Science.gov

Sample records for aerosols affect climate

  1. Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate?

    SciTech Connect

    Prenni, Anthony J.; Harrington, Jerry Y.; Tjernstrom, Michael; DeMott, Paul J.; Avramov, Alexander; Long, Charles N.; Kreidenweis, Sonia M.; Olsson, Peter Q.; Verlinde, J.

    2007-04-01

    To date, climate and regional models have generally proven unsuccessful at simulating Arctic cloudiness, particularly during the colder months. Models tend to underpredict the amount of liquid water in mixed-phase clouds, which are ubiquitous in this region. This is problematic because cloud coverage and phase can greatly impact the Arctic radiative budget. Using recent measurements of ice nucleating aerosol, we show that incorrect, or nonexistent, parameterizations of aerosol-cloud interactions are at least partially responsible for the poor model predictions. Moreover, we show that this can lead to errors in the modeled surface radiative energy budget of 10-100 W m-2.

  2. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Baldwin, B.; Pollack, J. B.; Summers, A.; Toon, O. B.; Sagan, C.; Van Camp, W.

    1976-01-01

    Generated primarily by volcanic explosions, a layer of submicron silicate particles and particles made of concentrated sulfuric acids solution is present in the stratosphere. Flights through the stratosphere may be a future source of stratospheric aerosols, since the effluent from supersonic transports contains sulfurous gases (which will be converted to H2SO4) while the exhaust from Space Shuttles contains tiny aluminum oxide particles. Global heat balance calculations have shown that the stratospheric aerosols have made important contributions to some climatic changes. In the present paper, accurate radiative transfer calculations of the globally-averaged surface temperature (T) are carried out to estimate the sensitivity of the climate to changes in the number of stratospheric aerosols. The results obtained for a specified model atmosphere, including a vertical profile of the aerosols, indicate that the climate is unlikely to be affected by supersonic transports and Space Shuttles, during the next decades.

  3. Aerosol Climate Interactions in Climate System Models

    NASA Astrophysics Data System (ADS)

    Kiehl, J. T.

    2002-12-01

    Aerosols are widely recognized as an important process in Earth's climate system. Observations over the past decade have improved our understanding of the physical and chemical properties of aerosols. Recently, field observations have highlighted the pervasiveness of absorbing aerosols in the atmosphere. These aerosols are of particular interest, since they alter the vertical distribution of shortwave radiative heating between the surface and atmosphere. Given this increased knowledge of aerosols from various field programs, interest is focusing on how to integrate this understanding into global climate models. These types of models provide the best tool available to comprehensively study the potential effects of aerosols on Earth's climate system. Results from climate system model simulations that include aerosol effects will be presented to illustrate key aerosol climate interactions. These simulations employ idealized and realistic distributions of absorbing aerosols. The idealized aerosol simulations provide insight into the role of aerosol shortwave absorption on the global hydrologic cycle. The realistic aerosol distributions provide insight into the local response of aerosol forcing in the Indian subcontinent region. Emphasis from these simulations will be on the hydrologic cycle, since water availability is of emerging global environmental concern. This presentation will also consider what more is needed to significantly improve our ability to model aerosol processes in climate system models. Uncertainty in aerosol climate interactions remains a major source of uncertainty in our ability to project future climate change. Focus will be on interactions between aerosols and various physical, chemical and biogeochemical aspects of the Earth system.

  4. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  5. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect

    SCHWARTZ, S.E.

    2005-09-01

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  6. A satellite view of aerosols in the climate system

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Boucher, Olivier

    2002-01-01

    Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

  7. Climate forcing by anthropogenic aerosols.

    PubMed

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. PMID:17842894

  8. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  9. Effect of Aerosol and Ocean Representation on Simulated Climate Responses

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Knutti, Reto; Wild, Martin

    2016-04-01

    It is still debated to what extent anthropogenic aerosols shaped 20th century surface temperatures, especially sea surface temperatures (SSTs), through alteration of surface solar radiation (SSR). SSTs, in turn, are crucial in the context of atmospheric circulation and ocean heat uptake. Uncertainty considering anthropogenic aerosol forcing thus translates into uncertainty regarding ocean heat uptake and, ultimately, climate responses towards anthropogenic influences. We use the global climate model ECHAM to analyse the 20th century climate response towards either anthropogenic aerosols or well-mixed greenhouse gases or both with different representations of ocean and aerosols: atmosphere-only with prescribed SSTs and interactive aerosols; mixed-layer ocean and interactive or prescribed aerosols; fully coupled with prescribed aerosols. For interactive aerosols we use the Hamburg Aerosol Module (HAM). Our results suggest that up to 15% of global ocean surfaces undergo an SSR reduction of at least -4W/m² in the year 2000, due to anthropogenic aerosols. The area affected depends on how aerosols are represented and whether clear sky or all sky SSR is considered. In MLO equilibria with interactive aerosols, anthropogenic aerosols clearly shape surface temperature response patterns. This is to a lesser degree the case for the transient fully coupled case. Additivity of global mean temperature responses towards single forcings - an assumption often made in the literature - is not fulfilled for the MLO experiments, but for the fully coupled experiments. While some of these differences can be attributed to the differing ocean representation, it is implied that differing aerosol representation may play an even more relevant role. Thus, our results corroborate not only the relevance of anthropogenic aerosols for surface temperature responses, but also highlight the relevance of choice of aerosol representation.

  10. Atmospheric Aerosol Properties and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip; Halthore, Rangasayi

    2009-01-01

    This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.

  11. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing

    NASA Astrophysics Data System (ADS)

    Persad, Geeta Gayatri

    ' surface versus atmospheric forcing. Future aerosol emissions patterns will affect the distribution of regional climate impacts. This dissertation interrogates how international trade affects existing assumptions about East Asia's future black carbon aerosol emissions, using integrated assessment modeling, emissions and economic data, and AM3 simulations. Exports emerge as a uniquely large and potentially growing source of Chinese black carbon emissions that could impede projected regional emissions reductions, with substantial climate and health consequences. The findings encourage greater emissions projection sophistication and illustrate how societal decisions may influence future aerosol forcing heterogeneity.

  12. OCS, stratospheric aerosols and climate

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Whitten, R. C.; Toon, O. B.; Pollack, J. B.; Hamill, P.

    1980-01-01

    The carbonyl sulfide budget in the atmosphere is examined, and the effects of stratospheric sulfate aerosol particles, formed in part from atmospheric carbonyl sulfate, on global climate are considered. From tropospheric measurements of carbon disulfide and the rate constant for the conversion of carbon disulfide to carbonyl sulfide, it is estimated that five Tg of carbonyl sulfide/year could be generated from carbon disulfide in the atmosphere. Direct sources of OCS include the refining and combustion of fossil fuels (1 Tg/year), natural and agricultural fires (0.2 to 0.3 Tg/year), and soils (0.5 Tg/year), yielding a total influx of from 1 to 10 Tg/year, up to 50% of which may be anthropogenic. Considerations of carbonyl sulfide sinks and concentrations indicate an atmospheric lifetime of one year, with OCS the major atmospheric sulfur compound. It is estimated that a ten-fold increase in atmospheric carbonyl sulfide would cause an optical depth perturbation comparable to that of a modest volcanic eruption, leading to an average global surface temperature decrease of 0.1 K, in addition to a possible greenhouse effect.

  13. Aerosols and Clouds: In Cahoots to Change Climate

    ScienceCinema

    Berg, Larry

    2014-06-02

    Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

  14. Aerosols and Clouds: In Cahoots to Change Climate

    SciTech Connect

    Berg, Larry

    2014-03-29

    Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

  15. Simulation of Climate Forcing by Aerosols

    SciTech Connect

    Ghan, Steven J.; Bian, Xindi; Chapman, Elaine G.; Easter, Richard C.; Fann, George I.; Kothari, Suraj C.; Zaveri, Rahul A.; Zhang, Yang

    2004-05-03

    The largest source of uncertainty in estimates of the radiative forcing governing climate change is in the radiative forcing due to anthropogenic aerosols. Current estimates of the global mean of the aerosol radiative forcing range from –0.3 to –3.0 watts per square meter (Wm-2 ) which is opposite in sign and possibly comparable in magnitude to the +2 Wm-2 forcing due to increasing greenhouse gases. We have developed a global aerosol and climate modeling system that provides arguably the most detailed treatment of aerosols and their impact on the planetary radiation balance of any model, but our estimates of radiative forcing have been hindered by our lack of access to high performance computing resources. We propose to use the MSCF to conduct a series of simulations with and without emissions of a variety of aerosol particles and aerosol precursors. These extensive simulations will enable us to produce much more refined estimates of the impact of anthropogenic emissions on radiative forcing of climate change. To take full advantage of the parallelism available on the MSCF MPP1, we will apply the Global Array Toolkit to dynamically load balance the reactive chemistry component of our model. We will adapt our modifications of the serial NCAR Community Climate Model CCM2 to the parallel NCAR CCM3.10.

  16. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  17. Assessment of climate sensitivity to the representation of aerosols in a coupled ocean-atmosphere model

    NASA Astrophysics Data System (ADS)

    Watson, Laura; Michou, Martine; Nabat, Pierre; Saint-Martin, David

    2016-04-01

    Atmospheric aerosols can significantly affect the Earth's radiative balance due to absorption, scattering, and indirect effects upon the climate system. Although our understanding of aerosol properties has improved over recent decades, aerosol radiative forcing remains as one of the largest uncertainties when projecting future climate change. A coupled ocean-atmosphere general circulation model was used to perform sensitivity tests in order to investigate how the representation of aerosols within the model can affect decadal climate variability. These tests included looking at the difference between using constant emissions versus using emissions that evolve over a period of thirty years; examining the impacts of including indirect effects from sea salt and organics; altering the aerosol optical properties; and using an interactive aerosol scheme versus using 2-D climatologies. The results of these sensitivity tests show how modifying certain aspects of the aerosol scheme can significantly modify radiative flux and global surface temperature.

  18. Aerosol-Cloud-Precipitation Interactions in the Climate System

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.

    2015-12-01

    Aerosols serve as cloud condensation nuclei (CCN) and thus have a powerful effect on cloud properties. Increased aerosol concentrations resulting from pollution lead to higher cloud droplet concentrations, but smaller droplet sizes. This in turn affects the physical processes inside clouds that lead to the initiation of precipitation. Depending on a number of factors, including aerosol composition, atmospheric stability, and cloud water content, increasing CCN concentrations may either decrease or increase rainfall. In convective clouds, early rain formation is suppressed, which makes more water and energy available to rise higher in the atmosphere and form ice particles. This may invigorate the dynamics of convection, encourage the formation of hail and lightning, and enhance the transport of materials to the upper troposphere. In turn, cloud processing also affects the concentrations, composition, and distribution of atmospheric aerosols. In order to understand and quantify the effects of air pollution on climate, and precipitation in particular, knowledge of natural abundance and characteristics of aerosols is as essential as the observation of perturbed conditions. I will present recent advances in the conceptual understanding of aerosol-precipitation interactions, as well as results of measurements on aerosol and cloud characteristics in pristine and polluted conditions.

  19. Microphysical processes affecting stratospheric aerosol particles

    NASA Technical Reports Server (NTRS)

    Hamill, P.; Toon, O. B.; Kiang, C. S.

    1977-01-01

    Physical processes which affect stratospheric aerosol particles include nucleation, condensation, evaporation, coagulation and sedimentation. Quantitative studies of these mechanisms to determine if they can account for some of the observed properties of the aerosol are carried out. It is shown that the altitude range in which nucleation of sulfuric acid-water solution droplets can take place corresponds to that region of the stratosphere where the aerosol is generally found. Since heterogeneous nucleation is the dominant nucleation mechanism, the stratospheric solution droplets are mainly formed on particles which have been mixed up from the troposphere or injected into the stratosphere by volcanoes or meteorites. Particle growth by heteromolecular condensation can account for the observed increase in mixing ratio of large particles in the stratosphere. Coagulation is important in reducing the number of particles smaller than 0.05 micron radius. Growth by condensation, applied to the mixed nature of the particles, shows that available information is consistent with ammonium sulfate being formed by liquid phase chemical reactions in the aerosol particles. The upper altitude limit of the aerosol layer is probably due to the evaporation of sulfuric acid aerosol particles, while the lower limit is due to mixing across the tropopause.

  20. Growing up MODIS: Towards a mature aerosol climate data record

    NASA Astrophysics Data System (ADS)

    Levy, Robert C.

    2013-05-01

    Aerosols are major players within the Earth's climate system, affecting the radiation budget, clouds and the hydrological cycle. In high concentrations near the surface, aerosols (or particulate matter, PM) affect visibility, impact air quality, and can contribute to poor health. Among others, Yoram Kaufman recognized the importance of aerosols to climate, and helped to design new instrumentation and algorithms to retrieve and quantify global aerosol properties. One instrument, known as the Moderate Imaging Resolution Spectro-radiometer (MODIS), was deployed on the AM-1 satellite (later known as Terra), part of NASA's Earth Observing System (EOS). In 1998, armed with an M.S. and job experience in neither aerosols nor satellites, I was looking for a new job. I somehow found my way to the MODIS Aerosol team. It was only a year before Terra launch, and most major decisions about the MODIS aerosol retrieval algorithms had been finalized. Since then, we worked through launch, initial evaluation of the product with AERONET and field deployments, and continued efforts to understand the product and refine retrieval algorithms. I have had opportunities to participate in field experiments, write papers, and earn my PhD. The "second generation" algorithm for aerosol retrieval over land has been hugely successful. We have collected nearly a half-million collocations with AERONET and other dataseis, made new discoveries, and have contributed to research and operational projects globally. Due to the dedication of the entire team, the MODIS aerosol product now is one of the highlights of NASA's EOS program. It is used for climate research and air quality forecasting, as well for applications not even considered before the MODIS era. More recently, a focus is on stitching the MODIS aerosol product into the "climate data record" (CDR) for global aerosol, determining whether the product has sufficient length, consistency and continuity to determine climate variability and change

  1. Impact of Asia Dust Aerosols on Regional Environment and Climate

    NASA Astrophysics Data System (ADS)

    Huang, J.

    2015-12-01

    East Asia is a major dust source in the world and has great impacts on regional climate in Asia, where the large arid and semi-arid regions are. In this study, the typical transport paths of East Asia dust, which affect regional and global climates, are demonstrated and numerous effects of dust aerosols on clouds and precipitation primarily over East Asian arid and semi-arid regions are discussed. Compared with the dust aerosols of Saharan, those of East Asian are more absorptive of solar radiation, and can influence the cloud properties not only by acting as cloud condensation nuclei and ice nuclei but also through changing the relative humidity and stability of the atmosphere (via semi-direct effect). Converting visible light to thermal energy, dust aerosols can burn clouds to produce a warming effect on climate, which is opposite to the first and second indirect effects of aerosols. Over Asia arid and semi-arid regions, the positive feedback in the aerosol-cloud-precipitation interaction may aggravate drought in its inner land. Impact of Asia dust on regional environment, especially on haze weather, are also presented in this talk.

  2. The climate impact of aviation aerosols

    NASA Astrophysics Data System (ADS)

    Gettelman, A.; Chen, C.

    2013-06-01

    A comprehensive general circulation model (GCM) is used to estimate the climate impact of aviation emissions of black carbon (BC) and sulfate (SO4) aerosols. Aviation BC is found not to exert significant radiative forcing impacts, when BC nucleating efficiencies in line with observations are used. Sulfate emissions from aircraft are found to alter liquid clouds at altitudes below emission (˜200 hPa); contributing to shortwave cloud brightening through enhanced liquid water path and drop number concentration in major flight corridors, particularly in the N. Atlantic. Global averaged sulfate direct and indirect effects on liquid clouds of 46 mWm-2are larger than the warming effect of aviation induced cloudiness of 16 mWm-2. The net result of including contrail cirrus and aerosol effects is a global averaged cooling of -21±11 mWm-2. These aerosol forcings should be considered with contrails in evaluating the total global impact of aviation on climate.

  3. Influence of aerosol vertical distribution on radiative budget and climate

    NASA Astrophysics Data System (ADS)

    Nabat, Pierre; Michou, Martine; Saint-Martin, David; Watson, Laura

    2016-04-01

    Aerosols interact with shortwave and longwave radiation with ensuing consequences on radiative budget and climate. Aerosols are represented in climate models either using an interactive aerosol scheme including prognostic aerosol variables, or using climatologies, such as monthly aerosol optical depth (AOD) fields. In the first case, aerosol vertical distribution can vary rapidly, at a daily or even hourly scale, following the aerosol evolution calculated by the interactive scheme. On the contrary, in the second case, a fixed aerosol vertical distribution is generally imposed by climatological profiles. The objective of this work is to study the impact of aerosol vertical distribution on aerosol radiative forcing, with ensuing effects on climate. Simulations have thus been carried out using CNRM-CM, which is a global climate model including an interactive aerosol scheme representing the five main aerosol species (desert dust, sea-salt, sulfate, black carbon and organic matter). Several multi-annual simulations covering the past recent years are compared, including either the prognostic aerosol variables, or monthly AOD fields with different aerosol vertical distributions. In the second case, AOD fields directly come from the first simulation, so that all simulations have the same integrated aerosol loads. The results show that modifying the aerosol vertical distribution has a significant impact on radiative budget, with consequences on global climate. These differences, highlighting the importance of aerosol vertical distribution in climate models, probably come from the modification of atmospheric circulation induced by changes in the heights of the different aerosols. Besides, nonlinear effects in the superposition of aerosol and clouds reinforce the impact of aerosol vertical distribution, since aerosol radiative forcing depends highly upon the presence of clouds, and upon the relative vertical position of aerosols and clouds.

  4. Aerosols over Continental Portugal (1978-1993): their sources and an impact on the regional climate

    NASA Astrophysics Data System (ADS)

    Morozova, A. L.; Mironova, I. A.

    2014-12-01

    Understanding of aerosol sources which affect climate is an important problem open in front of scientists as well as policymakers. The role of aerosols in local climate variability depends on a~balance between aerosol absorbing and scattering particles as well as on variability of environmental conditions. In this paper we investigate variability of aerosol content (both absorbing and scattering UV radiation) over Continental Portugal in dependence on aerosol sources (volcanic eruptions, dust events, wildfires and anthropogenic pollution). The effect of the aerosol on the climate is studied analyzing their contribution to variations of temperature, sunshine duration and precipitation over Portuguese regions. The present analysis is based on a developed modern multiple regression technique allowing us to build the statistical correlation models to determine both the main local aerosol sources and aerosol's influence on the climate of the Continental Portugal during 1978-1993 time period. The analysis allows us to conclude that the main sources driving the variations of the aerosol content over studied locations are wildfires, mineral dust intrusions and anthropogenic pollution. The relations between the aerosol content variations and the atmospheric parameters depend on the level of urbanization of the studied region, the type of aerosol and the season. The most significant finding is the decrease of the daily temperature (and diurnal temperature range) related to the decrease of sunshine duration observed during the summer periods of increased content of the absorbing aerosols in the atmosphere.

  5. Aerosol Climate Time Series in ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  6. Aerosols, Clouds, and Climate: From Micro to Macro (422nd Brookhaven Lecture)

    SciTech Connect

    Liu, Yangang

    2007-02-21

    Including aerosols, clouds and precipitation, particles in the atmosphere interact with one another and affect the Earth’s climate through a myriad of complex processes acting over a wide range of scales -- from the sub-micrometer to the global scale of over 10,000 kilometers. Looking at these phenomena from microscopic through macroscopic points of view, this lecture will examine aerosols-clouds-climate interactions, address the indirect impact of anthropogenic aerosol particles on the Earth’s climate by altering properties of cloud and precipitation, and explore important feedback mechanisms helping to shape the Earth’s climate.

  7. Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters

    SciTech Connect

    Kravitz, Benjamin S.

    2013-02-12

    Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

  8. Aerosols over continental Portugal (1978-1993): their sources and an impact on the regional climate

    NASA Astrophysics Data System (ADS)

    Morozova, A. L.; Mironova, I. A.

    2015-06-01

    Understanding of aerosol sources that affect climate is an ongoing problem facing scientists as well as policymakers. The role of aerosols in local climate variability depends on a balance between light absorbing and scattering particles as well as on variability of environmental conditions. In this paper we investigate variability of aerosol content (both absorbing and scattering ultraviolet radiation) over continental Portugal in connection with aerosol sources (volcanic eruptions, dust events, wildfires and anthropogenic pollution). The effect of the aerosol on the climate is studied analyzing their contribution to variations of temperature, pressure, sunshine duration and precipitation over Portuguese regions. The present analysis is based on a developed modern multiple regression technique allowing us to build the statistical correlation models to determine both the main local aerosol sources and aerosol's influence on the climate of continental Portugal during 1978-1993. The analysis allows us to conclude that the main sources driving the variations of the aerosol content over studied locations are wildfires, mineral dust intrusions and anthropogenic pollution. The relations between the aerosol content variations and the atmospheric parameters depend on the level of urbanization of the studied region, the type of aerosol and the season. The most significant finding is the decrease of the daily maximum temperature (and diurnal temperature range) related to the decrease of sunshine duration observed during the summer periods of increased content of the absorbing aerosols in the atmosphere.

  9. Distinguishing Aerosol Impacts on Climate Over the Past Century

    SciTech Connect

    Koch, Dorothy; Menon, Surabi; Del Genio, Anthony; Ruedy, Reto; Alienov, Igor; Schmidt, Gavin A.

    2008-08-22

    Aerosol direct (DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control(1890)-perturbation(1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG's). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed -0.2, -1.0 and +0.2 C from the DE, IE, and BAE. Ice and snow cover increased 1.0% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG's did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20% and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and long-wave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm-season but the associated SAT effect is delayed until winter.

  10. Tropospheric Aerosol Climate Forcing in Clear-Sky Satellite Observations over the Oceans.

    PubMed

    Haywood; Ramaswamy; Soden

    1999-02-26

    Tropospheric aerosols affect the radiative forcing of Earth's climate, but their variable concentrations complicate an understanding of their global influence. Model-based estimates of aerosol distributions helped reveal spatial patterns indicative of the presence of tropospheric aerosols in the satellite-observed clear-sky solar radiation budget over the world's oceans. The results show that, although geographical signatures due to both natural and anthropogenic aerosols are manifest in the satellite observations, the naturally occurring sea-salt is the leading aerosol contributor to the global-mean clear-sky radiation balance over oceans. PMID:10037595

  11. Spatial Patterns of Climate Impact from Anthropogenic Aerosols in the Early Instrumental Period

    NASA Astrophysics Data System (ADS)

    Bollasina, M. A.; Undorf, S.; Hegerl, G. C.

    2015-12-01

    Anthropogenic aerosols have emerged as an important player affecting global and regional climate with significant impacts on both the energy and water cycles. The early instrumental period (1850-1950), characterized by the increase of North American and especially European aerosol emissions concurrently with negligible Asian emissions and relatively low carbon dioxide concentrations, is an interesting case study to isolate the aerosol impact.Observations and historical experiments with state-of-the-art CMIP5 models are used to identify regions affected by aerosols. We compare the spatial and temporal patterns of climate variables such as surface temperature and precipitation with those of aerosol emissions and aerosol optical depth (AOD). In addition to regions showing the expected relationship between increasing sulfate emissions and decreasing surface temperatures, we see regions and decades with a more complex temperature response, and the first third of the twentieth century stands out as an especially interesting period. The contribution of atmospheric circulation changes is also pointed out.

  12. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    SciTech Connect

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-04-09

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  13. Strategy to use the Terra Aerosol Information to Derive the Global Aerosol Radiative Forcing of Climate

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Terra will derive the aerosol optical thickness and properties. The aerosol properties can be used to distinguish between natural and human-made aerosol. In the polar orbit Terra will measure aerosol only once a day, around 10:30 am. How will we use this information to study the global radiative impacts of aerosol on climate? We shall present a strategy to address this problem. It includes the following steps: - From the Terra aerosol optical thickness and size distribution model we derive the effect of aerosol on reflection of solar radiation at the top of the atmosphere. In a sensitivity study we show that the effect of aerosol on solar fluxes can be derived 10 times more accurately from the MODIS data than derivation of the optical thickness itself. Applications to data over several regions will be given. - Using 1/2 million AERONET global data of aerosol spectral optical thickness we show that the aerosol optical thickness and properties during the Terra 10:30 pass are equivalent to the daily average. Due to the aerosol lifetime of several days measurements at this time of the day are enough to assess the daily impact of aerosol on radiation. - Aerosol impact on the top of the atmosphere is only part of the climate question. The INDOEX experiment showed that addressing the impact of aerosol on climate, requires also measurements of the aerosol forcing at the surface. This can be done by a combination of measurements of MODIS and AERONET data.

  14. Aerosol climate time series from ESA Aerosol_cci (Invited)

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.

    2013-12-01

    Within the ESA Climate Change Initiative (CCI) the Aerosol_cci project (mid 2010 - mid 2013, phase 2 proposed 2014-2016) has conducted intensive work to improve algorithms for the retrieval of aerosol information from European sensors AATSR (3 algorithms), PARASOL, MERIS (3 algorithms), synergetic AATSR/SCIAMACHY, OMI and GOMOS. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Angstrom coefficient were retrieved from the other sensors. Global datasets for 2008 were produced and validated versus independent ground-based data and other satellite data sets (MODIS, MISR). An additional 17-year dataset is currently generated using ATSR-2/AATSR data. During the three years of the project, intensive collaborative efforts were made to improve the retrieval algorithms focusing on the most critical modules. The team agreed on the use of a common definition for the aerosol optical properties. Cloud masking was evaluated, but a rigorous analysis with a pre-scribed cloud mask did not lead to improvement for all algorithms. Better results were obtained using a post-processing step in which sudden transitions, indicative of possible occurrence of cloud contamination, were removed. Surface parameterization, which is most critical for the nadir only algorithms (MERIS and synergetic AATSR / SCIAMACHY) was studied to a limited extent. The retrieval results for AOD, Ångström exponent (AE) and uncertainties were evaluated by comparison with data from AERONET (and a limited amount of MAN) sun photometer and with satellite data available from MODIS and MISR. Both level2 and level3 (gridded daily) datasets were validated. Several validation metrics were used (standard statistical quantities such as bias, rmse, Pearson correlation, linear regression, as well as scoring approaches to quantitatively evaluate the spatial and temporal correlations against AERONET), and in some cases

  15. Natural and Anthropogenic Aerosols in the World's Megacities and Climate Impacts

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Singh, R.; El-Askary, H.; Qu, J.

    2005-12-01

    The world's megacities are the sites of production of a variety of aerosols and are themselves affected by natural and human-induced aerosols. In particular, sources of aerosols impacting cities include: industrial and automobile emission; sand and dust storms from, e.g., the Sahara and Gobi Deserts; as well as fire-induced aerosols. Improving the ability of various stakeholder organizations to respond effectively to high concentrations of aerosols, with special emphasis on mineral dust from dust storms; smoke from controlled burns, wild fires and agricultural burning; and anthropogenic aerosols, would be an important goal not just to understand climate forcings but also to be able to better respond to the increasing amounts of aerosols at global and regional levels. Cities and surrounding areas are affected without good estimates of the current and future conditions of the aerosols and their impact on regional and global climate. Remotely sensed (RS) NASA, NOAA and international platform data can be used to characterize the properties of aerosol clouds and special hazard events such as sand and dust storms (SDS). Aerosol analysis and prediction-model capabilities from which stakeholders can choose the tools that best match their needs and technological expertise are important. Scientists validating mesoscale and aerosol-transport models, aerosol retrievals from satellite measurements are indispensable for robust climate predictions. Here we give two examples of generic SDS cases and urban pollution and their possible impact on climate: The Sahara desert is a major source of dust aerosols dust transport is an important climatic process. The aerosols in the form of dust particles reflect the incoming solar radiation to space, thereby reducing the amount of radiation available to the ground, known as `direct' radiative forcing of aerosols. The aerosols also change the cloud albedo and microphysical properties of clouds, known as `indirect' radiative forcing of

  16. Impact of Mixing State on Anthropogenic Aerosol Radiative Forcing and Associated Climate Response

    NASA Astrophysics Data System (ADS)

    Avramov, A.; Shin, H. J.; Wang, C.

    2014-12-01

    Atmospheric aerosols affect Earth's radiation balance directly by scattering and absorbing solar radiation and, indirectly, by changing the microphysical structure, lifetime and spatial extent of clouds. The aerosol mixing state to a large extent determines not only their optical properties (direct effect) but also their ability to serve as cloud condensation nuclei or ice nuclei (indirect effect). Results from previous research have highlighted the importance of the aerosol mixing assumptions in radiative forcing estimates in model simulations. Here we take a step further to analyze the differences in associated climate responses, using a multimodal, size- and mixing-dependent aerosol model (MARC) incorporated within the Community Earth System Model (CESM). The new model allows for a detailed representation of aerosol-radiation and aerosol-cloud interactions by including an improved treatment of aerosol mixing state and composition. First, we estimate and compare the magnitudes of direct and indirect forcing of anthropogenic aerosols under different mixing assumptions. We then carry out several century-long fully-coupled climate simulations designed to isolate the climate responses to direct and indirect forcings under the same aerosol mixing assumptions. In our analysis, we specifically focus on the following three climate response components: 1) cloud distribution and coverage; 2) precipitation amount and distribution; and 3) changes in circulation patterns.

  17. Sources, Transport, and Climate Impacts of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    In this presentation, I will first talk about fundamentals of modeling of biomass burning emissions of aerosols, then show the results of GOCART model simulated biomass burning aerosols. I will compare the model results with observations of satellite and ground-based network in terms of total aerosol optical depth, aerosol absorption optical depth, and vertical distributions. Finally the long-range transport of biomass burning aerosols and the climate effects will be addressed. I will also discuss the uncertainties associated with modeling and observations of biomass burning aerosols

  18. Global simulations of BVOC-aerosol-climate feedbacks

    NASA Astrophysics Data System (ADS)

    Makkonen, Risto; Egill Kristjánsson, Jón; Kirkevåg, Alf; Seland, Øyvind; Iversen, Trond; Kerminen, Veli-Matti; Kulmala, Markku

    2015-04-01

    The terrestrial emission of biogenic volatile organic compounds (BVOCs) is modulated by several climate variables. Since the emitted BVOCs influence atmospheric aerosol formation and the respective aerosol forcing, there are several potential aerosol-climate feedback mechanisms which operate via BVOC emissions. Increased aerosol loading will increase the amount of diffuse radiation with respect to global radiation, leading to increased photosynthesis. On the other hand, an increase in BVOC emission could increase concentrations of cloud condensation nuclei (CCN), leading to changes in cloud albedo and cloud dynamics. We have developed the Norwegian Earth System Model (NorESM) to capture the necessary processes and interactions in order to describe BVOC-climate-feedbacks. BVOC emissions are calculated online by the MEGAN algorithm, and secondary organic aerosol formation from monoterpene and isoprene is accounted for. The developed coupled model is used to simulate the climate feedbacks with various idealized perturbations, including doubled/quadrupled CO2 concentration and decreasing anthropogenic aerosol emission. Equilibrium simulations with doubled CO2 show an increase of monoterpene emission by 20% globally, leading to increase in aerosol growth, aerosol loading and CCN concentration. Simulations indicate an overall negative BVOC-aerosol-climate feedback, which could act to reduce the future climate warming. However, the magnitude of the feedback is highly sensitive to the spatial distribution of the initial perturbation, applied BVOC emission parameters, and the underlying assumptions of SOA formation processes.

  19. Aerosols and clouds in chemical transport models and climate models.

    SciTech Connect

    Lohmann,U.; Schwartz, S. E.

    2008-03-02

    Clouds exert major influences on both shortwave and longwave radiation as well as on the hydrological cycle. Accurate representation of clouds in climate models is a major unsolved problem because of high sensitivity of radiation and hydrology to cloud properties and processes, incomplete understanding of these processes, and the wide range of length scales over which these processes occur. Small changes in the amount, altitude, physical thickness, and/or microphysical properties of clouds due to human influences can exert changes in Earth's radiation budget that are comparable to the radiative forcing by anthropogenic greenhouse gases, thus either partly offsetting or enhancing the warming due to these gases. Because clouds form on aerosol particles, changes in the amount and/or composition of aerosols affect clouds in a variety of ways. The forcing of the radiation balance due to aerosol-cloud interactions (indirect aerosol effect) has large uncertainties because a variety of important processes are not well understood precluding their accurate representation in models.

  20. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  1. Evidence of Aerosol's Influence on Climate from Beijing Olympics

    NASA Astrophysics Data System (ADS)

    Chen, S.; Fu, Q.; Huang, J.; Ge, J.; Su, J.

    2009-12-01

    Air pollution is a difficult problem during the process of industrialization in most developing countries. In China, the main air pollutants are inhaled aerosol particles. Because of the extremely high loading and rapid development, Beijing became a heavily polluted city, with a population of more than 16 million. The 2008 Olympic Summer Games provided a unique opportunity for the study of climate effects of aerosols due to many measurements taken to fight pollution caused by industrialization and economic growth.Surface temperature is the most intuitive meteorological factor and easy to get. Therefore, aerosol’s radiative effects on regional climate can be known by studying the relationship between aerosols and surface temperature in Beijing city in August 2008. However, many factors can affect the surface temperature and cloud is considered as a very important meteorological element in radiation balance. In order to remove the impact of clouds on surface temperature, here the ground temperature in clear sky days (when cloud cover is less than 2) are selected. Aerosol data from the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Earth Observing System (EOS) Aqua shows that aerosol concentration decreased significantly in the area of Olympic venues in August 2008. Meanwhile, the ground-based observation data shows the surface temperature during the day (14LT) and night (02LT) in August 2008 is higher and lower than the mean temperature in August from 2002 to 2008, respectively. It is discovered that the distribution of satellite-retrieved aerosol optical Depth (AOD) in the whole area of Beijing in August of 2003 and 2004 is similar to that in 2008. We chosen four meteorological stations to analyze surface temperature and found that the diurnal changes of surface temperature are consistent with that in August of 2003, 2004 and 2008. Meanwhile, the decrease of AOD in the area of Olympic venues in August 2008 leads to the increase of precipitation

  2. Stratospheric Aerosol--Observations, Processes, and Impact on Climate

    NASA Technical Reports Server (NTRS)

    Kresmer, Stefanie; Thomason, Larry W.; von Hobe, Marc; Hermann, Markus; Deshler, Terry; Timmreck, Claudia; Toohey, Matthew; Stenke, Andrea; Schwarz, Joshua P.; Weigel, Ralf; Fueglistaler, Stephan; Prata, Fred J.; Vernier, Jean-Paul; Schlager, Hans; Barnes, John E.; Antuna-Marrero, Juan-Carlos; Fairlie, Duncan; Palm, Mathias; Mahieu, Emmanuel; Notholt, Justus; Rex, Markus; Bingen, Christine; Vanhellemont, Filip; Bourassa, Adam; Plane, John M. C.; Klocke, Daniel; Carn, Simon A.; Clarisse, Lieven; Trickl, Thomas; Neeley, Ryan; James, Alexander D.; Rieger, Landon; Wilson, James C.; Meland, Brian

    2016-01-01

    Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have been developed for measuring physical aerosol properties with greater accuracy and for characterizing aerosol composition. However, these changes induce challenges to constructing a long-term stratospheric aerosol climatology. Currently, changes in stratospheric aerosol levels less than 20% cannot be confidently quantified. The volcanic signals tend to mask any nonvolcanically driven change, making them difficult to understand. While the role of carbonyl sulfide as a substantial and relatively constant source of stratospheric sulfur has been confirmed by new observations and model simulations, large uncertainties remain with respect to the contribution from anthropogenic sulfur dioxide emissions. New evidence has been provided that stratospheric aerosol can also contain small amounts of nonsulfatematter such as black carbon and organics. Chemistry-climate models have substantially increased in quantity and sophistication. In many models the implementation of stratospheric aerosol processes is coupled to radiation and/or stratospheric chemistry modules to account for relevant feedback processes.

  3. Science Plan Biogenic Aerosols – Effects on Clouds and Climate (BAECC)

    SciTech Connect

    Petäjä, T

    2013-12-01

    Atmospheric aerosol particles impact human health in urban environments, while on regional and global scales they can affect climate patterns, the hydrological cycle, and the intensity of radiation that reaches the Earth’s surface. In spite of recent advances in the understanding of aerosol formation processes and the links between aerosol dynamics and biosphere-atmosphere-climate interactions, great challenges remain in the analysis of related processes on a global scale. Boreal forests, situated in a circumpolar belt in the northern latitudes throughout the United States, Canada, Russia and Scandinavia, are among the most active areas of atmospheric aerosol formation among all biomes. The formation of aerosol particles and their growth to the sizes of cloud condensation nuclei in these areas are associated with biogenic volatile organic emissions from vegetation and soil.

  4. Application of a coupled aerosol formation: Radiative transfer model to climatic studies of aerosols

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.

    1979-01-01

    A sophisticated one dimensional physical-chemical model of the formation and evolution of stratospheric aerosols was used to predict the size and number concentration of the stratospheric aerosols as functions of time and altitude following: a large volcanic eruption; increased addition of carbonyl sulfide (OCS) or sulfur dioxide (SO2) to the troposphere; increased supersonic aircraft (SST) flights in the stratosphere; and, large numbers of space shuttle (SS) flights through the stratosphere. A radiative-convective one dimensional climate sensitivity study, using the results of the aerosol formation model, was performed to assess the ground level climatic significance of these perturbations to the stratospheric aerosol layer. Volcanic eruptions and large OCS or SO2 increases could cause significant climatic changes. Currently projected SS launches and moderate fleets of SST's are unlikely to upset the stratospheric aerosol layer enough to significantly impact climate.

  5. Exploiting Representation of the Aerosol-Radiation interactions in Climate Systems: Observation-based Analyses and Global Climate Modeling

    NASA Astrophysics Data System (ADS)

    Chen, Y. C.; Li, J.; Lee, W. L.; Diner, D. J.; Garay, M. J.; Kalashnikova, O. V.

    2015-12-01

    Aerosols affect the Earth's climate by perturbing the radiation budget through scattering and absorption of solar radiation and emitting thermal infrared radiation (defined and referred to as aerosol direct effect). At first order, it is essential for a model to realistically represent the distributions of clouds, convection, aerosol profiles and their associated radiative properties (cloud fraction and effective radius), which are critical for simulating Earth's surface energy and water budgets. The representation of aerosols and their radiative properties remains problematic both in retrieval and modeling. Up to now, the representation of aerosol optical depth (AOD) in GCMs is still far from agreement with the observation. We evaluate the aerosol simulations from the 20th century CMIP5 simulations, and investigate the biases in aerosol loadings against observations. AOD and retrieved aerosol types (e.g., sea salt, organic matter, sulfate) from MISR, MODIS, and CALIPSO satellite observations are utilized to compare with model simulated aerosols. The impacts of the biases of modeled AOD and cloud fraction on aerosol direct effects in GCMs will be presented.

  6. Climate Response to Soil Dust Aerosols.

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Tegen, I.

    1998-12-01

    The effect of radiative forcing by soil dust aerosols upon climate is calculated. Two atmospheric GCM (AGCM) simulations are compared, one containing a prescribed seasonally varying concentration of dust aerosols, and the other omitting dust. Each simulation includes a mixed layer ocean model, which allows SST to change in response to the reduction in surface net radiation by dust. Dust aerosols reduce the surface net radiation both by absorbing and reflecting sunlight. For the optical properties of the dust particles assumed here, the reflection of sunlight is largely offset by the trapping of upwelling longwave radiation, so that the perturbation by dust to the net radiation gain at the top of the atmosphere is small in comparison to the surface reduction. Consequently, the radiative effect of soil dust aerosols is to redistribute heating from the surface to within the dust layer.Beneath the dust layer, surface temperature is reduced on the order of 1 K, typically in regions where deep convection is absent. In contrast, surface temperature remains unperturbed over the Arabian Sea during Northern Hemisphere (NH) summer, even though the dust concentration is highest in this region. It is suggested that the absence of cooling results from the negligible radiative forcing by dust at the top of the atmosphere, along with the frequent occurrence of deep convection, which ties the surface temperature to the unperturbed value at the emitting level.Where convection is absent, cooling at the surface occurs because radiative heating by dust reduces the rate of subsidence (and the corresponding mass exchange with the convecting region). Thus, the temperature contrast between these two regions must increase to maintain the original transport of energy, which is unperturbed by dust. It is suggested that cooling over the Arabian Sea during NH winter, despite the much smaller dust loading, is permitted by the absence of convection during this season. Thus, the change in surface

  7. First Evaluation of the CCAM Aerosol Simulation over Africa: Implications for Regional Climate Modeling

    NASA Astrophysics Data System (ADS)

    Horowitz, H.; Garland, R. M.; Thatcher, M. J.; Naidoo, M.; van der Merwe, J.; Landman, W.; Engelbrecht, F.

    2015-12-01

    An accurate representation of African aerosols in climate models is needed to understand the regional and global radiative forcing and climate impacts of aerosols, at present and under future climate change. However, aerosol simulations in regional climate models for Africa have not been well-tested. Africa contains the largest single source of biomass-burning smoke aerosols and dust globally. Although aerosols are short-lived relative to greenhouse gases, black carbon in particular is estimated to be second only to carbon dioxide in contributing to warming on a global scale. Moreover, Saharan dust is exported great distances over the Atlantic Ocean, affecting nutrient transport to regions like the Amazon rainforest, which can further impact climate. Biomass burning aerosols are also exported from Africa, westward from Angola over the Atlantic Ocean and off the southeastern coast of South Africa to the Indian Ocean. Here, we perform the first extensive quantitative evaluation of the Conformal-Cubic Atmospheric Model (CCAM) aerosol simulation against monitored data, focusing on aerosol optical depth (AOD) observations over Africa. We analyze historical regional simulations for 1999 - 2012 from CCAM consistent with the experimental design of CORDEX at 50 km global horizontal resolution, through the dynamical downscaling of ERA-Interim data reanalysis data, with the CMIP5 emissions inventory (RCP8.5 scenario). CCAM has a prognostic aerosol scheme for organic carbon, black carbon, sulfate, and dust, and non-prognostic sea salt. The CCAM AOD at 550nm was compared to AOD (observed at 440nm, adjusted to 550nm with the Ångström exponent) from long-term AERONET stations across Africa. Sites strongly impacted by dust and biomass burning and with long continuous records were prioritized. In general, the model captures the monthly trends of the AERONET data. This presentation provides a basis for understanding how well aerosol particles are represented over Africa in

  8. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model.

    PubMed

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H; Molina, Mario J

    2014-05-13

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by -2.5 and +1.3 W m(-2), respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors' knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923

  9. Importance of clouds and aerosols in assessing climate change (Invited)

    NASA Astrophysics Data System (ADS)

    Boucher, O.; Randall, D. A.; Artaxo, P. P.; Bretherton, C. S.; Feingold, G.; Forster, P.; Kerminen, V.; Kondo, Y.; Liao, H.; Lohmann, U.; Rasch, P. J.; Satheesh, S.; Sherwood, S. C.; Stevens, B. B.; Zhang, X.; Myhre, G.; Shindell, D. T.

