties over seasonal snow cover and snowpacks is therefore important towards the better understanding of aerosol radiative effects and associated impact on snow albedo. In this study, we present seasonal variations in column-integrated aerosol optical properties retrieved from AERONET sunphotometer measurements (2005-2010) at Red Mountain Pass (37.90° N, 107.72° W, 3368 msl) in the San Juan Mountains, in the vicinity of the North American Great Basin and Colorado Plateau deserts. The aerosol optical depth (AOD) measured at 500nm is generally low (< 0.2) in the climatological monthly means but exhibits strong seasonal variability with very low background values of about 0.05 during winter season, but is found to significantly increase more than 5-6 times during summer months with values up to 0.3-0.4. Together with the spectral variations in AOD, the Angstrom Wavelength Exponent (α) typically varies in the range of 1-2 indicating the dominance of fine-mode particulates. However, during summer months, nearly 30% of α values are observed below 0.5 thus suggesting an increased influx of coarse-mode aerosols compared to other seasons. The higher AOD and lower α is most likely a result of the summer-time enhanced convection and upslope pollutant transport. In addition, the possibility of the observed increased coarse-mode influence associated with mineral dust influx cannot be ruled out, due to westerly-airmass driven transport from arid/desert regions as suggested by backward trajectory simulations. A meteorological coupling is also found in the summer season between AOD and column water vapor retrieved from AERONET with co-occurring enhanced water vapor and AOD. Based on column measurements, it is difficult

  7. Characterization of carbonaceous aerosols emitted from outdoor wood boilers

    EPA Science Inventory

    This study examines the chemical properties of carbonaceous aerosols emitted from different outdoor wood-fired boiler (OWB) technologies including two cord-wood heaters, a pellet heater, and a multistage gasifier/combustor. The effect of fuel type [red oak wood (Quercus rubra), w...

  8. Oceanic tide maps and spherical harmonic coefficients from Geosat altimetry

    NASA Technical Reports Server (NTRS)

    Cartwright, D. E.; Ray, R. D.; Sanchez, B. V.

    1991-01-01

    Maps and tables for the global ocean tides, 69 degree N to 68 degree S, derived from two years of Geosat altimetry are presented. Global maps of local and Greenwich admittance of the (altimetric) ocean tide, and maps of amplitude and Greenwich phase lag of the ocean tide are shown for M(sub 2), S(sub 2), N(sub 2), O(sub 1), and K(sub 1). Larger scale maps of amplitude and phases are also shown for regional areas of special interest. Spherical harmonic coefficients of the ocean tide through degree and order 8 are tabulated for the six major constituents.

  9. The self-consistent dynamic pole tide in non-global oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1988-01-01

    The dynamic pole tide is determined by solving Laplace tide equations which take into account the presence of continents in oceans, oceanic self-gravitation and loading, and mantle elasticity. Dynamical effects are found to be only mild. It is shown that the dynamical pole tide contributes about one day more to the Chandler period than a static pole tide would, and dissipates wobble energy at a very weak rate. It is noted that, depending on the wobble period predicted for an oceanless elastic earth, mantle anelasticity at low frequencies may nevertheless contribute negligibly to the Chandler period.

  10. Palaeoclimate: ocean tides and Heinrich events.

    PubMed

    Arbic, Brian K; Macayeal, Douglas R; Mitrovica, Jerry X; Milne, Glenn A

    2004-11-25

    Climate varied enormously over the most recent ice age--for example, large pulses of ice-rafted debris, originating mainly from the Labrador Sea, were deposited into the North Atlantic at roughly 7,000-year intervals, with global climatic implications. Here we show that ocean tides within the Labrador Sea were exceptionally large over the period spanning these huge, abrupt ice movements, which are known as Heinrich events. We propose that tides played a catalytic role in liberating iceberg armadas during that time.

  11. Lunar tidal acceleration obtained from satellite-derived ocean tide parameters

    NASA Technical Reports Server (NTRS)

    Goad, C. C.; Douglas, B. C.

    1978-01-01

    Observation equations for the M2 ocean tide are computed from Geos 3 data for the long periodic variations of the inclination and node of the orbit. M2 ocean tide parameter values C22+ = 3.23 + or - 0.25 cm, epsilon 22+ = 331 + or - 6 deg, and epsilon 42+ = 113 + or - 6 deg are determined. With the assumption of zero solid tide phase lag, the lunar tidal acceleration is mostly (85%) due to the C22+ term in the expansion of the M2 tide with additional small contributions from the O1 and N2 tides. The calculated value for the tidal acceleration in lunar longitude is -27.4 + or - 3 arc sec/sq (100 yr) which is similar to values determined from astronomical data. The mean elements of Geos 3 are presented in tabular form.

  12. Construction of Green Tide Monitoring System and Research on its Key Techniques

    NASA Astrophysics Data System (ADS)

    Xing, B.; Li, J.; Zhu, H.; Wei, P.; Zhao, Y.

    2018-04-01

    As a kind of marine natural disaster, Green Tide has been appearing every year along the Qingdao Coast, bringing great loss to this region, since the large-scale bloom in 2008. Therefore, it is of great value to obtain the real time dynamic information about green tide distribution. In this study, methods of optical remote sensing and microwave remote sensing are employed in Green Tide Monitoring Research. A specific remote sensing data processing flow and a green tide information extraction algorithm are designed, according to the optical and microwave data of different characteristics. In the aspect of green tide spatial distribution information extraction, an automatic extraction algorithm of green tide distribution boundaries is designed based on the principle of mathematical morphology dilation/erosion. And key issues in information extraction, including the division of green tide regions, the obtaining of basic distributions, the limitation of distribution boundary, and the elimination of islands, have been solved. The automatic generation of green tide distribution boundaries from the results of remote sensing information extraction is realized. Finally, a green tide monitoring system is built based on IDL/GIS secondary development in the integrated environment of RS and GIS, achieving the integration of RS monitoring and information extraction.

  13. Brown carbon absorption in the red and near-infrared spectral region

    NASA Astrophysics Data System (ADS)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  14. A New, More Physically Based Algorithm, for Retrieving Aerosol Properties over Land from MODIS

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Kaufman, Yoram J.; Remer, Lorraine A.; Mattoo, Shana

    2004-01-01

    The MOD Imaging Spectrometer (MODIS) has been successfully retrieving aerosol properties, beginning in early 2000 from Terra and from mid 2002 from Aqua. Over land, the retrieval algorithm makes use of three MODIS channels, in the blue, red and infrared wavelengths. As part of the validation exercises, retrieved spectral aerosol optical thickness (AOT) has been compared via scatterplots against spectral AOT measured by the global Aerosol Robotic NETwork (AERONET). On one hand, global and long term validation looks promising, with two-thirds (average plus and minus one standard deviation) of all points falling between published expected error bars. On the other hand, regression of these points shows a positive y-offset and a slope less than 1.0. For individual regions, such as along the U.S. East Coast, the offset and slope are even worse. Here, we introduce an overhaul of the algorithm for retrieving aerosol properties over land. Some well-known weaknesses in the current aerosol retrieval from MODIS include: a) rigid assumptions about the underlying surface reflectance, b) limited aerosol models to choose from, c) simplified (scalar) radiative transfer (RT) calculations used to simulate satellite observations, and d) assumption that aerosol is transparent in the infrared channel. The new algorithm attempts to address all four problems: a) The new algorithm will include surface type information, instead of fixed ratios of the reflectance in the visible channels to the mid-IR reflectance. b) It will include updated aerosol optical properties to reflect the growing aerosol retrieved from eight-plus years of AERONE". operation. c) The effects of polarization will be including using vector RT calculations. d) Most importantly, the new algorithm does not assume that aerosol is transparent in the infrared channel. It will be an inversion of reflectance observed in the three channels (blue, red, and infrared), rather than iterative single channel retrievals. Thus, this new

  15. Lunar tides in the Thermosphere-Ionosphere-Electrodynamics General Circulation Model

    NASA Astrophysics Data System (ADS)

    Stening, R. J.; Richmond, A. D.; Roble, R. G.

    1999-01-01

    Lunar semidiurnal tides are introduced at the lower boundary of the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM). The tides are derived from the model of Vial and Forbes [1994] and interesting properties of these tides are found when they are subjected to Hough decomposition; there is considerable hemispherical antisymmetry in the September tides, and the March and September modal compositions are significantly different. A differencing method is used to isolate the lunar tidal effects in the TIEGCM, and these are compared with lunar tidal analyses of ionospheric data. The model reproduces the broad features of the lunar tide in foF2 (maximum frequency of the F region) with phase changes around 7° magnetic dip latitude during daytime. The model and data analysis both give variations of the amplitude and phase of the lunar tide with local time. Near the equator the variation of phase with local time changes with latitude as the equatorial anomaly develops during the day. Comparison between the model predictions and analyses of data at observatories at midlatitudes produces mixed results. Here the effects of the lunar components of both electrodynamic drifts and of neutral winds need to be taken into account. Several cases of day to night changes in the phase of the lunar tide in foF2 are noted. Large nighttime amplitudes of the lunar tide in hmF2 (height of the maximum density), more than 4 km, seem to be due to inphase action of the electrodynamic and neutral wind effects while during daytime they are out of phase. The lunar tide in the ratio of oxygen to nitrogen density [O]/[N2] is estimated and found to be of relatively minor importance. Amplitudes of the lunar tide in foF2 may be measured at more than 0.4 MHz at some local times, but the model values are less than this. Comparison is also made with ion drift measurements made by the San Marco D satellite. The several uncertainties which

  16. Orbital Evolution of Planetesimals by the Galactic Tide

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-05-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region. Here we show the orbital evolution of planetesimals by the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. The effect of the galactic tide on the planetesimals with semimajor axes of ˜ 104AU is about 10-3 of the solar gravity. The timescale of the orbital evolution is ˜ 108 years. We consider only the vertical component of the galactic tide. Under the axisymmetric potential, some planetesimals may show the librations around ω (argument of perihelion)=π /2 and 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. The secular perturbation theory demonstrates the Kozai mechanism and we can understand the motion of the planetesimals analytically. We apply the Kozai mechanism to the galactic tide and discuss the property of the Oort cloud formed by the Kozai mechanizm. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  17. Non-Migrating Diurnal Tides Generated with Planetary Waves in the Mesosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. R.; Porter, H. S.; Chan, K. L.

    2003-01-01

    We report here the results from a modeling study with our Numerical Spectral Model (NSM) that extends from the ground into thermosphere. The NSM incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GWs) and describes the major dynamical features of the atmosphere, including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the solar migrating tidal excitation sources, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that have amplitudes comparable to those observed. The model produces the diurnal (and semidiurnal) oscillations of the zonal mean (m = 0), and eastward and westward propagating tides for zonal wave numbers m = 1 to 4. To identify the mechanism of excitation for these tides, a numerical experiment is performed. The NSM is run without the heat source for the zonal-mean circulation and temperature variation, and the amplitudes of the resulting nonmigrating tides are then negligibly small. This leads to the conclusion that the planetary waves, which normally are excited in the NSM by instabilities but are suppressed in this case, generate the nonmigrating tides through nonlinear interactions with the migrating tides.

  18. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition.

    PubMed

    Morey, Jeanine S; Monroe, Emily A; Kinney, Amanda L; Beal, Marion; Johnson, Jillian G; Hitchcock, Gary L; Van Dolah, Frances M

    2011-07-05

    The role of coastal nutrient sources in the persistence of Karenia brevis red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' trans-spliced leader (SL) sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of K. brevis is responsive to nitrogen and phosphorus and is informative of nutrient status. Microarray analysis of N-depleted K. brevis cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases) relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10-4. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR) proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes. Microarray analysis provided transcriptomic

  19. Ocean science. Enhanced: internal tides and ocean mixing.

    PubMed

    Garrett, Chris

    2003-09-26

    Recent satellite and in situ observations have shown that at ocean ridges and other seafloor topographic features, a substantial amount of energy is transferred from the main ocean tides into "internal tides." In his Perspective, Garrett explains how these internal waves with tidal periods propagate through the density-stratified deep ocean and eventually break down into turbulence. The resulting mixing affects ocean stratification and ocean circulation. It thus influences climate as well as biological production. The energy for the internal tides is derived from the rotational energy of the Earth-Moon system changes of the length of the day and the distance to the Moon.

  20. Mapping ocean tides with satellites - A computer simulation

    NASA Technical Reports Server (NTRS)

    Won, I. J.; Kuo, J. T.; Jachens, R. C.

    1978-01-01

    As a preliminary study for the future worldwide direct mapping of the open ocean tide with satellites equipped with precision altimeters we conducted a simulated study using sets of artificially generated altimeter data constructed from a realistic geoid and four pairs of major tides in the northeastern Pacific Ocean. Recovery of the original geoid and eight tidal maps is accomplished by a space-time, least squares harmonic analysis scheme. The resultant maps appear fairly satisfactory even when random noises up to + or - 100 cm are added to the altimeter data of sufficient space-time density. The method also produces a refined geoid which is rigorously corrected for the dynamic tides.

  1. Preliminary Study on Coupling Wave-Tide-Storm Surges Prediction System

    NASA Astrophysics Data System (ADS)

    You, S.; Park, S.; Seo, J.; Kim, K.

    2008-12-01

    The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surge, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module on wave heights. However, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (RTSM : Regional Tide/Storm Surges Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The RTSM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and RTSM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the

  2. Lunar and Solar Torques on the Oceanic Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Bills, Bruce G.; Chao, Benjamin F.

    1998-01-01

    Brosche and Seiler recently suggested that direct lunar and solar tidal torques on the oceanic tides play a significant role in the earth's short-period angular momentum balance ("short-period" here meaning daily and sub-daily). We reexamine that suggestion here, concentrating on axial torques and hence on variations in rotation rate. Only those spherical harmonic components of the ocean tide having the same degree and order as the tidal potential induce nonzero torques. Prograde components (those moving in the same direction as the tide-generating body) produce the familiar secular braking of the earth's rotation. Retrograde components, however, produce rapid variations in UTI at twice the tidal frequency. There also exist interaction torques between tidal constituents, e.g. solar torques on lunar tides. They generate UTI variations at frequencies equal to the sums and differences of the original tidal frequencies. We give estimates of the torques and angular momentum variations for each of the important regimes, secular to quarter-diurnal. For the M(sub 2) potential acting on the M(sub 2) ocean tide, we find an associated angular momentum variation of amplitude 3 x 10(exp 19) N m. This is 5 to 6 orders of magnitude smaller than the angular momentum variations associated with tidal currents. We conclude that these torques do not play a significant role in the short-period angular momentum balance.

  3. Eddy Resolving Global Ocean Prediction including Tides

    DTIC Science & Technology

    2013-09-30

    atlantic meridional overturning circulation in the subpolar North Atlantic . Journal of Geophysical Research vol 118, doi:10.1002/jgrc,20065. [published, refereed] ...global ocean circulation model was examined using results from years 2005-2009 of a seven and a half year 1/12.5° global simulation that resolves...internal tides, along with barotropic tides and the eddying general circulation . We examined tidal amplitudes computed using 18 183-day windows that

  4. Nanoscale welding aerosol sensing based on whispering gallery modes in a cylindrical silica resonator.

    PubMed

    Lee, Aram; Mills, Thomas; Xu, Yong

    2015-03-23

    We report an experimental technique where one uses a standard silica fiber as a cylindrical whispering gallery mode (WGM) resonator to sense airborne nanoscale aerosols produced by electric arc welding. We find that the accumulation of aerosols on the resonator surface induces a measurable red-shift in resonance frequency, and establish an empirical relation that links the magnitude of resonance shift with the amount of aerosol deposition. The WGM quality factors, by contrast, do not decrease significantly, even for samples with a large percentage of surface area covered by aerosols. Our experimental results are discussed and compared with existing literature on WGM-based nanoparticle sensing.

  5. A Model for Teaching the Dynamical Theory of Tides.

    ERIC Educational Resources Information Center

    Railsback, L. Bruce

    1991-01-01

    The dynamical theory of tides is often neglected in teaching oceanography because students have difficulty in visualizing the movements of the tides across the glove. A schematic diagram portraying amphidromic systems as mechanical gears helps overcome these problems. (Author)

  6. Modeling influence of tide stages on forecasts of the 2010 Chilean tsunami

    NASA Astrophysics Data System (ADS)

    Uslu, B. U.; Chamberlin, C.; Walsh, D.; Eble, M. C.

    2010-12-01

    The impact of the 2010 Chilean tsunami is studied using the NOAA high-resolution tsunami forecast model augmented to include modeled tide heights in addition to deep-water tsunami propagation as boundary-condition input. The Chilean tsunami was observed at the Los Angeles tide station at mean low water, Hilo at low, Pago Pago at mid tide and Wake Island near high tide. Because the tsunami arrived at coastal communities at a representative variety of tide stages, 2010 Chile tsunami provides opportunity to study the tsunami impacts at different tide levels to different communities. The current forecast models are computed with a constant tidal stage, and this study evaluates techniques for adding an additional varying predicted tidal component in a forecasting context. Computed wave amplitudes, wave currents and flooding are compared at locations around the Pacific, and the difference in tsunami impact due to tidal stage is studied. This study focuses on how tsunami impacts vary with different tide levels, and helps us understand how the inclusion of tidal components can improve real-time forecast accuracy.

  7. Ocean Tide Influences on the Antarctic and Greenland Ice Sheets

    NASA Astrophysics Data System (ADS)

    Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.

    2018-03-01

    Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.

  8. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  9. The self-consistent dynamic pole tide in global oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1985-01-01

    The dynamic pole tide is characterized in a self-consistent manner by means of introducing a single nondifferential matrix equation compatible with the Liouville equation, modelling the ocean as global and of uniform depth. The deviations of the theory from the realistic ocean, associated with the nonglobality of the latter, are also given consideration, with an inference that in realistic oceans long-period modes of resonances would be increasingly likely to exist. The analysis of the nature of the pole tide and its effects on the Chandler wobble indicate that departures of the pole tide from the equilibrium may indeed be minimal.

  10. Seasonal variation of semidiurnal internal tides in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Jeon, Chanhyung; Park, Jae-Hun; Varlamov, Sergey M.; Yoon, Jong-Hwan; Kim, Young Ho; Seo, Seongbong; Park, Young-Gyu; Min, Hong Sik; Lee, Jae Hak; Kim, Cheol-Ho

    2014-05-01

    The seasonal variation of semidiurnal internal tides in the East/Japan Sea was investigated using 25 month long output from a real-time ocean forecasting system. The z coordinate eddy-resolving high-resolution numerical model, called the RIAM ocean model, incorporates data assimilation that nudges temperature and salinity fields together with volume transport through the Korea Strait to produce realistic oceanic currents and stratification. In addition to atmospheric forcing, it includes tidal forcing of 16 major components along open boundaries. The model generates energetic semidiurnal internal tides around the northern entrance of the Korea Strait. Energy conversion from barotropic to baroclinic (internal) tides varies seasonally with maxima in September (ranging 0.48-0.52 GW) and minima in March (ranging 0.11-0.16 GW). This seasonal variation is induced by the seasonality in stratification near the southwestern East/Japan Sea. The propagation distance of the internal tides is associated with generation intensity and wavelength. From late summer to early winter, the semidiurnal internal tides travel relatively far from the generation region due to stratification changes; its energy dissipates less as a result of longer wavelengths. Our results suggest that spatiotemporal variation of internal-tide-induced mixing due to the seasonality in the generation, propagation, and dissipation of internal tides should be considered for a more realistic simulation of water masses and circulation in models of the East/Japan Sea.

  11. Investigation the Behavior of Modis Ocean Color Products Under the 2008 Red Tide in the Eastern Persian Gulf

    NASA Astrophysics Data System (ADS)

    Ghanea, M.; Moradi, M.; Kabiri, K.

    2015-12-01

    Biophysical properties of water undergo serious variations under red tide (RT) outbreak. During RT conditions, algal blooms spread out in the estuarine, marine and fresh waters due to different triggering factors such as nutrient loading, marine currents, and monsoonal winds. The Persian Gulf (PG) was a talent region subjected to different RTs in recent decade. A massive RT started from the Strait of Hormuz in October 2008 and extended towards the northern parts of the PG covering more than 1200 km of coastlines. The bloom of microorganism C. Polykrikoides was the main specie that generated large fish mortalities, and hampered marine industries, and water desalination appliances. Ocean color satellite data have many advantages to monitor and alarm RT occurrences, such as wide and continuous extent, short time of imagery, high accessibility, and appropriate estimation of ocean color parameters. Since 1999, MODerate Resolution Imaging Spectroradiometer (MODIS) satellite sensor has estimated satellite derived chlorophyll-a (Chl-a), normalized fluorescence line height (nFLH), and diffuse attenuation coefficient at 490nm (kd490). It provides a capability to study the behavior of these parameters during RT and normal conditions. This study monitors variations in satellite derived Chl-a, nFLH, and kd490 under both RT and normal conditions of the PG between 2002 and 2008. Up to now, daily and monthly variations in these products were no synchronously investigated under RT conditions in the PG. In doing so, the MODIS L1B products were provided from NASA data archive. They were corrected for Rayleigh scattering and gaseous absorption, and atmospheric interference in turbid coastal waters, and then converted to level 2 data. In addition, Enhanced Red Green Blue (ERGB) image was used to illustrate better water variations. ERGB image was built with three normalized leaving water radiance between 443 to 560nm. All the above data processes were applied by SeaDAS 7 software

  12. Mapping nonlinear shallow-water tides: a look at the past and future

    NASA Astrophysics Data System (ADS)

    Andersen, Ole B.; Egbert, Gary D.; Erofeeva, Svetlana Y.; Ray, Richard D.

    2006-12-01

    Overtides and compound tides are generated by nonlinear mechanisms operative primarily in shallow waters. Their presence complicates tidal analysis owing to the multitude of new constituents and their possible frequency overlap with astronomical tides. The science of nonlinear tides was greatly advanced by the pioneering researches of Christian Le Provost who employed analytical theory, physical modeling, and numerical modeling in many extensive studies, especially of the tides of the English Channel. Le Provost’s complementary work with satellite altimetry motivates our attempts to merge these two interests. After a brief review, we describe initial steps toward the assimilation of altimetry into models of nonlinear tides via generalized inverse methods. A series of barotropic inverse solutions is computed for the M_4 tide over the northwest European Shelf. Future applications of altimetry to regions with fewer in situ measurements will require improved understanding of error covariance models because these control the tradeoffs between fitting hydrodynamics and data, a delicate issue in coastal regions. While M_4 can now be robustly determined along the Topex/Poseidon satellite ground tracks, many other compound tides face serious aliasing problems.

  13. Impact of tides in a baroclinic circulation model of the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Guarnieri, A.; Pinardi, N.; Oddo, P.; Bortoluzzi, G.; Ravaioli, M.

    2013-01-01

    AbstractThe impact of <span class="hlt">tides</span> in the circulation of the Adriatic Sea is investigated by means of a nested baroclinic numerical ocean model. <span class="hlt">Tides</span> are introduced using a modified Flather boundary condition at the open edge of the domain. The results show that tidal amplitudes and phases are reproduced correctly by the baroclinic model and tidal harmonic constants errors are comparable with those resulting from the most consolidated barotropic models. Numerical experiments were conducted to estimate and assess the impact of (i) the modified Flather lateral boundary condition; (ii) <span class="hlt">tides</span> on temperature, salinity, and stratification structures in the basin; and (iii) <span class="hlt">tides</span> on mixing and circulation in general. <span class="hlt">Tides</span> induce a different momentum advective component in the basin, which in turn produces a different distribution of water masses in the basin. <span class="hlt">Tides</span> impact on mixing and stratification in the River Po region (northwestern Adriatic) and induce semidiurnal fluctuations of salinity and temperature, in all four seasons for the former and summer alone for the latter. A clear presence of internal <span class="hlt">tides</span> was evidenced in the northern Adriatic Sea basin, corroborating previous findings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005SPIE.5794..415B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005SPIE.5794..415B"><span>Spatio-temporal environmental data <span class="hlt">tide</span> corrections for reconnaissance operations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barbu, Costin; Avera, Will; Harris, Mike; Malpass, Kevyn</p> <p>2005-06-01</p> <p>Dynamic, accurate near-real time environmental data is critical to the success of the mine countermeasures operations. Bathymetric data acquired from the AQS-20 mine hunting sensor should be adjusted for local <span class="hlt">tide</span> variations related to the specific geographic area and time interval. This problem can be overcome by a spatio-temporal estimate of <span class="hlt">tide</span> corrections provided for the area and time of interest by the Naval Research Laboratory <span class="hlt">tide</span> prediction code PCTides. For each geographic position of the AQS-20 sonar, a <span class="hlt">tide</span> height relative to mean sea level is computed by interpolating the tidal information from the K - nearest neighbored stations for the corresponding time. The value is used to correct the measured depth generated by the AQS-20 sonar in that location to mean sea level for fusion with other bathymetric data products. It is argued that this paper provides a useful tool to the MCM decision factors during Mine Warfare operations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080023335','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080023335"><span>The Time Series Technique for <span class="hlt">Aerosol</span> Retrievals over Land from MODIS: Algorithm MAIAC</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lyapustin, Alexei; Wang, Yujie</p> <p>2008-01-01</p> <p>Atmospheric <span class="hlt">aerosols</span> interact with sun light by scattering and absorbing radiation. By changing irradiance of the Earth surface, modifying cloud fractional cover and microphysical properties and a number of other mechanisms, they affect the energy balance, hydrological cycle, and planetary climate [IPCC, 2007]. In many world regions there is a growing impact of <span class="hlt">aerosols</span> on air quality and human health. The Earth Observing System [NASA, 1999] initiated high quality global Earth observations and operational <span class="hlt">aerosol</span> retrievals over land. With the wide swath (2300 km) of MODIS instrument, the MODIS Dark Target algorithm [Kaufman et al., 1997; Remer et al., 2005; Levy et al., 2007] currently complemented with the Deep Blue method [Hsu et al., 2004] provides daily global view of planetary atmospheric <span class="hlt">aerosol</span>. The MISR algorithm [Martonchik et al., 1998; Diner et al., 2005] makes high quality <span class="hlt">aerosol</span> retrievals in 300 km swaths covering the globe in 8 days. With MODIS <span class="hlt">aerosol</span> program being very successful, there are still several unresolved issues in the retrieval algorithms. The current processing is pixel-based and relies on a single-orbit data. Such an approach produces a single measurement for every pixel characterized by two main unknowns, <span class="hlt">aerosol</span> optical thickness (AOT) and surface reflectance (SR). This lack of information constitutes a fundamental problem of the remote sensing which cannot be resolved without a priori information. For example, MODIS Dark Target algorithm makes spectral assumptions about surface reflectance, whereas the Deep Blue method uses ancillary global database of surface reflectance composed from minimal monthly measurements with Rayleigh correction. Both algorithms use Lambertian surface model. The surface-related assumptions in the <span class="hlt">aerosol</span> retrievals may affect subsequent atmospheric correction in unintended way. For example, the Dark Target algorithm uses an empirical relationship to predict SR in the Blue (B3) and <span class="hlt">Red</span> (B1) bands from the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EJPh...36f5012P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EJPh...36f5012P"><span>Weight, gravitation, inertia, and <span class="hlt">tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe</p> <p>2015-11-01</p> <p>This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic <span class="hlt">tides</span>; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of <span class="hlt">tides</span> based on a centrifugal force. Finally, the expression of the potential energy of the <span class="hlt">tide</span>-generating force is established rigorously in the appendix.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ISPAr.XL1c..85B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ISPAr.XL1c..85B"><span>Using <span class="hlt">Aerosol</span> Reflectance for Dust Detection</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bahramvash Shams, S.; Mohammadzade, A.</p> <p>2013-09-01</p> <p>In this study we propose an approach for dust detection by <span class="hlt">aerosol</span> reflectance over arid and urban region in clear sky condition. In urban and arid areas surface reflectance in <span class="hlt">red</span> and infrared spectral is bright and hence shorter wavelength is required for this detections. Main step of our approach can be mentioned as: cloud mask for excluding cloudy pixels from our calculation, calculate Rayleigh path radiance, construct a surface reflectance data base, estimate <span class="hlt">aerosol</span> reflectance, detect dust <span class="hlt">aerosol</span>, dust detection and evaluations of dust detection. Spectral with wavelength 0.66, 0.55, 0.47 μm has been used in our dust detection. Estimating surface reflectance is the most challenging step of obtaining <span class="hlt">aerosol</span> reflectance from top of atmosphere (TOA) reflectance. Hence for surface estimation we had created a surface reflectance database of 0.05 degree latitude by 0.05 degree longitude resolution by using minimum reflectivity technique (MRT). In order to evaluate our dust detection algorithm MODIS <span class="hlt">aerosol</span> product MOD04 and common dust detection method named Brightness Temperature Difference (BTD) had been used. We had implemented this method to Moderate Resolution Imaging Spectroradiometer (MODIS) image of part of Iran (7 degree latitude and 8 degree longitude) spring 2005 dust phenomenon from April to June. This study uses MODIS LIB calibrated reflectance high spatial resolution (500 m) MOD02Hkm on TERRA spacecraft. Hence our dust detection spatial resolution will be higher spatial resolution than MODIS <span class="hlt">aerosol</span> product MOD04 which has 10 × 10 km2 and BTD resolution is 1 km due to the band 29 (8.7 μm), 31 (11 μm), and 32 (12 μm) spatial resolutions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790013333','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790013333"><span>High precision <span class="hlt">tide</span> spectroscopy. [using the superconducting gravimeter</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodkind, J. M.</p> <p>1978-01-01</p> <p>Diurnal and long period earth <span class="hlt">tides</span> were measured to high accuracy and precision with the superconducting gravimeter. The results provide new evidence on the geophysical questions which have been attacked through earth <span class="hlt">tide</span> measurements in the past. In addition, they raise new questions of potential interest. Slow fluctuations in gravity of order 10 micron gal over periods of 3 to 5 months were observed and are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=lunar&pg=7&id=EJ605726','ERIC'); return false;" href="https://eric.ed.gov/?q=lunar&pg=7&id=EJ605726"><span>The <span class="hlt">Tides</span>--A Neglected Topic.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hartel, Hermann</p> <p>2000-01-01</p> <p>Finds that computer simulations can be used to visualize the processes involved with lunar <span class="hlt">tides</span>. Technology adds value, thus opening new paths for a more distinct analysis and increased learning results. (Author/CCM)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800016482','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800016482"><span>Global Earth Response to Loading by Ocean <span class="hlt">Tide</span> Models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Estes, R. H.; Strayer, J. M.</p> <p>1979-01-01</p> <p>Mathematical and programming techniques to numerically calculate Earth response to global semidiurnal and diurnal ocean <span class="hlt">tide</span> models were developed. Global vertical crustal deformations were evaluated for M sub 2, S sub 2, N sub 2, K sub 2, K sub 1, O sub 1, and P sub 1 ocean <span class="hlt">tide</span> loading, while horizontal deformations were evaluated for the M sub 2 tidal load. Tidal gravity calculations were performed for M sub 2 tidal loads, and strain tensor elements were evaluated for M sub 2 loads. The M sub 2 solution used for the ocean <span class="hlt">tide</span> included the effects of self-gravitation and crustal loading.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/44847','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/44847"><span>Impacts of exotic mangroves and mangrove control on <span class="hlt">tide</span> pool fish assemblages</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Richard A. MacKenzie; Cailtin L. Kryss</p> <p>2013-01-01</p> <p>Fish were sampled from <span class="hlt">tide</span> pools in Hawaii to determine how exotic mangroves Rhizophora mangle and the use of herbicides to chemically eradicate them are impacting <span class="hlt">tide</span> pool fish assemblages. Ecological parameters were compared among mangrove-invaded, native vegetated, and non-vegetated <span class="hlt">tide</span> pools before and after mangroves had been chemically...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..12210156S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..12210156S"><span>The Effect of Barotropic and Baroclinic <span class="hlt">Tides</span> on Coastal Stratification and Mixing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suanda, S. H.; Feddersen, F.; Kumar, N.</p> <p>2017-12-01</p> <p>The effects of barotropic and baroclinic <span class="hlt">tides</span> on subtidal stratification and vertical mixing are examined with high-resolution, three-dimensional numerical simulations of the Central Californian coastal upwelling region. A base simulation with realistic atmospheric and regional-scale boundary forcing but no <span class="hlt">tides</span> (NT) is compared to two simulations with the addition of predominantly barotropic local <span class="hlt">tides</span> (LT) and with combined barotropic and remotely generated, baroclinic <span class="hlt">tides</span> (WT) with ≈ 100 W m-1 onshore baroclinic energy flux. During a 10 day period of coastal upwelling when the domain volume-averaged temperature is similar in all three simulations, LT has little difference in subtidal temperature and stratification compared to NT. In contrast, the addition of remote baroclinic <span class="hlt">tides</span> (WT) reduces the subtidal continental shelf stratification up to 50% relative to NT. Idealized simulations to isolate barotropic and baroclinic effects demonstrate that within a parameter space of typical U.S. West Coast continental shelf slopes, barotropic tidal currents, incident energy flux, and subtidal stratification, the dissipating baroclinic <span class="hlt">tide</span> destroys stratification an order of magnitude faster than barotropic <span class="hlt">tides</span>. In WT, the modeled vertical temperature diffusivity at the top (base) of the bottom (surface) boundary layer is increased up to 20 times relative to NT. Therefore, the width of the inner-shelf (region of surface and bottom boundary layer overlap) is increased approximately 4 times relative to NT. The change in stratification due to dissipating baroclinic <span class="hlt">tides</span> is comparable to the magnitude of the observed seasonal cycle of stratification.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000072440','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000072440"><span>Constraints on Energy Dissipation in the Earth's Body <span class="hlt">Tide</span> From Satellite Tracking and Altimetry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.; Eanes, Richard J.; Lemoine, Frank G.</p> <p>1992-01-01</p> <p>The phase lag by which the earth's body <span class="hlt">tide</span> follows the tidal potential is estimated for the principal lunar semidiurnal <span class="hlt">tide</span> M(sub 2). The estimate results from combining recent tidal solutions from satellite tracking data and from Topex/Poseidon satellite altimeter data. Each data type is sensitive to the body-<span class="hlt">tide</span> lag: gravitationally for the tracking data, geometrically for the altimetry. Allowance is made for the lunar atmospheric <span class="hlt">tide</span>. For the tidal potential Love number kappa(sub 2) we obtain a lag epsilon of 0.20 deg +/- 0.05 deg, implying an effective body-<span class="hlt">tide</span> Q of 280 and body-<span class="hlt">tide</span> energy dissipation of 110 +/- 25 gigawatts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMIN22A..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMIN22A..03K"><span>A Tsunami-Focused <span class="hlt">Tide</span> Station Data Sharing Framework</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kari, U. S.; Marra, J. J.; Weinstein, S. A.</p> <p>2006-12-01</p> <p>The Indian Ocean Tsunami of 26 December 2004 made it clear that information about <span class="hlt">tide</span> stations that could be used to support detection and warning (such as location, collection and transmission capabilities, operator identification) are insufficiently known or not readily accessible. Parties interested in addressing this problem united under the Pacific Region Data Integrated Data Enterprise (PRIDE), and in 2005 began a multiyear effort to develop a distributed metadata system describing <span class="hlt">tide</span> stations starting with pilot activities in a regional framework and focusing on tsunami detection and warning systems being developed by various agencies. First, a plain semantic description of the tsunami-focused <span class="hlt">tide</span> station metadata was developed. The semantic metadata description was, in turn, developed into a formal metadata schema championed by International Tsunami Information Centre (ITIC) as part of a larger effort to develop a prototype web service under the PRIDE program in 2005. Under the 2006 PRIDE program the formal metadata schema was then expanded to corral input parameters for the <span class="hlt">Tide</span>Tool application used by Pacific Tsunami Warning Center (PTWC) to drill down into wave activity at a <span class="hlt">tide</span> station that is located using a web service developed on this metadata schema. This effort contributed to formalization of web service dissemination of PTWC watch and warning tsunami bulletins. During this time, the data content and sharing issues embodied in this schema have been discussed at various forums. The result is that the various stakeholders have different data provider and user perspectives (semantic content) and also exchange formats (not limited to just XML). The challenge then, is not only to capture all data requirements, but also to have formal representation that is easily transformed into any specified format. The latest revision of the <span class="hlt">tide</span> gauge schema (Version 0.3), begins to address this challenge. It encompasses a broader range of provider and user</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21037979','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21037979"><span>Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the Florida <span class="hlt">Red</span> <span class="hlt">Tide</span> (Karenia brevis).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carvalho, Gustavo A; Minnett, Peter J; Fleming, Lora E; Banzon, Viva F; Baringer, Warner</p> <p>2010-06-01</p> <p>In a continuing effort to develop suitable methods for the surveillance of Harmful Algal Blooms (HABs) of Karenia brevis using satellite radiometers, a new multi-algorithm method was developed to explore whether improvements in the remote sensing detection of the Florida <span class="hlt">Red</span> <span class="hlt">Tide</span> was possible. A Hybrid Scheme was introduced that sequentially applies the optimized versions of two pre-existing satellite-based algorithms: an Empirical Approach (using water-leaving radiance as a function of chlorophyll concentration) and a Bio-optical Technique (using particulate backscatter along with chlorophyll concentration). The long-term evaluation of the new multi-algorithm method was performed using a multi-year MODIS dataset (2002 to 2006; during the boreal Summer-Fall periods - July to December) along the Central West Florida Shelf between 25.75°N and 28.25°N. Algorithm validation was done with in situ measurements of the abundances of K. brevis; cell counts ≥1.5×10(4) cells l(-1) defined a detectable HAB. Encouraging statistical results were derived when either or both algorithms correctly flagged known samples. The majority of the valid match-ups were correctly identified (~80% of both HABs and non-blooming conditions) and few false negatives or false positives were produced (~20% of each). Additionally, most of the HAB-positive identifications in the satellite data were indeed HAB samples (positive predictive value: ~70%) and those classified as HAB-negative were almost all non-bloom cases (negative predictive value: ~86%). These results demonstrate an excellent detection capability, on average ~10% more accurate than the individual algorithms used separately. Thus, the new Hybrid Scheme could become a powerful tool for environmental monitoring of K. brevis blooms, with valuable consequences including leading to the more rapid and efficient use of ships to make in situ measurements of HABs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2964858','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2964858"><span>Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the Florida <span class="hlt">Red</span> <span class="hlt">Tide</span> (Karenia brevis)</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Carvalho, Gustavo A.; Minnett, Peter J.; Fleming, Lora E.; Banzon, Viva F.; Baringer, Warner</p> <p>2010-01-01</p> <p>In a continuing effort to develop suitable methods for the surveillance of Harmful Algal Blooms (HABs) of Karenia brevis using satellite radiometers, a new multi-algorithm method was developed to explore whether improvements in the remote sensing detection of the Florida <span class="hlt">Red</span> <span class="hlt">Tide</span> was possible. A Hybrid Scheme was introduced that sequentially applies the optimized versions of two pre-existing satellite-based algorithms: an Empirical Approach (using water-leaving radiance as a function of chlorophyll concentration) and a Bio-optical Technique (using particulate backscatter along with chlorophyll concentration). The long-term evaluation of the new multi-algorithm method was performed using a multi-year MODIS dataset (2002 to 2006; during the boreal Summer-Fall periods – July to December) along the Central West Florida Shelf between 25.75°N and 28.25°N. Algorithm validation was done with in situ measurements of the abundances of K. brevis; cell counts ≥1.5×104 cells l−1 defined a detectable HAB. Encouraging statistical results were derived when either or both algorithms correctly flagged known samples. The majority of the valid match-ups were correctly identified (~80% of both HABs and non-blooming conditions) and few false negatives or false positives were produced (~20% of each). Additionally, most of the HAB-positive identifications in the satellite data were indeed HAB samples (positive predictive value: ~70%) and those classified as HAB-negative were almost all non-bloom cases (negative predictive value: ~86%). These results demonstrate an excellent detection capability, on average ~10% more accurate than the individual algorithms used separately. Thus, the new Hybrid Scheme could become a powerful tool for environmental monitoring of K. brevis blooms, with valuable consequences including leading to the more rapid and efficient use of ships to make in situ measurements of HABs. PMID:21037979</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGeod..89.1233D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGeod..89.1233D"><span>Revisiting the pole <span class="hlt">tide</span> for and from satellite altimetry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Desai, Shailen; Wahr, John; Beckley, Brian</p> <p>2015-12-01</p> <p>Satellite altimeter sea surface height observations include the geocentric displacements caused by the pole <span class="hlt">tide</span>, namely the response of the solid Earth and oceans to polar motion. Most users of these data remove these effects using a model that was developed more than 20 years ago. We describe two improvements to the pole <span class="hlt">tide</span> model for satellite altimeter measurements. Firstly, we recommend an approach that improves the model for the response of the oceans by including the effects of self-gravitation, loading, and mass conservation. Our recommended approach also specifically includes the previously ignored displacement of the solid Earth due to the load of the ocean response, and includes the effects of geocenter motion. Altogether, this improvement amplifies the modeled geocentric pole <span class="hlt">tide</span> by 15 %, or up to 2 mm of sea surface height displacement. We validate this improvement using two decades of satellite altimeter measurements. Secondly, we recommend that the altimetry pole <span class="hlt">tide</span> model exclude geocentric sea surface displacements resulting from the long-term drift in polar motion. The response to this particular component of polar motion requires a more rigorous approach than is used by conventional models. We show that erroneously including the response to this component of polar motion in the pole <span class="hlt">tide</span> model impacts interpretation of regional sea level rise by ± 0.25 mm/year.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V32A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V32A..06S"><span>Simulation of the Pinatubo Impact on the <span class="hlt">Red</span> Sea Using Coupled Regional Ocean/Atmosphere Modeling System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stenchikov, G. L.; Osipov, S.</p> <p>2016-12-01</p> <p>This study focuses on the Middle East regional climate response to the Mt. Pinatubo volcanic eruption of 1991. It is motivated by the observed severe winter cooling in the Middle East during the winter of 1991/92. The <span class="hlt">Red</span> Sea surface temperature dropped by more than 1K and deep water mixing caused coral bleaching for a few years. To better understand the mechanisms of the Middle East climate response and evaluate the effects of radiative cooling and regional meteorological processes on the <span class="hlt">Red</span> Sea, we employ the Regional Ocean Modeling system (ROMS) fully coupled with the Weather Research and Forecasting (WRF) model. The WRF model parent and nested domains are configured over the Middle East and North Africa (MENA) region and over the <span class="hlt">Red</span> Sea with 30 and 10 km resolution, respectively. The ROMS model over the <span class="hlt">Red</span> Sea has 2 km grid spacing. The WRF code was modified to interactively account for the radiative effect of volcanic <span class="hlt">aerosols</span>. Spectral optical properties of sulfate <span class="hlt">aerosols</span> are computed using Mie based on the Sato's optical depth. Both atmosphere and ocean models capture the main features of the MENA climate response and correctly reproduce the anomalous winter cooling of 1991/92. We find that the sea surface cooling associated with meteorological effects prevails that caused by the direct radiative forcing of volcanic <span class="hlt">aerosols</span>. The overturning circulation in the <span class="hlt">Red</span> Sea strengthens. The salinity distribution and deep water formation are significantly perturbed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcDyn..66..637G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcDyn..66..637G"><span>Tidal asymmetry in a funnel-shaped estuary with mixed semidiurnal <span class="hlt">tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gong, Wenping; Schuttelaars, Henk; Zhang, Heng</p> <p>2016-05-01</p> <p>Different types of tidal asymmetry (see review of de Swart and Zimmerman Annu Rev Fluid Mech 41: 203-229, 2009) are examined in this study. We distinguish three types of tidal asymmetry: duration and magnitude differences between flood and ebb tidal flow, duration difference between the rising and falling <span class="hlt">tides</span>. For waterborne substance transport, the first two asymmetries are important while the last one is not. In this study, we take the Huangmaohai Estuary (HE), Pearl River Delta, China as an example to examine the spatio-temporal variations of the tidal asymmetry in a mixed semidiurnal tidal regime and to explain them by investigating the associated mechanisms. The methodology defining the tidal duration asymmetry and velocity skewness, proposed by Nidzieko (J Geophys Res 115: C08006. doi: <ExternalRef> <RefSource>10.1029/2009JC005864</RefSource> <RefTarget Address="10.1029/2009JC005864" TargetType="DOI"/> </ExternalRef>, 2010) and synthesized by Song et al. (J Geophys Res 116: C12007. doi: <ExternalRef> <RefSource>10.1029/2011JC007270</RefSource> <RefTarget Address="10.1029/2011JC007270" TargetType="DOI"/> </ExternalRef>, 2011), is utilized here and referred to as tidal duration asymmetry (TDA) and flow velocity asymmetry (FVA), respectively. The methodology is further used to quantify the flow duration asymmetry (FDA). A positive asymmetry means a shorter duration of low water slack for FDA, a shorter duration of the rising <span class="hlt">tide</span> for TDA, and a flood dominance for FVA and vice versa. The Regional Ocean Modeling System (ROMS) model is used to provide relatively long-term water elevation and velocity data and to conduct diagnostic experiments. In the HE, the main tidal constituents are diurnal <span class="hlt">tides</span> K 1, O 1 and semidiurnal <span class="hlt">tides</span> M 2 and S 2. The interaction among the diurnal and semidiurnal <span class="hlt">tides</span> generates a negative tidal asymmetry, while the interactions among semidiurnal <span class="hlt">tides</span> and their overtides or compound <span class="hlt">tides</span> result in a positive tidal asymmetry. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000085551','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000085551"><span>Resonant Third-Degree Diurnal <span class="hlt">Tides</span> in the Seas Off Western Europe</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.; Smith, David E. (Technical Monitor)</p> <p>2000-01-01</p> <p>Third-degree diurnal <span class="hlt">tides</span> are estimated from long time series of sea level measurements at three North Atlantic <span class="hlt">tide</span> gauges. Although their amplitudes are only a few mm or less, their admittances are far larger than those of second-degree diurnal <span class="hlt">tides</span>, just as Cartwright discovered for the M(sub 1) constituent. The <span class="hlt">tides</span> are evidently resonantly enhanced owing to high spatial correlation between the third-degree spherical harmonic of the tidal potential and a near-diurnal oceanic normal mode that is most pronounced in the North Atlantic. By estimating the ocean tidal response across the diurnal band (5 tidal constituents plus nodal modulations), the period and Q of this mode and one nearby mode are estimated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMNH33A1665W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMNH33A1665W"><span><span class="hlt">TIDE</span> TOOL: Open-Source Sea-Level Monitoring Software for Tsunami Warning Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weinstein, S. A.; Kong, L. S.; Becker, N. C.; Wang, D.</p> <p>2012-12-01</p> <p>A tsunami warning center (TWC) typically decides to issue a tsunami warning bulletin when initial estimates of earthquake source parameters suggest it may be capable of generating a tsunami. A TWC, however, relies on sea-level data to provide prima facie evidence for the existence or non-existence of destructive tsunami waves and to constrain tsunami wave height forecast models. In the aftermath of the 2004 Sumatra disaster, the International Tsunami Information Center asked the Pacific Tsunami Warning Center (PTWC) to develop a platform-independent, easy-to-use software package to give nascent TWCs the ability to process WMO Global Telecommunications System (GTS) sea-level messages and to analyze the resulting sea-level curves (marigrams). In response PTWC developed <span class="hlt">TIDE</span> TOOL that has since steadily grown in sophistication to become PTWC's operational sea-level processing system. <span class="hlt">TIDE</span> TOOL has two main parts: a decoder that reads GTS sea-level message logs, and a graphical user interface (GUI) written in the open-source platform-independent graphical toolkit scripting language Tcl/Tk. This GUI consists of dynamic map-based clients that allow the user to select and analyze a single station or groups of stations by displaying their marigams in strip-chart or screen-tiled forms. <span class="hlt">TIDE</span> TOOL also includes detail maps of each station to show each station's geographical context and reverse tsunami travel time contours to each station. <span class="hlt">TIDE</span> TOOL can also be coupled to the GEOWARE™ TTT program to plot tsunami travel times and to indicate the expected tsunami arrival time on the marigrams. Because sea-level messages are structured in a rich variety of formats <span class="hlt">TIDE</span> TOOL includes a metadata file, COMP_META, that contains all of the information needed by <span class="hlt">TIDE</span> TOOL to decode sea-level data as well as basic information such as the geographical coordinates of each station. <span class="hlt">TIDE</span> TOOL can therefore continuously decode theses sea-level messages in real-time and display the time</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C13G..07J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C13G..07J"><span>Modelling and parameterizing the influence of <span class="hlt">tides</span> on ice-shelf melt rates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jourdain, N.; Molines, J. M.; Le Sommer, J.; Mathiot, P.; de Lavergne, C.; Gurvan, M.; Durand, G.</p> <p>2017-12-01</p> <p>Significant Antarctic ice sheet thinning is observed in several sectors of Antarctica, in particular in the Amundsen Sea sector, where warm circumpolar deep waters affect basal melting. The later has the potential to trigger marine ice sheet instabilities, with an associated potential for rapid sea level rise. It is therefore crucial to simulate and understand the processes associated with ice-shelf melt rates. In particular, the absence of <span class="hlt">tides</span> representation in ocean models remains a caveat of numerous ocean hindcasts and climate projections. In the Amundsen Sea, <span class="hlt">tides</span> are relatively weak and the melt-induced circulation is stronger than the tidal circulation. Using a regional 1/12° ocean model of the Amundsen Sea, we nonetheless find that <span class="hlt">tides</span> can increase melt rates by up to 36% in some ice-shelf cavities. Among the processes that can possibly affect melt rates, the most important is an increased exchange at the ice/ocean interface resulting from the presence of strong tidal currents along the ice drafts. Approximately a third of this effect is compensated by a decrease in thermal forcing along the ice draft, which is related to an enhanced vertical mixing in the ocean interior in presence of <span class="hlt">tides</span>. Parameterizing the effect of <span class="hlt">tides</span> is an alternative to the representation of explicit <span class="hlt">tides</span> in an ocean model, and has the advantage not to require any filtering of ocean model outputs. We therefore explore different ways to parameterize the effects of <span class="hlt">tides</span> on ice shelf melt. First, we compare several methods to impose tidal velocities along the ice draft. We show that getting a realistic spatial distribution of tidal velocities in important, and can be deduced from the barotropic velocities of a <span class="hlt">tide</span> model. Then, we explore several aspects of parameterized tidal mixing to reproduce the <span class="hlt">tide</span>-induced decrease in thermal forcing along the ice drafts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED226987.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED226987.pdf"><span><span class="hlt">Tides</span>. Marine Science Curriculum Aid No. 5. Sea Grant Report 80-2.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>McDonald, Judy</p> <p></p> <p>This manual, developed for use in Alaskan secondary schools, is one of a continuing series designed to provide basic information about the marine environment and Alaskan marine resources. The first part of the manual presents information about <span class="hlt">tides</span>, focusing on: the nature of <span class="hlt">tides</span>; cause of <span class="hlt">tides</span>; factors related to tidal movement; types of…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A14F..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A14F..04S"><span>Coupled Regional Ocean-Atmosphere Modeling of the Mount Pinatubo Impact on the <span class="hlt">Red</span> Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stenchikov, G. L.; Osipov, S.</p> <p>2017-12-01</p> <p>The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic <span class="hlt">aerosols</span>. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the <span class="hlt">Red</span> Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic <span class="hlt">aerosols</span>. The atmospheric circulation effect was significantly stronger than the direct volcanic <span class="hlt">aerosols</span> effect. We found that the <span class="hlt">Red</span> Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the <span class="hlt">Red</span> Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the <span class="hlt">Red</span> Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1072857-modeling-typical-winter-time-dust-event-over-arabian-peninsula-red-sea','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1072857-modeling-typical-winter-time-dust-event-over-arabian-peninsula-red-sea"><span>Modeling a Typical Winter-time Dust Event over the Arabian Peninsula and the <span class="hlt">Red</span> Sea</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kalenderski, S.; Stenchikov, G.; Zhao, Chun</p> <p>2013-02-20</p> <p>We used WRF-Chem, a regional meteorological model coupled with an <span class="hlt">aerosol</span>-chemistry component, to simulate various aspects of the dust phenomena over the Arabian Peninsula and <span class="hlt">Red</span> Sea during a typical winter-time dust event that occurred in January 2009. The model predicted that the total amount of emitted dust was 18.3 Tg for the entire dust outburst period and that the two maximum daily rates were ~2.4 Tg/day and ~1.5 Tg/day, corresponding to two periods with the highest <span class="hlt">aerosol</span> optical depth that were well captured by ground- and satellite-based observations. The model predicted that the dust plume was thick, extensive, andmore » mixed in a deep boundary layer at an altitude of 3-4 km. Its spatial distribution was modeled to be consistent with typical spatial patterns of dust emissions. We utilized MODIS-Aqua and Solar Village AERONET measurements of the <span class="hlt">aerosol</span> optical depth (AOD) to evaluate the radiative impact of <span class="hlt">aerosols</span>. Our results clearly indicated that the presence of dust particles in the atmosphere caused a significant reduction in the amount of solar radiation reaching the surface during the dust event. We also found that dust <span class="hlt">aerosols</span> have significant impact on the energy and nutrient balances of the <span class="hlt">Red</span> Sea. Our results showed that the simulated cooling under the dust plume reached 100 W/m2, which could have profound effects on both the sea surface temperature and circulation. Further analysis of dust generation and its spatial and temporal variability is extremely important for future projections and for better understanding of the climate and ecological history of the <span class="hlt">Red</span> Sea.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170005843&hterms=foster&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfoster','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170005843&hterms=foster&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfoster"><span>Future Nuisance Flooding at Boston Caused by Astronomical <span class="hlt">Tides</span> Alone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.; Foster, Grant</p> <p>2016-01-01</p> <p>Sea level rise necessarily triggers more occurrences of minor, or nuisance, flooding events along coastlines, a fact well documented in recent studies. At some locations nuisance flooding can be brought about merely by high spring <span class="hlt">tides</span>, independent of storms, winds, or other atmospheric conditions. Analysis of observed water levels at Boston indicates that tidal flooding began to occur there in 2011 and will become more frequent in subsequent years. A compilation of all predicted nuisance-flooding events, induced by astronomical <span class="hlt">tides</span> alone, is presented through year 2050. The accuracy of the <span class="hlt">tide</span> prediction is improved when several unusual properties of Gulf of Maine <span class="hlt">tides</span>, including secular changes, are properly accounted for. Future mean sea-level rise at Boston cannot be predicted with comparable confidence, so two very different climate scenarios are adopted; both predict a large increase in the frequency and the magnitude of tidal flooding events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030102174','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030102174"><span>Mesospheric Non-Migrating <span class="hlt">Tides</span> Generated With Planetary Waves: II Influence of Gravity Waves</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.</p> <p>2003-01-01</p> <p>We demonstrated that, in our model, non-linear interactions between planetary waves (PW) and migrating <span class="hlt">tides</span> could generate in the upper mesosphere non-migrating <span class="hlt">tides</span> with amplitudes comparable to those observed. The Numerical Spectral Model (NSM) we employ incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GW), which affect in numerous ways the dynamics of the mesosphere. The latitudinal (seasonal) reversals in the temperature and zonal circulation, which are largely caused by GWs (Lindzen, 198l), filter the PWs and contribute to the instabilities that generate the PWs. The PWs in turn are amplified by the momentum deposition of upward propagating GWs, as are the migrating <span class="hlt">tides</span>. The GWs thus affect significantly the migrating <span class="hlt">tides</span> and PWs, the building blocks of non-migrating <span class="hlt">tides</span>. In the present paper, we demonstrate that GW filtering also contributes to the non-linear coupling between PWs and <span class="hlt">tides</span>. Two computer experiments are presented to make this point. In one, we simply turn off the GW source to show the effect. In the second case, we demonstrate the effect by selectively suppressing the momentum source for the m = 0 non-migrating <span class="hlt">tides</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDM31006M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDM31006M"><span>Simultaneous generation and scattering of internal <span class="hlt">tides</span> by ocean floor topography</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mathur, Manikandan</p> <p>2015-11-01</p> <p>Internal waves play a significant role in the global energy budget of the ocean, with internal <span class="hlt">tides</span> potentially contributing to the conversion of a large amount of mechanical energy into heat in the deep ocean. Several studies in the past decade have investigated internal <span class="hlt">tide</span> generation and internal <span class="hlt">tide</span> scattering by ocean floor topography, but by treating them as two separate, independent processes. In this talk, we use the recently developed Green function model (Mathur et al., J. Geophys. Res. Oceans, 119, 2165-2182, 2014), sans the WKB approximation, to quantify the extent to which internal <span class="hlt">tide</span> generation (scattering) that results from barotropic (baroclinic) forcing on small- and large-scale topography in uniform and nonuniform stratifications is modified by the presence of a background baroclinic (barotropic) <span class="hlt">tide</span>. Results on idealized topography, stratification and forcing will first be presented, followed by a discussion on the relevance of our studies in the real ocean scenario. The author thanks the Ministry of Earth Sciences, Government of India for financial support under the Monsoon Mission Grant MM/2014/IND-002.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcDyn.tmp...57W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcDyn.tmp...57W"><span>Experimental investigation of internal <span class="hlt">tides</span> generated by finite-height topography</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Shuya; Chen, Xu; Wang, Jinhu; Meng, Jing</p> <p>2018-06-01</p> <p>Internal <span class="hlt">tides</span> generated by finite-height topography are investigated in the laboratory, and the particle image velocimetry (PIV) technique is applied to measure the velocity fields. The energy, energy flux, and vertical mode structure of the internal <span class="hlt">tides</span> are calculated and analyzed. The experimental results indicate that the strength of the wave field is mainly affected by the normalized topography height. The rays radiated from the taller topography are wider than those radiated from the lower topography. Both the experimental and theoretical results indicate that the normalized energy and energy flux of the internal <span class="hlt">tides</span> are mainly determined by the normalized topography height, and the increase of the two quantities follows a quadratic function, and they almost remain unchanged with different normalized frequencies except for higher frequency. The percentage of energy for mode-1 and mode-2 internal <span class="hlt">tides</span> is determined not only by frequency but also by topography height. In addition, an "inherent normalized frequency" is observed in the experiment, at which the percentage of energy for mode 1 and mode 2 does not vary with topography height. The decay rate of internal <span class="hlt">tide</span> energy in the near field and far field is also estimated, with average values of 36.5 and 7.5%, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS23A1984K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS23A1984K"><span>Effect of <span class="hlt">Tide</span> Elevation on Extratropical Storm Surge in Northwest Europe</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.</p> <p>2016-12-01</p> <p>Extratropical cyclones (ETCs) are the major storm surge-generating meteorological events in northwest Europe. The total water level increase induced by these ETCs is significantly influenced by the local tidal range, which exceeds 8 meters along the southwestern UK coastline. In particular, a surge-generating ETC during high <span class="hlt">tide</span> may put coastal assets and infrastructure in risk. Also, during low <span class="hlt">tide</span>, the risk of surge induced by extreme ETC events is diminished. Here, the effect of tidal elevation on storm surge is investigated at 196 <span class="hlt">tide</span> gauges in northwest Europe. A numerical, hydrodynamic model was developed using Delft3D-FM framework to simulate the coastal hydrodynamics during ETCs. Then, 1750 historical events were simulated to investigate the pattern of coastal inundation. Results suggest that in areas with a large tidal range ( 8 meters) and during the time period surrounding high or low <span class="hlt">tide</span>, the pattern of coastal hydrodynamics is governed by <span class="hlt">tide</span> and not storm surge. This result is most evident near the English Channel and Bristol Channel, where low frequency maximum water levels are observed when storm surge is combined with high <span class="hlt">tide</span>. In contrast, near the tidal phase reversal, coastal hydrodynamics responds primarily to the storm surge, and low frequency maximum water elevation largely depends on the surge. In the areas with a small tidal range, ETC strength determines the pattern of coastal inundation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1850n0012K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1850n0012K"><span>Application of simple all-sky imagers for the estimation of <span class="hlt">aerosol</span> optical depth</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Nikitidou, Efterpi; Salamalikis, Vasileios; Wilbert, Stefan; Prahl, Christoph</p> <p>2017-06-01</p> <p><span class="hlt">Aerosol</span> optical depth is a key atmospheric constituent for direct normal irradiance calculations at concentrating solar power plants. However, <span class="hlt">aerosol</span> optical depth is typically not measured at the solar plants for financial reasons. With the recent introduction of all-sky imagers for the nowcasting of direct normal irradiance at the plants a new instrument is available which can be used for the determination of <span class="hlt">aerosol</span> optical depth at different wavelengths. In this study, we are based on <span class="hlt">Red</span>, Green and Blue intensities/radiances and calculations of the saturated area around the Sun, both derived from all-sky images taken with a low-cost surveillance camera at the Plataforma Solar de Almeria, Spain. The <span class="hlt">aerosol</span> optical depth at 440, 500 and 675nm is calculated. The results are compared with collocated <span class="hlt">aerosol</span> optical measurements and the mean/median difference and standard deviation are less than 0.01 and 0.03 respectively at all wavelengths.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790022736','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790022736"><span>M2, S2, K1 models of the global ocean <span class="hlt">tide</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parke, M. E.; Hendershott, M. C.</p> <p>1979-01-01</p> <p>Ocean tidal signals appear in many geophysical measurements. Geophysicists need realistic tidal models to aid in interpretation of their data. Because of the closeness to resonance of dissipationless ocean <span class="hlt">tides</span>, it is difficult for numerical models to correctly represent the actual open ocean <span class="hlt">tide</span>. As an approximate solution to this problem, test functions derived by solving Laplace's Tidal Equations with ocean loading and self gravitation are used as a basis for least squares dynamic interpolation of coastal and island tidal data for the constituents M2, S2, and Kl. The resulting representations of the global <span class="hlt">tide</span> are stable over at least a ?5% variation in the mean depth of the model basin, and they conserve mass. Maps of the geocentric <span class="hlt">tide</span>, the induced free space potential, the induced vertical component of the solid earth <span class="hlt">tide</span>, and the induced vertical component of the gravitational field for each contituent are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870034097&hterms=Paradox+value&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DParadox%2Bvalue','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870034097&hterms=Paradox+value&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DParadox%2Bvalue"><span>Another look at North Sea pole <span class="hlt">tide</span> dynamics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dickman, S. R.; Preisig, J. R.</p> <p>1986-01-01</p> <p>The mechanism proposed by Wunsch (1974) to explain pole <span class="hlt">tide</span> observations in the North Sea is evaluated. Wunsch's equations governing pole <span class="hlt">tide</span> in the North Sea are presented, and solutions for correcting the depth, stream function, and deviation of the tidal height from the equilibrium values are described. The similarity between the Stokes paradox and the tidal equations of the North Sea, and the need for inclusion of inertial terms in the tidal equations are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P13A2121T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P13A2121T"><span>Librations and <span class="hlt">tides</span> of icy satellites: model comparison for Enceladus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trinh, A.; Van Hoolst, T.; Baland, R. M.; Beuthe, M.; Rivoldini, A.; Dehant, V. M. A.</p> <p>2015-12-01</p> <p>The latest measurements of the librations of Enceladus suggest that it could have a global subsurface ocean or a non-hydrostatic core (Thomas et al. 2014). Further observations should constrain the properties of the ice shell, and similar insights are expected from future investigation of Europa and Ganymede.Detailed models of the librations and <span class="hlt">tides</span> are therefore required to properly interpret these measurements in terms of interior structure. Here we compare the `classical', separate <span class="hlt">tide</span> and libration models (where spherical symmetry is assumed to compute the <span class="hlt">tides</span>, Van Hoolst et al. 2013) with our combined <span class="hlt">tide</span>+libration model (Trinh et al. 2013), both extended to account for non-hydrostatic structure.Even with a global ocean, different mechanisms act to prevent Enceladus's shell from moving independently from the rest. Among those, pressure coupling across the flattened boundaries of the ocean requires special care if the shape is not fully relaxed. We discuss how it should be modelled in the classical approach to be consistent with the combined model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023001','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023001"><span>Model of Semidiurnal Pseudo <span class="hlt">Tide</span> in the High-Latitude Upper Mesosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Talaat, E. R.; Mayr, H. G.</p> <p>2011-01-01</p> <p>We present numerical results for the m = 1 meridional winds of semi diurnal oscillations in the high-latitude upper mesosphere, which are generated in the Numerical Spectral Model (NSM) without solar excitations of the <span class="hlt">tides</span>. Identified with heuristic computer runs, the pseudo <span class="hlt">tides</span> attain amplitudes that are, at times, as large as the non-migrating <span class="hlt">tides</span> produced with standard solar forcing. Under the influence of parameterized gravity waves, the nonlinear NSM generates internal oscillations like the quasi-biennial oscillation, that are produced with periods favored by the dynamical properties of the system. The Coriolis force would favor at polar latitudes the excitation of the 12-hour periodicity. This oscillation may help explain the large non-migrating semidiurnal <span class="hlt">tides</span> that are observed in the region with ground-based and satellite measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2547342','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2547342"><span>Florida <span class="hlt">Red</span> <span class="hlt">Tide</span> and Human Health: A Pilot Beach Conditions Reporting System to Minimize Human Exposure</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kirkpatrick, Barbara; Currier, Robert; Nierenberg, Kate; Reich, Andrew; Backer, Lorraine C.; Stumpf, Richard; Fleming, Lora; Kirkpatrick, Gary</p> <p>2008-01-01</p> <p>With over 50% of the US population living in coastal counties, the ocean and coastal environments have substantial impacts on coastal communities. While may of the impacts are positive, such as tourism and recreation opportunities, there are also negative impacts, such as exposure to harmful algal blooms (HABs) and water borne pathogens. Recent advances in environmental monitoring and weather prediction may allow us to forecast these potential adverse effects and thus mitigate the negative impact from coastal environmental threats. One example of the need to mitigate adverse environmental impacts occurs on Florida’s west coast, which experiences annual blooms, or periods of exuberant growth, of the toxic dinoflagellate, Karenia brevis. K. brevis produces a suite of potent neurotoxins called brevetoxins. Wind and wave action can break up the cells, releasing toxin that can then become part of the marine <span class="hlt">aerosol</span> or sea spray. Brevetoxins in the <span class="hlt">aerosol</span> cause respiratory irritation in people who inhale it. In addition, asthmatics who inhale the toxins report increase upper and lower airway lower symptoms and experience measurable changes in pulmonary function. Real-time reporting of the presence or absence of these toxic <span class="hlt">aerosols</span> will allow asthmatics and local coastal residents to make informed decisions about their personal exposures, thus adding to their quality of life. A system to protect public health that combines information collected by an Integrated Ocean Observing System (IOOS) has been designed and implemented in Sarasota and Manatee Counties, Florida. This system is based on real-time reports from lifeguards at the eight public beaches. The lifeguards provide periodic subjective reports of the amount of dead fish on the beach, apparent level of respiratory irritation among beach-goers, water color, wind direction, surf condition, and the beach warning flag they are flying. A key component in the design of the observing system was an easy reporting</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P51B2136B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P51B2136B"><span>Subsurface Ocean <span class="hlt">Tides</span> in Enceladus and Other Icy Moons</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beuthe, M.</p> <p>2016-12-01</p> <p>Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical <span class="hlt">tides</span> give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative <span class="hlt">tides</span> in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 meters deep. The model is general: it applies to all icy satellites with a thin crust and a shallow or stratified ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity <span class="hlt">tide</span> does not move the crust. Therefore, crustal dissipation due to dynamical obliquity <span class="hlt">tides</span> can differ from the static prediction by up to a factor of two.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.8894O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.8894O"><span>Regional Effects of the Mount Pinatubo Eruption on the Middle East and the <span class="hlt">Red</span> Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osipov, Sergey; Stenchikov, Georgiy</p> <p>2017-11-01</p> <p>The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic <span class="hlt">aerosols</span>. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the <span class="hlt">Red</span> Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic <span class="hlt">aerosols</span>. The atmospheric circulation effect was significantly stronger than the direct volcanic <span class="hlt">aerosols</span> effect. We found that the <span class="hlt">Red</span> Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the <span class="hlt">Red</span> Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the <span class="hlt">Red</span> Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...142...32Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...142...32Z"><span><span class="hlt">Tide</span>-surge interaction along the east coast of the Leizhou Peninsula, South China Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Heng; Cheng, Weicong; Qiu, Xixi; Feng, Xiangbo; Gong, Wenping</p> <p>2017-06-01</p> <p>A triply-nested two-dimensional (2D) ocean circulation model along with observed sea level records are used to study <span class="hlt">tide</span>-surge interaction along the east coast of the Leizhou Peninsula (LP) which is characterized by extensive mudflats, large tidal ranges and a complex coastline. The dependency of surge maxima on the water level and the phase of <span class="hlt">tide</span> are respectively investigated using two statistical approaches. Results show that <span class="hlt">tide</span>-surge interaction along the east coast of the LP is significant, where surges peak 3-6 h before or after the nearest high water. The triply-nested 2D ocean circulation model is used to quantify <span class="hlt">tide</span>-surge interaction in this region and to investigate its physical cause. The largest amplitudes of <span class="hlt">tide</span>-surge interaction are found in the shallow water region of the Leizhou Bay, with values up to 1 m during typhoon events. Numerical experiments reveal that nonlinear bottom friction is the main contributor to <span class="hlt">tide</span>-surge interaction, while the contribution of the nonlinear advective effect can be neglected. The shallow water effect enhances the role of nonlinear bottom friction in determining <span class="hlt">tide</span>-surge modulation, leaving the surge peaks usually occur on the rising or falling <span class="hlt">tide</span>. It is also found that the relative contribution of local wind and remote wind is different depending on the storm track and storm intensity, which would finally affect the temporal and spatial distribution of <span class="hlt">tide</span>-surge interaction during typhoon events. These findings confirm the importance of coupling storm surges and <span class="hlt">tides</span> for the prediction of storm surge events in regions which are characterized by shallow water depths and large tidal ranges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DyAtO..82...89B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DyAtO..82...89B"><span>Dynamical significance of <span class="hlt">tides</span> over the Bay of Bengal</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhagawati, Chirantan; Pandey, Suchita; Dandapat, Sumit; Chakraborty, Arun</p> <p>2018-06-01</p> <p><span class="hlt">Tides</span> play a significant role in the ocean surface circulations and vertical mixing thereby influencing the Sea Surface Temperatures (SST) as well. This, in turn, plays an important role in the global circulation when used as a lower boundary condition in a global atmospheric general circulation model. Therefore in the present study, the dynamics of <span class="hlt">tides</span> over the Bay of Bengal (BoB) is investigated through numerical simulations using a high resolution (1/12°) Regional Ocean Modeling System (ROMS). Based on statistical analysis it is observed that incorporation of explicit tidal forcing improves the model performance in simulating the basin averaged monthly surface circulation features by 64% compared to the simulation without <span class="hlt">tides</span>. The model simulates also Mixed Layer Depth (MLD) and SST realistically. The energy exchange between tidal oscillations and eddies leads to redistribution of surface kinetic energy density with a net decrease of 0.012 J m-3 in the western Bay and a net increase of 0.007 J m-3 in the eastern Bay. The tidal forcing also affects the potential energy anomaly and vertical mixing thereby leading to a fall in monthly MLD over the BoB. The mixing due to <span class="hlt">tides</span> leads to a subsequent reduction in monthly SST and a corresponding reduction in surface heat exchange. These results from the numerical simulation using ROMS reveal that <span class="hlt">tides</span> have a significant influence over the air-sea heat exchange which is the most important parameter for prediction of Tropical Cyclone frequency and its future variability over the BoB.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ECSS..175...79L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ECSS..175...79L"><span>Fish community responses to green <span class="hlt">tides</span> in shallow estuarine and coastal areas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Luherne, E.; Réveillac, E.; Ponsero, A.; Sturbois, A.; Ballu, S.; Perdriau, M.; Le Pape, O.</p> <p>2016-06-01</p> <p>All over the world, numerous bays and estuarine systems that are known to shelter essential fish habitats are experiencing proliferations of green macroalgae known as green <span class="hlt">tides</span>. Although the processes that enhance green <span class="hlt">tides</span> in response to nutrient enrichment are well known, their consequences for ecological communities -especially for ichthyofauna- remain poorly studied. To estimate these consequences, this analysis focused on the two types of shallow systems that are experiencing green <span class="hlt">tides</span>: sandy beaches and estuarine mudflats. In these two systems, macroalgae proliferation and fish community were surveyed along seasonal cycles at control and impacted sites that shared similar physico-chemical parameters and sediment structure. To analyse the consequences of green <span class="hlt">tides</span> on the fish community, a Before-After Control-Impact approach was used. This approach reveals no difference between fish communities at the control and impacted sites before the macroalgal bloom. Then, it underlines an influence of green <span class="hlt">tides</span> on the fish community, and this influence varies according to the composition, density and duration of the macroalgal bloom. Indeed, when intertidal systems experienced short proliferation and/or weak density, green <span class="hlt">tides</span> did not seem to impact the fish community. However, when green macroalgae proliferated in large quantities and/or when the proliferation lasted for long periods, the fish community was significantly affected. These modifications in the fish community led to a significant decrease in fish species diversity and density until fish disappeared from impacted sites at high proliferations. Furthermore, the response of fish species to green <span class="hlt">tides</span> differed according to their functional guilds. Negative consequences for benthic and marine juvenile fish species were beginning at low proliferations, whereas for pelagic fish species they occurred only at high proliferations. Thus, green <span class="hlt">tides</span> significantly affect fish habitat suitability because</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007236','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007236"><span>Secular Changes in the Solar Semidiurnal <span class="hlt">Tide</span> of the Western North Atlantic Ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.</p> <p>2009-01-01</p> <p>An analysis of twentieth century <span class="hlt">tide</span> gauge records reveals that the solar semidiurnal <span class="hlt">tide</span> S, has been decreasing in amplitude along the eastern coast of North America and at the mid-ocean site Bermuda. In relative terms the observed rates are unusually large, of order 10% per century. Periods of greatest change, however, are inconsistent among the stations, and roughly half the stations show increasing amplitude since the late 1990s. Excepting the Gulf of Maine, lunar <span class="hlt">tides</span> are either static or slightly increasing in amplitude; a few stations show decreases. Large changes in solar, but not lunar, <span class="hlt">tides</span> suggest causes related to variable radiational forcing, but the hypothesis is at present unproven. Citation: Ray, R. D. (2009), Secular changes in the solar semidiurnal <span class="hlt">tide</span> of the western North Atlantic Ocean</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4343Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4343Y"><span>Development of Operational Wave-<span class="hlt">Tide</span>-Storm surges Coupling Prediction System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>You, S. H.; Park, S. W.; Kim, J. S.; Kim, K. L.</p> <p>2009-04-01</p> <p>The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large <span class="hlt">tides</span> in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surges, the development of coupling wave-<span class="hlt">tide</span>-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of <span class="hlt">tides</span> and storm surges on wind waves and recommended further investigations into the effects of wave-<span class="hlt">tide</span>-storm surges interactions and coupling module. In Korea, especially, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high <span class="hlt">tide</span> and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/<span class="hlt">tide</span> prediction system (STORM : Storm Surges/<span class="hlt">Tide</span> Operational Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The STORM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and STORM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. These two operational models are coupled to simulate wave heights for typhoon case. The sea level and current simulated by storm surge model are used for the input of wave model with 3 hour interval. The coupling simulation between wave and storm surge model carried out for Typhoon Nabi (0514), Shanshan(0613) and Nari (0711) which were effected on Korea directly. We simulated significant wave height simulated by wave model and coupling model and compared difference between</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10422E..1EH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10422E..1EH"><span>The influence of <span class="hlt">tide</span> on sea surface temperature in the marginal sea of northwest Pacific Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Shih-Jen; Tsai, Yun-Chan; Ho, Chung-Ru; Lo, Yao-Tsai; Kuo, Nan-Jung</p> <p>2017-10-01</p> <p><span class="hlt">Tide</span> gauge data provided by the University of Hawaii Sea Level Center and daily sea surface temperature (SST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) product are used in this study to analyze the influence of <span class="hlt">tide</span> on the SST in the seas of Northwestern Pacific. In the marginal region, the climatology SST is lower in the northwestern area than that in the southeastern area. In the coastal region, the SST at spring <span class="hlt">tide</span> is higher than that at neap <span class="hlt">tide</span> in winter, but it is lower in other seasons. In the adjacent waters of East China Sea and Yellow Sea, the SST at spring <span class="hlt">tide</span> is higher than that at neap <span class="hlt">tide</span> in winter and summer but it is lower in spring and autumn. In the open ocean region, the SST at spring <span class="hlt">tide</span> is higher than that at neap <span class="hlt">tide</span> in winter, but it is lower in other seasons. In conclusion, not only the river discharge and topography, but also <span class="hlt">tides</span> could influence the SST variations, especially in the open ocean region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4784J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4784J"><span>Modelling the influence of <span class="hlt">tides</span> on ice-shelf melt rates in the Amundsen Sea, Antarctica.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jourdain, Nicolas C.; Molines, Jean-Marc; Le Sommer, Julien; Mathiot, Pierre; Chanut, Jérome; Madec, Gurvan</p> <p>2017-04-01</p> <p>Variations in melt beneath ice- shelves may trigger ice-sheet instabilities, in particular in West Antarctica. Therefore, improving the understanding and modelling of ice-shelf basal melt rates has been a major focus over the last decades. In this presentation, we provide further insight into the role of <span class="hlt">tides</span> on basal melt rates, and we assess several methods to account for <span class="hlt">tides</span> in models that do not include an explicit representation of <span class="hlt">tides</span>. First, we use an explicit representation of <span class="hlt">tides</span> in a regional configuration of the NEMO-3.6 model deployed over the Amundsen Sea. We show that most of the tidal influence on ice-shelf melt is explained by four tidal constituents. <span class="hlt">Tides</span> enhance melt by more than 30% in some cavities like Abbot, Cosgrove and Dotson, but by less than 10% in others like Thwaites and Pine Island. Over the entire Amundsen Sea sector, <span class="hlt">tides</span> enhance melt by 92 Gt/yr, which is mostly induced by tidal velocities along ice drafts (+148 Gt/yr), partly compensated by <span class="hlt">tide</span>-induced change in thermal forcing (-31 Gt/yr) and co-variations between tidal velocities and thermal forcing (-26 Gt/yr). In the second part of this presentation, we show that using uniform tidal velocities to account for <span class="hlt">tides</span> effects in ocean models with no explicit <span class="hlt">tides</span> produces large biases in melt rates. By contrast, prescribing non-uniform tidal velocities allows an accurate representation of the dynamical effects of <span class="hlt">tides</span> on melt rates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS11C1651A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS11C1651A"><span>Errors in Tsunami Source Estimation from <span class="hlt">Tide</span> Gauges</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arcas, D.</p> <p>2012-12-01</p> <p>Linearity of tsunami waves in deep water can be assessed as a comparison of flow speed, u to wave propagation speed √gh. In real tsunami scenarios this evaluation becomes impractical due to the absence of observational data of tsunami flow velocities in shallow water. Consequently the extent of validity of the linear regime in the ocean is unclear. Linearity is the fundamental assumption behind tsunami source inversion processes based on linear combinations of unit propagation runs from a deep water propagation database (Gica et al., 2008). The primary tsunami elevation data for such inversion is usually provided by National Oceanic and Atmospheric (NOAA) deep-water tsunami detection systems known as DART. The use of <span class="hlt">tide</span> gauge data for such inversions is more controversial due to the uncertainty of wave linearity at the depth of the <span class="hlt">tide</span> gauge site. This study demonstrates the inaccuracies incurred in source estimation using <span class="hlt">tide</span> gauge data in conjunction with a linear combination procedure for tsunami source estimation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT.......113C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT.......113C"><span>Migrating diurnal <span class="hlt">tide</span> variability induced by propagating planetary waves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, Loren C.</p> <p></p> <p>The migrating diurnal <span class="hlt">tide</span> is one of the dominant dynamical features in the low latitudes of the Earth's Mesosphere and Lower Thermosphere (MLT) region, representing the atmospheric response to the largest component of solar forcing, propagating upwards from excitation regions in the lower atmosphere. Ground-based observations of the <span class="hlt">tide</span> have resolved short term variations attributed to nonlinear interactions between the <span class="hlt">tide</span> and planetary waves also in the region. However, the conditions, effects, and mechanisms of a planetary wave - tidal interaction are still unclear. These questions are addressed using the NCAR Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) to examine two types of planetary waves, known to attain significant amplitudes in the low latitude and equatorial region where the migrating diurnal <span class="hlt">tide</span> is dominant. The quasi-two day wave (QTDW) can rapidly amplify to large amplitudes from the summer hemisphere during post-solstice periods, while ultra fast Kelvin (UFK) waves occur sporadically in the temperature and zonal wind fields of the equatorial lower thermosphere. While child waves resulting from a nonlinear interaction are resolved in both cases, the response of the tidal structure and amplitudes to the two planetary waves differs significantly. In the case of the QTDW, the migrating diurnal <span class="hlt">tide</span> displays a general amplitude decrease of 20 - 40%, as well as a shortening of vertical wavelength by roughly 4 km. Nonlinear advection is found to result in energy transfer to and from the <span class="hlt">tide</span>, resulting in latitudinal smoothing of the tidal structure. The QTDW also produces significant changes to the mean zonal winds in the equator and at summer mid to high latitudes that can also account for changes in tidal amplitude and vertical wavelength. Filtering of gravity waves by the altered mean winds can also result in changes to the zonal mean zonal winds in the tropics. However, gravity wave momentum forcing on</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950049128&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doceans%2Btide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950049128&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doceans%2Btide"><span>Geographical representation of radial orbit perturbations due to ocean <span class="hlt">tides</span>: Implications for satellite altimetry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bettadpur, Srinivas V.; Eanes, Richard J.</p> <p>1994-01-01</p> <p>In analogy to the geographical representation of the zeroth-order radial orbit perturbations due to the static geopotential, similar relationships have been derived for radial orbit perturbations due to the ocean <span class="hlt">tides</span>. At each location these perturbations are seen to be coherent with the <span class="hlt">tide</span> height variations. The study of this singularity is of obvious importance to the estimation of ocean <span class="hlt">tides</span> from satellite altimeter data. We derive analytical expressions for the sensitivity of altimeter derived ocean <span class="hlt">tide</span> models to the ocean <span class="hlt">tide</span> force model induced errors in the orbits of the altimeter satellite. In particular, we focus on characterizing and quantifying the nonresonant tidal orbit perturbations, which cannot be adjusted into the empirical accelerations or radial perturbation adjustments commonly used during orbit determination and in altimeter data processing. As an illustration of the utility of this technique, we study the differences between a TOPEX/POSEIDON-derived ocean <span class="hlt">tide</span> model and the Cartwright and Ray 1991 Geosat model. This analysis shows that nearly 60% of the variance of this difference for M(sub 2) can be explained by the Geosat radial orbit eror due to the omission of coefficients from the GEM-T2 background ocean <span class="hlt">tide</span> model. For O(sub 1), K(sub 1), S(sub 2), and K(sub 2) the orbital effects account for approximately 10 to 40% of the variances of these differences. The utility of this technique to assessment of the ocean <span class="hlt">tide</span> induced errors in the TOPEX/POSEIDON-derived <span class="hlt">tide</span> models is also discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.7599S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.7599S"><span>Tidal distortion caused by the resonance of sexta-diurnal <span class="hlt">tides</span> in a micromesotidal embayment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Dehai; Yan, Yuhan; Wu, Wen; Diao, Xiliang; Ding, Yang; Bao, Xianwen</p> <p>2016-10-01</p> <p>Double high water and double-peak flood current were observed in Daya Bay (DYB), China, which is a shallow, mixed, mainly semidiurnal-<span class="hlt">tide</span> dominated bay with a micro to mesotidal range. Harmonic analysis reveals that the quarter and especially the sexta-diurnal constituents are getting much stronger as <span class="hlt">tides</span> propagating into the bay. The astronomical <span class="hlt">tides</span>-induced tidal asymmetry is yet dominant at the bay entrance but overtaken by the sexta-diurnal <span class="hlt">tides</span> at the end of the bay. Both the M4 and M6 <span class="hlt">tide</span> meet the requirement proposed in previous studies but still unable to produce a double high water alone. Therefore, the conditions to produce a double high water between a fundamental <span class="hlt">tide</span> and its higher harmonics need to be revisited. Analytical solutions were obtained in this paper, which fit the numerical solutions very well. Modeling result indicates M6 alone with M2 can produce the double high water in DYB but limited in some regions, while the combination of M2, M4, and M6 <span class="hlt">tides</span> would enhance the capability. The amplification of sexta-diurnal <span class="hlt">tides</span> in DYB is dominated by resonance and followed by shoaling effect. Bottom friction damped M6 a lot and largely confined its amplification. However, the quadratic friction and other nonlinear processes are just responsible for about 10% of the total M6 increase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRC..115.6020R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRC..115.6020R"><span>Nonlinear terms in storm surge predictions: Effect of <span class="hlt">tide</span> and shelf geometry with case study from Hurricane Rita</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rego, JoãO. L.; Li, Chunyan</p> <p>2010-06-01</p> <p>This study applied the finite volume coastal ocean model (FVCOM) to the storm surge induced by Hurricane Rita along the Louisiana-Texas coast. The model was calibrated for <span class="hlt">tides</span> and validated with observed water levels. Peak water levels were shown to be lower than expected for a landfall at high <span class="hlt">tide</span>. For low- and high-<span class="hlt">tide</span> landfalls, nonlinear effects due to <span class="hlt">tide</span>-surge coupling were constructive and destructive to total storm <span class="hlt">tide</span>, respectively, and their magnitude reached up to 70% of the tidal amplitude in the Rita application. <span class="hlt">Tide</span>-surge interaction was further examined using a standard hurricane under idealized scenarios to evaluate the effects of various shelf geometries, <span class="hlt">tides</span>, and landfall timings (relative to <span class="hlt">tide</span>). Nonlinearity was important between landfall position and locations within 2.5 × radius of maximum winds. On an idealized wide continental shelf, nonlinear effects reached up to 80% of the tidal amplitude with an S2 <span class="hlt">tide</span> and up to 47% with a K1 <span class="hlt">tide</span>. Increasing average depths by 4 m reduced nonlinear effects to 41% of the tidal amplitude; increasing the slope by a factor of 3 produced nonlinearities of just 26% of <span class="hlt">tide</span> (both with a K1 <span class="hlt">tide</span>). The nonlinear effect was greatest for landfalls at low <span class="hlt">tide</span>, followed by landfalls at high <span class="hlt">tide</span> and then by landfalls at midebb or midflood.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1214307C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1214307C"><span><span class="hlt">Aerosol</span> and CCN in southwest Saudi Arabia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Collins, Don; Li, Runjun; Axisa, Duncan; Kucera, Paul; Burger, Roelof</p> <p>2010-05-01</p> <p>As part of an ongoing study of the microphysical and dynamical controls on precipitation in southwest Saudi Arabia, a number of surface and aircraft-based instruments were used in summer / fall 2009 to measure the size distribution, hygroscopic properties, and cloud droplet nucleation efficiency of the local <span class="hlt">aerosol</span>. Submicron size distributions were measured using differential mobility analyzers both on the ground and on board the aircraft, while an aerodynamic particle sizer and a forward scattering spectrometer probe were used to measure the supermicron size distributions on the ground and from on board the aircraft, respectively. Identical continuous flow cloud condensation nuclei counters were used to measure CCN spectra at the surface and aloft and a humidified tandem differential mobility analyzer was operated on the ground to measure size-resolved hygroscopicity. The <span class="hlt">aerosol</span> in this arid environment is characterized by a persistent accumulation mode having hygroscopic and CCN efficiency properties consistent with a sulfate-rich aged <span class="hlt">aerosol</span>. The particles in that background <span class="hlt">aerosol</span> are generally sufficiently large and hygroscopic to activate at those supersaturations expected in the convective clouds responsible for most of the regional precipitation, which consequently acts as a lower bound on the resulting cloud droplet concentrations. Though the concentration, size distribution, and properties of the submicron <span class="hlt">aerosol</span> generally changed very slowly over periods of several hours, abrupt ~doubling in concentration almost always accompanied the arrival of the sea breeze front that began along the <span class="hlt">Red</span> Sea. Interestingly, the hygroscopicity and the shape of the size distribution differed little in the pre- and post-sea breeze air masses. The dust-dominated coarse mode typically contributed significantly more to the <span class="hlt">aerosol</span> mass concentration than did the submicron mode and likely controlled the ice nuclei concentration, though no direct measurements were made</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5036069-effects-dynamic-long-period-ocean-tides-changes-earth-rotation-rate','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5036069-effects-dynamic-long-period-ocean-tides-changes-earth-rotation-rate"><span>Effects of dynamic long-period ocean <span class="hlt">tides</span> on changes in Earth's rotation rate</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nam, Y.S.; Dickman, S.R.</p> <p>1990-05-10</p> <p>As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the authors define the zonal response function k of the solid earth-ocean system as the ratio, in the frequency domain, of the tidal change in Earth's rotation rate to the <span class="hlt">tide</span>-generating potential. Amplitudes and phases of k for the monthly, fortnightly, and 9-day lunar <span class="hlt">tides</span> are estimated from 2 1/2 years of very long baseline interferometry UTI observations (both 5-day and daily time series), corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean <span class="hlt">tide</span> model of Dickman (1988a,more » 1989a), the authors predict amplitudes and phases of k for an elastic earth-ocean system. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean <span class="hlt">tides</span> reduce the amplitude of k by about 1%. However, agreement with the observed k is best achieved for all three <span class="hlt">tides</span> if the predicted <span class="hlt">tide</span> amplitudes are combined with the much larger satellite-observed ocean <span class="hlt">tide</span> phases; in these cases the dynamic tidal effects reduce k by up to 8%. Finally, comparison between the observed and predicted amplitudes of k implies that anelastic effects on Earth's rotation at periods less than fortnightly cannot exceed 2%.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDG13009S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDG13009S"><span>Capturing remote mixing due to internal <span class="hlt">tides</span> using multi-scale modeling tool: SOMAR-LES</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santilli, Edward; Chalamalla, Vamsi; Scotti, Alberto; Sarkar, Sutanu</p> <p>2016-11-01</p> <p>Internal <span class="hlt">tides</span> that are generated during the interaction of an oscillating barotropic <span class="hlt">tide</span> with the bottom bathymetry dissipate only a fraction of their energy near the generation region. The rest is radiated away in the form of low- high-mode internal <span class="hlt">tides</span>. These internal <span class="hlt">tides</span> dissipate energy at remote locations when they interact with the upper ocean pycnocline, continental slope, and large scale eddies. Capturing the wide range of length and time scales involved during the life-cycle of internal <span class="hlt">tides</span> is computationally very expensive. A recently developed multi-scale modeling tool called SOMAR-LES combines the adaptive grid refinement features of SOMAR with the turbulence modeling features of a Large Eddy Simulation (LES) to capture multi-scale processes at a reduced computational cost. Numerical simulations of internal <span class="hlt">tide</span> generation at idealized bottom bathymetries are performed to demonstrate this multi-scale modeling technique. Although each of the remote mixing phenomena have been considered independently in previous studies, this work aims to capture remote mixing processes during the life cycle of an internal <span class="hlt">tide</span> in more realistic settings, by allowing multi-level (coarse and fine) grids to co-exist and exchange information during the time stepping process.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29602505','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29602505"><span>Consortial brown <span class="hlt">tide</span> - picocyanobacteria blooms in Guantánamo Bay, Cuba.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hall, Nathan S; Litaker, R Wayne; Kenworthy, W Judson; Vandersea, Mark W; Sunda, William G; Reid, James P; Slone, Daniel H; Butler, Susan</p> <p>2018-03-01</p> <p>A brown <span class="hlt">tide</span> bloom of Aureoumbra lagunensis developed in Guantánamo Bay, Cuba during a period of drought in 2013 that followed heavy winds and rainfall from Hurricane Sandy in late October 2012. Based on satellite images and water turbidity measurements, the bloom appeared to initiate in January 2013. The causative species (A. lagunensis) was confirmed by microscopic observation, and pigment and genetic analyses of bloom samples collected on May 28 of that year. During that time, A. lagunensis reached concentrations of 900,000 cells ml -1 (28 ppm by biovolume) in the middle portion of the Bay. Samples could not be collected from the northern (Cuban) half of the Bay because of political considerations. Subsequent sampling of the southern half of the Bay in November 2013, April 2014, and October 2014 showed persistent lower concentrations of A. lagunensis, with dominance shifting to the cyanobacterium Synechococcus (up to 33 ppm in April), an algal group that comprised a minor bloom component on May 28. Thus, unlike the brown <span class="hlt">tide</span> bloom in Laguna Madre, which lasted 8 years, the bloom in Guantánamo Bay was short-lived, much like recent blooms in the Indian River, Florida. Although hypersaline conditions have been linked to brown <span class="hlt">tide</span> development in the lagoons of Texas and Florida, observed euhaline conditions in Guantánamo Bay (salinity 35-36) indicate that strong hypersalinity is not a requirement for A. lagunensis bloom formation. Microzooplankton biomass dominated by ciliates was high during the observed peak of the brown <span class="hlt">tide</span>, and ciliate abundance was high compared to other systems not impacted by brown <span class="hlt">tide</span>. Preferential grazing by zooplankton on non-brown <span class="hlt">tide</span> species, as shown in A. lagunensis blooms in Texas and Florida, may have been a factor in the development of the Cuban brown <span class="hlt">tide</span> bloom. However, subsequent selection of microzooplankton capable of utilizing A. lagunensis as a primary food source may have contributed to the short-lived duration</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRD..11514108P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRD..11514108P"><span>Analysis of migrating diurnal <span class="hlt">tides</span> detected in FORMOSAT-3/COSMIC temperature data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pirscher, B.; Foelsche, U.; Borsche, M.; Kirchengast, G.; Kuo, Y.-H.</p> <p>2010-07-01</p> <p>The characteristics of atmospheric <span class="hlt">tides</span> in the upper troposphere and lower stratosphere region are investigated using radio occultation (RO) measurements performed by the Formosa Satellite Mission-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) satellite constellation and compared to <span class="hlt">tides</span> observed in short-term forecast model fields of European Centre for Medium-Range Weather Forecasts (ECMWF) and National Centers for Environmental Prediction (NCEP). Spectral analysis of 2 years of monthly data (2007 to 2008) yields the migrating diurnal <span class="hlt">tide</span> to be the largest spectral component. This diurnal <span class="hlt">tide</span> shows similar temporal, latitudinal, and altitudinal characteristics in all data sets equatorward of 50°. Beyond 50°, COSMIC local time sampling is insufficient within 1 month, which prevents space-time spectral analysis from isolating atmospheric waves. Diurnal <span class="hlt">tides</span> of temperature are characterized by largest amplitudes in the tropics (0.8 K to 1.0 K at an altitude of 30 km). Amplitudes of diurnal <span class="hlt">tides</span> analyzed in model data are more pronounced by ˜20%. An annual cycle of the amplitudes, characteristically linked to the movement of the intertropical convergence zone, is clearly revealed. Tropical diurnal phase features downward progression of waves fronts with a vertical wavelength of 20 km. Extratropical diurnal <span class="hlt">tides</span> are most pronounced in the model data sets with amplitudes of up to 0.5 K at 30 km. In this analysis we also see the influence of high-altitude initialization of RO data by background information in using data processed by two different centers (University Corporation for Atmospheric Research (UCAR) and Wegener Center (WEGC)). UCAR data, initialized by a climatology without tidal information, exhibit no appreciable extratropical diurnal <span class="hlt">tides</span>, while WEGC data, initialized by ECMWF forecasts, show more pronounced ones. Overall the results underpin the utility of the local-time resolving COSMIC RO</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=241685&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=241685&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Pacific Northwest <span class="hlt">tide</span> channel utilization by fish as an ecosystem service</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Background/Question/Methods: Saltwater marsh <span class="hlt">tide</span> channels are considered to be important in the ecology of estuarine fish serving both as a refuge and as a provider of enhanced food resources. However, this presumed function of <span class="hlt">tide</span> channels in Pacific Northwest estuaries has ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A44B..07K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A44B..07K"><span><span class="hlt">Aerosol</span>-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.</p> <p>2009-12-01</p> <p>In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying <span class="hlt">aerosol</span> properties and concentration on cloud properties. Significant uncertainties exist with <span class="hlt">aerosol</span>-cloud interactions for which complex microphysical processes link the <span class="hlt">aerosol</span> and cloud properties. Under almost all environmental conditions, increased <span class="hlt">aerosol</span> concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this <span class="hlt">aerosol</span> effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the <span class="hlt">Red</span> Sea in the southwest region of Saudi Arabia. Ground measurements of <span class="hlt">aerosol</span> size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on <span class="hlt">aerosol</span>-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815332M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815332M"><span><span class="hlt">Aerosol</span> typing - key information from <span class="hlt">aerosol</span> studies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina</p> <p>2016-04-01</p> <p><span class="hlt">Aerosol</span> typing is a key source of <span class="hlt">aerosol</span> information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, <span class="hlt">aerosol</span> typing can be used as input for retrievals or represents an output for other applications. Typically <span class="hlt">aerosol</span> retrievals require some a priori or external <span class="hlt">aerosol</span> type information. The accuracy of the derived <span class="hlt">aerosol</span> products strongly depends on the reliability of these assumptions. Different sensors can make use of different <span class="hlt">aerosol</span> type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of <span class="hlt">aerosol</span> types, showing for example the main source regions and typical transport paths. Climatological studies of <span class="hlt">aerosol</span> load at global and regional scales often rely on inferred <span class="hlt">aerosol</span> type. There is still a high degree of inhomogeneity among satellite <span class="hlt">aerosol</span> typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d <span class="hlt">aerosol</span> type distribution at these scales is essential for understanding the impact of different <span class="hlt">aerosol</span> sources on climate, precipitation and air quality. All this information is needed for planning upcoming <span class="hlt">aerosol</span> emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing <span class="hlt">aerosol</span> type distribution uncertainties. <span class="hlt">Aerosol</span> typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite <span class="hlt">Aerosol</span> Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of <span class="hlt">aerosol</span> typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRC..118.6303M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRC..118.6303M"><span>Internal <span class="hlt">tide</span> generation by abyssal hills using analytical theory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melet, Angélique; Nikurashin, Maxim; Muller, Caroline; Falahat, S.; Nycander, Jonas; Timko, Patrick G.; Arbic, Brian K.; Goff, John A.</p> <p>2013-11-01</p> <p>Internal <span class="hlt">tide</span> driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal <span class="hlt">tides</span> can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ˜10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal-<span class="hlt">tide</span> generation is evaluated in this study. The conversion of M2 barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal <span class="hlt">tide</span> generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ˜10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid-ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid-Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal <span class="hlt">tide</span> generation, especially over mid-ocean ridges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990040666','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990040666"><span>Wind Stress Forcing of the North Sea "Pole <span class="hlt">Tide</span>"</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>OConnor, William P.; Chao, Benjamin Fong; Zheng, Dawei; Au, Andrew Y.</p> <p>1998-01-01</p> <p>We conducted numerical simulations of the wind-forcing of the sea level variations in the North Sea using a barotropic ocean model with realistic geography, bathymetry, and boundary conditions, to examine the forcing of the 14-month "pole <span class="hlt">tide</span>" which is known to be strong along the Denmark- Netherlands coast. The simulation input is the monthly-mean surface wind stress field from the National Centers for Environmental Prediction (NCEP) reanalysis for the 40-year period 1958-1997. The output sea level response was then compared with 10 coastal <span class="hlt">tide</span> gauge records from the Permanent Service for Mean Sea Level (PSMSL). Besides the strong seasonal variations, several prominent quasi-periodicities exist at around 7 years, 3 years, 14 months, 9 months, and 6.5 months. Correlation and spectral analyses show remarkable agreement between the model output and the observations, particularly in the 14-month, or Chandler period band. The latter indicates that the enhanced pole <span class="hlt">tide</span> found in the North Sea along the Denmark-Netherlands coast is actually the coastal setup response to wind stress forcing with a periodicity of 14 months. We find no need to invoke a geophysical explanation involving resonance-enhancement of pole <span class="hlt">tide</span> in the North Sea to explain the observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1213723B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1213723B"><span>The spectroscopic search for the trace <span class="hlt">aerosols</span> in the planetary atmospheres - the results of numerical simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blecka, Maria I.</p> <p>2010-05-01</p> <p>The passive remote spectrometric methods are important in examinations the atmospheres of planets. The radiance spectra inform us about values of thermodynamical parameters and composition of the atmospheres and surfaces. The spectral technology can be useful in detection of the trace <span class="hlt">aerosols</span> like biological substances (if present) in the environments of the planets. We discuss here some of the aspects related to the spectroscopic search for the <span class="hlt">aerosols</span> and dust in planetary atmospheres. Possibility of detection and identifications of biological <span class="hlt">aerosols</span> with a passive Infra<span class="hlt">Red</span> spectrometer in an open-air environment is discussed. We present numerically simulated, based on radiative transfer theory, spectroscopic observations of the Earth atmosphere. Laboratory measurements of transmittance of various kinds of <span class="hlt">aerosols</span>, pollens and bacterias were used in modeling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/2007/294/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/2007/294/"><span>Monitoring the Storm <span class="hlt">Tide</span> of Hurricane Wilma in Southwestern Florida, October 2005</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Soderqvist, Lars E.; Byrne, Michael J.</p> <p>2007-01-01</p> <p>Temporary monitoring stations employing non-vented pressure transducers were used to augment an existing U.S. Geological Survey coastal monitoring network to document the inland water levels related to the storm <span class="hlt">tide</span> of Hurricane Wilma on the southwestern coast of Florida. On October 22, 2005, an experimental network consisting of 30 temporary stations was deployed over 90 miles of coastline to record the magnitude, extent, and timing of hurricane storm <span class="hlt">tide</span> and coastal flooding. Sensors were programmed to record time, temperature, and barometric or water pressure. Water pressure was adjusted for changes in barometric pressure and salinity, and then converted to feet of water above the sensor. Elevation surveys using optical levels were conducted to reference storm <span class="hlt">tide</span> water-level data and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). Storm <span class="hlt">tide</span> water levels more than 5 feet above NAVD 88 were recorded by sensors at several locations along the southwestern Florida coast. Temporary storm <span class="hlt">tide</span> monitoring stations used for this effort have demonstrated their value in: (1) furthering the understanding of storm <span class="hlt">tide</span> by allowing the U.S. Geological Survey to extend the scope of data collection beyond that of existing networks, and (2) serving as backup data collection at existing monitoring stations by utilizing nearby structures that are more likely to survive a major hurricane.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SGeo...38.1097M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SGeo...38.1097M"><span>Motional Induction by Tsunamis and Ocean <span class="hlt">Tides</span>: 10 Years of Progress</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minami, Takuto</p> <p>2017-09-01</p> <p>Motional induction is the process by which the motion of conductive seawater in the ambient geomagnetic main field generates electromagnetic (EM) variations, which are observable on land, at the seafloor, and sometimes at satellite altitudes. Recent years have seen notable progress in our understanding of motional induction associated with tsunamis and with ocean <span class="hlt">tides</span>. New studies of tsunami motional induction were triggered by the 2004 Sumatra earthquake tsunami and further promoted by subsequent events, such as the 2010 Chile earthquake and the 2011 Tohoku earthquake. These events yielded observations of tsunami-generated EM variations from land and seafloor stations. Studies of magnetic fields generated by ocean <span class="hlt">tides</span> attracted interest when the Swarm satellite constellation enabled researchers to monitor <span class="hlt">tide</span>-generated magnetic variations from low Earth orbit. Both avenues of research benefited from the advent of sophisticated seafloor instruments, by which we may exploit motional induction for novel applications. For example, seafloor EM measurements can serve as detectors of vector properties of tsunamis, and seafloor EM data related to ocean <span class="hlt">tides</span> have proved useful for sounding Earth's deep interior. This paper reviews and discusses the progress made in motional induction studies associated with tsunamis and ocean <span class="hlt">tides</span> during the last decade.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000116203','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000116203"><span>Estimates of Internal <span class="hlt">Tide</span> Energy Fluxes from Topex/Poseidon Altimetry: Central North Pacific</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.; Cartwright, David E.; Smith, David E. (Technical Monitor)</p> <p>2000-01-01</p> <p>Energy fluxes for first-mode M(sub 2) internal <span class="hlt">tides</span> are deduced throughout the central North Pacific Ocean from Topex/Poseidon satellite altimeter data. Temporally coherent internal <span class="hlt">tide</span> signals in the altimetry, combined with climatological hydrographic data, determine the tidal displacements, pressures, and currents at depth, which yield power transmission rates. For a variety of reasons the deduced rates should be considered lower bounds. Internal <span class="hlt">tides</span> were found to emanate from several large bathymetric structures, especially the Hawaiian Ridge, where the integrated flux amounts to about six gigawatts. Internal <span class="hlt">tides</span> are generated at the Aleutian Trench near 172 deg west and propagate southwards nearly 2000 km.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.113..145L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.113..145L"><span>The K1 internal <span class="hlt">tide</span> simulated by a 1/10° OGCM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Zhuhua; von Storch, Jin-Song; Müller, Malte</p> <p>2017-05-01</p> <p>This paper quantifies the K1 internal <span class="hlt">tide</span> simulated by the 1/10° STORMTIDE model, which simultaneously resolves the eddying general circulation and <span class="hlt">tides</span>. An evident feature of the K1 internal <span class="hlt">tide</span> is the critical latitude φc at 30°, which in the STORMTIDE model is characterized by variations from a high energy level equatorward of 30° to a low energy level poleward of 30°. This critical latitude separates the internal <span class="hlt">tide</span> dynamics into bottom-trapped (at latitudes |φ| > |φc|) and freely propagating (at |φ| < |φc|) motions, respectively. Both types of motions are examined. The bottom-trapping process reveals a gradual vertical decrease of wave energy away from the bottom. The vertical scale, over which the wave energy decrease occurs, is smaller in shallow than in deep water regions. For the freely propagating K1 internal <span class="hlt">tides</span>, the STORMTIDE model is able to simulate the first three low modes, with the wavelengths ranging from 200-400 km, 100-200 km, to 60-120 km. These wavelength distributions reveal not only a zonal asymmetry but also a poleward increase up to φc, in particular in the Pacific. Such distributions indicate the impact of stratification N and the Coriolis frequency f on the wavelengths. The large wavelength gradient near φc is caused by the wavelength increase from finite values at subcritical latitudes to infinity at φc. Compared to the M2 internal <span class="hlt">tide</span>, the lower K1 tidal frequency leads to a stronger role of f, hence a weaker effect of N, for the K1 internal <span class="hlt">tide</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ESASP.710E...9E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ESASP.710E...9E"><span>Twenty Years of Progress on Global Ocean <span class="hlt">Tide</span>: The Impact of Satellite Altimetry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Egbert, Gary D.; Ray, Richard D.</p> <p>2013-09-01</p> <p>At the dawn of the era of high-precision altimetry, before the launch of TOPEX/Poseidon, ocean <span class="hlt">tides</span> were properly viewed as a source of noise-tidal variations in ocean height would represent a very substantial fraction of what the altimeter measures, and would have to be accurately predicted and subtracted if altimetry were to achieve its potential for ocean and climate studies. But to the extent that the altimetry could be severely contaminated by <span class="hlt">tides</span>, it also represented an unprecedented global-scale tidal data set. These new data, together with research stimulated by the need for accurate tidal corrections, led to a renaissance in tidal studies in the oceanographic community. In this paper we review contributions of altimetry to tidal science over the past 20 years, emphasizing recent progress. Mapping of <span class="hlt">tides</span> has now been extended from the early focus on major constituents in the open ocean to include minor constituents, (e.g., long-period <span class="hlt">tides</span>; non-linear <span class="hlt">tides</span> in shelf waters, and in the open ocean), and into shallow and coastal waters. Global and spatially local estimates of tidal energy balance have been refined, and the role of internal <span class="hlt">tide</span> conversion in dissipating barotropic tidal energy is now well established through modeling, altimetry, and in situ observations. However, energy budgets for internal <span class="hlt">tides</span>, and the role of tidal dissipation in vertical ocean mixing remain controversial topics. Altimetry may contribute to resolving some of these important questions through improved mapping of low-mode internal <span class="hlt">tides</span>. This area has advanced significantly in recent years, with several global maps now available, and progress on constraining temporally incoherent components. For the future, new applications of altimetry (e.g., in the coastal ocean, where barotropic tidal models remain inadequate), and new mission concepts (studies of the sub-mesoscale with SWOT, which will require correction for internal <span class="hlt">tides</span>) may bring us full circle, again pushing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120009634','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120009634"><span>Twenty Years of Progress on Global Ocean <span class="hlt">Tides</span>: The Impact of Satellite Altimetry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Egbert, Gary; Ray, Richard</p> <p>2012-01-01</p> <p>At the dawn of the era of high-precision altimetry, before the launch of TOPEX/Poseidon, ocean <span class="hlt">tides</span> were properly viewed as a source of noise--tidal variations in ocean height would represent a very substantial fraction of what the altimeter measures, and would have to be accurately predicted and subtracted if altimetry were to achieve its potential for ocean and climate studies. But to the extent that the altimetry could be severely contaminated by <span class="hlt">tides</span>, it also represented an unprecedented global-scale tidal data set. These new data, together with research stimulated by the need for accurate tidal corrections, led to a renaissance in tidal studies in the oceanographic community. In this paper we review contributions of altimetry to tidal science over the past 20 years, emphasizing recent progress. Mapping of <span class="hlt">tides</span> has now been extended from the early focus on major constituents in the open ocean to include minor constituents, (e.g., long-period <span class="hlt">tides</span>; non-linear <span class="hlt">tides</span> in shelf waters, and in the open ocean), and into shallow and coastal waters. Global and spatially local estimates of tidal energy balance have been refined, and the role of internal <span class="hlt">tide</span> conversion in dissipating barotropic tidal energy is now well established through modeling, altimetry, and in situ observations. However, energy budgets for internal <span class="hlt">tides</span>, and the role of tidal dissipation in vertical ocean mixing remain controversial topics. Altimetry may contribute to resolving some of these important questions through improved mapping of low-mode internal <span class="hlt">tides</span>. This area has advanced significantly in recent years, with several global maps now available, and progress on constraining temporally incoherent components. For the future, new applications of altimetry (e.g., in the coastal ocean, where barotropic tidal models remain inadequate), and new mission concepts (studies of the submesoscale with SWOT, which will require correction for internal <span class="hlt">tides</span>) may bring us full circle, again pushing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20698287','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20698287"><span>[Growth inhibition of the four species of <span class="hlt">red</span> <span class="hlt">tide</span> microalgae by extracts from Enteromorpha prolifera extracted with the five solvents].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Ying-Ying; Liu, Xiao-Xiao; Wang, Chang-Hai</p> <p>2010-06-01</p> <p>To study the effects of extracts of Enteromorpha prolifera on the growth of the four species of <span class="hlt">red</span> <span class="hlt">tide</span> microalgae (Amphidinium hoefleri, Karenia mikimitoi, Alexandrium tamarense and Skeletonema costatum), the extracts were extracted with five solvents (methanol, acetone, ethyl acetate, chloroform and petroleum ether), respectively. Based on the observation of algal morphology and the measurement of algal density, cell size and the contents of physiological indicators (chlorophyll, protein and polysaccharide), the results showed methanol extracts of E. prolifera had the strongest action. The inhibitory effects of A. hoefleri, K. mikimitoi, A. tamarense and S. costatum by the methanol extracts were 54.0%, 48.1%, 44.0% and 37.5% in day 10, respectively. The extracts of E. prolifera extracted with methanol, acetone and ethyl acetate caused cavities, pieces and pigment reduction in cells, and those with chloroform and petroleum ether caused goffers on cells. The extracts of E. prolifera extracted with all the five solvents decreased athletic ability of the cells, among which those extracted with ethyl acetate, chloroform and petroleum ether decreased cell size of test microalgae. The further investigation found that the methanol extracts significantly decreased contents of chlorophyll, protein and polysaccharide in the cells of those microalgae. The inhibitory effect of chlorophyll, protein and polysaccharide contents of four species of microalgae by the methanol extracts was about 51%. On the basis of the above experiments, dry powder of E. prolifera were extracts with methanol, and extracts were obtained. The methanol extracts were partitioned to petroleum ether phase, ethyl acetate phase, n-butanol phase and distilled water phase by liquid-liquid fractionation, and those with petroleum ether and ethyl acetate significantly inhibited the growth of all test microalgae, and the inhibitory effect of four species of microalgae by those two extracts was above 25% in day</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....1713849A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....1713849A"><span>A study of 15-year <span class="hlt">aerosol</span> optical thickness and direct shortwave <span class="hlt">aerosol</span> radiative effect trends using MODIS, MISR, CALIOP and CERES</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alfaro-Contreras, Ricardo; Zhang, Jianglong; Reid, Jeffrey S.; Christopher, Sundar</p> <p>2017-11-01</p> <p>By combining Collection 6 Moderate Resolution and Imaging Spectroradiometer (MODIS) and Version 22 Multi-angle Imaging Spectroradiometer (MISR) <span class="hlt">aerosol</span> products with Cloud and Earth's Radiant Energy System (CERES) flux products, the <span class="hlt">aerosol</span> optical thickness (AOT, at 0.55 µm) and shortwave (SW) <span class="hlt">aerosol</span> radiative effect (SWARE) trends are studied over ocean for the near-full Terra (2000-2015) and Aqua (2002-2015) data records. Despite differences in sampling methods, regional SWARE and AOT trends are highly correlated with one another. Over global oceans, weak SWARE (cloud-free SW flux) and AOT trends of 0.5-0.6 W m-2 (-0.5 to -0.6 W m-2) and 0.002 AOT decade-1 are found using Terra data. Near-zero AOT and SWARE trends are also found for using Aqua data, regardless of the angular distribution models (ADMs) used. Regionally, positive AOT and cloud-free SW flux (negative SWARE) trends are found over the Bay of Bengal, the Arabian Sea, the Arabian/Persian Gulf and the <span class="hlt">Red</span> Sea, while statistically significant negative trends are derived over the Mediterranean Sea and the eastern US coast. In addition, the global mean instantaneous SW <span class="hlt">aerosol</span> direct forcing efficiencies are found to be ˜ -60 W m-2 AOT-1, with corresponding SWARE values of ˜ -7 W m-2 from both Aqua and Terra data, again regardless of CERES ADMs used. Regionally, SW <span class="hlt">aerosol</span> direct forcing efficiency values of ˜ -40 W m-2 AOT-1 are found over the southwest coast of Africa where smoke <span class="hlt">aerosol</span> particles dominate in summer. Larger (in magnitude) SW <span class="hlt">aerosol</span> direct forcing efficiency values of -50 to -80 W m-2 AOT-1 are found over several other dust- and pollutant-<span class="hlt">aerosol</span>-dominated regions. Lastly, the AOT and SWARE trends from this study are also intercompared with <span class="hlt">aerosol</span> trends (such as active-based ones) from several previous studies. Findings suggest that a cohesive understanding of the changing <span class="hlt">aerosol</span> skies can be achieved through the analysis of observations from both passive- and active</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015152','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015152"><span>On the Temporal Variability of Low-Mode Internal <span class="hlt">Tides</span> in the Deep Ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.; Zaron, E. D.