    2013-12-01

    Clouds and aerosols continue to contribute the largest uncertainty to estimates and interpretations of the Earth's changing energy budget. This talk will focus on process understanding and will discuss our assessment of how clouds and aerosols contribute and respond to climate change based on observations, theory and models. Many of the cloudiness and humidity changes simulated by climate models in warmer climates are now understood as thermodynamical responses or responses to large-scale circulation changes that do not appear to depend strongly on model parameterizations. For example, multiple lines of evidence now indicate positive feedback contributions from water vapor and lapse rate, and from circulation-driven changes in both the height of high clouds and the latitudinal distribution of clouds. However, some aspects of the overall cloud response vary substantially among models, and these appear to depend strongly on subgrid-scale processes in which there is less confidence. Climate-relevant aerosol processes are better understood, and climate-relevant aerosol properties better observed, than at the time of the Fourth Assessment Report. Our assessment for the effective radiative forcing by aerosol is less negative than before because of a re-evaluation of aerosol absorption, the existence of rapid adjustment of clouds in response to aerosol absorption, and multi-scale assessment of aerosol-cloud interactions. The aerosol forcing continues to dominate the uncertainty in the total anthropogenic forcing, but both models and observations suggest that it has not changed substantially in the global mean over the last couple of decades. Finally many gaps remain in our understanding of the role of clouds and aerosols on the climate system, and we will assess some of the challenges that lie ahead of us.

  10. The contribution of carbonaceous aerosols to climate change

    SciTech Connect

    Penner, J.E. |; Chuang, C.C.; Liousse, C.

    1996-04-01

    Contribution of aerosols to climate change results from two effects: clear-sky and cloudy-sky forcing. The clear-sky climate forcing by carbonaceous aerosols from biomass burning and fossil fuel burning depends on the relative contribution of scattering and absorption by the aerosols which in turn depends on the fraction of aerosol mass associated with black carbon and its size distribution. This paper reviews estimates for the emission of carbonaceous aerosols, placing these estimates in the context of estimates for the emissions of anthropogenic and natural sulfate aerosols and natural sources of organic particulate matter. The cloudy-sky forcing from carbonaceous aerosols is difficult to estimate because, among other factors, it depends on the amount of absorption by the aerosols in the cloud. It is also highly sensitive to the assumed pre-existing, natural aerosol abundance. An upper limit for this cloudy-sky forcing is -4.4 W/m{sup 2}, but may range as low as -2.4 W/m{sup 2}, depending on background aerosol concentrations. These estimates do not yet account for absorption of radiation by black carbon associated with cloud or the presence of pre-existing dust particles.

  11. Role of Climate Change in Global Predictions of Future Tropospheric Ozone and Aerosols

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Chen, Wei-Ting; Seinfeld, John H.

    2006-01-01

    A unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies general circulation model II is applied to simulate an equilibrium CO2-forced climate in the year 2100 to examine the effects of climate change on global distributions of tropospheric ozone and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols. The year 2100 CO2 concentration as well as the anthropogenic emissions of ozone precursors and aerosols/aerosol precursors are based on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) A2. Year 2100 global O3 and aerosol burdens predicted with changes in both climate and emissions are generally 5-20% lower than those simulated with changes in emissions alone; as exceptions, the nitrate burden is 38% lower, and the secondary organic aerosol burden is 17% higher. Although the CO2-driven climate change alone is predicted to reduce the global O3 concentrations over or near populated and biomass burning areas because of slower transport, enhanced biogenic hydrocarbon emissions, decomposition of peroxyacetyl nitrate at higher temperatures, and the increase of O3 production by increased water vapor at high NOx levels. The warmer climate influences aerosol burdens by increasing aerosol wet deposition, altering climate-sensitive emissions, and shifting aerosol thermodynamic equilibrium. Climate change affects the estimates of the year 2100 direct radiative forcing as a result of the climate-induced changes in burdens and different climatological conditions; with full gas-aerosol coupling and accounting for ozone and direct radiative forcings by the O2, sulfate, nitrate, black carbon, and organic carbon are predicted to be +0.93, -0.72, -1.0, +1.26, and -0.56 W m(exp -2), respectively, using present-day climate and year 2100 emissions, while they are predicted to be +0.76, -0.72, 0.74, +0.97, and -0.58 W m(exp -2

  12. Have tropospheric aerosol emissions contributed to the recent climate hiatus?

    NASA Astrophysics Data System (ADS)

    Kühn, Thomas; Partanen, Antti-Ilari; Laakso, Anton; Lu, Zifeng; Bergman, Tommi; Mikkonen, Santtu; Kokkola, Harri; Korhonen, Hannele; Räisänen, Petri; Streets, David G.; Romakkaniemi, Sami; Laaksonen, Ari

    2014-05-01

    During the last 15 years global warming has slowed considerably, with the resulting plateau in global temperature records being dubbed the climate hiatus. Apart from variations in solar irradiance and ocean temperature, increased anthropogenic aerosol emissions in South and East Asia have been suggested as possible causes for this hiatus. While European and and North American aerosol emissions have constantly decreased since the 1980's, emissions in China and India have started increasing at the same time and, although total global aerosol emissions have decreased, aerosol effects on the global energy budget are expected to enhance towards the equator due to stronger irradiance there. In this study we used the aerosol-climate model ECHAM5-HAM2 to assess the effect that this re-distribution of anthropogenic aerosol emissions towards the equator may have on climate. To this end, we computed radiative forcing and equilibrium temperature response due to the change in global aerosol emissions (black carbon (BC), organic carbon and sulphur dioxide) between 1996 and 2010, keeping all other anthropogenic influences fixed. Surprisingly we found that the cooling due the increased aerosol emissions in China and India is almost negligible compared to the warming caused by the decreasing aerosol emissions in Europe and North America. The radiative flux perturbation (RFP; includes aerosol indirect effects) was 0.42 W/m2 and the change in global equilibrium 2 m temperature increased by 0.25 °C. The lack of cooling in China and India stems from a cancellation of sulfate cooling and BC warming, especially over China. There, the strong cloud cover leads to both attenuation of sulphate aerosol light scattering and saturation tendency of indirect aerosol effects on clouds. BC levels on the other hand increase also above the clouds (relative increase of BC levels is almost uniform with height), leading to warming through light absorption.

  13. Sensitivity of Remote Aerosol Distributions to Representation of Cloud-Aerosol Interactions in a Global Climate Model

    SciTech Connect

    Wang, Hailong; Easter, Richard C.; Rasch, Philip J.; Wang, Minghuai; Liu, Xiaohong; Ghan, Steven J.; Qian, Yun; Yoon, Jin-Ho; Ma, Po-Lun; Vinoj, V.

    2013-06-05

    Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in

  14. Addition of Tropospheric Chemistry and Aerosols to the NCAR Community Climate System Model

    SciTech Connect

    Cameron-Smith, P; Lamarque, J; Connell, P; Chuang, C; Rotman, D; Taylor, J

    2005-11-14

    Atmospheric chemistry and aerosols have several important roles in climate change. They affect the Earth's radiative balance directly: cooling the earth by scattering sunlight (aerosols) and warming the Earth by trapping the Earth's thermal radiation (methane, ozone, nitrous oxide, and CFCs are greenhouse gases). Atmospheric chemistry and aerosols also impact many other parts of the climate system: modifying cloud properties (aerosols can be cloud condensation nuclei), fertilizing the biosphere (nitrogen species and soil dust), and damaging the biosphere (acid rain and ozone damage). In order to understand and quantify the effects of atmospheric chemistry and aerosols on the climate and the biosphere in the future, it is necessary to incorporate atmospheric chemistry and aerosols into state-of-the-art climate system models. We have taken several important strides down that path. Working with the latest NCAR Community Climate System Model (CCSM), we have incorporated a state-of-the-art atmospheric chemistry model to simulate tropospheric ozone. Ozone is not just a greenhouse gas, it damages biological systems including lungs, tires, and crops. Ozone chemistry is also central to the oxidizing power of the atmosphere, which destroys a lot of pollutants in the atmosphere (which is a good thing). We have also implemented a fast chemical mechanism that has high fidelity with the full mechanism, for significantly reduced computational cost (to facilitate millennium scale simulations). Sulfate aerosols have a strong effect on climate by reflecting sunlight and modifying cloud properties. So in order to simulate the sulfur cycle more fully in CCSM simulations, we have linked the formation of sulfate aerosols to the oxidizing power of the atmosphere calculated by the ozone mechanisms, and to dimethyl sulfide emissions from the ocean ecosystem in the model. Since the impact of sulfate aerosols depends on the relative abundance of other aerosols in the atmosphere, we also

  15. The regional aerosol-climate model REMO-HAM

    NASA Astrophysics Data System (ADS)

    Pietikäinen, J.-P.; O'Donnell, D.; Teichmann, C.; Karstens, U.; Pfeifer, S.; Kazil, J.; Podzun, R.; Fiedler, S.; Kokkola, H.; Birmili, W.; O'Dowd, C.; Baltensperger, U.; Weingartner, E.; Gehrig, R.; Spindler, G.; Kulmala, M.; Feichter, J.; Jacob, D.; Laaksonen, A.

    2012-03-01

    REMO-HAM is a new regional aerosol-climate model. It is based on the REMO regional climate model and includes all of the major aerosol processes. The structure for aerosol is similar to the global aerosol-climate model ECHAM5-HAM, for example the aerosol module HAM-M7 has been coupled with a two-moment stratiform cloud scheme. In this work, we have evaluated the model and compared the results against ECHAM5-HAM and measurements. Four different measurement sites was chosen for the comparison of total number concentrations, size distributions and gas phase sulfur dioxide concentrations: Hyytiälä in Finland, Melpitz in Germany, Mace Head in Ireland and Jungfraujoch in Switzerland. REMO-HAM is run with two different resolutions: 50×50 km2 and 10×10 km2. Based on our simulations, REMO-HAM can represent the measured values reasonably well. The total number concentrations are slightly underestimated, which is probably due to the missing boundary layer nucleation and online secondary organic aerosol model. The differences in the total number concentrations between REMO-HAM and ECHAM5-HAM can be mainly explained by the difference in the nucleation mode. From the meteorological point of view, REMO-HAM represents the precipitation fields and 2 m temperature profile very well compared to measurement. Overall, we have shown that REMO-HAM is a functional aerosol-climate model, which will be used in further studies.

  16. The impact of aerosols on the climate and its changes in China

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2013-05-01

    Heavy and widespread presence of aerosols could impinge significantly on regional and global climate depending on aerosol distribution, transport and evolution of optical, physical and chemical properties. To unravel the impact and interactions between aerosols and climate of China, several field experiments have been conducted in the region. Besides, numerous studies are being carried out using the long-term (up to 50 years) routine meteorological measurements. Findings will be summarized from two China-US joint experiments: the East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) in 2005 and the Atmospheric Radiation Measurements (ARM) Mobile Facility deployment in 2008 (AMF-China), as well as from analyses of routine data. The experiments have produced a wealth of measurements pertaining to aerosol properties, meteorological regimes, cloud, radiation and precipitation in order to gain insights into the potential mechanism by which aerosols affect and interact with the monsoon regime. By taking advantage of the field observation data, many evidences of aerosol's direct, indirect and semi-direct effects are revealed, with the bulk published in two special sections of the J. Geophy. Res. In addition, some features of the impact of increasing aerosols on the long-term trends of temperature, rainfall, wind and storms emerge from careful analyses of general meteorological data.

  17. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model

    PubMed Central

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H.; Molina, Mario J.

    2014-01-01

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol–climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by −2.5 and +1.3 W m−2, respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors’ knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923

  18. FACTORS AFFECTING THE DEPOSITION OF AEROSOLIZED INSULIN

    EPA Science Inventory

    Abstract
    Background
    The inhalation of insulin for absorption into the bloodstream via the lung seems to be a promising technique for the treatment of diabetes mellitus. A fundamental issue to be resolved in the development of such insulin aerosol delivery systems is their...

  19. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system.

    PubMed

    Seinfeld, John H; Bretherton, Christopher; Carslaw, Kenneth S; Coe, Hugh; DeMott, Paul J; Dunlea, Edward J; Feingold, Graham; Ghan, Steven; Guenther, Alex B; Kahn, Ralph; Kraucunas, Ian; Kreidenweis, Sonia M; Molina, Mario J; Nenes, Athanasios; Penner, Joyce E; Prather, Kimberly A; Ramanathan, V; Ramaswamy, Venkatachalam; Rasch, Philip J; Ravishankara, A R; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty. PMID:27222566

  20. Two Hundred Fifty Years of Aerosols and Climate: The End of the Age of Aerosols

    SciTech Connect

    Smith, Steven J.; Bond, Tami C.

    2014-01-20

    Carbonaceous and sulfur aerosols have a substantial global and regional influence on climate in addition to their impact on health and ecosystems. The magnitude of this influence has changed substantially over the past and is expected to continue to change into the future. An integrated picture of the changing climatic influence of black carbon, organic carbon and sulfate over the period 1850 through 2100, focusing on uncertainty, is presented using updated historical inventories and a coordinated set of emission projections. While aerosols have had a substantial impact on climate over the past century, by the end of the 21st century aerosols will likely be only a minor contributor to radiative forcing due to increases in greenhouse gas forcing and a global decrease in pollutant emissions. This outcome is even more certain under a successful implementation of a policy to limit greenhouse gas emissions as low-carbon energy technologies that do not emit appreciable aerosol or SO2 are deployed.

  1. Aerosol-Water Cycle Interaction: A New Challenge in Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global climate. It has been estimated that aerosol may reduce by up to 10% of the seasonal mean solar radiation reaching the earth surface, producing a global cooling effect that opposes global warming (Climate Change 2001). This means that the potential perils that humans have committed to global warming may be far greater than what we can detect at the present. As a key component of the Earth climate system, the water cycle is profoundly affected by the presence of aerosols in the atmosphere. Through the so-called direct effect , aerosol scatters and/or absorbs solar radiation, thus cooling the earth surface and changing the horizontal and vertical radiational heating contrast in the atmosphere. The heating contrast drives anomalous atmospheric circulation, resulting in changes in convection, clouds, and rainfall. Another way aerosol can affect the water cycle is through the so-called indirect effects, whereby aerosol increases the number of cloud condensation nuclei, prolongs life time of clouds, and inhibits the growth of cloud drops to raindrops. This leads to more clouds, and increased reflection of solar radiation, and further cooling at the earth surface. In monsoon regions, the response of the water cycle to aerosol forcing is especially complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. In this talk, I will offer some insights into how aerosols may impact the Asian monsoon based on preliminary results from satellite observations and climate model experiments. Specifically, I will discuss

  2. Aerosol-Water Cycle Interaction: A New Challenge in Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global climate. It has been estimated that aerosol may reduce by up to 10% of the seasonal mean solar radiation reaching the earth surface, producing a global cooling effect that opposes global warming (Climate Change 2001). This means that the potential perils that humans have committed to global warming may be far greater than what we can detect at the present. As a key component of the Earth climate system, the water cycle is profoundly affected by the presence of aerosols in the atmosphere. Through the so-called "direct effect", aerosol scatters and/or absorbs solar radiation, thus cooling the earth surface and changing the horizontal and vertical radiational heating contrast in the atmosphere. The heating contrast drives anomalous atmospheric circulation, resulting in changes in convection, clouds, and rainfall. Another way aerosol can affect the water cycle is through the so-called "indirect effects", whereby aerosol increases the number of cloud condensation nuclei, prolongs life time of clouds, and inhibits the growth of cloud drops to raindrops. This leads to more clouds, and increased reflection of solar radiation, and further cooling at the earth surface. In monsoon regions, the response of the water cycle to aerosol forcing is especially complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. In this talk, I will offer some insights into how aerosols may impact the Asian monsoon based on preliminary results from satellite observations and climate model experiments. Specifically, I will

  3. Revisiting Aerosol Effects in Global Climate Models Using an Aerosol Lidar Simulator

    NASA Astrophysics Data System (ADS)

    Ma, P. L.; Chepfer, H.; Winker, D. M.; Ghan, S.; Rasch, P. J.

    2015-12-01

    Aerosol effects are considered a major source of uncertainty in global climate models and the direct and indirect radiative forcings have strong model dependency. These forcings are routinely evaluated (and calibrated) against observations, among them satellite retrievals are greatly used for their near-global coverage. However, the forcings calculated from model output are not directly comparable with those computed from satellite retrievals since sampling and algorithmic differences (such as cloud screening, noise reduction, and retrieval) between models and observations are not accounted for. It is our hypothesis that the conventional model validation procedures for comparing satellite observations and model simulations can mislead model development and introduce biases. Hence, we have developed an aerosol lidar simulator for global climate models that simulates the CALIOP lidar signal at 532nm. The simulator uses the same algorithms as those used to produce the "GCM-oriented CALIPSO Aerosol Product" to (1) objectively sample lidar signal profiles; and (2) derive aerosol fields (e.g., extinction profile, aerosol type, etc) from lidar signals. This allows us to sample and derive aerosol fields in the model and real atmosphere in identical ways. Using the Department of Energy's ACME model simulations, we found that the simulator-retrieved aerosol distribution and aerosol-cloud interactions are significantly different from those computed from conventional approaches, and that the model is much closer to satellite estimates than previously believed.

  4. Aerosols, climate, and the hydrological cycle.

    PubMed

    Ramanathan, V; Crutzen, P J; Kiehl, J T; Rosenfeld, D

    2001-12-01

    Human activities are releasing tiny particles (aerosols) into the atmosphere. These human-made aerosols enhance scattering and absorption of solar radiation. They also produce brighter clouds that are less efficient at releasing precipitation. These in turn lead to large reductions in the amount of solar irradiance reaching Earth's surface, a corresponding increase in solar heating of the atmosphere, changes in the atmospheric temperature structure, suppression of rainfall, and less efficient removal of pollutants. These aerosol effects can lead to a weaker hydrological cycle, which connects directly to availability and quality of fresh water, a major environmental issue of the 21st century. PMID:11739947

  5. Studies of the chemical mixing state of sea spray aerosol and associated climate relevant properties (Invited)

    NASA Astrophysics Data System (ADS)

    Prather, K. A.; Bertram, T. H.; Grassian, V. H.; Collins, D. B.; Ault, A. P.; Ruppel, M. J.; Axson, J. L.; Ryder, O. S.; Schill, S.

    2013-12-01

    The ocean plays a large but highly uncertain role in affecting clouds and climate, generating sea spray aerosols that can directly impact climate by scattering solar radiation and indirectly through nucleating clouds. A tremendous amount has been learned about these interactions over decades of marine studies, however the goal of establishing robust relationships between seawater composition and sea spray climate properties has remained elusive. Much of the impediment stems from difficulties associated with unraveling the impacts of nascent sea spray and background marine aerosols which have been shown to dominate field measurements. In an effort to advance our understanding of nascent sea spray properties, we have developed a new approach for studying this issue in a newly developed ocean-atmosphere facility equipped with breaking waves. After establishing extremely low background aerosol concentrations (< 1 per cc), studies have probed the size distribution and chemical mixing state of sea spray aerosols produced by breaking waves in natural seawater. The critical importance of using bubble size distributions representative of real breaking waves to generate sea spray aerosol (SSA) is discussed. Using a combination of techniques probing individual particle composition and morphology including aerosol time-of-flight mass spectrometry (ATOFMS), scanning tunnel x-ray microscopy (STXM), and electron microscopy, four major sea spray particle types are prevalent in all studies, consisting of sea salt, mixed sea salt and biogenic organic species, biogenic organic species, and primary biological aerosol particles (PBAP). Results from studies aimed at probing how changes in seawater composition due to biological activity impact sea spray aerosol composition and climate properties will be discussed.

  6. The regional aerosol-climate model REMO-HAM

    NASA Astrophysics Data System (ADS)

    Pietikäinen, J.-P.; O'Donnell, D.; Teichmann, C.; Karstens, U.; Pfeifer, S.; Kazil, J.; Podzun, R.; Fiedler, S.; Kokkola, H.; Birmili, W.; O'Dowd, C.; Baltensperger, U.; Weingartner, E.; Gehrig, R.; Spindler, G.; Kulmala, M.; Feichter, J.; Jacob, D.; Laaksonen, A.

    2012-11-01

    REMO-HAM is a new regional aerosol-climate model. It is based on the REMO regional climate model and includes most of the major aerosol processes. The structure for aerosol is similar to the global aerosol-climate model ECHAM5-HAM, for example the aerosol module HAM is coupled with a two-moment stratiform cloud scheme. On the other hand, REMO-HAM does not include an online coupled aerosol-radiation nor a secondary organic aerosol module. In this work, we evaluate the model and compare the results against ECHAM5-HAM and measurements. Four different measurement sites were chosen for the comparison of total number concentrations, size distributions and gas phase sulfur dioxide concentrations: Hyytiälä in Finland, Melpitz in Germany, Mace Head in Ireland and Jungfraujoch in Switzerland. REMO-HAM is run with two different resolutions: 50 × 50 km2 and 10 × 10 km2. Based on our simulations, REMO-HAM is in reasonable agreement with the measured values. The differences in the total number concentrations between REMO-HAM and ECHAM5-HAM can be mainly explained by the difference in the nucleation mode. Since we did not use activation nor kinetic nucleation for the boundary layer, the total number concentrations are somewhat underestimated. From the meteorological point of view, REMO-HAM represents the precipitation fields and 2 m temperature profile very well compared to measurement. Overall, we show that REMO-HAM is a functional aerosol-climate model, which will be used in further studies.

  7. Remote Sensing of Aerosol and their Radiative Forcing of Climate

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Remer, Lorraine A.

    1999-01-01

    Remote sensing of aerosol and aerosol radiative forcing of climate is going through a major transformation. The launch in next few years of new satellites designed specifically for remote sensing of aerosol is expected to further revolutionized aerosol measurements: until five years ago satellites were not designed for remote sensing of aerosol. Aerosol optical thickness was derived as a by product, only over the oceans using one AVHRR channel with errors of approx. 50%. However it already revealed a very important first global picture of the distribution and sources of aerosol. In the last 5 years we saw the introduction of polarization and multi-view observations (POLDER and ATSR) for satellite remote sensing of aerosol over land and ocean. Better products are derived from AVHRR using its two channels. The new TOMS aerosol index shows the location and transport of aerosol over land and ocean. Now we anticipate the launch of EOS-Terra with MODIS, MISR and CERES on board for multi-view, multi-spectral remote sensing of aerosol and its radiative forcing. This will allow application of new techniques, e.g. using a wide spectral range (0.55-2.2 microns) to derive precise optical thickness, particle size and mass loading. Aerosol is transparent in the 2.2 microns channel, therefore this channel can be used to detect surface features that in turn are used to derive the aerosol optical thickness in the visible part of the spectrum. New techniques are developed to derive the aerosol single scattering albedo, a measure of absorption of sunlight, and techniques to derive directly the aerosol forcing at the top of the atmosphere. In the last 5 years a global network of sun/sky radiometers was formed, designed to communicate in real time the spectral optical thickness from 50-80 locations every day, every 15 minutes. The sky angular and spectral information is also measured and used to retrieve the aerosol size distribution, refractive index, single scattering albedo and the

  8. Optical Properties and Climate Impacts of Tropospheric Aerosols that Undergo Long-Range Transport to the Arctic

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Bates, T.; Coffman, D.; Schulz, K.; Shank, L.; Jefferson, A.; Ogren, J.; Burkhart, J.; Shaw, G.

    2009-04-01

    Tropospheric aerosol particles undergo long range transport from the mid-latitudes to the Arctic each winter and spring. Once in the Arctic, aerosols may impact regional climate in several ways. Aerosols can affect climate directly by scattering and absorbing incoming solar radiation and indirectly by acting as cloud condensation nuclei and altering cloud properties. In addition, absorbing aerosol that is deposited onto ice and snow can lower the surface albedo and enhance the ice-albedo feedback mechanism. Measurements of aerosol properties relevant to climate forcing (chemical composition, light scattering, and light absorption) have been made by NOAA at Barrow, AK for over a decade. Measurements of aerosol chemical composition have been made over the same time period at the three more southern Alaskan sites of Poker Flat, Denali National Park, and Homer. In addition, in March and April of 2008, aerosol measurements were made during a NOAA research cruise (ICEALOT) to the Greenland, Norwegian and Barents Seas. Onboard the ship, measurements were made of aerosol optical and cloud nucleating properties. Results from the long-term measurements and ICEALOT will be presented in order to describe trends and climate-relevant properties of aerosol particles transported to the Arctic.

  9. On COBACC (COntinental Biosphere-Aerosol-Cloud-Climate) feedback

    NASA Astrophysics Data System (ADS)

    Kulmala, Markku

    2016-04-01

    Anthropogenic emissions of GHGs have increased substantially during the past century. Elevated concentrations of CO2 and methane are the most important forcing agents causing global warming. However, it is not straightforward to attribute or predict the climate change in detail, as the internal variability of climate is only partially understood, aerosol forcings are still highly uncertain, and there are many feedback mechanisms that are difficult to quantify. It has been recognized for decades that the biosphere plays an important role in climate. For example, Kulmala et al. (2004) suggested a negative climate feedback mechanism whereby higher temperatures and CO2-levels boost continental biomass production, leading to increased biogenic secondary organic aerosol (BSOA) and cloud condensation nuclei (CCN) concentrations, tending to cause cooling. This COBACC (COntinental Biosphere-Aerosol-Cloud-Climate) feedback is similar to the so-called CLAW-hypothesis by Charlson et al. (1987) which connects the ocean biochemistry and climate via a negative feedback loop involving CCN production due to sulphur emissions from plankton. The first quantification of the COBACC feedback loop (Kulmala et al. 2014) was based on continuous comprehensive observations at SMEAR II (Station for Measuring Forest Ecosystem-Atmosphere Relations) station in Hyytiälä, Finland, and showed that a 10 ppm increase in atmospheric CO2 concentration leads to a significant (several percent) increase in both carbon sink and aerosol source. These effects operate through changes in gross primary production, volatile organic compound (VOC) emissions and secondary aerosol formation associated with atmospheric oxidation of VOCs. Here we will describe the present knowledge from processes level understanding to whole COBACC feedback including some hints on biogenic and anthropogenic contributions to global aerosol number load. References: Charlson, R. J. et al. Nature 326, 655 1987 Kulmala, M. et al. Atmos

  10. The Impact of Biogenic and Anthropogenic Atmospheric Aerosol on Climate in Egypt

    NASA Astrophysics Data System (ADS)

    Ibrahim, A. I.; Zakey, A.; Steiner, A. L.; Shokr, M. E.; El-Raey, M.; Ahmed, Y.; Al-Hadidi, A.; Zakey, A.

    2014-12-01

    Aerosols are indicators of air quality as they reduce visibility and adversely affect public health. Aerosol optical depth (AOD) is a measure of the radiation extinction due to interaction of radiation with aerosol particles in the atmosphere. Using this optical measure of atmospheric aerosols we explore the seasonal and annual patterns of aerosols from both anthropogenic and biogenic sources over Egypt. Here, we use an integrated environment-climate-aerosol model in conjunction with inversion technique to identify the aerosol particle size distribution over different locations in Egypt. The online-integrated Environment-Climate-Aerosol model (EnvClimA), which is based on the International Center for Theoretical Physics Regional Climate Model (ICTP-RegCM), is used to study the emission of different aerosols and their impact on climate parameters for a long-term base line simulation run over Egypt and North Africa. The global emission inventory is downscaled and remapping them over Egypt using local factors such as population, traffic and industrial activities to identify the sources of anthropogenic and biogenic emission from local emission over Egypt. The results indicated that the dominant natural aerosols over Egypt are dust emissions that frequently occur during the transitional seasons (Spring and Autumn). From the local observation we identify the number of dust and sand storm occurrences over Egypt. The Multiangle Imaging SpectroRadiometer (MISR) is used to identify the optical characterizations of different types of aerosols over Egypt. Modeled aerosol optical depth and MISR observed (at 555 nm) are compared from March 2000 through November 2013. The results identify that the MISR AOD captures the maximum peaks of AOD in March/April that coincide with the Khamasin dust storms. However, peaks in May are either due to photochemical reactions or anthropogenic activities. Note: This presentation is for a Partnerships for Enhanced Engagement in Research (PEER

  11. Stratospheric aerosol forcing for climate modeling: 1850-1978

    NASA Astrophysics Data System (ADS)

    Arfeuille, Florian; Luo, Beiping; Thomason, Larry; Vernier, Jean-Paul; Peter, Thomas

    2016-04-01

    We present here a stratospheric aerosol dataset produced using the available aerosol optical depth observations from the pre-satellite period. The scarce atmospheric observations are supplemented by additional information from an aerosol microphysical model, initialized by ice-core derived sulfur emissions. The model is used to derive extinctions at all altitudes, latitudes and times when sulfur injections are known for specific volcanic eruptions. The simulated extinction coefficients are then scaled to match the observed optical depths. In order to produce the complete optical properties at all wavelengths (and the aerosol surface area and volume densities) needed by climate models, we assume a lognormal size distribution of the aerosols. Correlations between the extinctions in the visible and the effective radius and distribution width parameters are taken from the better constrained SAGE II period. The aerosol number densities are then fitted to match the derived extinctions in the 1850-1978 period. From these aerosol size distributions, we then calculate extinction coefficients, single scattering albedos and asymmetry factors at all wavelengths using the Mie theory. The aerosol surface area densities and volume densities are also provided.

  12. Studies of dynamical processes affecting global climate

    SciTech Connect

    Keller, C.; Cooper, D.; Eichinger, W.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  13. Cosmic ray decreases affect atmospheric aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Svensmark, Henrik; Bondo, Torsten; Svensmark, Jacob

    2009-08-01

    Close passages of coronal mass ejections from the sun are signaled at the Earth's surface by Forbush decreases in cosmic ray counts. We find that low clouds contain less liquid water following Forbush decreases, and for the most influential events the liquid water in the oceanic atmosphere can diminish by as much as 7%. Cloud water content as gauged by the Special Sensor Microwave/Imager (SSM/I) reaches a minimum ≈7 days after the Forbush minimum in cosmic rays, and so does the fraction of low clouds seen by the Moderate Resolution Imaging Spectroradiometer (MODIS) and in the International Satellite Cloud Climate Project (ISCCP). Parallel observations by the aerosol robotic network AERONET reveal falls in the relative abundance of fine aerosol particles which, in normal circumstances, could have evolved into cloud condensation nuclei. Thus a link between the sun, cosmic rays, aerosols, and liquid-water clouds appears to exist on a global scale.

  14. Aerosol impacts on climate and environment over East Asia

    NASA Astrophysics Data System (ADS)

    Nakata, M.; Sano, I.; Mukai, S.

    2014-12-01

    It is well known that the aerosol distribution in East Asia is complex due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the behavior of natural dusts. Therefore, detailed observations of atmospheric particles in East Asian are important. It is concerned about the change of concentration of aerosols causes various effects on the climate by directly and indirectly modifying the optical properties and lifetimes of cloud. In addition to radiation budget change, aerosol has a significant potential to change cloud and precipitation. These circulation fields change influence on emission of natural aerosols such as dust aerosols and sea salt aerosols. Also, air pollution in megacities in East Asia has become a serious problem. Especially problematic are fine particles called PM2.5, whose diameter is 2.5 mm or less. Particulate matter (PM) pollution as indicated by high PM2.5 readings will cause a spike in the mortality rate of patients suffering from heart and lung diseases. Because fine particles are much smaller than inhalable coarse particles, the can penetrate deeper into the lungs and cause more severe effects on human health. Anthropogenic sources of PM2.5 include automobiles, factories, coal-burning power plants, and heaters in homes. It is well known that the size of dust particles decreases during long-range transport via westerly winds, and the resulting dust storms can contain high concentrations of fine particles. Accordingly, PM2.5 concentrations correspond well to both anthropogenic and dust aerosols. This work intends to investigate impacts of aerosol on regional climate change and environment over East Asia using observations and model simulations.

  15. Satellite methods underestimate indirect climate forcing by aerosols

    PubMed Central

    Penner, Joyce E.; Xu, Li; Wang, Minghuai

    2011-01-01

    Satellite-based estimates of the aerosol indirect effect (AIE) are consistently smaller than the estimates from global aerosol models, and, partly as a result of these differences, the assessment of this climate forcing includes large uncertainties. Satellite estimates typically use the present-day (PD) relationship between observed cloud drop number concentrations (Nc) and aerosol optical depths (AODs) to determine the preindustrial (PI) values of Nc. These values are then used to determine the PD and PI cloud albedos and, thus, the effect of anthropogenic aerosols on top of the atmosphere radiative fluxes. Here, we use a model with realistic aerosol and cloud processes to show that empirical relationships for ln(Nc) versus ln(AOD) derived from PD results do not represent the atmospheric perturbation caused by the addition of anthropogenic aerosols to the preindustrial atmosphere. As a result, the model estimates based on satellite methods of the AIE are between a factor of 3 to more than a factor of 6 smaller than model estimates based on actual PD and PI values for Nc. Using ln(Nc) versus ln(AI) (Aerosol Index, or the optical depth times angstrom exponent) to estimate preindustrial values for Nc provides estimates for Nc and forcing that are closer to the values predicted by the model. Nevertheless, the AIE using ln(Nc) versus ln(AI) may be substantially incorrect on a regional basis and may underestimate or overestimate the global average forcing by 25 to 35%. PMID:21808047

  16. Deliberating stratospheric aerosols for climate geoengineering and the SPICE project

    NASA Astrophysics Data System (ADS)

    Pidgeon, Nick; Parkhill, Karen; Corner, Adam; Vaughan, Naomi

    2013-05-01

    Increasing concerns about the narrowing window for averting dangerous climate change have prompted calls for research into geoengineering, alongside dialogue with the public regarding this as a possible response. We report results of the first public engagement study to explore the ethics and acceptability of stratospheric aerosol technology and a proposed field trial (the Stratospheric Particle Injection for Climate Engineering (SPICE) 'pipe and balloon' test bed) of components for an aerosol deployment mechanism. Although almost all of our participants were willing to allow the field trial to proceed, very few were comfortable with using stratospheric aerosols. This Perspective also discusses how these findings were used in a responsible innovation process for the SPICE project initiated by the UK's research councils.

  17. The Aerosol-Monsoon Climate System of Asia

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated

  18. Guidelines for the aerosol climatic effects special study: An element of the NASA climate research program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Research to help develop better understanding of the role of aerosols in the Earth's radiative balance is summarized. Natural volcanic injections of aerosols into the stratosphere to understand and model any resultant evidence of climate change are considered. The approach involves: (1) measurements from aircraft, balloon and ground based platforms which complement and enhance the aerosol information derived from satellite data; (2) development of instruments required for some of these measurements; (3) theoretical and laboratory work to aid in interpreting and utilizing space based and in situ data; and (4) preparation for and execution of concentrated observations of stratospheric aerosols following a future large volcanic eruption.

  19. Why is the climate forcing of sulfate aerosols so uncertain?

    NASA Astrophysics Data System (ADS)

    Rongming, Hu; Planton, Serge; Déque, Michel; Marquet, Pascal; Braun, Alain

    2001-12-01

    Sulfate aerosol particles have strong scattering effect on the solar radiation transfer which results in increasing the planet albedo and, hence, tend to cool the earth-atmosphere system. Also, aerosols can act as the cloud condensation nuclei (CCN) which tend to increase the albedo of clouds and cool the global warming. The ARPEGE-Climat version 3 AGCM with FMR radiation scheme is used to estimate the direct and indirect radiative forcing of sulfate aerosols. For minimizing the uncertainties in assessing this kind of cooling effect, all kinds of factors are analyzed which have been mixed in the assessment process and may lead to the different results of the radiative forcing of aerosols. It is noticed that one of the uncertainties to assess the climate forcing of aerosols by GCM results from the different definition of radiative forcing that was used. In order to clarify this vague idea, the off-line case for considering no feedbacks and on-line case for including all the feedbacks have been used for assessment. The direct forcing of sulfate aerosols in off-line case is -0.57 W/ m2 and -0.38 W/ m2 for the clear sky and all sky respectively. The value of on-line case appears to be a little larger than that in off-line case chiefly due to the feedback of clouds. The indirect forcing of sulfate aerosols in off-line case is -1.4 W/ m2 and -1.0 W/ m2 in on-line case. The radiative forcing of sulfate aerosols has obvious regional characteristics. There is a larger negative radiative forcing over North America, Europe and East Asia. If the direct and indirect forcing are added together, it is enough to offset the positive radiative forcing induced by the greenhouse gases in these regions.

  20. Climate impacts of carbonaceous and other non-sulfate aerosols: A proposed study

    SciTech Connect

    Andreae, M.O.; Crutzen, P.J.; Cofer, W.R. III; Hollande, J.M.

    1995-06-01

    In addition to sulfate aerosols, carbonaceous and other non-sulfate aerosols are potentially significant contributors to global climate change. We present evidence that strongly suggests that current assessments of the effects of aerosols on climate may be inadequate because major aerosol components, especially carbonaceous aerosols, are not included in these assessments. Although data on the properties and distributions of anthropogenic carbonaceous aerosols are insufficient to allow quantification of their climate impacts, the existing information suggests that climate forcing by this aerosol component may be significant and comparable to that by sulfate aerosols. We propose that a research program be undertaken to support a quantitative assessment of the role in climate forcing of non-sulfate, particularly carbonaceous, aerosols.

  1. Spatial distributions and seasonal cycles of aerosol climate effects in India seen in a global climate-aerosol model

    NASA Astrophysics Data System (ADS)

    Henriksson, S. V.; Pietikäinen, J.-P.; Hyvärinen, A.-P.; Räisänen, P.; Kupiainen, K.; Tonttila, J.; Hooda, R.; Lihavainen, H.; O'Donnell, D.; Backman, L.; Klimont, Z.; Laaksonen, A.

    2014-09-01

    Climate-aerosol interactions in India are studied by employing the global climate-aerosol model ECHAM5-HAM and the GAINS inventory for anthropogenic aerosol emissions. Model validation is done for black carbon surface concentrations in Mukteshwar and for features of the monsoon circulation. Seasonal cycles and spatial distributions of radiative forcing and the temperature and rainfall responses are presented for different model setups. While total aerosol radiative forcing is strongest in the summer, anthropogenic forcing is considerably stronger in winter than in summer. Local seasonal temperature anomalies caused by aerosols are mostly negative with some exceptions, e.g., parts of northern India in March-May. Rainfall increases due to the elevated heat pump (EHP) mechanism and decreases due to solar dimming mechanisms (SDMs) and the relative strengths of these effects during different seasons and for different model setups are studied. Aerosol light absorption does increase rainfall in northern India, but effects due to solar dimming and circulation work to cancel the increase. The total aerosol effect on rainfall is negative for northern India in the months of June-August, but during March-May the effect is positive for most model setups. These differences between responses in different seasons might help converge the ongoing debate on the EHPs and SDMs. Due to the complexity of the problem and known or potential sources for error and bias, the results should be interpreted cautiously as they are completely dependent on how realistic the model is. Aerosol-rainfall correlations and anticorrelations are shown not to be a reliable sole argument for deducing causality.

  2. Neutral and charged binary sulfate aerosol nucleation in the aerosol-climate modeling system ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Kokkola, H.

    2007-12-01

    Aerosol particles play an important role in the Earth's atmosphere and in the climate system: Aerosols scatter and absorb solar radiation, facilitate heterogeneous and multiphase chemistry, and change cloud characteristics in many ways. Aerosol particles can be directly emitted from surface sources (primary aerosol) or form from the gas phase (secondary aerosol). Secondary aerosol formation can significantly increase concentrations of cloud condensation nuclei. Two important pathways of aerosol formation from the gas phase are neutral and charged binary nucleation of sulfuric acid and water. We have introduced laboratory data based representations of these pathways into the aerosol-climate modeling system ECHAM5-HAM, and investigate their relative importance and spatial distribution in the troposphere, and discuss ramifications for processes in the Earth's atmosphere.

  3. On the Feasibility of Studying Shortwave Aerosol Radiative Forcing of Climate Using Dual-Wavelength Aerosol Backscatter Lidar

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Winker, David M.; McCormick, M. Patrick; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The current low confidence in the estimates of aerosol-induced perturbations of Earth's radiation balance is caused by the highly non-uniform compositional, spatial and temporal distributions of tropospheric aerosols on a global scale owing to their heterogeneous sources and short lifetimes. Nevertheless, recent studies have shown that the inclusion of aerosol effects in climate model calculations can improve agreement with observed spatial and temporal temperature distributions. In light of the short lifetimes of aerosols, determination of their global distribution with space-borne sensors seems to be a necessary approach. Until recently, satellite measurements of tropospheric aerosols have been approximate and did not provide the full set of information required to determine their radiative effects. With the advent of active aerosol remote sensing from space (e.g., PICASSO-CENA), the applicability fo lidar-derived aerosol 180 deg -backscatter data to radiative flux calculations and hence studies of aerosol effects on climate needs to be investigated.

  4. Simulation of South Asian aerosols for regional climate studies

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Solmon, Fabien; Giorgi, Filippo; Mariotti, Laura; Babu, S. Suresh; Moorthy, K. Krishna

    2012-02-01

    Extensive intercomparison of columnar and near-surface aerosols, simulated over the South Asian domain using the aerosol module included in the regional climate model (RegCM4) of the Abdus Salam International Centre for Theoretical Physics (ICTP) have been carried out using ground-based network of Sun/sky Aerosol Robotic Network (AERONET) radiometers, satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR), and ground-based black carbon (BC) measurements made at Aerosol Radiative Forcing over India (ARFI) network stations. In general, RegCM4 simulations reproduced the spatial and seasonal characteristics of aerosol optical depth over South Asia reasonably well, particularly over west Asia, where mineral dust is a major contributor to the total aerosol loading. In contrast, RegCM4 simulations drastically underestimated the BC mass concentrations over most of the stations, by a factor of 2 to 5, with a large spatial variability. Seasonally, the discrepancy between the measured and simulated BC tended to be higher during winter and periods when the atmospheric boundary layer is convectively stable (such as nighttime and early mornings), while during summer season and during periods when the boundary layer is convectively unstable (daytime) the discrepancies were much lower, with the noontime values agreeing very closely with the observations. A detailed analysis revealed that the model does not reproduce the nocturnal high in BC, observed at most of the Indian sites especially during winter, because of the excessive vertical transport of aerosols under stable boundary layer conditions. As far as the vertical distribution was concerned, the simulated vertical profiles of BC agreed well with airborne measurements during daytime. This comprehensive validation exercise reveals the strengths and weaknesses of the model in simulating the spatial and temporal heterogeneities of the aerosol fields over

  5. Primary carbonaceous aerosols and climate modeling: Classifications, global emission inventories, and observations

    NASA Astrophysics Data System (ADS)

    Sun, H.; Bond, T.