</p> <p>2010-01-01</p> <p>In situ measurements of internal <span class="hlt">tides</span> are typically characterized by high temporal variability, with strong dependence on stratification, mesoscale eddies, and background currents commonly observed. Thus, it is surprising to find phase-locked internal <span class="hlt">tides</span> detectable by satellite altimetry. An important question is how much tidal variability is missed by altimetry. We address this question in several ways. We subset the altimetry by season and find only very small changes -- an important exception being internal <span class="hlt">tides</span> in the South China Sea where we observe strong seasonal dependence. A wavenumber-domain analysis confirms that throughout most of the global ocean there is little temporal variability in altimetric internal-<span class="hlt">tide</span> signals, at least in the first baroclinic mode, which is the mode that dominates surface elevation. The analysis shows higher order modes to be significantly more variable. The results of this study have important practical implications for the anticipated SWOT wide-swath altimeter mission, for which removal of internal <span class="hlt">tide</span> signals is critical for observing non-tidal submesoscale phenomena.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2013/5076/pdf/sir2013-5076_report_508.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2013/5076/pdf/sir2013-5076_report_508.pdf"><span>A one-dimensional diffusion analogy model for estimation of <span class="hlt">tide</span> heights in selected tidal marshes in Connecticut</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bjerklie, David M.; O’Brien, Kevin; Rozsa, Ron</p> <p>2013-01-01</p> <p>A one-dimensional diffusion analogy model for estimating <span class="hlt">tide</span> heights in coastal marshes was developed and calibrated by using data from previous tidal-marsh studies. The method is simpler to use than other one- and two-dimensional hydrodynamic models because it does not require marsh depth and tidal prism information; however, the one-dimensional diffusion analogy model cannot be used to estimate <span class="hlt">tide</span> heights, flow velocities, and <span class="hlt">tide</span> arrival times for <span class="hlt">tide</span> conditions other than the highest <span class="hlt">tide</span> for which it is calibrated. Limited validation of the method indicates that it has an accuracy within 0.3 feet. The method can be applied with limited calibration information that is based entirely on remote sensing or geographic information system data layers. The method can be used to estimate high-<span class="hlt">tide</span> heights in tidal wetlands drained by <span class="hlt">tide</span> gates where <span class="hlt">tide</span> levels cannot be observed directly by opening the gates without risk of flooding properties and structures. A geographic information system application of the method is demonstrated for Sybil Creek marsh in Branford, Connecticut. The tidal flux into this marsh is controlled by two <span class="hlt">tide</span> gates that prevent full tidal inundation of the marsh. The method application shows reasonable <span class="hlt">tide</span> heights for the gates-closed condition (the normal condition) and the one-gate-open condition on the basis of comparison with observed heights. The condition with all <span class="hlt">tide</span> gates open (two gates) was simulated with the model; results indicate where several structures would be flooded if the gates were removed as part of restoration efforts or if the <span class="hlt">tide</span> gates were to fail.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRI..126...73H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRI..126...73H"><span>Partly standing internal <span class="hlt">tides</span> in a dendritic submarine canyon observed by an ocean glider</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, Rob A.; Aslam, Tahmeena; Huvenne, Veerle A. I.</p> <p>2017-08-01</p> <p>An autonomous ocean glider is used to make the first direct measurements of internal <span class="hlt">tides</span> within Whittard Canyon, a large, dendritic submarine canyon system that incises the Celtic Sea continental slope and a site of high benthic biodiversity. This is the first time a glider has been used for targeted observations of internal <span class="hlt">tides</span> in a submarine canyon. Vertical isopycnal displacement observations at different stations fit a one-dimensional model of partly standing semidiurnal internal <span class="hlt">tides</span> - comprised of a major, incident wave propagating up the canyon limbs and a minor wave reflected back down-canyon by steep, supercritical bathymetry near the canyon heads. The up-canyon internal <span class="hlt">tide</span> energy flux in the primary study limb decreases from 9.2 to 2.0 kW m-1 over 28 km (a dissipation rate of 1 - 2.5 ×10-7 Wkg-1), comparable to elevated energy fluxes and internal <span class="hlt">tide</span> driven mixing measured in other canyon systems. Within Whittard Canyon, enhanced mixing is inferred from collapsed temperature-salinity curves and weakened dissolved oxygen concentration gradients near the canyon heads. It has previously been hypothesised that internal <span class="hlt">tides</span> impact benthic fauna through elevated near-bottom current velocities and particle resuspension. In support of this, we infer order 20 cm s-1 near-bottom current velocities in the canyon and observe high concentrations of suspended particulate matter. The glider observations are also used to estimate a 1 °C temperature range and 12 μmol kg-1 dissolved oxygen concentration range, experienced twice a day by organisms on the canyon walls, due to the presence of internal <span class="hlt">tides</span>. This study highlights how a well-designed glider mission, incorporating a series of <span class="hlt">tide</span>-resolving stations at key locations, can be used to understand internal <span class="hlt">tide</span> dynamics in a region of complex topography, a sampling strategy that is applicable to continental shelves and slopes worldwide.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRE..123..335T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRE..123..335T"><span>Three-Dimensional Structures of Thermal <span class="hlt">Tides</span> Simulated by a Venus GCM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takagi, Masahiro; Sugimoto, Norihiko; Ando, Hiroki; Matsuda, Yoshihisa</p> <p>2018-02-01</p> <p>Thermal <span class="hlt">tides</span> in the Venus atmosphere are investigated by using a GCM named as AFES-Venus. The three-dimensional structures of wind and temperature associated with the thermal <span class="hlt">tides</span> obtained in our model are fully examined and compared with observations. The result shows that the wind and temperature distributions of the thermal <span class="hlt">tides</span> depend complexly on latitude and altitude in the cloud layer, mainly because they consist of vertically propagating and trapped modes with zonal wave numbers of 1-4, each of which predominates in different latitudes and altitudes under the influence of mid- and high-latitude jets. A strong circulation between the subsolar and antisolar (SS-AS) points, which is equivalent to a diurnal component of the thermal <span class="hlt">tides</span>, is superposed on the superrotation. The vertical velocity of SS-AS circulation is about 10 times larger than that of the zonal-mean meridional circulation (ZMMC) in 60-70 km altitudes. It is suggested that the SS-AS circulation could contribute to the material transport, and its upward motion might be related to the UV dark region observed in the subsolar and early afternoon regions in low latitudes. The terdiurnal and quaterdiurnal <span class="hlt">tides</span>, which may be excited by the nonlinear interactions among the diurnal and semidiurnal <span class="hlt">tides</span> in middle and high latitudes, are detected in the solar-fixed Y-shape structure formed in the vertical wind field in the upper cloud layer. The ZMMC is weak and has a complex structure in the cloud layer; the Hadley circulation is confined to latitudes equatorward of 30°, and the Ferrel-like one appears in middle and high latitudes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JSR....58..189W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JSR....58..189W"><span>Effects of three macroalgae, Ulva linza (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thunbergii (Phaeophyta) on the growth of the <span class="hlt">red</span> <span class="hlt">tide</span> microalga Prorocentrum donghaiense under laboratory conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Renjun; Xiao, Hui; Wang, You; Zhou, Wenli; Tang, Xuexi</p> <p>2007-10-01</p> <p>Allelopathic effects of several concentrations of fresh tissue and dry powder of three macroalgae, Ulva linza, Corallina pilulifera and Sargassum thunbergii, on the <span class="hlt">red</span> <span class="hlt">tide</span> microalga Prorocentrum donghaiense were evaluated in microcosms. Preliminary studies on the algicidal effects of one aqueous and four organic solvent extracts from the macroalgae on the microalga were carried out to confirm the existence of allelochemicals in the tissues of the macroalgae. The effects of macroalgal culture medium filtrate on P. donghaiense were investigated using initial or semi-continuous filtrate addition. Furthermore, the potential effects of the microalga on these three macroalgae were also tested. The results of the microcosm assay showed that the growth of P. donghaiense was strongly inhibited by using fresh tissues and dry powder of the three macroalgae. Both aqueous and methanol extracts of the macroalgae had strong growth inhibitory effects on P. donghaiense, while the other three organic solvent extracts (acetone, ether and chloroform) had no apparent effect on its growth; this suggested that the allelochemicals from these three macroalga had relatively high polarities. The three macroalgal culture medium filtrates exhibited apparent growth inhibitory effect on the microalgae under initial or semi-continuous addition, which suggested that the cells of P. donghaiense are sensitive to the allelochemicals. In contrast, P. donghaiense had no apparent effect on the growth of the macroalgae in coexistence experiment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170007772&hterms=records&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drecords','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170007772&hterms=records&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drecords"><span>Manuel Johnson's <span class="hlt">Tide</span> Record at St. Helena</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cartwright, David E.; Woodworth, Philip L.; Ray, Richard D.</p> <p>2017-01-01</p> <p>The astronomer Manuel Johnson, a future President of the Royal Astronomical Society, recorded the ocean <span class="hlt">tides</span> with his own instrument at St. Helena in 1826-1827, while waiting for an observatory to be built. It is an important record in the history of tidal science, as the only previous measurements at St. Helena had been those made by Nevil Maskelyne in 1761, and there were to be no other systematic measurements until the late 20th century. Johnsons <span class="hlt">tide</span> gauge, of a curious but unique design, recorded efficiently the height of every tidal high and low water for at least 13 months, in spite of requiring frequent re-setting. These heights compare very reasonably with a modern tidal synthesis based on present-day <span class="hlt">tide</span> gauge measurements from the same site.Johnsons method of timing is unknown, but his calculations of lunar phases suggest that his tidal measurements were recorded in Local Apparent Time. Unfortunately, the recorded times are found to be seriously and variably lagged by many minutes. Johnsons data have never been fully published, but his manuscripts have been safely archived and are available for inspection at Cambridge University. His data have been converted to computerfiles as part of this study for the benefit of future researchers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HGSS....8....9C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HGSS....8....9C"><span>Manuel Johnson's <span class="hlt">tide</span> record at St. Helena</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cartwright, David E.; Woodworth, Philip L.; Ray, Richard D.</p> <p>2017-03-01</p> <p>The astronomer Manuel Johnson, a future President of the Royal Astronomical Society, recorded the ocean <span class="hlt">tides</span> with his own instrument at St. Helena in 1826-1827, while waiting for an observatory to be built. It is an important record in the history of tidal science, as the only previous measurements at St. Helena had been those made by Nevil Maskelyne in 1761, and there were to be no other systematic measurements until the late 20th century. Johnson's <span class="hlt">tide</span> gauge, of a curious but unique design, recorded efficiently the height of every tidal high and low water for at least 13 months, in spite of requiring frequent re-setting. These heights compare very reasonably with a modern tidal synthesis based on present-day <span class="hlt">tide</span> gauge measurements from the same site. Johnson's method of timing is unknown, but his calculations of lunar phases suggest that his tidal measurements were recorded in Local Apparent Time. Unfortunately, the recorded times are found to be seriously and variably lagged by many minutes. Johnson's data have never been fully published, but his manuscripts have been safely archived and are available for inspection at Cambridge University. His data have been converted to computer files as part of this study for the benefit of future researchers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3231327','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3231327"><span>Time-Frequency Analyses of <span class="hlt">Tide</span>-Gauge Sensor Data</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Erol, Serdar</p> <p>2011-01-01</p> <p>The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors’ data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by <span class="hlt">tide</span>-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek <span class="hlt">tide</span>-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The <span class="hlt">tide</span>-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of <span class="hlt">tide</span>-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented. PMID:22163829</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22163829','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22163829"><span>Time-frequency analyses of <span class="hlt">tide</span>-gauge sensor data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Erol, Serdar</p> <p>2011-01-01</p> <p>The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors' data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by <span class="hlt">tide</span>-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek <span class="hlt">tide</span>-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The <span class="hlt">tide</span>-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of <span class="hlt">tide</span>-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMED22C..02V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMED22C..02V"><span>Exploring Marine Science through the University of Delaware's <span class="hlt">TIDE</span> camp</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Veron, D. E.; Newton, F. A.; Veron, F.; Trembanis, A. C.; Miller, D. C.</p> <p>2012-12-01</p> <p>For the past five years, the University of Delaware has offered a two-week, residential, summer camp to rising sophomores, juniors, and seniors who are interested in marine science. The camp, named <span class="hlt">TIDE</span> (Taking an Interest in Delaware's Estuary) camp, is designed to introduce students to the breadth of marine science while providing them with a college experience. Campers participate in a variety of academic activities which include classroom, laboratory, and field experiences, as well as numerous social activities. Two unique features of this small, focused camp is the large number of university faculty that are involved, and the ability of students to participate in ongoing research projects. At various times students have participated in fish and dolphin counts, AUV deployment, wind-wave tank experiments, coastal water and beach studies, and ROV activities. In addition, each year campers have participated in a local service project. Through communication with former <span class="hlt">TIDE</span> participants, it is clear that this two-week, formative experience plays a large role in students choice of major when entering college.2012 <span class="hlt">Tide</span> Camp - Salt marsh in southern Delaware 2012 <span class="hlt">Tide</span> Camp - Field trip on a small boat</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20180001741&hterms=Benzene&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DBenzene','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20180001741&hterms=Benzene&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DBenzene"><span>Environmental Temperature Effect on the Far-Infrared Absorption Features of Aromatic-Based Titan's <span class="hlt">Aerosol</span> Analogs</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.</p> <p>2016-01-01</p> <p>Benzene detection has been reported in Titans atmosphere both in the stratosphere at ppb levels by remote sensing and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer. This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titans atmospheric chemistry, especially in the formation of <span class="hlt">aerosols</span>. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to <span class="hlt">aerosol</span> formation. It has been shown recently that <span class="hlt">aerosol</span> analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500/cm, a first step towards reproducing the <span class="hlt">aerosol</span> spectral features observed by Cassini's Composite Infra<span class="hlt">Red</span> Spectrometer (CIRS) in the far infrared. In this work we investigate the influence of environmental temperature on the absorption spectra of such <span class="hlt">aerosol</span> samples, simulating the temperature range to which <span class="hlt">aerosols</span>, once formed, are exposed during their transport through Titans stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these <span class="hlt">aerosol</span> analogs in the far-infrared, which is consistent with the CIRS observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002390&hterms=churchill&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dchurchill','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002390&hterms=churchill&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dchurchill"><span>On Measurements of the <span class="hlt">Tide</span> at Churchill, Hudson Bay</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.</p> <p>2016-01-01</p> <p>Since the late 1990s the semi-diurnal <span class="hlt">tide</span> at Churchill, on the western shore of Hudson Bay, has been decreasing in amplitude, with M(sub 2) amplitudes falling from approximately 154 cm in 1998 to 146 cm in 2012 and 142 cm in 2014. There has been a corresponding small increase in phase lag. Mean low water, decreasing throughout most of the twentieth century, has levelled off. Although the tidal changes could reflect merely a malfunctioning <span class="hlt">tide</span> gauge, the fact that there are no other measurements in the region and the possibility that the <span class="hlt">tide</span> is revealing important environmental changes calls for serious investigation. Satellite altimeter measurements of the <span class="hlt">tide</span> in Hudson Bay are complicated by the seasonal ice cover; at most locations less than 40% of satellite passes return valid ocean heights and even those can be impacted by errors from sea ice. Because the combined TOPEX/Poseidon, Jason-1, and Jason-2 time series is more than 23 years long, it is now possible to obtain sufficient data at crossover locations near Churchill to search for tidal changes. The satellites sense no changes in M(sub 2) that are comparable to the changes seen at the Churchill gauge. The changes appear to be localized to the harbour, or to the Churchill River, or to the gauge itself.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24601011','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24601011"><span>Aqueous <span class="hlt">aerosol</span> SOA formation: impact on <span class="hlt">aerosol</span> physical properties.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye</p> <p>2013-01-01</p> <p>Organic chemistry in <span class="hlt">aerosol</span> water has recently been recognized as a potentially important source of secondary organic <span class="hlt">aerosol</span> (SOA) material. This SOA material may be surface-active, therefore potentially affecting <span class="hlt">aerosol</span> heterogeneous activity, ice nucleation, and CCN activity. Aqueous <span class="hlt">aerosol</span> chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic <span class="hlt">aerosol</span> material in <span class="hlt">aerosol</span> water and the associated changes in <span class="hlt">aerosol</span> physical properties from GAMMA (Gas-<span class="hlt">Aerosol</span> Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous <span class="hlt">aerosol</span> chemistry. The detailed <span class="hlt">aerosol</span> composition output from GAMMA was coupled with two recently developed modules for predicting a) <span class="hlt">aerosol</span> surface tension and b) the UV-Vis absorption spectrum of the <span class="hlt">aerosol</span>, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk <span class="hlt">aerosol</span> water is unlikely to perturb <span class="hlt">aerosol</span> surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic <span class="hlt">aerosols</span> under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on <span class="hlt">aerosol</span> surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress <span class="hlt">aerosol</span> surface tension. Light absorption by aqueous <span class="hlt">aerosol</span> SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous <span class="hlt">aerosol</span> chemistry can be a significant source of <span class="hlt">aerosol</span> brown carbon under urban conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060036711&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Doceans%2Btide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060036711&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Doceans%2Btide"><span>Effects of Long Period Ocean <span class="hlt">Tides</span> on the Earth's Rotation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gross, Richard S.; Chao, Ben F.; Desai, Shailen D.</p> <p>1996-01-01</p> <p>The spectra of polar motion excitation functions exhibit enhanced power in the fortnightly tidal band. This enhanced power is attributed to ocean tidal excitation. Ocean <span class="hlt">tide</span> models predict polar motion excitation effects that differ with each other, and with observations, by factors as large as 2-3. There is a need for inproved models for the effect of long-period ocean <span class="hlt">tides</span> on Earth's rotation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411942Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411942Z"><span>Propagation of the Semidiurnal Internal <span class="hlt">Tide</span>: Phase Velocity Versus Group Velocity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Zhongxiang</p> <p>2017-12-01</p> <p>The superposition of two waves of slightly different wavelengths has long been used to illustrate the distinction between phase velocity and group velocity. The first-mode M2 and S2 internal <span class="hlt">tides</span> exemplify such a two-wave model in the natural ocean. The M2 and S2 tidal frequencies are 1.932 and 2 cycles per day, respectively, and their superposition forms a spring-neap cycle in the semidiurnal band. The spring-neap cycle acts like a wave, with its frequency, wave number, and phase being the differences of the M2 and S2 internal <span class="hlt">tides</span>. The spring-neap cycle and energy of the semidiurnal internal <span class="hlt">tide</span> propagate at the group velocity. Long-range propagation of M2 and S2 internal <span class="hlt">tides</span> in the North Pacific is observed by satellite altimetry. Along a 3,400 km beam spanning 24°-54°N, the M2 and S2 travel times are 10.9 and 11.2 days, respectively. For comparison, it takes the spring-neap cycle 21.1 days to travel over this distance. Spatial maps of the M2 phase velocity, the S2 phase velocity, and the group velocity are determined from phase gradients of the corresponding satellite observed internal <span class="hlt">tide</span> fields. The observed phase and group velocities agree with theoretical values estimated using the World Ocean Atlas 2013 annual-mean ocean stratification.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA514184','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA514184"><span>North Adriatic <span class="hlt">Tides</span>: Observations, Variational Data Assimilation Modeling, and Linear <span class="hlt">Tide</span> Dynamics</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-12-01</p> <p>of the North Adriatic ( Lee et al., 2005). In addition to the ADCP measurements of currents through- out the water column, bottom pressure (by ADCP or...of the year with low levels of stratification (Figure 2, Jeffries and Lee , 2007). Actual generation of internal <span class="hlt">tides</span> in the North Adriatic would...Thompson, K.R., Teague, W. J., Jacobs, G.A., Suk, M.-S., Chang, K.-I., Lee , J.-C. and Choi, B.H. (2004): Data assimilation modeling of the barotropic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E1492K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E1492K"><span><span class="hlt">Aerosol</span> algorithm evaluation within <span class="hlt">aerosol</span>-CCI</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kinne, Stefan; Schulz, Michael; Griesfeller, Jan</p> <p></p> <p>Properties of <span class="hlt">aerosol</span> retrievals from space are difficult. Even data from dedicated satellite sensors face contaminations which limit the accuracy of <span class="hlt">aerosol</span> retrieval products. Issues are the identification of complete cloud-free scenes, the need to assume <span class="hlt">aerosol</span> compositional features in an underdetermined solution space and the requirement to characterize the background at high accuracy. Usually the development of <span class="hlt">aerosol</span> is a slow process, requiring continuous feedback from evaluations. To demonstrate maturity, these evaluations need to cover different regions and seasons and many different <span class="hlt">aerosol</span> properties, because <span class="hlt">aerosol</span> composition is quite diverse and highly variable in space and time, as atmospheric <span class="hlt">aerosol</span> lifetimes are only a few days. Three years ago the ESA Climate Change Initiative started to support <span class="hlt">aerosol</span> retrieval efforts in order to develop <span class="hlt">aerosol</span> retrieval products for the climate community from underutilized ESA satellite sensors. The initial focus was on retrievals of AOD (a measure for the atmospheric column amount) and of Angstrom (a proxy for <span class="hlt">aerosol</span> size) from the ATSR and MERIS sensors on ENVISAT. The goal was to offer retrieval products that are comparable or better in accuracy than commonly used NASA products of MODIS or MISR. Fortunately, accurate reference data of ground based sun-/sky-photometry networks exist. Thus, retrieval assessments could and were conducted independently by different evaluation groups. Here, results of these evaluations for the year 2008 are summarized. The capability of these newly developed retrievals is analyzed and quantified in scores. These scores allowed a ranking of competing efforts and also allow skill comparisons of these new retrievals against existing and commonly used retrievals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28625616','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28625616"><span>Modelling explicit <span class="hlt">tides</span> in the Indonesian seas: An important process for surface sea water properties.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nugroho, Dwiyoga; Koch-Larrouy, Ariane; Gaspar, Philippe; Lyard, Florent; Reffray, Guillaume; Tranchant, Benoit</p> <p>2018-06-01</p> <p>Very intense internal <span class="hlt">tides</span> take place in Indonesian seas. They dissipate and affect the vertical distribution of temperature and currents, which in turn influence the survival rates and transports of most planktonic organisms at the base of the whole marine ecosystem. This study uses the INDESO physical model to characterize the internal <span class="hlt">tides</span> spatio-temporal patterns in the Indonesian Seas. The model reproduced internal <span class="hlt">tide</span> dissipation in agreement with previous fine structure and microstructure observed in-situ in the sites of generation. The model also produced similar water mass transformation as the previous parameterization of Koch-Larrouy et al. (2007), and show good agreement with observations. The resulting cooling at the surface is 0.3°C, with maxima of 0.8°C at the location of internal <span class="hlt">tides</span> energy, with stronger cooling in austral winter. The cycle of spring <span class="hlt">tides</span> and neap <span class="hlt">tides</span> modulates this impact by 0.1°C to 0.3°C. These results suggest that mixing due to internal <span class="hlt">tides</span> might also upwell nutrients at the surface at a frequency similar to the tidal frequencies. Implications for biogeochemical modelling are important. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A31D0079P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A31D0079P"><span>17 years of <span class="hlt">aerosol</span> and clouds from the ATSR Series of Instruments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poulsen, C. A.</p> <p>2015-12-01</p> <p><span class="hlt">Aerosols</span> play a significant role in Earth's climate by scattering and absorbing incoming sunlight and affecting the formation and radiative properties of clouds. The extent to which <span class="hlt">aerosols</span> affect cloud remains one of the largest sources of uncertainty amongst all influences on climate change. Now, a new comprehensive datasets has been developed under the ESA Climate Change Initiative (CCI) programme to quantify how changes in <span class="hlt">aerosol</span> levels affect these clouds. The unique dataset is constructed from the Optimal Retrieval of <span class="hlt">Aerosol</span> and Cloud (ORAC) algorithm used in (A)ATSR (Along Track Scanning Radiometer) retrievals of <span class="hlt">aerosols</span> generated in the <span class="hlt">Aerosol</span> CCI and the CC4CL ( Community Code for CLimate) for cloud retrieval in the Cloud CCI. The ATSR instrument is a dual viewing instrument with on board visible and infra <span class="hlt">red</span> calibration systems making it an ideal instrument to study trends of <span class="hlt">Aerosol</span> and Clouds and their interactions. The data set begins in 1995 and ends in 2012. A new instrument in the series SLSTR(Sea and Land Surface Temperature Radiometer) will be launch in 2015. The <span class="hlt">Aerosol</span> and Clouds are retreived using similar algorithms to maximise the consistency of the results These state-of-the-art retrievals have been merged together to quantify the susceptibility of cloud properties to changes in <span class="hlt">aerosol</span> concentration. <span class="hlt">Aerosol</span>-cloud susceptibilities are calculated from several thousand samples in each 1x1 degree globally gridded region. Two-D histograms of the <span class="hlt">aerosol</span> and cloud properties are also included to facilitate seamless comparisons between other satellite and modelling data sets. The analysis of these two long term records will be discussed individually and the initial comparisons between these new joint products and models will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AMT.....9.5535S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AMT.....9.5535S"><span><span class="hlt">Aerosol</span> data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: <span class="hlt">aerosol</span> optical depth</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc</p> <p>2016-11-01</p> <p>In this study, we describe the development of the <span class="hlt">aerosol</span> optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D <span class="hlt">aerosol</span> concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and <span class="hlt">AeRosol</span> MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of <span class="hlt">aerosol</span> properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and Infra<span class="hlt">Red</span> Imager (SEVIRI) instrument and ground-based instruments from the <span class="hlt">Aerosol</span> Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves <span class="hlt">aerosol</span> representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1482G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1482G"><span>Numerical Modelling of Tertiary <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Yan; Correia, Alexandre C. M.; Eggleton, Peter P.; Han, Zhanwen</p> <p>2018-06-01</p> <p>Stellar systems consisting of multiple stars tend to undergo tidal interactions when the separations between the stars are short. While tidal phenomena have been extensively studied, a certain tidal effect exclusive to hierarchical triples (triples in which one component star has a much wider orbit than the others) has hardly received any attention, mainly due to its complexity and consequent resistance to being modelled. This tidal effect is the tidal perturbation of the tertiary by the inner binary, which in turn depletes orbital energy from the inner binary, causing the inner binary separation to shrink. In this paper, we develop a fully numerical simulation of these "tertiary <span class="hlt">tides</span>" by modifying established tidal models. We also provide general insight as to how close a hierarchical triple needs to be in order for such an effect to take place, and demonstrate that our simulations can effectively retrieve the orbital evolution for such systems. We conclude that tertiary <span class="hlt">tides</span> are a significant factor in the evolution of close hierarchical triples, and strongly influence at least ˜1% of all multiple star systems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017991','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017991"><span>Modeling the <span class="hlt">tides</span> of Massachusetts and Cape Cod Bays</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jenter, H.L.; Signell, R.P.; Blumberg, A.F.; ,</p> <p>1993-01-01</p> <p>A time-dependent, three-dimensional numerical modeling study of the <span class="hlt">tides</span> of Massachusetts and Cape Code Bays, motivated by construction of a new sewage treatment plant and ocean outfall for the city of Boston, has been undertaken by the authors. The numerical model being used is a hybrid version of the Blumberg and Mellor ECOM3D model, modified to include a semi-implicit time-stepping scheme and transport of a non-reactive dissolved constituent. <span class="hlt">Tides</span> in the bays are dominated by the semi-diurnal frequencies, in particular by the M2 <span class="hlt">tide</span>, due to the resonance of these frequencies in the Gulf of Maine. The numerical model reproduces, well, measured tidal ellipses in unstratified wintertime conditions. Stratified conditions present more of a problem because tidal-frequency internal wave generation and propagation significantly complicates the structure of the resulting tidal field. Nonetheless, the numerical model reproduces qualitative aspects of the stratified tidal flow that are consistent with observations in the bays.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6563598-influence-fortnightly-earth-tides-kilauea-volcano-hawaii','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6563598-influence-fortnightly-earth-tides-kilauea-volcano-hawaii"><span>Influence of fortnightly earth <span class="hlt">tides</span> at Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dzurisin, D.</p> <p>1980-11-01</p> <p>Analysis of 52 historic eruptions confirms the premise that fortnightly earth <span class="hlt">tides</span> play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly <span class="hlt">tide</span>. At Kilauea, stresses induced by fortnightly earth <span class="hlt">tides</span> presumably act in concert with volcanic andmore » tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012341','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012341"><span>Influence of fortnightly earth <span class="hlt">tides</span> at Kilauea Volcano, Hawaii.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dzurisin, D.</p> <p>1980-01-01</p> <p>Analysis of 52 historic eruptions confirms the premise that fortnightly earth <span class="hlt">tides</span> play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs. 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly <span class="hlt">tide</span>. At Kilauea, stresses induced by fortnightly earth <span class="hlt">tides</span> presumably act in concert with volcanic and tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.-Author</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990088419&hterms=Reddy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DReddy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990088419&hterms=Reddy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DReddy"><span>The Role of Gravity Waves in Generating Equatorial Oscillations in Modulating Atmospheric <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Reddy, C. A.</p> <p>1999-01-01</p> <p>We discuss a Numerical Spectral Mode (NSM) that extends from the ground up into the thermosphere and incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations in the mean zonal circulation, the semi-annual and quasi-biennial oscillations (SAO and QBO), as well as the <span class="hlt">tides</span> and planetary waves in the middle atmosphere. Initial results showed that this model can reproduce the salient features observed, including the QBO extending into the upper mesosphere inferred from UARS measurements. The model has now been extended to simulate also: (a) the zonal circulation of the lower stratosphere and upper troposphere, and (b) the upwelling at equatorial latitudes associated with the Brewer Dobsen circulation that affects the dynamics significantly as pointed out by Dunkerton. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase in the model the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. This development is conducive to extending the QBO and SAO to higher latitudes through global scale momentum redistribution. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. In a 3D version of the model, wave momentum is absorbed and dissipated by <span class="hlt">tides</span> and planetary waves. A somewhat larger GW source (well within the DSP range) is then required to generate realistic QBO and SAO amplitudes. Since GW momentum is deposited in the altitude regime of increasing winds, the amplitude of the diurnal <span class="hlt">tide</span> is amplified and its vertical wavelength is reduced at altitudes between 70 and 120 km. Wave filtering by the mean zonal circulation causes the GW flux to peak during equinox, and this produces a large semi-annual variation in the <span class="hlt">tide</span> that has been observed on UARS. Without the diurnal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP13D..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP13D..02H"><span><span class="hlt">Tides</span> Stabilize Deltas until Humans Interfere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoitink, T.; Zheng Bing, W.; Vermeulen, B.; Huismans, Y.; Kastner, K.</p> <p>2017-12-01</p> <p>Despite global concerns about river delta degradation caused by extraction of natural resources, sediment retention by reservoirs and sea-level rise, human activity in the world's largest deltas intensifies. In this review, we argue that <span class="hlt">tides</span> tend to stabilize deltas until humans interfere. Under natural circumstances, delta channels subject to <span class="hlt">tides</span> are more stable than their fluvial-dominated counterparts. The oscillatory tidal flow counteracts the processes responsible for bank erosion, which explains why unprotected tidal channels migrate only slowly. Peak river discharges attenuate the <span class="hlt">tides</span>, which creates storage space to accommodate the extra river discharge during extreme events and as a consequence, reduce flood risk. With stronger <span class="hlt">tides</span>, the river discharge is being distributed more evenly over the various branches in a delta, preventing silting up of smaller channels. Human interference in deltas is massive. Storm surge barriers are constructed, new land is being reclaimed and large-scale sand excavation takes place, to collect building material. Evidence from deltas around the globe shows that in human-controlled deltas the tidal motion often plays a destabilizing role. In channels of the Rhine-Meuse Delta, some 100 scour holes are identified, which relates to the altered tidal motion after completion of a storm surge barrier. Sand mining has led to widespread river bank failures in the tidally-influenced Mekong Delta. The catastrophic flood event in the Gauges-Brahmaputra Delta by Cyclone Aila, which caused the inundation of an embanked polder area for over two years, was preceded by river bank erosion at the mouths of formal tidal channels that were blocked by the embankment. Efforts to predict the developments of degrading deltas are few. Existing delta models are capable of reproducing expanding deltas, which is essentially a matter of simulating the transport of sediment from source in a catchment to the sink in a delta. Processes of soil</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70195431','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70195431"><span>Consortial brown <span class="hlt">tide</span> − picocyanobacteria blooms in Guantánamo Bay, Cuba</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hall, Nathan S; Litaker, R. Wayne; Kenworthy, W. Judson; Vandersea, Mark W.; Sunda, William G.; Reid, James P.; Slone, Daniel H.; Butler, Susan M.</p> <p>2018-01-01</p> <p>A brown <span class="hlt">tide</span> bloom of Aureoumbra lagunensis developed in Guantánamo Bay, Cuba during a period of drought in 2013 that followed heavy winds and rainfall from Hurricane Sandy in late October 2012. Based on satellite images and water turbidity measurements, the bloom appeared to initiate in January 2013. The causative species (A. lagunensis) was confirmed by microscopic observation, and pigment and genetic analyses of bloom samples collected on May 28 of that year. During that time, A. lagunensis reached concentrations of 900,000 cells ml−1 (28 ppm by biovolume) in the middle portion of the Bay. Samples could not be collected from the northern (Cuban) half of the Bay because of political considerations. Subsequent sampling of the southern half of the Bay in November 2013, April 2014, and October 2014 showed persistent lower concentrations of A. lagunensis, with dominance shifting to the cyanobacterium Synechococcus (up to 33 ppm in April), an algal group that comprised a minor bloom component on May 28. Thus, unlike the brown <span class="hlt">tide</span> bloom in Laguna Madre, which lasted 8 years, the bloom in Guantánamo Bay was short-lived, much like recent blooms in the Indian River, Florida. Although hypersaline conditions have been linked to brown <span class="hlt">tide</span> development in the lagoons of Texas and Florida, observed euhaline conditions in Guantánamo Bay (salinity 35–36) indicate that strong hypersalinity is not a requirement for A. lagunensis bloom formation. Microzooplankton biomass dominated by ciliates was high during the observed peak of the brown <span class="hlt">tide</span>, and ciliate abundance was high compared to other systems not impacted by brown <span class="hlt">tide</span>. Preferential grazing by zooplankton on non-brown <span class="hlt">tide</span> species, as shown in A. lagunensis blooms in Texas and Florida, may have been a factor in the development of the Cuban brown <span class="hlt">tide</span> bloom. However, subsequent selection of microzooplankton capable of utilizing A. lagunensis as a primary food source may have contributed to the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.G51C0680K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.G51C0680K"><span>Arctic Ocean <span class="hlt">Tides</span> from GRACE Satellite Accelerations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Killett, B.; Wahr, J. M.; Desai, S. D.; Yuan, D.; Watkins, M. M.</p> <p>2010-12-01</p> <p>Because missions such as TOPEX/POSEIDON don't extend to high latitudes, Arctic ocean tidal solutions aren't constrained by altimetry data. The resulting errors in tidal models alias into monthly GRACE gravity field solutions at all latitudes. Fortunately, GRACE inter-satellite ranging data can be used to solve for these <span class="hlt">tides</span> directly. Seven years of GRACE inter-satellite acceleration data are inverted using a mascon approach to solve for residual amplitudes and phases of major solar and lunar <span class="hlt">tides</span> in the Arctic ocean relative to FES 2004. Simulations are performed to test the inversion algorithm's performance, and uncertainty estimates are derived from the tidal signal over land. Truncation error magnitudes and patterns are compared to the residual tidal signals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ECSS..149..120P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ECSS..149..120P"><span>Recruitment of fish larvae and juveniles into two estuarine nursery areas with evidence of ebb <span class="hlt">tide</span> use</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pattrick, Paula; Strydom, Nadine</p> <p>2014-08-01</p> <p>Recruitment of larvae and early juveniles, against the ebb <span class="hlt">tide</span> in the shallower, slower-flowing marginal areas of two permanently open estuaries in the Eastern Cape, South Africa was observed. To determine tidal, diel and seasonal variations of larval and juvenile fish recruitment, fyke nets were used during a 24-hour cycle over two years from December 2010 to October 2012. On either side of each estuary bank, two fyke nets with mouth openings facing opposite directions (i.e. one net facing the incoming or outgoing <span class="hlt">tide</span> and the other facing the opposing direction) were used to sample fishes. The aims of this study were to determine if 1) on the flood <span class="hlt">tide</span>, were the nets facing the incoming <span class="hlt">tide</span> collecting more larvae and early juveniles recruiting into the estuarine nursery area, than the nets facing the opposing direction and 2) on the ebb <span class="hlt">tide</span>, were the nets facing the sea, and hence the opposing direction of the outgoing ebb <span class="hlt">tide</span>, collecting more fishes recruiting into the nursery against the ebb <span class="hlt">tide</span>, than the nets facing the outgoing ebb <span class="hlt">tide</span>? Larval and juvenile fish CPUE, species diversity and richness varied seasonally between estuarine systems and between diel and tidal conditions. Highest catches were recorded on the flood <span class="hlt">tide</span>, which coincided with sunrise in the Swartkops Estuary. Greatest catches of larvae and early juveniles were observed during the ebb <span class="hlt">tide</span> at night in the Sundays Estuary. On the ebb <span class="hlt">tide</span>, higher catches of several dominant species and several commercially important fishery species, occurred in the fyke nets which faced the sea, indicating the early developmental stages of these fish species are not necessarily being lost from the nursery. These larvae and juveniles are actively swimming against the ebb <span class="hlt">tide</span> in the shallower, slower-flowing marginal areas facilitating recruitment against ebb flow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S41C0785M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S41C0785M"><span>Numerical study of the effect of earth <span class="hlt">tides</span> on recurring short-term slow slip events</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matsuzawa, T.; Tanaka, Y.; Shibazaki, B.</p> <p>2017-12-01</p> <p>Short-term slow slip events (SSEs) in the Nankai region are affected by earth <span class="hlt">tides</span> (e.g., Nakata et al., 2008; Ide and Tanaka, 2014; Yabe et al., 2015). The effect of tidal stress on the SSEs is also examined numerically (e.g., Hawthorne and Rubin, 2013). In our previous study (Matsuzawa et al., 2017, JpGU-AGU), we numerically simulated SSEs in the Shikoku region, and reported that tidal stress makes the variance of recurrence intervals of SSEs smaller in relatively isolated SSE regions. However, the reason of such stable recurrence was not clear. In this study, we examine the tidal effect on short-term SSEs based on a flat plate and a realistic plate model (e.g., Matsuzawa et al., 2013, GRL). We adopt a rate- and state-dependent friction law (RS-law) with cutoff velocities as in our previous studies (Matsuzawa et al., 2013). We assume that (a-b) value in the RS-law is negative within the short-term SSE region, and positive outside the region. In a flat plate model, the short-term SSE region is a circular patch with the radius of 6 km. In a realistic plate model, the short-term SSE region is based on the actual distribution of low-frequency tremor. Low effective normal stress is assumed at the depth of SSEs. Calculating stress change by earth <span class="hlt">tides</span> as in Yabe et al., (2015), we examine the stress perturbation by two different earth <span class="hlt">tides</span> with the period of semidiurnal (M2) and fortnight (Mf) <span class="hlt">tide</span> in this study. In the result of a flat plate case, amplitude of SSEs becomes smaller just after the slip at whole simulated area. Recurring SSEs become clear again within one year in the case with <span class="hlt">tides</span> (M2 or Mf), while the recurrence becomes clear after seven years in the case without <span class="hlt">tides</span>. Interestingly, the effect of the Mf <span class="hlt">tide</span> is similar to the case with the M2 <span class="hlt">tide</span>, even though the amplitude of the Mf <span class="hlt">tide</span> (0.01 kPa) is two-order smaller than that of the M2 <span class="hlt">tide</span>. In the realistic plate model of Shikoku, clear recurrence of short-term SSEs is found earlier than the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OSJ....51..195H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OSJ....51..195H"><span>Tidal asymmetry in a tidal creek with mixed mainly semidiurnal <span class="hlt">tide</span>, Bushehr Port, Persian Gulf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hosseini, Seyed Taleb; Chegini, Vahid; Sadrinasab, Masoud; Siadatmousavi, Seyed Mostafa; Yari, Sadegh</p> <p>2016-03-01</p> <p>This study investigated the tidal asymmetry imposed by both the interaction of principal <span class="hlt">tides</span> and the higher harmonics generated by distortions within a tidal creek network with mixed mainly semidiurnal <span class="hlt">tide</span> in the Bushehr Port, Persian Gulf. Since velocity and water-level imposed by principal triad <span class="hlt">tides</span> K1-O1-M2 are in quadrature, duration asymmetries during a tidal period in this short, shallow inverse estuary should be manifest as skewed velocities. The principal <span class="hlt">tides</span> produce periodic asymmetries including a strong ebb-dominance and a weak flood-dominance condition during spring and neap <span class="hlt">tides</span> respectively. The higher harmonics induced by nonlinearities engender a flood-dominance condition where the convergence effects are higher than frictional effects, and an ebbdominance condition where intertidal storage are extended. Since the triad K1-O1-M2 driven asymmetry is not overcome by higher harmonics close to the mouth, the periodic asymmetry dominates within the creek in which higher harmonics reinforce the weak flood-dominance (strong ebb-dominance) condition in the convergent channel (divergent area). Also, the maximum flood and the maximum ebb from all harmonic constituents occurred close to high water slack time during both spring and neap <span class="hlt">tides</span> in this short creek. Since occational wetting of intertidal areas happened close to the high water (HW) time during spring <span class="hlt">tide</span>, the water level flooded slowly close to the HW time of the spring <span class="hlt">tide</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A33D0195B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A33D0195B"><span>Optical Properties of Black and Brown Carbon <span class="hlt">Aerosols</span> from Laboratory Combustion of Wildland Fuels</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beres, N. D.; Molzan, J.</p> <p>2015-12-01</p> <p><span class="hlt">Aerosol</span> light absorption in the solar spectral region (300 nm - 2300 nm) of the atmosphere is key for the direct <span class="hlt">aerosol</span> radiative forcing, which is determined by <span class="hlt">aerosol</span> single scattering albedo (SSA), asymmetry parameter, and by the albedo of the underlying surface. SSA is of key importance for the sign and quantity of <span class="hlt">aerosol</span> direct radiative forcing; that is, does the <span class="hlt">aerosol</span> make the earth look darker (heating) or whiter (cooling)? In addition, these optical properties are needed for satellite retrievals of <span class="hlt">aerosol</span> optical depth and properties. During wildland fires, <span class="hlt">aerosol</span> optical absorption is largely determined by black carbon (BC) and brown carbon (BrC) emissions. BC is strongly absorbing throughout the solar spectrum, while BrC absorption strongly increases toward shorter wavelength and can be neglected in the <span class="hlt">red</span> and infrared. Optical properties of BrC emitted from wildland fires are poorly understood and need to be studied as function of fuel type and moisture content and combustion conditions. While much more is known about BC optical properties, knowledge for the ultraviolet (UV) spectral region is still lacking and critically needed for satellite remote sensing (e.g., TOMS, OMI) and for modeling of tropospheric photochemistry. Here, a project to better characterize biomass burning <span class="hlt">aerosol</span> optical properties is described. It utilizes a laboratory biomass combustion chamber to generate <span class="hlt">aerosols</span> through combustion of different wildland fuels of global and regional importance. Combustion <span class="hlt">aerosol</span> optics is characterized with an integrating nephelometer to measure <span class="hlt">aerosol</span> light scattering and a photoacoustic instrument to measure <span class="hlt">aerosol</span> light absorption. These measurements will yield optical properties that are needed to improve qualitative and quantitative understanding of <span class="hlt">aerosol</span> radiative forcing and satellite retrievals for absorbing carbonaceous <span class="hlt">aerosols</span> from combustion of wildland fuels.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......126G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......126G"><span>Hydrodynamical simulations of strong <span class="hlt">tides</span> in astrophysical systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guillochon, James</p> <p>2013-07-01</p> <p>At the simplest level, gravitational sources are considered to be point-like and in solitude, with a radial force that falls off as r -2. In reality, all astrophysical objects aside from black holes are extended in space, and can be deformed by the tidal forces arising from the proximity of companion objects with large average densities. When these forces are weak, the response of an object to a <span class="hlt">tide</span> can be through a decomposition into basis functions, but this approach fails when the <span class="hlt">tide</span> is strong enough to deform an object by a distance equal to its own size. Under these circumstances, a hydrodynamical representation of the object is required to understand the true tidal response. In this thesis, we present a number of examples of physical systems in which <span class="hlt">tides</span> dominate the dynamics. First, we consider the case of a star that encounters a supermassive black hole (SMBH) in a deeply penetrating encounter, resulting in a dramatic compression that produces shocks that would be observable in the X-ray. Second, we present the results of hydrodynamical simulations that demonstrate a new mechanism for igniting Type Ia supernovae from binary systems composed of two white dwarfs undergoing Roche-lobe overflow. Third, we investigate the survival prospects of giant planets that have been scattered into highly eccentricity orbits and are exposed to a strong <span class="hlt">tide</span> applied by their parent star. Fourth, we systematically map the fallback rate resulting from the tidal disruptions of stars by SMBHs. Finally, we use what we have learned about the feeding rate to model determine the highest-likelihood model for an observed prototypical tidal disruption event.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1984/4293/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1984/4293/report.pdf"><span>Water-surface elevations for the high <span class="hlt">tide</span> of December 15, 1977, in the Puget Sound region, Washington</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nelson, L.M.</p> <p>1985-01-01</p> <p>An unusually high oceanic <span class="hlt">tide</span> on December 15, 1977, caused flooding of lowlying, nearshore parts of western Washington, including several areas in the Puget Sound region. At Seattle, the December 15 high <span class="hlt">tide</span> of 14.8 feet above MLLW (mean lower low water datum; 8.55 feet above the National Geodetic Vertical Daltum of 1929, or NGVD) was 0.1 foot higher than the 100-year high <span class="hlt">tide</span>. At Neah Bay, near the western end of the Straits of Juan de Fuca, however, the high <span class="hlt">tide</span> of 8.77 feet MLLW (4.55 feet NGVD) on that date was 3.2 feet lower than the 100-year high <span class="hlt">tide</span>. This study has identified the observed December 15 high-<span class="hlt">tide</span> elevations at many locations in the Puget Sound region. The observed high <span class="hlt">tide</span> then was much higher than predicted in most of the Puget Sound region, primarily as the result of a very low barametric pressure. Little damage from wind waves was reported. Elevation profiles for the predicted and observed high <span class="hlt">tides</span> on December 15 and for several other selected <span class="hlt">tide</span> levels indicate an increase in the maximum height in the inland direction, except near Port Angeles, and show abrupt changes in tidal elevations at three constrictions - Admiralty Inlet, Tacoma Narrows, and Deception Pass. (USGS)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JGRC..108.3151F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JGRC..108.3151F"><span>Internal <span class="hlt">tides</span> in the Northern Gulf of California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Filonov, Anatoliy E.; LavíN, M. F.</p> <p>2003-05-01</p> <p>The characteristics of the internal <span class="hlt">tide</span> in the Northern Gulf of California are described using data from two moored arrays of temperature and current sensors, one for summer and one for winter, located between Angel de la Guarda Island and the mainland. From the summer six-sensor mooring it was found that: (1) the current fluctuations are dominated by the semidiurnal frequency band, while the quarterdiurnal frequency dominated the temperature fluctuations. (2) The baroclinic semidiurnal horizontal current fluctuations are aligned with the gulf axis, and have amplitudes of 10-15 cm s-1; the vertical displacements reached 4 m in this frequency band. (3) The vertical modal structure for the temperature and velocity oscillations was dominated by the first and third modes. (4) The energy of the semidiurnal internal <span class="hlt">tide</span> is 45% of that of the barotropic <span class="hlt">tide</span>. (5) Vertical wave number spectra showed slightly asymmetric peaks in the high wave number components, indicating that their downflowing energy is larger than that flowing upward. From the winter two-sensor mooring, it was found that the vertical oscillations were mainly semidiurnal, with root mean square amplitudes of 7 m.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=salinity&pg=2&id=ED128205','ERIC'); return false;" href="https://eric.ed.gov/?q=salinity&pg=2&id=ED128205"><span>Investigations in Marine Chemistry: <span class="hlt">Tide</span> Pool Ecology.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Schlenker, Richard M.</p> <p></p> <p>Students investigated the salinity of <span class="hlt">tide</span> pools at different levels in the intertidal zone. Data are analyzed collectively. Students graphed and discussed data. Included are suggestions for evaluation and further study. (Author)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810963L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810963L"><span>High-resolution barotropic <span class="hlt">tide</span> modelling in the South China Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luu, Quang-Hung; Tkalich, Pavel</p> <p>2016-04-01</p> <p>The South China Sea (SCS) links two of the largest open oceans, the Pacific and the Indian, mainly through the Luzon-Taiwan Straits in the northeast and the Malacca-Karimata Straits in the southwest, respectively. It has a rhino-like shape of 3000-km long, whose belly is contiguous to Vietnam and back leans on the Philippines. The highly irregular topography includes the Gulf of Tonkin in the north, the Gulf Thailand in the southwest, and several small islands in the middle of SCS (i.e., the Spratly and the Paracels) resulting in complicated astronomic <span class="hlt">tides</span> and tidal dynamics in this region. In this study, we present high-resolution simulation of <span class="hlt">tides</span> in the SCS using the Semi-Implicit Eulerian-Lagrangian Finite-Element (SELFE) model. We derive the bathymetry from the Shuttle Radar Topography Mission (SMRT) 15-arc second dataset, one of the finest global topography data sources. Our particular interest is to resolve small bathymetry features and islands in the middle of the SCS which we obtained by digitizing very-high resolution satellite images (30-m accuracy). An unstructured triangular mesh comprising of up to 5 million nodes is generated to resolve these features with very high accuracy, while maintaining fairly coarse resolution in rest of the domain. The model is configured to run in barotropic mode by forcing harmonic oscillations from FES2012 global <span class="hlt">tide</span> predictions along open boundaries, adjusted to account for volume transport at key channels in the SCS. Computed surface elevations and currents agree well with available <span class="hlt">tide</span> predictions and measurements. Sensitivity study is performed to analyze the role of the small bathymetry features on distorting <span class="hlt">tides</span> in the SCS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040095308','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040095308"><span>QBO Generated Inter-annual Variations of the Diurnal <span class="hlt">Tide</span> in the Mesosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, Hans G.; Mengel, John G.</p> <p>2004-01-01</p> <p>We report results from a study with the Numerical Spectral Model (NSM), which produces in the mesosphere significant inter-annual variations in the diurnal <span class="hlt">tide</span>. Applying Hines Doppler Spread Parameterization (DPS), small-scale gravity waves (GW) drive the Quasi-biennial Oscillation (QBO) and Semi-annual Oscillation (SAO). With a GW source that peaks at the equator and is taken to be isotropic and independent of season, the NSM generates near the equator a QBO with variable periods around 27 months and zonal wind amplitudes close to 20 m / s at 30 Ism. As reported earlier, the NSM reproduces the observed equinoctial maxima in the diurnal <span class="hlt">tide</span> at altitudes around 95 km. In the present paper it is shown that the QBO modulates the <span class="hlt">tide</span> such that the seasonal amplitude maxima can vary from one year to another by as much as 30%. Since the period of the QBO is variable, its phase relative to the seasonal cycle changes. The magnitude of the QBO modulation of the <span class="hlt">tide</span> thus varies considerably as our long-term model simulation shows. To shed light on the underlying mechanism, the relative importance of the linearized advection terms are discussed that involve the meridional and vertical winds of the diurnal <span class="hlt">tide</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040171679&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DQbo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040171679&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DQbo"><span>QBO Generated Inter-annual Variations of the Diurnal <span class="hlt">Tide</span> in the Mesosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, Hans G.; Mengel, John G.</p> <p>2004-01-01</p> <p>We report results from a study with the Numerical Spectral Model (NSM), which produces in the d i d <span class="hlt">tide</span> significant inter-annual variations. Applying Hines' Doppler Spread Parameterization (DPS), small-scale gravity waves (GW) drive the Quasi-biennial Oscillation (QBO) and Semi-annual Oscillation (SAO). With a GW source that peaks at the equator and is taken to be isotropic and independent of season, the NSM generates a QBO with variable periods around 27 months and zonal wind amplitudes close to 20 m/s at 30 lan, As reported earlier, the NSM reproduces the observed equinoctial maxima in the diurnal <span class="hlt">tide</span> at altitudes around 95 km. In the present paper it is shown that the QBO modulates the <span class="hlt">tide</span> such that the seasonal amplitude maxima can vary from one year to another by as much as 30%. Since the period of the QBO is variable, its phase relative to the seasonal cycle changes. The magnitude of the QBO modulation of the <span class="hlt">tide</span> thus varies considerably as our long-term model simulation shows. To shed light on the underlying mechanisms, we discuss (a) the relative importance of the linearized advection terms that involve the meridional and vertical winds of the diurnal <span class="hlt">tide</span> and (b) the effects momentum deposition from GWs filtered by the QBO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=300731','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=300731"><span>Efficacy of <span class="hlt">aerosol</span> applications of methoprene and synergized pyrethrin against Tribolium castaneum adults and eggs</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Experiments were performed to determine the efficacy of a single <span class="hlt">aerosol</span> application of the insecticides methoprene and piperonyl butoxide-synergized pyrethrin, alone or in combination, and the insecticide carrier, Isopar M, against Tribolium castaneum (Herbst), the <span class="hlt">red</span> flour beetle. The initial tes...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.6378A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.6378A"><span>New insights into ocean <span class="hlt">tide</span> loading corrections on tidal gravity data in Canary Islands</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arnoso, J.; Benavent, M.; Bos, M. S.; Montesinos, F. G.</p> <p>2009-04-01</p> <p>The Canary Islands are an interesting area to investigate ocean <span class="hlt">tides</span> loading effects due to the complex coastline of the islands and the varying bathymetry. We present here the quality of five recent global oceanic tidal models, GOT00.2, GOT4.7, FES2004, TPXO.7.1 and AG2006, by comparing their predicted ocean <span class="hlt">tide</span> loading values with results from tidal gravity observations made on three islands, Lanzarote, Tenerife and El Hierro, for the four harmonic constituents O1, K1, M2 and S2. In order to improve the accuracy of the loading corrections on the gravity <span class="hlt">tide</span> measurements, we have used the high resolution regional oceanic model CIAM2 to supplement the global models considered here. This regional model has been obtained by assimilating TOPEX/Poseidon altimetry at crossovers and along-track points and <span class="hlt">tide</span> gauge observations into a hydrodynamic model. The model has a 5'Ã-5' resolution and covers the area between the coordinates 26°.5N to 30°.0N and 19°.0W to 12°.5W. The gravity <span class="hlt">tide</span> observing sites have been occupied by three different LaCoste&Romberg (LCR) spring gravimeters during different periods of observation. We considered here the most recent gravity <span class="hlt">tide</span> observations made with LCR Graviton-EG1194 in El Hierro Island, for a period of 6 months during 2008. In the case of Tenerife and Lanzarote sites we have used observation periods of 6 months and 8 years with LCR-G665 and LCR-G434 gravimeters, respectively. The last two sites have been revisited in order to improve the previous tidal analysis results. Thus, the gravity ocean <span class="hlt">tide</span> loading corrections, based on the five global ocean <span class="hlt">tide</span> models supplemented with the regional model CIAM2 allowed us to review the normalization factors (scale factor and phase lag) of both two gravimeters. Also, we investigated the discrepancies of the corrected gravimetric factors with the DDW elastic and inelastic non hydrostatic body <span class="hlt">tide</span> model (Dehant et al., 1999). The lowest values are found for inelastic model in the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900048388&hterms=rate+change+frequency&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Drate%2Bchange%2Bfrequency','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900048388&hterms=rate+change+frequency&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Drate%2Bchange%2Bfrequency"><span>Effects of dynamic long-period ocean <span class="hlt">tides</span> on changes in earth's rotation rate</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nam, Young; Dickman, S. R.</p> <p>1990-01-01</p> <p>As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the zonal response function kappa of the solid earth-ocean system is defined as the ratio, in the frequency domain, of the tidal change in earth's rotation rate to the <span class="hlt">tide</span>-generating potential. Amplitudes and phases of kappa for the monthly, fortnightly, and nine-day lunar <span class="hlt">tides</span> are estimated from 2 1/2 years of VLBI UT1 observations, corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean <span class="hlt">tide</span> model of Dickman (1988, 1989), amplitudes and phases of kappa for an elastic earth-ocean system are predicted. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean <span class="hlt">tides</span> reduce the amplitude of kappa by about 1 percent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.175.1659R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.175.1659R"><span>Interferometric Water Level Tilt Meter Development in Finland and Comparison with Combined Earth <span class="hlt">Tide</span> and Ocean Loading Models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruotsalainen, Hannu</p> <p>2018-05-01</p> <p>A modern third-generation interferometric water level tilt meter was developed at the Finnish Geodetic Institute in 2000. The tilt meter has absolute scale and can do high-precision tilt measurements on earth <span class="hlt">tides</span>, ocean <span class="hlt">tide</span> loading and atmospheric loading. Additionally, it can be applied in various kinds of geodynamic and geophysical research. The principles and results of the historical 100-year-old Michelson-Gale tilt meter, as well as the development of interferometric water tube tilt meters of the Finnish Geodetic Institute, Finland, are reviewed. Modern Earth <span class="hlt">tide</span> model tilt combined with Schwiderski ocean <span class="hlt">tide</span> loading model explains the uncertainty in historical tilt observations by Michelson and Gale. Earth <span class="hlt">tide</span> tilt observations in Lohja2 geodynamic station, southern Finland, are compared with the combined model earth <span class="hlt">tide</span> and four ocean <span class="hlt">tide</span> loading models. The observed diurnal and semidiurnal harmonic constituents do not fit well with combined models. The reason could be a result of the improper harmonic modelling of the Baltic Sea <span class="hlt">tides</span> in those models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020073397&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Doceans%2Btide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020073397&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Doceans%2Btide"><span>Polar Motion Constraints on Models of the Fortnightly <span class="hlt">Tide</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.; Egbert, G. D.; Smith, David E. (Technical Monitor)</p> <p>2002-01-01</p> <p>Estimates of the near-fortnightly Mf ocean <span class="hlt">tide</span> from Topex/Poseidon satellite altimetry and from numerical solutions to the shallow water equations agree reasonably well, at least in their basin-scale features. For example, both show that the Pacific Ocean <span class="hlt">tide</span> lags the Atlantic <span class="hlt">tide</span> by roughly 30 degrees. There are hints of finer scale agreements in the elevation fields, but noise levels are high. In contrast, estimates of Mf currents are only weakly constrained by the TP data, because high-wavenumber Rossby waves (with intense currents) are associated with relatively small perturbations in surface elevation. As a result, a wide range of Mf current fields are consistent with both the TP data and the hydrodynamic equations within a priori plausible misfit bounds. We find that a useful constraint on the Mf currents is provided by independent estimates of the Earth's polar motion. At the Mf period polar motion shows a weak signal (both prograde and retrograde) which must be almost entirely caused by the ocean <span class="hlt">tide</span>. We have estimated this signal from the SPACE2000 time series, after applying a broad-band correction for atmospheric angular momentum. Although the polar motion estimates have relatively large uncertainties, they are sufficiently precise to fix optimum data weights in a global ocean inverse model of Mf. These weights control the tradeoff between fitting a prior hydrodynamic model of Mf and fitting the relatively noisy T/P measurements of Mf. The predicted polar motion from the final inverse model agrees remarkably well with the Mf polar motion observations. The preferred model is also consistent with noise levels suggested by island gauges, and it is marginally consistent with differences observed by subsetting the altimetry (to the small extent that this is possible). In turn, this new model of the Mf ocean <span class="hlt">tide</span> allows the ocean component to be removed from Mf estimates of length of day, thus yielding estimates of complex Love numbers less contaminated by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ascl.soft08005P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ascl.soft08005P"><span>POET: Planetary Orbital Evolution due to <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Penev, Kaloyan</p> <p>2014-08-01</p> <p>POET (Planetary Orbital Evolution due to <span class="hlt">Tides</span>) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of <span class="hlt">tides</span>. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29749219','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29749219"><span>[Influences of <span class="hlt">tide</span> on silicon and nitrogen contents in soil and porewater in the Minjiang Ri-ver estuary, Southeast China].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hou, Guan Yun; Zhai, Shui Jing; Le, Xiao Qing; Tong, Chuan</p> <p>2017-01-01</p> <p>Taking Shanyuntan wetland in the Minjiang River estuary as test object, the dissolved silicates (DSi) and inorganic nitrogen contents in porewater and the biogenic silica (BSi) and total nitrogen contents in surface soil of the Phragmites australis wetland, Cyperus malaccensis wetland and Spartina alterniflora wetland were measured in October 2014 (spring <span class="hlt">tide</span> month) and April 2015 (neap <span class="hlt">tide</span> month), respectively, to illuminate the influence of <span class="hlt">tide</span> on silicon and nitrogen contents in soil and porewater of estuarine wetland. Results showed that the DSi content in porewater and the BSi content in surface soil in spring <span class="hlt">tide</span> month were slightly higher than those in neap <span class="hlt">tide</span> month, with the highest being observed on neap <span class="hlt">tide</span> day and the lowest occurring on spring <span class="hlt">tide</span> day. In contrast, the BSi content in surface soil on spring <span class="hlt">tide</span> day showed an opposite trend with that on neap <span class="hlt">tide</span> day. The contents of NH 4 + -N and NO 3 - -N in porewater of different wetland soils in spring <span class="hlt">tide</span> month were higher than those in neap <span class="hlt">tide</span> month, while the content of NH 4 + -N on spring <span class="hlt">tide</span> day was significantly higher than that on neap <span class="hlt">tide</span> day (P<0.05). The study found that hydrological conditions such as flooding duration and drying-wetting alternation caused by <span class="hlt">tide</span> had great influences on silicon and nitrogen contents in porewater and surface soil, and vegetation types also showed great influences on their distributions in intertidal wetland of the Minjiang River estuary.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005GeoRL..32.9603M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005GeoRL..32.9603M"><span><span class="hlt">Tide</span> gauge observations of the Indian Ocean tsunami, December 26, 2004</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Merrifield, M. A.; Firing, Y. L.; Aarup, T.; Agricole, W.; Brundrit, G.; Chang-Seng, D.; Farre, R.; Kilonsky, B.; Knight, W.; Kong, L.; Magori, C.; Manurung, P.; McCreery, C.; Mitchell, W.; Pillay, S.; Schindele, F.; Shillington, F.; Testut, L.; Wijeratne, E. M. S.; Caldwell, P.; Jardin, J.; Nakahara, S.; Porter, F.-Y.; Turetsky, N.</p> <p>2005-05-01</p> <p>The magnitude 9.0 earthquake centered off the west coast of northern Sumatra (3.307°N, 95.947°E) on December 26, 2004 at 00:59 UTC (United States Geological Survey (USGS) (2005), USGS Earthquake Hazards Program-Latest Earthquakes, Earthquake Hazards Program, http://earthquake.usgs.gov/eqinthenews/2004/usslav/, 2005) generated a series of tsunami waves that devastated coastal areas throughout the Indian Ocean. <span class="hlt">Tide</span> gauges operated on behalf of national and international organizations recorded the wave form at a number of island and continental locations. This report summarizes the <span class="hlt">tide</span> gauge observations of the tsunami in the Indian Ocean (available as of January 2005) and provides a recommendation for the use of the basin-wide <span class="hlt">tide</span> gauge network for future warnings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020083259','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020083259"><span>Relationship Between Surface Reflectance in the Visible and Mid-IR used in MODIS <span class="hlt">Aerosol</span> Algorithm-Theory</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaufman, Yoram J.; Gobron, Nadine; Pinty, Bernard; Widlowski, Jean-Luc; Verstraete, Michel M.; Lau, William K. M. (Technical Monitor)</p> <p>2002-01-01</p> <p>Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies in polar orbit on the Terra platform, are used to derive the <span class="hlt">aerosol</span> optical thickness and properties over land and ocean. The relationships between visible reflectance (at blue, rho(sub blue), and <span class="hlt">red</span>, rho(sub <span class="hlt">red</span>)) and mid-infrared (at 2.1 microns, rho(sub 2.1)) are used in the MODIS <span class="hlt">aerosol</span> retrieval algorithm to derive global distribution of <span class="hlt">aerosols</span> over the land. These relations have been established from a series of measurements indicating that rho(sub blue) is approximately 0.5 rho(sub <span class="hlt">red</span>) is approximately 0.25 rho(sub 2.1). Here we use a model to describe the transfer of radiation through a vegetation canopy composed of randomly oriented leaves to assess the theoretical foundations for these relationships. Calculations for a wide range of leaf area indices and vegetation fractions show that rho(sub blue) is consistently about 1/4 of rho(sub 2.1) as used by MODIS for the whole range of analyzed cases, except for very dark soils, such as those found in burn scars. For its part, the ratio rho(sub <span class="hlt">red</span>)/rho(sub 2.1) varies from less than the empirically derived value of 1/2 for dense and dark vegetation, to more than 1/2 for bright mixture of soil and vegetation. This is in agreement with measurements over uniform dense vegetation, but not with measurements over mixed dark scenes. In the later case the discrepancy is probably mitigated by shadows due to uneven canopy and terrain on a large scale. It is concluded that the value of this ratio should ideally be made dependent on the land cover type in the operational processing of MODIS data, especially over dense forests.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008283','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008283"><span>The Contribution of Io-Raised <span class="hlt">Tides</span> to Europa's Diurnally-Varying Surface Stresses</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rhoden, Alyssa Rose; Hurford, Terry A,; Manga, Michael</p> <p>2011-01-01</p> <p>Europa's icy surface records a rich history of geologic activity, Several features appear to be tectonic in origin and may have formed in response to Europa's daily-varying tidal stress [I]. Strike-slip faults and arcuate features called cycloids have both been linked to the patterns of stress change caused by eccentricity and obliquity [2J[3]. In fact, as Europa's obliquity has not been directly measured, observed tectonic patterns arc currently the best indicators of a theoretically supported [4] non-negligible obliquity. The diurnal tidal stress due to eccentricity is calculated by subtracting the average (or static) tidal shape of Europa generated by Jupiter's gravitational field from the instantaneous shape, which varies as Europa moves through its eccentric orbit [5]. In other words, it is the change of shape away from average that generates tidal stress. One might expect tidal contributions from the other large moons of Jupiter to be negligible given their size and the height of the <span class="hlt">tides</span> they raise on Europa versus Jupiter's mass and the height of the <span class="hlt">tide</span> it raises on Europa, However, what matters for tidally-induced stress is not how large the lo-raised bulge is compared to the Jupiter-raised bulge but rather the differences bet\\Veen the instantaneous and static bulges in each case. For example, when Europa is at apocenter, Jupiter raises a <span class="hlt">tide</span> 30m lower than its static <span class="hlt">tide</span>. At the same time, 10 raises a <span class="hlt">tide</span> about 0.5m higher than its static <span class="hlt">tide</span>. Hence, the change in Io's tidal distortion is about 2% of the change in the Jovian distortion when Europa is at apocenter</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PrOce..40..217F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PrOce..40..217F"><span>A description of the <span class="hlt">tides</span> in the Eastern North Atlantic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fanjul, Enrique Alvarez; Gómez, Begoña Pérez; Sánchez-Arévalo, Ignacio Rodríguez</p> <p></p> <p>A description of the Eastern North Atlantic tidal dynamics (in a region spanning from 20°N to 48°N in latitude and from 34°W to 0° in longitude) is obtained by means of new in situ measurements and numerical modelling based on TOPEX/POSEIDON-derived data sets. The main source of measurements is the <span class="hlt">tide</span> gauge network REDMAR (<span class="hlt">RED</span> de MAReógrafos de Puertos del Estado), operative since July 1992 and managed by Clima Marítimo (Puertos del Estado). Results derived from the harmonic analysis of the first years of measurements are presented and compared with model results. In order to obtain a global picture of the <span class="hlt">tides</span> in the region, a large compilation of harmonic constants obtained from other institutes is included. The availability of new TOPEX/POSEIDON-derived harmonic constants data sets provides a chance to include the benefits derived from satellite altimetry in high resolution regional applications of numerical models. Richard Ray's tidal model (Ray et al., 1994), based on a response type tidal analysis of TOPEX/POSEIDON data, was employed within a model of the studied area. The numerical model employed is HAMSOM, a 3-D finite difference code developed both by the Institut für Meereskunde (Hamburg University) and Clima Marítimo. Results from simulations of seven major harmonics are presented, providing a comprehensive view of tidal dynamics, including current information. The results of tidal simulations show good agreement between semidiurnal harmonic components and the values measured by both coastal and pelagic tidal gauges and by current meters. The modelled diurnal constituents show larger relative differences with measurements than semidiurnal harmonics, especially concerning the phase lags. The non-linear transfer of energy from semidiurnal to higher order harmonics, such as M 4 and M 6, was mapped. Those transfers were found to be important only in two areas: the French continental shelf in the Bay of Biscay and the widest part of the African</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950049124&hterms=geocentric+approach&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgeocentric%2Bapproach','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950049124&hterms=geocentric+approach&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgeocentric%2Bapproach"><span>Determination of ocean <span class="hlt">tides</span> from the first year of TOPEX/POSEIDON altimeter measurements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ma, X. C.; Shum, C. K.; Eanes, R. J.; Tapley, B. D.</p> <p>1994-01-01</p> <p>An improved geocentric global ocean <span class="hlt">tide</span> model has been determined using 1 year of TOPEX/POSEIDON altimeter measurements to provide corrections to the Cartwright and Ray (1991) model (CR91). The corrections were determined on a 3 deg x 3 deg grid using both the harmonic analysis method and the response method. The two approaches produce similar solutions. The effect on the <span class="hlt">tide</span> solution of simultaneously adjusting radial orbit correction parameters using altimeter measurements was examined. Four semidiurnal (N(sub 2), M(sub 2), S(sub 2) and K(sub 2)), four diurnal (Q(sdub 1), O(sub 1), P(sub 1), and K(sub 1)), and three long-period (S(sub sa), M(sub m), and M(sub f)) constituents, along with the variations at the annual frequency, were included in the harmomnic analysis solution. The observed annual variations represents the first global measurement describing accurate seasonal changes of the ocean during an El Nino year. The corrections to the M(sub 2) constituent have an root mean square (RMS) of 3.6 cm and display a clear banding pattern with regional highs and lows reaching 8 cm. The improved <span class="hlt">tide</span> model reduces the weighted altimeter crossover residual from 9.8 cm RMS, when the CR91 <span class="hlt">tide</span> model is used, to 8.2 cm on RMS. Comparison of the improved model to pelagic tidal constants determined from 80 <span class="hlt">tide</span> gauges gives RMS differences of 2.7 cm for M(sub 2) and 1.7 cm for K(sub 1). Comparable values when the CR91 model is used are 3.9 cm and 2.0 cm, respectively. Examination of TOPEX/POSEIDON sea level anomaly variations using the new <span class="hlt">tide</span> model further confirms that the <span class="hlt">tide</span> model has been improved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97f3527A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97f3527A"><span>Impact of large-scale <span class="hlt">tides</span> on cosmological distortions via redshift-space power spectrum</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akitsu, Kazuyuki; Takada, Masahiro</p> <p>2018-03-01</p> <p>Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale <span class="hlt">tide</span> induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the <span class="hlt">tide</span>, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale <span class="hlt">tide</span>. We then investigate the impact of large-scale <span class="hlt">tide</span> on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale <span class="hlt">tide</span> as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale <span class="hlt">tide</span> can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28693110','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28693110"><span>Potential effects of brevetoxins and toxic elements on various health variables in Kemp's ridley (Lepidochelys kempii) and green (Chelonia mydas) sea turtles after a <span class="hlt">red</span> <span class="hlt">tide</span> bloom event.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Perrault, Justin R; Stacy, Nicole I; Lehner, Andreas F; Mott, Cody R; Hirsch, Sarah; Gorham, Jonathan C; Buchweitz, John P; Bresette, Michael J; Walsh, Catherine J</p> <p>2017-12-15</p> <p>Natural biotoxins and anthropogenic toxicants pose a significant risk to sea turtle health. Documented effects of contaminants include potential disease progression and adverse impacts on development, immune function, and survival in these imperiled species. The shallow seagrass habitats of Florida's northwest coast (Big Bend) serve as an important developmental habitat for Kemp's ridley (Lepidochelys kempii) and green (Chelonia mydas) sea turtles; however, few studies have been conducted in this area. Our objectives were (1) to evaluate plasma analytes (mass, minimum straight carapace length, body condition index [BCI], fibropapilloma tumor score, lysozyme, superoxide dismutase, reactive oxygen/nitrogen species, plasma protein electrophoresis, cholesterol, and total solids) in Kemp's ridleys and green turtles and their correlation to brevetoxins that were released from a <span class="hlt">red</span> <span class="hlt">tide</span> bloom event from July-October 2014 in the Gulf of Mexico near Florida's Big Bend, and (2) to analyze <span class="hlt">red</span> blood cells in Kemp's ridleys and green turtles for toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) with correlation to the measured plasma analytes. Positive correlations were observed between brevetoxins and α 2 -globulins in Kemp's ridleys and α 2 - and γ-globulins in green turtles, indicating potential immunostimulation. Arsenic, cadmium, and lead positively correlated with superoxide dismutase in Kemp's ridleys, suggesting oxidative stress. Lead and mercury in green turtles negatively correlated with BCI, while mercury positively correlated with total tumor score of green turtles afflicted with fibropapillomatosis, suggesting a possible association with mercury and increased tumor growth. The total tumor score of green turtles positively correlated with total protein, total globulins, α 2 -globulins, and γ-globulins, further suggesting inflammation and immunomodulation as a result of fibropapillomatosis. Lastly, brevetoxin concentrations were positively</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS21B..07D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS21B..07D"><span>Vertical land motion along the coast of Louisiana: Integrating satellite altimetry, <span class="hlt">tide</span> gauge and GPS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dixon, T. H.; A Karegar, M.; Uebbing, B.; Kusche, J.; Fenoglio-Marc, L.</p> <p>2017-12-01</p> <p>Coastal Louisiana is experiencing the highest rate of relative sea-level rise in North America due to the combination of sea-level rise and subsidence of the deltaic plain. The land subsidence in this region is studied using various techniques, with continuous GPS site providing high temporal resolution. Here, we use high resolution <span class="hlt">tide</span>-gauge data and advanced processing of satellite altimetry to derive vertical displacements time series at NOAA <span class="hlt">tide</span>-gauge stations along the coast (Figure 1). We apply state-of-the-art retracking techniques to process raw altimetry data, allowing high accuracy on range measurements close to the coast. Data from Jason-1, -2 and -3, Envisat, Saral and Cryosat-2 are used, corrected for solid Earth <span class="hlt">tide</span>, pole <span class="hlt">tide</span> and tidal ocean loading, using background models consistent with the GPS processing technique. We reprocess the available GPS data using precise point positioning and estimate the rate uncertainty accounting for correlated noise. The displacement time series are derived by directly subtracting <span class="hlt">tide</span>-gauge data from the altimetry sea-level anomaly data. The quality of the derived displacement rates is evaluated in Grand Isle, Amerada Pass and Shell Beach where GPS data are available adjacent to the <span class="hlt">tide</span> gauges. We use this technique to infer vertical displacement at <span class="hlt">tide</span> gauges in New Orleans (New Canal Station) and Port Fourchon and Southwest Pass along the coastline.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960008974','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960008974"><span>Minutes of TOPEX/POSEIDON Science Working Team Meeting and Ocean <span class="hlt">Tides</span> Workshop</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fu, Lee-Lueng (Editor)</p> <p>1995-01-01</p> <p>This third TOPEX/POSEIDON Science Working Team meeting was held on December 4, 1994 to review progress in defining ocean <span class="hlt">tide</span> models, precision Earth orbits, and various science algorithms. A related workshop on ocean <span class="hlt">tides</span> convened to select the best models to be used by scientists in the Geophysical Data Records.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70154925','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70154925"><span>Measuring storm <span class="hlt">tide</span> and high-water marks caused by Hurricane Sandy in New York: Chapter 2</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Simonson, Amy E.; Behrens, Riley</p> <p>2015-01-01</p> <p>In response to Hurricane Sandy, personnel from the U.S. Geological Survey (USGS) deployed a temporary network of storm-<span class="hlt">tide</span> sensors from Virginia to Maine. During the storm, real-time water levels were available from <span class="hlt">tide</span> gages and rapid-deployment gages (RDGs). After the storm, USGS scientists retrieved the storm-<span class="hlt">tide</span> sensors and RDGs and surveyed high-water marks. These data demonstrate that the timing of peak storm surge relative to astronomical <span class="hlt">tide</span> was extremely important in southeastern New York. For example, along the south shores of New York City and western Suffolk County, the peak storm surge of 6–9 ft generally coincided with the astronomical high <span class="hlt">tide</span>, which resulted in substantial coastal flooding. In the Peconic Estuary and northern Nassau County, however, the peak storm surge of 9 ft and nearly 12 ft, respectively, nearly coincided with normal low <span class="hlt">tide</span>, which helped spare these communities from more severe coastal flooding.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRG..123..787K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRG..123..787K"><span>Direct and Indirect Effects of <span class="hlt">Tides</span> on Ecosystem-Scale CO2 Exchange in a Brackish Tidal Marsh in Northern California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knox, S. H.; Windham-Myers, L.; Anderson, F.; Sturtevant, C.; Bergamaschi, B.</p> <p>2018-03-01</p> <p>We investigated the direct and indirect influence of <span class="hlt">tides</span> on net ecosystem exchange (NEE) of carbon dioxide (CO2) in a temperate brackish tidal marsh. NEE displayed a tidally driven pattern with obvious characteristics at the multiday scale, with greater net CO2 uptake during spring <span class="hlt">tides</span> than neap <span class="hlt">tides</span>. Based on the relative mutual information between NEE and biophysical variables, this was driven by a combination of higher water table depth (WTD), cooler air temperature, and lower vapor pressure deficit (VPD) during spring <span class="hlt">tides</span> relative to neap <span class="hlt">tides</span>, as the fortnightly tidal cycle not only influenced water levels but also strongly modulated water and air temperature and VPD. <span class="hlt">Tides</span> also influenced NEE at shorter timescales, with a reduction in nighttime fluxes during growing season spring <span class="hlt">tides</span> when the higher of the two semidiurnal <span class="hlt">tides</span> caused inundation at the site. WTD significantly influenced ecosystem respiration (Reco), with lower Reco during spring <span class="hlt">tides</span> than neap <span class="hlt">tides</span>. While WTD did not appear to affect ecosystem photosynthesis (gross ecosystem production, GPP) directly, the impact of <span class="hlt">tides</span> on temperature and VPD influenced GPP, with higher daily light-use efficiency and photosynthetic activity during spring <span class="hlt">tides</span> than neap <span class="hlt">tides</span> when temperature and VPD were lower. The strong direct and indirect influence of <span class="hlt">tides</span> on NEE across the diel and multiday timescales has important implications for modeling NEE in tidal wetlands and can help inform the timing and frequency of chamber measurements as annual or seasonal net CO2 uptake may be underestimated if measurements are only taken during nonflooded periods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....1712097S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....1712097S"><span>Classifying <span class="hlt">aerosol</span> type using in situ surface spectral <span class="hlt">aerosol</span> optical properties</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmeisser, Lauren; Andrews, Elisabeth; Ogren, John A.; Sheridan, Patrick; Jefferson, Anne; Sharma, Sangeeta; Kim, Jeong Eun; Sherman, James P.; Sorribas, Mar; Kalapov, Ivo; Arsov, Todor; Angelov, Christo; Mayol-Bracero, Olga L.; Labuschagne, Casper; Kim, Sang-Woo; Hoffer, András; Lin, Neng-Huei; Chia, Hao-Ping; Bergin, Michael; Sun, Junying; Liu, Peng; Wu, Hao</p> <p>2017-10-01</p> <p>Knowledge of <span class="hlt">aerosol</span> size and composition is important for determining radiative forcing effects of <span class="hlt">aerosols</span>, identifying <span class="hlt">aerosol</span> sources and improving <span class="hlt">aerosol</span> satellite retrieval algorithms. The ability to extrapolate <span class="hlt">aerosol</span> size and composition, or type, from intensive <span class="hlt">aerosol</span> optical properties can help expand the current knowledge of spatiotemporal variability in <span class="hlt">aerosol</span> type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA/ESRL Federated <span class="hlt">Aerosol</span> Monitoring Network to infer <span class="hlt">aerosol</span> type using previously published <span class="hlt">aerosol</span> classification schemes.Three methods are implemented to obtain a best estimate of dominant <span class="hlt">aerosol</span> type at each station using <span class="hlt">aerosol</span> optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an <span class="hlt">aerosol</span> type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant <span class="hlt">aerosol</span> type. The third and final classification method pairs 3-day backward air mass trajectories with median <span class="hlt">aerosol</span> optical properties to explore the relationship between trajectory origin (proxy for likely <span class="hlt">aerosol</span> type) and <span class="hlt">aerosol</span> intensive parameters, while allowing for multiple dominant <span class="hlt">aerosol</span> types at each station.The three <span class="hlt">aerosol</span> classification methods have some common, and thus robust, results. In general, estimating dominant <span class="hlt">aerosol</span> type using optical properties is best suited for site locations with a stable and homogenous <span class="hlt">aerosol</span> population, particularly continental polluted (carbonaceous <span class="hlt">aerosol</span>), marine polluted (carbonaceous <span class="hlt">aerosol</span> mixed with sea salt) and continental dust/biomass sites</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGeod..90.1237M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGeod..90.1237M"><span>High-frequency Earth rotation variations deduced from altimetry-based ocean <span class="hlt">tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madzak, Matthias; Schindelegger, Michael; Böhm, Johannes; Bosch, Wolfgang; Hagedoorn, Jan</p> <p>2016-11-01</p> <p>A model of diurnal and semi-diurnal variations in Earth rotation parameters (ERP) is constructed based on altimetry-measured tidal heights from a multi-mission empirical ocean <span class="hlt">tide</span> solution. Barotropic currents contributing to relative angular momentum changes are estimated for nine major <span class="hlt">tides</span> in a global inversion algorithm that solves the two-dimensional momentum equations on a regular 0.5° grid with a heavily weighted continuity constraint. The influence of 19 minor <span class="hlt">tides</span> is accounted for by linear admittance interpolation of ocean tidal angular momentum, although the assumption of smooth admittance variations with frequency appears to be a doubtful concept for semi-diurnal mass terms in particular. A validation of the newly derived model based on post-fit corrections to polar motion and universal time (Δ UT1) from the analysis of Very Long Baseline Interferometry (VLBI) observations shows a variance reduction for semi-diurnal Δ UT1 residuals that is significant at the 0.05 level with respect to the conventional ERP model. Improvements are also evident for the explicitly modeled K_1, Q_1, and K_2 <span class="hlt">tides</span> in individual ERP components, but large residuals of more than 15 μ as remain at the principal lunar frequencies of O_1 and M_2. We attribute these shortcomings to uncertainties in the inverted relative angular momentum changes and, to a minor extent, to violation of mass conservation in the empirical ocean <span class="hlt">tide</span> solution. Further dedicated hydrodynamic modeling efforts of these anomalous constituents are required to meet the accuracy standards of modern space geodesy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA606524','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA606524"><span>How Stationary Are the Internal <span class="hlt">Tides</span> in a High-Resolution Global Ocean Circulation Model?</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-05-12</p> <p>Egbert et al., 1994] and that the model global internal <span class="hlt">tide</span> amplitudes compare well with an altimetric-based tidal analysis [Ray and Byrne, 2010]. The... analysis [Foreman, 1977] applied to the HYCOM total SSH. We will follow Shriver et al. [2012], analyzing the <span class="hlt">tides</span> along satellite altimeter tracks...spots,’’ the comparison between the model and altimetric analysis is not as good due, in part, to two prob- lems, errors in the model barotropic <span class="hlt">tides</span> and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18598142','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18598142"><span><span class="hlt">Tides</span> and the evolution of planetary habitability.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barnes, Rory; Raymond, Sean N; Jackson, Brian; Greenberg, Richard</p> <p>2008-06-01</p> <p><span class="hlt">Tides</span> raised on a planet by the gravity of its host star can reduce the planet's orbital semi-major axis and eccentricity. This effect is only relevant for planets orbiting very close to their host stars. The habitable zones of low-mass stars are also close in, and <span class="hlt">tides</span> can alter the orbits of planets in these locations. We calculate the tidal evolution of hypothetical terrestrial planets around low-mass stars and show that <span class="hlt">tides</span> can evolve planets past the inner edge of the habitable zone, sometimes in less than 1 billion years. This migration requires large eccentricities (>0.5) and low-mass stars ( less or similar to 0.35 M(circle)). Such migration may have important implications for the evolution of the atmosphere, internal heating, and the Gaia hypothesis. Similarly, a planet that is detected interior to the habitable zone could have been habitable in the past. We consider the past habitability of the recently discovered, approximately 5 M(circle) planet, Gliese 581 c. We find that it could have been habitable for reasonable choices of orbital and physical properties as recently as 2 Gyr ago. However, when constraints derived from the additional companions are included, most parameter choices that indicate past habitability require the two inner planets of the system to have crossed their mutual 3:1 mean motion resonance. As this crossing would likely have resulted in resonance capture, which is not observed, we conclude that Gl 581 c was probably never habitable.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900043987&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Doceans%2Btide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900043987&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Doceans%2Btide"><span>Observations of the Mf ocean <span class="hlt">tide</span> from Geosat altimetry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cartwright, David E.; Ray, Richard D.</p> <p>1990-01-01</p> <p>Zonal averages of the 13.66-day Mf <span class="hlt">tide</span> are derived from one year of Geosat altimetry records. The orbit errors are reduced by 1/revolution corrections taken over long (several day) arcs. The short-period <span class="hlt">tides</span> are removed using a model previously derived from the same data. The Mf zonal averages indicate definite nonequilibrium character at nearly all latitudes. The imaginary admittances indicate a Q of at least 8; such a value is consistent with a simplified theory of coupled gravitational and vorticity modes and suggests a value for Proudman's 'friction period' about 123 days.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO14A2747A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO14A2747A"><span>Accurate Modelling of Surface Currents and Internal <span class="hlt">Tides</span> in a Semi-enclosed Coastal Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allen, S. E.; Soontiens, N. K.; Dunn, M. B. H.; Liu, J.; Olson, E.; Halverson, M. J.; Pawlowicz, R.</p> <p>2016-02-01</p> <p>The Strait of Georgia is a deep (400 m), strongly stratified, semi-enclosed coastal sea on the west coast of North America. We have configured a baroclinic model of the Strait of Georgia and surrounding coastal waters using the NEMO ocean community model. We run daily nowcasts and forecasts and publish our sea-surface results (including storm surge warnings) to the web (salishsea.eos.ubc.ca/storm-surge). <span class="hlt">Tides</span> in the Strait of Georgia are mixed and large. The baroclinic model and previous barotropic models accurately represent tidal sea-level variations and depth mean currents. The baroclinic model reproduces accurately the diurnal but not the semi-diurnal baroclinic tidal currents. In the Southern Strait of Georgia, strong internal tidal currents at the semi-diurnal frequency are observed. Strong semi-diurnal <span class="hlt">tides</span> are also produced in the model, but are almost 180 degrees out of phase with the observations. In the model, in the surface, the barotropic and baroclinic <span class="hlt">tides</span> reinforce, whereas the observations show that at the surface the baroclinic <span class="hlt">tides</span> oppose the barotropic. As such the surface currents are very poorly modelled. Here we will present evidence of the internal tidal field from observations. We will discuss the generation regions of the <span class="hlt">tides</span>, the necessary modifications to the model required to correct the phase, the resulting baroclinic <span class="hlt">tides</span> and the improvements in the surface currents.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=259169&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=259169&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Pacific Northwest <span class="hlt">tide</span> channel utilization by fish as an ecosystem service - August 2013</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Background/Question/Methods: Saltwater marsh <span class="hlt">tide</span> channels are considered to be important in the ecology of estuarine fish serving both as a refuge and as a provider of enhanced food resources. However, this presumed function of <span class="hlt">tide</span> channels in Pacific Northwest estuaries has r...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012A%26A...544A.132R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012A%26A...544A.132R"><span>The equilibrium <span class="hlt">tide</span> in stars and giant planets. I. The coplanar case</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Remus, F.; Mathis, S.; Zahn, J.-P.