    2004-12-01

    Carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), make up a large fraction of the atmospheric aerosols and affect the radiative balance of the earth either by directly scattering and absorbing solar radiation or through indirect influence on cloud optical properties and cloud lifetimes. The major sources of BC and OC emissions are from combustion processes, mainly.fossil-fuel burning, biofuels burning, and open biomass burning. OC is nearly always emitted with BC. Because different combustion practices contribute to the emission of BC and OC to the atmosphere, the magnitude and characteristics of carbonaceous aerosols vary between regions. Since OC mainly scatters light and BC absorbs it, it is possible that OC can oppose the warming effect of BC, so that the net climatic effect of carbonaceous aerosols is not known. There is presently disagreement on whether carbonaceous aerosols produce a net warming or cooling effect on climate. Some differences in model prediction may result from model differences, such as dynamics and treatment of cloud feedbacks. However, large differences also result from initial assumptions about the properties of BC and OC: optical properties, size distribution, and interaction with water. Although there are hundreds of different organic species in atmospheric aerosols, with widely varying properties, global climate models to date have treated organics as one ¡°compound.¡± In addition, emissions of OC are often derived by multiplying BC emissions by a constant factor, so that the balance between these different compounds is assumed. Addressing these critical model assumptions is a necessary step toward estimating the net climatic impact of carbonaceous aerosols, and different human activities. We aim to contribute to this effort by tabulating important climate-relevant properties of both emissions and ambient measurements. Since one single organic ¡°compound¡± is not sufficient to represent all the

  6. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  7. An overview of geoengineering of climate using stratospheric sulphate aerosols

    SciTech Connect

    Rasch, Philip J.; Tilmes, S.; Turco, Richard P.; Robock, Alan; Oman, Luke; Chen, Chih-Chieh; Stenchikov, Georgiy; Garcia, Rolando R.

    2010-01-01

    We provide an overview of geoengineering by stratospheric sulphate aerosols. The state of understanding about this topic as of early 2008 is reviewed, summarizing the past 30 years of work in the area, highlighting some very recent studies using climate models, and discussing methods used to deliver sulphur species to the stratosphere. The studies reviewed here suggest that sulphate aerosols can counteract the globally averaged temperature increase associated with increasing greenhouse gases, and reduce changes to some other components of the Earth system. There are likely to be remaining regional climate changes after geoengineering, with some regions experiencing significant changes in temperature or precipitation. The aerosols also serve as surfaces for heterogeneous chemistry resulting in increased ozone depletion. The delivery of sulphur species to the stratosphere in a way that will produce particles of the right size is shown to be a complex and potentially very difficult task. Two simple delivery scenarios are explored, but similar exercises will be needed for other suggested delivery mechanisms. While the introduction of the geoengineering source of sulphate aerosol will perturb the sulphur cycle of the stratosphere signicantly, it is a small perturbation to the total (stratosphere and troposphere) sulphur cycle. The geoengineering source would thus be a small contributor to the total global source of ‘acid rain’ that could be compensated for through improved pollution control of anthropogenic tropospheric sources. Some areas of research remain unexplored. Although ozone may be depleted, with a consequent increase to solar ultraviolet-B (UVB) energy reaching the surface and a potential impact on health and biological populations, the aerosols will also scatter and attenuate this part of the energy spectrum, and this may compensate the UVB enhancement associated with ozone depletion. The aerosol will also change the ratio of diffuse to direct energy

  8. An overview of geoengineering of climate using stratospheric sulphate aerosols.

    PubMed

    Rasch, Philip J; Tilmes, Simone; Turco, Richard P; Robock, Alan; Oman, Luke; Chen, Chih-Chieh; Stenchikov, Georgiy L; Garcia, Rolando R

    2008-11-13

    We provide an overview of geoengineering by stratospheric sulphate aerosols. The state of understanding about this topic as of early 2008 is reviewed, summarizing the past 30 years of work in the area, highlighting some very recent studies using climate models, and discussing methods used to deliver sulphur species to the stratosphere. The studies reviewed here suggest that sulphate aerosols can counteract the globally averaged temperature increase associated with increasing greenhouse gases, and reduce changes to some other components of the Earth system. There are likely to be remaining regional climate changes after geoengineering, with some regions experiencing significant changes in temperature or precipitation. The aerosols also serve as surfaces for heterogeneous chemistry resulting in increased ozone depletion. The delivery of sulphur species to the stratosphere in a way that will produce particles of the right size is shown to be a complex and potentially very difficult task. Two simple delivery scenarios are explored, but similar exercises will be needed for other suggested delivery mechanisms. While the introduction of the geoengineering source of sulphate aerosol will perturb the sulphur cycle of the stratosphere signicantly, it is a small perturbation to the total (stratosphere and troposphere) sulphur cycle. The geoengineering source would thus be a small contributor to the total global source of 'acid rain' that could be compensated for through improved pollution control of anthropogenic tropospheric sources. Some areas of research remain unexplored. Although ozone may be depleted, with a consequent increase to solar ultraviolet-B (UVB) energy reaching the surface and a potential impact on health and biological populations, the aerosols will also scatter and attenuate this part of the energy spectrum, and this may compensate the UVB enhancement associated with ozone depletion. The aerosol will also change the ratio of diffuse to direct energy

  9. Arctic climate response to geoengineering with stratospheric sulfate aerosols

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2010-12-01

    Recent warming and record summer sea-ice area minimums have spurred expressions of concern for arctic ecosystems, permafrost, and polar bear populations, among other things. Geoengineering by stratospheric sulfate aerosol injections to deliberately cancel the anthropogenic temperature rise has been put forth as a possible solution to restoring Arctic (and global) climate to modern conditions. However, climate is particularly sensitive in the northern high latitudes, responding easily to radiative forcing changes. To that end, we explore the extent to which tropical injections of stratospheric sulfate aerosol can accomplish regional cancellation in the Arctic. We use the Community Climate System Model version 3 global climate model to execute simulations with combinations of doubled CO2 and imposed stratospheric sulfate burdens to investigate the effects on high latitude climate. We further explore the sensitivity of the polar climate to ocean dynamics by running a suite of simulations with and without ocean dynamics, transiently and to equilibrium respectively. We find that, although annual, global mean temperature cancellation is accomplished, there is over-cooling on land in Arctic summer, but residual warming in Arctic winter, which is largely due to atmospheric circulation changes. Furthermore, the spatial extent of these features and their concurrent impacts on sea-ice properties are modified by the inclusion of ocean dynamical feedbacks.

  10. Hydrological sensitivity to greenhouse gases and aerosols in a global climate model

    NASA Astrophysics Data System (ADS)

    KvalevâG, Maria Malene; Samset, BjøRn H.; Myhre, Gunnar

    2013-04-01

    Changes in greenhouse gases and aerosols alter the atmospheric energy budget on different time scales and at different levels in the atmosphere. We study the relationship between global mean precipitation changes, radiative forcing, and surface temperature change since preindustrial times caused by several climate change components (CO2, CH4, sulphate and black carbon (BC) aerosols, and solar forcing) using the National Center for Atmospheric Research Community Earth System Model (CESM1.03). We find a fast response in precipitation due to atmospheric instability that correlates with radiative forcing associated with atmospheric absorption and a slower response caused by changes in surface temperature which correlates with radiative forcing at the top of the atmosphere. In general, global climate models show large differences in climate response to global warming, but here we find a strong relationship between global mean radiative forcing and global mean precipitation changes that is very consistent with other models, indicating that precipitation changes from a particular forcing mechanism are more robust than previously expected. In addition, we look at the precipitation response and relate it to changes in lifetime of atmospheric water vapor (τ). BC aerosols have a significantly larger impact on changes in τ related to surface temperature compared to greenhouse gases, sulphate aerosols, and solar forcing and are the dominating forcing mechanism affecting fast precipitation in this quantity.

  11. Climate studies with a multilayer energy balance model. III - Climatic impact of stratospheric volcanic aerosols

    NASA Technical Reports Server (NTRS)

    Chou, M.-D.; Arking, A.; Peng, L.

    1984-01-01

    A multilayer energy balance model is applied in an examination of the sensitivity of climate to stratospheric aerosols induced by volcanic eruptions. Zonally and annually averaged quantities are considered, with ocean and land temperatures computed separately and the atmosphere below the 200 mb level divided into eight layers of 24 sublayers each. The aerosol is assumed to form in the 150-200 mb range. Aerosol parameters for radiative transfer calculations are reflection in the solar spectral region and absorption in the solar and IR regions. A 75 percent aqueous solution of sulfuric acid is assumed for the aerosols. The sensitivity of the hemispherically averaged surface temperature is enhanced 37 percent, with a 20 percent uncertainty, when the thermal IR radiation is excluded. The solar radiation enhances the surface temperatures to a higher degree than the thermal radiation. The maximum response to the evenly distributed aerosols is in the 60-70 deg N latitudes and propagates, weakening, to lower latitudes.

  12. Decadal scale, seasonal climate effects of aerosols in China

    NASA Astrophysics Data System (ADS)

    Folini, Doris; Wild, Martin

    2014-05-01

    China is a hot spot in terms of population growth and industrialization. This development is accompanied by a substantial increase in aerosol emissions. We investigate associated impacts of different aerosol emissions on surface solar radiation (SSR), surface air temperature (SAT), and precipitation by means of the global atmosphere only climate model ECHAM5-HAM (aerosol emission data from NIES, the National Institute of Environmental Studies, Japan; prescribed, observation based sea surface temperatures (SSTs) from the Hadley Center). Ensembles of transient (1870 - 2005) sensitivity experiments are performed and analyzed on a seasonal basis. We discuss corresponding findings, among them that inclusion of aerosol emissions leads to a decrease of modeled SSR of around -7 W/m2 in eastern parts of China in recent decades, in good agreement with in situ observations of SSR changes. The associated cooling leads to better agreement between modeled and measures SAT time series, especially in summer. By contrast, the precipitation reduction brought about by aerosols in the model is rather strong compared to observations.

  13. BAECC Biogenic Aerosols - Effects on Clouds and Climate

    SciTech Connect

    Petäjä, Tuukka; Moisseev, Dmitri; Sinclair, Victoria; O'Connor, Ewan J.; Manninen, Antti J.; Levula, Janne; Väänänen, Riikka; Heikkinen, Liine; Äijälä, Mikko; Aalto, Juho; Bäck, Jaana

    2015-11-01

    “Biogenic Aerosols - Effects on Clouds and Climate (BAECC)”, featured the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program’s 2nd Mobile Facility (AMF2) in Hyytiälä, Finland. It operated for an 8-month intensive measurement campaign from February to September 2014. The main research goal was to understand the role of biogenic aerosols in cloud formation. One of the reasons to perform BAECC study in Hyytiälä was the fact that it hosts SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), which is one of the world’s most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. The BAECC enables combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations and allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. With the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations of AMF2 and SMEAR-II provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes. The BAECC dataset will initiate new opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures.

  14. Climatic effects of 1950-2050 changes in US anthropogenic aerosols - Part 2: Climate response

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-04-01

    We investigate the climate response to changing US anthropogenic aerosol sources over the 1950-2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970-1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5-1.0 °C on average during 1970-1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960-1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010-2050). We find that most of the warming from aerosol source controls in the US has already been realized over the 1980-2010 period.

  15. Climatic effects of 1950-2050 changes in US anthropogenic aerosols - Part 2: Climate response

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2011-08-01

    We investigate the climate response to US anthropogenic aerosol sources over the 1950 to 2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970-1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5-1.0 °C on average during 1970-1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960-1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010-2050). We find that most of the potential warming from aerosol source controls in the US has already been realized over the 1980-2010 period.

  16. Impact of anthropogenic aerosols on regional climate change in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Liou, K. N.; He, C.; Lee, W. L.; Gu, Y.; Li, Q.; Leung, L. R.

    2015-12-01

    Anthropogenic aerosols affect regional climate significantly through radiative (direct and semi-direct) and indirect effects, but the magnitude of these effects over megacities are subject to large uncertainty. In this study, we evaluated the effects of anthropogenic aerosols on regional climate change in Beijing, China using the online-coupled Weather Research and Forecasting/Chemistry Model (WRF/Chem) with the Fu-Liou-Gu radiation scheme and a spatial resolution of 4km. We further updated this radiation scheme with a geometric-optics surface-wave (GOS) approach for the computation of light absorption and scattering by black carbon (BC) particles in which aggregation shape and internal mixing properties are accounted for. In addition, we incorporated in WRF/Chem a 3D radiative transfer parameterization in conjunction with high-resolution digital data for city buildings and landscape to improve the simulation of boundary-layer, surface solar fluxes and associated sensible/latent heat fluxes. Preliminary simulated meteorological parameters, fine particles (PM2.5) and their chemical components agree well with observational data in terms of both magnitude and spatio-temporal variations. The effects of anthropogenic aerosols, including BC, on radiative forcing, surface temperature, wind speed, humidity, cloud water path, and precipitation are quantified on the basis of simulation results. With several preliminary sensitivity runs, we found that meteorological parameters and aerosol radiative effects simulated with the incorporation of improved BC absorption and 3-D radiation parameterizations deviate substantially from simulation results using the conventional homogeneous/core-shell configuration for BC and the plane-parallel model for radiative transfer. Understanding of the aerosol effects on regional climate change over megacities must consider the complex shape and mixing state of aerosol aggregates and 3D radiative transfer effects over city landscape.

  17. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

    NASA Astrophysics Data System (ADS)

    Joutsensaari, J.; Yli-Pirilä, P.; Korhonen, H.; Arola, A.; Blande, J. D.; Heijari, J.; Kivimäenpää, M.; Mikkonen, S.; Hao, L.; Miettinen, P.; Lyytikäinen-Saarenmaa, P.; Faiola, C. L.; Laaksonen, A.; Holopainen, J. K.

    2015-04-01

    , affect both aerosol direct and indirect forcing of climate at regional scales. The effect of insect outbreaks on VOC emissions and SOA formation should be considered in future climate predictions.

  18. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

    NASA Astrophysics Data System (ADS)

    Joutsensaari, J.; Yli-Pirilä, P.; Korhonen, H.; Arola, A.; Blande, J. D.; Heijari, J.; Kivimäenpää, M.; Mikkonen, S.; Hao, L.; Miettinen, P.; Lyytikäinen-Saarenmaa, P.; Faiola, C. L.; Laaksonen, A.; Holopainen, J. K.

    2015-11-01

    , affect both aerosol direct and indirect forcing of climate at regional scales. The effect of insect outbreaks on VOC emissions and SOA formation should be considered in future climate predictions.

  19. Global observations of aerosol-cloud-precipitation-climate interactions

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Daniel; Andreae, Meinrat O.; Asmi, Ari; Chin, Mian; Leeuw, Gerrit; Donovan, David P.; Kahn, Ralph; Kinne, Stefan; Kivekäs, Niku; Kulmala, Markku; Lau, William; Schmidt, K. Sebastian; Suni, Tanja; Wagner, Thomas; Wild, Martin; Quaas, Johannes

    2014-12-01

    Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation emitted to space. Measurements of tropospheric CCN and IN over large areas have not been possible and can be only roughly approximated from satellite-sensor-based estimates of optical properties of aerosols. Our lack of ability to measure both CCN and cloud updrafts precludes disentangling the effects of meteorology from those of aerosols and represents the largest component in our uncertainty in anthropogenic climate forcing. Ways to improve the retrieval accuracy include multiangle and multipolarimetric passive measurements of the optical signal and multispectral lidar polarimetric measurements. Indirect methods include proxies of trace gases, as retrieved by hyperspectral sensors. Perhaps the most promising emerging direction is retrieving the CCN properties by simultaneously retrieving convective cloud drop number concentrations and updraft speeds, which amounts to using clouds as natural CCN chambers. These satellite observations have to be constrained by in situ observations of aerosol-cloud-precipitation-climate (ACPC) interactions, which in turn constrain a hierarchy of model simulations of ACPC. Since the essence of a general circulation model is an accurate quantification of the energy and mass fluxes in all forms between the surface, atmosphere and outer space, a route to progress is proposed here in the form of a series of box flux closure experiments in the various climate regimes. A roadmap is provided for quantifying the ACPC interactions and thereby reducing the uncertainty in anthropogenic climate forcing.

  20. Airborne minerals and related aerosol particles: Effects on climate and the environment

    PubMed Central

    Buseck, Peter R.; Pósfai, Mihály

    1999-01-01

    Aerosol particles are ubiquitous in the troposphere and exert an important influence on global climate and the environment. They affect climate through scattering, transmission, and absorption of radiation as well as by acting as nuclei for cloud formation. A significant fraction of the aerosol particle burden consists of minerals, and most of the remainder— whether natural or anthropogenic—consists of materials that can be studied by the same methods as are used for fine-grained minerals. Our emphasis is on the study and character of the individual particles. Sulfate particles are the main cooling agents among aerosols; we found that in the remote oceanic atmosphere a significant fraction is aggregated with soot, a material that can diminish the cooling effect of sulfate. Our results suggest oxidization of SO2 may have occurred on soot surfaces, implying that even in the remote marine troposphere soot provided nuclei for heterogeneous sulfate formation. Sea salt is the dominant aerosol species (by mass) above the oceans. In addition to being important light scatterers and contributors to cloud condensation nuclei, sea-salt particles also provide large surface areas for heterogeneous atmospheric reactions. Minerals comprise the dominant mass fraction of the atmospheric aerosol burden. As all geologists know, they are a highly heterogeneous mixture. However, among atmospheric scientists they are commonly treated as a fairly uniform group, and one whose interaction with radiation is widely assumed to be unpredictable. Given their abundances, large total surface areas, and reactivities, their role in influencing climate will require increased attention as climate models are refined. PMID:10097046

  1. Impact of carbonaceous aerosol emissions on regional climate change

    NASA Astrophysics Data System (ADS)

    Roeckner, E.; Stier, P.; Feichter, J.; Kloster, S.; Esch, M.; Fischer-Bruns, I.

    2006-11-01

    The past and future evolution of atmospheric composition and climate has been simulated with a version of the Max Planck Institute Earth System Model (MPI-ESM). The system consists of the atmosphere, including a detailed representation of tropospheric aerosols, the land surface, and the ocean, including a model of the marine biogeochemistry which interacts with the atmosphere via the dust and sulfur cycles. In addition to the prescribed concentrations of carbon dioxide, ozone and other greenhouse gases, the model is driven by natural forcings (solar irradiance and volcanic aerosol), and by emissions of mineral dust, sea salt, sulfur, black carbon (BC) and particulate organic matter (POM). Transient climate simulations were performed for the twentieth century and extended into the twenty-first century, according to SRES scenario A1B, with two different assumptions on future emissions of carbonaceous aerosols (BC, POM). In the first experiment, BC and POM emissions decrease over Europe and China but increase at lower latitudes (central and South America, Africa, Middle East, India, Southeast Asia). In the second experiment, the BC and POM emissions are frozen at their levels of year 2000. According to these experiments the impact of projected changes in carbonaceaous aerosols on the global mean temperature is negligible, but significant changes are found at low latitudes. This includes a cooling of the surface, enhanced precipitation and runoff, and a wetter surface. These regional changes in surface climate are caused primarily by the atmospheric absorption of sunlight by increasing BC levels and, subsequently, by thermally driven circulations which favour the transport of moisture from the adjacent oceans. The vertical redistribution of solar energy is particularly large during the dry season in central Africa when the anomalous atmospheric heating of up to 60 W m-2 and a corresponding decrease in surface solar radiation leads to a marked surface cooling, reduced

  2. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    SciTech Connect

    Meskhidze, N.; Xu, J.; Gantt, Brett; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2011-11-23

    Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS{sup -}) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr{sup -1}, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS{sup -} (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr{sup -1}, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ngm{sup -3}, with values up to 400 ngm{sup -3} over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea

  3. Aerosol Climate Effects: Local Radiative Forcing and Column Closure Experiments

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, Robert W.; Kinne, S. A.

    2000-01-01

    In an effort to reduce uncertainties in climate change predictions, experiments are being planned and conducted to measure anthropogenic aerosol properties and effects, including effects on radiative fields. The global average, direct anthropogenic aerosol effect on upwelling shortwave fluxes is estimated to be about +1/2 W/sq m, whereas errors in flux changes measured with airborne and spaceborne radiometers are 2 to 8 W/sq m or larger. This poses the question of whether flux changes expected in field experiments will be large enough to measure accurately. This paper obtains a new expression for the aerosol-induced change in upwelling flux, compares it to two-stream and adding-doubling (AD) results, and uses all three methods to estimate expected flux changes. The new expression accounts for the solar zenith angle dependences of aerosol transmission and reflection, as well as of surface albedo, all of which can have a strong effect in determining flux changes measured in field experiments. Despite its relative simplicity, the new expression gives results similar to previous two-stream results. Relative to AD results, it agrees within a few watts per square meter for the intermediate solar elevation angles where the flux changes peak (roughly 10 to 30 degrees), but it has negative errors for higher Sun and positive errors for lower Sun. All three techniques yield aerosol-induced changes in upwelling flux of +8 to +50 W/sq m for aerosol midvisible optical depths of 0.1 to 0.5. Because such aerosol optical depths occur frequently off the U.S. and European Atlantic coasts in summer, the flux changes they induce should be measurable by airborne, and possibly by spaceborne, radiometers, provided sufficient care is taken in experiment design (including measurements to separate aerosol radiative effects from those of absorbing gases). The expected flux changes are about 15 to 100 times larger than the global average flux change expected for the global average

  4. Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign

    NASA Astrophysics Data System (ADS)

    Roelofs, G.-J.; ten Brink, H.; Kiendler-Scharr, A.; de Leeuw, G.; Mensah, A.; Minikin, A.; Otjes, R.

    2010-08-01

    In May 2008, the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw, The Netherlands. With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate the size distribution and chemical composition of the aerosol and the associated aerosol optical thickness (AOT) for the campaign period. Synoptic scale meteorology is represented realistically through nudging of the vorticity, the divergence, the temperature and the surface pressure. Simulated concentrations of aerosol sulfate and organics at the surface are generally within a factor of two from observed values. The monthly averaged AOT from the model is 0.33, about 20% larger than observed. For selected periods of the month with relatively dry and moist conditions discrepancies are approximately -30% and +15%, respectively. Discrepancies during the dry period are partly caused by inaccurate representation of boundary layer (BL) dynamics by the model affecting the simulated AOT. The model simulates too strong exchange between the BL and the free troposphere, resulting in weaker concentration gradients at the BL top than observed for aerosol and humidity, while upward mixing from the surface layers into the BL appears to be underestimated. The results indicate that beside aerosol sulfate and organics also aerosol ammonium and nitrate significantly contribute to aerosol water uptake. The simulated day-to-day variability of AOT follows synoptic scale advection of humidity rather than particle concentration. Even for relatively dry conditions AOT appears to be strongly influenced by the diurnal cycle of RH in the lower boundary layer, further enhanced by uptake and release of nitric acid and ammonia by aerosol water.

  5. Aerosol, Cloud, and Climate: From Observation to Model (457th Brookhaven Lecture)

    ScienceCinema

    Wang, Jian [Ph.D., Environmental Sciences Department

    2010-09-01

    In the last 100 years, the Earth has warmed by about 1ºF, glaciers and sea ice have been melting more quickly than previously, especially during the past decade, and the level of the sea has risen about 6-8 inches worldwide. Scientists have long been investigating this phenomenon of ?global warming,? which is believed to be at least partly due to the increased carbon dioxide (CO2) concentration in the air from burning fossil fuels. Funded by DOE, teams of researchers from BNL and other national labs have been gathering data in the U.S. and internationally to build computer models of climate and weather to help in understanding general patterns, causes, and perhaps, solutions. Among many findings, researchers observed that atmospheric aerosols, minute particles in the atmosphere, can significantly affect global energy balance and climate. Directly, aerosols scatter and absorb sunlight. Indirectly, increased aerosol concentration can lead to smaller cloud droplets, changing clouds in ways that tend to cool global climate and potentially mask overall warming from man-made CO2.

  6. Aerosol, Cloud, and Climate: From Observation to Model (457th Brookhaven Lecture)

    SciTech Connect

    Wang, Jian

    2010-05-12

    In the last 100 years, the Earth has warmed by about 1ºF, glaciers and sea ice have been melting more quickly than previously, especially during the past decade, and the level of the sea has risen about 6-8 inches worldwide. Scientists have long been investigating this phenomenon of “global warming,” which is believed to be at least partly due to the increased carbon dioxide (CO2) concentration in the air from burning fossil fuels. Funded by DOE, teams of researchers from BNL and other national labs have been gathering data in the U.S. and internationally to build computer models of climate and weather to help in understanding general patterns, causes, and perhaps, solutions. Among many findings, researchers observed that atmospheric aerosols, minute particles in the atmosphere, can significantly affect global energy balance and climate. Directly, aerosols scatter and absorb sunlight. Indirectly, increased aerosol concentration can lead to smaller cloud droplets, changing clouds in ways that tend to cool global climate and potentially mask overall warming from man-made CO2.

  7. Anthropogenic contribution to cloud condensation nuclei and the first aerosol indirect climate effect modelled by GEOS-Chem/APM

    NASA Astrophysics Data System (ADS)

    Yu, F.

    2013-05-01

    Atmospheric particles influence climate indirectly by acting as cloud condensation nuclei (CCN) that affect cloud properties (albedo, lifetime, etc.) and precipitation. The first aerosol indirect radiative forcing (FAIRF) (i.e., cloud albedo effect) constitutes the largest uncertainty among the various radiative forcings quantified by the latest IPCC assessment report (IPCC2007). In order to confidently interpret climate change over the past century and project future change, it is essential to reduce the FAIRF uncertainty. One of the large sources of the uncertainty is the poor knowledge of the number concentrations and spatial distributions of pre-industrial and present-day aerosols. All previous and recent FAIRF studies are based on global models with simplified chemistry and aerosol microphysics, which may lead to large uncertainties in predicted aerosol properties and FAIRF values. Here, we investigate the anthropogenic contribution to CCN and associated FAIRF using a state-of-the-art global chemical transport and aerosol model (GEOS-Chem/APM) that contains a number of advanced features (including size-resolved sectional particle microphysics, online comprehensive SOx-NOx-Ox-VOCs chemistry, consideration of nitrate and secondary organic aerosols, online aerosol-cloud-radiation calculation, usage of more accurate assimilated meteorology, etc.). As far as we know, this is the first time that a global model with full chemistry and size-resolved (sectional) particle microphysics is employed to study FAIRF. Key aerosol properties predicted by GEOS-Chem/APM for the present-day case have been evaluated against a large set of land-, ship-, aircraft-, and satellite- based aerosol measurements including total particle number concentrations, CCN concentrations, AODs, and vertical profiles of extinction coefficients. The GEOS-Chem/APM model, with its advanced features and ability to reproduce observed aerosol properties (including CCN) around the globe, is expected to

  8. Toward a New Era of Research in Aerosol/Cloud/Climate Interactions at LLNL

    SciTech Connect

    Chuang, C,; Dignon, J.; Grant, K.; Connell, P.; Bergman, D.; Rotman, D.; Wright, D.; McGraw, R.; Schwartz, S.

    2000-09-27

    One of the largest uncertainties in simulations of climate change over the industrial period is the impact of anthropogenic aerosols on the Earth's radiation budget. Much of this uncertainty arises from the limited capability for either precisely linking precursor gases to the formation and size distribution of the aerosols or quantitatively describing the existing levels of global aerosol loading. This project builds on our aerosol and chemistry expertise to address each of these uncertainties in a more quantitative fashion than is currently possible. With the current LDRD support, we are in the process to implement an aerosol microphysics module into our global chemistry model to more fundamentally and completely describe the processes that determine the distribution of atmospheric aerosols. Using this new modeling capability, in conjunction with the most current version of NCAR climate model, we will examine the influence of these processes on aerosol direct and indirect climate forcing.

  9. The Importance of Water Uptake by Aerosols in the Climate Change Problem

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Ginoux, P.; Randles, C.; Schwarzkopf, M. D.

    2007-12-01

    It is well understood that aerosol species have and are continuing to play a central role in the radiative forcing of the climate system. While the role of single-scattering properties of aerosols on climate is generally well- recognized, a key factor that governs the aerosol optical property viz., the hygroscopic growth has received insufficient attention particularly in terms of its role in the climatic impacts due to aerosols. A sensitivity investigation is performed that quantitatively highlights the consequence of the growth of sea-salt-organic carbon mixtures for radiative forcing. Next, we employ the GFDL coupled atmosphere-ocean model to study specifically the aerosol radiative forcing and climate response arising due to the hygroscopic features of sulfate aerosols as they have increased from preindustrial to present-day. We make use of observations of optical depth and surface concentrations to evaluate the reliability of the simulated hygroscopic growth. Regional climate responses in Europe, Asia and Africa are examined, with a focus on temperature, hydrological cycle and surface energy budgets. The importance of hygroscopicity in the climate change problem is put in perspective by comparing the climatic effects with those due to aerosol absorption as well as with those caused by the infrared-absorbing long- lived greenhouse gases. Further, we explore the climate consequence arising from the scenarios of the future emissions of aerosols and the associated hygroscopicity effects.

  10. Aerosols, Clouds, and Precipitation as Scale Interactions in the Climate System and Controls on Climate Change

    NASA Astrophysics Data System (ADS)

    Donner, Leo

    Clouds are major regulators of atmospheric energy flows. Their character depends on atmospheric composition, dynamics, and thermodynamic state. Clouds can assume organized structures whose scales are planetary, while processes important for determining basic properties occur on the scale of microns. The range of processes, scales, and interactions among them has precluded the development of concise theories for the role of clouds in climate, and limitations in modeling clouds in complex climate models remain among the key uncertainties in understanding and projecting climate change. The distribution function of vertical velocities (updraft speeds) in clouds is an important control on climate forcing by clouds and possibly a strong correlate with climate sensitivity. (Climate forcing refers to the change in Earth's energy balance as atmospheric composition changes, in particular, due to human activity. Climate sensitivity is defined here as the equilibrium change in globally averaged annual surface temperature as a result of doubled carbon dioxide.) Vertical velocities are central because they determine the thermodynamic environment governing phase changes of water, with both equilibrium and non-equilibrium phenomena important. The spatial and temporal spectra of relevant vertical velocities includes scales both numerically resolved by climate models and below their resolution limit. The latter implies a requirement to parameterize these smaller scale motions in models. The scale dependence of vertical velocities and emerging observational constraints on their distribution provide new opportunities for representing aerosols, clouds, and precipitation in climate models. Success in doing so could provide important breakthroughs in understanding both climate forcing and sensitivity.

  11. Linearity of Climate Response to Increases in Black Carbon Aerosols

    SciTech Connect

    Mahajan, Salil; Evans, Katherine J.; Hack, James J.; Truesdale, John

    2013-04-19

    The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $ W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $ W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $W^{-1}m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $ PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

  12. Satellite Remote Sensing and Mesoscale Modeling of Biomass Burning Aerosols over the Southeast Asian Maritime Continent: Climatic Implications of Smokes on Regional Energy Balance, Cloud Formations and Precipitations

    NASA Astrophysics Data System (ADS)

    Feng, N.

    2015-12-01

    The influences of anthropogenic aerosols have been suggested as an important reason for climate changes over Southeast Asia (SE Asia, 10°S~20°N and 90°E~135°E). Accurate observations and modelling of aerosols effects on the weather and climate patterns is crucial for a better understanding and mitigation of anthropogenic climate change. This study uses NASA satellite observations along with online-coupled Weather Research and Forecasting model with Chemistry (WRF-Chem) to evaluate aerosols impacts on climate over SE Asia. We assess the direct and semi-direct radiative effects of smoke particles over this region during September, 2009 when a significant El Niño event caused the highest biomass burning activity during the last 15 years. Quantification efforts are made to assess how changes of radiative and non radiative parameters (sensible and latent heat) due to smoke aerosols would affect regional climate process such as precipitations, clouds and planetary boundary layer process. Comparison of model simulations for the current land cover conditions against surface meteorological observations and satellite observations of precipitations and cloudiness show satisfactory performance of the model over our study area. In order to quantitatively validate the model results, several experiments will be performed to test the aerosols radiative feedback under different radiation schemes and with/without considering aerosol effects explicitly in the model. Relevant ground-based data (e.g. AERONET), along with aerosol vertical profile data from CALIPSO, will also be applied.

  13. Environment, Health and Climate: Impact of African aerosols

    NASA Astrophysics Data System (ADS)

    Liousse, C.; Doumbia, T.; Assamoi, E.; Galy-Lacaux, C.; Baeza, A.; Penner, J. E.; Val, S.; Cachier, H.; Xu, L.; Criqui, P.

    2012-12-01

    Fossil fuel and biofuel emissions of particles in Africa are expected to significantly increase in the near future, particularly due to rapid growth of African cities. In addition to biomass burning emissions prevailing in these areas, air quality degradation is then expected with important consequences on population health and climatic/radiative impact. In our group, we are constructing a new integrated methodology to study the relations between emissions, air quality and their impacts. This approach includes: (1) African combustion emission characterizations; (2) joint experimental determination of aerosol chemistry from ultrafine to coarse fractions and health issues (toxicology and epidemiology). (3) integrated environmental, health and radiative modeling. In this work, we show some results illustrating our first estimates of African anthropogenic emission impacts: - a new African anthropogenic emission inventory adapted to regional specificities on traffic, biofuel and industrial emissions has been constructed for the years 2005 and 2030. Biomass burning inventories were also improved in the frame of AMMA (African Monsoon) program. - carbonaceous aerosol radiative impact in Africa has been modeled with TM5 model and Penner et al. (2011) radiative code for these inventories for 2005 and 2030 and for two scenarios of emissions : a reference scenario, with no further emission controls beyond those achieved in 2003 and a ccc* scenario including planned policies in Kyoto protocol and regulations as applied to African emission specificities. In this study we will show that enhanced heating is expected with the ccc* scenarios emissions in which the OC fraction is relatively lower than in the reference scenario. - results of short term POLCA intensive campaigns in Bamako and Dakar in terms of aerosol chemical characterization linked to specific emissions sources and their inflammatory impacts on the respiratory tract through in vitro studies. In this study, organic

  14. Quantifying components of aerosol-cloud-radiation interactions in climate models

    NASA Astrophysics Data System (ADS)

    Zelinka, Mark D.; Andrews, Timothy; Forster, Piers M.; Taylor, Karl E.

    2014-06-01

    The interaction of anthropogenic aerosols with radiation and clouds is the largest source of uncertainty in the radiative forcing of the climate during the industrial period. Here we apply novel techniques to diagnose the contributors to the shortwave (SW) effective radiative forcing (ERF) from aerosol-radiation-interaction (ERFari) and from aerosol cloud interaction (ERFaci) in experiments performed in phase 5 of the Coupled Model Intercomparison Project. We find that the ensemble mean SW ERFari+aci of -1.40±0.56 W m-2 comes roughly 25% from ERFari (-0.35±0.20 W m-2) and 75% from ERFaci (-1.04±0.67 W m-2). ERFari is made up of -0.62±0.30 W m-2 due to aerosol scattering opposed by +0.26 ± 0.12 W m-2 due to aerosol absorption and is largest near emission sources. The ERFari from nonsulfate aerosols is +0.13 ± 0.09 W m-2, consisting of -0.15±0.11 W m-2 of scattering and +0.29 ± 0.15 W m-2 of absorption. The change in clear-sky flux is a negatively biased measure of ERFari, as the presence of clouds reduces the magnitude and intermodel spread of ERFari by 40-50%. ERFaci, which is large both near and downwind of emission sources, is composed of -0.99±0.54 W m-2 from enhanced cloud scattering, with much smaller contributions from increased cloud amount and absorption. In models that allow aerosols to affect ice clouds, large increases in the optical depth of high clouds cause substantial longwave and shortwave radiative anomalies. Intermodel spread in ERFaci is dominated by differences in how aerosols increase cloud scattering, but even if all models agreed on this effect, over a fifth of the spread in ERFaci would remain due solely to differences in total cloud amount.

  15. Aerosol Properties and Processes: A Path from Field and Laboratory Measurements to Global Climate Models

    SciTech Connect

    Ghan, Steven J.; Schwartz, Stephen E.

    2007-07-01

    Aerosols exert a substantial influence on climate and climate change through a variety of complex mechanisms. Consequently there is a need to represent aerosol effects in global climate models, and models have begun to include representations of these effects. However, the treatment of aerosols in current global climate models is presently highly simplified, omitting many important processes and feedbacks. Consequently there is need for substantial improvement. Here we describe the U. S. Department of Energy strategy for improving the treatment of aerosol properties and processes in global climate models. The strategy begins with a foundation of field and laboratory measurements that provide the basis for modules of selected aerosol properties and processes. These modules are then integrated in regional aerosol models, which are evaluated by comparing with field measurements. Issues of scale are then addressed so that the modules can be applied to global aerosol models, which are evaluated by comparing with global satellite measurements. Finally, the validated set of modules are applied to global climate models for multi-century simulations. This strategy can be applied to successive generations of global climate models.

  16. The aerosol-monsoon climate system of Asia: A new paradigm

    NASA Astrophysics Data System (ADS)

    Lau, William K. M.

    2016-02-01

    This commentary is based on a series of recent lectures on aerosol-monsoon interactions I gave at the Beijing Normal University in August 2015. A main theme of the lectures is on a new paradigm of "An Aerosol-Monsoon-Climate-System", which posits that aerosol, like rainfall, cloud, and wind, is an integral component of the monsoon climate system, influencing monsoon weather and climate on all timescales. Here, salient issues discussed in my lectures and my personal perspective regarding interactions between atmospheric dynamics and aerosols from both natural and anthropogenic sources are summarized. My hope is that under this new paradigm, we can break down traditional disciplinary barriers, advance a deeper understanding of weather and climate in monsoon regions, as well as entrain a new generation of geoscientists to strive for a sustainable future for one of the most complex and challenging human-natural climate sub-system of the earth.

  17. A 10-year global gridded Aerosol Optical Thickness Reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Campbell, J. R.; Curtis, C. A.; Hegg, D.; Hyer, E. J.; Sessions, W.; Shi, Y.; Turk, J.

    2013-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need of a best-available fused product on a regular grid for numerous climate and applied applications. Remote sensing and modeling technologies have now advanced to a point where aerosol data assimilation is an operational reality at numerous centers. It is inevitable that, like meteorological reanalyses, aerosol reanalyses will see heavy use in the near future. A first long term, 2003-2012 global 1x1 degree and 6-hourly aerosol optical thickness (AOT) reanalysis product has been generated. The goal of this effort is not only for climate applications, but to generate a dataset that can be used by the US Navy to understand operationally hindering aerosol events, aerosol impacts on numerical weather prediction, and application of electro-optical technologies. The reanalysis utilizes Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) AOD with minor corrections from Multi-angle Imaging SpectroRaditometer (MISR). A subset of this product includes Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar assimilation since its launch in mid-2006. Surface aerosol sources, including dust and smoke, in the aerosol model have been regionally tuned so that fine and coarse mode AOTs best match those resolve by ground-based Aerosol Robotic Network (AERONET). The AOT difference between the model and satellite AOT is then used to adjust other aerosol processes, eg., sources, dry deposition, etc. Aerosol wet deposition is constrained with satellite-retrieved precipitation. The final AOT reanalysis is shown to exhibit good agreement with AERONET. Here we review the development of the reanalysis and consider issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses. Considerations are also made for extending such work

  18. Detecting cross-equatorial wind change as a fingerprint of climate response to anthropogenic aerosol forcing

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Xie, Shang-Ping; Tokinaga, Hiroki; Liu, Qinyu; Kosaka, Yu

    2016-04-01

    Anthropogenic aerosols are a major driver of the twetieth century climate change. In climate models, the aerosol forcing, larger in the Northern than Southern Hemispheres, induces an interhemispheric Hadley circulation. In support of the model result, we detected a robust change in the zonal mean cross-equatorial wind over the past 60 years from ship observations and reanalyses, accompanied by physically consistent changes in atmospheric pressure and marine cloud cover. Single-forcing experiments indicate that the observed change in cross-equatorial wind is a fingerprint of aerosol forcing. This zonal mean mode follows the evolution of global aerosol forcing that is distinct from regional changes in the Atlantic sector. Atmospheric simulations successfully reproduce this interhemispheric mode, indicating the importance of sea surface temperature mediation in response to anthropogenic aerosol forcing. As societies awaken to reduce aerosol emissions, a phase reversal of this interhemispheric mode is expected in the 21st century.

  19. Sulfate aerosol nucleation, primary emissions, and cloud radiative forcing in the aerosol- climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Quaas, J.; Kinne, S.; Rast, S.; Stier, P.; Feichter, J.

    2008-12-01

    Aerosol nucleation from the gas phase is a major source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei and consequently of cloud droplets. Nucleation can therefore act upon cloud radiative properties, cloud lifetimes, and precipitation rates via the first and second indirect aerosol effect. However, freshly nucleated particles measure a few nanometers in diameter, and need to grow to sizes of tens of nanometers in order to participate in atmospherically relevant processes. Depending on the availability of condensable molecules, this process may proceed on time scales between minutes to days. Concurrently, the aerosol particles that formed from the gas phase compete with aerosol particles emitted from the surface for condensable material. Therefore, cloud radiative properties, cloud lifetimes, and precipitation rates will depend to various degrees on aerosol nucleation rates and on the individual nucleation pathways. We have implemented a scheme describing the formation of new particles from the gas phase based on laboratory thermochemical data for neutral and charged nucleation of sulfuric acid and water into the aerosol-climate model ECHAM5-HAM. Here we discuss the role of new particle formation from the gas phase for cloud radiative properties and the contributions of the considered nucleation pathways as well as of particulate sulfate emissions. Our simulations show that sulfate aerosol nucleation plays an important role for cloud radiative forcing, in particular over the oceans and in the southern hemisphere. A comparison of the simulated cloud radiative forcing with satellite observations shows the best agreement when both neutral and charged nucleation proceed, with neutral nucleation playing a minor role in the current model version. In contrast, switching off nucleation leads to a systematic bias of the results away from the observations, indicating an important role of aerosol nucleation in the

  20. Complex Coupling of Air Quality and Climate-Relevant Aerosols in a Chemistry-Aerosol Microphysics Model

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.; Carslaw, K. S.; Reddington, C.; Mann, G.

    2013-12-01

    Controlling emissions of aerosols and their precursors to improve air quality will impact the climate through direct and indirect radiative forcing. We have investigated the impacts of changes in a range of aerosol and gas-phase emission fluxes and changes in temperature on air quality and climate change metrics using a global aerosol microphysics and chemistry model, GLOMAP. We investigate how the responses of PM2.5 and cloud condensation nuclei (CCN) are coupled, and how attempts to improve air quality could have inadvertent effects on CCN, clouds and climate. The parameter perturbations considered are a 5°C increase in global temperature, increased or decreased precursor emissions of anthropogenic SO2, NH3, and NOx, and biogenic monoterpenes, and increased or decreased primary emissions of organic and black carbon aerosols from wildfire, fossil fuel, and biofuel. To quantify the interactions, we define a new sensitivity metric in terms of the response of CCN divided by the response of PM in different regions. .Our results show that the coupled chemistry and aerosol processes cause complex responses that will make any co-benefit policy decision problematic. In particular, we show that reducing SO2 emissions effectively reduces surface-level PM2.5 over continental regions in summer when background PM2.5 is high, with a relatively small reduction in marine CCN (and hence indirect radiative cooling over ocean), which is beneficial for near-term climate. Reducing NOx emissions does not improve summertime air quality very effectively but leads to a relatively high reduction of marine CCN. Reducing NH3 emissions has moderate effects on both PM2.5 and CCN. These three species are strongly coupled chemically and microphysically and the effects of changing emissions of one species on mass and size distributions of aerosols are very complex and spatially and temporally variable. For example, reducing SO2 emissions leads to reductions in sulphate and ammonium mass

  1. Do Diurnal Aerosol Changes Affect Daily Average Radiative Forcing?

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-06-17

    Strong diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project (TCAP) on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF, when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

  2. Do diurnal aerosol changes affect daily average radiative forcing?

    NASA Astrophysics Data System (ADS)

    Kassianov, Evgueni; Barnard, James; Pekour, Mikhail; Berg, Larry K.; Michalsky, Joseph; Lantz, Kathy; Hodges, Gary

    2013-06-01

    diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

  3. Trend of surface solar radiation over Asia simulated by aerosol transport-climate model

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Ohmura, A.

    2009-12-01

    Long-term records of surface radiation measurements indicate a decrease in the solar radiation between the 1950s and 1980s (“global dimming”), then its recovery afterward (“global brightening”) at many locations all over the globe [Wild, 2009]. On the other hand, the global brightening is delayed over the Asian region [Ohmura, 2009]. It is suggested that these trends of the global dimming and brightening are strongly related with a change in aerosol loading in the atmosphere which affect the climate change through the direct, semi-direct, and indirect effects. In this study, causes of the trend of the surface solar radiation over Asia during last several decades are analyzed with an aerosol transport-climate model, SPRINTARS. SPRINTARS is coupled with MIROC which is a general circulation model (GCM) developed by Center for Climate System Research (CCSR)/University of Tokyo, National Institute for Environmental Studies (NIES), and Frontier Research Center for Global Change (FRCGC) [Takemura et al., 2000, 2002, 2005, 2009]. The horizontal and vertical resolutions are T106 (approximately 1.1° by 1.1°) and 56 layers, respectively. SPRINTARS includes the transport, radiation, cloud, and precipitation processes of all main tropospheric aerosols (black and organic carbons, sulfate, soil dust, and sea salt). The model treats not only the aerosol mass mixing ratios but also the cloud droplet and ice crystal number concentrations as prognostic variables, and the nucleation processes of cloud droplets and ice crystals depend on the number concentrations of each aerosol species. Changes in the cloud droplet and ice crystal number concentrations affect the cloud radiation and precipitation processes in the model. Historical emissions, that is consumption of fossil fuel and biofuel, biomass burning, aircraft emissions, and volcanic eruptions are prescribed from database provided by the Aerosol Model Intercomparison Project (AeroCom) and the latest IPCC inventories

  4. HOW WILL GLOBAL CLIMATE CHANGE AFFECT PARASITES?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Parasites are integral components of complex biotic assemblages that comprise the biosphere. Host switching correlated with episodic climate-change events are common in evolutionary and ecological time. Global climate change produces ecological perturbation, manifested in major geographical/pheno...

  5. Regional climate effects of aerosols on precipitation and snowpack in California

    NASA Astrophysics Data System (ADS)

    Wu, L.; Su, H.; Jiang, J. H.; Zhao, C.; Qian, Y.; Painter, T. H.

    2015-12-01

    Water sources in California are derived predominantly from precipitation (mostly during the winter time) and storage in the snowpack in the Sierra Nevada. With California facing one of the most severe droughts on record, it is important to understand the factors influencing precipitation and snowpack for water management and hydropower operation. Recent observational and numerical modeling studies have shown that aerosol pollutants can substantially change precipitation and snowpack in the Sierra Nevada. However, previous studies focused only on one of the aerosol effects or just focus on a single event. A complete view on regional climate effects of aerosol on precipitation and snowpack in California is not delivered yet. In this study, we use a fully coupled aerosol-meteorology-snowpack model (WRF-Chem-SNICAR) to investigate aerosol impacts on regional climate in California, with a focus on precipitation and snowpack. We will evaluate the performance of the WRF-Chem-SNICAR model on simulating regional climate in California. Sensitivity experiments will be conducted to disentangle the relative roles of each aerosol effect, such as aerosol radiation interaction vs. aerosol cloud interaction and aerosol snowpack interaction, local emission vs. long-range transport etc.

  6. A perspective on SOA generated in aerosol water from glyoxal and methylglyoxal and its impacts on climate-relevant aerosol properties

    NASA Astrophysics Data System (ADS)

    Sareen, N.; McNeill, V. F.

    2011-12-01

    In recent years, glyoxal and methylglyoxal have emerged to be potentially important SOA precursors with significant implications for climate-related aerosol properties. Here we will discuss how the chemistry of these and similar organic compounds in aerosol water can affect the aerosol optical and cloud formation properties. Aqueous-phase SOA production from glyoxal and methylglyoxal is a potential source of strongly light-absorbing organics, or "brown carbon". We characterized the kinetics of brown carbon formation from these precursors in mixtures of ammonium sulfate and water using UV-Vis spectrophotometry. This mechanism has been incorporated into a photochemical box model with coupled gas phase-aqueous aerosol chemistry. Methylglyoxal and related compounds also may impact an aerosol's ability to act as a cloud condensation nucleus. We recently showed via pendant drop tensiometry and aerosol chamber studies that uptake of methylglyoxal from the gas phase driven by aqueous-phase oligomerization chemistry is a potentially significant, previously unidentified source of surface-active organic material in aerosols. Results from pendant drop tensiometry showed significantly depressed surface tension in methylglyoxal-ammonium sulfate solutions. We further found that ammonium sulfate particles exposed to gas-phase methylglyoxal in a 3.5 m3 aerosol reaction chamber activate into cloud droplets at sizes up to 15% lower at a given supersaturation than do pure ammonium sulfate particles. The observed enhancement exceeds that predicted based on Henry's Law and our measurements of surface tension depression in bulk solutions, suggesting that surface adsorption of methylglyoxal plays a role in determining CCN activity. Methylglyoxal and similar gas-phase surfactants may be an important and overlooked source of enhanced CCN activity in the atmosphere. To characterize the SOA products formed in these solutions, an Aerosol Chemical Ionization Mass Spectrometer (CIMS) was used

  7. Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol-chemistry-climate model predictions and validation

    NASA Astrophysics Data System (ADS)

    Sheng, Jian-Xiong; Weisenstein, Debra K.; Luo, Bei-Ping; Rozanov, Eugene; Stenke, Andrea; Anet, Julien; Bingemer, Heinz; Peter, Thomas

    2015-01-01

    The global atmospheric sulfur budget and its emission dependence have been investigated using the coupled aerosol-chemistry-climate model SOCOL-AER. The aerosol module comprises gaseous and aqueous sulfur chemistry and comprehensive microphysics. The particle distribution is resolved by 40 size bins spanning radii from 0.39 nm to 3.2 μm, including size-dependent particle composition. Aerosol radiative properties required by the climate model are calculated online from the aerosol module. The model successfully reproduces main features of stratospheric aerosols under nonvolcanic conditions, including aerosol extinctions compared to Stratospheric Aerosol and Gas Experiment II (SAGE II) and Halogen Occultation Experiment, and size distributions compared to in situ measurements. The calculated stratospheric aerosol burden is 109 Gg of sulfur, matching the SAGE II-based estimate (112 Gg). In terms of fluxes through the tropopause, the stratospheric aerosol layer is due to about 43% primary tropospheric aerosol, 28% SO2, 23% carbonyl sulfide (OCS), 4% H2S, and 2% dimethyl sulfide (DMS). Turning off emissions of the short-lived species SO2, H2S, and DMS shows that OCS alone still establishes about 56% of the original stratospheric aerosol burden. Further sensitivity simulations reveal that anticipated increases in anthropogenic SO2 emissions in China and India have a larger influence on stratospheric aerosols than the same increase in Western Europe or the U.S., due to deep convection in the western Pacific region. However, even a doubling of Chinese and Indian emissions is predicted to increase the stratospheric background aerosol burden only by 9%. In contrast, small to moderate volcanic eruptions, such as that of Nabro in 2011, may easily double the stratospheric aerosol loading.

  8. Effect of anthropogenic aerosol forcing on climate change in the North Pacific Ocean during the 20th Century

    NASA Astrophysics Data System (ADS)

    Abe, M.; Watanabe, S.; Kawamiya, M.; Nozawa, T.

    2014-12-01

    Reliable future projection by the climate or Earth system model is crucial for the issue on future climate change. For the reliable future projection, uncertainty of the aerosol effect on the climate change should be reduced, because the uncertainty has been large. Therefore, it is essential to understand the effect of anthropogenic aerosol forcing on climate change in the 20th century. In this study, we have assessed the effect by a comparison between the 20th century historical simulations (20C and piAero) with the aerosol forcing fluctuated realistically over time and fixed in the pre-industrial condition by MIROC-ESM. We focus on the climate change in the North Pacific Ocean (NPO) due to anthropogenic aerosol emitted from China in the late 20th century. In the comparison between the two simulations, there has been little difference in the global mean surface temperature (SAT) from 1851 to 1900. Then the difference appears and reaches to about 0.2 deg. C in 1950's. After 1960, the difference in SAT between the two experiments become large. For SST change in the NPO, small positive trend is found after 1900 in the piAero, but not found in the 20C. Thus, the SST difference in the NPO between the two experiments is significant after 1900. While the positive SST trend in the NPO has been large in the piAero after 1960, SST in the Central NPO shows the negative trend in the 20C. These enlarge SST difference between the two experiments. The negative SST trend in the Central NPO in the 20C is likely to be attributable to an increase of aerosol emission from China. The aerosol increase, which is also found in the NPO, makes solar insolation into the surface decrease mainly through the aerosol indirect effect. This effect decreases SST. Also, the effect is seen in the boreal spring and summer. However, the effect is not found in the piAero. The Pacific Decadal Oscillation (PDO), which is the principal natural variability in the NPO, has been investigated. Linear trend of

  9. Characterization of marine boundary layer aerosol from North Atlantic and European sources: Physical and chemical properties and climate forcing parameters

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike

    This thesis focuses on aerosol properties measured in Southwestern Portugal during the second Aerosol Characterization Experiment. Fundamental aerosol physical properties such as particle size distribution and hygroscopic properties are related to possible sources and aerosol transformation processes. From these fundamental properties we derive aerosol properties that are important for aerosol forcing of climate. First, a new method for calculating CCN spectra is proposed in this work and tested using sensitivity studies and comparisons to direct measurements. The measured and calculated CCN spectra differ on average by 30%, which at small supersaturations is similar to the measurement uncertainties. Second, aerosol number to volume ratios (R) are calculated and the fact that values of R are relatively constrained is explained based on observed correlations between size distribution parameters. Third, a simple parameterization of the humidity dependence of the submicron aerosol scattering coefficient has been derived, depending only on a volume weighted average diameter growth factor and the volume mean diameter of the dry size distribution. One set of empirical parameters can be used to parameterize all aerosol types characterized during the ACE-2 measurement period. Aerosol physical properties and climate forcing parameters in the North-East Atlantic Ocean were clearly affected by pollution outbreaks from Europe. The submicron particle volume increased by a factor of 5 in polluted conditions, the light scattering coefficient of dry particles increased on average by a factor of up to 10, CCN concentrations at supersaturations of 0.2% increased by a factor of 3--5. The aerosol fundamental properties vary often strongly with air mass history, but also show short-term variability that often has a characteristic diurnal scale. The number concentration of fine particles below 50nm and the particle hygroscopic growth factors are mostly dominated by diurnal processes

  10. Production of satellite-derived aerosol climate data records: current status of the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    de Leeuw, Gerrit; Holzer-Popp, Thomas; Pinnock, Simon

    2015-04-01

    and the Aerosol_cci team Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (Phase 1: 2010 -2014; Phase 2: 2014-2017) intensive work has been conducted to improve algorithms for the retrieval of aerosol information from European sensors ATSR (3 algorithms), PARASOL, MERIS (3 algorithms), synergetic AATSR/SCIAMACHY, OMI and GOMOS. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Ångström coefficient were retrieved from the other sensors. The cooperation between the project partners, including both the retrieval teams and independent validation teams, has resulted in a strong improvement of most algorithms. In particular the AATSR retrieved AOD is qualitatively similar to that from MODIS, usually taken as the standard, MISR and SeaWiFS. This conclusion has been reached form several different ways of validation of the L2 and L3 products, using AERONET sun photometer data as the common ground-truth for the application of both 'traditional' statistical techniques and a 'scoring' technique using spatial and temporal correlations. Quantitatively, the limited AATSR swath width of 500km results in a smaller amount of data. Nevertheless, the assimilation of AATSR-retrieved AOD, together with MODIS data, contributes to improving the in the ECMWF climate model results. In addition to the multi-spectral AOD, and thus the Ångström Exponent, also a per-pixel uncertainty is provided and validated. By the end of Aerosol_cci Phase 1 the ATSR algorithms have been applied to both ATSR-2 and AATSR resulting in an AOD time series of 17 years. In phase 2 this work is continued with a focus on the further improvement of the ATSR algorithms as well as those for the other instruments and algorithms, mentioned above, which in phase 1 were considered less mature. The first efforts are on the further characterization of the uncertainties and on better understanding of the

  11. Pirate attacks affect Indian Ocean climate research

    NASA Astrophysics Data System (ADS)

    Smith, Shawn R.; Bourassa, Mark A.; Long, Michael

    2011-07-01

    Pirate attacks in the Gulf of Aden and the Indian Ocean off the coast of Somalia nearly doubled from 111 in 2008 to 217 in 2009 [International Maritime Bureau, 2009, International Maritime Bureau, 2010]. Consequently, merchant vessel traffic in the area around Somalia significantly decreased. Many of these merchant vessels carry instruments that record wind and other weather conditions near the ocean surface, and alterations in ship tracks have resulted in a hole sized at about 2.5 million square kilometers in the marine weather-observing network off the coast of Somalia. The data void exists in the formation region of the Somali low-level jet, a wind pattern that is one of the main drivers of the Indian summer monsoon. Further, a stable, multidecadal record has been interrupted, and consequently, long-term analyses of the jet derived from surface wind data are now showing artificial anomalies that will affect efforts by scientists to identify interannual to decadal variations in the climate of the northwestern Indian Ocean.

  12. Nonlinear effects of anthropogenic aerosol and urban land surface forcing on spring climate in eastern China

    NASA Astrophysics Data System (ADS)

    Deng, Jiechun; Xu, Haiming; Zhang, Leying

    2016-05-01

    Anthropogenic aerosols and urban land cover change induce opposite thermal effects on the atmosphere near surface as well as in the troposphere. One can think of these anthropogenic effects as composed of two parts: the individual effect due to an individual anthropogenic forcing and the nonlinear effects resulting from the coexistence of two forcing factors. In this study, we explored the role of such nonlinear effects in affecting East Asian climate, as well as individual forcing effects, using the Community Atmosphere Model version 5.1 coupled with the Community Land Model version 4. Atmospheric responses were simulated by including anthropogenic aerosol emission only, urban cover only, or the combination of the two, over eastern China. Results showed that nonlinear responses were different from any effects by an individual forcing or the linear combination of individual responses. The nonlinear interaction could generate cold horizontal temperature advection to cool the troposphere, which induced anomalous subsidence along the Yangtze River Valley (YRV). This anomalous vertical motion, together with a weakened low-level southwesterly, favored below-normal (above-normal) rainfall over the YRV (southern China), shifting the spring rain belt southward. The resultant diabatic cooling, in turn, amplified the anomalous descent and further decreased tropospheric temperature over the YRV, forming a positive feedback loop to maintain the nonlinear effects. Consequently, the nonlinear effects acted to reduce the climate anomalies from a simple linear combination of two individual effects and played an important role in regional responses to one anthropogenic forcing when the other is prescribed.

  13. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    SciTech Connect

    Mahowald, Natalie; Rothenberg, D.; Lindsay, Keith; Doney, Scott C.; Moore, Jefferson Keith; Randerson, James T.; Thornton, Peter E; Jones, C. D.

    2011-02-01

    Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

  14. Radiative forcing and climate response to projected 21st century aerosol decreases

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Golaz, J.-C.; Mauzerall, D. L.

    2015-11-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80 % by the year 2100, according to the four Representative Concentration Pathway (RCP) scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Coupled Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m-2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm day-1. However, when using a version of CM3 with reduced present-day aerosol radiative forcing (-1.0 W m-2), the global temperature increase for RCP8.5 is about 0.5 K, with similar magnitude decreases in other climate response parameters as well. Regionally and locally, climate impacts can be much larger than the global mean, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm day-1 precipitation increase, a 7 g m-2 LWP decrease, and a 2 μm increase in

  15. Investigations of Global Chemistry-Climate Interactions and Organic Aerosol Using Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Pye, Havala Olson Taylor

    Aerosol, or particulate matter (PM), is an important component of the atmosphere responsible for negative health impacts, environmental degradation, reductions in visibility, and climate change. In this work, the global chemical transport model, GEOS-Chem, is used as a tool to examine chemistry-climate interactions and organic aerosols. GEOS-Chem is used to simulate present-day (year 2000) and future (year 2050) sulfate, nitrate, and ammonium aerosols and investigate the potential effects of changes in climate and emissions on global budgets and U.S. air quality. Changes in a number of meteorological parameters, such as temperature and precipitation, are potentially important for aerosols and could lead to increases or decreases in PM concentrations. Although projected changes in sulfate and nitrate precursor emissions favor lower PM concentrations over the U.S., projected increases in ammonia emissions could result in higher nitrate concentrations. The organic aerosol simulation in GEOS-Chem is updated to include aerosol from primary semivolatile organic compounds (SVOCS), intermediate volatility compounds (IVOCs), NOx dependent terpene aerosol, and aerosol from isoprene + NO3 reaction. SVOCs are identified as the largest global source of organic aerosol even though their atmospheric transformation is highly uncertain and emissions are probably underestimated. As a result of significant nighttime terpene emissions, fast reaction of monoterpenes with the nitrate radical, and high aerosol yields from NO3 oxidation, biogenic hydrocarbons reacting with the nitrate radical are expected to be a major contributor to surface level aerosol concentrations in anthropogenically influenced areas such as the United States. Globally, 69 to 88 Tg/yr of aerosol is predicted to be produced annually, approximately 22 to 24 Tg/yr of which is from biogenic hydrocarbons.

  16. Introducing the aerosol-climate model MAECHAM5-SAM2

    NASA Astrophysics Data System (ADS)

    Hommel, R.; Timmreck, C.; Graf, H. F.

    2009-04-01

    We are presenting a new global aerosol model MAECHAM5-SAM2 to study the aerosol dynamics in the UTLS under background and volcanic conditions. The microphysical core modul SAM2 treats the formation, the evolution and the transport of stratospheric sulphuric acid aerosol. The aerosol size distribution and the weight percentage of the sulphuric acid solution is calculated dependent on the concentrations of H2SO4 and H2O, their vapor pressures, the atmospheric temperature and pressure. The fixed sectional method is used to resolve an aerosol distribution between 1 nm and 2.6 micron in particle radius. Homogeneous nucleation, condensation and evaporation, coagulation, water-vapor growth, sedimentation and sulphur chemistry are included. The module is applied in the middle-atmosphere MAECHAM5 model, resolving the atmosphere up to 0.01 hPa (~80 km) in 39 layers. It is shown here that MAECHAM5-SAM2 well represents in-situ measured size distributions of stratospheric background aerosol in the northern hemisphere mid-latitudes. Distinct differences can be seen when derived integrated aerosol parameters (surface area, effective radius) are compared with aerosol climatologies based on the SAGE II satellite instrument (derived by the University of Oxford and the NASA AMES laboratory). The bias between the model and the SAGE II data increases as the moment of the aerosol size distribution decreases. Thus the modeled effective radius show the strongest bias, followed by the aerosol surface area density. Correspondingly less biased are the higher moments volume area density and the mass density of the global stratospheric aerosol coverage. This finding supports the key finding No. 2 of the SPARC Assessment of Stratospheric Aerosol Properties (2006), where it was shown that during periods of very low aerosol load in the stratosphere, the consistency between in-situ and satellite measurements, which exist in a volcanically perturbed stratosphere, breaks down and significant

  17. An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling

    SciTech Connect

    Qian, Yun; Gustafson, William I.; Fast, Jerome D.

    2010-07-29

    One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV) of trace gases and aerosols within a typical global climate model grid cell, i.e. 75x75 km2. Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs) for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV) over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV) over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases are very efficiently transported and mixed vertically by

  18. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.

    2014-03-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  19. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.; Williams, A. G.; Chambers, S. D.

    2014-10-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  20. Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Bergman, T.; Kerminen, V.-M.; Korhonen, H.; Lehtinen, K. J.; Makkonen, R.; Arola, A.; Mielonen, T.; Romakkaniemi, S.; Kulmala, M.; Kokkola, H.

    2011-12-01

    We present the implementation and evaluation of a sectional aerosol microphysics model SALSA within the aerosol-climate model ECHAM5-HAM. This aerosol microphysics module has been designed to be flexible and computationally efficient so that it can be implemented in regional or global scale models. The computational efficiency has been achieved by keeping the number of variables needed to describe the size and composition distribution to the minimum. The aerosol size distribution is described using 20 size sections with 10 size sections in size space which cover diameters ranging from 3 nm to 10 μm divided to three subranges each having distinct optimised process and compound selection. The ability of the module to describe the global aerosol properties was evaluated by comparison against (1) measured continental and marine size distributions, (2) observed variability of continental modal number concentrations, (3) measured sulphate, organic carbon, black carbon and sea salt mass concentrations, (4) observations of AOD and other aerosol optical properties from satellites and AERONET network, (5) global aerosol budgets and concentrations from previous model studies, and (6) model results using M7 which is the default aerosol microphysics module in ECHAM5-HAM. The evaluation shows that the global aerosol properties can be reproduced reasonably well using the coarse resolution of 10 size sections in size space. The simulated global aerosol budgets are within the range of previous studies. Surface concentrations of sea salt, sulphate and carbonaceous species have an annual mean within a factor of five of the observations, while the simulated sea salt concentrations reproduce the observations less accurately and show high variability. Regionally, AOD is in relatively good agreement with the observations (within a factor of two). At mid-latitudes the observed AOD is captured well, while at high-latitudes as well as in some polluted and dust regions the modeled AOD is

  1. Sensitivity studies for incorporating the direct effect of sulfate aerosols into climate models

    NASA Astrophysics Data System (ADS)

    Miller, Mary Rawlings Lamberton

    2000-09-01

    Aerosols have been identified as a major element of the climate system known to scatter and absorb solar and infrared radiation, but the development of procedures for representing them is still rudimentary. This study addresses the need to improve the treatment of sulfate aerosols in climate models by investigating how sensitive radiative particles are to varying specific sulfate aerosol properties. The degree to which sulfate particles absorb or scatter radiation, termed the direct effect, varies with the size distribution of particles, the aerosol mass density, the aerosol refractive indices, the relative humidity and the concentration of the aerosol. This study develops 504 case studies of altering sulfate aerosol chemistry, size distributions, refractive indices and densities at various ambient relative humidity conditions. Ammonium sulfate and sulfuric acid aerosols are studied with seven distinct size distributions at a given mode radius with three corresponding standard deviations implemented from field measurements. These test cases are evaluated for increasing relative humidity. As the relative humidity increases, the complex index of refraction and the mode radius for each distribution correspondingly change. Mie theory is employed to obtain the radiative properties for each case study. The case studies are then incorporated into a box model, the National Center of Atmospheric Research's (NCAR) column radiation model (CRM), and NCAR's community climate model version 3 (CCM3) to determine how sensitive the radiative properties and potential climatic effects are to altering sulfate properties. This study found the spatial variability of the sulfate aerosol leads to regional areas of intense aerosol forcing (W/m2). These areas are particularly sensitive to altering sulfate properties. Changes in the sulfate lognormal distribution standard deviation can lead to substantial regional differences in the annual aerosol forcing greater than 2 W/m 2. Changes in the

  2. Weather and climate impacts of biomass burning aerosols during the dry season in Amazonia

    NASA Astrophysics Data System (ADS)

    Kolusu, Seshagirirao; Marsham, John; Spracklen, Dominic; Parker, Douglas; Dalvi, Mohit; Johnson, Ben; Mann, Graham

    2016-04-01

    are small and not statistically significant. Twenty-day MetUM simulations with prognostic aerosol and both parameterised and explicit convection are then used to investigate both the impacts of BBA on regional climate over a longer period, and how this depends on the representation of convection and how the representation of convection affects the distribution and impacts of BBA. Results show that the light widespread parametrised rain gives different aerosol removal to the localised intense explicit convection.

  3. The relative roles of sulfate aerosols and greenhouse gases in climate forcing

    NASA Technical Reports Server (NTRS)

    Kiehl, J. T.; Briegleb, B. P.

    1993-01-01

    Calculations of the effects of both natural and anthropogenic tropospheric sulfate aerosols indicate that the aerosol climate forcing is sufficiently large in a number of regions of the Northern Hemisphere to reduce significantly the positive forcing from increased greenhouse gases. Summer sulfate aerosol forcing in the Northern Hemisphere completely offsets the greenhouse forcing over the eastern United States and central Europe. Anthropogenic sulfate aerosols contribute a globally averaged annual forcing of -0.3 watt per square meter as compared with +2.1 watts per square meter for greenhouse gases. Sources of the difference in magnitude with the previous estimate of Charlson et al. (1992) are discussed.

  4. Remote Sensing of Aerosols from Satellites: Why Has It Been Do Difficult to Quantify Aerosol-Cloud Interactions for Climate Assessment, and How Can We Make Progress?

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2015-01-01

    The organizers of the National Academy of Sciences Arthur M. Sackler Colloquia Series on Improving Our Fundamental Understanding of the Role of Aerosol-Cloud Interactions in the Climate System would like to post Ralph Kahn's presentation entitled Remote Sensing of Aerosols from Satellites: Why has it been so difficult to quantify aerosol-cloud interactions for climate assessment, and how can we make progress? to their public website.

  5. Impacts of Snow Darkening by Absorbing Aerosols on Eurasian Climate

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Myong; Lau, William K M.; Yasunari, Teppei J.; Kim, Maeng-Ki; Koster, Randal D.

    2016-01-01

    The deposition of absorbing aerosols on snow surfaces reduces snow-albedo and allows snowpack to absorb more sunlight. This so-called snow darkening effect (SDE) accelerates snow melting and leads to surface warming in spring. To examine the impact of SDE on weather and climate during late spring and early summer, two sets of NASA GEOS-5 model simulations with and without SDE are conducted. Results show that SDE-induced surface heating is particularly pronounced in Eurasian regions where significant depositions of dust transported from the North African deserts, and black carbon from biomass burning from Asia and Europe occur. In these regions, the surface heating due to SDE increases surface skin temperature by 3-6 degrees Kelvin near the snowline in spring. Surface energy budget analysis indicates that SDE-induced excess heating is associated with a large increase in surface evaporation, subsequently leading to a significant reduction in soil moisture, and increased risks of drought and heat waves in late spring to early summer. Overall, we find that rainfall deficit combined with SDE-induced dry soil in spring provide favorable condition for summertime heat waves over large regions of Eurasia. Increased frequency of summer heat waves with SDE and the region of maximum increase in heat-wave frequency are found along the snow line, providing evidence that early snowmelt by SDE may increase the risks of extreme summer heat wave. Our results suggest that climate models that do not include SDE may significantly underestimate the effect of global warming over extra-tropical continental regions.

  6. Aerosol Effects on Radiation and Climate: Column Closure Experiments with Towers, Aircraft, and Satellites

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.

    1994-01-01

    Many theoretical studies have shown that anthropogenic aerosol particles can change the radiation balance in an atmospheric column and might thereby exert a significant effect on the Earth's climate. In particular, recent calculations have shown that sulfate particles from anthropogenic combustion may already exert a cooling influence on the Earth that partially offsets the warming caused by the greenhouse gases from the same combustion. Despite the potential climatic importance of anthropogenic aerosols, simultaneous measurements of anthropogenic aerosol properties and their effect on atmospheric radiation have been very rare. Successful comparisons of measured radiation fields with those calculated from aerosol measurements - now referred to as column closure comparisons - are required to improve the accuracy and credibility of climate predictions. This paper reviews the column closure experiment performed at the Mt. Sutro Tower in San Francisco in 1975, in which elevated radiometers measured the change in Earth-plus-atmosphere albedo caused by an aerosol layer, while a lidar, sunphotometer, nephelometer, and other radiometers measured properties of the responsible aerosol. The time-dependent albedo calculated from the measured aerosol properties agreed with that measured by the tower radiometers. Also presented are designs for future column closure studies using radiometers and aerosol instruments on the ground, aircraft, and satellites. These designs draw upon algorithms and experience developed in the Sutro Tower study, as well as more recent experience with current measurement and analysis capabilities.

  7. Impacts Of Radiatively-Active Aerosols On Mars’ Current Climate: Simulation Results With The NASA ARC Mars GCM

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, M. A.; Haberle, R. M.; Montmessin, F.; Herin, B.; Laamoumi, F.; Wilson, R. J.; Schaeffer, J.

    2010-10-01

    Recent upgrades to the NASA Ames Research Center (ARC) Mars general circulation model (GCM) include a fundamentally new and modernized radiative transfer package which permits radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and their mutual interactions) to influence the net diabatic heating rate within the atmosphere. Such aerosols are critically important in determining the nature of atmospheric thermal structure and hence the overall climate of the planet. Our Mars GCM simulations indicate that radiatively-active water ice clouds profoundly affect the seasonal and annual mean climate in a variety of ways. In particular, preliminary results suggest that the bulk thermal structure and resultant (i.e., balanced) circulation patterns are strongly modified near the surface and aloft. Generally speaking, we find a bulk warming of the atmosphere in upper layers, a cooling of the atmosphere in the lower and near-surface regions, and, increases in the mean pole-to-equator temperature contrasts (i.e., stronger mean polar vortices). A variety of results from our baseline and control simulations (i.e., where the radiative/physical effects are examined in isolation and when combined) will be presented. Comparisons with MGS/TES and MRO/MCS measurements indicate better agreement between the model's simulated climate compared to that observed. Using a state-of-the-art Mars GCM, these results highlight important effects radiatively-active aerosols have on physical and dynamical processes active in the current climate of Mars.

  8. Aerosol interactions with African/Atlantic climate dynamics

    NASA Astrophysics Data System (ADS)

    Hosseinpour, F.; Wilcox, E. M.

    2014-07-01

    Mechanistic relationships exist between variability of dust in the oceanic Saharan air layer (OSAL) and transient changes in the dynamics of Western Africa and the tropical Atlantic Ocean. This study provides evidence of possible interactions between dust in the OSAL region and African easterly jet-African easterly wave (AEJ-AEW) system in the climatology of boreal summer, when easterly wave activity peaks. Synoptic-scale changes in instability and precipitation in the African/Atlantic intertropical convergence zone are correlated with enhanced aerosol optical depth (AOD) in the OSAL region in response to anomalous 3D overturning circulations and upstream/downstream thermal anomalies at above and below the mean-AEJ level. Upstream and downstream anomalies are referred to the daily thermal/dynamical changes over the West African monsoon region and the Eastern Atlantic Ocean, respectively. Our hypothesis is that AOD in the OSAL is positively correlated with the downstream AEWs and negatively correlated with the upstream waves from climatological perspective. The similarity between the 3D pattern of thermal/dynamical anomalies correlated with dust outbreaks and those of AEWs provides a mechanism for dust radiative heating in the atmosphere to reinforce AEW activity. We proposed that the interactions of OSAL dust with regional climate mainly occur through coupling of dust with the AEWs.

  9. Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Bergman, T.; Kerminen, V.-M.; Korhonen, H.; Lehtinen, K. J.; Makkonen, R.; Arola, A.; Mielonen, T.; Romakkaniemi, S.; Kulmala, M.; Kokkola, H.

    2012-06-01

    We present the implementation and evaluation of a sectional aerosol microphysics module SALSA within the aerosol-climate model ECHAM5-HAM. This aerosol microphysics module has been designed to be flexible and computationally efficient so that it can be implemented in regional or global scale models. The computational efficiency has been achieved by minimising the number of variables needed to describe the size and composition distribution. The aerosol size distribution is described using 10 size classes with parallel sections which can have different chemical compositions. Thus in total, the module tracks 20 size sections which cover diameters ranging from 3 nm to 10 μm and are divided into three subranges, each with an optimised selection of processes and compounds. The implementation of SALSA into ECHAM5-HAM includes the main aerosol processes in the atmosphere: emissions, removal, radiative effects, liquid and gas phase sulphate chemistry, and the aerosol microphysics. The aerosol compounds treated in the module are sulphate, organic carbon, sea salt, black carbon, and mineral dust. In its default configuration, ECHAM5-HAM treats aerosol size distribution using the modal method. In this implementation, the aerosol processes were converted to be used in a sectional model framework. The ability of the module to describe the global aerosol properties was evaluated by comparing against (1) measured continental and marine size distributions, (2) observed variability of continental number concentrations, (3) measured sulphate, organic carbon, black carbon and sea-salt mass concentrations, (4) observations of aerosol optical depth (AOD) and other aerosol optical properties from satellites and AERONET network, (5) global aerosol budgets and concentrations from previous model studies, and (6) model results using M7, which is the default aerosol microphysics module in ECHAM5-HAM. The evaluation shows that the global aerosol properties can be reproduced reasonably well

  10. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  11. Regional and Global Aspects of Aerosols in Western Africa: From Air Quality to Climate

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Kucsera, Tom; Spinhime, Jim; Palm, Stephen; Holben, Brent; Ginoux, Paul

    2006-01-01

    Western Africa is one of the most important aerosol source regions in the world. Major aerosol sources include dust from the world's largest desert Sahara, biomass burning from the Sahel, pollution aerosols from local sources and long-range transport from Europe, and biogenic sources from vegetation. Because these sources have large seasonal variations, the aerosol composition over the western Africa changes significantly with time. These aerosols exert large influences on local air quality and regional climate. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to analyze satellite lidar data from the GLAS instrument on the ICESat and the sunphotometer data from the ground-based network AERONET taken in both the wet (September - October 2003) and dry (February - March 2004) seasons over western Africa. We will quantify the seasonal variations of aerosol sources and compositions and aerosol spatial (horizontal and vertical) distributions over western Africa. We will also assess the climate impact of western African aerosols. Such studies will be applied to support the international project, Africa Monsoon Multidisciplinary Analysis (AMMA) and to analyze the AMMA data.

  12. Impacts of Aerosol-Cloud Interactions on Climate Change in East Asia

    NASA Astrophysics Data System (ADS)

    Shim, S.; Jung, Y.; Baek, H.; Cho, C.

    2013-12-01

    Climate impact by anthropogenic drivers gives high concerns in climate change simulation. IPCC AR4 emphasized the role of aerosol on climate besides the GHGs due to its negative significant radiative forcing. We find that climate feedback of anthropogenic aerosols over East Asia through direct and indirect (aerosol-cloud interaction) radiative process using HadGEM2-AO developed by the UK Met office. Due to the industrial revolution and population growth, total anthropogenic aerosol emissions have grown dramatically over East Asia; sulfate aerosol is the dominant component accounting for about 50% of total aerosol optical depth at 550nm (Figure 1). An increased amount of aerosols might increase the CCN number concentration and lead to more, but smaller, cloud droplets for fixed liquid water content. This increases the albedo of the cloud, resulting in enhance reflection and a cooling effect. And smaller drops require longer growth times to reach size at which they easily fall as precipitation. This effect called the cloud lifetime effect may enhance the cloud cover (Figure 2), with a persistent positive correlation between cloud cover and aerosol optical depth. Particularly, aerosols have an influence on the amount of cloud cover (SC, ST, and NS) through the interaction with precipitation efficiency of low level clouds. As a result of perturbations of East Asia aerosols from preindustrial to present day, a net radiative flux at the top of atmosphere is estimated to be -4 W/m2, with a regional mean surface cooling of 1.2 K. More detailed analysis will be shown at the conference. Fig. 1. (a) Total AOD distributions (b) Changes in decadal mean AOD over East Asia. Fig 2. Cloud cover distributions classified by ISCCP cloud types.

  13. Potential Impact of South Asian Anthropogenic Aerosols on Northern Hemisphere Climate

    NASA Astrophysics Data System (ADS)

    Bollasina, M. A.; Ming, Y.; Ramaswamy, V.

    2014-12-01

    South Asia has one of the world's highest aerosol loading due to the dramatic increase of anthropogenic emissions from the 1950s associated with rapid urbanization and population growth. The possible large-scale impact of the late 20th century increase of South Asian aerosol emissions on climate away from the source regions was studied by means of historical ensemble experiments with a state-of-the-art coupled climate model with fully interactive aerosols and a representation of both direct and indirect aerosol effects. The key characteristics of the northern hemisphere responses are examined separately for winter and summer, and show that regional aerosols induce significant planetary-scale teleconnection patterns. In both seasons, the large-scale aerosol imprint originates from substantial changes in the regional precipitation distribution. During the winter, in response to anomalous surface cooling in the northern Indian Ocean, aerosols cause a westward shift of convection over the eastern Indian Ocean and compensating subsidence to the west and over the Maritime continent. During the summer, aerosols are collocated with rainfall, and cause a widespread drying over South Asia mostly by indirect effects. In both cases, the impact of the regional diabatic heating anomaly propagates remotely by exciting a northern hemisphere wave-train which, enhanced by regional feedbacks, leads to remarkable changes in near-surface climate, including circulation and temperature, over Eurasia, the northern Pacific and North America. Depending on the region, the induced anomalies may have opposite signs between the two seasons, and may thus contribute to reinforcing or dampening those due greenhouse gases. These results underscore the potential influence of Asian aerosols on global climate, which is a compelling problem as regional aerosol loading will continue to be large in the coming decades.

  14. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-08-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing state, and model nucleation and background secondary organic aerosol (SOA). We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include amount, composition, size, and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (homogeneous, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing-state combinations with regional effects in source regions ranging from -0.2 to +0.8 W m-2. The global-mean cloud-albedo aerosol indirect effect (AIE) ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions, and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution, and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol

  15. The Role of Non-CO2 Greenhouse Gases and Aerosols in Climate Mitigation

    SciTech Connect

    Smith, Steven J.; Bond, Tami C.; Wigley, Tom M.; de la Chesnaye, Francisco; Pitcher, Hugh M.

    2003-11-17

    Forcing agents other than carbon dioxide, such as methane, nitrous oxide, halocarbons, and perhaps aerosol particles, may play a major role in mitigating climate change. Of these agents, methane is the most important greenhouse gas and has substantial mitigation potential. The role of black and organic carbon aerosols has attracted increasing interest and we explicitly include these carbonaceous aerosols in our calculations. This paper analyzes the potential role of different forcing agents in reducing future climate forcing in a multi-gas, integrated assessment model in which mitigation options compete and interact. Our framework includes all of the important atmospheric forcing agents: carbon dioxide, methane, nitrous oxide, halocarbons, sulfur dioxide, and carbonaceous aerosols along with an array of potential mitigation options. Through an integrated analysis of all available options we present a realistic portrait of the potential role of these forcing agents in limiting future climate change.

  16. The role of aerosols in cloud drop parameterizations and its applications in global climate models

    SciTech Connect

    Chuang, C.C.; Penner, J.E.

    1996-04-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by aerosols that serve as cloud condensation nuclei and the updraft velocity. We have developed parameterizations relating cloud drop number concentration to aerosol number and sulfate mass concentrations and used them in a coupled global aerosol/general circulation model (GCM) to estimate the indirect aerosol forcing. The global aerosol model made use of our detailed emissions inventories for the amount of particulate matter from biomass burning sources and from fossil fuel sources as well as emissions inventories of the gas-phase anthropogenic SO{sub 2}. This work is aimed at validating the coupled model with the Atmospheric Radiation Measurement (ARM) Program measurements and assessing the possible magnitude of the aerosol-induced cloud effects on climate.

  17. The Use of MODIS Instrument on the EOS-Terra Satellite to Assess the Impact of Aerosol on Climate

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Terra will derive the aerosol optical thickness and properties. The aerosol properties can be used to distinguish between natural and human-made aerosol. In the polar orbit Terra will measure aerosol only once a day, around 10:30 am. How will we use this information to study the global radiative impacts of aerosol on climate? We shall present a strategy to address this problem. It includes the following steps: 1) From the Terra aerosol optical thickness and size distribution model we derive the effect of aerosol on reflection of solar radiation at the top of the atmosphere. In a sensitivity study we show that the effect of aerosol on solar fluxes can be derived 10 times more accurately from the MODIS data than derivation of the optical thickness itself. Applications to data over several regions will be given. 2) Using 1/2 million AERONET global data of aerosol spectral optical thickness we show that the aerosol optical thickness and properties during the Terra 10:30 pass are equivalent to the daily average. Due to the aerosol lifetime of several days measurements at this time of the day are enough to assess the daily impact of aerosol on radiation. 3) Aerosol impact on the top of the atmosphere is only part of the climate question. The INDOEX experiment showed that addressing the impact of aerosol on climate, requires also measurements of the aerosol forcing at the surface. This can be done by a combination of measurements of MODIS and AERONET data.