</p> <p>2012-08-01</p> <p>Context. Since 1995, more than 500 extrasolar planets have been discovered orbiting very close to their parent star, where they experience strong tidal interactions. Their orbital evolution depends on the physical mechanisms that cause tidal dissipation, which remain poorly understood. Aims: We refine the theory of the equilibrium <span class="hlt">tide</span> in fluid bodies that are partly or entirely convective, to predict the dynamical evolution of the systems. In particular, we examine the validity of modeling the tidal dissipation using the quality factor Q, which is commonly done. We consider here the simplest case where the considered star or planet rotates uniformly, all spins are aligned, and the companion is reduced to a point mass. Methods: We expand the tidal potential as a Fourier series, and express the hydrodynamical equations in the reference frame, which rotates with the corresponding Fourier component. The results are cast in the form of a complex disturbing function, which may be implemented directly in the equations governing the dynamical evolution of the system. Results: The first manifestation of the <span class="hlt">tide</span> is to distort the shape of the star or planet adiabatically along the line of centers. This generates the divergence-free velocity field of the adiabatic equilibrium <span class="hlt">tide</span>, which is stationary in the frame rotating with the considered Fourier component of the tidal potential; this large-scale velocity field is decoupled from the dynamical <span class="hlt">tide</span>. The tidal kinetic energy is dissipated into heat by means of turbulent friction, which is modeled here as an eddy-viscosity acting on the adiabatic tidal flow. This dissipation induces a second velocity field, the dissipative equilibrium <span class="hlt">tide</span>, which is in quadrature with the exciting potential; this field is responsible for the imaginary part of the disturbing function, which is implemented in the dynamical evolution equations, from which one derives the characteristic evolutionary times. Conclusions: The rate at which the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2403O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2403O"><span>Simulating Dust Regional Impact on the Middle East Climate and the <span class="hlt">Red</span> Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osipov, Sergey; Stenchikov, Georgiy</p> <p>2017-04-01</p> <p>Dust is one of the most abundant <span class="hlt">aerosols</span>, however, currently only a few regional climate downscalings account for dust. This study focuses on the Middle East and the <span class="hlt">Red</span> Sea regional climate response to the dust <span class="hlt">aerosol</span> radiative forcing. The <span class="hlt">Red</span> Sea is located between North Africa and Arabian Peninsula, which are first and third largest source regions of dust, respectively. MODIS and SEVIRI satellite observations show extremely high dust optical depths in the region, especially over the southern <span class="hlt">Red</span> Sea during the summer season. The significant north-to-south gradient of the dust optical depth over the <span class="hlt">Red</span> Sea persists throughout the entire year. Modeled atmospheric radiative forcing at the surface, top of the atmosphere and absorption in the atmospheric column indicate that dust significantly perturbs radiative balance. Top of the atmosphere modeled forcing is validated against independently derived GERB satellite product. Due to strong radiative forcing at the sea surface (daily mean forcing during summer reaches -32 Wm-2 and 10 Wm-2 in SW and LW, respectively), using uncoupled ocean model with prescribed atmospheric boundary conditions would result in an unrealistic ocean response. Therefore, here we employ the Regional Ocean Modeling system (ROMS) fully coupled with the Weather Research and Forecasting (WRF) model to study the impact of dust on the <span class="hlt">Red</span> Sea thermal regime and circulation. The WRF was modified to interactively account for the radiative effect of dust. Daily spectral optical properties of dust are computed using Mie, T-matrix, and geometric optics approaches, and are based on the SEVIRI climatological optical depth. The WRF model parent and nested domains are configured over the Middle East and North Africa (MENA) region and over the <span class="hlt">Red</span> Sea with 30 and 10 km resolution, respectively. The ROMS model over the <span class="hlt">Red</span> Sea has 2 km grid spacing. The simulations show that, in the equilibrium response, dust causes 0.3-0.5 K cooling of the <span class="hlt">Red</span> Sea surface</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120.6865L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120.6865L"><span>Impacts of <span class="hlt">tides</span> on tsunami propagation due to potential Nankai Trough earthquakes in the Seto Inland Sea, Japan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Han Soo; Shimoyama, Tomohisa; Popinet, Stéphane</p> <p>2015-10-01</p> <p>The impacts of <span class="hlt">tides</span> on extreme tsunami propagation due to potential Nankai Trough earthquakes in the Seto Inland Sea (SIS), Japan, are investigated through numerical experiments. Tsunami experiments are conducted based on five scenarios that consider <span class="hlt">tides</span> at four different phases, such as flood, high, ebb, and low <span class="hlt">tides</span>. The probes that were selected arbitrarily in the Bungo and Kii Channels show less significant effects of <span class="hlt">tides</span> on tsunami heights and the arrival times of the first waves than those that experience large tidal ranges in inner basins and bays of the SIS. For instance, the maximum tsunami height and the arrival time at Toyomaesi differ by more than 0.5 m and nearly 1 h, respectively, depending on the tidal phase. The uncertainties defined in terms of calculated maximum tsunami heights due to <span class="hlt">tides</span> illustrate that the calculated maximum tsunami heights in the inner SIS with standing <span class="hlt">tides</span> have much larger uncertainties than those of two channels with propagating <span class="hlt">tides</span>. Particularly in Harima Nada, the uncertainties due to the impacts of <span class="hlt">tides</span> are greater than 50% of the tsunami heights without tidal interaction. The results recommend simulate tsunamis together with <span class="hlt">tides</span> in shallow water environments to reduce the uncertainties involved with tsunami modeling and predictions for tsunami hazards preparedness. This article was corrected on 26 OCT 2015. See the end of the full text for details.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41A2609L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41A2609L"><span>The variability of SE2 <span class="hlt">tide</span> extracted from TIMED/SABER observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, X.; Wan, W.; Ren, Z.</p> <p>2017-12-01</p> <p>Based on the temperature observations of the TIMED/SABER in mesosphere/lower thermosphere region (70-110 km altitudes) and at the low latitude and midlatitude (45°S-45°N) from 2002 to 2012, the variability of the nonmigrating <span class="hlt">tide</span> SE2 with 1 day resolution is analyzed. It is found that the climatological features (large-scale variability) of the semidiurnal nonmigrating <span class="hlt">tide</span> with zonal wave number 2 (SE2) <span class="hlt">tide</span> are similar with the results from the previous research works. The SE2 <span class="hlt">tide</span> manifests mainly at the low-mid latitudes around ±30°. The northern hemisphere tidal amplitudes below 110 km are larger than the southern hemisphere <span class="hlt">tide</span>. SE2 peaks below 110 km mainly present between 100 and 110 km altitude. The tidal amplitudes below 110 km occur a north-south asymmetry about the equator in the annual variation: in the southern hemisphere, SE2 occurs with an obvious annual variation with a maximum of tidal amplitudes in December, while in the northern one, the semiannual variations with maximum at the equinoxes. Herein, owing to the high-resolution tidal data, we could research the short-term (day-to-day) variations of SE2. We found that the day-to-day variations manifest mainly at between 100 and 110 km altitudes; it increases gradually with latitudes, and it is stronger at the low-mid latitudes; it is relatively slightly stronger around solstices than equinoxes; and it does not present a remarkably interannual variation. The SE2 day-to-day variations may be composed by the absolute amplitudes' variance and the impact of the wave phases, and the latter ones are more important.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ACPD...1432177B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ACPD...1432177B"><span>Using the OMI <span class="hlt">Aerosol</span> Index and Absorption <span class="hlt">Aerosol</span> Optical Depth to evaluate the NASA MERRA <span class="hlt">Aerosol</span> Reanalysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.</p> <p>2014-12-01</p> <p>A radiative transfer interface has been developed to simulate the UV <span class="hlt">Aerosol</span> Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) <span class="hlt">aerosol</span> assimilated fields. The purpose of this work is to use the AI and <span class="hlt">Aerosol</span> Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications <span class="hlt">Aerosol</span> Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, <span class="hlt">Aerosol</span>, Radiation, and Transport (GOCART) <span class="hlt">aerosol</span> module and includes assimilation of <span class="hlt">Aerosol</span> Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on <span class="hlt">aerosol</span> concentration, optical properties and altitude of the <span class="hlt">aerosol</span> layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), <span class="hlt">aerosol</span> retrievals from the <span class="hlt">Aerosol</span> Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-<span class="hlt">Aerosol</span> Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing <span class="hlt">aerosols</span> was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust <span class="hlt">aerosol</span> optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with <span class="hlt">aerosol</span> absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent <span class="hlt">aerosol</span> absorption properties in the near-UV region improves the modeled-observed AI comparisons</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ACP....15.5743B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ACP....15.5743B"><span>Using the OMI <span class="hlt">aerosol</span> index and absorption <span class="hlt">aerosol</span> optical depth to evaluate the NASA MERRA <span class="hlt">Aerosol</span> Reanalysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.</p> <p>2015-05-01</p> <p>A radiative transfer interface has been developed to simulate the UV <span class="hlt">aerosol</span> index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) <span class="hlt">aerosol</span> assimilated fields. The purpose of this work is to use the AI and <span class="hlt">aerosol</span> absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications <span class="hlt">Aerosol</span> Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, <span class="hlt">Aerosol</span>, Radiation, and Transport (GOCART) <span class="hlt">aerosol</span> module and includes assimilation of <span class="hlt">aerosol</span> optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on <span class="hlt">aerosol</span> concentration, optical properties and altitude of the <span class="hlt">aerosol</span> layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), <span class="hlt">aerosol</span> retrievals from the <span class="hlt">AErosol</span> RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-<span class="hlt">Aerosol</span> Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing <span class="hlt">aerosols</span> was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust <span class="hlt">aerosol</span> optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with <span class="hlt">aerosol</span> absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent <span class="hlt">aerosol</span> absorption properties in the near-UV region improves the modeled-observed AI comparisons</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJAsB..14..233C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJAsB..14..233C"><span>Spin evolution of Earth-sized exoplanets, including atmospheric <span class="hlt">tides</span> and core-mantle friction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cunha, Diana; Correia, Alexandre C. M.; Laskar, Jacques</p> <p>2015-04-01</p> <p>Planets with masses between 0.1 and 10 M ⊕ are believed to host dense atmospheres. These atmospheres can play an important role on the planet's spin evolution, since thermal atmospheric <span class="hlt">tides</span>, driven by the host star, may counterbalance gravitational <span class="hlt">tides</span>. In this work, we study the long-term spin evolution of Earth-sized exoplanets. We generalize previous works by including the effect of eccentric orbits and obliquity. We show that under the effect of <span class="hlt">tides</span> and core-mantle friction, the obliquity of the planets evolves either to 0° or 180°. The rotation of these planets is also expected to evolve into a very restricted number of equilibrium configurations. In general, none of these equilibria is synchronous with the orbital mean motion. The role of thermal atmospheric <span class="hlt">tides</span> becomes more important for Earth-sized planets in the habitable zones of their systems; so they cannot be neglected when we search for their potential habitability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030032180','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030032180"><span>Evaluation of the MODIS Retrievals of Dust <span class="hlt">Aerosol</span> over the Ocean during PRIDE</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Levy, Robert C.; Remer, Lorraine A.; Tanre, Didier; Kaufman, Yoram J.; Ichoku, Charles; Holben, Brent N.; Livingston, John M.; Russell, Philip B.; Maring, Hal</p> <p>2002-01-01</p> <p>The Puerto Rico Dust Experiment (PRIDE) took place in Roosevelt Roads, Puerto Rico from June 26 to July 24,2000 to study the radiative and physical properties of African dust <span class="hlt">aerosol</span> transported into the region. PRIDE had the unique distinction of being the first major field experiment to allow direct comparison of <span class="hlt">aerosol</span> retrievals from the MODerate Imaging Spectro-radiometer (MODIS) with sunphotometer and in-situ <span class="hlt">aerosol</span> measurements. Over the ocean, the MODIS algorithm retrieves <span class="hlt">aerosol</span> optical depth (AOD) as well as information about the <span class="hlt">aerosols</span> size distribution. During PRIDE, MODIS derived AODs in the <span class="hlt">red</span> wavelengths (0.66 micrometers) compare closely with AODs measured from sunphotometers, but, are too large at blue and green wavelengths (0.47 and 0.55 micrometers) and too small in the infrared (0.87 micrometers). This discrepancy of spectral slope results in particle size distributions retrieved by MODIS that are small compared to in-situ measurements, and smaller still when compared to sunphotometer sky radiance inversions. The differences in size distributions are, at least in part, associated with MODIS simplification of dust as spherical particles. Analysis of this PRIDE data set is a first step towards derivation of realistic non-spherical models for future MODIS retrievals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..281..338G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..281..338G"><span>Environmental temperature effect on the far-infrared absorption features of aromatic-based Titan's <span class="hlt">aerosol</span> analogs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.</p> <p>2017-01-01</p> <p>Benzene detection has been reported in Titan's atmosphere both in the stratosphere at ppb levels by remote sensing (Coustenis et al., 2007; Vinatier et al., 2007) and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer (Waite et al., 2007). This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's atmospheric chemistry, especially in the formation of <span class="hlt">aerosols</span>. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to <span class="hlt">aerosol</span> formation. It has been shown recently that <span class="hlt">aerosol</span> analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500 cm-1, a first step towards reproducing the <span class="hlt">aerosol</span> spectral features observed by Cassini's Composite Infra<span class="hlt">Red</span> Spectrometer (CIRS) in the far infrared (Anderson and Samuelson 2011, and references therein). In this work we investigate the influence of environmental temperature on the absorption spectra of such <span class="hlt">aerosol</span> samples, simulating the temperature range to which <span class="hlt">aerosols</span>, once formed, are exposed during their transport through Titan's stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these <span class="hlt">aerosol</span> analogs in the far-infrared, which is consistent with the CIRS observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A13F0281B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A13F0281B"><span>Quantifying the sensitivity of <span class="hlt">aerosol</span> optical depths retrieved from MSG SEVIRI to a priori data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bulgin, C. E.; Palmer, P. I.; Merchant, C. J.; Siddans, R.; Poulsen, C.; Grainger, R. G.; Thomas, G.; Carboni, E.; McConnell, C.; Highwood, E.</p> <p>2009-12-01</p> <p>Radiative forcing contributions from <span class="hlt">aerosol</span> direct and indirect effects remain one of the most uncertain components of the climate system. Satellite observations of <span class="hlt">aerosol</span> optical properties offer important constraints on atmospheric <span class="hlt">aerosols</span> but their sensitivity to prior assumptions must be better characterized before they are used effectively to reduce uncertainty in <span class="hlt">aerosol</span> radiative forcing. We assess the sensitivity of the Oxford-RAL <span class="hlt">Aerosol</span> and Cloud (ORAC) optimal estimation retrieval of <span class="hlt">aerosol</span> optical depth (AOD) from the Spinning Enhanced Visible and Infra<span class="hlt">Red</span> Imager (SEVIRI) to a priori <span class="hlt">aerosol</span> data. SEVIRI is a geostationary satellite instrument centred over Africa and the neighbouring Atlantic Ocean, routinely sampling desert dust and biomass burning outflow from Africa. We quantify the uncertainty in SEVIRI AOD retrievals in the presence of desert dust by comparing retrievals that use prior information from the Optical Properties of <span class="hlt">Aerosol</span> and Cloud (OPAC) database, with those that use measured <span class="hlt">aerosol</span> properties during the Dust Outflow and Deposition to the Ocean (DODO) aircraft campaign (August, 2006). We also assess the sensitivity of retrieved AODs to changes in solar zenith angle, and the vertical profile of <span class="hlt">aerosol</span> effective radius and extinction coefficient input into the retrieval forward model. Currently the ORAC retrieval scheme retrieves AODs for five <span class="hlt">aerosol</span> types (desert dust, biomass burning, maritime, urban and continental) and chooses the most appropriate AOD based on the cost functions. We generate an improved prior <span class="hlt">aerosol</span> speciation database for SEVIRI based on a statistical analysis of a Saharan Dust Index (SDI) determined using variances of different brightness temperatures, and organic and black carbon tracers from the GEOS-Chem chemistry transport model. This database is described as a function of season and time of day. We quantify the difference in AODs between those chosen based on prior information from the SDI and GEOS</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010026448','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010026448"><span>Impact of Cumulus Cloud Spacing on Landsat Atmospheric Correction and <span class="hlt">Aerosol</span> Retrieval</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wen, Guoyong; Cahalan, Robert F.; Tsay, Si-Chee; Oreopoulos, Lazaros</p> <p>2001-01-01</p> <p>A Landsat-7 ETM+ image acquired over the Southern Great Plains DoE/ARM site during the ARESE II experiment is used to study the effect of clouds on reflected radiation in clear patches of a cumulus cloud field. The result shows that the apparent path radiance in the clear patches is enhanced by nearby clouds in both band 1 (blue) and band 3 (<span class="hlt">red</span>) of ETM+. More importantly, the magnitude of the enhancement depends on the mean cloud-free distance in the clear patches. For cloud-free distance less than 0.5 km, the enhancement of apparent path radiance is more than 0.025 and 0.015 (reflectance units) in band 1 and band 3 respectively, which corresponds to an enhancement of apparent <span class="hlt">aerosol</span> optical thickness of approximately 0.25 and approximately 0.15. Neglecting of the 3-D cloud effect would lead to underestimates of surface reflectance of approximately 0.025 and approximately 0.015 in the blue and <span class="hlt">red</span> band respectively, if the true <span class="hlt">aerosol</span> optical thickness is 0.2 and the surface reflectance is 0.05. The enhancement decreases exponentially with mean cloud-free distance, reaching asymptotic values of 0.09 for band 1 and 0.027 for band 3 at a mean cloud-free distance about 2 km. The asymptotic values are slightly larger than the mean path radiances retrieved from a completely clear region -- 0.086 and 0.024 for the blue and <span class="hlt">red</span> band respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CSR....63S.126W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CSR....63S.126W"><span>Modeling <span class="hlt">tides</span> and their influence on the circulation in Prince William Sound, Alaska</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xiaochun; Chao, Yi; Zhang, Hongchun; Farrara, John; Li, Zhijin; Jin, Xin; Park, Kyungeen; Colas, Francois; McWilliams, James C.; Paternostro, Chris; Shum, C. K.; Yi, Yuchan; Schoch, Carl; Olsson, Peter</p> <p>2013-07-01</p> <p>In the process of developing a real-time data-assimilating coastal ocean forecasting system for Prince William Sound, Alaska, tidal signal was added to a three-domain nested model for the region. The model, which is configured from the Regional Ocean Modeling System (ROMS), has 40 levels in the vertical direction and horizontal resolutions of 10.6km, 3.6km and 1.2km for its three nested domains, respectively. In the present research, the ROMS tidal solution was validated using data from coastal <span class="hlt">tide</span> gauges, satellite altimeters, high-frequency coastal radars, and Acoustic Doppler Current Profiler (ADCP) current surveys. The error of barotropic <span class="hlt">tides</span>, as measured by the total root mean square discrepancy of eight major tidal constituents is 5.3cm, or 5.6% of the tidal sea surface height variability in the open ocean. Along the coastal region, the total discrepancy is 9.6cm, or 8.2% of the tidal sea surface height variability. Model tidal currents agree reasonably well with the observations. The influence of <span class="hlt">tides</span> on the circulation was also investigated using numerical experiments. Besides <span class="hlt">tides</span>, other types of forcing fields (heat flux, wind stress, evaporation minus precipitation, and freshwater discharge) were also included in the model. Our results indicate that <span class="hlt">tides</span> play a significant role in shaping the mean circulation of the region. For the summer months, the tidal residual circulation tends to generate a cyclonic gyre in the central Sound. The net transport into the Sound through Hinchinbrook Entrance is reduced. <span class="hlt">Tides</span> also increase the mixed layer depth in the Sound, especially during the winter months.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24E3018C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24E3018C"><span>Near-surface energy transfers from internal <span class="hlt">tide</span> beams to smaller vertical scale motions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chou, S.; Staquet, C.; Carter, G. S.; Luther, D. S.</p> <p>2016-02-01</p> <p>Mechanical energy capable of causing diapycnal mixing in the ocean is transferred to the internal wave field when barotropic <span class="hlt">tides</span> pass over underwater topography and generate internal <span class="hlt">tides</span>. The resulting internal <span class="hlt">tide</span> energy is confined in vertically limited structures, or beams. As internal <span class="hlt">tide</span> beams (ITBs) propagate through regions of non-uniform stratification in the upper ocean, wave energy can be scattered through multiple reflections and refractions, be vertically trapped, or transferred to non-tidal frequencies through different nonlinear processes. Various observations have shown that ITBs are no longer detectable in horizontal kinetic energy beyond the first surface reflection. Importantly, this implies that some of the internal <span class="hlt">tide</span> energy no longer propagates in to the abyssal ocean and consequently will not be available to maintain the density stratification. Using the NHM, a nonlinear and nonhydrostatic model based on the MITgcm, simulations of an ITB propagating up to the sea surface are examined in order to quantify the transformation of ITB energy to other motions. We compare and contrast the transformations enabled by idealized, smoothly-varying stratification with transformations enabled by realistic stratification containing a broad-band vertical wavenumber spectrum of variations. Preliminary two-dimensional results show that scattering due to small-scale structure in realistic stratification profiles from Hawaii can lead to energy being vertically trapped near the surface. Idealized simulations of "locally" generated internal solitary waves are analyzed in terms of energy flux transfers from the ITB to solitary waves, higher harmonics, and mean flow. The amount of internal <span class="hlt">tide</span> energy which propagates back down after near-surface reflection of the ITB in different environments is quantified.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Physical+AND+science+AND+textbook&pg=4&id=EJ1083305','ERIC'); return false;" href="https://eric.ed.gov/?q=Physical+AND+science+AND+textbook&pg=4&id=EJ1083305"><span>Using <span class="hlt">Tide</span> Data in Introductory Classes</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>De Jong, Marvin L.</p> <p>2006-01-01</p> <p>Oceantides are not typically high in our consciousness here in Missouri, but in teaching astronomy and physical science the subject always comes up, and teachers of physical science and astronomy are all quite familiar with the textbook explanations. Our goal here is not to explain <span class="hlt">tides</span> but to make some suggestions about how, on their own,…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25972565','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25972565"><span>Environmental Chemistry and Chemical Ecology of "Green <span class="hlt">Tide</span>" Seaweed Blooms.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Van Alstyne, Kathryn L; Nelson, Timothy A; Ridgway, Richard L</p> <p>2015-09-01</p> <p>Green <span class="hlt">tides</span> are large growths or accumulations of green seaweeds that have been increasing in magnitude and frequency around the world. Because green <span class="hlt">tides</span> consist of vast biomasses of algae in a limited area and are often seasonal or episodic, they go through periods of rapid growth in which they take up large amounts of nutrients and dissolved gases and generate bioactive natural products that may be stored in the plants, released into the environment, or broken down during decomposition. As a result of the use and production of inorganic and organic compounds, the algae in these blooms can have detrimental impacts on other organisms. Here, we review some of the effects that green <span class="hlt">tides</span> have on the chemistry of seawater and the effects of the natural products that they produce. As blooms are developing and expanding, algae in green <span class="hlt">tides</span> take up inorganic nutrients, such as nitrate and ortho-phosphate, which can limit their availability to other photosynthetic organisms. Their uptake of dissolved inorganic carbon for use in photosynthesis can cause localized spikes in the pH of seawater during the day with concomitant drops in the pH at night when the algae are respiring. Many of the algae that form green-<span class="hlt">tide</span> blooms produce allelopathic compounds, which are metabolites that affect other species. The best documented allelopathic compounds include dimethylsulfoniopropionate (DMSP), dopamine, and reactive oxygen species (ROS) and their breakdown products. DMSP and dopamine are involved in defenses against herbivores. Dopamine and ROS are released into seawater where they can be allelopathic or toxic to other organisms. Thus, these macroalgal blooms can have harmful effects on nearby organisms by altering concentrations of nutrients and dissolved gas in seawater and by producing and releasing allelopathic or toxic compounds. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25170191','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25170191"><span>A <span class="hlt">red</span> <span class="hlt">tide</span> of Alexandrium fundyense in the Gulf of Maine.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McGillicuddy, D J; Brosnahan, M L; Couture, D A; He, R; Keafer, B A; Manning, J P; Martin, J L; Pilskaln, C H; Townsend, D W; Anderson, D M</p> <p>2014-05-01</p> <p>In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the <span class="hlt">red</span> water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense .</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4142651','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4142651"><span>A <span class="hlt">red</span> <span class="hlt">tide</span> of Alexandrium fundyense in the Gulf of Maine</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>McGillicuddy, D.J.; Brosnahan, M.L.; Couture, D.A.; He, R.; Keafer, B.A.; Manning, J.P.; Martin, J.L.; Pilskaln, C.H.; Townsend, D.W.; Anderson, D.M.</p> <p>2013-01-01</p> <p>In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the <span class="hlt">red</span> water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense. PMID:25170191</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DSRII.103..174M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DSRII.103..174M"><span>A <span class="hlt">red</span> <span class="hlt">tide</span> of Alexandrium fundyense in the Gulf of Maine</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGillicuddy, D. J.; Brosnahan, M. L.; Couture, D. A.; He, R.; Keafer, B. A.; Manning, J. P.; Martin, J. L.; Pilskaln, C. H.; Townsend, D. W.; Anderson, D. M.</p> <p>2014-05-01</p> <p>In early July 2009, an unusually high concentration of the toxic dinoflagellate Alexandrium fundyense occurred in the western Gulf of Maine, causing surface waters to appear reddish brown to the human eye. The discolored water appeared to be the southern terminus of a large-scale event that caused shellfish toxicity along the entire coast of Maine to the Canadian border. Rapid-response shipboard sampling efforts together with satellite data suggest the water discoloration in the western Gulf of Maine was a highly ephemeral feature of less than two weeks in duration. Flow cytometric analysis of surface samples from the <span class="hlt">red</span> water indicated the population was undergoing sexual reproduction. Cyst fluxes downstream of the discolored water were the highest ever measured in the Gulf of Maine, and a large deposit of new cysts was observed that fall. Although the mechanisms causing this event remain unknown, its timing coincided with an anomalous period of downwelling-favorable winds that could have played a role in aggregating upward-swimming cells. Regardless of the underlying causes, this event highlights the importance of short-term episodic phenomena on regional population dynamics of A. fundyense.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003705','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003705"><span>Informing <span class="hlt">Aerosol</span> Transport Models With Satellite Multi-Angle <span class="hlt">Aerosol</span> Measurements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Limbacher, J.; Patadia, F.; Petrenko, M.; Martin, M. Val; Chin, M.; Gaitley, B.; Garay, M.; Kalashnikova, O.; Nelson, D.; Scollo, S.</p> <p>2011-01-01</p> <p>As the <span class="hlt">aerosol</span> products from the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) mature, we are placing greater focus on ways of using the <span class="hlt">aerosol</span> amount and type data products, and <span class="hlt">aerosol</span> plume heights, to constrain <span class="hlt">aerosol</span> transport models. We have demonstrated the ability to map <span class="hlt">aerosol</span> air-mass-types regionally, and have identified product upgrades required to apply them globally, including the need for a quality flag indicating the <span class="hlt">aerosol</span> type information content, that varies depending upon retrieval conditions. We have shown that MISR <span class="hlt">aerosol</span> type can distinguish smoke from dust, volcanic ash from sulfate and water particles, and can identify qualitative differences in mixtures of smoke, dust, and pollution <span class="hlt">aerosol</span> components in urban settings. We demonstrated the use of stereo imaging to map smoke, dust, and volcanic effluent plume injection height, and the combination of MISR and MODIS <span class="hlt">aerosol</span> optical depth maps to constrain wildfire smoke source strength. This talk will briefly highlight where we stand on these application, with emphasis on the steps we are taking toward applying the capabilities toward constraining <span class="hlt">aerosol</span> transport models, planet-wide.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...137...56I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...137...56I"><span>Sea-level rise impacts on the <span class="hlt">tides</span> of the European Shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Idier, Déborah; Paris, François; Cozannet, Gonéri Le; Boulahya, Faiza; Dumas, Franck</p> <p>2017-04-01</p> <p>Sea-level rise (SLR) can modify not only total water levels, but also tidal dynamics. Several studies have investigated the effects of SLR on the <span class="hlt">tides</span> of the western European continental shelf (mainly the M2 component). We further investigate this issue using a modelling-based approach, considering uniform SLR scenarios from -0.25 m to +10 m above present-day sea level. Assuming that coastal defenses are constructed along present-day shorelines, the patterns of change in high <span class="hlt">tide</span> levels (annual maximum water level) are spatially similar, regardless of the magnitude of sea-level rise (i.e., the sign of the change remains the same, regardless of the SLR scenario) over most of the area (70%). Notable increases in high <span class="hlt">tide</span> levels occur especially in the northern Irish Sea, the southern part of the North Sea and the German Bight, and decreases occur mainly in the western English Channel. These changes are generally proportional to SLR, as long as SLR remains smaller than 2 m. Depending on the location, they can account for +/-15% of regional SLR. High <span class="hlt">tide</span> levels and the M2 component exhibit slightly different patterns. Analysis of the 12 largest tidal components highlights the need to take into account at least the M2, S2, N2, M4, MS4 and MN4 components when investigating the effects of SLR on <span class="hlt">tides</span>. Changes in high <span class="hlt">tide</span> levels are much less proportional to SLR when flooding is allowed, in particular in the German Bight. However, some areas (e.g., the English Channel) are not very sensitive to this option, meaning that the effects of SLR would be predictable in these areas, even if future coastal defense strategies are ignored. Physically, SLR-induced tidal changes result from the competition between reductions in bed friction damping, changes in resonance properties and increased reflection at the coast, i.e., local and non-local processes. A preliminary estimate of tidal changes by 2100 under a plausible non-uniform SLR scenario (using the RCP4.5 scenario) is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGeo...51..358A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGeo...51..358A"><span>Verifying the body <span class="hlt">tide</span> at the Canary Islands using tidal gravimetry observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arnoso, J.; Benavent, M.; Bos, M. S.; Montesinos, F. G.; Vieira, R.</p> <p>2011-05-01</p> <p>Gravity <span class="hlt">tide</span> records from El Hierro, Tenerife and Lanzarote Islands (Canarian Archipelago) have been analyzed and compared to the theoretical body <span class="hlt">tide</span> model (DDW) of Dehant el al. (1999). The use of more stringent criterion of tidal analysis using VAV program allowed us to reduce the error bars by a factor of two of the gravimetric factors at Tenerife and Lanzarote compared with previous published values. Also, the calibration values have been revisited at those sites. Precise ocean <span class="hlt">tide</span> loading (OTL) corrections based on up-to-date global ocean models and improved regional ocean model have been obtained for the main tidal harmonics O 1, K 1, M 2, S 2. We also point out the importance of using the most accurate coastline definition for OTL calculations in the Canaries. The remaining observational errors depend on the accuracy of the calibration of the gravimeters and/or on the length of the observed data series. Finally, the comparison of the tidal observations with the theoretical body <span class="hlt">tide</span> models has been done with an accuracy level of 0.1% at El Hierro, 0.4% at Tenerife and 0.5% at Lanzarote.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..280..278B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..280..278B"><span>Crustal control of dissipative ocean <span class="hlt">tides</span> in Enceladus and other icy moons</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beuthe, Mikael</p> <p>2016-12-01</p> <p>Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical <span class="hlt">tides</span> give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative <span class="hlt">tides</span> in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 m deep. The model is general: it applies to all icy satellites with a thin crust and a shallow ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity <span class="hlt">tide</span> does not move the crust. Therefore, crustal dissipation due to dynamical obliquity <span class="hlt">tides</span> can differ from the static prediction by up to a factor of two.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990089548','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990089548"><span>A Global Ocean <span class="hlt">Tide</span> Model From TOPEX/POSEIDON Altimetry: GOT99.2</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.</p> <p>1999-01-01</p> <p>Goddard Ocean <span class="hlt">Tide</span> model GOT99.2 is a new solution for the amplitudes and phases of the global oceanic <span class="hlt">tides</span>, based on over six years of sea-surface height measurements by the TOPEX/POSEIDON satellite altimeter. Comparison with deep-ocean <span class="hlt">tide</span>-gauge measurements show that this new tidal solution is an improvement over previous global models, with accuracies for the main semidiurnal lunar constituent M2 now below 1.5 cm (deep water only). The new solution benefits from use of prior hydrodynamic models, several in shallow and inland seas as well as the global finite-element model FES94.1. This report describes some of the data processing details involved in handling the altimetry, and it provides a comprehensive set of global cotidal charts of the resulting solutions. Various derived tidal charts are also provided, including tidal loading deformation charts, tidal gravimetric charts, and tidal current velocity (or transport) charts. Finally, low-degree spherical harmonic coefficients are computed by numerical quadrature and are tabulated for the major short-period <span class="hlt">tides</span>; these are useful for a variety of geodetic and geophysical purposes, especially in combination with similar estimates from satellite laser ranging.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.tmp.1284Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.tmp.1284Y"><span>Gravity <span class="hlt">Tides</span> Extracted from Relative Gravimeter Data by Combining Empirical Mode Decomposition and Independent Component Analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Hongjuan; Guo, Jinyun; Kong, Qiaoli; Chen, Xiaodong</p> <p>2018-04-01</p> <p>The static observation data from a relative gravimeter contain noise and signals such as gravity <span class="hlt">tides</span>. This paper focuses on the extraction of the gravity <span class="hlt">tides</span> from the static relative gravimeter data for the first time applying the combined method of empirical mode decomposition (EMD) and independent component analysis (ICA), called the EMD-ICA method. The experimental results from the CG-5 gravimeter (SCINTREX Limited Ontario Canada) data show that the gravity <span class="hlt">tides</span> time series derived by EMD-ICA are consistent with the theoretical reference (Longman formula) and the RMS of their differences only reaches 4.4 μGal. The time series of the gravity <span class="hlt">tides</span> derived by EMD-ICA have a strong correlation with the theoretical time series and the correlation coefficient is greater than 0.997. The accuracy of the gravity <span class="hlt">tides</span> estimated by EMD-ICA is comparable to the theoretical model and is slightly higher than that of independent component analysis (ICA). EMD-ICA could overcome the limitation of ICA having to process multiple observations and slightly improve the extraction accuracy and reliability of gravity <span class="hlt">tides</span> from relative gravimeter data compared to that estimated with ICA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.G33A0030K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.G33A0030K"><span>Effect of Ocean <span class="hlt">Tide</span> Models on the Precise Orbit Determination of Geodetic Satellites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kubo-Oka, T.; Matsumoto, K.; Otsubo, T.; Gotoh, T.</p> <p>2005-12-01</p> <p>Several ocean <span class="hlt">tide</span> models are tested with precise observation data of satellite laser ranging to geodetic satellites, Starlette and Stella. Four ocean models, NAO.99b, CSR 3.0 (standard model in IERS Conventions 2003), CSR 4.0, and GOT99.2b were implemented in our orbit analysis software "concerto ver. 4". NAO.99b model was developed by assimilating tidal solutions from TOPEX/POSEIDON altimeter data into hydrodynamical model. Eight constituents (M2, S2, K1, O1, N2, P1, K2, Q1) were taken into account in each ocean <span class="hlt">tide</span> model. Moreover, eight additional constituents (M1, J1, OO1, 2N2, Mu2, Nu2, L2, T2) can be included in NAO.99b model. Effect of ocean <span class="hlt">tides</span> on geopotential coefficients were computed to 20th order. SLR data to Starlette and Stella were divided into arcs of 7 days length and 52 arcs (Jan. 2 - Dec. 30, 2004) were analyzed. Using different ocean <span class="hlt">tide</span> model, orbits of these satellites were determined and weighted rms of postfit residuals are compared. We found that the NAO.99b model with 16 constituents can reduce weighted rms of postfit residuals using to the level of about 6.0 cm (Starlette) and 9.6 cm (Stella). These values are about 3-5 % smaller compared to other ocean <span class="hlt">tide</span> models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://sfbay.wr.usgs.gov/publications/pdf/cheng_1998_nowcast_model.pdf','USGSPUBS'); return false;" href="http://sfbay.wr.usgs.gov/publications/pdf/cheng_1998_nowcast_model.pdf"><span>A nowcast model for <span class="hlt">tides</span> and tidal currents in San Francisco Bay, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cheng, Ralph T.; Smith, Richard E.</p> <p>1998-01-01</p> <p>National Oceanographic and Atmospheric Administration (NOAA) installed Physical Oceanographic Real-Time System (PORTS) in San Francisco Bay, California to provide observations of <span class="hlt">tides</span>, tidal currents, and meteorological conditions. PORTS data are used for optimizing vessel operations, increasing margin of safety for navigation, and guiding hazardous material spill prevention and response. Because <span class="hlt">tides</span> and tidal currents in San Francisco Bay are extremely complex, limited real-time observations are insufficient to provide spatial resolution for variations of <span class="hlt">tides</span> and tidal currents. To fill the information gaps, a highresolution, robust, semi-implicit, finite-difference nowcast numerical model has been implemented for San Francisco Bay. The model grid and water depths are defined on coordinates based on Mercator projection so the model outputs can be directly superimposed on navigation charts. A data assimilation algorithm has been established to derive the boundary conditions for model simulations. The nowcast model is executed every hour continuously for <span class="hlt">tides</span> and tidal currents starting from 24 hours before the present time (now) covering a total of 48 hours simulation. Forty-eight hours of nowcast model results are available to the public at all times through the World Wide Web (WWW). Users can view and download the nowcast model results for <span class="hlt">tides</span> and tidal current distributions in San Francisco Bay for their specific applications and for further analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A23F0399D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A23F0399D"><span>Biology of the Coarse <span class="hlt">Aerosol</span> Mode: Insights Into Urban <span class="hlt">Aerosol</span> Ecology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dueker, E.; O'Mullan, G. D.; Montero, A.</p> <p>2015-12-01</p> <p>Microbial <span class="hlt">aerosols</span> have been understudied, despite implications for climate studies, public health, and biogeochemical cycling. Because viable bacterial <span class="hlt">aerosols</span> are often associated with coarse <span class="hlt">aerosol</span> particles, our limited understanding of the coarse <span class="hlt">aerosol</span> mode further impedes our ability to develop models of viable bacterial <span class="hlt">aerosol</span> production, transport, and fate in the outdoor environment, particularly in crowded urban centers. To address this knowledge gap, we studied <span class="hlt">aerosol</span> particle biology and size distributions in a broad range of urban and rural settings. Our previously published findings suggest a link between microbial viability and local production of coarse <span class="hlt">aerosols</span> from waterways, waste treatment facilities, and terrestrial systems in urban and rural environments. Both in coastal Maine and in New York Harbor, coarse <span class="hlt">aerosols</span> and viable bacterial <span class="hlt">aerosols</span> increased with increasing wind speeds above 4 m s-1, a dynamic that was observed over time scales ranging from minutes to hours. At a New York City superfund-designated waterway regularly contaminated with raw sewage, aeration remediation efforts resulted in significant increases of coarse <span class="hlt">aerosols</span> and bacterial <span class="hlt">aerosols</span> above that waterway. Our current research indicates that bacterial communities in <span class="hlt">aerosols</span> at this superfund site have a greater similarity to bacterial communities in the contaminated waterway with wind speeds above 4 m s-1. Size-fractionated sampling of viable microbial <span class="hlt">aerosols</span> along the urban waterfront has also revealed significant shifts in bacterial <span class="hlt">aerosols</span>, and specifically bacteria associated with coarse <span class="hlt">aerosols</span>, when wind direction changes from onshore to offshore. This research highlights the key connections between bacterial <span class="hlt">aerosol</span> viability and the coarse <span class="hlt">aerosol</span> fraction, which is important in assessments of production, transport, and fate of bacterial contamination in the urban environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29277307','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29277307"><span>Synthesis and biological evaluation of 6-substituted-5-fluorouridine Pro<span class="hlt">Tides</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Slusarczyk, Magdalena; Ferla, Salvatore; Brancale, Andrea; McGuigan, Christopher</p> <p>2018-02-01</p> <p>A new family of thirteen phosphoramidate prodrugs (Pro<span class="hlt">Tides</span>) of different 6-substituted-5-fluorouridine nucleoside analogues were synthesized and evaluated as potential anticancer agents. In addition, antiviral activity against Chikungunya (CHIKV) virus was evaluated using a cytopathic effect inhibition assay. Although a carboxypeptidase Y assay supported a putative mechanism of activation of Pro<span class="hlt">Tides</span> built on 5-fluorouridine with such C6-modifications, the Hint docking studies revealed a compromised substrate-activity for the Hint phosphoramidase-type enzyme that is likely responsible for phosphoramidate bioactivation through P-N bond cleavage and free nucleoside 5'-monophosphate delivery. Our observations may support and explain to some extent the poor in vitro biological activity generally demonstrated by the series of 6-substituted-5-fluorouridine phosphoramidates (Pro<span class="hlt">Tides</span>) and will be of guidance for the design of novel phosphoramidate prodrugs. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A13A0179K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A13A0179K"><span>Measurements of Semi-volatile <span class="hlt">Aerosol</span> and Its Effect on <span class="hlt">Aerosol</span> Optical Properties During Southern Oxidant and <span class="hlt">Aerosol</span> Study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.</p> <p>2013-12-01</p> <p>Semi-volatile compounds, including particle-bound water, comprise a large part of <span class="hlt">aerosol</span> mass and have a significant influence on <span class="hlt">aerosol</span> lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/<span class="hlt">aerosol</span> partitioning, is of critical importance for our ability to predict concentrations and properties of ambient <span class="hlt">aerosol</span>. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and <span class="hlt">Aerosol</span> Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on <span class="hlt">aerosol</span> size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned <span class="hlt">aerosols</span> was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an <span class="hlt">Aerosol</span> Chemical Speciation Monitor (ACSM) were used to assess <span class="hlt">aerosol</span> volatility and kinetics of <span class="hlt">aerosol</span> evaporation. It was found that both temperature and relative humidity have a strong effect on <span class="hlt">aerosol</span> optical properties. The variable residence time thermodenuder data suggest that <span class="hlt">aerosol</span> equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total <span class="hlt">aerosol</span> mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient <span class="hlt">aerosol</span> loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% <span class="hlt">aerosol</span> mass evaporates) varied from 60 C to more than 120 C.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040081254','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040081254"><span>Application of Polarization to the MODIS <span class="hlt">Aerosol</span> Retrieval Over Land</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Levy, Robert C.; Remer, Lorraine R.; Kaufman, Yoram J.</p> <p>2004-01-01</p> <p>Reflectance measurements in the visible and infrared wavelengths, from the Moderate Resolution Imaging Spectroradiometer (MODIS), are used to derive <span class="hlt">aerosol</span> optical thicknesses (AOT) and <span class="hlt">aerosol</span> properties over land surfaces. The measured spectral reflectance is compared with lookup tables, containing theoretical reflectance calculated by radiative transfer (RT) code. Specifically, this RT code calculates top of the atmosphere (TOA) intensities based on a scalar treatment of radiation, neglecting the effects of polarization. In the <span class="hlt">red</span> and near infrared (NIR) wavelengths the use of the scalar RT code is of sufficient accuracy to model TOA reflectance. However, in the blue, molecular and <span class="hlt">aerosol</span> scattering dominate the TOA signal. Here, polarization effects can be large, and should be included in the lookup table derivation. Using a RT code that allows for both vector and scalar calculations, we examine the reflectance differences at the TOA, with and without polarization. We find that the differences in blue channel TOA reflectance (vector - scalar) may reach values of 0.01 or greater, depending on the sun/surface/sensor scattering geometry. Reflectance errors of this magnitude translate to AOT differences of 0.1, which is a very large error, especially when the actual AOT is low. As a result of this study, the next version of <span class="hlt">aerosol</span> retrieval from MODIS over land will include polarization.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcDyn..67..973Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcDyn..67..973Z"><span>Evolution of wave and <span class="hlt">tide</span> over vegetation region in nearshore waters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Mingliang; Zhang, Hongxing; Zhao, Kaibin; Tang, Jun; Qin, Huifa</p> <p>2017-08-01</p> <p>Coastal wetlands are an important ecosystem in nearshore regions, where complex flow characteristics occur because of the interactions among <span class="hlt">tides</span>, waves, and plants, especially in the discontinuous flow of the intertidal zone. In order to simulate the wave and wave-induced current in coastal waters, in this study, an explicit depth-averaged hydrodynamic (HD) model has been dynamically coupled with a wave spectral model (CMS-Wave) by sharing the <span class="hlt">tide</span> and wave data. The hydrodynamic model is based on the finite volume method; the intercell flux is computed using the Harten-Lax-van Leer (HLL) approximate Riemann solver for computing the dry-to-wet interface; the drag force of vegetation is modeled as the sink terms in the momentum equations. An empirical wave energy dissipation term with plant effect has been derived from the wave action balance equation to account for the resistance induced by aquatic vegetation in the CMS-Wave model. The results of the coupling model have been verified using the measured data for the case with wave-<span class="hlt">tide</span>-vegetation interactions. The results show that the wave height decreases significantly along the wave propagation direction in the presence of vegetation. In the rip channel system, the oblique waves drive a meandering longshore current; it moves from left to right past the cusps with oscillations. In the vegetated region, the wave height is greatly attenuated due to the presence of vegetation, and the radiation stresses are noticeably changed as compared to the region without vegetation. Further, vegetation can affect the spatial distribution of mean velocity in a rip channel system. In the co-exiting environment of <span class="hlt">tides</span>, waves, and vegetation, the locations of wave breaking and wave-induced radiation stress also vary with the water level of flooding or ebb <span class="hlt">tide</span> in wetland water, which can also affect the development and evolution of wave-induced current.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813124M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813124M"><span>COST Action ES1401 <span class="hlt">TIDES</span>: a European network on TIme DEpendent Seismology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morelli, Andrea</p> <p>2016-04-01</p> <p>Using the full-length records of seismic events and background ambient noise, today seismology is going beyond still-life snapshots of the interior of the Earth, and look into time-dependent changes of its properties. Data availability has grown dramatically with the expansion of seismographic networks and data centers, so as to enable much more detailed and accurate analyses. COST Action ES1401 <span class="hlt">TIDES</span> (TIme DEpendent Seismology; http://<span class="hlt">tides</span>-cost.eu) aims at structuring the EU seismological community to enable development of data-intensive, time-dependent techniques for monitoring Earth active processes (e.g., earthquakes, volcanic eruptions, landslides, glacial earthquakes) as well as oil/gas reservoirs. The main structure of <span class="hlt">TIDES</span> is organised around working groups on: Workflow integration of data and computing resources; Seismic interferometry and ambient noise; Forward problems and High-performance computing applications; Seismic tomography, full waveform inversion and uncertainties; Applications in the natural environment and industry. <span class="hlt">TIDES</span> is an open network of European laboratories with complementary skills, and is organising a series of events - workshops and advanced training schools - as well as supporting short-duration scientific stays. The first advanced training school was held in Bertinoro (Italy) on June 2015, with attendance of about 100 participants from 20 European countries, was devoted to how to manage and model seismic data with modern tools. The next school, devoted to ambient noise, will be held in 2016 Portugal: the program will be announced at the time of this conference. <span class="hlt">TIDES</span> will strengthen Europe's role in a critical field for natural hazards and natural resource management.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4109K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4109K"><span>Nordic Sea Level - Analysis of PSMSL RLR <span class="hlt">Tide</span> Gauge data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knudsen, Per; Andersen, Ole</p> <p>2015-04-01</p> <p><span class="hlt">Tide</span> gauge data from the Nordic region covering a period of time from 1920 to 2000 are evaluated. 63 stations having RLR data for at least 40 years have been used. Each <span class="hlt">tide</span> gauge data record was averaged to annual averages after the monthly average seasonal anomalies were removed. Some stations lack data, especially before around 1950. Hence, to compute representative sea level trends for the 1920-2000 period a procedure for filling in estimated sea level values in the voids, is needed. To fill in voids in the <span class="hlt">tide</span> gauge data records a reconstruction method was applied that utilizes EOF.s in an iterative manner. Subsequently the trends were computed. The estimated trends range from about -8 mm/year to 2 mm/year reflecting both post-glacial uplift and sea level rise. An evaluation of the first EOFs show that the first EOF clearly describes the trends in the time series. EOF #2 and #3 describe differences in the inter-annual sea level variability with-in the Baltic Sea and differences between the Baltic and the North Atlantic / Norwegian seas, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990014560&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doceans%2Btide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990014560&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doceans%2Btide"><span>Evidence for Excitation of Polar Motion by Fortnightly Ocean <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gross, Richard S.; Hamdan, Kamal H.; Boggs, Dale H.