  18. Relative impact of climate indicators and aerosols on tropical cyclones

    NASA Astrophysics Data System (ADS)

    Chiacchio, Marc; Pausata, Francesco; Messori, Gabriele; Hannachi, Abdel; Chin, Mian; Ekman, Annica; Barrie, Leonard

    2015-04-01

    This study assesses the most important environmental variables modulating tropical cyclone (TC) frequency in six different oceanic basins such as the East Pacific, West Pacific, North Atlantic, North Indian Ocean, South Indian Ocean, and South Pacific. To determine their influence, we used multiple linear regression between TC frequency and variations in meteorological variables and circulation indices as well as aerosol optical depth (AOD) anomalies over the tropical cyclone development areas for the period 1980-2009 (where the AOD was separated into the compounds black and organic carbon, sulfate dust and sea salt). Overall the low-level relative humidity in the North Atlantic, stratospheric aerosol burden in the East Pacific, and the black carbon burden in the North Indian basin showed the greatest relation with TC activity and were all with statistically significant and explained variances of 28%. Amongst the circulation modes of variability, the Atlantic Multidecadal Oscillation (AMO) and the El Nino Southern Oscillation (ENSO) appeared to be most important to TC activity with significant variances of 29% in the South Indian Ocean and 25% in the East Pacific basins, respectively. We also examined the inter-basin relationship between the different environmental variables in one basin and the cyclone frequency in another basin. Overall the strongest connections were found between North Atlantic basin variables and North Indian TCs while the weakest links were found between West Pacific basin variables and South Pacific TCs. Lastly, because the strongest cooling of the lower stratospheric temperature was found over the North Atlantic since the last few decades and because the cooling could explain a variance of 15% of TC frequency in that same basin, we investigated five global climate models from the historical runs of the CMIP5 archive to determine whether they were able to capture this cooling in the lower stratosphere. Although the models were able to

  19. Have aerosols affected trends in visibility and precipitation in Europe?

    NASA Astrophysics Data System (ADS)

    Stjern, Camilla W.; Stohl, Andreas; KristjáNsson, Jón Egill

    2011-01-01

    Here we investigate whether the large variations in anthropogenic aerosol concentrations over the last decades have had a notable effect on precipitation in Europe. Our main focus is on the heavily industrialized region formerly known as the Black Triangle (BT), where pollution levels increased until the late 1980s and then decreased substantially. Precipitation changes in this area are compared to changes in a clean coastal region in western Europe with minor pollution trends but with potentially higher aerosol-precipitation susceptibility. We find that pollution reductions caused a substantial increase in horizontal visibility of 15 km from 1983 to 2008 in the BT, contrasting a 2.5 km increase in the clean region. Over the same period total precipitation trends show no sign of aerosol influence, neither in years of emission increases nor emission reductions, and a circulation-based precipitation estimate indicates that the observed trends may be entirely explained by atmospheric circulation changes. The annual frequency of light precipitation events, however, increased significantly in the clean region, and in the BT we find significant changes in both total and light precipitation frequency for wind directions at which sulphate trends were largest. The trends were most pronounced in the summer season. Altogether, we find no verification that changes in pollution have caused measurable changes in total precipitation in Europe, but changes in light precipitation types bear a potential aerosol signal.

  20. Uncertainties in global aerosols and climate effects due to biofuel emissions

    NASA Astrophysics Data System (ADS)

    Kodros, J. K.; Scott, C. E.; Farina, S. C.; Lee, Y. H.; L'Orange, C.; Volckens, J.; Pierce, J. R.

    2015-04-01

    Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertainties in biofuel emission factors, optical mixing-state, and model nucleation and background SOA. We use the Goddard Earth Observing System global chemical-transport model (GEOS-Chem) with TwO Moment Aerosol Sectional (TOMAS) microphysics. The emission factors include: amount, composition, size and hygroscopicity, as well as optical mixing-state properties. We also evaluate emissions from domestic coal use, which is not biofuel but is also frequently emitted from homes. We estimate the direct radiative effect assuming different mixing states (internal, core-shell, and external) with and without absorptive organic aerosol (brown carbon). We find the global-mean direct radiative effect of biofuel emissions ranges from -0.02 to +0.06 W m-2 across all simulation/mixing state combinations with regional effects in source regions ranging from -0.2 to +1.2 W m-2. The global-mean cloud-albedo aerosol indirect effect ranges from +0.01 to -0.02 W m-2 with regional effects in source regions ranging from -1.0 to -0.05 W m-2. The direct radiative effect is strongly dependent on uncertainties in emissions mass, composition, emissions aerosol size distributions and assumed optical mixing state, while the indirect effect is dependent on the emissions mass, emissions aerosol size distribution and the choice of model nucleation and secondary organic aerosol schemes. The sign and magnitude of these effects have a strong regional dependence. We conclude that the climate effects of biofuel aerosols are largely unconstrained, and the overall sign of the aerosol effects is unclear due to uncertainties

  1. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wang, M.; Ghan, S. J.; Ding, A.; Wang, H.; Zhang, K.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Takeamura, T.; Gettelman, A.; Morrison, H.; Lee, Y. H.; Shindell, D. T.; Partridge, D. G.; Stier, P.; Kipling, Z.; Fu, C.

    2015-09-01

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascend (ω500 < -25 hPa d-1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm d-1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.

  2. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    NASA Astrophysics Data System (ADS)

    Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.; Ding, Aijun; Wang, Hailong; Zhang, Kai; Neubauer, David; Lohmann, Ulrike; Ferrachat, Sylvaine; Takeamura, Toshihiko; Gettelman, Andrew; Morrison, Hugh; Lee, Yunha; Shindell, Drew T.; Partridge, Daniel G.; Stier, Philip; Kipling, Zak; Fu, Congbin

    2016-03-01

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascent (ω500 < -25 hPa day-1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day-1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.

  3. A regional climate study of aerosol impacts on Indian monsoon and precipitations over the Himalayas

    NASA Astrophysics Data System (ADS)

    Solmon, F.; Von Hardenberg, J.; Nair, V.; Palazzi, E.

    2013-12-01

    In the context of the PAPRIKA program we are studying the potential effects of aerosol particle on Indian climate and Himalayan region. Using the RegCM4 regional climate model we performed some experiments including on-line representation of natural and anthropogenic aerosols for present day and future conditions over the CORDEX-India domain. Dynamical boundary forcing is taken for ERAI-Interim over the period 2000-2010, and chemical boundary-conditions are prescribed as a monthly climatology form an ECEARTH/CAM simulation for present day. Different set of anthropogenic emissions (SO2, carbonaceous aerosols) are considered (IPCC RCP4.5 and REAS) whereas natural aerosol (dust and sea-salt) are calculated on line. In order to account for aerosol radiative feedback on surface energy budget over the oceans, we also implemented a 'q-flux' slab ocean model as an alternative to pure SST forcing. After a step of validation of aerosol simulation against observations, we investigate through a series of experiments the dynamical feedback of direct radiative effect of aerosol over this domain, focusing specifically on Indian Monsoon and precipitation over the Himalayas. We discriminate the effect of anthropogenic vs. natural aerosol while outlining the main mechanism of the regional climate response, as well as the sensitivity to emissions inventory. Our results will be discussed notably against previous GCM based studies. Finally we will possibly discuss future projections based on RCP4.5 EC-EARTH forcing and including aerosol effects, as well as the potential radiative effects of absorbing aerosol deposition on the Himalayan snow covers.

  4. Radiative forcing and climate response to projected 21st century aerosol decreases

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Mauzerall, D. L.

    2015-03-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80% by the year 2100, according to the four Representative Concentration Pathway (RCP) scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m-2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d-1. Regionally and locally, climate impacts can be much larger, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm d-1 precipitation increase, a 7 g m-2 LWP decrease, and a 2 μm increase in cloud droplet effective radius. Future aerosol decreases could be responsible for 30-40% of total climate warming by 2100 in East Asia, even under the high greenhouse gas emissions scenario (RCP8.5). The expected unmasking of global warming caused by aerosol reductions will

  5. Understanding How Climate Change Could Affect Tornadoes

    NASA Astrophysics Data System (ADS)

    Elsner, James; Guishard, Mark

    2014-11-01

    Current understanding of how tornadoes might change with global warming is limited. Incomplete data sets and the small-scale nature of tornadic events make it difficult to draw definitive conclusions. A consensus report on the climate of extreme storms found little evidence of trends in tornado frequency in the United States. However new research suggests a potential climate change footprint on tornadoes. Some of this research was presented at the First International Summit on Tornadoes and Climate Change, hosted by Aegean Conferences. The summit took place at the Minoa Palace in Chania, Greece, from 25 to 30 May 2014. Thirty delegates from eight countries—Greece, the United States, Germany, the United Kingdom, China, Japan, Israel, and Taiwan—participated.

  6. The Spatial and Temporal Heterogeneity of Precipitation and Aerosol-Cloud Radiative Forcing Uncertainty in Climatically Important Regions

    NASA Astrophysics Data System (ADS)

    Regayre, L.; Pringle, K.; Lee, L.; Booth, B.; Browse, J.; Mann, G.; Woodhouse, M. T.; Reddington, C.; Carslaw, K. S.; Rap, A.

    2015-12-01

    Aerosol-cloud radiative forcing and precipitation sensitivities are quantified within climatically important regions, where surface temperatures and moisture availability are thought to influence large-scale climatic effects. The sensitivity of precipitation and the balance of incoming and outgoing radiation to uncertain historical aerosol emission fluxes and aerosol-cloud parametrisations are quantified and their climatic importance considered. The predictability of monsoon onset and intensity, position of the inter-tropical convergence zone, tropical storm frequency and intensity, heat transport to the Arctic and changes in the mode of the El Niño Southern Oscillation are all limited by the parametric uncertainties examined here. Precipitation and aerosol-cloud radiative forcing sensitivities are found to be both spatially and temporally heterogeneous. Statistical analysis highlights aspects of aerosol-climate research and model development that should be prioritised in order to reduce the impact of uncertainty in regional precipitation and aerosol-cloud forcing on near-term climate projections.

  7. Weather anomalies affect Climate Change microblogging intensity

    NASA Astrophysics Data System (ADS)

    Molodtsova, T.; Kirilenko, A.

    2012-12-01

    There is a huge gap between the scientific consensus and public understanding of climate change. Climate change has become a political issue and a "hot" topic in mass media that only adds the complexity to forming the public opinion. Scientists operate in scientific terms, not necessarily understandable by general public, while it is common for people to perceive the latest weather anomaly as an evidence of climate change. In 1998 Hansen et al. introduced a concept of an objectively measured subjective climate change indicator, which can relate public feeling that the climate is changing to the observed meteorological parameters. We tested this concept in a simple example of a temperature-based index, which we related to microblogging activity. Microblogging is a new form of communication in which the users describe their current status in short Internet messages. Twitter (http://twitter.com), is currently the most popular microblogging platform. There are multiple reasons, why this data is particularly valuable to the researches interested in social dynamics: microblogging is widely used to publicize one's opinion with the public; has broad, diverse audience, represented by users from many countries speaking different languages; finally, Twitter contains an enormous number of data, e.g., there were 1,284,579 messages related to climate change from 585,168 users in the January-May data collection. We collected the textual data entries, containing words "climate change" or "global warming" from the 1st of January, 2012. The data was retrieved from the Internet every 20 minutes using a specially developed Python code. Using geolocational information, blog entries originating from the New York urbanized area were selected. These entries, used as a source of public opinion on climate change, were related to the surface temperature, obtained from La Guardia airport meteorological station. We defined the "significant change" in the temperature index as deviation of the

  8. Organic aerosol volatility parameterizations and their impact on atmospheric composition and climate

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Bauer, S.

    2015-12-01

    Despite their importance and ubiquity in the atmosphere, organic aerosols are still very poorly parameterized in global models. This can be explained by two reasons: first, a very large number of unconstrained parameters are involved in accurate parameterizations, and second, a detailed description of semi-volatile organics is computationally very expensive. Even organic aerosol properties that are known to play a major role in the atmosphere, namely volatility and aging, are poorly resolved in global models, if at all. Studies with different models and different parameterizations have not been conclusive on whether the additional complexity improves model simulations, but the added diversity of the different host models used adds an unnecessary degree of variability in the evaluation of results that obscures solid conclusions. Here we will present a thorough study of the most popular organic aerosol parameterizations with regard to volatility in global models, studied within the same host global model, the GISS ModelE2: primary and secondary organic aerosols both being non-volatile, secondary organic aerosols semi-volatile (2-product model), and all organic aerosols semi-volatile (volatility-basis set). We will also present results on the role aerosol microphysical calculations play on organic aerosol concentrations. The changes in aerosol distribution as a result of the different parameterizations, together with their role on gas-phase chemistry and climate, will be presented.

  9. Improving Aerosol Simulation over South Asia for Climate and Air Quality Studies

    NASA Astrophysics Data System (ADS)

    Pan, X.; Chin, M.; Colarco, P. R.; Bian, H.; Gautam, R.

    2014-12-01

    Atmospheric aerosol over South Asia has attracted increasing concern over the recent decades due to its significant effects on air quality and climate. However the aerosol properties over South Asia has been poorly represented in most global models, with the surface concentrations, aerosol optical depth (AOD), and absorbing AOD (AAOD) significantly underestimated, especially in October-January when the agricultural waste burning and anthropogenic aerosol dominates over dust aerosol. This study investigates the causes for such discrepancy by conducting a series of model sensitivity experiments with NASA's GEOS-5 model with results evaluated with satellites, AERONET and in-situ measurements. The primary objectives of our research are to examine: 1) whether the aerosol sources (especially anthropogenic) used in the model are underestimated; 2) whether the meteorological conditions (such as relative humidity) are poorly represented in the model; 3) whether the commonly used spatial resolution in the current global models is inadequate to resolve the aerosol distributions features in South Asia. Results from this study will contribute to our understanding of key factors to determine the aerosol distribution over South Asia, and providing insights on improving aerosol representation in global models.

  10. MISR Satellite Observations of Aerosol Types Affecting Human Health

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Franklin, M.; Garay, M. J.; Diner, D. J.

    2015-12-01

    Ground-based observations of pollutants and concentrations of particulate matter (PM), that includes small particles designated PM2.5 and dust-dominated PM10, are the gold standard in studies of environmental impacts on human health. However, because monitoring stations are costly, they typically provide only limited spatial coverage, especially in rural and remote areas. We will demonstrate how data from the Multi-angle Imaging SpectroRadiometer (MISR) instrument that has been flying on NASA's Terra Earth Observing System satellite since early 2000 can be used to provide estimates of surface PM types. The current MISR operational aerosol retrieval uses a combination of multi-spectral and multi-angle data to retrieve aerosol optical depth (AOD) and particle property information (including dust AOD) globally at 17.6 km spatial resolution. Using the same algorithm with data collected in all 36-channels at 275 m resolution (Local Mode), which is available over greater Los Angeles area, and also was activated during 2013 DISCOVER-AQ California field campaign, high-resolution 4.4 km aerosol retrievals were performed in addition to the standard 17.6 km retrievals. The 4.4 km spatial resolution of the PM information data is fine enough to be able to resolve local differences in PM loading that may be important for understanding regional health effects of pollution in the region. In particular, we demonstrate that MISR high-resolution AOD retrievals are in better agreement with ground-based aerosol observations and reveal more details about the aerosol spatial variability compared to the MISR standard 17.6 km product. Then we will discuss techniques and show examples of the application of high-resolution MISR data to provide estimates of surface PM for the greater Los Angeles area in 2008 and for California San Joaquin Valley during the 2013 DISCOVER-AQ field campaign. Finally, we will discuss future NASA instruments that will provide new information allowing for better

  11. Aerosol effect on climate extremes in Europe under different future scenarios

    NASA Astrophysics Data System (ADS)

    Sillmann, J.; Pozzoli, L.; Vignati, E.; Kloster, S.; Feichter, J.

    2013-05-01

    This study investigates changes in extreme temperature and precipitation events under different future scenarios of anthropogenic aerosol emissions (i.e., SO2 and black and organic carbon) simulated with an aerosol-climate model (ECHAM5-HAM) with focus on Europe. The simulations include a maximum feasible aerosol reduction (MFR) scenario and a current legislation emission (CLEmod) scenario where Europe implements the MFR scenario, but the rest of the world follows the current legislation scenario and a greenhouse gas scenario. The strongest changes relative to the year 2000 are projected for the MFR scenario, in which the global aerosol reduction greatly enforces the general warming effect due to greenhouse gases and results in significant increases of temperature and precipitation extremes in Europe. Regional warming effects can also be identified from aerosol reductions under the CLEmodscenario. This becomes most obvious in the increase of the hottest summer daytime temperatures in Northern Europe.

  12. Improving Aerosol Simulation over South Asia for Climate and Air Quality Studies

    NASA Technical Reports Server (NTRS)

    Pan, Xiaohua; Chin, Mian; Bian, Huisheng; Gautam, Ritesh

    2014-01-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, the water cycle, and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions found there. However, it has been proved quite challenging to adequately represent the aerosol spatial distribution and magnitude over this critical region in global models (Pan et al. 2014), with the surface concentrations, aerosol optical depth (AOD), and absorbing AOD (AAOD) significantly underestimated, especially in October-January when the agricultural waste burning and anthropogenic aerosol dominate over dust aerosol. In this study, we aim to investigate the causes for such discrepancy in winter by conducting sets of model experiments with NASA's GEOS-5 in terms of (1) spatial resolution, (2) emission amount, and (3) meteorological fields.

  13. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the first two years of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this two-year grant consisted in the development and deployment of a new in-situ capability for measuring aerosol 180' backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Measurements were made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with targeted in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator and radiative transfer modeling by the University of Lille, France.

  14. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosol

    NASA Technical Reports Server (NTRS)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the third year of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this one-year grant consisted in analysis and publication of field studies using a new in-situ capability for measuring aerosol 180 deg backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Analyzed data consisted of measurements made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with target in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator.

  15. Time Series of Aerosol Column Optical Depth at the Barrow, Alaska, ARM Climate Research Facility for 2008 Fourth Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect

    C Flynn; AS Koontz; JH Mather

    2009-09-01

    The uncertainties in current estimates of anthropogenic radiative forcing are dominated by the effects of aerosols, both in relation to the direct absorption and scattering of radiation by aerosols and also with respect to aerosol-related changes in cloud formation, longevity, and microphysics (See Figure 1; Intergovernmental Panel on Climate Change, Assessment Report 4, 2008). Moreover, the Arctic region in particular is especially sensitive to changes in climate with the magnitude of temperature changes (both observed and predicted) being several times larger than global averages (Kaufman et al. 2009). Recent studies confirm that aerosol-cloud interactions in the arctic generate climatologically significant radiative effects equivalent in magnitude to that of green house gases (Lubin and Vogelmann 2006, 2007). The aerosol optical depth is the most immediate representation of the aerosol direct effect and is also important for consideration of aerosol-cloud interactions, and thus this quantity is essential for studies of aerosol radiative forcing.

  16. Do volcanic eruptions affect climate? Sulfur gases may cause cooling

    NASA Technical Reports Server (NTRS)

    Self, Stephen; Rampino, Michael R.

    1988-01-01

    The relationship between volcanic eruptions on earth and the observed climatic changes is investigated. The results of the comparison and analyses of volcanologic and climatologic data sets for the years between 1880 and 1980 indicate that changes in temperature caused by even of the largest eruptions recorded during this time were about the same as normal variations in temperature. However, when temperature records for several months or years preceding and following a given eruption were analyzed, a statistically significant temperature decrease of 0.2-0.5 C was found for the periods of one to two years immediately following some of the 19th and 20th century explosive events that prodiced large aerosol clouds (e.g., Krakatau and Agung eruptions). It is suggested that the content of sulfur in the erupted magma determines the size of aerosol cloud producing the cooling effect.

  17. Estimating the influence of the secondary organic aerosols on present climate using ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    O'Donnell, D.; Tsigaridis, K.; Feichter, J.

    2011-01-01

    In recent years, several field measurement campaigns have highlighted the importance of the organic fraction of aerosol mass, and with such spatial diversity that one may assert that these aerosols are ubiquitous in the troposphere, with particular importance in continental areas. Investigation of the chemical composition of organic aerosol remains a work in progress, but it is now clear that a significant portion of the total organic mass is composed of secondary organic material, that is, aerosol chemically formed from gaseous volatile organic carbon (VOC) precursors. A number of such precursors, of both biogenic and anthropogenic origin, have been identified. Experimental, inventory building and modelling studies have followed. Laboratory studies have yielded information on the chemical pathways that lead to secondary organic aerosol (SOA) formation, and provided the means to estimate the aerosol yields from a given precursor-oxidant reaction. Global inventories of anthropogenic VOC emissions, and of biogenic VOC emitter species distribution and their emission potential have been constructed. Models have been developed that provide global estimates of precursor VOC emissions, SOA formation and atmospheric burdens of these species. This paper estimates the direct and indirect effects of these aerosols using the global climate-aerosol model ECHAM5-HAM. For year 2000 conditions, we estimate a global annual mean shortwave (SW) aerosol direct effect due to SOA of -0.3 W m-2. The model predicts a positive SW indirect effect due to SOA amounting to +0.23 W m-2, arising from enlargement of particles due to condensation of SOA, together with an enhanced coagulation sink for small particles. Longwave effects are small. Finally, we indicate of areas of research into SOA that are required in order to better constrain our estimates of the influence of aerosols on the climate system.

  18. Aerosol Absorption by Black Carbon and Dust: Implications of Climate Change and Air Quality in Asia

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    Atmospheric aerosol distributions from 2000 to 2007 are simulated with the global model GOCART to attribute light absorption by aerosol to its composition and sources. We show the seasonal and interannual variations of absorbing aerosols in the atmosphere over Asia, mainly black carbon and dust. and their linkage to the changes of anthropogenic and dust emissions in the region. We compare our results with observations from satellite and ground-based networks, and estimate the importance of black carbon and dust on regional climate forcing and air quality.

  19. Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph

    2008-01-01

    Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.

  20. Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations

    PubMed Central

    Seki, Osamu; Kawamura, Kimitaka; Bendle, James A. P.; Izawa, Yusuke; Suzuki, Ikuko; Shiraiwa, Takayuki; Fujii, Yoshiyuki

    2015-01-01

    Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the concentrations and composition of biomass burning-, soil bacterial- and plant wax- tracers correspond to Arctic and regional temperatures as well as the warm season Arctic Oscillation (AO) over multi-decadal time-scales. Specifically, order of magnitude decreases (increases) in abundances of ice-core organic tracers, likely representing significant decreases (increases) in the atmospheric loading of carbonaceous aerosols, occur during colder (warmer) phases in the high latitudinal Northern Hemisphere. This raises questions about causality and possible carbonaceous aerosol feedback mechanisms. Our work opens new avenues for ice core research. Translating concentrations of organic tracers (μg/kg-ice or TOC) from ice-cores, into estimates of the atmospheric loading of carbonaceous aerosols (μg/m3) combined with new model constraints on the strength and sign of climate forcing by carbonaceous aerosols should be a priority for future research. PMID:26411576

  1. Dust shatters like glass: Implications for the climate forcing of mineral dust aerosols

    NASA Astrophysics Data System (ADS)

    Kok, Jasper

    2013-03-01

    Soil-derived mineral dust aerosols impact climate through interactions with clouds, ecosystems, and radiation, which contributes substantially to uncertainties in understanding past and future climate changes. One of the causes of this large uncertainty is that the size distribution of emitted dust aerosols is poorly understood. In fact, a compilation of measurements indicates that regional and global circulation models overestimate the emitted fraction of clay dust aerosols (< 2 μm diameter) by a factor of ~ 2 - 8. I resolve this discrepancy by deriving a simple theoretical expression for the emitted dust size distribution that is in excellent agreement with measurements. This expression is based on the analogy of dust emission with the scale-invariant fragmentation of brittle materials such as glass. Since regional and global circulation models are usually tuned to the shortwave radiative effect of dust, which is dominated by clay aerosols, these findings suggest that models have substantially underestimated the emission of larger silt (> 2 μm diameter) aerosols, which tend to produce a net warming effect. I show that this underestimation of silt aerosol emission has implications for the effect of dust on regional and global climate.

  2. Future Projections of Aerosol Optical Depth, Radiative Forcing, and Climate Response Due to Declining Aerosol Emissions in the Representative Concentration Pathways

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Mauzerall, D. L.; Horowitz, L. W.; Naik, V.

    2014-12-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted based on human health concerns. However, the resulting decrease in atmospheric aerosol burden will have unintended climate consequences. Since aerosols generally exert a net cooling influence on the climate, their removal will lead to an unmasking of global warming as well as other changes to the climate system. Aerosol and precursor global emissions decrease by as much as 80% by the year 2100, according to projections in four Representative Concentration Pathway (RCP) scenarios. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without aerosol emission changes projected by the RCPs in order to isolate the radiative forcing and climate response due to the aerosol reductions. We find that up to 1 W m-2 of radiative forcing may be unmasked globally by 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d-1 (3%). Regionally and locally, climate impacts are much larger, as RCP8.5 projects a 2.1 K warming over China, Japan, and Korea due to reduced aerosol emissions. Our results highlight the importance of crafting emissions control policies with both climate and air pollution benefits in mind. The expected unmasking of additional global warming from aerosol reductions highlights the importance of robust greenhouse gas mitigation policies and may require more aggressive policies than anticipated.

  3. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Maso, M. D.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-03-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Secondary organic aerosols (SOA) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOC) emitted by vegetation are a major source of SOA. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed SOA, and possibly their climatic effects. This raises questions whether stress-induced changes in SOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on SOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical SOA formation for infested plants in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify SOA formation. While sesquiterpenes, methyl salicylate, and C17-BVOC increase SOA yield, green leaf volatiles suppress SOA formation. By classifying emission types, stressors and SOA formation potential, we propose possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  4. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Dal Maso, M.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-09-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs) emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4-6% yield). Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  5. How increasing CO sub 2 and climate change affect forests

    SciTech Connect

    Graham, R.L.; Turner, M.G.; Dale, V.H. )

    1990-09-01

    The strong relationship among climate, atmosphere, soils, biota, and human activities provides a solid basis for anticipating changes in terrestrial biomes in response to changes in the global environment. This article examines potential forest responses to elevated carbon dioxide in conjunction with climatic change. Key ecological processes and how human intervention can affect those processes is presented.

  6. How does spatial variability of climate affect catchment streamflow predictions?

    EPA Science Inventory

    Spatial variability of climate can negatively affect catchment streamflow predictions if it is not explicitly accounted for in hydrologic models. In this paper, we examine the changes in streamflow predictability when a hydrologic model is run with spatially variable (distribute...

  7. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  8. Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate

    SciTech Connect

    Menon, Surabi; Del Genio, Anthony D.

    2007-09-03

    Any attempt to reconcile observed surface temperature changes within the last 150 years to changes simulated by climate models that include various atmospheric forcings is sensitive to the changes attributed to aerosols and aerosol-cloud-climate interactions, which are the main contributors that may well balance the positive forcings associated with greenhouse gases, absorbing aerosols, ozone related changes, etc. These aerosol effects on climate, from various modeling studies discussed in Menon (2004), range from +0.8 to -2.4 W m{sup -2}, with an implied value of -1.0 W m{sup -2} (range from -0.5 to -4.5 W m{sup -2}) for the aerosol indirect effects. Quantifying the contribution of aerosols and aerosol-cloud interactions remain complicated for several reasons some of which are related to aerosol distributions and some to the processes used to represent their effects on clouds. Aerosol effects on low lying marine stratocumulus clouds that cover much of the Earth's surface (about 70%) have been the focus of most of prior aerosol-cloud interaction effect simulations. Since cumulus clouds (shallow and deep convective) are short lived and cover about 15 to 20% of the Earth's surface, they are not usually considered as radiatively important. However, the large amount of latent heat released from convective towers, and corresponding changes in precipitation, especially in biomass regions due to convective heating effects (Graf et al. 2004), suggest that these cloud systems and aerosol effects on them, must be examined more closely. The radiative heating effects for mature deep convective systems can account for 10-30% of maximum latent heating effects and thus cannot be ignored (Jensen and Del Genio 2003). The first study that isolated the sensitivity of cumulus clouds to aerosols was from Nober et al. (2003) who found a reduction in precipitation in biomass burning regions and shifts in circulation patterns. Aerosol effects on convection have been included in other

  9. Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM

    NASA Astrophysics Data System (ADS)

    Peters, K.; Stier, P.; Quaas, J.; Graßl, H.

    2012-07-01

    In this study, we employ the global aerosol-climate model ECHAM-HAM to globally assess aerosol indirect effects (AIEs) resulting from shipping emissions of aerosols and aerosol precursor gases. We implement shipping emissions of sulphur dioxide (SO2), black carbon (BC) and particulate organic matter (POM) for the year 2000 into the model and quantify the model's sensitivity towards uncertainties associated with the emission parameterisation as well as with the shipping emissions themselves. Sensitivity experiments are designed to investigate (i) the uncertainty in the size distribution of emitted particles, (ii) the uncertainty associated with the total amount of emissions, and (iii) the impact of reducing carbonaceous emissions from ships. We use the results from one sensitivity experiment for a detailed discussion of shipping-induced changes in the global aerosol system as well as the resulting impact on cloud properties. From all sensitivity experiments, we find AIEs from shipping emissions to range from -0.32 ± 0.01 W m-2 to -0.07 ± 0.01 W m-2 (global mean value and inter-annual variability as a standard deviation). The magnitude of the AIEs depends much more on the assumed emission size distribution and subsequent aerosol microphysical interactions than on the magnitude of the emissions themselves. It is important to note that although the strongest estimate of AIEs from shipping emissions in this study is relatively large, still much larger estimates have been reported in the literature before on the basis of modelling studies. We find that omitting just carbonaceous particle emissions from ships favours new particle formation in the boundary layer. These newly formed particles contribute just about as much to the CCN budget as the carbonaceous particles would, leaving the globally averaged AIEs nearly unaltered compared to a simulation including carbonaceous particle emissions from ships.

  10. Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM

    NASA Astrophysics Data System (ADS)

    Peters, K.; Stier, P.; Quaas, J.; Graßl, H.

    2012-03-01

    In this study, we employ the global aerosol-climate model ECHAM-HAM to globally assess aerosol indirect effects (AIEs) resulting from shipping emissions of aerosols and aerosol precursor gases. We implement shipping emissions of sulphur dioxide (SO2), black carbon (BC) and particulate organic matter (POM) for the year 2000 into the model and quantify the model's sensitivity towards uncertainties associated with the emission parameterisation as well as with the shipping emissions themselves. Sensitivity experiments are designed to investigate (i) the uncertainty in the size distribution of emitted particles, (ii) the uncertainty associated with the total amount of emissions, and (iii) the impact of reducing carbonaceous emissions from ships. We use the results from one sensitivity experiment for a detailed discussion of shipping-induced changes in the global aerosol system as well as the resulting impact on cloud properties. From all sensitivity experiments, we find AIEs from shipping emissions to range from -0.07 ± 0.01 W m-2 to -0.32 ± 0.01 W m-2 (global mean value and inter-annual variability as a standard deviation). The magnitude of the AIEs depends much more on the assumed emission size distribution and subsequent aerosol microphysical interactions than on the magnitude of the emissions themselves. It is important to note that although the strongest estimate of AIEs from shipping emissions in this study is relatively large, still much larger estimates have been reported in the literature before on the basis of modelling studies. We find that omitting just carbonaceous particle emissions from ships favours new particle formation in the boundary layer. These newly formed particles contribute just about as much to the CCN budget as the carbonaceous particles would, leaving the globally averaged AIEs nearly unaltered compared to a simulation including carbonaceous particle emissions from ships.

  11. Aerosol changes associated with land use change in Asia and their impacts on climate

    NASA Astrophysics Data System (ADS)

    Sudo, K.; Takata, K.; Kanzawa, H.; Yasunari, T.

    2009-12-01

    This study assesses the roles of aerosols in the past/present changes in Asian climate and monsoon, isolating impacts of individual aerosol components in the framework of the CCSR/NIES/FRCGC climate model (MIROC). Many recent studies suggest that increases in anthropogenic aerosols such as black carbon and sulfate may play a crucial role in Asian climate change as observed. Our previous studies also demonstrate the significance of aerosol increases (sulfate and carbonaceous aerosols) in the simulated precipitation changes in Asia (e.g., Arai et al., 2009). In this study, we particularly focus on the changes of nitrate and secondary organic aerosols (SOA) which are tightly linked to land use change in regions like Asia, but not treated in our previous aerosol studies. We newly introduced simulation of nitrate aerosol in our climate model. Our simulation shows that there are anomalously high concentrations of nitrate aerosol in South Asia (particularly around India and Bangladesh), coming from abundant ammonium and less sulfate components in this region. In India, free tropospheric mixing ratio and number concentration of nitrate in fine mode are both larger than those of sulfate in winter to early summer. Our study estimates large cooling (1-2 W m-2) in South Asia due to nitrate increase in terms of direct radiative forcing for 1850-2000. This result suggests nitrate aerosol may play an important role in the observed changes in Asian monsoon. In addition, we estimate changes in biogenic VOCs emissions associated with land use change during 1850-2000; biogenic VOCs like terpenes are important precursors of SOA. We estimate significant reduction (50-70%) in terpenes and other VOCs emissions in the central Eurasia, North America, and Asia due to intense cultivation and deforestation in these areas. Responding to the VOCs decreases during 1850-2000, our model calculates large reduction of SOA, leading to a positive direct radiative forcing (warming) of 0.5-1 W m-2 in

  12. Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin

    SciTech Connect

    Lunden, Melissa M.; Kirchstetter, Thomas W.; Thatcher, Tracy L.; Hering, Susanne V.; Brown, Nancy J.

    2007-06-25

    A field study was conducted in an unoccupied single story residence in Clovis, California to provide data to address issues important to assess the indoor exposure to particles of outdoor origin. Measurements of black and organic carbonaceous aerosols were performed using a variety of methods, resulting in both near real-time measurements as well as integrated filter based measurements. Comparisons of the different measurement methods show that it is crucial to account for gas phase adsorption artifacts when measuring organic carbon (OC). Measured concentrations affected by the emissions of organic compounds sorbed to indoor surfaces imply a higher degree of infiltration of outdoor organic carbon aerosols into the indoor environment for our unoccupied house. Analysis of the indoor and outdoor data for black carbon (BC) aerosols show that, on average, the indoor concentration of black carbon aerosols behaves in a similar manner to sulfate aerosols. In contrast, organic carbon aerosols are subject to chemical transformations indoors that, for our unoccupied home, resulted in lower indoor OC concentrations than would be expected by physical loss mechanisms alone. These results show that gas to particle partitioning of organic compounds, as well as gas to surface interactions within the residence, are an important process governing the indoor concentration to OC aerosols of outdoor origin.

  13. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST -AIRC): An overview

    NASA Technical Reports Server (NTRS)

    Zhangqing, Li; Li, C.; Chen, H.; Tsay, S.-C.; Holben, B.; Huang, J.; Li, B.; Maring, H.; Qian, Y.; Shi, G.; Xia, X.; Yin, Y.; Zheng, Y.; Zhuang, G.

    2011-01-01

    As the most populated region of the world, Asia is a major source of aerosols with potential large impact over vast downstream areas, Papers published in this special section describe the variety of aerosols observed in China and their effects and interactions with the regional climate as part of the East Asian Study of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC), The majority of the papers are based on analyses of observations made under three field projects, namely, the Atmospheric Radiation Measurements (ARM) Mobile Facility mission in China (AMF-China), the East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE), and the Atmospheric Aerosols of China and their Climate Effects (AACCE), The former two are U,S,-China collaborative projects, and the latter is a part of the China's National Basic Research program (or often referred to as "973 project"), Routine meteorological data of China are also employed in some studies, The wealth of general and speCIalized measurements lead to extensive and close-up investigations of the optical, physical, and chemical properties of anthropogenic, natural, and mixed aerosols; their sources, formation, and transport mechanisms; horizontal, vertical, and temporal variations; direct and indirect effects; and interactions with the East Asian monsoon system, Particular efforts are made to advance our understanding of the mixing and interaction between dust and anthropogenic pollutants during transport. Several modeling studies were carried out to simulate aerosol impact on radiation budget, temperature, precipitation, wind and atmospheric circulation, fog, etc, In addition, impacts of the Asian monsoon system on aerosol loading are also simulated.

  14. Quantification of regional radiative impacts and climate effects of tropical fire aerosols

    NASA Astrophysics Data System (ADS)

    Tosca, M. G.; Zender, C. S.; Randerson, J. T.

    2011-12-01

    Regionally expansive smoke clouds originating from deforestation fires in Indonesia can modify local precipitation patterns via direct aerosol scattering and absorption of solar radiation (Tosca et al., 2010). Here we quantify the regional climate impacts of fire aerosols for three tropical burning regions that together account for about 70% of global annual fire emissions. We use the Community Atmosphere Model, version 5 (CAM5) coupled to a slab ocean model (SOM) embedded within the Community Earth System Model (CESM). In addition to direct aerosol radiative effects, CAM5 also quantifies indirect, semi-direct and cloud microphysical aerosol effects. Climate impacts are determined using regionally adjusted emissions data that produce realistic aerosol optical depths in CAM5. We first analyzed a single 12-year transient simulation (1996-2007) forced with unadjusted emissions estimates from the Global Fire Emissions Database, version 3 (GFEDv3) and compared the resulting aerosol optical depths (AODs) for 4 different burning regions (equatorial Asia, southern Africa, South America and boreal North America) to observed MISR and MODIS AODs for the same period. Based on this analysis we adjusted emissions for each burning region between 150 and 300% and forced a second simulation with the regionally adjusted emissions. Improved AODs from this simulation are compared to AERONET observations available at 15 stations throughout the tropics. We present here two transient simulations--one with the adjusted fire emissions and one without fires--to quantify the cumulative fire aerosol climate impact for three major tropical burning regions (equatorial Asia, southern Africa and South America). Specifically, we quantify smoke effects on radiation, precipitation, and temperature. References Tosca, M.G., J.T. Randerson, C.S. Zender, M.G. Flanner and P.J. Rasch (2010), Do biomass burning aerosols intensify drought in equatorial Asia during El Nino?, Atmos. Chem. Phys., 10, 3515

  15. Landscape fragmentation affects responses of avian communities to climate change.

    PubMed

    Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O

    2015-08-01

    Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change

  16. Geo-Engineering Climate Change with Sulfate Aerosol

    NASA Astrophysics Data System (ADS)

    Rasch, P. J.; Crutzen, P. J.

    2006-12-01

    We explore the impact of injecting a precursor of sulfate aerosols into the middle atmosphere where they would act to increase the planetary albedo and thus counter some of the effects of greenhouse gase forcing. We use an atmospheric general circulation model (CAM, the Community Atmosphere Model) coupled to a slab ocean model for this study. Only physical effects are examined, that is we ignore the biogeochemical and chemical implications of changes to greenhouse gases and aerosols, and do not explore the important ethical, legal, and moral issues that are associated with deliberate geo-engineering efforts. The simulations suggest that the sulfate aerosol produced from the SO2 source in the stratosphere is sufficient to counterbalance most of the warming associated with the greenhouse gas forcing. Surface temperatures return to within a few tenths of a degree(K) of present day levels. Sea ice and precipitation distributions are also much closer to their present day values. The polar region surface temperatures remain 1-3 degrees warm in the winter hemisphere than present day values. This study is very preliminary. Only a subset of the relevant effects have been explored. The effect of such an injection of aerosols on middle atmospheric chemistry, and the effect on cirrus clouds are obvious missing components that merit scrutiny. There are probably others that should be considered. The injection of such aerosols cannot help in ameliorating the effects of CO2 changes on ocean PH, or other effects on the biogeochemistry of the earth system.

  17. Observational constraints for climate forcing by biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Penner, J. E.; Zhou, C.; Prather, M. J.; Xu, L.

    2012-12-01

    Estimates of sources of aerosols from open biomass burning vary to a significant extent, and those for pre-industrial emissions are even more uncertain. Previously, we showed how the use of a global chemical transport model together with TOMS satellite data for aerosol index and black carbon (BC) concentrations in ice-cores can be used to constrain present-day (PD) (year 2000) and pre-industrial (PI) (year 1870) emissions. The total aerosol forcing (direct and warm cloud indirect) from these emissions was estimated to be -0.065 W m-2, although values as large as -0.21 W m-2 could not be excluded. Here, we further examine the consistency between our estimates of biomass burning sources and observations of the spectrally varying AAOD from AERONET. We present adjusted estimates that also include these observations.

  18. The Long-Standing Dynamical Impacts of Climate Engineering following the Injection of Stratospheric Sulphate Aerosol

    NASA Astrophysics Data System (ADS)

    Osprey, S. M.; Gray, L. J.; Haywood, J.; Jones, A.

    2014-12-01

    Discussions of our response to climate change invariably involve issues of adaptation and mitigation. The former presupposes unavoidable climate consequences and recognises a need to lessen their impact. The latter attempts to lessen the effects of increasing greenhouse gases (GHG) by (1) reducing GHG emission, (2) creating CO2 sinks (e.g. carbon sequestration) or by blocking the effects of solar radiation (solar radiation management - SRM). The SPICE project was set up to investigate the feasibility of implementing a practical method of SRM using the stratospheric injection of aerosols. SPICE remit includes: engineering design for the delivery of stratospheric aerosol, laboratory measurements for characterising the properties of optimal aerosol, and modelling studies looking into the parameterisation and impact of stratospheric aerosols within a state-of-the-art global climate model. The project has also pressed for the need for governance of climate engineering research. We describe idealised experiments investigating the environmental impact following sulphate aerosol injection into the tropical low-mid stratosphere. We compare a geo-engineering scenario (GeoMIP G4), which includes a constant injection rate of SO2 (5Tg/year) beginning at 2020, against a control simulation of increasing greenhouse gas forcing, as outlined by the CMIP5 RCP4.5 scenario. We use the well-documented stratosphere-resolving Hadley Centre model, which has been employed in previous CMIP5 and climate engineering studies. We examine for high-latitude impacts following tropical aerosol injection, and in particular the Holton-Tan effect observed in the wintertime extratropical stratosphere. These dynamical sensitivities provide an important link, bridging tropical stratosphere forcing with the near-surface response often seen at high latitudes.

  19. Long range climate effect of carbon dioxide and sulfate aerosols

    SciTech Connect

    Washington, Warren M.; Meehl, Gerald A.

    2002-09-16

    The program has led to better climate model components, has developed new and more efficient methods of solving climate model equations and has taken advantage of the new computing technologies thus providing more reliable estimates of potential climate change. The CHAMMP sponsored and the NCAR-CSM (Climate System Model) are complimentary efforts and under this leadership are developing state-of-the-art, high resolution, computationally efficient components thus providing a more realistic simulation.

  20. Stratospheric aerosol modification by supersonic transport operations with climate implications

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Turco, R. P.; Pollack, J. B.; Whitten, R. C.; Poppoff, I. G.; Hamill, P.

    1980-01-01

    The potential effects on stratospheric aerosois of supersonic transport emissions of sulfur dioxide gas and submicron size soot granules are estimated. An interactive particle-gas model of the stratospheric aerosol is used to compute particle changes due to exhaust emissions, and an accurate radiation transport model is used to compute the attendant surface temperature changes. It is shown that a fleet of several hundred supersonic aircraft, operating daily at 20 km, could produce about a 20% increase in the concentration of large particles in the stratosphere. Aerosol increases of this magnitude would reduce the global surface temperature by less than 0.01 K.

  1. Advancing Models and Evaluation of Cumulus, Climate and Aerosol Interactions

    SciTech Connect

    Gettelman, Andrew

    2015-10-27

    This project was successfully able to meet its’ goals, but faced some serious challenges due to personnel issues. Nonetheless, it was largely successful. The Project Objectives were as follows: 1. Develop a unified representation of stratifom and cumulus cloud microphysics for NCAR/DOE global community models. 2. Examine the effects of aerosols on clouds and their impact on precipitation in stratiform and cumulus clouds. We will also explore the effects of clouds and precipitation on aerosols. 3. Test these new formulations using advanced evaluation techniques and observations and release

  2. Multi-Decadal Variation of Aerosols: Sources, Transport, and Climate Effects

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Bian, Huisheng; Streets, David

    2008-01-01

    We present a global model study of multi-decadal changes of atmospheric aerosols and their climate effects using a global chemistry transport model along with the near-term to longterm data records. We focus on a 27-year time period of satellite era from 1980 to 2006, during which a suite of aerosol data from satellite observations, ground-based measurements, and intensive field experiments have become available. We will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which involves a time-varying, comprehensive global emission dataset that we put together in our previous investigations and will be improved/extended in this project. This global emission dataset includes emissions of aerosols and their precursors from fuel combustion, biomass burning, volcanic eruptions, and other sources from 1980 to the present. Using the model and satellite data, we will analyze (1) the long-term global and regional aerosol trends and their relationship to the changes of aerosol and precursor emissions from anthropogenic and natural sources, (2) the intercontinental source-receptor relationships controlled by emission, transport pathway, and climate variability.

  3. Indian monsoon and the elevated-heat-pump mechanism in a coupled aerosol-climate model

    NASA Astrophysics Data System (ADS)

    D'Errico, Miriam; Cagnazzo, Chiara; Fogli, Pier Giuseppe; Lau, William K. M.; Hardenberg, Jost; Fierli, Federico; Cherchi, Annalisa

    2015-09-01

    A coupled aerosol-atmosphere-ocean-sea ice climate model is used to explore the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. Results show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface. In the same period, enhanced surface cooling may also be amplified through solar dimming by more cloudiness and aerosol loading, via increased dust transported by low-level westerly flow. The surface cooling causes subsequent reduction in monsoon rainfall in July-August over India. The time-lagged nature of the reasonably realistic response of the model to aerosol forcing suggests that absorbing aerosols, besides their potential key roles in impacting monsoon water cycle and climate, may influence the seasonal variability of the Indian summer monsoon.

  4. Climate response of the South Asian monsoon system to anthropogenic aerosols

    SciTech Connect

    Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong; Yoon, Jin-Ho

    2012-07-13

    The equilibrium climate response to the total effects (direct, indirect and semi-direct effects) of aerosols arising from anthropogenic and biomass burning emissions on the South Asian summer monsoon system is studied using a coupled atmosphere-slab ocean model. Our results suggest that anthropogenic and biomass burning aerosols generally induce a reduction in mean summer monsoon precipitation over most parts of the Indian subcontinent, strongest along the western coastline of the Indian peninsula and eastern Nepal region, but modest increases also occur over the north western part of the subcontinent. While most of the noted reduction in precipitation is triggered by increased emissions of aerosols from anthropogenic activities, modest increases in the north west are mostly associated with decreases in local emissions of aerosols from forest fire and grass fire sources. Anthropogenic aerosols from outside Asia also contribute to the overall reduction in precipitation but the dominant contribution comes from aerosol sources within Asia. Local emissions play a more important role in the total rainfall response to anthropogenic aerosol sources during the early monsoon period, whereas both local as well as remote emissions of aerosols play almost equally important roles during the later part of the monsoon period. While precipitation responses are primarily driven by local aerosol forcing, regional surface temperature changes over the region are strongly influenced by anthropogenic aerosols from sources further away (non-local changes). Changes in local anthropogenic organic and black carbon emissions by as much as a factor of two (preserving their ratio) produce the same basic signatures in the model's summer monsoon temperature and precipitation responses.

  5. Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing

    SciTech Connect

    Thornton, Joel

    2015-01-26

    The research conducted on this project aimed to improve our understanding of secondary organic aerosol (SOA) formation in the atmosphere, and how the properties of the SOA impact climate through its size, phase state, and optical properties. The goal of this project was to demonstrate that the use of molecular composition information to mechanistically connect source apportionment and climate properties can improve the physical basis for simulation of SOA formation and properties in climate models. The research involved developing and improving methods to provide online measurements of the molecular composition of SOA under atmospherically relevant conditions and to apply this technology to controlled simulation chamber experiments and field measurements. The science we have completed with the methodology will impact the simulation of aerosol particles in climate models.

  6. A Strategy to Assess Aerosol Direct Radiative Forcing of Climate Using Satellite Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Atmospheric aerosols have a complex internal chemical composition and optical properties. Therefore it is difficult to model their impact on redistribution and absorption of solar radiation, and the consequent impact on atmospheric dynamics and climate. The use in climate models of isolated aerosol parameters retrieved from satellite data (e.g. optical thickness) may result in inconsistent calculations, if the model assumptions differ from these of the satellite retrieval schemes. Here we suggest a strategy to assess the direct impact of aerosol on the radiation budget at the top and bottom of the atmosphere using satellite and ground based measurements of the spectral solar radiation scattered by the aerosol. This method ensures consistent use of the satellite data and increases its accuracy. For Kaufman and Tanre: Strategy for aerosol direct forcing anthropogenic aerosol in the fine mode (e.g. biomass burning smoke and urban pollution) consistent use of satellite derived optical thickness can yield the aerosol impact on the spectral solar flux with accuracy an order of magnitude better than the optical thickness itself. For example, a simulated monthly average smoke optical thickness of 0.5 at 0.55 microns (forcing of 40-50 W/sq m) derived with an error of 20%, while the forcing can be measured directly with an error of only 0-2 W/sq m. Another example, the effect of large dust particles on reflection of solar flux can be derived three times better than retrievals of optical thickness. Since aerosol impacts not only the top of the atmosphere but also the surface irradiation, a combination of satellite and ground based measurements of the spectral flux, can be the most direct mechanism to evaluate the aerosol effect on climate and assimilate it in climate models. The strategy is applied to measurements from SCAR-B and the Tarfox experiments. In SCAR-B aircraft spectral data are used to derive the 24 hour radiative forcing of smoke at the top of the atmosphere of

  7. Aerosol climate effects and air quality impacts from 1980 to 2030

    SciTech Connect

    Menon, Surabi; Menon, Surabi; Unger, Nadine; Koch, Dorothy; Francis, Jennifer; Garrett, Tim; Sednev, Igor; Shindell, Drew; Streets, David

    2007-11-26

    We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present-day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 Wm{sup -2} and the total aerosol forcing increases from -0.10 Wm{sup -2} to -0.94 Wm{sup -2} (AIE increases from -0.13 to -0.68 Wm{sup -2}) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 Wm{sup -2}), but the magnitude decreases (-0.3Wm{sup -2}) considerably for the future scenario. Over Asia, we evaluate the role of biofuel and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of two) in biofuel and transport-based emissions for 2030 A1B over Asia. Projected changes from present-day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present

  8. Challenges to producing a long-term stratospheric aerosol climatology for chemistry and climate

    NASA Astrophysics Data System (ADS)

    Thomason, Larry; Vernier, Jean-Paul; Bourassa, Adam; Rieger, Landon; Luo, Beiping; Peter, Thomas; Arfeuille, Florian

    2016-04-01

    Stratospheric aerosol data sets are key inputs for climate models (GCMs, CCMs) particularly for understanding the role of volcanoes on climate and as a surrogate for understanding the potential of human-derived stratospheric aerosol as mitigation for global warming. In addition to supporting activities of individual climate models, the data sets also act as a historical input to the activities of SPARC's Chemistry-Climate Model Initiative (CCMI) and the World Climate Research Programme's Coupled Model Intercomparison Project (CMIP). One such data set was produced in 2004 as a part of the SPARC Assessment of Stratospheric Aerosol Properties (ASAP), extending from 1979 and 2004. It was primarily constructed from the Stratospheric Aerosol and Gas Experiment series of instruments but supplemented by data from other space-based sources and a number of ground-based and airborne instruments. Updates to this data set have expanded the timeframe to span from 1850 through 2014 through the inclusion of data from additional sources, such as photometer data and ice core analyses. Fundamentally, there are limitations to the reliability of the optical properties of aerosol inferred from even the most complete single instrument data sets. At the same time, the heterogeneous nature of the underlying data to this historical data set produces considerable challenges to the production of a climate data set which is both homogeneous and reliable throughout its timespan. In this presentation, we will discuss the impact of this heterogeneity showing specific examples such as the SAGE II to OSIRIS/CALIPSO transition in 2005. Potential solutions to these issues will also be discussed.

  9. Evaluation of aerosol indirect radiative effects on climate in the EMAC model

    NASA Astrophysics Data System (ADS)

    Chang, Dong Yeong; Tost, Holger; Steil, Benedikt; Lelieveld, Jos

    2013-04-01

    Anthropogenic aerosol particles directly and indirectly influence cloud properties and the Earth's radiative energy budget. Several studies have estimated the effects on climate using global circulation models (GCMs), indicating large differences between different models and large uncertainty ranges. These are mostly attributed to different cloud microphysical process parameterizations and uncertainties in the representation of aerosols. Without detailed cloud microphysical processes, using empirical relations between aerosol number or mass and cloud droplet number potentially even large discrepancies may arise. In the present study, a mechanistic aerosol activation scheme, based on double moment cloud microphysics, is used to compute aerosol indirect radiative and cloud effects in the EMAC model. Aerosol activation is linked to the cloud droplet nucleation processes in warm clouds, accounting for the number, size, and chemical composition of particles under ambient meteorological conditions. This approach uses a combination of empirical and semi-empirical parameters to represent aerosol water uptake and hygroscopic growth into cloud droplets. To evaluate the performance of our approach satellite datasets are used; for example, total cloud fraction from MODIS data and cloud radiative forcing at the top of atmosphere from CERES EBAF data.

  10. Evaluation of Present-day Aerosols over China Simulated from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Liao, H.; Chang, W.

    2014-12-01

    High concentrations of aerosols over China lead to strong radiative forcing that is important for both regional and global climate. To understand the representation of aerosols in China in current global climate models, we evaluate extensively the simulated present-day aerosol concentrations and aerosol optical depth (AOD) over China from the 12 models that participated in Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP), by using ground-based measurements and satellite remote sensing. Ground-based measurements of aerosol concentrations used in this work include those from the China Meteorological Administration (CMA) Atmosphere Watch Network (CAWNET) and the observed fine-mode aerosol concentrations collected from the literature. The ground-based measurements of AOD in China are taken from the AErosol RObotic NETwork (AERONET), the sites with CIMEL sun photometer operated by Institute of Atmospheric Physics, Chinese Academy of Sciences, and from Chinese Sun Hazemeter Network (CSHNET). We find that the ACCMIP models generally underestimate concentrations of all major aerosol species in China. On an annual mean basis, the multi-model mean concentrations of sulfate, nitrate, ammonium, black carbon, and organic carbon are underestimated by 63%, 73%, 54%, 53%, and 59%, respectively. The multi-model mean AOD values show low biases of 20-40% at studied sites in China. The ACCMIP models can reproduce seasonal variation of nitrate but cannot capture well the seasonal variations of other aerosol species. Our analyses indicate that current global models generally underestimate the role of aerosols in China in climate simulations.

  11. Downscaling Aerosols and the Impact of Neglected Subgrid Processes on Direct Aerosol Radiative Forcing for a Representative Global Climate Model Grid Spacing

    SciTech Connect

    Gustafson, William I.; Qian, Yun; Fast, Jerome D.

    2011-07-13

    Recent improvements to many global climate models include detailed, prognostic aerosol calculations intended to better reproduce the observed climate. However, the trace gas and aerosol fields are treated at the grid-cell scale with no attempt to account for sub-grid impacts on the aerosol fields. This paper begins to quantify the error introduced by the neglected sub-grid variability for the shortwave aerosol radiative forcing for a representative climate model grid spacing of 75 km. An analysis of the value added in downscaling aerosol fields is also presented to give context to the WRF-Chem simulations used for the sub-grid analysis. We found that 1) the impact of neglected sub-grid variability on the aerosol radiative forcing is strongest in regions of complex topography and complicated flow patterns, and 2) scale-induced differences in emissions contribute strongly to the impact of neglected sub-grid processes on the aerosol radiative forcing. The two of these effects together, when simulated at 75 km vs. 3 km in WRF-Chem, result in an average daytime mean bias of over 30% error in top-of-atmosphere shortwave aerosol radiative forcing for a large percentage of central Mexico during the MILAGRO field campaign.

  12. PARAGON - An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions

    SciTech Connect

    Diner, David J.; Ackerman, Thomas P.; Anderson, Theodore L.; Bosenberg, Jens; Braverman, Amy J.; Charlson, Robert J.; Collins, William D.; Davies, Roger; Holben, B. N.; Hostetler, Chris A.; Kahn, Ralph A.; Martonchik, John V.; Menzies, Robert T.; Miller, Mark A.; Ogren, J. A.; Penner, Joyce E.; Rasch, P; Schwartz, Stephen E.; Seinfeld, John H.; Stephens, Graeme L.; Torres, Omar; Travis, Larry D.; Wielicki, Bruce A.; Yu, Bin

    2004-10-01

    Aerosols exert myriad influences on the Earth?s environment and climate and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. Currently, the aerosol community lacks the necessary tools and infrastructure to reap maximum scientific benefit from a vast array of observed and modeled data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. A sustained, long-term program also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the Earth system can only be achieved through a multidisciplinary, interagency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models and establishing an accurate, consistent and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of effort required, we present a set of recommendations dealing with data interoperability, integration, synergy, summarization and mining, model evaluation, calibration and validation, augmentation of

  13. Aerosol-Induced Changes of Convective Cloud Anvils Produce Strong Climate Warming

    NASA Technical Reports Server (NTRS)

    Koren, I.; Remer, L. A.; Altaratz, O.; Martins, J. V.; Davidi, A.

    2010-01-01

    The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(exp-2) . Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvi1 clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (r), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds; increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  14. Aerosol-induced changes of convective cloud anvils produce strong climate warming

    NASA Astrophysics Data System (ADS)

    Koren, I.; Remer, L. A.; Altaratz, O.; Martins, J. V.; Davidi, A.

    2010-05-01

    The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm-2. Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvil clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (τ), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds, increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  15. Selected translated abstracts of Russian-language climate-change publications, III aerosols: Issue 164

    SciTech Connect

    Razuvaev, V.N.; Ssivachok, S.G.

    1995-10-01

    This report presents abstracts in Russian and translated into English of important Russian-language literature concerning aerosols as they relate to climate change. In addition to the bibliographic citations and abstracts translated into English, this report presents the original citations and abstracts in Russian. Author and title indexes are included to assist the reader in locating abstracts of particular interest.

  16. A modeling study on the climate impacts of black carbon aerosols

    NASA Astrophysics Data System (ADS)

    Wang, Chien

    2004-02-01

    A three-dimensional interactive aerosol-climate model has been developed and used to study the climatic impact of black carbon (BC) aerosols. When compared with the model's natural variability, significant global-scale changes caused by BC aerosols occurred in surface latent and sensible heat flux, surface net long-wave radiative flux, planetary boundary layer height, convective precipitation (all negative), and low-cloud coverage (positive), all closely related to the hydrological cycle. The most significant regional change caused by BC revealed in this study is in precipitation that occurs in the tropics (shift of precipitation center in the ITCZ) and in the middle and high latitudes of the Northern Hemisphere (change in snow depth). Influenced by BC caused changes in cloud cover and surface albedo, the interactive model provides smaller positive all-sky forcing at the top of atmosphere (TOA) and larger negative forcing at the surface than the offline diagnostics (the direct forcings). The actual solar radiative forcings by BC derived from the interactive model also exhibit significant interannual variations that are up to 4 times as large as their means. Based on the revealed changes in cloud radiative forcing by BC, a non-Twomey-Albrecht indirect forcing by BC that alters radiative budgets by changing cloud cover via thermodynamics rather than microphysics is also defined. It has been demonstrated that with an absolute amount more than 2 times higher than that of the TOA forcing, the surface forcing by BC is a very important factor in analyzing the climatic impact of BC. The result of this study suggests that with a constant annual emission of 14 TgC, BC aerosols do not cause a significant change in global-mean surface temperature. The calculated surface temperature change is determined by a subtle balance among changes in surface energy budget as well as in the hydrological cycle, all caused by BC forcing and often compensate each other. The result of this

  17. Final Report for LDRD Project ''A New Era of Research in Aerosol/Cloud/Climate Interactions at LLNL''

    SciTech Connect

    Chuang, C; Bergman, D J; Dignon, J E; Connell, P S

    2002-01-31

    Observations of global temperature records seem to show less warming than predictions of global warming brought on by increasing concentrations of CO{sub 2} and other greenhouse gases. One of the reasonable explanations for this apparent inconsistency is that the increasing concentrations of anthropogenic aerosols may be partially counteracting the effects of greenhouse gases. Aerosols can scatter or absorb the solar radiation, directly change the planetary albedo. Aerosols, unlike CO{sub 2}, may also have a significant indirect effect by serving as cloud condensation nuclei (CCN). Increases in CCN can result in clouds with more but smaller droplets, enhancing the reflection of solar radiation. Aerosol direct and indirect effects are a strong function of the distributions of all aerosol types and the size distribution of the aerosol in question. However, the large spatial and temporal variabilities in the concentration, chemical characteristics, and size distribution of aerosols have made it difficult to assess the magnitude of aerosol effects on atmospheric radiation. These variabilities in aerosol characteristics as well as their effects on clouds are the leading sources of uncertainty in predicting future climate variation. Inventory studies have shown that the present-day anthropogenic emissions contribute more than half of fine particle mass primarily due to sulfate and carbonaceous aerosols derived from fossil fuel combustion and biomass burning. Parts of our earlier studies have been focused on developing an understanding of global sulfate and carbonaceous aerosol abundances and investigating their climate effects [Chuang et al., 1997; Penner et al., 1998]. We have also modeled aerosol optical properties to account for changes in the refractive indices with relative humidity and dry aerosol composition [Grant et al., 1999]. Moreover, we have developed parameterizations of cloud response to aerosol abundance for use in global models to evaluate the importance

  18. Observation-constrained Estimation of Aerosol Climate Impacts over S Asia

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Kotamarthi, V. R.; Jefferson, A.; Wilcox, E. M.; Bender, F.; Pistone, K.; Praveen, P. S.; Thomas, R. M.; Ramanathan, V.

    2012-12-01

    Climate impacts of elevated aerosols over S. Asia have been studied extensively. Despite different methods employed and uncertainties, one clear message is that these aerosols have a large impact on the regional energy balance. However, uncertainty in the elevated aerosol absorption, as well as poor fidelity in model representations of aerosol-cloud interactions contribute to the discrepancies in quantifying the aerosol influences on monsoon circulation and rainfall. The main goal of this study is to examine the latitudinal heating gradient and the aerosol impact on the hydrological cycle during the pre-monsoon, with observational constraints on the aerosol vertical distribution. We run a 12-km regional climate model (WRF-Chem) driven by the NCEP analysis data from August 2011 to March 2012. During this time period, the ground-based profiling of aerosol extinction, cloud liquid water, water vapor, and temperature were taken at Nainital (29.38°N, 79.45°E) as part of the Ganges Valley Experiment (GVAX). It is the first time that such vertical profiling data sets are available in the northern Indian subcontinent for such a long period. In the pre-monsoon season (Feb-Mar), the regional model simulations show good agreement in the aerosol optical depth (AOD; 0.1~0.2) and black carbon (BC; ~0.8 ug/m3) concentrations compared with the surface observations at Nainital. The observed diurnal variation in BC concentration, peaking in the afternoon and lowering at night, is also captured by the model as a result of the thermal convection from the polluted valley. The simulated OC/BC ratio is about 2~4 near the surface, which is lower than observations, implying that we may underestimate the secondary organic formation from the biomass burning or biogenic sources. Spectral measurements of aerosol absorption will be used to investigate the absorption of OC in the UV and visible bands. During this time, surface and in situ profiling of aerosols and clouds were also made during

  19. Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model

    NASA Astrophysics Data System (ADS)

    Nabat, Pierre; Somot, Samuel; Mallet, Marc; Sevault, Florence; Chiacchio, Marc; Wild, Martin

    2015-02-01

    A fully coupled regional climate system model (CNRM-RCSM4) has been used over the Mediterranean region to investigate the direct and semi-direct effects of aerosols, but also their role in the radiation-atmosphere-ocean interactions through multi-annual ensemble simulations (2003-2009) with and without aerosols and ocean-atmosphere coupling. Aerosols have been taken into account in CNRM-RCSM4 through realistic interannual monthly AOD climatologies. An evaluation of the model has been achieved, against various observations for meteorological parameters, and has shown the ability of CNRM-RCSM4 to reproduce the main patterns of the Mediterranean climate despite some biases in sea surface temperature (SST), radiation and cloud cover. The results concerning the aerosol radiative effects show a negative surface forcing on average because of the absorption and scattering of the incident radiation. The SW surface direct effect is on average -20.9 Wm-2 over the Mediterranean Sea, -14.7 Wm-2 over Europe and -19.7 Wm-2 over northern Africa. The LW surface direct effect is weaker as only dust aerosols contribute (+4.8 Wm-2 over northern Africa). This direct effect is partly counterbalanced by a positive semi-direct radiative effect over the Mediterranean Sea (+5.7 Wm-2 on average) and Europe (+5.0 Wm-2) due to changes in cloud cover and atmospheric circulation. The total aerosol effect is consequently negative at the surface and responsible for a decrease in land (on average -0.4 °C over Europe, and -0.5 °C over northern Africa) and sea surface temperature (on average -0.5 °C for the Mediterranean SST). In addition, the latent heat loss is shown to be weaker (-11.0 Wm-2) in the presence of aerosols, resulting in a decrease in specific humidity in the lower troposphere, and a reduction in cloud cover and precipitation. Simulations also indicate that dust aerosols warm the troposphere by absorbing solar radiation, and prevent radiation from reaching the surface, thus

  20. From MODIS to VIIRS: Steps toward continuing the dark-target aerosol climate data record

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Mattoo, S.; Liu, H.; Munchak, L. A.; Laszlo, I.; Cronk, H.

    2012-12-01

    By this fall-2012 AGU meeting, the Moderate Resolution Imaging Spectrometer (MODIS) has been flying on NASA's Terra and Aqua satellites for 13 years and 10.5 years, respectively. During this time, the MODIS Aerosol Science Team has fine-tuned the aerosol retrieval algorithms and data processing protocols, resulting in a highly robust, stable and usable aerosol product. The aerosol optical depth (AOD) product has been validated extensively, and the MODIS-retrieved environmental data record (EDR) is becoming a strong foundation for creating an aerosol climate data record (CDR). With last year's launch of the Visible and Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP, the VIIRS-derived aerosol product has been designed to continue that provided by MODIS. VIIRS and MODIS have similar orbital mechanics and provide similar spectral resolution with similar spatial resolution. At the same time, the VIIRS and MODIS aerosol algorithms have similar physical assumptions. In fact, the initial validation exercises suggest that, in general, the VIIRS aerosol product is performing well, and that the expected error for the VIIRS-derived AOD is similar to that reported by MODIS. Although VIIRS should be able to derive an aerosol product similar in quality to MODIS, can the VIIRS aerosol record be "stitched" together with the MODIS record? To answer this question, instead of qualifying how similar they are, we need to quantify how their differences can and do impact the resulting aerosol products. There are instrumental differences, such as orbit altitude (805km versus 705km), spatial resolution (375m/750m versus 250m/500m/1000m), spectral differences, and sampling differences). There are pre-processing differences (cloud masking, gas correction assumptions, pixel selection protocols). There are retrieval algorithm differences, and of course final processing and quality control differences. Although we expect that most of differences have little or no impact, some may be

  1. Spatial patterns of substantial climate impact from anthropogenic aerosols in the early instrumental period

    NASA Astrophysics Data System (ADS)

    Undorf, Sabine; Bollasina, Massimo; Hegerl, Gabriele

    2016-04-01

    While many aspects of climate variation in the early instrumental period (1860-1950) are still unexplained, for instance the early twentieth-century warming from the 1910s to the 1940s, the role of anthropogenic aerosols in this period has been overlooked. Yet, the period is also an interesting case study to isolate aerosol impacts since it is characterised by the increase of North American and especially European aerosol emissions concurrently with negligible Asian emissions and relatively low carbon dioxide concentrations. We thus analyse the spatial and temporal patterns of aerosol impact for this period in available observations (NOAA 20th-century reanalysis, etc.) and historical single-forcing and all-forcing experiments with state-of-the-art CMIP5 models. We make use of coupled empirical orthogonal functions (EOFs) applied to surface temperature -the most reliable variable in observations- and different aerosol indicating variables such as aerosol optical depth and short-wave downward radiation, some of which include aerosol indirect effects. The principal components of the most important EOFs are then regressed onto sea level pressure, winds, and other variables to identify associated circulation patterns. A decomposition into multi-decadal and longer time scales is performed by filtering the data prior to the analysis. Our analysis reveals both statistically significant local and non-local aerosol impact and identifies circulation states associated with the temperature response. The results are consistent across different aerosol variables, and show a strong non-local response as well as specific differences between time scales. We find a distinctive circulation pattern which strongly resembles observations and might explain the observed early twentieth century warming in the Arctic.

  2. The Joint Aerosol-Monsoon Experiment: A New Challenge to Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2008-01-01

    Aerosol and monsoon related droughts and floods are two of the most serious environmental hazards confronting more than 60% of the population of the world living in the Asian monsoon countries. In recent years, thanks to improved satellite and in-situ observations, and better models, great strides have been made in aerosol, and monsoon research respectively. There is now a growing body of evidence suggesting that interaction of aerosol forcing with water cycle dynamics in monsoon regions may substantially alter the redistribution of energy at the earth surface and in the atmosphere, and therefore significantly impact monsoon rainfall variability and long term trends. In this talk, I will describe issues related to societal needs, scientific background, and challenges in studies of aerosol-water cycle interaction in Asian monsoon regions. As a first step towards addressing these issues, the authors call for an integrated observation and modeling research approach aimed at the interactions between aerosol chemistry and radiative effects and monsoon dynamics of the coupled ocean-atmosphere-land system. A Joint Aerosol-Monsoon Experiment (JAMEX) is proposed for 2007-2011, with an enhanced observation period during 2008-09, encompassing diverse arrays of observations from surface, aircraft, unmanned aerial vehicles, and satellites of physical and chemical properties of aerosols, long range aerosol transport as well as meteorological and oceanographic parameters in the Indo-Pacific Asian monsoon region. JAMEX will leverage on coordination among many ongoing and planned national programs on aerosols and monsoon research in China, India, Japan, Nepal, Italy, US, as well as international research programs of the World Climate Research Program (WCRP) and the World Meteorological Organization (WMO).

  3. Sensitivity analysis of a global aerosol model to understand how parametric uncertainties affect model predictions

    NASA Astrophysics Data System (ADS)

    Lee, L. A.; Carslaw, K. S.; Pringle, K. J.

    2012-04-01

    Global aerosol contributions to radiative forcing (and hence climate change) are persistently subject to large uncertainty in successive Intergovernmental Panel on Climate Change (IPCC) reports (Schimel et al., 1996; Penner et al., 2001; Forster et al., 2007). As such more complex global aerosol models are being developed to simulate aerosol microphysics in the atmosphere. The uncertainty in global aerosol model estimates is currently estimated by measuring the diversity amongst different models (Textor et al., 2006, 2007; Meehl et al., 2007). The uncertainty at the process level due to the need to parameterise in such models is not yet understood and it is difficult to know whether the added model complexity comes at a cost of high model uncertainty. In this work the model uncertainty and its sources due to the uncertain parameters is quantified using variance-based sensitivity analysis. Due to the complexity of a global aerosol model we use Gaussian process emulation with a sufficient experimental design to make such as a sensitivity analysis possible. The global aerosol model used here is GLOMAP (Mann et al., 2010) and we quantify the sensitivity of numerous model outputs to 27 expertly elicited uncertain model parameters describing emissions and processes such as growth and removal of aerosol. Using the R package DiceKriging (Roustant et al., 2010) along with the package sensitivity (Pujol, 2008) it has been possible to produce monthly global maps of model sensitivity to the uncertain parameters over the year 2008. Global model outputs estimated by the emulator are shown to be consistent with previously published estimates (Spracklen et al. 2010, Mann et al. 2010) but now we have an associated measure of parameter uncertainty and its sources. It can be seen that globally some parameters have no effect on the model predictions and any further effort in their development may be unnecessary, although a structural error in the model might also be identified. The

  4. Climatic modification by CO2, H2O, and aerosol

    NASA Technical Reports Server (NTRS)

    Rasool, I.

    1972-01-01

    Research is reported on the effects of increasing the CO2, aerosols, and water content of the atmosphere on the surface temperature and climatology. An atmospheric model is described with the incoming solar radiation for a planetary albedo of 33 percent, surface temperature of 288 K, relative humidity of 75 percent, cloud cover of 48 percent, CO2 of 0.3 parts per thousand, and aerosol density of two million per square centimeter. The results show that if the CO2 increases by a factor of 1000 or more, the total pressure of the atmosphere increases, and the earth may become as hot as Venus. It is also shown that as the amount of dust particles in the atmosphere increases, the solar radiation decreases, and the surface temperature lowers.

  5. Climate impacts of changing aerosol emissions since 1996

    NASA Astrophysics Data System (ADS)

    Kühn, T.; Partanen, A.-I.; Laakso, A.; Lu, Z.; Bergman, T.; Mikkonen, S.; Kokkola, H.; Korhonen, H.; Räisänen, P.; Streets, D. G.; Romakkaniemi, S.; Laaksonen, A.

    2014-07-01

    Increases in Asian aerosol emissions have been suggested as one possible reason for the hiatus in global temperature increase during the past 15 years. We study the effect of sulphur and black carbon (BC) emission changes between 1996 and 2010 on the global energy balance. We find that the increased Asian emissions have had very little regional or global effects, while the emission reductions in Europe and the U.S. have caused a positive radiative forcing. In our simulations, the global-mean aerosol direct radiative effect changes by 0.06 W/m2 during 1996 to 2010, while the effective radiative forcing (ERF) is 0.42 W/m2. The rather large ERF arises mainly from changes in cloudiness, especially in Europe. In Asia, the BC warming due to sunlight absorption has largely offset the cooling caused by sulphate aerosols. Asian BC concentrations have increased by a nearly constant fraction at all altitudes, and thus, they warm the atmosphere also in cloudy conditions.

  6. In situ measurements of heterogeneous reactions on ambient aerosol particles: Impacts on atmospheric chemistry and climate

    SciTech Connect

    Bertram, Timothy

    2015-02-11

    Aerosol particles play a critical role in the Earth’s energy budget through the absorption and scattering of radiation, and/or through their ability to form clouds and alter cloud lifetime. Heterogeneous and multi-phase reactions alter the climate-relevant properties of aerosol particles and catalyze reaction pathways that are energetically unfavorable in the gas phase. The chemical composition of aerosol particles dictates the kinetics of heterogeneous and multi-phase reactions. At present, the vast majority of the molecular level information on these processes has been determined in laboratory investigations on model aerosol systems. The work described here provides a comprehensive investigation into the reactivity of complex, ambient aerosol particles is proposed to determine: 1) how representative laboratory investigations of heterogeneous and multi-phase processes conducted on model, simple systems are of the real atmosphere, and 2) the impact of heterogeneous and multi-phase processes on ambient particle optical properties and their ability to nucleate clouds. This work has focused on the uptake kinetics for ammonia (NH3) and dinitrogen pentoxide (N2O5). The results of these investigations will be used to directly improve the representation of heterogeneous and multi-phase processes in global climate models, by identifying the key mechanistic drivers that control the variability in the observed kinetics.

  7. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    DOE PAGESBeta

    Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.; Ding, Aijun; Wang, Hailong; Zhang, Kai; Neubauer, David; Lohmann, Ulrike; Ferrachat, Sylvaine; Takeamura, Toshihiko; et al

    2016-03-04

    Aerosol–cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascentmore » (ω500  <  −25 hPa day−1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day−1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less

  8. Climatic and ecological impacts of tropospheric sulphate aerosols on the terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Eliseev, Alexey V.

    2015-04-01

    Tropospheric sulphate aerosols (TSA) may oxidise the photosynthesising tissues if they are taken up by plants. A parametrisation of this impact of tropospheric sulphate aerosols (TSA) on the terrestrial gross primary production is suggested. This parametrisation is implemented into the global Earth system model developed at the A.M. Obukhov Institute of the Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM). With this coupled model, the simulations are performed which are forced by common anthropogenic and natural climate forcings based on historical reconstructions followed by the RCP 8.5 scenario. The model response to sulphate aerosol loading is subdivided into the climatic (related to the influence of TSA on the radiative transport in the atmosphere) and ecological (related to the toxic influence of sulphate aerosol on terrestrial plants) impacts. We found that the former basically dominates over the latter on the global scale and modifies the responses of the global vegetation and soil carbon stocks to external forcings by 10%. At regional scale, however, ecological impact may be as much important as the climatic one.

  9. Dust Aerosol Impact on North Africa Climate: A GCM Investigation of Aerosol-Cloud-Radiation Interactions Using A-Train Satellite Data

    SciTech Connect

    Gu, Y.; Liou, K. N.; Jiang, Jonathan; Su, Hui; Liu, Xiaohong

    2012-02-15

    The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM) developed at the University of California, Los Angeles (UCLA). The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol indirect effect based on cloud and aerosol data retrieved from A-Train satellite observations have been employed in the climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols generally increase with increasing aerosol optical depth (AOD). When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced, since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing could exceed aerosol forcing. With the aerosol indirect effect, the net cloud forcing is generally reduced for ice water path (IWP) larger than 20 g m-2. The magnitude of the reduction increases with IWP. AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect result in less OLR and net solar flux at the top of the atmosphere over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. The increased precipitation seems to be associated with enhanced ice water contents in this region. The 200 mb radiative heating rate shows more cooling with the aerosol indirect effect since greater cooling is

  10. Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.

    2010-11-01

    Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative forcing. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative forcing over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local

  11. Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.

    2010-05-01

    Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative budget. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative budget over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local

  12. Development and basic evaluation of a prognostic aerosol scheme in the CNRM Climate Model

    NASA Astrophysics Data System (ADS)

    Michou, M.; Nabat, P.; Saint-Martin, D.

    2014-09-01

    We have implemented a prognostic aerosol scheme in the CNRM-GAME/CERFACS climate model, based upon the GEMS/MACC aerosol module of the ECMWF operational forecast model. This scheme describes the physical evolution of the five main types of aerosols, namely black carbon, organic matter, sulfate, desert dust and sea-salt. In this work, we describe the specificities of our implementation, for instance, taking into consideration a different dust scheme or boosting biomass burning emissions by a factor of 2, as well as the evaluation performed on simulation outputs. The simulations consist of 2004 conditions and transient runs over the 1993-2012 period, and are either free-running or nudged towards the ERA-Interim Reanalysis. Evaluation data sets include several satellite instrument AOD products (i.e., MODIS Aqua classic and Deep-Blue products, MISR and CALIOP products), as well as ground-based AERONET data and the derived AERONET climatology, MAC-v1. The internal variability of the model has little impact on the seasonal climatology of the AODs of the various aerosols, and the characteristics of a nudged simulation reflect those of a free-running simulation. In contrast, the impact of the new dust scheme is large, with modelled dust AODs from simulations with the new dust scheme close to observations. Overall patterns and seasonal cycles of the total AOD are well depicted with, however, a systematic low bias over oceans. The comparison to the fractional MAC-v1 AOD climatology shows disagreements mostly over continents, while that to AERONET sites outlines the capability of the model to reproduce monthly climatologies under very diverse dominant aerosol types. Here again, underestimation of the total AOD appears in several cases, linked sometimes to insufficient efficiency of the aerosol transport away from the aerosol sources. Analysis of monthly time series at 166 AERONET sites shows, in general, correlation coefficients higher than 0.5 and lower model variance than

  13. Investigation of Aerosol Indirect Effects using a Cumulus Microphysics Parameterization in a Regional Climate Model

    SciTech Connect

    Lim, Kyo-Sun; Fan, Jiwen; Leung, Lai-Yung R.; Ma, Po-Lun; Singh, Balwinder; Zhao, Chun; Zhang, Yang; Zhang, Guang; Song, Xiaoliang

    2014-01-29

    A new Zhang and McFarlane (ZM) cumulus scheme includes a two-moment cloud microphysics parameterization for convective clouds. This allows aerosol effects to be investigated more comprehensively by linking aerosols with microphysical processes in both stratiform clouds that are explicitly resolved and convective clouds that are parameterized in climate models. This new scheme is implemented in the Weather Research and Forecasting (WRF) model, which is coupled with the physics and aerosol packages from the Community Atmospheric Model version 5 (CAM5). A test case of July 2008 during the East Asian summer monsoon is selected to evaluate the performance of the new ZM scheme and to investigate aerosol effects on monsoon precipitation. The precipitation and radiative fluxes simulated by the new ZM scheme show a better agreement with observations compared to simulations with the original ZM scheme that does not include convective cloud microphysics and aerosol convective cloud interactions. Detailed analysis suggests that an increase in detrained cloud water and ice mass by the new ZM scheme is responsible for this improvement. To investigate precipitation response to increased anthropogenic aerosols, a sensitivity experiment is performed that mimics a clean environment by reducing the primary aerosols and anthropogenic emissions to 30% of that used in the control simulation of a polluted environment. The simulated surface precipitation is reduced by 9.8% from clean to polluted environment and the reduction is less significant when microphysics processes are excluded from the cumulus clouds. Ensemble experiments with ten members under each condition (i.e., clean and polluted) indicate similar response of the monsoon precipitation to increasing aerosols.

  14. A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate

    NASA Astrophysics Data System (ADS)

    Hauglustaine, D. A.; Balkanski, Y.; Schulz, M.

    2014-03-01

    factor of 1.3 in 2000, by a factor of 1.7-2.6 in 2030, by 1.9-4.8 in 2050 and by 6.4-8.6 in 2100. These results show that agricultural emissions of ammonia will play a key role in the future mitigation of climate change with nitrates becoming the dominant contributor to the anthropogenic aerosol optical depth during the second half of the XXIst century and significantly increasing the calculated aerosol direct forcing. This significant increase in the influence that nitrate exert on climate in the future will at the same time affect regional air quality and nitrogen deposition to the ecosystems.

  15. Identifying the critical climatic time window that affects trait expression.

    PubMed

    van de Pol, Martijn; Cockburn, Andrew

    2011-05-01

    Identifying the critical time window during which climatic drivers affect the expression of phenological, behavioral, and demographic traits is crucial for predicting the impact of climate change on trait and population dynamics. Two widely used associative methods exist to identify critical climatic periods: sliding-window models and recursive operators in which the memory of past weather fades over time. Both approaches have different strong points, which we combine here into a single method. Our method uses flexible functions to differentially weight past weather, which can reflect competing hypotheses about time lags and the relative importance of recent and past weather for trait expression. Using a 22-year data set, we illustrate that the climatic window identified by our new method explains more of the phenological variation in a sexually selected trait than existing approaches. Our new method thus helps to better identify the critical time window and the causes of trait response to environmental variability. PMID:21508615

  16. The assessment of climatology of absorbing aerosol field with integration of aerosol-climate model, and ground-based and satellite remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Jeong, G.; Wang, C.; Mahowald, N. M.; Rigby, M. L.; Martins, J.

    2009-12-01

    Absorbing aerosols play important roles in the Earth’s radiation budget and atmospheric circulation by absorbing sunlight and heating the atmosphere while cooling the surface. The strength of such effects depends on microphysical processes in the lifecycle of absorbing aerosols and their emissions to the atmosphere. Even though the knowledge of aerosol controlling processes and the techniques measuring aerosol properties have been greatly advanced, there are still significant gaps between model results and measurement data. The goal of this study is to minimize the model-observation discrepancy and to assess global 3-D absorbing aerosol fields. To achieve this goal, we investigate the errors related to aerosol models and measurements, and optimize the emissions of anthropogenic absorbing aerosols (BC) used in the models. In this study we first derive the aerosol optical depth (AOD) and absorbing aerosol optical depth (AAOD) of anthropogenic aerosols using the 3-D interactive aerosol-climate model [Kim et al., 2008] developed based on NCAR CAM3, running in an aerosol-transport-model (ATM) driven by NCEP/NCAR reanalysis data (2001~2003). Aerosol transformation in the atmosphere is fully considered in this model. We also derived the AOD and AAOD of dust aerosols based on the climatology from the Model of Atmospheric Transport and Chemistry (MATCH) driven by the NCEP/NCAR reanalysis data [Mahowald et al., 1997; Kistler et al., 2001]. In addition, the climatology (10-year mean) of the CAM3 sea salt model (Mahowald et al., 2006) is used to calculate the AOD of sea salt aerosols. An inverse modeling technique (Kalman filtering) is used to optimize the emissions of BC aerosols by minimizing the model-observation discrepancy of AAOD, and the emissions of anthropogenic organic carbon (OC) aerosols and SO2 by minimizing the model-observation discrepancy of AOD. Initial estimates of carbonaceous aerosol emission due to fossil fuel are taken from the MIT EPPA model and Bond

  17. Direct Radiative Forcing and Regional Climatic Effects of Anthropogenic Aerosols Over East Asia: A Regional Coupled Climate-Chemistry/Aerosol Model Study

    SciTech Connect

    Giorgi, Filippo; Bi, Xunqiang; Qian, Yun )

    2002-09-01

    We present a series of regional climate model simulations aimed at assessing the radiative forcing and surface climatic effects of anthropogenic sulfate and fossil fuel soot over east Asia. The simulations are carried out with a coupled regional climate-chemistry/aerosol model for the 5-year period of 1993-1997 using published estimates of sulfur emissions for the period. Anthropogenic sulfate induces a negative radiative forcing spatially varying from -1 to -8 W/m2 in the winter to -1 to -15 W/m2 in the summer, with maxima over the Sichan Basin of southwest China and over some areas of east and northeast China. This forcing induces a surface cooling in the range of -0.1 to -0.7 K. Fossil fuel soot exerts a positive atmospheric radiative forcing of 0.5 to 2 W/m2 and enhances the surface cooling by a few tenths of K due to increased surface shielding from solar radiation. Doubling of sulfur emissions induces a substantial increase in radiative forcing (up to -7 to -8 W/m2) and associated surface cooling. With doubled sulfur emissions, the surface cooling exceeds -1 K and is statistically significant at the 90% confidence level over various areas of China. The aerosol forcing and surface cooling tend to inhibit precipitation over the region, although this effect is relatively small in the simulations. Some features of the simulated aerosol-induced cooling are consistent with temperature trends observed in recent decades over different regions of China.

  18. Climate missing links: Aqueous greenhouse species in clouds, fogs and aerosols

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.; Cunningham, M.M.