</p> <p>1996-01-01</p> <p>The second-degree zonal <span class="hlt">tide</span> raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported. Spectra of the SPACE94 polar motion excitation series exhibit peaks at the prograde and retrograde fortnightly tidal periods. After removing effects of atmospheric wind and pressure changes, an empirical model for the effect of the fortnightly ocean <span class="hlt">tides</span> upon polar motion excitation is obtained by least-squares fitting periodic terms at the Mf and Mf' tidal frequencies to the residual polar motion excitation series. The resulting empirical model is then compared with the predictions of two hydrodynamic ocean <span class="hlt">tide</span> models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JGR...10217051K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JGR...10217051K"><span>Operational remote sensing of tropospheric <span class="hlt">aerosol</span> over land from EOS moderate resolution imaging spectroradiometer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaufman, Y. J.; Tanré, D.; Remer, L. A.; Vermote, E. F.; Chu, A.; Holben, B. N.</p> <p>1997-07-01</p> <p>Daily distribution of the <span class="hlt">aerosol</span> optical thickness and columnar mass concentration will be derived over the continents, from the EOS moderate resolution imaging spectroradiometer (MODIS) using dark land targets. Dark land covers are mainly vegetated areas and dark soils observed in the <span class="hlt">red</span> and blue channels; therefore the method will be limited to the moist parts of the continents (excluding water and ice cover). After the launch of MODIS the distribution of elevated <span class="hlt">aerosol</span> concentrations, for example, biomass burning in the tropics or urban industrial <span class="hlt">aerosol</span> in the midlatitudes, will be continuously monitored. The algorithm takes advantage of the MODIS wide spectral range and high spatial resolution and the strong spectral dependence of the <span class="hlt">aerosol</span> opacity for most <span class="hlt">aerosol</span> types that result in low optical thickness in the mid-IR (2.1 and 3.8 μm). The main steps of the algorithm are (1) identification of dark pixels in the mid-IR; (2) estimation of their reflectance at 0.47 and 0.66 μm; and (3) derivation of the optical thickness and mass concentration of the accumulation mode from the detected radiance. To differentiate between dust and <span class="hlt">aerosol</span> dominated by accumulation mode particles, for example, smoke or sulfates, ratios of the <span class="hlt">aerosol</span> path radiance at 0.47 and 0.66 μm are used. New dynamic <span class="hlt">aerosol</span> models for biomass burning <span class="hlt">aerosol</span>, dust and <span class="hlt">aerosol</span> from industrial/urban origin, are used to determine the <span class="hlt">aerosol</span> optical properties used in the algorithm. The error in the retrieved <span class="hlt">aerosol</span> optical thicknesses, τa is expected to be Δτa = 0.05±0.2τa. Daily values are stored on a resolution of 10×10 pixels (1 km nadir resolution). Weighted and gridded 8-day and monthly composites of the optical thickness, the <span class="hlt">aerosol</span> mass concentration and spectral radiative forcing are generated for selected scattering angles to increase the accuracy. The daily <span class="hlt">aerosol</span> information over land and oceans [Tanré et al., this issue], combined with continuous <span class="hlt">aerosol</span> remote</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710909B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710909B"><span>Bottom friction optimization for a better barotropic <span class="hlt">tide</span> modelling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boutet, Martial; Lathuilière, Cyril; Son Hoang, Hong; Baraille, Rémy</p> <p>2015-04-01</p> <p>At a regional scale, barotropic <span class="hlt">tides</span> are the dominant source of variability of currents and water heights. A precise representation of these processes is essential because of their great impacts on human activities (submersion risks, marine renewable energies, ...). Identified sources of error for <span class="hlt">tide</span> modelling at a regional scale are the followings: bathymetry, boundary forcing and dissipation due to bottom friction. Nevertheless, bathymetric databases are nowadays known with a good accuracy, especially over shelves, and global <span class="hlt">tide</span> models performances are better than ever. The most promising improvement is thus the bottom friction representation. The method used to estimate bottom friction is the simultaneous perturbation stochastic approximation (SPSA) which consists in the approximation of the gradient based on a fixed number of cost function measurements, regardless of the dimension of the vector to be estimated. Indeed, each cost function measurement is obtained by randomly perturbing every component of the parameter vector. An important feature of SPSA is its relative ease of implementation. In particular, the method does not require the development of tangent linear and adjoint version of the circulation model. Experiments are carried out to estimate bottom friction with the HYbrid Coordinate Ocean Model (HYCOM) in barotropic mode (one isopycnal layer). The study area is the Northeastern Atlantic margin which is characterized by strong currents and an intense dissipation. Bottom friction is parameterized with a quadratic term and friction coefficient is computed with the water height and the bottom roughness. The latter parameter is the one to be estimated. Assimilated data are the available <span class="hlt">tide</span> gauge observations. First, the bottom roughness is estimated taking into account bottom sediment natures and bathymetric ranges. Then, it is estimated with geographical degrees of freedom. Finally, the impact of the estimation of a mixed quadratic/linear friction</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000GeoRL..27.1499S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000GeoRL..27.1499S"><span>Intraseasonal variability and <span class="hlt">tides</span> in Makassar Strait</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Susanto, R. Dwi; Gordon, Arnold L.; Sprintall, Janet; Herunadi, Bambang</p> <p>2000-05-01</p> <p>Intraseasonal variability and <span class="hlt">tides</span> along the Makassar Strait, the major route of Indonesian throughflow, are investigated using spectral and time-frequency analyses which are applied to sea level, wind and mooring data. Semidiurnal and diurnal <span class="hlt">tides</span> are dominant features, with higher (lower) semidiurnal (diurnal) energy in the north compared to the south. Sea levels and mooring data display intraseasonal variability which are probably a response to remotely forced Kelvin waves from the Indian Ocean through Lombok Strait and to Rossby waves from the Pacific Ocean. Sea levels in Tarakan and Balikpapan and Makassar mooring velocities reveal intraseasonal features with periods of 48-62 days associated with Rossby waves from the Sulawesi Sea. Kelvin wave features with periods of 67-100 days are seen in Bali (Lombok Strait), at the mooring sites and in Balikpapan, however, they are not seen in Tarakan, which implies that these waves diminish after passing through the Makassar Strait.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA21A2506N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA21A2506N"><span>Solar cycle variability of nonmigrating <span class="hlt">tides</span> in the infrared cooling of the thermosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nischal, N.; Oberheide, J.; Mlynczak, M. G.; Marsh, D. R.</p> <p>2017-12-01</p> <p>Nitric Oxide (NO) at 5.3 μm and Carbon dioxide (CO2) at 15 μm are the major infrared emissions responsible for the radiative cooling of the thermosphere. We study the impact of two important diurnal nonmigrating <span class="hlt">tides</span>, the DE2 and DE3, on NO and CO2 infrared emissions over a complete solar cycle (2002-2013) by (i) analyzing NO and CO2 cooling rate data from SABER and (ii) photochemical modeling using dynamical <span class="hlt">tides</span> from a thermospheric empirical tidal model, CTMT. Both observed and modeled results show that the NO cooling rate amplitudes for DE2 and DE3 exhibit strong solar cycle dependence. NO 5.3 μm cooling rate <span class="hlt">tides</span> are relatively unimportant for the infrared energy budget during solar minimum but important during solar maximum. On the other hand DE2 and DE3 in CO2 show comparatively small variability over a solar cycle. CO2 15 μm cooling rate <span class="hlt">tides</span> remain, to a large extent, constant between solar minimum and maximum. This different responses by NO and CO2 emissions to the DE2 and DE3 during a solar cycle comes form the fact that the collisional reaction rate for NO is highly sensitive to the temperature comparative to that for CO2. Moreover, the solar cycle variability of these nonmigrating <span class="hlt">tides</span> in thermospheric infrared emissions shows a clear QBO signals substantiating the impact of tropospheric weather system on the energy budget of the thermosphere. The relative contribution from the individual tidal drivers; temperature, density and advection to the observed DE2 and DE3 <span class="hlt">tides</span> does not vary much over the course of the solar cycle, and this is true for both NO and CO2 emissions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A33C3201K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A33C3201K"><span>The Effect of <span class="hlt">Aerosol</span> Hygroscopicity and Volatility on <span class="hlt">Aerosol</span> Optical Properties During Southern Oxidant and <span class="hlt">Aerosol</span> Study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.</p> <p>2014-12-01</p> <p>Secondary organic <span class="hlt">aerosol</span> (SOA) from biogenic sources can influence optical properties of ambient <span class="hlt">aerosol</span> by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and <span class="hlt">Aerosol</span> Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on <span class="hlt">aerosol</span> size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned <span class="hlt">aerosols</span> was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an <span class="hlt">Aerosol</span> Chemical Speciation Monitor (ACSM) were used to assess <span class="hlt">aerosol</span> volatility and kinetics of <span class="hlt">aerosol</span> evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on <span class="hlt">aerosol</span> optical properties. SOA appears to increase <span class="hlt">aerosol</span> light absorption by about 10%. TD measurements suggest that <span class="hlt">aerosol</span> equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient <span class="hlt">aerosol</span> loading and composition and meteorology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070034033&hterms=ocean+climate+changes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Docean%2Bclimate%2Bchanges','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070034033&hterms=ocean+climate+changes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Docean%2Bclimate%2Bchanges"><span>Application of the Convolution Formalism to the Ocean <span class="hlt">Tide</span> Potential: Results from the Gravity and Recovery and Climate Experiment (GRACE)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Desai, S. D.; Yuan, D. -N.</p> <p>2006-01-01</p> <p>A computationally efficient approach to reducing omission errors in ocean <span class="hlt">tide</span> potential models is derived and evaluated using data from the Gravity Recovery and Climate Experiment (GRACE) mission. Ocean <span class="hlt">tide</span> height models are usually explicitly available at a few frequencies, and a smooth unit response is assumed to infer the response across the tidal spectrum. The convolution formalism of Munk and Cartwright (1966) models this response function with a Fourier series. This allows the total ocean <span class="hlt">tide</span> height, and therefore the total ocean <span class="hlt">tide</span> potential, to be modeled as a weighted sum of past, present, and future values of the <span class="hlt">tide</span>-generating potential. Previous applications of the convolution formalism have usually been limited to <span class="hlt">tide</span> height models, but we extend it to ocean <span class="hlt">tide</span> potential models. We use luni-solar ephemerides to derive the required <span class="hlt">tide</span>-generating potential so that the complete spectrum of the ocean <span class="hlt">tide</span> potential is efficiently represented. In contrast, the traditionally adopted harmonic model of the ocean <span class="hlt">tide</span> potential requires the explicit sum of the contributions from individual tidal frequencies. It is therefore subject to omission errors from neglected frequencies and is computationally more intensive. Intersatellite range rate data from the GRACE mission are used to compare convolution and harmonic models of the ocean <span class="hlt">tide</span> potential. The monthly range rate residual variance is smaller by 4-5%, and the daily residual variance is smaller by as much as 15% when using the convolution model than when using a harmonic model that is defined by twice the number of parameters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4415B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4415B"><span>Setup and first airborne application of an <span class="hlt">aerosol</span> optical properties package for the In-service Aircraft Global Observing System IAGOS.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bundke, Ulrich; Freedman, Andrew; Herber, Andreas; Mattis, Ina; Berg, Marcel; De Faira, Julia; Petzold, Andreas</p> <p>2016-04-01</p> <p>The atmospheric <span class="hlt">aerosol</span> influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the <span class="hlt">aerosol</span> microphysical and optical properties is needed to reduce the reported uncertainty of the <span class="hlt">aerosol</span> climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The prototype of the IAGOS <span class="hlt">Aerosol</span> Package (IAGOS-P2E) consists of two modified CAPS (Cavity Attenuated Phase Shift) instruments from Aerodyne Research, Inc. and one optical particle counter (Model Grimm Sky OPC 1.129). The CAPS PMex monitor provides a measurement of the optical extinction (the sum of scattering and absorption) of an ambient sample of particles. There is a choice of 5 different wavelengths - blue (450 nm), green (530 nm), <span class="hlt">red</span> (630 nm), far <span class="hlt">red</span> (660 nm) and near infrared (780 nm) - which match the spectral bands of most other particle optical properties measurement equipment. In our prototype setup we used the instrument operating at 630nm wavelength (<span class="hlt">red</span>). The second CAPS instrument we have chosen is the CAPS NO2 monitor. This instrument provides a direct absorption measurement of nitrogen dioxide in the blue region of the electromagnetic spectrum (450 nm). Unlike standard chemiluminescence-based monitors, the instrument requires no conversion of NO2 to another species and thus is not sensitive to other nitro-containing species. In the final IAGOS Setup, up to 4 CAPS might be used to get additional <span class="hlt">aerosol</span> properties using the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A53C0293L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A53C0293L"><span>Constructing An Event Based <span class="hlt">Aerosol</span> Product Under High <span class="hlt">Aerosol</span> Loading Conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levy, R. C.; Shi, Y.; Mattoo, S.; Remer, L. A.; Zhang, J.</p> <p>2016-12-01</p> <p>High <span class="hlt">aerosol</span> loading events, such as the Indonesia's forest fire in Fall 2015 or the persistent wintertime haze near Beijing, gain tremendous interests due to their large impact on regional visibility and air quality. Understanding the optical properties of these events and further being able to simulate and predict these events are beneficial. However, it is a great challenge to consistently identify and then retrieve <span class="hlt">aerosol</span> optical depth (AOD) from passive sensors during heavy <span class="hlt">aerosol</span> events. Some reasons include:1). large differences between optical properties of high-loading <span class="hlt">aerosols</span> and those under normal conditions, 2) spectral signals of optically thick <span class="hlt">aerosols</span> can be mistaken with surface depending on <span class="hlt">aerosol</span> types, and 3) Extremely optically thick <span class="hlt">aerosol</span> plumes can also be misidentified as clouds due to its high optical thickness. Thus, even under clear-sky conditions, the global distribution of extreme <span class="hlt">aerosol</span> events is not well captured in datasets such as the MODIS Dark-Target (DT) <span class="hlt">aerosol</span> product. In this study, with the synthetic use of OMI <span class="hlt">Aerosol</span> Index, MODIS cloud product, and operational DT product, the heavy smoke events over the seven sea region are identified and retrieved over the dry season. An event based <span class="hlt">aerosol</span> product that would compensate the standard "global" <span class="hlt">aerosol</span> retrieval will be created and evaluated. The impact of missing high AOD retrievals on the regional <span class="hlt">aerosol</span> climatology will be studied using this newly developed research product.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930048273&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doceans%2Btide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930048273&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doceans%2Btide"><span>The effect of ocean <span class="hlt">tides</span> on the earth's rotation as predicted by the results of an ocean <span class="hlt">tide</span> model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gross, Richard S.</p> <p>1993-01-01</p> <p>The published ocean tidal angular momentum results of Seiler (1991) are used to predict the effects of the most important semidiurnal, diurnal, and long period ocean <span class="hlt">tides</span> on the earth's rotation. The separate, as well as combined, effects of ocean tidal currents and sea level height changes on the length-of-day, UT1, and polar motion are computed. The predicted polar motion results reported here account for the presence of the free core nutation and are given in terms of the motion of the celestial ephemeris pole so that they can be compared directly to the results of observations. Outside the retrograde diurnal tidal band, the summed effect of the semidiurnal and diurnal ocean <span class="hlt">tides</span> studied here predict peak-to-peak polar motion amplitudes as large as 2 mas. Within the retrograde diurnal tidal band, the resonant enhancement caused by the free core nutation leads to predicted polar motion amplitudes as large as 9 mas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15233378','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15233378"><span>Brevenal is a natural inhibitor of brevetoxin action in sodium channel receptor binding assays.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bourdelais, Andrea J; Campbell, Susan; Jacocks, Henry; Naar, Jerome; Wright, Jeffery L C; Carsi, Jigani; Baden, Daniel G</p> <p>2004-08-01</p> <p>1. Florida <span class="hlt">red</span> <span class="hlt">tides</span> produce profound neurotoxicity that is evidenced by massive fish kills, neurotoxic shellfish poisoning, and respiratory distress. <span class="hlt">Red</span> <span class="hlt">tides</span> vary in potency, potency that is not totally governed by toxin concentration. The purpose of the study was to understand the variable potency of <span class="hlt">red</span> <span class="hlt">tides</span> by evaluating the potential for other natural pharmacological agents which could modulate or otherwise reduce the potency of these lethal environmental events. 2. A synaptosome binding preparation with 3-fold higher specific brevetoxin binding was developed to detect small changes in toxin binding in the presence of potential antagonists. Rodent brain labeled in vitro with tritiated brevetoxin shows high specific binding in the cerebellum as evidenced by autoradiography. Synaptosome binding assays employing cerebellum-derived synaptosomes illustrate 3-fold increased specific binding. 3. A new polyether natural product from Florida's <span class="hlt">red</span> <span class="hlt">tide</span> dinoflagellate Karenia brevis, has been isolated and characterized. Brevenal, as the nontoxic natural product is known, competes with tritiated brevetoxin for site 5 associated with the voltage-sensitive sodium channel (VSSC). Brevenal displacement of specific brevetoxin binding is purely competitive in nature. 4. Brevenal, obtained from either laboratory cultures or field collections during a <span class="hlt">red</span> <span class="hlt">tide</span>, protects fish from the neurotoxic effects of brevetoxin exposure. 5. Brevenal may serve as a model compound for the development of therapeutics to prevent or reverse intoxication in <span class="hlt">red</span> <span class="hlt">tide</span> exposures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026995','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026995"><span>Floodtide pulses after low <span class="hlt">tides</span> in shallow subembayments adjacent to deep channels</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Warner, J.C.; Schoellhamer, D.H.; Ruhl, C.A.; Burau, J.R.</p> <p>2004-01-01</p> <p>In shallow waters surface gravity waves (<span class="hlt">tides</span>) propagate with a speed proportional to the square root of water depth (c=g(h+η)). As the ratio of free surface displacement to mean depth (η/h) approaches unity the wave will travel noticeably faster at high <span class="hlt">tide</span> than at low <span class="hlt">tide</span>, creating asymmetries in the tidal form. This physical process is explained analytically by the increased significance of friction and the nonlinear terms in the continuity and momentum equations. In a tidal system comprising a shallow bay adjacent to a deeper channel, tidal asymmetries will be more prevalent in the shallow bay. Thus strong barotropic gradients can be generated between the two, producing rapid accelerations of currents into the bay (relative to other bay tidal processes) and create a maximum peak in the flood <span class="hlt">tide</span> that we describe as a floodtide pulse. These floodtide pulses can promote a landward flux of suspended-sediment into the bay. In Grizzly Bay (part of northern San Francisco Bay, USA), field observations verify the occurrence of floodtide pulses during the lowest low <span class="hlt">tides</span> of the year. No pulses were observed in neighboring Honker Bay, which has an average depth ~30 cm greater than Grizzly Bay. Numerical simulations of northern San Francisco Bay using realistic bathymetry demonstrated that floodtide pulses occurred in Grizzly Bay but not in Honker Bay, consistent with the observations. Both observations and numerical simulations show that floodtide pulses promote a landward flux of sediment into Grizzly Bay. Numerical simulations of an idealized bay-channel system quantify the importance of mean depth and friction in creating these floodtide pulses. </p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22140273-introducing-cafein-new-computational-tool-stellar-pulsations-dynamic-tides','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22140273-introducing-cafein-new-computational-tool-stellar-pulsations-dynamic-tides"><span>INTRODUCING CAFein, A NEW COMPUTATIONAL TOOL FOR STELLAR PULSATIONS AND DYNAMIC <span class="hlt">TIDES</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Valsecchi, F.; Farr, W. M.; Willems, B.</p> <p>2013-08-10</p> <p>Here we present CAFein, a new computational tool for investigating radiative dissipation of dynamic <span class="hlt">tides</span> in close binaries and of non-adiabatic, non-radial stellar oscillations in isolated stars in the linear regime. For the latter, CAFein computes the non-adiabatic eigenfrequencies and eigenfunctions of detailed stellar models. The code is based on the so-called Riccati method, a numerical algorithm that has been successfully applied to a variety of stellar pulsators, and which does not suffer from the major drawbacks of commonly used shooting and relaxation schemes. Here we present an extension of the Riccati method to investigate dynamic <span class="hlt">tides</span> in close binaries.more » We demonstrate CAFein's capabilities as a stellar pulsation code both in the adiabatic and non-adiabatic regimes, by reproducing previously published eigenfrequencies of a polytrope, and by successfully identifying the unstable modes of a stellar model in the {beta} Cephei/SPB region of the Hertzsprung-Russell diagram. Finally, we verify CAFein's behavior in the dynamic <span class="hlt">tides</span> regime by investigating the effects of dynamic <span class="hlt">tides</span> on the eigenfunctions and orbital and spin evolution of massive main sequence stars in eccentric binaries, and of hot Jupiter host stars. The plethora of asteroseismic data provided by NASA's Kepler satellite, some of which include the direct detection of tidally excited stellar oscillations, make CAFein quite timely. Furthermore, the increasing number of observed short-period detached double white dwarfs (WDs) and the observed orbital decay in the tightest of such binaries open up a new possibility of investigating WD interiors through the effects of <span class="hlt">tides</span> on their orbital evolution.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2012/1022/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2012/1022/"><span>Monitoring inland storm <span class="hlt">tide</span> and flooding from Hurricane Irene along the Atlantic Coast of the United States, August 2011</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCallum, Brian E.; Painter, Jaime A.; Frantz, Eric R.</p> <p>2012-01-01</p> <p>The U.S. Geological Survey (USGS) deployed a temporary monitoring network of water-level sensors at 212 locations along the Atlantic coast from South Carolina to Maine during August 2011 to record the timing, areal extent, and magnitude of inland hurricane storm <span class="hlt">tide</span> and coastal flooding generated by Hurricane Irene. Water-level sensor locations were selected to augment existing <span class="hlt">tide</span>-gage networks to ensure adequate monitoring in areas forecasted to have substantial storm <span class="hlt">tide</span>. As defined by the National Oceanic and Atmospheric Administration (NOAA; 2011a,b), storm <span class="hlt">tide</span> is the water-level rise generated by a coastal storm as a result of the combination of storm surge and astronomical <span class="hlt">tide</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060012293','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060012293"><span>Secular changes of the M2 <span class="hlt">tide</span> in the Gulf of Maine</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.</p> <p>2005-01-01</p> <p>Analyses of long time series of hourly <span class="hlt">tide</span>-gauge data at four stations in the Gulf of Maine reveal that the amplitude of the M2 <span class="hlt">tide</span> underwent a nearly linear secular increase throughout most of the twentieth century. In the early 1980s, however, the amplitude of M2 abruptly dropped. Sea level changes alone appear inadequate to explain either the long-term trend or the recent trend discontinuity. Tidal models that account for Holocene sea level rise do predict an amplification of M2, but much smaller than the currently observed trends. Nor do recent annual mean sea levels correlate with the recent trend discontinuity. Some unknown fraction of the open Atlantic may be similarly affected, since the M2 discontinuity, but not the long-term secular increase in the <span class="hlt">tide</span>, is evident also at Halifax.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913909P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913909P"><span>Imaging <span class="hlt">aerosol</span> viscosity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pope, Francis; Athanasiadis, Thanos; Botchway, Stan; Davdison, Nicholas; Fitzgerald, Clare; Gallimore, Peter; Hosny, Neveen; Kalberer, Markus; Kuimova, Marina; Vysniauskas, Aurimas; Ward, Andy</p> <p>2017-04-01</p> <p>Organic <span class="hlt">aerosol</span> particles play major roles in atmospheric chemistry, climate, and public health. <span class="hlt">Aerosol</span> particle viscosity is important since it can determine the ability of chemical species such as oxidants, organics or water to diffuse into the particle bulk. Recent measurements indicate that OA may be present in highly viscous states; however, diffusion rates of small molecules such as water appear not to be limited by these high viscosities. We have developed a technique for measuring viscosity that allows for the imaging of <span class="hlt">aerosol</span> viscosity in micron sized <span class="hlt">aerosols</span> through use of fluorescence lifetime imaging of viscosity sensitive dyes which are also known as 'molecular rotors'. These rotors can be introduced into laboratory generated <span class="hlt">aerosol</span> by adding minute quantities of the rotor to <span class="hlt">aerosol</span> precursor prior to <span class="hlt">aerosolization</span>. Real world <span class="hlt">aerosols</span> can also be studied by doping them in situ with the rotors. The doping is achieved through generation of ultrafine <span class="hlt">aerosol</span> particles that contain the rotors; the ultrafine <span class="hlt">aerosol</span> particles deliver the rotors to the <span class="hlt">aerosol</span> of interest via impaction and coagulation. This work has been conducted both on <span class="hlt">aerosols</span> deposited on microscope coverslips and on particles that are levitated in their true <span class="hlt">aerosol</span> phase through the use of a bespoke optical trap developed at the Central Laser Facility. The technique allows for the direct observation of kinetic barriers caused by high viscosity and low diffusivity in <span class="hlt">aerosol</span> particles. The technique is non-destructive thereby allowing for multiple experiments to be carried out on the same sample. It can dynamically quantify and track viscosity changes during atmospherically relevant processes such oxidation and hygroscopic growth (1). This presentation will focus on the oxidation of <span class="hlt">aerosol</span> particles composed of unsaturated and saturated organic species. It will discuss how the type of oxidant, oxidation rate and the composition of the oxidized products affect the time</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015299','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015299"><span>Identifying <span class="hlt">Aerosol</span> Type/Mixture from <span class="hlt">Aerosol</span> Absorption Properties Using AERONET</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20110015299'); toggleEditAbsImage('author_20110015299_show'); toggleEditAbsImage('author_20110015299_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20110015299_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20110015299_hide"></p> <p>2010-01-01</p> <p><span class="hlt">Aerosols</span> are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the <span class="hlt">aerosol</span> optical and microphysical properties that can be used to identify the <span class="hlt">aerosol</span> type/mixture. Spectral <span class="hlt">aerosol</span> absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing <span class="hlt">aerosol</span> type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing <span class="hlt">aerosol</span> types/mixtures by applying an absorption weighting. This new relationship provides improved <span class="hlt">aerosol</span> type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The <span class="hlt">Aerosol</span> Robotic Network (AERONET) data provide spectral <span class="hlt">aerosol</span> optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed <span class="hlt">aerosol</span> type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon <span class="hlt">aerosol</span> types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA612611','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA612611"><span>Optimizing Internal Wave Drag in a Forward Barotropic Model with Semidiurnal <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-01-23</p> <p>Center 875 North Randolph Street, Suite 1425 Arlington, VA 22203-1995 ONR Approved for public release, distribution is unlimited. A global tuning...factor with a larger value in the Atlantic. Our best global mean RMS error of 4.4 cm for areas deeper than 1000 m and equatorward of 66_ is among the...lowest obtained in a forward barotropic <span class="hlt">tide</span> model. Barotropic <span class="hlt">tides</span>; Global modeling; Linear wave drag Unclassified Unclassified Unclassified UU</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030032518&hterms=oceanography&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Doceanography','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030032518&hterms=oceanography&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Doceanography"><span>Atmospheric Pressure Corrections in Geodesy and Oceanography: a Strategy for Handling Air <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ponte, Rui M.; Ray, Richard D.</p> <p>2003-01-01</p> <p>Global pressure data are often needed for processing or interpreting modern geodetic and oceanographic measurements. The most common source of these data is the analysis or reanalysis products of various meteorological centers. Tidal signals in these products can be problematic for several reasons, including potentially aliased sampling of the semidiurnal solar <span class="hlt">tide</span> as well as the presence of various modeling or timing errors. Building on the work of Van den Dool and colleagues, we lay out a strategy for handling atmospheric <span class="hlt">tides</span> in (re)analysis data. The procedure also offers a method to account for ocean loading corrections in satellite altimeter data that are consistent with standard ocean-<span class="hlt">tide</span> corrections. The proposed strategy has immediate application to the on-going Jason-1 and GRACE satellite missions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcMod..83...26L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcMod..83...26L"><span>Integration of coastal inundation modeling from storm <span class="hlt">tides</span> to individual waves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Ning; Roeber, Volker; Yamazaki, Yoshiki; Heitmann, Troy W.; Bai, Yefei; Cheung, Kwok Fai</p> <p>2014-11-01</p> <p>Modeling of storm-induced coastal inundation has primarily focused on the surge generated by atmospheric pressure and surface winds with phase-averaged effects of the waves as setup. Through an interoperable model package, we investigate the role of phase-resolving wave processes in simulation of coastal flood hazards. A spectral ocean wave model describes generation and propagation of storm waves from deep to intermediate water, while a non-hydrostatic storm-<span class="hlt">tide</span> model has the option to couple with a spectral coastal wave model for computation of phase-averaged processes in a near-shore region. The ocean wave and storm-<span class="hlt">tide</span> models can alternatively provide the wave spectrum and the surface elevation as the boundary and initial conditions for a nested Boussinesq model. Additional surface-gradient terms in the Boussinesq equations maintain the quasi-steady, non-uniform storm <span class="hlt">tide</span> for modeling of phase-resolving surf and swash-zone processes as well as combined <span class="hlt">tide</span>, surge, and wave inundation. The two nesting schemes are demonstrated through a case study of Hurricane Iniki, which made landfall on the Hawaiian Island of Kauai in 1992. With input from a parametric hurricane model and global reanalysis and tidal datasets, the two approaches produce comparable significant wave heights and phase-averaged surface elevations in the surf zone. The nesting of the Boussinesq model provides a seamless approach to augment the inundation due to the individual waves in matching the recorded debris line along the coast.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A41A0003M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A41A0003M"><span>Feasibility study of <span class="hlt">aerosol</span> retrieval for GCOM-C/SGLI with simulated data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mukai, S.; Sano, I.; Yasumoto, M.; Nakata, M.; Nishi, N.</p> <p>2016-12-01</p> <p>The Japan Aerospace Exploration Agency (JAXA) has been developing the new Earth observing system, GCOM (Global Change Observation Mission) project, which consists of two satellite series of GCOM-W1 and GCOM-C1. The 1st GCOM-C satellite will board the SGLI (second generation global imager) to be launched in early of 2017. The SGLI has multi (19)-channels including near ultra violet (NUV) channels (380, 412 nm) and two polarization channels at <span class="hlt">red</span> and near-infrared wavelengths of 670 and 870 nm. Global <span class="hlt">aerosol</span> retrieval is achieved with both polarization and total radiance. It is noted that NUV measurements are available for detection of the carbonaceous <span class="hlt">aerosols</span>. The biomass burning <span class="hlt">aerosols</span> (BBA) generated by forest fire and/or burn agriculture have influenced on the severe air pollutions. It is known that the forest fire increases due to global warming and a climate change, and has influences on them vice versa. It is well known that this negative cycle decreases the quality of global environment and human health. In this work, we use both radiance and polarization measurements observed by GLI and POLDER-2 on Japanese ADEOS-2 satellite in 2003 as a simulated data set for coming GCOM-C/SGLI sensor. As a result the possibility of GCOM-C1/SGLI related to remote sensing for <span class="hlt">aerosols</span>, especially in the hazardous <span class="hlt">aerosol</span> episodes including biomass burning case, can be examined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr42W7.1521L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr42W7.1521L"><span>Accuracy Assessment of Recent Global Ocean <span class="hlt">Tide</span> Models around Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lei, J.; Li, F.; Zhang, S.; Ke, H.; Zhang, Q.; Li, W.</p> <p>2017-09-01</p> <p>Due to the coverage limitation of T/P-series altimeters, the lack of bathymetric data under large ice shelves, and the inaccurate definitions of coastlines and grounding lines, the accuracy of ocean <span class="hlt">tide</span> models around Antarctica is poorer than those in deep oceans. Using tidal measurements from <span class="hlt">tide</span> gauges, gravimetric data and GPS records, the accuracy of seven state-of-the-art global ocean <span class="hlt">tide</span> models (DTU10, EOT11a, GOT4.8, FES2012, FES2014, HAMTIDE12, TPXO8) is assessed, as well as the most widely-used conventional model FES2004. Four regions (Antarctic Peninsula region, Amery ice shelf region, Filchner-Ronne ice shelf region and Ross ice shelf region) are separately reported. The standard deviations of eight main constituents between the selected models are large in polar regions, especially under the big ice shelves, suggesting that the uncertainty in these regions remain large. Comparisons with in situ tidal measurements show that the most accurate model is TPXO8, and all models show worst performance in Weddell sea and Filchner-Ronne ice shelf regions. The accuracy of tidal predictions around Antarctica is gradually improving.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/919902','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/919902"><span><span class="hlt">Aerosol</span> mobility size spectrometer</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Wang, Jian; Kulkarni, Pramod</p> <p>2007-11-20</p> <p>A device for measuring <span class="hlt">aerosol</span> size distribution within a sample containing <span class="hlt">aerosol</span> particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording <span class="hlt">aerosol</span> size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an <span class="hlt">aerosol</span> injection port adjacent the inlet for introducing a charged <span class="hlt">aerosol</span> sample into the chamber, a separation section for applying an electric field to the <span class="hlt">aerosol</span> sample across the flow direction and an outlet opposite the inlet. In the separation section, the <span class="hlt">aerosol</span> sample becomes entrained in the flow medium and the <span class="hlt">aerosol</span> particles within the <span class="hlt">aerosol</span> sample are separated by size into a plurality of <span class="hlt">aerosol</span> flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one <span class="hlt">aerosol</span> flow stream exiting the outlet and for optically detecting the number of <span class="hlt">aerosol</span> particles within the at least one <span class="hlt">aerosol</span> flow stream.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012672','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012672"><span>Harmonic analysis of <span class="hlt">tides</span> and tidal currents in South San Francisco Bay, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cheng, R.T.; Gartner, J.W.</p> <p>1985-01-01</p> <p>Water level observations from <span class="hlt">tide</span> stations and current observations from current-meter moorings in South San Francisco Bay (South Bay), California have been harmonically analysed. At each <span class="hlt">tide</span> station, 13 harmonic constituents have been computed by a least-squares regression without inference. <span class="hlt">Tides</span> in South Bay are typically mixed; there is a phase lag of approximately 1 h and an amplification of 1??5 from north to south for a mean semi-diurnal <span class="hlt">tide</span>. Because most of the current-meter records are between 14 and 29 days, only the five most important harmonics have been solved for east-west and north-south velocity components. The eccentricity of tidal-current ellipse is generally very small, which indicates that the tidal current in South Bay is strongly bidirectional. The analyses further show that the principal direction and the magnitude of tidal current are well correlated with the basin bathymetry. Patterns of Eulerian residual circulation deduced from the current-meter data show an anticlockwise gyre to the west and a clockwise gyre to the east of the main channel in the summer months due to the prevailing westerly wind. Opposite trends have been observed during winter when the wind was variable. ?? 1985.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..834S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..834S"><span>Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and <span class="hlt">Tide</span>-Resolving Simulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stewart, Andrew L.; Klocker, Andreas; Menemenlis, Dimitris</p> <p>2018-01-01</p> <p>Almost all heat reaching the bases of Antarctica's ice shelves originates from warm Circumpolar Deep Water in the open Southern Ocean. This study quantifies the roles of mean and transient flows in transporting heat across almost the entire Antarctic continental slope and shelf using an ocean/sea ice model run at eddy- and <span class="hlt">tide</span>-resolving (1/48°) horizontal resolution. Heat transfer by transient flows is approximately attributed to eddies and <span class="hlt">tides</span> via a decomposition into time scales shorter than and longer than 1 day, respectively. It is shown that eddies transfer heat across the continental slope (ocean depths greater than 1,500 m), but <span class="hlt">tides</span> produce a stronger shoreward heat flux across the shelf break (ocean depths between 500 m and 1,000 m). However, the tidal heat fluxes are approximately compensated by mean flows, leaving the eddy heat flux to balance the net shoreward heat transport. The eddy-driven cross-slope overturning circulation is too weak to account for the eddy heat flux. This suggests that isopycnal eddy stirring is the principal mechanism of shoreward heat transport around Antarctica, though likely modulated by <span class="hlt">tides</span> and surface forcing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9605W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9605W"><span>How Do <span class="hlt">Tides</span> and Tsunamis Interact in a Highly Energetic Channel? The Case of Canal Chacao, Chile</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winckler, Patricio; Sepúlveda, Ignacio; Aron, Felipe; Contreras-López, Manuel</p> <p>2017-12-01</p> <p>This study aims at understanding the role of tidal level, speed, and direction in tsunami propagation in highly energetic tidal channels. The main goal is to comprehend whether <span class="hlt">tide</span>-tsunami interactions enhance/reduce elevation, currents speeds, and arrival times, when compared to pure tsunami models and to simulations in which <span class="hlt">tides</span> and tsunamis are linearly superimposed. We designed various numerical experiments to compute the tsunami propagation along Canal Chacao, a highly energetic channel in the Chilean Patagonia lying on a subduction margin prone to megathrust earthquakes. Three modeling approaches were implemented under the same seismic scenario: a tsunami model with a constant <span class="hlt">tide</span> level, a series of six composite models in which independent <span class="hlt">tide</span> and tsunami simulations are linearly superimposed, and a series of six <span class="hlt">tide</span>-tsunami nonlinear interaction models (full models). We found that hydrodynamic patterns differ significantly among approaches, being the composite and full models sensitive to both the tidal phase at which the tsunami is triggered and the local depth of the channel. When compared to full models, composite models adequately predicted the maximum surface elevation, but largely overestimated currents. The amplitude and arrival time of the tsunami-leading wave computed with the full model was found to be strongly dependent on the direction of the tidal current and less responsive to the <span class="hlt">tide</span> level and the tidal current speed. These outcomes emphasize the importance of addressing more carefully the interactions of <span class="hlt">tides</span> and tsunamis on hazard assessment studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011DyAtO..52..224B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011DyAtO..52..224B"><span>Winter variability in the western Gulf of Maine: Part 1: Internal <span class="hlt">tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, W. S.</p> <p>2011-09-01</p> <p>During the winter 1997-1998, a field program was conducted in Wilkinson Basin-western Gulf of Maine-as part of a study of winter convective mixing. The field program consisted of (1) Wilkinson basin-scale hydrographic surveys, (2) a tight three-mooring array with ˜100 m separations measured temperature and conductivity at rates of 2-15 min and (3) a single pair of upward/downward-looking pair acoustic Doppler current profiling (ADCP) instruments measured currents with 8 m vertical resolution over the 270 m water column in north-central Wilkinson basin at a rate of 10 min. The moored array measurements below the mixed layer (˜100 m depth) between 11 January and 6 February 1998 were dominated by a combination of the relatively strong semidiurnal external (depth-independent or barotropic) <span class="hlt">tide</span>; upon which were superposed a weaker phase-locked semidiurnal internal <span class="hlt">tide</span> and a very weak water column mean currents of about 1 cm/s southward or approximately across the local isobaths. The harmonic analysis of a vertical average of the relatively uniform ADCP velocities in the well-mixed upper 123 m of the water column, defined the external tidal currents which were dominated by a nearly rectilinear, across-isobath (326°T) M 2 semidiurnal tidal current of about 15 cm/s. The depth-dependent residual current field, which was created by subtracting the external tidal current, consisted of (1) clockwise-rotating semidiurnal internal tidal currents of about 5 cm/s below the mixed layer; (2) clockwise-rotating inertial currents; and (3) a considerably less energetic subtidal current variability. The results from both frequency-domain empirical orthogonal function and tidal harmonic analyses of the of isotherm displacement series at each of the three moorings in the 100 m array mutually confirm an approximate east-northeastward phase propagation of the dominant M 2 semidiurnal internal <span class="hlt">tide</span> across Wilkinson Basin. Further investigation supports the idea that this winter internal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003TrGeo...4...91B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003TrGeo...4...91B"><span>Tropospheric <span class="hlt">Aerosols</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buseck, P. R.; Schwartz, S. E.</p> <p>2003-12-01</p> <p>It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, <span class="hlt">aerosols</span> - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of <span class="hlt">aerosol</span> particles per cubic meter of air.Atmospheric <span class="hlt">aerosols</span> are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. <span class="hlt">Aerosol</span> particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background <span class="hlt">aerosol</span> has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric <span class="hlt">aerosols</span> in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by <span class="hlt">aerosols</span>. Photographs at Yosemite National Park, California, USA. (a) Low <span class="hlt">aerosol</span> concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10 </p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ACPD...1114991M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ACPD...1114991M"><span>Black carbon <span class="hlt">aerosol</span> mixing state, organic <span class="hlt">aerosols</span> and <span class="hlt">aerosol</span> optical properties over the UK</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.</p> <p>2011-05-01</p> <p>Black carbon (BC) <span class="hlt">aerosols</span> absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other <span class="hlt">aerosol</span> species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with <span class="hlt">aerosol</span> composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron <span class="hlt">aerosol</span> composition using an <span class="hlt">aerosol</span> mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic <span class="hlt">aerosols</span> (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron <span class="hlt">aerosol</span> mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in <span class="hlt">aerosol</span> composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711794V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711794V"><span>Numerical simulation of <span class="hlt">tides</span> in Ontario Lacus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vincent, David; Karatekin, Ozgür</p> <p>2015-04-01</p> <p>Hydrocarbons liquid filled lakes has been recently detected on Titan's surface. Most of these lakes are located in the northern latitudes but there is a substantial lake in the southern latitudes: Ontario Lacus. This lake gets our attention because of possible shoreline changes suggested by Cassini flybys over Ontario Lacus between September 2005 (T7) et January 2010 (T65). The shoreline changes could be due to evaporation-precipitation processes but could also be a consequence of <span class="hlt">tides</span>. Previous studies showed that the maximal tidal amplitudes of Ontario Lacus would be about 0.2m (for an uniform bathymetry of 20m). In this study we simulate tidal amplitude and currents with SLIM (Second-generation Louvain-la-Neuve Ice-ocean Model, http://sites.uclouvain.be/slim/ ) which resolves 2D shallow water equation on an unstructured mesh. Unstructured mesh prevents problems like mesh discontinuities at poles and allows higher accuracy at some place like coast or straits without drastically increasing computing costs. The <span class="hlt">tide</span> generating force modeled in this work is the gradient of tidal potential due to titan's obliquity and titan's orbital eccentricity around Saturn (other contribution such as sun <span class="hlt">tide</span> generating force are unheeded). The uncertain input parameters such as the wind direction and amplitude, bottom friction and thermo-physical properties of hydrocarbons liquids are varied within their expected ranges. SAR data analysis can result in different bathymetry according to the method. We proceed simulations for different bathymetries: tidal amplitudes doesn't change but this is not the case for tidal currents. Using a recent bathymetry deduced from most recent RADAR/SAR observations and a finer mesh, the peak-to peak tidal amplitudes are calculated to be up to 0.6 m. which is more than a factor two larger than the previous results. The maximal offshore tidal currents magnitude is about 0.06 m/s.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PApGe.173.3999S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PApGe.173.3999S"><span>Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-<span class="hlt">tide</span> simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shelby, Michael; Grilli, Stéphan T.; Grilli, Annette R.