    1991-11-01

    Recently, there has been considerable interest regarding possible greenhouse effects due to combustion and energy-related pollution. This concern has been due to the release and secondary production of greenhouse gases such as carbon dioxide, freons, methane, nitrous oxide, and ozone. These gases can absorb infrared radiation as it comes back from the heated ground and therefore effectively trap the infrared radiation in the troposphere, leading to climatic change. Beyond these gases, clouds, aerosols, and fogs may also play important roles in affecting, the radiation balance by scattering incoming radiation. This work describes the measurement of water soluble infrared absorbers that are known to be derived from pollution. Polluted precipitation is likely to be an important contributor to radiation balance that is currently being neglected. Pollutants characterized include sulfate, nitrate, formate, acetate, oxalate, phenol, p-nitrophenol, ammonium, carbonate, bicarbonate, formaldehyde (dihydroxy methane), methanol, and ethanol. Band positions and band strengths have been determined. These species show measurable infrared absorption bands in the atmospheric window regions (i.e., 900--1600 cm{sup {minus}1}). These data are discussed with regard to the reported discrepancies in the radiatively important water infrared absorption region commonly referred to as the ``foreign broadened continuum.``

  19. Climate Change: Potential Affect on Pesticide Application for Vector Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change has and will in the future contribute to the global burden of vector-borne disease by affecting the spatial and tempral distribution of disease. These changes in disease distributions are a direct result of altering the ecology of immature and adult habitats of insect vectors....

  20. What We Can Say About the Roles of Natural and Anthropogenic Aerosols in Climate Change

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph

    2016-07-01

    Although particles from natural sources dominate the globally averaged aerosol load, it is widely understood that human activity has added significantly to the atmospheric aerosol inventory in many regions. Anthropogenic contributions include pollution particles from industrial activity, transportation, cook-stoves, and other combustion sources, smoke from agricultural fires and those wildfires that result from land-management practices, soil and mineral dust mobilized in regions where overgrazing, severe tilling, or overuse of surface water resources have occurred, and biogenic particles from vegetation planted and maintained by the populance. The history of human influence is complex - in the 18th and 19th centuries agricultural burning tended to dominate the anthropogenic component in most places, whereas more recently, fossil fuel combustion leads the human contribution is many areas. However, identifying and quantifying the anthropogenic aerosol component on global scales is a challenging endeavor at present. Most estimates of the anthropogenic component come from aerosol transport models that are initialized with aerosol and precursor-gas source locations, emission strengths, and injection heights. The aerosol is then advected based on meteorological modeling, possibly modified chemically or physically, and removed by parameterized wet or dry deposition processes. Aerosol effects on clouds are also represented in some climate models, but with even greater uncertainty than the direct aerosol effects on Earth's radiation balance. Even for present conditions, aerosol source inventories are deduced from whatever constraints can be found, along with much creativity and many assumptions. Aerosol amount (i.e., aerosol optical depth) is routinely measured globally from space, but observational constraints on the anthropogenic component require some knowledge of the aerosol type as well, a much more difficult quantity to derive. As large-swath, multi-spectral, single

  1. The Earth Climate Hyperspectral Observatory: Advances in Cloud and Aerosol Remote Sensing

    NASA Astrophysics Data System (ADS)

    Pilewskie, Peter; Schmidt, Sebastian; Coddington, Odele; Kopp, Greg

    2015-04-01

    Future satellite missions to monitor global change require the establishment of high-accuracy spectrally resolved benchmark data records of reflected shortwave radiation for trend detection and attribution. Not surprisingly, these same attributes also provide substantial improvements in the retrieval of microphysical and optical properties of clouds and aerosols over current discrete-band observations. The NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission, currently in pre-formulation, defines a set of fundamental direct observations of spectrally resolved reflected shortwave and emitted longwave radiation, and GNSS radio occultation in order to detect climate trends and to test and improve climate prediction models. The Earth Climate Hyperspectral Observatory (ECHO), a proposed pathfinder mission to CLARREO, focuses on measuring spectrally resolved Earth-reflected shortwave radiation over a spectral range that comprised approximately 95% of the solar radiative energy incident at the top-of-atmosphere. This paper will report on the ECHO requirements specifically directed at objectives related to cloud and aerosol remote sensing, and more generally, characterizing the physical parameters responsible for the observed spectral and temporal variability in a benchmark data record. These objectives are centered on targeted remote sensing and data assimilation analyses to derive the dominant contributors to the observed spectral, temporal, and spatial perturbations in the reflected shortwave signal. Specific improvements in the retrieval of cloud and aerosol properties due to increased spectral coverage, spectral resolution, and radiometric accuracy will be discussed.

  2. GCM simulations of volcanic aerosol forcing. I - Climate changes induced by steady-state perturbations

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Rind, David; Lacis, Andrew; Hansen, James E.; Sato, Makiko; Ruedy, Reto

    1993-01-01

    The response of the climate system to a temporally and spatially constant amount of volcanic particles is simulated using a general circulation model (GCM). The optical depth of the aerosols is chosen so as to produce approximately the same amount of forcing as results from doubling the present CO2 content of the atmosphere and from the boundary conditions associated with the peak of the last ice age. The climate changes produced by long-term volcanic aerosol forcing are obtained by differencing this simulation and one made for the present climate with no volcanic aerosol forcing. The simulations indicate that a significant cooling of the troposphere and surface can occur at times of closely spaced multiple sulfur-rich volcanic explosions that span time scales of decades to centuries. The steady-state climate response to volcanic forcing includes a large expansion of sea ice, especially in the Southern Hemisphere; a resultant large increase in surface and planetary albedo at high latitudes; and sizable changes in the annually and zonally averaged air temperature.

  3. The sensitivity of global climate to the episodicity of fire aerosol emissions

    NASA Astrophysics Data System (ADS)

    Clark, Spencer K.; Ward, Daniel S.; Mahowald, Natalie M.

    2015-11-01

    Here we explore the sensitivity of the global radiative forcing and climate response to the episodicity of fire emissions. We compare the standard approach used in present day and future climate modeling studies, in which emissions are not episodic but smoothly interpolated between monthly mean values and that contrast to the response when fires are represented using a range of approximations of episodicity. The range includes cases with episodicity levels matching observed fire day and fire event counts, as well as cases with extreme episodicity. We compare the different emissions schemes in a set of Community Atmosphere Model (CAM5) simulations forced with reanalysis meteorology and a set of simulations with online dynamics designed to calculate aerosol indirect effect radiative forcings. We find that using climatologically observed fire frequency improves model estimates of cloud properties over the standard scheme, particularly in boreal regions, when both are compared to a simulation with meteorologically synchronized emissions. Using these emissions schemes leads to a range in global indirect effect radiative forcing of fire aerosols between -1.1 and -1.3 W m-2. In cases with extreme episodicity, we see increased transport of aerosols vertically, leading to longer lifetimes and less negative indirect effect radiative forcings. In general, the range in climate impacts that results from the different realistic fire emissions schemes is smaller than the uncertainty in climate impacts due to other aspects of modeling fire emissions.

  4. The impact of residential combustion emissions on atmospheric aerosol, human health and climate

    NASA Astrophysics Data System (ADS)

    Butt, E. W.; Rap, A.; Schmidt, A.; Reddington, C.; Scott, C.; Pringle, K.; Woodhouse, M.; Spracklen, D. V.

    2015-12-01

    Combustion of fuels in the residential sector for cooking and heating, results in the emission of aerosol and aerosol precursors that effect air quality, human health and climate. Residential emissions are dominated by the combustion of solid fuels which are the primary energy source for nearly half the world's population. Despite this importance, residential emissions are poorly quantified, as are their impacts on air quality and climate. We used a global aerosol microphysics model to simulate the impact of residential emissions on atmospheric aerosol in the year 2000, and evaluated simulated concentrations against surface observations of aerosol mass and number. Residential emissions make the largest contributions to surface particulate matter (PM2.5) concentrations in East Asia, South Asia and Eastern Europe, matching regions of greatest emissions. We used concentration response functions to estimate a global annual excess adult (> 30 years of age) premature mortality due to residential emissions of between 113, 300 and 827, 000 when uncertainties in both residential emissions and health effects of PM2.5 were accounted for. Premature mortality was greatest in Asia, with China and India accounting for 50% of simulated global excess mortality. Using an offline radiative transfer model, we show that residential emissions exerted a global annual mean direct radiative effect of between -66 mW m-2 and +21 mW m-2, accounting for uncertainties in emissions flux and assumed ratio of carbonaceous and sulphur emissions. Residential emissions exerted a negative global annual mean first aerosol indirect effect of between -52 mW m-2 and -16 mW m-2, which was found to be sensitive to the assumed size distribution of carbonaceous emissions. Our results demonstrate that reducing residential combustion emissions would have substantial benefits for human health through reductions in ambient PM2.5 concentrations.

  5. Climate impact of biofuels in shipping: global model studies of the aerosol indirect effect.

    PubMed

    Righi, Mattia; Klinger, Carolin; Eyring, Veronika; Hendricks, Johannes; Lauer, Axel; Petzold, Andreas

    2011-04-15

    Aerosol emissions from international shipping are recognized to have a large impact on the Earth's radiation budget, directly by scattering and absorbing solar radiation and indirectly by altering cloud properties. New regulations have recently been approved by the International Maritime Organization (IMO) aiming at progressive reductions of the maximum sulfur content allowed in marine fuels from current 4.5% by mass down to 0.5% in 2020, with more restrictive limits already applied in some coastal regions. In this context, we use a global bottom-up algorithm to calculate geographically resolved emission inventories of gaseous (NO(x), CO, SO(2)) and aerosol (black carbon, organic matter, sulfate) species for different kinds of low-sulfur fuels in shipping. We apply these inventories to study the resulting changes in radiative forcing, attributed to particles from shipping, with the global aerosol-climate model EMAC-MADE. The emission factors for the different fuels are based on measurements at a test bed of a large diesel engine. We consider both fossil fuel (marine gas oil) and biofuels (palm and soy bean oil) as a substitute for heavy fuel oil in the current (2006) fleet and compare their climate impact to that resulting from heavy fuel oil use. Our simulations suggest that ship-induced surface level concentrations of sulfate aerosol are strongly reduced, up to about 40-60% in the high-traffic regions. This clearly has positive consequences for pollution reduction in the vicinity of major harbors. Additionally, such reductions in the aerosol loading lead to a decrease of a factor of 3-4 in the indirect global aerosol effect induced by emissions from international shipping. PMID:21428387

  6. Evaluating Clouds, Aerosols, and their Interactions in Three Global Climate Models using COSP and Satellite Observations

    SciTech Connect

    Ban-Weiss, George; Jin, Ling; Bauer, S.; Bennartz, Ralph; Liu, Xiaohong; Zhang, Kai; Ming, Yi; Guo, Huan; Jiang, Jonathan

    2014-09-23

    Accurately representing aerosol-cloud interactions in global climate models is challenging. As parameterizations evolve, it is important to evaluate their performance with appropriate use of observations. In this work we compare aerosols, clouds, and their interactions in three climate models (AM3, CAM5, ModelE) to MODIS satellite observations. Modeled cloud properties were diagnosed using the CFMIP Observations Simulator Package (COSP). Cloud droplet number concentrations (N) were derived using the same algorithm for both satellite-simulated model values and observations. We find that aerosol optical depth tau simulated by models is similar to observations. For N, AM3 and CAM5 capture the observed spatial pattern of higher values in near-coast versus remote ocean regions, though modeled values in general are higher than observed. In contrast, ModelE simulates lower N in most near-coast versus remote regions. Aerosol- cloud interactions were computed as the sensitivity of N to tau for marine liquid clouds off the coasts of South Africa and Eastern Asia where aerosol pollution varies in time. AM3 and CAM5 are in most cases more sensitive than observations, while the sensitivity for ModelE is statistically insignificant. This widely used sensitivity could be subject to misinterpretation due to the confounding influence of meteorology on both aerosols and clouds. A simple framework for assessing the N – tau sensitivity at constant meteorology illustrates that observed sensitivity can change from positive to statistically insignificant when including the confounding influence of relative humidity. Satellite simulated values of N were compared to standard model output and found to be higher with a bias of 83 cm-3.

  7. Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0

    NASA Astrophysics Data System (ADS)

    Xu, Li; Pierce, David W.; Russell, Lynn M.; Miller, Arthur J.; Somerville, Richard C. J.; Twohy, Cynthia H.; Ghan, Steven J.; Singh, Balwinder; Yoon, Jin-Ho; Rasch, Philip J.

    2015-02-01

    This study examines multiyear climate variability associated with sea salt aerosols and their contribution to the variability of shortwave cloud forcing (SWCF) using a 150 year simulation for preindustrial conditions of the Community Earth System Model version 1.0. The results suggest that changes in sea salt and related cloud and radiative properties on interannual timescales are dominated by the El Niño-Southern Oscillation cycle. Sea salt variability on longer (interdecadal) timescales is associated with low-frequency variability in the Pacific Ocean similar to the Interdecadal Pacific Oscillation but does not show a statistically significant spectral peak. A multivariate regression suggests that sea salt aerosol variability may contribute to SWCF variability in the tropical Pacific, explaining up to 20-30% of the variance in that region. Elsewhere, there is only a small sea salt aerosol influence on SWCF through modifying cloud droplet number and liquid water path that contributes to the change of cloud effective radius and cloud optical depth (and hence cloud albedo), producing a multiyear aerosol-cloud-wind interaction.

  8. A Study on Aerosol Chemistry and Climate change at an Indo Gangetic Plain in India

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Srivastava, S. S.; Kumari, K. M.

    2008-05-01

    Major irritants of the environment are global warming, climate change, ozone depletion, acid rain, visibility impairment etc. Aerosol and its constituents play an important role in climate change, and deposition of atmospheric components to the earth surfaces. Knowledge of chemistry of aerosols is required for the assessment of its role in the total deposition of acidity at the earth's surface and size distribution to estimate aerosol optical and radiative properties, deposition rates, formation of cloud droplets and cloud droplet size distributions and cloud radiative properties. This paper discuss the atmospheric load of SPM, chemical characterization, precursors gases, role of meteorology and source interpretation at a site in Indo Gangetic plain. The mean TSPM load was higher than the NAAQS value for residential areas. The SPM value is in the reported range while the mean SPM value is slightly higher than earlier reported studies. It was highest in summer followed by monsoon and winter. The sum of major cations (Na+, K+, Mg2+, Ca2+ and NH4+ )is higher than sum of major anions (F-, Cl-, NO3- and SO42-) indicates alkaline nature of aerosol in this region. Source analysis has identified three major sources viz., soil for Ca2+ and Mg2+, industries for SO42-, NO3-, Cl- and biogenic combustions for K+ and NH4+ indicates.

  9. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Global climate change may affect wolves in Canada's High Arctic (80DG N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  10. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Gobal climate change may affect wolves in Canada's High Arctic (80?? N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena. ?? 2004 Kluwer Academic Publishers.

  11. How skillfully can we simulate drivers of aerosol direct climate forcing at the regional scale?

    NASA Astrophysics Data System (ADS)

    Crippa, P.; Sullivan, R. C.; Thota, A.; Pryor, S. C.

    2015-10-01

    Assessing the ability of global and regional models to describe aerosol optical properties is essential to reducing uncertainty in aerosol direct radiative forcing in the contemporary climate and to improving confidence in future projections. Here we evaluate the skill of high-resolution simulations conducted using the Weather Research and Forecasting model with coupled chemistry (WRF-Chem) in capturing spatio-temporal variability of aerosol optical depth (AOD) and Ångström exponent (AE) by comparison with ground- and space- based remotely sensed observations. WRF-Chem is run over eastern North America at a resolution of 12 km for a representative year (2008). A small systematic positive bias in simulated AOD relative to observations is found (annual MFB = 0.17 and 0.50 when comparing with MODIS and AERONET respectively), whereas the spatial variability is well captured during most months. The spatial correlation of AOD shows a clear seasonal cycle with highest correlation during summer months (r = 0.5-0.7) when the aerosol loading is large and more observations are available. AE is retrieved with higher uncertainty from the remote sensing observations. The model is biased towards simulation of coarse mode aerosols (annual MFB for AE = -0.10 relative to MODIS and -0.59 for AERONET), but the spatial correlation for AE with observations is 0.3-0.5 during most months. WRF-Chem also exhibits high skill in identifying areas of extreme and non-extreme aerosol loading, and its ability to correctly simulate the location and relative intensity of an extreme aerosol event (i.e. AOD > 75th percentile) varies between 30 and 70 % during winter and summer months respectively.

  12. Total Volcanic Stratospheric Aerosol Optical Depths and Implications for Global Climate Change

    NASA Technical Reports Server (NTRS)

    Ridley, D. A.; Solomon, S.; Barnes, J. E.; Burlakov, V. D.; Deshler, T.; Dolgii, S. I.; Herber, A. B.; Nagai, T.; Neely, R. R., III; Nevzorov, A. V.; Ritter, C.; Sakai, T.; Santer, B. D.; Sato, M.; Schmidt, A.; Uchino, O.; Vernier, J. P.

    2014-01-01

    Understanding the cooling effect of recent volcanoes is of particular interest in the context of the post-2000 slowing of the rate of global warming. Satellite observations of aerosol optical depth above 15 km have demonstrated that small-magnitude volcanic eruptions substantially perturb incoming solar radiation. Here we use lidar, Aerosol Robotic Network, and balloon-borne observations to provide evidence that currently available satellite databases neglect substantial amounts of volcanic aerosol between the tropopause and 15 km at middle to high latitudes and therefore underestimate total radiative forcing resulting from the recent eruptions. Incorporating these estimates into a simple climate model, we determine the global volcanic aerosol forcing since 2000 to be 0.19 +/- 0.09W/sq m. This translates into an estimated global cooling of 0.05 to 0.12 C. We conclude that recent volcanic events are responsible for more post-2000 cooling than is implied by satellite databases that neglect volcanic aerosol effects below 15 km.

  13. Technical Note: On the use of nudging for aerosol-climate model intercomparison studies

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Wan, H.; Liu, X.; Ghan, S. J.; Kooperman, G. J.; Ma, P.-L.; Rasch, P. J.; Neubauer, D.; Lohmann, U.

    2014-08-01

    Nudging as an assimilation technique has seen increased use in recent years in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5 (CAM5), due to the systematic temperature bias in the standard model and the sensitivity of simulated ice formation to anthropogenic aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on long-wave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations, and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. Results from both CAM5 and a second aerosol-climate model ECHAM6-HAM2 also indicate that compared to the wind-and-temperature nudging, constraining only winds leads to better agreement with the free-running model in terms of the estimated shortwave cloud forcing and the simulated convective activities. This suggests nudging the horizontal winds but not temperature is a

  14. Aerosol Precursor Emissions, Secondary Aerosol Production, and Climate-Forcing Gas Exchange in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Doskey, P. V.

    2009-12-01

    Aerosol precursors in the Midwest are generated from a myriad of sources including biogenic emissions of terpenes from the Ozarks region, anthropogenic emissions of volatile and semivolatile aliphatic and aromatic hydrocarbons from the St. Louis airshed, and agricultural emissions of ammonia (NH3), amines, and nitrogen oxides (NOx) from animal husbandry and cropping systems of the Midwest Corn Belt. The deciduous and coniferous forests of the Ozarks region are significant sources of isoprene, monoterpenes, and sesquiterpenes that are sensitive to rising CO2 levels and temperature and generate light-scattering, secondary organic aerosol (SOA). Application of nitrogen fertilizers stimulates emissions of ammonia (NH3), nitric oxide (NO), and nitrous oxide (N2O) from agricultural soils and crops. Nitric acid, generated through photooxidation of NO emissions from fossil fuel combustion in urban air and from soil emissions in agroecosystems, reacts rapidly with NH3 to generate light-scattering, secondary inorganic aerosol (SIA). The atmospheric lifetime of N2O is about 120 years, making the substance a potent greenhouse gas with a global warming potential of 290 for a time horizon of 20 years relative to CO2. Emissions of CO2, N2O, and SIA precursors from the Midwest Corn Belt and surrounding areas are likely to increase in the near future as pastureland and prairie is converted to grow corn and other biofuel crops to meet the demand for renewable fuels. Several large river systems transport nutrients from fertilized fields of the Midwest agroecosystem to the Gulf of Mexico where plankton growth is accelerated. Microbial decomposition of plankton detritus consumes oxygen and creates a hypoxic zone, which might be a significant source of N2O.The presentation will discuss gaps in our knowledge of the production of climate-forcing species in the Midwestern United States.

  15. Establishing Global Source-Receptor Relationships for Carbonaceous Aerosol to Characterize Sensitivity of its Climate Forcing to Emission Uncertainties

    NASA Astrophysics Data System (ADS)

    Wang, H.; Rasch, P. J.; Easter, R. C.; Singh, B.; Qian, Y.; Ma, P.; Zhang, R.

    2013-12-01

    Carbonaceous aerosol (CA) has been identified as an important but very uncertain forcing agent in the Earth's climate system. It has cascading radiative, microphysical and dynamical effects across the different scales in the atmosphere. Light-absorbing CA (e.g., black carbon (BC) and brown carbon) deposited on snow, sea ice and glaciers can accelerate their melting, which can induce more profound impact through positive feedback mechanisms, having important implications for climate change and fresh water availability at the global and regional scale. Many factors can affect the amount and impacts of CA in a specific region such as the Arctic, among which the global distribution of emissions is of primary importance. There are many uncertainties in global CA emissions, which are changing over time. To better understand the response of climate to these uncertainties and to potential future CA emission changes, it is useful to characterize the global source-receptor relationships and attribute CA loading and radiative forcing to various regional and sectoral CA sources. Observational evidence has clearly demonstrated the occurrence of intercontinental long-range transport of aerosols and to some extent the characteristic transport pathways. However, the observational approach alone cannot provide quantitative information on global source-receptor relationships. We have recently improved the treatment of aerosol transport and wet removal processes in the Community Atmosphere Model version 5 (CAM5) and introduced a brute-force aerosol source tagging technique in which aerosol particles emitted from many independent source regions and sectors are tagged and explicitly tracked. We run the CAM5 model in an 'offline' mode (i.e., driven by reanalysis data) so the transport processes are less likely to be subject to model biases in meteorology and circulation patterns. This modeling tool is used to quantify the characteristics (e.g., burden, surface deposition rate, lifetime

  16. Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations

    PubMed Central

    Glantz, Paul; Bourassa, Adam; Herber, Andreas; Iversen, Trond; Karlsson, Johannes; Kirkevåg, Alf; Maturilli, Marion; Seland, Øyvind; Stebel, Kerstin; Struthers, Hamish; Tesche, Matthias; Thomason, Larry

    2014-01-01

    In this study Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol optical thickness (AOT) at 555 nm are compared to Sun photometer measurements from Svalbard for a period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally varies within the predicted uncertainty of the retrieval over ocean (ΔAOT = ±0.03 ± 0.05 · AOT). The results from the remote sensing have been used to examine the accuracy in estimates of aerosol optical properties in the Arctic, generated by global climate models and from in situ measurements at the Zeppelin station, Svalbard. AOT simulated with the Norwegian Earth System Model/Community Atmosphere Model version 4 Oslo global climate model does not reproduce the observed seasonal variability of the Arctic aerosol. The model overestimates clear-sky AOT by nearly a factor of 2 for the background summer season, while tending to underestimate the values in the spring season. Furthermore, large differences in all-sky AOT of up to 1 order of magnitude are found for the Coupled Model Intercomparison Project phase 5 model ensemble for the spring and summer seasons. Large differences between satellite/ground-based remote sensing of AOT and AOT estimated from dry and humidified scattering coefficients are found for the subarctic marine boundary layer in summer. Key Points Remote sensing of AOT is very useful in validation of climate models PMID:25821664

  17. Constraining Carbonaceous Aerosol Climate Forcing by Bridging Laboratory, Field and Modeling Studies

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Aiken, A. C.; Liu, S.; Saleh, R.; Cappa, C. D.; Williams, L. R.; Donahue, N. M.; Gorkowski, K.; Ng, N. L.; Mazzoleni, C.; China, S.; Sharma, N.; Yokelson, R. J.; Allan, J. D.; Liu, D.

    2014-12-01

    Biomass and fossil fuel combustion emits black (BC) and brown carbon (BrC) aerosols that absorb sunlight to warm climate and organic carbon (OC) aerosols that scatter sunlight to cool climate. The net forcing depends strongly on the composition, mixing state and transformations of these carbonaceous aerosols. Complexities from large variability of fuel types, combustion conditions and aging processes have confounded their treatment in models. We analyse recent laboratory and field measurements to uncover fundamental mechanism that control the chemical, optical and microphysical properties of carbonaceous aerosols that are elaborated below: Wavelength dependence of absorption and the single scattering albedo (ω) of fresh biomass burning aerosols produced from many fuels during FLAME-4 was analysed to determine the factors that control the variability in ω. Results show that ω varies strongly with fire-integrated modified combustion efficiency (MCEFI)—higher MCEFI results in lower ω values and greater spectral dependence of ω (Liu et al GRL 2014). A parameterization of ω as a function of MCEFI for fresh BB aerosols is derived from the laboratory data and is evaluated by field data, including BBOP. Our laboratory studies also demonstrate that BrC production correlates with BC indicating that that they are produced by a common mechanism that is driven by MCEFI (Saleh et al NGeo 2014). We show that BrC absorption is concentrated in the extremely low volatility component that favours long-range transport. We observe substantial absorption enhancement for internally mixed BC from diesel and wood combustion near London during ClearFlo. While the absorption enhancement is due to BC particles coated by co-emitted OC in urban regions, it increases with photochemical age in rural areas and is simulated by core-shell models. We measure BrC absorption that is concentrated in the extremely low volatility components and attribute it to wood burning. Our results support

  18. PARAGON: An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions.

    NASA Astrophysics Data System (ADS)

    Diner, David J.; Ackerman, Thomas P.; Anderson, Theodore L.; Bösenberg, Jens; Braverman, Amy J.; Charlson, Robert J.; Collins, William D.; Davies, Roger; Holben, Brent N.; Hostetler, Chris A.; Kahn, Ralph A.; Martonchik, John V.; Menzies, Robert T.; Miller, Mark A.; Ogren, John A.; Penner, Joyce E.; Rasch, Philip J.; Schwartz, Stephen E.; Seinfeld, John H.; Stephens, Graeme L.; Torres, Omar; Travis, Larry D.; Wielicki, Bruce A.; Yu, Bin

    2004-10-01

    Aerosols exert myriad influences on the earth's environment and climate, and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. While a vast array of observed and modeled data are becoming available, the aerosol research community currently lacks the necessary tools and infrastructure to reap maximum scientific benefit from these data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. Maximizing the long-term benefit from these data also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the earth system can be achieved only through a multidisciplinary, inter-agency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies, can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models, and establishing an accurate, consistent, and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of the effort required, we present a set of recommendations dealing with data interoperability; measurement and model integration

  19. Predicting when climate-driven phenotypic change affects population dynamics.

    PubMed

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species. PMID:27062059

  20. CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate

    NASA Astrophysics Data System (ADS)

    Renno, N.; Williams, E.; Rosenfeld, D.; Fischer, D.; Fischer, J.; Kremic, T.; Agrawal, A.; Andreae, M.; Bierbaum, R.; Blakeslee, R.; Boerner, A.; Bowles, N.; Christian, H.; Dunion, J.; Horvath, A.; Huang, X.; Khain, A.; Kinne, S.; Lemos, M.-C.; Penner, J.

    2012-04-01

    The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. Knowledge of these interactions is foundational to our understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey (NRC 2007) indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) mission concept responds to the IPCC and Decadal Survey concerns by studying the activation of CCN and their interactions with clouds and storms. CHASER proposes to revolutionize our understanding of the interactions of aerosols with clouds by making the first global measurements of the fundamental physical entity linking them: activated cloud condensation nuclei. The CHASER mission was conceptualized to measure all quantities necessary for determining the interactions of aerosols with clouds and storms. Measurements by current satellites allow the determination of crude profiles of cloud particle size but not of the activated CCN that seed them. CHASER uses a new technique (Freud et al. 2011; Rosenfeld et al. 2012) and high-heritage instruments to produce the first global maps of activated CCN and the properties of the clouds associated with them. CHASER measures the CCN concentration and cloud thermodynamic forcing simultaneously, allowing their effects to be distinguished. Changes in the behavior of a group of weather systems in which only one of the quantities varies (a partial derivative of the intensity with the desirable quantity) allow the determination of each effect statistically. The high uncertainties of current climate predictions limit their much-needed use in decision-making. CHASER mitigates this

  1. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    NASA Astrophysics Data System (ADS)

    Lacey, Forrest; Henze, Daven

    2015-11-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  2. Sunphotometry of the 2006-2007 aerosol optical/radiative properties at the Himalayan Nepal Climate Observatory-Pyramid (5079 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Gobbi, G. P.; Angelini, F.; Bonasoni, P.; Verza, G. P.; Marinoni, A.; Barnaba, F.

    2010-11-01

    In spite of being located at the heart of the highest mountain range in the world, the Himalayan Nepal Climate Observatory (5079 m a.s.l.) at the Ev-K2-CNR Pyramid is shown to be affected by the advection of pollution aerosols from the populated regions of southern Nepal and the Indo-Gangetic plains. Such an impact is observed along most of the period April 2006-March 2007 addressed here, with a minimum in the monsoon season. Backtrajectory-analysis indicates long-range transport episodes occurring in this year to originate mainly in the west Asian deserts. At this high altitude site, the measured aerosol optical depth is observed to be about one order of magnitude lower than the one measured at Ghandi College (60 m a.s.l.), in the Indo-Gangetic basin. As for Ghandi College, and in agreement with the in situ ground observations at the Pyramid, the fine mode aerosol optical depth maximizes during winter and minimizes in the monsoon season. Conversely, total optical depth maximizes during the monsoon due to the occurrence of elevated, coarse particle layers. Possible origins of these particles are wind erosion from the surrounding peaks and hydrated/cloud-processed aerosols. Assessment of the aerosol radiative forcing is then expected to be hampered by the presence of these high altitude particle layers, which impede an effective, continuous measurement of anthropogenic aerosol radiative properties from sky radiance inversions and/or ground measurements alone. Even though the retrieved absorption coefficients of pollution aerosols were rather large (single scattering albedo of the order of 0.6-0.9 were observed in the month of April 2006), the corresponding low optical depths (~0.03 at 500 nm) are expected to limit the relevant radiative forcing. Still, the high specific forcing of this aerosol and its capability of altering snow surface albedo provide good reasons for continuous monitoring.

  3. How will climate change affect vine behaviour in different soils?

    NASA Astrophysics Data System (ADS)

    Leibar, Urtzi; Aizpurua, Ana; Morales, Fermin; Pascual, Inmaculada; Unamunzaga, Olatz

    2014-05-01

    and water-deficit had a clear influence on the grape phenological development and composition, whilst soil affected root configuration and anthocyanins concentration. Effects of climate change and water availability on different soil conditions should be considered to take full advantage or mitigate the consequences of the future climate conditions.

  4. Coupled Aerosol-Chemistry-Climate Twentieth-Century Transient Model Investigation: Trends in Short-Lived Species and Climate Responses

    NASA Technical Reports Server (NTRS)

    Koch, Dorothy; Bauer, Susanne E.; Del Genio, Anthony; Faluvegi, Greg; McConnell, Joseph R.; Menon, Surabi; Miller, Ronald L.; Rind, David; Ruedy, Reto; Schmidt, Gavin A.; Shindell, Drew

    2011-01-01

    The authors simulate transient twentieth-century climate in the Goddard Institute for Space Studies (GISS) GCM, with aerosol and ozone chemistry fully coupled to one another and to climate including a full dynamic ocean. Aerosols include sulfate, black carbon (BC), organic carbon, nitrate, sea salt, and dust. Direct and BC snow-albedo radiative effects are included. Model BC and sulfur trends agree fairly well with records from Greenland and European ice cores and with sulfur deposition in North America; however, the model underestimates the sulfur decline at the end of the century in Greenland. Global BC effects peak early in the century (1940s); afterward the BC effects decrease at high latitudes of the Northern Hemisphere but continue to increase at lower latitudes. The largest increase in aerosol optical depth occurs in the middle of the century (1940s-80s) when sulfate forcing peaks and causes global dimming. After this, aerosols decrease in eastern North America and northern Eurasia leading to regional positive forcing changes and brightening. These surface forcing changes have the correct trend but are too weak. Over the century, the net aerosol direct effect is -0.41 Watts per square meter, the BC-albedo effect is -0.02 Watts per square meter, and the net ozone forcing is +0.24 Watts per square meter. The model polar stratospheric ozone depletion develops, beginning in the 1970s. Concurrently, the sea salt load and negative radiative flux increase over the oceans around Antarctica. Net warming over the century is modeled fairly well; however, the model fails to capture the dynamics of the observedmidcentury cooling followed by the late century warming.Over the century, 20% of Arctic warming and snow ice cover loss is attributed to the BC albedo effect. However, the decrease in this effect at the end of the century contributes to Arctic cooling. To test the climate responses to sulfate and BC pollution, two experiments were branched from 1970 that removed

  5. Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation

    NASA Astrophysics Data System (ADS)

    Tosca, M. G.; Randerson, J. T.; Zender, C. S.

    2013-05-01

    Each year landscape fires across the globe emit black and organic carbon smoke particles that can last in the atmosphere for days to weeks. We characterized the climate response to these aerosols using an Earth system model. We used remote sensing observations of aerosol optical depth (AOD) and simulations from the Community Atmosphere Model, version 5 (CAM5) to optimize satellite-derived smoke emissions for high biomass burning regions. Subsequent global simulations using the adjusted fire emissions produced AODs that were in closer agreement with surface and space-based measurements. We then used CAM5, which included radiative aerosol effects, to evaluate the climate response to the fire-aerosol forcing. We conducted two 52 yr simulations, one with four sets of monthly cycling 1997-2009 fire emissions and one without. Fire emissions increased global mean annual AOD by 10% (+0.02) and decreased net all-sky surface radiation by 1% (1.3 W m-2). Elevated AODs reduced global surface temperatures by 0.13 ± 0.01 °C. Though global precipitation declined only slightly, patterns of precipitation changed, with large reductions near the Equator offset by smaller increases north and south of the intertropical convergence zone (ITCZ). A combination of increased tropospheric heating and reduced surface temperatures increased equatorial subsidence and weakened the Hadley circulation. As a consequence, precipitation decreased over tropical forests in South America, Africa and equatorial Asia. These results are consistent with the observed correlation between global temperatures and the strength of the Hadley circulation and studies linking tropospheric heating from black carbon aerosols with tropical expansion.

  6. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  7. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations

    NASA Astrophysics Data System (ADS)

    Zhang, K.; O'Donnell, D.; Kazil, J.; Stier, P.; Kinne, S.; Lohmann, U.; Ferrachat, S.; Croft, B.; Quaas, J.; Wan, H.; Rast, S.; Feichter, J.

    2012-03-01

    This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Sensitivity experiments are carried out to analyse the effects of these improvements in the process representation on the simulated aerosol properties and global distribution. The new parameterizations that have largest impact on the global mean aerosol optical depth and radiative effects turn out to be the water uptake scheme and cloud microphysics. The former leads to a significant decrease of aerosol water contents in the lower troposphere, and consequently smaller optical depth; the latter results in higher aerosol loading and longer lifetime due to weaker in-cloud scavenging. The combined effects of the new/updated parameterizations are demonstrated by comparing the new model results with those from the earlier version, and against observations. Model simulations are evaluated in terms of aerosol number concentrations against measurements collected from twenty field campaigns as well as from fixed measurement sites, and in terms of optical properties against the AERONET measurements. Results indicate a general improvement with respect to the earlier version. The aerosol size distribution and spatial-temporal variance simulated by HAM2 are in better agreement with the observations. Biases in the earlier model version in aerosol optical depth and in the Ångström parameter have been reduced. The paper also points out the remaining model deficiencies that need to be

  8. Sulfate Aerosol Control of Tropical Atlantic Climate over the Twentieth Century

    NASA Technical Reports Server (NTRS)

    Chang, C.-Y.; Chiang, J. C. H.; Wehner, M. F.; Friedman, A. R.; Ruedy, R.

    2011-01-01

    The tropical Atlantic interhemispheric gradient in sea surface temperature significantly influences the rainfall climate of the tropical Atlantic sector, including droughts over West Africa and Northeast Brazil. This gradient exhibits a secular trend from the beginning of the twentieth century until the 1980s, with stronger warming in the south relative to the north. This trend behavior is on top of a multi-decadal variation associated with the Atlantic multi-decadal oscillation. A similar long-term forced trend is found in a multimodel ensemble of forced twentieth-century climate simulations. Through examining the distribution of the trend slopes in the multimodel twentieth-century and preindustrial models, the authors conclude that the observed trend in the gradient is unlikely to arise purely from natural variations; this study suggests that at least half the observed trend is a forced response to twentieth-century climate forcings. Further analysis using twentieth-century single-forcing runs indicates that sulfate aerosol forcing is the predominant cause of the multimodel trend. The authors conclude that anthropogenic sulfate aerosol emissions, originating predominantly from the Northern Hemisphere, may have significantly altered the tropical Atlantic rainfall climate over the twentieth century

  9. Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100

    NASA Astrophysics Data System (ADS)

    Szopa, Sophie; Balkanski, Y.; Schulz, M.; Bekki, S.; Cugnet, D.; Fortems-Cheiney, A.; Turquety, S.; Cozic, A.; Déandreis, C.; Hauglustaine, D.; Idelkadi, A.; Lathière, J.; Lefevre, F.; Marchand, M.; Vuolo, R.; Yan, N.; Dufresne, J.-L.

    2013-05-01

    Global aerosol and ozone distributions and their associated radiative forcings were simulated between 1850 and 2100 following a recent historical emission dataset and under the representative concentration pathways (RCP) for the future. These simulations were used in an Earth System Model to account for the changes in both radiatively and chemically active compounds, when simulating the climate evolution. The past negative stratospheric ozone trends result in a negative climate forcing culminating at -0.15 W m-2 in the 1990s. In the meantime, the tropospheric ozone burden increase generates a positive climate forcing peaking at 0.41 W m-2. The future evolution of ozone strongly depends on the RCP scenario considered. In RCP4.5 and RCP6.0, the evolution of both stratospheric and tropospheric ozone generate relatively weak radiative forcing changes until 2060-2070 followed by a relative 30 % decrease in radiative forcing by 2100. In contrast, RCP8.5 and RCP2.6 model projections exhibit strongly different ozone radiative forcing trajectories. In the RCP2.6 scenario, both effects (stratospheric ozone, a negative forcing, and tropospheric ozone, a positive forcing) decline towards 1950s values while they both get stronger in the RCP8.5 scenario. Over the twentieth century, the evolution of the total aerosol burden is characterized by a strong increase after World War II until the middle of the 1980s followed by a stabilization during the last decade due to the strong decrease in sulfates in OECD countries since the 1970s. The cooling effects reach their maximal values in 1980, with -0.34 and -0.28 W m-2 respectively for direct and indirect total radiative forcings. According to the RCP scenarios, the aerosol content, after peaking around 2010, is projected to decline strongly and monotonically during the twenty-first century for the RCP8.5, 4.5 and 2.6 scenarios. While for RCP6.0 the decline occurs later, after peaking around 2050. As a consequence the relative

  10. Asian aerosols: current and year 2030 distributions and implications to human health and regional climate change.

    PubMed

    Carmichael, Gregory R; Adhikary, Bhupesh; Kulkarni, Sarika; D'Allura, Alessio; Tang, Youhua; Streets, David; Zhang, Qiang; Bond, Tami C; Ramanathan, Veerabhadran; Jamroensan, Aditsuda; Marrapu, Pallavi

    2009-08-01

    Aerosol distributions in Asia calculated over a 4-year period and constrained by satellite observations of aerosol optical depth (AOD) are presented. Vast regions in Asia that include > 80% of the population have PM2.5 concentrations that exceed on an annual basis the WHO guideline of 10 microg/m3, often by factors of 2 to 4. These high aerosol loadings also have important radiative effects, causing a significant dimming at the surface, and mask approximately 45% of the warming by greenhouse gases. Black carbon (BC) concentrations are high throughout Asia, representing 5-10% of the total AOD, and contributing significantly to atmospheric warming (its warming potential is approximately 55% of that due to CO2). PM levels and AODs in year 2030, estimated based on simulations that consider future changes in emissions, are used to explore opportunities for win-win strategies built upon addressing air quality and climate change together. It is found that in 2030 the PM2.5 levels in significant parts of Asia will increase and exacerbate health impacts; but the aerosols will have a larger masking effect on radiative forcing, due to a decrease in BC and an increase in SO2 emissions. PMID:19731681

  11. Global water resources affected by human interventions and climate change.

    PubMed

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  12. Terrestrial carbon cycle affected by non-uniform climate warming

    NASA Astrophysics Data System (ADS)

    Xia, Jianyang; Chen, Jiquan; Piao, Shilong; Ciais, Philippe; Luo, Yiqi; Wan, Shiqiang

    2014-03-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30° and 90° N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research.

  13. Global water resources affected by human interventions and climate change

    PubMed Central

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  14. Efficient Formation of Stratospheric Aerosol for Climate Engineering by Emission of Condensible Vapor from Aircraft

    NASA Technical Reports Server (NTRS)

    Pierce, Jeffrey R.; Weisenstein, Debra K.; Heckendorn, Patricia; Peter. Thomas; Keith, David W.

    2010-01-01

    Recent analysis suggests that the effectiveness of stratospheric aerosol climate engineering through emission of non-condensable vapors such as SO2 is limited because the slow conversion to H2SO4 tends to produce aerosol particles that are too large; SO2 injection may be so inefficient that it is difficult to counteract the radiative forcing due to a CO2 doubling. Here we describe an alternate method in which aerosol is formed rapidly in the plume following injection of H2SO4, a condensable vapor, from an aircraft. This method gives better control of particle size and can produce larger radiative forcing with lower sulfur loadings than SO2 injection. Relative to SO2 injection, it may reduce some of the adverse effects of geoengineering such as radiative heating of the lower stratosphere. This method does not, however, alter the fact that such a geoengineered radiative forcing can, at best, only partially compensate for the climate changes produced by CO2.

  15. Biases in modeled surface snow BC mixing ratios in prescribed-aerosol climate model runs

    NASA Astrophysics Data System (ADS)

    Doherty, S. J.; Bitz, C. M.; Flanner, M. G.