</p> <p>2016-12-01</p> <p>This work is part of a tsunami inundation mapping activity carried out along the US East Coast since 2010, under the auspice of the National Tsunami Hazard Mitigation program (NTHMP). The US East Coast features two main estuaries with significant tidal forcing, which are bordered by numerous critical facilities (power plants, major harbors,...) as well as densely built low-level areas: Chesapeake Bay and the Hudson River Estuary (HRE). HRE is the object of this work, with specific focus on assessing tsunami hazard in Manhattan, the Hudson and East River areas. In the NTHMP work, inundation maps are computed as envelopes of maximum surface elevation along the coast and inland, by simulating the impact of selected probable maximum tsunamis (PMT) in the Atlantic ocean margin and basin. At present, such simulations assume a static reference level near shore equal to the local mean high water (MHW) level. Here, instead we simulate maximum inundation in the HRE resulting from dynamic interactions between the incident PMTs and a <span class="hlt">tide</span>, which is calibrated to achieve MHW at its maximum level. To identify conditions leading to maximum tsunami inundation, each PMT is simulated for four different phases of the <span class="hlt">tide</span> and results are compared to those obtained for a static reference level. We first separately simulate the <span class="hlt">tide</span> and the three PMTs that were found to be most significant for the HRE. These are caused by: (1) a flank collapse of the Cumbre Vieja Volcano (CVV) in the Canary Islands (with a 80 km3 volume representing the most likely extreme scenario); (2) an M9 coseismic source in the Puerto Rico Trench (PRT); and (3) a large submarine mass failure (SMF) in the Hudson River canyon of parameters similar to the 165 km3 historical Currituck slide, which is used as a local proxy for the maximum possible SMF. Simulations are performed with the nonlinear and dispersive long wave model FUNWAVE-TVD, in a series of nested grids of increasing resolution towards the coast, by one</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5441M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5441M"><span>Atmosphere <span class="hlt">aerosol</span> satellite project <span class="hlt">Aerosol</span>-UA</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milinevsky, Gennadi; Yatskiv, Yaroslav; Syniavskyi, Ivan; Bovchaliuk, Andrii; Degtyaryov, Oleksandr; Sosonkin, Mikhail; Mishchenko, Michael; Danylevsky, Vassyl; Ivanov, Yury; Oberemok, Yevgeny; Masley, Volodymyr; Rosenbush, Vera; Moskalev, Sergii</p> <p>2017-04-01</p> <p>The experiment <span class="hlt">Aerosol</span>-UA is Ukrainian space mission aimed to the terrestrial atmospheric <span class="hlt">aerosol</span> spatial distribution and microphysics investigations. The experiment concept is based on idea of Glory/APS mission of precise orbital measurements of polarization and intensity of the sunlight scattered by the atmosphere, <span class="hlt">aerosol</span> and the surface the multichannel Scanning Polarimeter (ScanPol) with narrow field-of-view. ScanPol measurements will be accompanied by the wide-angle MultiSpectral Imager-Polarimeter (MSIP). The ScanPol is designed to measure Stokes parameters I, Q, U within the spectral range from the UV to the SWIR in a wide range of phase angles along satellite ground path. Expected ScanPol polarimetric accuracy is 0.15%. A high accuracy measurement of the degree of linear polarization is provided by on-board calibration of the ScanPol polarimeter. On-board calibration is performed for each scan of the mirror scanning system. A set of calibrators is viewed during the part of the scan range when the ScanPol polarimeter looks in the direction opposite to the Earth's surface. These reference assemblies provide calibration of the zero of the polarimetric scale (unpolarized reference assembly) and the scale factor for the polarimetric scale (polarized reference assembly). The zero of the radiometric scale is provided by the dark reference assembly.The spectral channels of the ScanPol are used to estimate the tropospheric <span class="hlt">aerosol</span> absorption, the <span class="hlt">aerosol</span> over the ocean and the land surface, the signals from cirrus clouds, stratospheric <span class="hlt">aerosols</span> caused by major volcanic eruptions, and the contribution of the Earth's surface. The imager-polarimeter MSIP will collect 60°x60° field-of-view images on the state of the atmosphere and surface in the area, where the ScanPol polarimeter will measure, to retrieve <span class="hlt">aerosol</span> optical depth and polarization properties of <span class="hlt">aerosol</span> by registration of three Stokes parameters simultaneously in three spectral channels. The two more</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3481M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3481M"><span>Feasibility study for GCOM-C/SGLI: Retrieval algorithms for carbonaceous <span class="hlt">aerosols</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mukai, Sonoyo; Sano, Itaru; Yasumoto, Masayoshi; Fujito, Toshiyuki; Nakata, Makiko; Kokhanovsky, Alexander</p> <p>2016-04-01</p> <p>The Japan Aerospace Exploration Agency (JAXA) has been developing the new Earth observing system, GCOM (Global Change Observation Mission) project, which consists of two satellite series of GCOM-W1 and GCOM-C1. The 1st GCOM-C satellite will board the SGLI (second generation global imager) which also includes polarimetric sensor and be planed to launch in early of 2017. The SGLI has multi (19)-channels including near UV channel (380 nm) and two polarization channels at <span class="hlt">red</span> and near-infrared wavelengths of 670 and 870 nm. EUMETSAT plans to collect polarization measurements with a POLDER follow on 3MI / EPS-SG in 2021. Then the efficient retrieval algorithms for <span class="hlt">aerosol</span> and/or cloud based on the combination use of radiance and polarization are strongly expected. This work focuses on serious biomass burning episodes in East Asia. It is noted that the near UV measurements are available for detection of the carbonaceous <span class="hlt">aerosols</span>. The biomass burning <span class="hlt">aerosols</span> (BBA) generated by forest fire and/or agriculture biomass burning have influenced on the severe air pollutions. It is known that the forest fire increases due to global warming and a climate change, and has influences on them vice versa. It is well known that this negative cycle decreases the quality of global environment and human health. We intend to consider not only retrieval algorithms of remote sensing for severe air pollutions but also detection and/or distinction of <span class="hlt">aerosols</span> and clouds, because mixture of <span class="hlt">aerosols</span> and clouds are often occurred in the severe air pollutions. Then precise distinction of <span class="hlt">aerosols</span> and clouds, namely <span class="hlt">aerosols</span> in cloudy scenes and/or clouds in heavy <span class="hlt">aerosol</span> episode, is desired. <span class="hlt">Aerosol</span> retrieval in the hazy atmosphere has been achieved based on radiation simulation method of successive order of scattering 1,2. In this work, we use both radiance and polarization measurements observed by GLI and POLDER-2 on Japanese ADEOS-2 satellite in 2003 as a simulated data. As a result the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060047785','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060047785"><span><span class="hlt">Aerosol</span> Lidar and MODIS Satellite Comparisons for Future <span class="hlt">Aerosol</span> Loading Forecast</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim</p> <p>2006-01-01</p> <p>Knowledge of the concentration and distribution of atmospheric <span class="hlt">aerosols</span> using both airborne lidar and satellite instruments is a field of active research. An aircraft based <span class="hlt">aerosol</span> lidar has been used to study the distribution of atmospheric <span class="hlt">aerosols</span> in the California Central Valley and eastern US coast. Concurrently, satellite <span class="hlt">aerosol</span> retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 <span class="hlt">aerosol</span> data product provides retrieved ambient <span class="hlt">aerosol</span> optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the <span class="hlt">aerosol</span> scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the <span class="hlt">aerosols</span> to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar <span class="hlt">aerosol</span> and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of <span class="hlt">aerosols</span> near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the <span class="hlt">aerosols</span> are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer <span class="hlt">aerosol</span> pollution events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.6331M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.6331M"><span>Monitoring Sea Level by <span class="hlt">Tide</span> Gauges and GPS at Barcelona and Estartit Harbours</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martinez Benjamin, J. J.; Gili, J.; Lopez, R.; Tapia, A.; Bosch, E.; Perez, B.; Pros, F.</p> <p>2012-04-01</p> <p>Sea level is an environmental variable which is widely recognised as being important in many scientific disciplines as a control parameter for coastal dynamical processes or climate processes in the coupled atmosphere-ocean systems, as well as engineering applications. A major source of sea-level data are the national networks of coastal <span class="hlt">tide</span> gauges, in Spain belonging to different institutions as the Instituto Geográfico Nacional (IGN), Puertos del Estado (PE), Instituto Hidrográfico de la Marina (IHM), etc. The <span class="hlt">tide</span> gauge of l'Estartit is a traditional floating gauge placed 21 years ago and has an accuracy of ± 2 mm. Since 1996, l'Estartit <span class="hlt">tide</span> gauge has been co-located with geodetic techniques (GPS measurements of XU, Utilitary Network, and XdA, Levelling Network,) and it is tied to the SPGIC (Integrated Geodetic Positioning System of Catalonia) project of the Cartographic Institute of Catalunya (ICC). In 2006, due to the work for the expansion of the harbour, the <span class="hlt">tide</span> gauge had to be moved. Before the work started, appropiate GPS measurements were carried out in order to ensure the connection of the <span class="hlt">tide</span> gauge data. During October 2006 and May 2008, the <span class="hlt">tide</span> gauge was inactive and it has been moved on to a new location inside the harbour. In June 2008, new GPS and levelling measures have been done in order to tie the new location into SPGIC project and to co-locate old data respect the new one. Although l'Estartit does not have a GPS permanent station, it is possible to build a virtual one from the service "CATNET web" of the ICC. "CATNET web" is a data distribution system of a virtual GPS permanent station via web. From the coordinates where you want to place the virtual station, the time interval and the measurement rate, the system generates a RINEX file under the requested conditions. At Barcelona harbour there is one MIROS radar <span class="hlt">tide</span> gauge belonging to Puertos del Estado (Spanish Harbours). It is placed at the dock 140 of the ENAGAS Building.The radar</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A24D..05K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A24D..05K"><span>The MAC <span class="hlt">aerosol</span> climatology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kinne, S.</p> <p>2015-12-01</p> <p><span class="hlt">Aerosol</span> is highly diverse in space and time. And many different <span class="hlt">aerosol</span> optical properties are needed (consistent to each other) for the determination of radiative effects. To sidestep a complex (and uncertain) <span class="hlt">aerosol</span> treatment (emission to mass to optics) a monthly gridded climatology for <span class="hlt">aerosol</span> properties has been developed. This MPI <span class="hlt">Aerosol</span> Climatology (MAC) is strongly tied to observational statistics for <span class="hlt">aerosol</span> column optical properties by AERONET (over land) and by MAN (over oceans). To fill spatial gaps, to address decadal change and to address vertical variability, these sparsely distributed local data are extended with central data of an ensemble of output from global models with complex <span class="hlt">aerosol</span> modules. This data merging in performed for <span class="hlt">aerosol</span> column amount (AOD), for <span class="hlt">aerosol</span> size (AOD,fine) and for <span class="hlt">aerosol</span> absorption (AAOD). The resulting MAC <span class="hlt">aerosol</span> climatology is an example for the combination of high quality local observations with spatial, temporal and vertical context from model simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P23D2774H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P23D2774H"><span>Martian thermal <span class="hlt">tides</span> from the surface to the atmosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holstein-Rathlou, C.; Withers, P.</p> <p>2017-12-01</p> <p>The presence of observational platforms both in orbit and on the surface of Mars today provides a unique opportunity to simultaneously study the effects of thermal <span class="hlt">tides</span> at the surface, above that surface location and in the atmosphere. Thermal <span class="hlt">tides</span> are an important aspect of the atmospheric dynamics on Mars and the unique opportunity to unify landed and orbital measurements can provide a comprehensive understanding of thermal <span class="hlt">tides</span>. Ideally, pressure measurements from the Curiosity lander and atmospheric temperature profiles from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter provide a complimentary pair of surface and atmospheric observations to study. However, the unique landing site of Curiosity, in Gale crater, introduces several complicating factors to the analysis of tidal behavior, two of which are crater circulation and the impact of the dichotomy boundary topography. In order to achieve a baseline understanding of thermal tidal behavior another complimentary pair of observations is necessary. For this purpose, the equatorial and relatively topographically flat landing site of the Viking 1 (VIK1) lander, along with its lengthy record of surface pressures, is the candidate surface dataset. There are no concurrent atmospheric observational data, so atmospheric profiles were obtained from the Mars Climate Database to ensure maximum coverage in space and time. 2-dimensional Fourier analysis in local time and longitude has yielded amplitude and phases for the four major tidal modes on Mars (diurnal and semidiurnal migrating <span class="hlt">tides</span>, DK1 and DK2). We will present current results regarding amplitude and phase dependence on season and altitude at the VIK1 landing site. These results will (in time) be tied to tidal amplitude and phase behavior from observed MCS atmospheric temperature profiles from "appropriately quiet" Mars years (years without major dust storms). The understanding gathered from this approach will then allow us to return to the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DPS....4941812H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DPS....4941812H"><span>Martian thermal <span class="hlt">tides</span> from the surface to the atmosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holstein-Rathlou, Christina; Withers, Paul</p> <p>2017-10-01</p> <p>The presence of observational platforms both in orbit and on the surface of Mars today provides a unique opportunity to simultaneously study the effects of thermal <span class="hlt">tides</span> at the surface, above that surface location and in the atmosphere. Thermal <span class="hlt">tides</span> are an important aspect of the atmospheric dynamics on Mars and the unique opportunity to unify landed and orbital measurements can provide a comprehensive understanding of thermal <span class="hlt">tides</span>.Ideally, pressure measurements from the Curiosity lander and atmospheric temperature profiles from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter provide a complimentary pair of surface and atmospheric observations to study. However, the unique landing site of Curiosity, in Gale crater, introduces several complicating factors to the analysis of tidal behavior, two of which are crater circulation and the impact of the dichotomy boundary topography.In order to achieve a baseline understanding of thermal tidal behavior another complimentary pair of observations is necessary. For this purpose, the equatorial and relatively topographically flat landing site of the Viking 1 (VIK1) lander, along with its lengthy record of surface pressures, is the candidate surface dataset. There are no concurrent atmospheric observational data, so atmospheric profiles were obtained from the Mars Climate Database to ensure maximum coverage in space and time.2-dimensional Fourier analysis in local time and longitude has yielded amplitude and phases for the four major tidal modes on Mars (diurnal and semidiurnal migrating <span class="hlt">tides</span>, DK1 and DK2). We will present current results regarding amplitude and phase dependence on season and altitude at the VIK1 landing site. These results will (in time) be tied to tidal amplitude and phase behavior from observed MCS atmospheric temperature profiles from “appropriately quiet” Mars years (years without major dust storms). The understanding gathered from this approach will then allow us to return to the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010089249&hterms=causes+absorption+window&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWhat%2Bcauses%2Babsorption%2Bwindow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010089249&hterms=causes+absorption+window&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWhat%2Bcauses%2Babsorption%2Bwindow"><span>Remote Sensing of <span class="hlt">Aerosol</span> and Non-<span class="hlt">Aerosol</span> Absorption</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaufman, Y. J.; Dubovik, O.; Holben, B. N.; Remer, L. A.; Tanre, D.; Lau, William K. M. (Technical Monitor)</p> <p>2001-01-01</p> <p>Remote sensing of <span class="hlt">aerosol</span> from the new satellite instruments (e.g. MODIS from Terra) and ground based radiometers (e.g. the AERONET) provides the opportunity to measure the absorption characteristics of the ambient undisturbed <span class="hlt">aerosol</span> in the entire atmospheric column. For example Landsat and AERONET data are used to measure spectral absorption of sunlight by dust from West Africa. Both Application of the Landsat and AERONET data demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. This is due to difficulties of measuring dust absorption in situ, and due to the often contamination of dust properties by the presence of air pollution or smoke. We use the remotely sensed <span class="hlt">aerosol</span> absorption properties described by the spectral sin le scattering albedo, together with statistics of the monthly optical thickness for the fine and coarse <span class="hlt">aerosol</span> derived from the MODIS data. The result is an estimate of the flux of solar radiation absorbed by the <span class="hlt">aerosol</span> layer in different regions around the globe where <span class="hlt">aerosol</span> is prevalent. If this <span class="hlt">aerosol</span> forcing through absorption is not included in global circulation models, it may be interpreted as anomalous absorption in these regions. In a preliminary exercise we also use the absorption measurements by AERONET, to derive the non-<span class="hlt">aerosol</span> absorption of the atmosphere in cloud free conditions. The results are obtained for the atmospheric windows: 0.44 microns, 0.66 microns, 0.86 microns and 1.05 microns. In all the locations over the land and ocean that were tested no anomalous absorption in these wavelengths, was found within absorption optical thickness of +/- 0.005.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913614K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913614K"><span>Long-term analysis of <span class="hlt">aerosol</span> optical depth over Northeast Asia using a satellite-based measurement: MI Yonsei <span class="hlt">Aerosol</span> Retrieval Algorithm (YAER)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae</p> <p>2017-04-01</p> <p>In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of <span class="hlt">aerosol</span> optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the <span class="hlt">aerosol</span> using the MI observations over NEA. Therefore, we developed an algorithm to retrieve <span class="hlt">aerosol</span> optical depth (AOD) using the visible observation of MI, and named as MI Yonsei <span class="hlt">Aerosol</span> Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at <span class="hlt">red</span> color range, contribution of <span class="hlt">aerosol</span> signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background <span class="hlt">aerosol</span> optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) <span class="hlt">aerosol</span> products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29734024','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29734024"><span>Habitat risk: Use of intertidal flats by foraging <span class="hlt">red</span> knots (Calidris canutus rufa), ruddy turnstones, (Arenaria interpres), semipalmated sandpipers (Calidris pusilla), and sanderling (Calidris alba) on Delaware Bay beaches.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burger, Joanna; Niles, Lawrence; Jeitner, Christian; Gochfeld, Michael</p> <p>2018-05-04</p> <p>Shorebirds usually forage on intertidal flats that are exposed during low <span class="hlt">tide</span>, and roost on higher areas when the tidal flats are covered with water. During spring migration on Delaware Bay (New Jersey) shorebirds mainly forage on horseshoe crab (Limulus polyphemus) eggs that are concentrated at the high <span class="hlt">tide</span> line. However, they also use other habitats for foraging. We examined habitat use of 4 species of shorebirds (with declining populations) at five Delaware Bay beaches to determine their use of the intertidal habitat (2015, 2016). We observed birds in three sections at different distances from the mean high tideline (< 100 m, 101-200 m, and 201-300 m)ne. We examined the presence of <span class="hlt">red</span> knots (Calidris canutus rufa), ruddy turnstones (Arenaria interpres), semipalmated sandpipers (Calidris pusilla), and sanderling (Calidris alba) as a function of date, <span class="hlt">tide</span> cycle, section shorebirds foraged from the mean high <span class="hlt">tide</span> line, and presence of other shorebird species. Understanding how these species use the intertidal flats is important because these habitats are at risk from coastal development, sea level rise, and decreases in intertidal space, including the possible expansion of intertidal oyster culture. Overall, knots were present in the intertidal on 67% of the surveys, turnstones were present on 86% of the surveys, semipalmated sandpipers were present on 77% of the surveys, and sanderling were present on 86% of the surveys. Use of the intertidal flats varied among beaches. Peak and mean numbers of shorebirds/ decreased in each census section, as distance to mean high tideline increased. In general, shorebirds foraged at the waters' edge during high <span class="hlt">tide</span>, and then moved out onto the intertidal flats. The strongest interspecific associations were between <span class="hlt">red</span> knots and ruddy turnstones, and the lowest associations were between sanderling and semipalmated sandpipers. Variations in numbers of each species in 2016 were mainly explained by the number of other</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/15003527-impact-aerosol-size-representation-modeling-aerosol-cloud-interactions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/15003527-impact-aerosol-size-representation-modeling-aerosol-cloud-interactions"><span>Impact of <span class="hlt">aerosol</span> size representation on modeling <span class="hlt">aerosol</span>-cloud interactions</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhang, Y.; Easter, R. C.; Ghan, S. J.; ...</p> <p>2002-11-07</p> <p>In this study, we use a 1-D version of a climate-<span class="hlt">aerosol</span>-chemistry model with both modal and sectional <span class="hlt">aerosol</span> size representations to evaluate the impact of <span class="hlt">aerosol</span> size representation on modeling <span class="hlt">aerosol</span>-cloud interactions in shallow stratiform clouds observed during the 2nd <span class="hlt">Aerosol</span> Characterization Experiment. Both the modal (with prognostic <span class="hlt">aerosol</span> number and mass or prognostic <span class="hlt">aerosol</span> number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic <span class="hlt">aerosol</span> mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated <span class="hlt">aerosol</span> fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher <span class="hlt">aerosol</span> (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial <span class="hlt">aerosol</span> distribution).« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10724989','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10724989"><span><span class="hlt">TIDE</span>: an intelligent home-based healthcare information & diagnostic environment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abidi, S S</p> <p>1999-01-01</p> <p>The 21st century promises to usher in an era of Internet based healthcare services--Tele-Healthcare. Such services augur well with the on-going paradigm shift in healthcare delivery patterns, i.e. patient centred services as opposed to provider centred services and wellness maintenance as opposed to illness management. This paper presents a Tele-Healthcare info-structure <span class="hlt">TIDE</span>--an 'intelligent' wellness-oriented healthcare delivery environment. <span class="hlt">TIDE</span> incorporates two WWW-based healthcare systems: (1) AIMS (Automated Health Monitoring System) for wellness maintenance and (2) IDEAS (Illness Diagnostic & Advisory System) for illness management. Our proposal comes from an attempt to rethink the sources of possible leverage in improving healthcare; vis-à-vis the provision of a continuum of personalised home-based healthcare services that emphasise the role of the individual in self health maintenance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020022492&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020022492&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwave%2Boscillation"><span>Modeling <span class="hlt">Tides</span>, Planetary Waves, and Equatorial Oscillations in the MLT</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)</p> <p>2001-01-01</p> <p>Applying Hines Doppler Spread Parameterization for gravity waves (GW), our 3D model reproduces some essential features that characterize the observed seasonal variations of <span class="hlt">tides</span> and planetary waves in the upper mesosphere. In 2D, our model also reproduces the large Semi-Annual Oscillation (SAO) and Quasi Biennial Oscillation (QBO) observed in this region at low latitudes. It is more challenging to describe these features combined in a more comprehensive self consistent model, and we give a progress report that outlines the difficulties and reports some success. In 3D, the GW's are partially absorbed by <span class="hlt">tides</span> and planetary waves to amplify them. Thus the waves are less efficient in generating the QBO and SAO at equatorial latitudes. Some of this deficiency is compensated by the fact that the GW activity is observed to be enhanced at low latitudes. Increasing the GW source has the desired effect to boost the QBO, but the effect is confined primarily to the stratosphere. With increasing altitude, the meridional circulation becomes more important in redistributing the momentum deposited in the background flow by the GW's. Another factor involved is the altitude at which the GW's originate, which we had originally chosen to be the surface. Numerical experiments show that moving this source altitude to the top of the troposphere significantly increases the efficiency for generating the QBO without affecting much the <span class="hlt">tides</span> and planetary waves in the model. Attention to the details in which the GW source comes into play thus appears to be of critical importance in modeling the phenomenology of the MLT. Among the suite of numerical experiments reported, we present a simulation that produced significant variations of <span class="hlt">tides</span> and planetary waves in the upper mesosphere. The effect is related to the QBO generated in the model, and GW filtering is the likely cause.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4195670','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4195670"><span>Joint Probability Analysis of Extreme Precipitation and Storm <span class="hlt">Tide</span> in a Coastal City under Changing Environment</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Kui; Ma, Chao; Lian, Jijian; Bin, Lingling</p> <p>2014-01-01</p> <p>Catastrophic flooding resulting from extreme meteorological events has occurred more frequently and drawn great attention in recent years in China. In coastal areas, extreme precipitation and storm <span class="hlt">tide</span> are both inducing factors of flooding and therefore their joint probability would be critical to determine the flooding risk. The impact of storm <span class="hlt">tide</span> or changing environment on flooding is ignored or underestimated in the design of drainage systems of today in coastal areas in China. This paper investigates the joint probability of extreme precipitation and storm <span class="hlt">tide</span> and its change using copula-based models in Fuzhou City. The change point at the year of 1984 detected by Mann-Kendall and Pettitt’s tests divides the extreme precipitation series into two subsequences. For each subsequence the probability of the joint behavior of extreme precipitation and storm <span class="hlt">tide</span> is estimated by the optimal copula. Results show that the joint probability has increased by more than 300% on average after 1984 (α = 0.05). The design joint return period (RP) of extreme precipitation and storm <span class="hlt">tide</span> is estimated to propose a design standard for future flooding preparedness. For a combination of extreme precipitation and storm <span class="hlt">tide</span>, the design joint RP has become smaller than before. It implies that flooding would happen more often after 1984, which corresponds with the observation. The study would facilitate understanding the change of flood risk and proposing the adaption measures for coastal areas under a changing environment. PMID:25310006</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25310006','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25310006"><span>Joint probability analysis of extreme precipitation and storm <span class="hlt">tide</span> in a coastal city under changing environment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Kui; Ma, Chao; Lian, Jijian; Bin, Lingling</p> <p>2014-01-01</p> <p>Catastrophic flooding resulting from extreme meteorological events has occurred more frequently and drawn great attention in recent years in China. In coastal areas, extreme precipitation and storm <span class="hlt">tide</span> are both inducing factors of flooding and therefore their joint probability would be critical to determine the flooding risk. The impact of storm <span class="hlt">tide</span> or changing environment on flooding is ignored or underestimated in the design of drainage systems of today in coastal areas in China. This paper investigates the joint probability of extreme precipitation and storm <span class="hlt">tide</span> and its change using copula-based models in Fuzhou City. The change point at the year of 1984 detected by Mann-Kendall and Pettitt's tests divides the extreme precipitation series into two subsequences. For each subsequence the probability of the joint behavior of extreme precipitation and storm <span class="hlt">tide</span> is estimated by the optimal copula. Results show that the joint probability has increased by more than 300% on average after 1984 (α = 0.05). The design joint return period (RP) of extreme precipitation and storm <span class="hlt">tide</span> is estimated to propose a design standard for future flooding preparedness. For a combination of extreme precipitation and storm <span class="hlt">tide</span>, the design joint RP has become smaller than before. It implies that flooding would happen more often after 1984, which corresponds with the observation. The study would facilitate understanding the change of flood risk and proposing the adaption measures for coastal areas under a changing environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..4210671E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..4210671E"><span>Head-of-<span class="hlt">tide</span> bottleneck of particulate material transport from watersheds to estuaries</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.; Skalak, Katherine J.</p> <p>2015-12-01</p> <p>We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of <span class="hlt">tide</span> on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of <span class="hlt">tide</span>, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of <span class="hlt">tide</span> stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176290','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176290"><span>Head-of-<span class="hlt">tide</span> bottleneck of particulate material transport from watersheds to estuaries</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ensign, Scott H.; Noe, Gregory; Hupp, Cliff R.; Skalak, Katherine</p> <p>2015-01-01</p> <p>We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of <span class="hlt">tide</span> on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of <span class="hlt">tide</span>, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of <span class="hlt">tide</span> stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013WRR....49.2473A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013WRR....49.2473A"><span>Transient groundwater dynamics in a coastal aquifer: The effects of <span class="hlt">tides</span>, the lunar cycle, and the beach profile</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abarca, Elena; Karam, Hanan; Hemond, Harold F.; Harvey, Charles F.</p> <p>2013-05-01</p> <p>Detailed field measurements are combined with a numerical modeling to characterize the groundwater dynamics beneath the discharge zone at Waquoit Bay, Massachusetts. Groundwater salinity values revealed a saline circulation cell that overlaid the discharging freshwater and grew and disappeared with the lunar cycle. The cell was initiated by a greater bay water infiltration during the new moon when high <span class="hlt">tides</span> overtopped the mean high-<span class="hlt">tide</span> mark, flooding the flatter beach berm and inundating a larger area of the beach. The dynamics of this cell were further characterized by a tracer test and by constructing a density-dependent flow model constrained to salinity and head data. The numerical model captured the growing and diminishing behavior of the circulation cell and provided the estimates of freshwater and saline water fluxes and travel times. Furthermore, the model enabled quantification of the relationship between the characteristics of the observed tidal cycle (maximum, minimum, and mean tidal elevations) and the different components of the groundwater circulation (freshwater discharge, intertidal saline cycling, and deep saline cycling). We found that (1) recharge to the intertidal saline cell is largely controlled by the high-<span class="hlt">tide</span> elevation; (2) freshwater discharge is positively correlated to the low-<span class="hlt">tide</span> elevation, whereas deep saline discharge from below the discharging freshwater is negatively correlated to the low-<span class="hlt">tide</span> elevation. So, when the low-<span class="hlt">tide</span> elevation is relatively high, more freshwater discharges and less deep saltwater discharges. In contrast when low <span class="hlt">tides</span> are very low, less freshwater discharges and more deep salt water discharges; (3) offshore inflow of saline water is largely insensitive to <span class="hlt">tides</span> and the lunar cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ChOE...31..578Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ChOE...31..578Y"><span>Design, optimization and numerical modelling of a novel floating pendulum wave energy converter with <span class="hlt">tide</span> adaptation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Jing; Zhang, Da-hai; Chen, Ying; Liang, Hui; Tan, Ming; Li, Wei; Ma, Xian-dong</p> <p>2017-10-01</p> <p>A novel floating pendulum wave energy converter (WEC) with the ability of <span class="hlt">tide</span> adaptation is designed and presented in this paper. Aiming to a high efficiency, the buoy's hydrodynamic shape is optimized by enumeration and comparison. Furthermore, in order to keep the buoy's well-designed leading edge always facing the incoming wave straightly, a novel transmission mechanism is then adopted, which is called the tidal adaptation mechanism in this paper. Time domain numerical models of a floating pendulum WEC with or without <span class="hlt">tide</span> adaptation mechanism are built to compare their performance on various water levels. When comparing these two WECs in terms of their average output based on the linear passive control strategy, the output power of WEC with the <span class="hlt">tide</span> adaptation mechanism is much steadier with the change of the water level and always larger than that without the <span class="hlt">tide</span> adaptation mechanism.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO34D3103G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO34D3103G"><span>LLWBCS changes through surface mesoscale activity and baroclinic <span class="hlt">tides</span> in the Solomon Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gourdeau, L.; Djath, B.; Ganachaud, A. S.; Tchilibou, M. L.; Verron, J. A.; Jouanno, J.</p> <p>2016-02-01</p> <p>In the south west Pacific, the Solomon Sea is on the pathway of the Low Latitudes Western Boundary Currents that connect the subtropics to the equator. Changes in their strengths, or in their water mass properties may have implication for ENSO and its low frequency modulation. During their transit in the Solomon Sea, the salinity maximum at thermocline level, characteristic of the South Pacific Tropical Waters (SPTW), is largely eroded. Different mechanisms could explain such salt erosion whose current/bathymetry interaction, internal <span class="hlt">tides</span>, eddy activity. The Solomon Sea is an area of high level of eddy kinetic energy (EKE), especially in the surface layers, and its complex bathymetry is favourable for generation and dissipation of internal <span class="hlt">tides</span>. Based on high resolution modelling, glider, and altimetric data mesoscale eddies observed at the surface are analysed in their 4D aspects. Their role on water mass transformation is explored. These eddies may affect the surface layers (σ<23.3) and the upper thermocline waters (23.3< σ <24.3), but they cannot explained the erosion of the salinity maximum below. Simulations with and without explicit <span class="hlt">tides</span> provide a description of baroclinic <span class="hlt">tides</span> in the Solomon Sea. Their role on water mixing is evaluated, especially for the SPTW.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ACP....11.9037M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ACP....11.9037M"><span>Black carbon <span class="hlt">aerosol</span> mixing state, organic <span class="hlt">aerosols</span> and <span class="hlt">aerosol</span> optical properties over the United Kingdom</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.</p> <p>2011-09-01</p> <p>Black carbon (BC) <span class="hlt">aerosols</span> absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other <span class="hlt">aerosol</span> species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with <span class="hlt">aerosol</span> composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron <span class="hlt">aerosol</span> composition using an <span class="hlt">aerosol</span> mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic <span class="hlt">aerosols</span> (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron <span class="hlt">aerosol</span> mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in <span class="hlt">aerosol</span> composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACP....13.4997D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACP....13.4997D"><span>Characterization of urban <span class="hlt">aerosol</span> in Cork city (Ireland) using <span class="hlt">aerosol</span> mass spectrometry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Kourtchev, I.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.</p> <p>2013-05-01</p> <p>Ambient wintertime background urban <span class="hlt">aerosol</span> in Cork city, Ireland, was characterized using <span class="hlt">aerosol</span> mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an <span class="hlt">Aerosol</span> Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 <span class="hlt">aerosol</span> was characterized using a High Resolution Time-of-Flight <span class="hlt">Aerosol</span> Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic <span class="hlt">aerosol</span> as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic <span class="hlt">aerosol</span> (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic <span class="hlt">aerosol</span> (LV-OOA) comprised 18%, "biomass burning" organic <span class="hlt">aerosol</span> (BBOA) comprised 23%, non-wood solid-fuel combustion "peat and coal" organic <span class="hlt">aerosol</span> (PCOA) comprised 21%, and finally a species type characterized by primary {m/z} peaks at 41 and 55, similar to previously reported "cooking" organic <span class="hlt">aerosol</span> (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two <span class="hlt">aerosol</span> mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 <span class="hlt">aerosol</span> mass (44% and 28% of the total organic <span class="hlt">aerosol</span> mass and non-refractory total PM1, respectively).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120017003','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120017003"><span>Estimating Marine <span class="hlt">Aerosol</span> Particle Volume and Number from Maritime <span class="hlt">Aerosol</span> Network Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.</p> <p>2012-01-01</p> <p>As well as spectral <span class="hlt">aerosol</span> optical depth (AOD), <span class="hlt">aerosol</span> composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to <span class="hlt">aerosol</span> composition. This study uses spectral AOD measured on Maritime <span class="hlt">Aerosol</span> Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime <span class="hlt">aerosol</span> based on analysis of <span class="hlt">Aerosol</span> Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime <span class="hlt">aerosol</span>, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and <span class="hlt">aerosol</span> number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different <span class="hlt">aerosol</span> microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower <span class="hlt">aerosol</span> number than MAN, and Aqua higher, linked with differences in the <span class="hlt">aerosol</span> models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and <span class="hlt">aerosol</span> microphysical properties are reasonably well-constrained, estimates of <span class="hlt">aerosol</span> number and volume using MAN or similar data would provide for a greater variety of potential comparisons with <span class="hlt">aerosol</span> properties derived from satellite or chemistry transport model data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3801S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3801S"><span>Dependence of Lunar <span class="hlt">Tide</span> of the Equatorial Electrojet on the Wintertime Polar Vortex, Solar Flux, and QBO</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siddiqui, T. A.; Yamazaki, Y.; Stolle, C.; Lühr, H.; Matzka, J.; Maute, A.; Pedatella, N.</p> <p>2018-05-01</p> <p>The lower atmospheric forcing effects on the ionosphere are particularly evident during extreme meteorological events known as sudden stratospheric warmings (SSWs). During SSWs, the polar stratosphere and ionosphere, two distant atmospheric regions, are coupled through the SSW-induced modulation of atmospheric migrating and nonmigrating <span class="hlt">tides</span>. The changes in the migrating semidiurnal solar and lunar <span class="hlt">tides</span> are the major source of ionospheric variabilities during SSWs. In this study, we use 55 years of ground-magnetometer observations to investigate the composite characteristics of the lunar <span class="hlt">tide</span> of the equatorial electrojet (EEJ) during SSWs. These long-term observations allow us to capture the EEJ lunar tidal response to the SSWs in a statistical sense. Further, we examine the influence of solar flux conditions and the phases of quasi-biennial oscillation (QBO) on the lunar <span class="hlt">tide</span> and find that the QBO phases and solar flux conditions modulate the EEJ lunar tidal response during SSWs in a similar way as they modulate the wintertime Arctic polar vortex. This work provides first evidence of modulation of the EEJ lunar <span class="hlt">tide</span> due to QBO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..137a2037Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..137a2037Y"><span>The comparison of heavy metals (Pb and Cd) in the water and sediment during spring and neap <span class="hlt">tide</span> tidal periods in Popoh Bay, Indonesia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yona, D.; Febriana, R.; Handayani, M.</p> <p>2018-04-01</p> <p>This study attempted to investigate different concentration of lead (Pb) dan cadmium (Cd) in the water and sediment during spring and neap tidal periods in the Popoh Bay, Indonesia. Water and sediment samples were taken during spring and neap <span class="hlt">tides</span> from eight sampling stations in the study area. The result shows higher concentration of Pb than the concentration of Cd in both spring and neap <span class="hlt">tides</span> due to higher input of Pb from the oil pollution by boat and fisheries activities. Pb concentrations were doubled during neap <span class="hlt">tide</span> in both water and sediments with the value of 0.51 and 0.28 ml/L in the water during neap and spring <span class="hlt">tide</span>, respectively; and 0.27 ppm and 0.16 mg/kg in the sediment during neap and spring <span class="hlt">tide</span>, respectively. On the other hand, Cd concentrations in the water were found in almost similar values between spring and neap <span class="hlt">tide</span> (0.159 and 0.165 ml/L in spring <span class="hlt">tide</span> and neap <span class="hlt">tide</span>, respectively), but in the sediment, the concentration was a little higher during spring <span class="hlt">tide</span> (0.09 and 0.05 mg/kg during spring and neap <span class="hlt">tide</span>, respectively). This study shows that water movement during spring and neap <span class="hlt">tides</span> has significant effect on the distribution of heavy metals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013OcDyn..63..823Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013OcDyn..63..823Z"><span>Improved water-level forecasting for the Northwest European Shelf and North Sea through direct modelling of <span class="hlt">tide</span>, surge and non-linear interaction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zijl, Firmijn; Verlaan, Martin; Gerritsen, Herman</p> <p>2013-07-01</p> <p>In real-time operational coastal forecasting systems for the northwest European shelf, the representation accuracy of <span class="hlt">tide</span>-surge models commonly suffers from insufficiently accurate tidal representation, especially in shallow near-shore areas with complex bathymetry and geometry. Therefore, in conventional operational systems, the surge component from numerical model simulations is used, while the harmonically predicted <span class="hlt">tide</span>, accurately known from harmonic analysis of <span class="hlt">tide</span> gauge measurements, is added to forecast the full water-level signal at <span class="hlt">tide</span> gauge locations. Although there are errors associated with this so-called astronomical correction (e.g. because of the assumption of linearity of <span class="hlt">tide</span> and surge), for current operational models, astronomical correction has nevertheless been shown to increase the representation accuracy of the full water-level signal. The simulated modulation of the surge through non-linear <span class="hlt">tide</span>-surge interaction is affected by the poor representation of the <span class="hlt">tide</span> signal in the <span class="hlt">tide</span>-surge model, which astronomical correction does not improve. Furthermore, astronomical correction can only be applied to locations where the astronomic <span class="hlt">tide</span> is known through a harmonic analysis of in situ measurements at <span class="hlt">tide</span> gauge stations. This provides a strong motivation to improve both <span class="hlt">tide</span> and surge representation of numerical models used in forecasting. In the present paper, we propose a new generation <span class="hlt">tide</span>-surge model for the northwest European Shelf (DCSMv6). This is the first application on this scale in which the tidal representation is such that astronomical correction no longer improves the accuracy of the total water-level representation and where, consequently, the straightforward direct model forecasting of total water levels is better. The methodology applied to improve both <span class="hlt">tide</span> and surge representation of the model is discussed, with emphasis on the use of satellite altimeter data and data assimilation techniques for reducing parameter</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=33744','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=33744"><span>Possible forcing of global temperature by the oceanic <span class="hlt">tides</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Keeling, Charles D.; Whorf, Timothy P.</p> <p>1997-01-01</p> <p>An approximately decadal periodicity in surface air temperature is discernable in global observations from A.D. 1855 to 1900 and since A.D. 1945, but with a periodicity of only about 6 years during the intervening period. Changes in solar irradiance related to the sunspot cycle have been proposed to account for the former, but cannot account for the latter. To explain both by a single mechanism, we propose that extreme oceanic <span class="hlt">tides</span> may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme <span class="hlt">tide</span> raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme <span class="hlt">tides</span> increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer. PMID:11607740</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.8983D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.8983D"><span>Acoustic Tomography in the Canary Basin: Meddies and <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dushaw, Brian D.; Gaillard, Fabienne; Terre, Thierry</p> <p>2017-11-01</p> <p>An acoustic propagation experiment over 308 km range conducted in the Canary Basin in 1997-1998 was used to assess the ability of ocean acoustic tomography to measure the flux of Mediterranean water and Meddies. Instruments on a mooring adjacent to the acoustic path measured the southwestward passage of a strong Meddy in temperature, salinity, and current. Over 9 months of transmissions, the acoustic arrival pattern was an initial broad stochastic pulse varying in duration by 250-500 ms, followed eight stable, identified-ray arrivals. Small-scale sound speed fluctuations from Mediterranean water parcels littered around the sound channel axis caused acoustic scattering. Internal waves contributed more modest acoustic scattering. Based on simulations, the main effect of a Meddy passing across the acoustic path is the formation of many early-arriving, near-axis rays, but these rays are thoroughly scattered by the small-scale Mediterranean-water fluctuations. A Meddy decreases the deep-turning ray travel times by 10-30 ms. The dominant acoustic signature of a Meddy is therefore the expansion of the width of the initial stochastic pulse. While this signature appears inseparable from the other effects of Mediterranean water in this region, the acoustic time series indicates the steady passage of Mediterranean water across the acoustic path. Tidal variations caused by the mode-1 internal <span class="hlt">tides</span> were measured by the acoustic travel times. The observed internal <span class="hlt">tides</span> were partly predicted using a recent global model for such <span class="hlt">tides</span> derived from satellite altimetry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000115617','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000115617"><span>Mesosphere Dynamics with Gravity Wave Forcing. 1; Diurnal and Semi-Diurnal <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)</p> <p>2000-01-01</p> <p>We present results from a nonlinear, 3D, time dependent numerical spectral model (NSM), which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere that is dominated by wave interactions. We discuss diurnal and semi-diurnal <span class="hlt">tides</span> ill the present paper (Part 1) and planetary waves in the companion paper (Part 2). To provide an understanding of the seasonal variations of <span class="hlt">tides</span>, in particular with regard to gravity wave processes, numerical experiments are performed that lead to the following conclusions: 1. The large semiannual variations in tile diurnal <span class="hlt">tide</span> (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. 2. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength. 3.Variations in eddy viscosity associated with GW interactions tend to peak in late spring and early fall and call also influence the DT. 4. The semidiurnal semidiurnal <span class="hlt">tide</span> (SDT), and its phase in particular, is strongly influenced by the mean zonal circulation. 5. The SDT, individually, is amplified by GW's. But the DT filters out GW's such that the wave interaction effectively reduces the amplitude of the SDT, effectively producing a strong nonlinear interaction between the DT and SDT. 6.) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSM.B44A..05C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSM.B44A..05C"><span>Flood <span class="hlt">Tide</span> Transport of Blue Crab Postlarvae: Limitations in a Lagoonal Estuary</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cudaback, C.; Eggleston, D.</p> <p>2005-05-01</p> <p>Blue crabs, an important commercial species, spend much of their life in estuaries along the east coast. The larvae spawn at or near the ocean, but the juveniles mature in the lower salinity waters of the estuary. It is generally believed that blue crab postlarvae migrate into near surface waters on flood, possibly cued by increasing salinity, and return to the bottom on ebb. Over several tidal cycles, the postlarvae travel a significant distance up-estuary. This model applies quite well to Chesapeake Bay, which has a strong along-estuary salinity gradient and large <span class="hlt">tides</span>, but may not apply as well to Pamlico Sound, where circulation and salinity are more wind-driven than tidal. A recently completed study (N. Reyns, PhD), indicates that postlarval blue crabs use flood <span class="hlt">tides</span> and wind-driven currents to cross Pamlico Sound. This study was based on observations with good spatial coverage, but limited vertical and temporal resolution. We have recently completed a complementary study, sampling crab larvae around the clock at four depths at a single location. Preliminary results from the new study suggest that the crab postlarvae do swim all the way to the surface, on flood only, and that flood currents are strongest slightly below the surface. These observations suggest the utility of flood <span class="hlt">tide</span> transport in this system. However, near bottom salinity does not seem to be driven by <span class="hlt">tides</span>; at this point it is unclear what cue might trigger the vertical migration of the postlarvae.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eosweb.larc.nasa.gov/project/misr/gallery/aerosols_europe','SCIGOV-ASDC'); return false;" href="https://eosweb.larc.nasa.gov/project/misr/gallery/aerosols_europe"><span><span class="hlt">Aerosols</span></span></a></p> <p><a target="_blank" href="http://eosweb.larc.nasa.gov/">Atmospheric Science Data Center </a></p> <p></p> <p>2013-04-17</p> <p>... depth. A color scale is used to represent this quantity, and high <span class="hlt">aerosol</span> amount is indicated by yellow or green pixels, and clearer skies ... out most clearly, whereas MISR's oblique cameras enhance sensitivity to even thin layers of <span class="hlt">aerosols</span>. In the March image, the only ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS33C1082D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS33C1082D"><span>COCONet enhancements to circum-Caribbean tsunami warning, tidal, and sea-level monitoring: update on <span class="hlt">tide</span> gauge installations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dausz, K.; Dittmann, S. T.; Feaux, K.; von Hillebrandt-Andrade, C.; Mattioli, G. S.; Normandeau, J.</p> <p>2014-12-01</p> <p>The Continually Operating Caribbean GPS Observational Network (COCONet) is a National Science Foundation (NSF) funded multi-hazard geodetic and meteorological network distributed throughout the Caribbean, which provides infrastructure and capacity building for a broad range of earth science questions. The network is a multi-national collaboration consisting of 46 newly constructed continuous Global Positioning Systems (cGPS) and 21 refurbished existing GPS stations, all co-located with meteorological sensors. One recommendation of the COCONet working group was to improve the vertical reference frame for long-term sea level monitoring. A COCONet supplement was awarded by the NSF to further address this particular objective through the co-location of GPS and <span class="hlt">tide</span> gauges. This COCOnet infrastructure, along with the new <span class="hlt">tide</span> gauges, will have broad scientific implications for hazards mitigation, solid earth, and atmospheric science research. UNAVCO engineers have meet with members of the Caribbean <span class="hlt">tide</span> gauge community to establish target locations and design station layout. Allocated NSF funds allow for the construction of two complete new <span class="hlt">tide</span> gauge systems each with two complimentary cGPS. Following the recommendations of NOAA and the sea level monitoring community, the two "new" locales will be Port Royal, Jamaica and Puerto Morelos, Mexico. Both locations had previously existing, but currently non-operational <span class="hlt">tide</span> gauges. UNAVCO engineers will install a Sutron Radar Level Recorder and a backup pressure sensor <span class="hlt">tide</span> gauge with GOES satellite telemetry. <span class="hlt">Tide</span> data will be freely available by the Intergovernmental Oceanographic Commission (www.ioc-sealevelmonitoring.org). The NSF supplement also provided funds for adding cGPS to two additional locations where currently functioning <span class="hlt">tide</span> gauge systems exist. Proposed locations for this additional infrastructure are Barahona, Dominican Republic and Bocas del Toro, Panama. All four locations will feature two standard</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Electricity&id=EJ1033507','ERIC'); return false;" href="https://eric.ed.gov/?q=Electricity&id=EJ1033507"><span>Catching the <span class="hlt">Tide</span>: A Review of Tidal Energy Systems</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Harris, Frank</p> <p>2014-01-01</p> <p>Harnessing energy from the <span class="hlt">tides</span> is a much-promoted but rarely realised way of generating electricity. This article examines some of the systems that are currently in use or under development, and outlines their economic, environmental and technical implications.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>