    2014-11-01

    Black carbon (BC) in snow lowers its albedo, increasing the absorption of sunlight, leading to positive radiative forcing, climate warming and earlier snowmelt. A series of recent studies have used prescribed-aerosol deposition flux fields in climate model runs to assess the forcing by black carbon in snow. In these studies, the prescribed mass deposition flux of BC to surface snow is decoupled from the mass deposition flux of snow water to the surface. Here we compare prognostic- and prescribed-aerosol runs and use a series of offline calculations to show that the prescribed-aerosol approach results, on average, in a factor of about 1.5-2.5 high bias in annual-mean surface snow BC mixing ratios in three key regions for snow albedo forcing by BC: Greenland, Eurasia and North America. These biases will propagate directly to positive biases in snow and surface albedo reduction by BC. The bias is shown be due to coupling snowfall that varies on meteorological timescales (daily or shorter) with prescribed BC mass deposition fluxes that are more temporally and spatially smooth. The result is physically non-realistic mixing ratios of BC in surface snow. We suggest that an alternative approach would be to prescribe BC mass mixing ratios in snowfall, rather than BC mass fluxes, and we show that this produces more physically realistic BC mixing ratios in snowfall and in the surface snow layer.

  16. The Impact of humidity above stratiform clouds on indirect aerosol climate forcing

    SciTech Connect

    Ackerman, A S; Kirkpatrick, M P; Stevens, D E; Toon, O B

    2004-12-20

    Some of the global warming effect of anthropogenic greenhouse gases is offset by increased solar reflection from clouds with smaller droplets that form on increased numbers of cloud condensation nuclei in polluted air. The global magnitude of the resulting indirect aerosol climate forcing is estimated to be comparable (and opposed) to the anthropogenic carbon dioxide forcing, but estimates are highly uncertain because of complexities in characterizing the physical process that determine global aerosol and cloud populations and their interactions. Beyond reflecting sunlight more effectively, smaller droplets are less efficient at producing precipitation, and decreased precipitation is expected to result in increased cloud water and cloud cover, further increasing the indirect forcing. Yet polluted marine boundary-layer clouds are not generally observed to hold more water. Here we use model simulations of stratocumulus clouds to show that suppression of precipitation from increased droplet concentrations leads to increased cloud water only when sufficient precipitation reaches the surface, a condition favored when the overlying air is moist. Otherwise, aerosol induced suppression of precipitation enhances entrainment of overlying dry air, thereby reducing cloud water and diminishing the indirect climate forcing.

  17. The effect of future reduction in aerosol emissions on climate extremes in China

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Lin, Lei; Yang, Meilin; Xu, Yangyang

    2016-01-01

    This study investigates the effect of reduced aerosol emissions on projected temperature and precipitation extremes in China during 2031-2050 and 2081-2100 relative to present-day conditions using the daily data output from the Community Earth System Model ensemble simulations under the Representative Concentration Pathway (RCP) 8.5 with an applied aerosol reduction and RCP8.5 with fixed 2005 aerosol emissions (RCP8.5_FixA) scenarios. The reduced aerosol emissions of RCP8.5 magnify the warming effect due to greenhouse gases (GHG) and lead to significant increases in temperature extremes, such as the maximum of daily maximum temperature (TXx), minimum of daily minimum temperature (TNn), and tropical nights (TR), and precipitation extremes, such as the maximum 5-day precipitation amount, number of heavy precipitation days, and annual total precipitation from days ˃95th percentile, in China. The projected TXx, TNn, and TR averaged over China increase by 1.2 ± 0.2 °C (4.4 ± 0.2 °C), 1.3 ± 0.2 °C (4.8 ± 0.2 °C), and 8.2 ± 1.2 (30.9 ± 1.4) days, respectively, during 2031-2050 (2081-2100) under the RCP8.5_FixA scenario, whereas the corresponding values are 1.6 ± 0.1 °C (5.3 ± 0.2 °C), 1.8 ± 0.2 °C (5.6 ± 0.2 °C), and 11.9 ± 0.9 (38.4 ± 1.0) days under the RCP8.5 scenario. Nationally averaged increases in all of those extreme precipitation indices above due to the aerosol reduction account for more than 30 % of the extreme precipitation increases under the RCP8.5 scenario. Moreover, the aerosol reduction leads to decreases in frost days and consecutive dry days averaged over China. There are great regional differences in changes of climate extremes caused by the aerosol reduction. When normalized by global mean surface temperature changes, aerosols have larger effects on temperature and precipitation extremes over China than GHG.

  18. Aerosol-cloud interactions studied with the chemistry-climate model EMAC

    NASA Astrophysics Data System (ADS)

    Chang, D. Y.; Tost, H.; Steil, B.; Lelieveld, J.

    2014-08-01

    This study uses the EMAC atmospheric chemistry-climate model to simulate cloud properties and estimate cloud radiative effects induced by aerosols. We have tested two prognostic cloud droplet nucleation parameterizations, i.e., the standard STN (osmotic coefficient model) and hybrid (HYB, replacing the osmotic coefficient by the κ hygroscopicity parameter) schemes to calculate aerosol hygroscopicity and critical supersaturation, and consider aerosol-cloud feedbacks with a focus on warm clouds. Both prognostic schemes (STN and HYB) account for aerosol number, size and composition effects on droplet nucleation, and are tested in combination with two different cloud cover parameterizations, i.e., a relative humidity threshold and a statistical cloud cover scheme (RH-CLC and ST-CLC). The use of either STN and HYB leads to very different cloud radiative effects, particularly over the continents. The STN scheme predicts highly effective CCN activation in warm clouds and hazes/fogs near the surface. The enhanced CCN activity increases the cloud albedo effect of aerosols and cools the Earth's surface. The cooler surface enhances the hydrostatic stability of the lower continental troposphere and thereby reduces convection and convective precipitation. In contrast, the HYB simulations calculate lower, more realistic CCN activation and consequent cloud albedo effect, leading to relatively stronger convection and high cloud formation. The enhanced high clouds increase greenhouse warming and moderate the cooling effect of the low clouds. With respect to the cloud radiative effects, the statistical ST-CLC scheme shows much higher sensitivity to aerosol-cloud coupling for all continental regions than the RH-CLC threshold scheme, most pronounced for low clouds but also for high clouds. Simulations of the short wave cloud radiative effect at the top of the atmosphere in ST-CLC are a factor of 2-8 more sensitive to aerosol coupling than the RH-CLC configurations. The long wave

  19. Aerosols versus Greenhouse Gas Climate Effects: Impacts on Temperature and Precipitation Changes and Implications for Decision-making

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Horowitz, L. W.; Ming, Y.; Schwarzkopf, M. D.; Levy, H.

    2011-12-01

    Over the 20th Century, it is understood that anthropogenic emissions of aerosols have partially offset the influence of the greenhouse gas emissions on the global-mean and continental surface temperatures, consistent with the difference in their respective radiative forcings. The effect of aerosols versus greenhouse gases on precipitation and hydrologic cycle, however, is not so straightforward. Using a set of NOAA/ GFDL global climate model simulations, the impacts due to anthropogenic aerosol emissions are characterized and compared with those due to greenhouse gas emissions. This is performed for the global and continental spatial scales. The degree of aerosol offset of the greenhouse gas effects in terms of evaporation at the surface and precipitation can be greater than that occurring in the case of surface temperature, with some regions experiencing an impact that is more governed by aerosols than by the greenhouse gas emissions. These results have significant implications for decision-making concerning future emissions and mitigation/ adaptation to climate change. The removal of aerosols from the atmosphere in the near future to obtain improvements in air quality would exacerbate the warming due to greenhouse gases arising over a large part of the globe. However, the corresponding impacts due to aerosol reductions on the global evaporation and precipitation in the 21st Century, including changes in regional phenomena such as the Asian precipitation, are less clear but are important to understand. Compounding the problem is the set of uncertainties arising from lack of or incomplete knowledge of the various species of aerosols (e.g., scattering and absorbing aerosols; sulfate, soot, dust), interactions of aerosols with clouds, and the nature of the emissions scenario. An accompanying challenge is to accurately characterize and communicate this exceptional issue in climate change science to the diverse group of stakeholders, sectors and decision-makers, who

  20. A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate

    NASA Astrophysics Data System (ADS)

    Hauglustaine, D. A.; Balkanski, Y.; Schulz, M.

    2014-10-01

    forcing calculations increases the total direct forcing of aerosols by a factor of 1.3 in 2000, by a factor of 1.7-2.6 in 2030, by 1.9-4.8 in 2050, and by 6.4-8.6 in 2100. These results show that the agricultural emissions of ammonia will play a key role in the future mitigation of climate change, with nitrates becoming the dominant contributor to the anthropogenic aerosol optical depth during the second half of the 21st century and significantly increasing the calculated aerosol direct forcing. This significant increase in the influence that nitrate exerts on climate in the future will at the same time affect regional air quality and nitrogen deposition to the ecosystem.

  1. Global model simulations of the impact of the transport sectors on atmospheric aerosol and climate

    NASA Astrophysics Data System (ADS)

    Righi, Mattia; Hendricks, Johannes; Sausen, Robert

    2013-04-01

    The transport sector, including land transport, shipping and aviation, is one of the major sources of tropospheric aerosol. Land transport, in particular, is a relevant source of pollution in highly populated areas (e.g. megacities), with significant impacts on climate and health. Transport emissions are expected to grow in the near future, especially in the developing countries. In this work we use the EMAC-MADE global aerosol model to quantify the impact of transport emissions on global aerosol, for both present-day (2000) and future (2030) scenarios. Number emissions are also included in the model and derived from mass emissions under different assumptions on the size distribution of particles emitted by the three transport modes. Additional sensitivity experiments are performed to quantify the effects of the uncertainties behind such assumptions. The model simulations reveal that land transport is the most important source of black carbon pollution in the densely populated regions of Eastern U.S. and Europe. High particle concentrations are simulated for Southeast Asian areas, although pollution in this region is mostly due to non-transport sources. Shipping strongly contributes to aerosol sulphate concentrations along the most-traveled routes of the Northern Atlantic and Northern Pacific oceans, with significant impact along the coastlines and nearby major harbors and with large effects on cloud properties. The impacts on particle number concentrations are very sensitive to the assumptions on size distribution of emitted particles, with the largest uncertainties simulated for the land transport sector. The model results further reveal significant climate impacts of transport-induced particles.

  2. The impact of residential combustion emissions on atmospheric aerosol, human health and climate

    NASA Astrophysics Data System (ADS)

    Butt, E. W.; Rap, A.; Schmidt, A.; Scott, C. E.; Pringle, K. J.; Reddington, C. L.; Richards, N. A. D.; Woodhouse, M. T.; Ramirez-Villegas, J.; Yang, H.; Vakkari, V.; Stone, E. A.; Rupakheti, M.; Praveen, P. S.; van Zyl, P. G.; Beukes, J. P.; Josipovic, M.; Mitchell, E. J. S.; Sallu, S. M.; Forster, P. M.; Spracklen, D. V.

    2015-07-01

    Combustion of fuels in the residential sector for cooking and heating, results in the emission of aerosol and aerosol precursors impacting air quality, human health and climate. Residential emissions are dominated by the combustion of solid fuels. We use a global aerosol microphysics model to simulate the uncertainties in the impact of residential fuel combustion on atmospheric aerosol. The model underestimates black carbon (BC) and organic carbon (OC) mass concentrations observed over Asia, Eastern Europe and Africa, with better prediction when carbonaceous emissions from the residential sector are doubled. Observed seasonal variability of BC and OC concentrations are better simulated when residential emissions include a seasonal cycle. The largest contributions of residential emissions to annual surface mean particulate matter (PM2.5) concentrations are simulated for East Asia, South Asia and Eastern Europe. We use a concentration response function to estimate the health impact due to long-term exposure to ambient PM2.5 from residential emissions. We estimate global annual excess adult (> 30 years of age) premature mortality of 308 000 (113 300-497 000, 5th to 95th percentile uncertainty range) for monthly varying residential emissions and 517 000 (192 000-827 000) when residential carbonaceous emissions are doubled. Mortality due to residential emissions is greatest in Asia, with China and India accounting for 50 % of simulated global excess mortality. Using an offline radiative transfer model we estimate that residential emissions exert a global annual mean direct radiative effect of between -66 and +21 mW m-2, with sensitivity to the residential emission flux and the assumed ratio of BC, OC and SO2 emissions. Residential emissions exert a global annual mean first aerosol indirect effect of between -52 and -16 mW m-2, which is sensitive to the assumed size distribution of carbonaceous emissions. Overall, our results demonstrate that reducing residential

  3. An intensive study on aerosol optical properties and affecting factors in Nanjing, China.

    PubMed

    Cui, Fenping; Chen, Mindong; Ma, Yan; Zheng, Jun; Zhou, Yaoyao; Li, Shizheng; Qi, Lu; Wang, Li

    2016-02-01

    The optical properties of aerosol as well as their impacting factors were investigated at a suburb site in Nanjing during autumn from 14 to 28 November 2012. More severe pollution was found together with lower visibility. The average scattering and absorption coefficients (Bsca and Babs) were 375.7 ± 209.5 and 41.6 ± 18.7 Mm(-1), respectively. Higher Ångström absorption and scattering exponents were attributed to the presence of more aged aerosol with smaller particles. Relative humidity (RH) was a key factor affecting aerosol extinction. High RH resulted in the impairment of visibility, with hygroscopic growth being independent of the dry extinction coefficient. The hygroscopic growth factor was 1.8 ± 1.2 with RH from 19% to 85%. Light absorption was enhanced by organic carbon (OC), elemental carbon (EC) and EC coatings, with contributions of 26%, 44% and 75% (532 nm), respectively. The Bsca and Babs increased with increasing N100 (number concentration of PM2.5 with diameter above 100 nm), PM1 surface concentration and PM2.5 mass concentration with good correlation. PMID:26969543

  4. Technical Note: On the use of nudging for aerosol-climate model intercomparison studies

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Wan, H.; Liu, X.; Ghan, S. J.; Kooperman, G. J.; Ma, P.-L.; Rasch, P. J.

    2014-04-01

    Nudging is an assimilation technique widely used in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5, due to the systematic temperature bias in the standard model and the sensitivity of simulated ice formation to anthropogenic aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on longwave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. This suggests nudging the horizontal winds but not temperature is a good strategy for the investigation of aerosol indirect effects through ice clouds, since it provides well-constrained meteorology without strongly perturbing the model's mean climate.

  5. Simulation of bulk aerosol direct radiative effects and its climatic feedbacks in South Africa using RegCM4

    NASA Astrophysics Data System (ADS)

    Tesfaye, M.; Botai, J.; Sivakumar, V.; Mengistu Tsidu, G.; Rautenbach, C. J. deW.; Moja, Shadung J.

    2016-05-01

    In this study, 12 year runs of the Regional Climate Model (RegCM4) have been used to analyze the bulk aerosol radiative effects and its climatic feedbacks in South Africa. Due to the geographical locations where the aerosol potential source regions are situated and the regional dynamics, the South African aerosol spatial-distribution has a unique feature. Across the west and southwest areas, desert dust particles are dominant. However, sulfate and carbonaceous aerosols are primarily distributed over the east and northern regions of the country. Analysis of the Radiative Effects (RE) shows that in South Africa the bulk aerosols play a role in reducing the net radiation absorbed by the surface via enhancing the net radiative heating in the atmosphere. Hence, across all seasons, the bulk aerosol-radiation-climate interaction induced statistically significant positive feedback on the net atmospheric heating rate. Over the western and central parts of South Africa, the overall radiative feedbacks of bulk aerosol predominantly induces statistically significant Cloud Cover (CC) enhancements. Whereas, over the east and southeast coastal areas, it induces minimum reductions in CC. The CC enhancement and RE of aerosols jointly induce radiative cooling at the surface which in turn results in the reduction of Surface Temperature (ST: up to -1 K) and Surface Sensible Heat Flux (SSHF: up to -24 W/m2). The ST and SSHF decreases cause a weakening of the convectively driven turbulences and surface buoyancy fluxes which lead to the reduction of the boundary layer height, surface pressure enhancement and dynamical changes. Throughout the year, the maximum values of direct and semi-direct effects of bulk aerosol were found in areas of South Africa which are dominated by desert dust particles. This signals the need for a strategic regional plan on how to reduce the dust production and monitoring of the dust dispersion as well as it initiate the need of further research on different

  6. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  7. Large volcanic eruptions affect climate in many more ways than just cooling (Invited)

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2009-12-01

    In 1991, Pinatubo erupted ≦921 Mt water, ≦234 Mt carbon dioxide and ≦19 Mt sulfur dioxide. The sulfur dioxide reacted primarily with OH and 3 parts water to form a sulfuric acid aerosol 20 to 23 km high, circling the earth in 21 days, reflecting sunlight, cooling the earth ˜0.5°C. Maximum cooling in the tropics occurred 3 months later, but sulfate mass mixing ratios did not return to background until 1998. Models suggest sea level dropped 5 mm. The aerosol absorbed solar and infrared energy, warming the lower stratosphere ˜3°C, decreasing the temperature gradient, increasing winter warming at middle to high latitudes. The aerosol induced many changes in the atmosphere. Despite the eruption of large amounts of carbon dioxide, atmospheric concentrations decreased until the aerosol had largely dissipated. Settling of the aerosols probably increased cirrus clouds, increasing warming. Global precipitation and river runoff decreased 3 and 3.7 standard deviations below normal. While water vapor in the lower troposphere decreased with cooling, the eruption increased water vapor in the upper troposphere and lower stratosphere. Its effects are unclear but imply warming. OH concentrations decreased ≦10%, causing a sharp increase in methane and carbon monoxide. Ozone levels decreased as much as 20% in some areas and the diameter of the ozone hole increased 17% in 1992. Each of these cooling and warming processes has a time constant of days to years in the atmosphere, but in the ocean, they can induce effects with time constants of years to centuries. Gleckler et al. (2006), comparing results from 12 climate models, show that water from the cooled ocean surface sinks hundreds of meters and that its effects are still observable 120 years after the Krakatoa eruption of 1883. Gregory et al. (2006) show such cooling steps accumulate during frequent eruptions. If cool water sinks, warm water must rise; but where? One measure of ocean currents is the Southern Oscillation

  8. Regional Warming from Aerosol Removal over the United States: Results from a Transient 2010-2050 Climate Simulation

    NASA Technical Reports Server (NTRS)

    Mickley, L. J.; Leibensperger, E. M.; Jacob, D. J.; Rind, D.

    2012-01-01

    We use a general circulation model (NASA Goddard Institute for Space Studies GCM 3) to investigate the regional climate response to removal of aerosols over the United States. We perform a pair of transient 2010e2050 climate simulations following a scenario of increasing greenhouse gas concentrations, with and without aerosols over the United States and with present-day aerosols elsewhere. We find that removing U.S. aerosol significantly enhances the warming from greenhouse gases in a spatial pattern that strongly correlates with that of the aerosol. Warming is nearly negligible outside the United States, but annual mean surface temperatures increase by 0.4e0.6 K in the eastern United States. Temperatures during summer heat waves in the Northeast rise by as much as 1e2 K due to aerosol removal, driven in part by positive feedbacks involving soil moisture and low cloud cover. Reducing U.S. aerosol sources to achieve air quality objectives could thus have significant unintended regional warming consequences.

  9. Disentangling greenhouse warming and aerosol cooling to reveal Earth’s climate sensitivity

    NASA Astrophysics Data System (ADS)

    Storelvmo, T.; Leirvik, T.; Lohmann, U.; Phillips, P. C. B.; Wild, M.

    2016-04-01

    Earth’s climate sensitivity has long been subject to heated debate and has spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of its most likely range. Recent observational studies have produced estimates of transient climate sensitivity, that is, the global mean surface temperature increase at the time of CO2 doubling, as low as 1.3 K (refs ,), well below the best estimate produced by global climate models (1.8 K). Here, we present an observation-based study of the time period 1964 to 2010, which does not rely on climate models. The method incorporates observations of greenhouse gas concentrations, temperature and radiation from approximately 1,300 surface sites into an energy balance framework. Statistical methods commonly applied to economic time series are then used to decompose observed temperature trends into components attributable to changes in greenhouse gas concentrations and surface radiation. We find that surface radiation trends, which have been largely explained by changes in atmospheric aerosol loading, caused a cooling that masked approximately one-third of the continental warming due to increasing greenhouse gas concentrations over the past half-century. In consequence, the method yields a higher transient climate sensitivity (2.0 +/- 0.8 K) than other observational studies.

  10. Disentangling Aerosol Cooling and Greenhouse Warming to Reveal Earth's Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Storelvmo, Trude; Leirvik, Thomas; Phillips, Petter; Lohmann, Ulrike; Wild, Martin

    2015-04-01

    Earth's climate sensitivity has been the subject of heated debate for decades, and recently spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of the most likely range of climate sensitivities. Here, we present a study based on the time period 1964 to 2010, which is unique in that it does not rely on global climate models (GCMs) in any way. The study uses surface observations of temperature and incoming solar radiation from approximately 1300 surface sites, along with observations of the equivalent CO2 concentration (CO2,eq) in the atmosphere, to produce a new best estimate for the transient climate sensitivity of 1.9K (95% confidence interval 1.2K - 2.7K). This is higher than other recent observation-based estimates, and is better aligned with the estimate of 1.8K and range (1.1K - 2.5K) derived from the latest generation of GCMs. The new estimate is produced by incorporating the observations in an energy balance framework, and by applying statistical methods that are standard in the field of Econometrics, but less common in climate studies. The study further suggests that about a third of the continental warming due to increasing CO2,eq was masked by aerosol cooling during the time period studied.

  11. The effect of aerosols and sea surface temperature on China's climate over the late twentieth century

    NASA Astrophysics Data System (ADS)

    Folini, Doris; Wild, Martin

    2015-04-01

    Focusing on China in the second half of the twentieth century, we examine the relative role of aerosols and prescribed, observation based sea surface temperatures (SSTs) for the evolution of surface solar radiation (SSR), surface air temperature (SAT), and precipitation in ensembles of transient (1870 - 2005) sensitivity experiments with the global climate model ECHAM5-HAM. Observations and simulations with transient SSTs and aerosol emissions agree reasonably well in eastern China in terms of SSR dimming (-6 +/- 2 W/m2/decade, 1960 - 2000), statistically non-significant JJA SAT trend (1950 - 2000), and drying in JJA from 1950 to 1990 (-2.5% to -3.5% per decade, essentially via reduction of convective precipitation). Other major observed features are not reproduce by the model, e.g. precipitation increase in the 1990s in the Yangtze valley, the strong warming in winter in northern parts of China and Mongolia, or SSR dimming in western China. For the model results, SO2 emissions are more relevant than emissions of black and organic carbon. Aerosol effects are less pronounced at higher model resolution. Transient SSTs are found to be crucial for decadal scale SAT variability over land, especially the strong warming in the 1990s, and, via SST forced reduction of cloud cover, for the ceasing of SSR dimming around the year 2000. Unforced cloud variability leads to relevant scatter (up to +/- 2 W/m2/decade) of modeled SSR trends at individual observation sites.

  12. A Study of Aerosol Effect on Marine Water Clouds with Long-term Satellite Climate Data Records

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Heidinger, A. K.; Walther, A.

    2015-12-01

    Cloud microphysical structures and properties provide a critical link between the energy and hydrological cycles of Earth's climate system. A change of cloud microphysical properties related to anthropogenic activities may result in distressing climate consequence and changes. Since atmospheric aerosol is the major source of cloud condensation nuclei (CNN) that is critical for the formation of cloud microphysical structures and properties, aerosol changes due to anthropogenic emissions will result in the modification of CCN and cloud microphysical properties and eventually cause the changes of Earth's climate. In this study, we will investigate the effect of aerosol on the microphysical properties, including cloud particle effective radius, cloud water path, and cloud optical depth, of marine stratus clouds by using more than 30-years climate data records (CDRs) of aerosols and clouds derived from NOAA operational AVHRR satellite observations. The correlation between satellite derived cloud and aerosol microphysical parameters will be determined and the statistics significance will be examined using the long-term AVHRR satellite CDRs.

  13. Development of an Aerosol Model of Cryptococcus Reveals Humidity as an Important Factor Affecting the Viability of Cryptococcus during Aerosolization

    PubMed Central

    Springer, Deborah J.; Saini, Divey; Byrnes, Edmond J.; Heitman, Joseph; Frothingham, Richard

    2013-01-01

    Cryptococcus is an emerging global health threat that is annually responsible for over 1,000,000 infections and one third of all AIDS patient deaths. There is an ongoing outbreak of cryptococcosis in the western United States and Canada. Cryptococcosis is a disease resulting from the inhalation of the infectious propagules from the environment. The current and most frequently used animal infection models initiate infection via liquid suspension through intranasal instillation or intravenous injection. These models do not replicate the typically dry nature of aerosol exposure and may hinder our ability to decipher the initial events that lead to clearance or the establishment of infection. We have established a standardized aerosol model of murine infection for the human fungal pathogen Cryptococcus. Aerosolized cells were generated utilizing a Collison nebulizer in a whole-body Madison Chamber at different humidity conditions. The aerosols inside the chamber were sampled using a BioSampler to determine viable aerosol concentration and spray factor (ratio of viable aerosol concentration to total inoculum concentration). We have effectively delivered yeast and yeast-spore mixtures to the lungs of mice and observed the establishment of disease. We observed that growth conditions prior to exposure and humidity within the Madison Chamber during exposure can alter Cryptococcus survival and dose retained in mice. PMID:23894542

  14. Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing

    SciTech Connect

    Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2012-07-25

    A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

  15. Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering

    NASA Astrophysics Data System (ADS)

    Aswathy, V. N.; Boucher, O.; Quaas, M.; Niemeier, U.; Muri, H.; Quaas, J.

    2014-12-01

    Simulations from a multi-model ensemble for the RCP4.5 climate change scenario for the 21st century, and for two solar radiation management schemes (stratospheric sulfate injection, G3, and marine cloud brightening, G3SSCE) have been analyzed in terms of changes in the mean and extremes for surface air temperature and precipitation. The climate engineered (SRM 2060s - RCP4.5 2010s) and termination (2080s - 2060s) periods are investigated. During the climate engineering period, both schemes, as intended, offset temperature increases by about 60% globally, but are more effective in the low latitudes and exhibit some residual warming in the Arctic (especially in the case of marine cloud brightening that is only applied in the low latitudes). In both climate engineering scenarios, extreme temperatures changes are similar to the mean temperature changes over much of the globe. The exception is in Northern Hemisphere high latitudes, where high temperatures (90th percentile of the distribution) of climate engineering relative to RCP4.5 rise less than the mean and cold temperatures (10th percentile) much more than the mean. When defining temperature extremes by fixed thresholds, namely number of frost days and summer days, it is found that both climate engineering experiments are not completely alleviating the changes relative to RCP 4.5. The reduction in 2060s dry spell occurrence over land region in G3-SSCE is is more pronounced than over oceans. Experiment G3 exhibits same pattern as G3-SSCE albeit, stronger in magnitude. A strong termination effect is found for the two climate engineering schemes, with large temperature increases especially in the Arctic. Mean temperatures rise faster than the extremes, especially over oceans, with the exception of the Tropics. Conversely precipitation extremes rise much more than the mean, even more so over the ocean, and especially in the Tropics.

  16. Investigation on semi-direct and indirect climate effects of fossil fuel black carbon aerosol over China

    NASA Astrophysics Data System (ADS)

    Zhuang, Bingliang; Liu, Qian; Wang, Tijian; Yin, Changqin; Li, Shu; Xie, Min; Jiang, Fei; Mao, Huiting

    2013-11-01

    A Regional Climate Chemistry Modeling System that employed empirical parameterizations of aerosol-cloud microphysics was applied to investigate the spatial distribution, radiative forcing (RF), and climate effects of black carbon (BC) over China. Results showed high levels of BC in Southwest, Central, and East China, with maximum surface concentrations, column burden, and optical depth (AOD) up to 14 μg m-3, 8 mg m-2, and 0.11, respectively. Black carbon was found to result in a positive RF at the top of the atmosphere (TOA) due to its direct effect while a negative RF due to its indirect effect. The regional-averaged direct and indirect RF of BC in China was about +0.81 and -0.95 W m-2, respectively, leading to a net RF of -0.15 W m-2 at the TOA. The BC indirect RF was larger than its direct RF in South China. Due to BC absorption of solar radiation, cloudiness was decreased by 1.33 %, further resulting in an increase of solar radiation and subsequently a surface warming over most parts of China, which was opposite to BC's indirect effect. Further, the net effect of BC might cause a decrease of precipitation of -7.39 % over China. Investigations also suggested large uncertainties and non-linearity in BC's indirect effect on regional climate. Results suggested that: (a) changes in cloud cover might be more affected by BC's direct effect, while changes in surface air temperature and precipitation might be influenced by BC's indirect effect; and (b) BC second indirect effect might have more influence on cloud cover and water content compared to first indirect effect. This study highlighted a substantial role of BC on regional climate changes.

  17. Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Carslaw, K. S.; Mann, G. W.; Rap, A.; Pringle, K. J.; Spracklen, D. V.; Wilson, M.; Forster, P. M.

    2012-08-01

    Observations and models have shown that continuously degassing volcanoes have a potentially large effect on the natural background aerosol loading and the radiative state of the atmosphere. We use a global aerosol microphysics model to quantify the impact of these volcanic emissions on the cloud albedo radiative forcing under pre-industrial (PI) and present-day (PD) conditions. We find that volcanic degassing increases global annual mean cloud droplet number concentrations by 40% under PI conditions, but by only 10% under PD conditions. Consequently, volcanic degassing causes a global annual mean cloud albedo effect of -1.06 W m-2 in the PI era but only -0.56 W m-2 in the PD era. This non-equal effect is explained partly by the lower background aerosol concentrations in the PI era, but also because more aerosol particles are produced per unit of volcanic sulphur emission in the PI atmosphere. The higher sensitivity of the PI atmosphere to volcanic emissions has an important consequence for the anthropogenic cloud radiative forcing because the large uncertainty in volcanic emissions translates into an uncertainty in the PI baseline cloud radiative state. Assuming a -50/+100% uncertainty range in the volcanic sulphur flux, we estimate the annual mean anthropogenic cloud albedo forcing to lie between -1.16 W m-2 and -0.86 W m-2. Therefore, the volcanically induced uncertainty in the PI baseline cloud radiative state substantially adds to the already large uncertainty in the magnitude of the indirect radiative forcing of climate.

  18. Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Carslaw, K. S.; Mann, G. W.; Rap, A.; Pringle, K. J.; Spracklen, D. V.; Wilson, M.; Forster, P. M.

    2012-03-01

    Observations and models have shown that continuously degassing volcanoes have a potentially large effect on the natural background aerosol loading and the radiative state of the atmosphere. Here, we use a global aerosol microphysics model to quantify the impact of these volcanic emissions on the cloud albedo radiative forcing under pre-industrial (PI) and present-day (PD) conditions. We find that volcanic degassing increases global annual mean cloud droplet number concentrations by 40% under PI conditions, but by only 10% under PD conditions. Consequently, volcanic degassing causes a global annual mean cloud albedo effect of -1.06 W m-2 in the PI era but only -0.56 W m-2 in the PD era. This non-equal effect is explained partly by the lower background aerosol concentrations in the PI era, but also because more aerosol particles are produced per unit of volcanic sulphur emission in the PI atmosphere. The higher sensitivity of the PI atmosphere to volcanic emissions has an important consequence for the anthropogenic cloud radiative forcing because the large uncertainty in volcanic emissions translates into an uncertainty in the PI baseline cloud radiative state. Assuming a -50/+100% uncertainty range in the volcanic sulphur flux, we estimate the annual mean anthropogenic cloud albedo forcing to lie between -1.16 W m-2 and -0.86 W m-2. Therefore, the volcanically induced uncertainty in the PI baseline cloud radiative state substantially adds to the already large uncertainty in the magnitude of the indirect radiative forcing of climate.

  19. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of

  20. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An Overview

    SciTech Connect

    Li, Zhanqing; Li, C.; Chen, H.; Tsay, S. C.; Holben, B. N.; Huang, J.; Li, B.; Maring, H.; Qian, Yun; Shi, Guangyu; Xia, X.; Yin, Y.; Zheng, Y.; Zhuang, G.

    2011-02-01

    As the most populated region of the world, Asia is a major source of aerosols with potential large impact over vast downstream areas. Papers published in this special section describe the variety of aerosols observed in China and their effects and interactions with the regional climate as part of the East Asian Study of Tropospheric Aerosols and Impact on Regional Climate (EAST-AIRC). The majority of the papers are based on analyses of observations made under three field projects, namely, the Atmospheric Radiation Measurements (ARM) Mobile Facility mission in China (AMF10 China), the East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE), and the Atmospheric Aerosols of China and their Climate Effects (AACCE). The former two are US-China collaborative projects and the latter is a part of the China’s National Basic Research program (or often referred to as “973 project”). Routine meteorological data of China are also employed in some studies. The wealth of general and specialized measurements lead to extensive and close-up investigations of the optical, physical and chemical properties of anthropogenic, natural, and mixed aerosols; their sources, formation and transport mechanisms; horizontal, vertical and temporal variations; direct and indirect effects and interactions with the East Asian monsoon system. Particular efforts are made to advance our understanding of the mixing and interaction between dust and anthropogenic pollutants during transport. Several modeling studies were carried out to simulate aerosol impact on radiation budget, temperature, precipitation, wind and atmospheric circulation, fog, etc. In addition, impacts of the Asian monsoon system on aerosol loading are also simulated.

  1. Present-day to 21st century projections of secondary organic aerosol (SOA) from a global climate-aerosol model with an explicit SOA formation scheme

    NASA Astrophysics Data System (ADS)

    Lin, G.; Penner, J. E.; Zhou, C.

    2014-12-01

    Secondary organic aerosol (SOA) has been shown to be an important component of non-refractory submicron aerosol in the atmosphere. The presence of SOA can influence the earth's radiative balance by contributing to the absorption and scattering of radiation and by altering the properties of clouds. Globally, a large fraction of SOA originates from biogenic volatile organic compounds (BVOCs), emissions of which depend on vegetation cover and climate. Temperature, CO2 concentration, and land use and land cover change have been shown to be major drivers of global isoprene emission changes in future climates. Additionally, the SOA concentration in the atmosphere not only depends on BVOC emissions, but is also controlled by anthropogenic emissions, temperature, precipitation and the oxidative capacity of the atmosphere. To project the change in SOA concentrations in the future requires a model that fully couples a BVOC emission model that represents these BVOC emission drivers, together with a sophisticated atmospheric model of SOA formation and properties. Recent studies have suggested that traditional parameterized SOA formation mechanisms that are tuned to fit smog chamber data do not fully account for the complexity and dynamics of real SOA system, calling into the question of the validity and completeness of previous SOA projections. In this study, we investigate the response of SOA mass to future physical climate change, to land cover and land use change, to changes in BVOCs emissions, and to changes in anthropogenic aerosol and gas species emissions for the year 2100, utilizing a global climate-aerosol model (CAM5-IMPACT): the NCAR Community Atmospheric Model (CAM5) coupled with a global aerosol model (IMPACT). The IMPACT model has sophisticated detailed process-based mechanisms describing aerosol microphysics and SOA formation through both gas phase and multiphase reactions. We perform sensitivity tests to isolate the relative roles of individual global change

  2. Sunphotometry of the 2006-2007 aerosol optical/radiative properties at the Himalayan Nepal Climate Observatory - Pyramid (5079 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Gobbi, G. P.; Angelini, F.; Bonasoni, P.; Verza, G. P.; Marinoni, A.; Barnaba, F.

    2010-01-01

    In spite of being located at the heart of the highest mountain range in the world, the Himalayan Nepal Climate Observatory (5079 m a.s.l.) at the Ev-K2-CNR Pyramid is shown to be affected by the advection of pollution aerosols from the populated regions of southern Nepal and the Indo-Gangetic plains. Such an impact is observed along most of the period April 2006-March 2007 addressed here, with a minimum in the monsoon season. Backtrajectory-analysis indicates long-range transport episodes occurring in this period to originate mainly in the West Asian deserts. At this high altitude site, the measured aerosol optical depth is observed to be: 1) about one order of magnitude lower than the one measured at Gandhi College (60 m a.s.l.), in the Indo-Gangetic basin, and 2) maximum during the monsoon period, due to the presence of elevated (cirrus-like) particle layers. Assessment of the aerosol radiative forcing results to be hampered by the persistent presence of these high altitude particle layers, which impede a continuous measurement of both the aerosol optical depth and its radiative properties from sky radiance inversions. Even though the retrieved absorption coefficients of pollution aerosols was rather large (single scattering albedo of the order of 0.6-0.9 were observed in the month of April 2006), the corresponding low optical depths (~0.03 at 500 nm) are expected to limit the relevant radiative forcings. Still, the high specific forcing of this aerosol and its capability of altering snow surface albedo provide good reason for continuous monitoring.

  3. Seasonality of Forcing by Carbonaceous Aerosols

    NASA Astrophysics Data System (ADS)

    Habib, G.; Bond, T.; Rasch, P. J.; Coleman, D.

    2006-12-01

    Aerosols can influence the energy balance of Earth-Atmosphere system with profound effect on regional climate. Atmospheric processes, such as convection, scavenging, wet and dry deposition, govern the lifetime and location of aerosol; emissions affect its quantity and location. Both affect climate forcing. Here we investigate the effect of seasonality in emissions and atmospheric processes on radiative forcing by carbonaceous aerosols, focusing on aerosol from fossil fuel and biofuel. Because aerosol lifetime is seasonal, ignoring the seasonality of sources such as residential biofuel may introduce a bias in aerosol burden and therefore in predicted climate forcing. We present a global emission inventory of carbonaceous aerosols with seasonality, and simulate atmospheric concentrations using the Community Atmosphere Model (CAM). We discuss where and when the seasonality of emissions and atmospheric processes has strong effects on atmospheric burden, lifetime, climate forcing and aerosol optical depth (AOD). Previous work has shown that aerosol forcing is higher in summer than in winter, and has identified the importance of aerosol above cloud in determining black carbon forcing. We show that predicted cloud height is a very important factor in determining normalized radiative forcing (forcing per mass), especially in summer. This can affect the average summer radiative forcing by nearly 50%. Removal by cloud droplets is the dominant atmospheric cleansing mechanism for carbonaceous aerosols. We demonstrate the modeled seasonality of removal processes and compare the importance of scavenging by warm and cold clouds. Both types of clouds contribute significantly to aerosol removal. We estimate uncertainty in direct radiative forcing due to scavenging by tagging the aerosol which has experienced cloud interactions. Finally, seasonal variations offer an opportunity to assess modeled processes when a single process dominates variability. We identify regions where aerosol

  4. Heating up Climate Literacy Education: Understanding Teachers' and Students' Motivational and Affective Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Sinatra, G. M.

    2011-12-01

    Changing students' ideas about controversial scientific issues, such as human-induced climate change, presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). First, climate science is complex and requires "systems thinking," or the ability to think and reason abstractly about emergent systems (Goldstone & Sakamoto, 2003). Appreciating the intricacies of complex systems and emergent processes has proven challenging for students (Chi, 2005). In addition to these challenges, there are specific misconceptions that may lead thinking astray on the issue of global climate change, such as the distinction between weather and climate (Lombardi & Sinatra, 2010). As an example, when students are asked about their views on climate change, they often recall individual storm events or very cold periods and use their personal experiences and recollections of short-term temperature fluctuations to assess whether the planet is warming. Beyond the conceptual difficulties, controversial topics offer another layer of challenge. Such topics are often embedded in complex socio-cultural and political contexts, have a high degree of uncertainty, and may be perceived by individuals as in conflict with their personal or religious beliefs (Levinson, 2006, Sinatra, Kardash, Taasoobshirazi, & Lombardi, 2011). Individuals are often committed to their own views on socio-scientific issues and this commitment may serve as a motivation to actively resist new ideas (Dole & Sinatra, 1998). Individuals may also have strong emotions associated with their misconceptions (Broughton, Pekrun, & Sinatra, 2011). Negative emotions, misconceptions, and resistance do not make a productive combination for learning. Further, teachers who find human-induced climate change implausible have been shown to hold negative emotions about having to teach about climate change (Lombardi & Sinatra, in preparation), which could affect how they present the topic to students. In this

  5. How does spatial variability of climate affect catchment streamflow predictions?

    NASA Astrophysics Data System (ADS)

    Patil, Sopan D.; Wigington, Parker J.; Leibowitz, Scott G.; Sproles, Eric A.; Comeleo, Randy L.

    2014-09-01

    Spatial variability of climate can negatively affect catchment streamflow predictions if it is not explicitly accounted for in hydrologic models. In this paper, we examine the changes in streamflow predictability when a hydrologic model is run with spatially variable (distributed) meteorological inputs instead of spatially uniform (lumped) meteorological inputs. Both lumped and distributed versions of the EXP-HYDRO model are implemented at 41 meso-scale (500-5000 km2) catchments in the Pacific Northwest region of USA. We use two complementary metrics of long-term spatial climate variability, moisture homogeneity index (IM) and temperature variability index (ITV), to analyze the performance improvement with distributed model. Results show that the distributed model performs better than the lumped model in 38 out of 41 catchments, and noticeably better (>10% improvement) in 13 catchments. Furthermore, spatial variability of moisture distribution alone is insufficient to explain the observed patterns of model performance improvement. For catchments with low moisture homogeneity (IM < 80%), IM is a better predictor of model performance improvement than ITV; whereas for catchments with high moisture homogeneity (IM > 80%), ITV is a better predictor of performance improvement than IM. Based on the results, we conclude that: (1) catchments that have low homogeneity of moisture distribution are the obvious candidates for using spatially distributed meteorological inputs, and (2) catchments with a homogeneous moisture distribution benefit from spatially distributed meteorological inputs if they also have high spatial variability of precipitation phase (rain vs. snow).

  6. Timing, global aerosol forcing, and climate impact of volcanic eruptions during the Common Era

    NASA Astrophysics Data System (ADS)

    Sigl, Michael; McConnell, Joseph R.; Winstrup, Mai; Welten, Kees C.; Plunkett, Gill; Ludlow, Francis; Toohey, Matthew; Büntgen, Ulf; Caffee, Marc; Kipfstuhl, Sepp; Kostick, Conor; Krüger, Kirstin; Maselli, Olivia J.; Mulvaney, Robert; Woodruff, Thomas E.

    2015-04-01

    Early documentary records report of a mysterious dust cloud that was covering Europe for 12 months in 536-37 CE, which was followed by climatic downturn and societal decline globally. Tree rings and other climate proxies have corroborated the occurrence of this event as well as characterized its extent and duration, but failed to trace its origin. By using a multi-disciplinary approach that integrates novel, global-scale age markers with state-of-the-art continuous ice core aerosol measurements, automated objective ice-core layer counting, tephra analyses, and detailed examination of historical archives, we developed an accurate volcanic forcing series from bipolar ice-core arrays back into early Roman times. Our study reconciles human and natural archives - demonstrated by the synchronicity of major volcanic eruption dates to historical documentary records and the now consistent response of tree-ring-reconstructed cooling extremes occurring in the immediate aftermath of large volcanic eruptions throughout the past 2,000 years. These findings have significant implications in multiple research fields including (1) quantification and attribution of climate variations to external solar and volcanic forcing and (2) improvement of reconstructions of climate variations from multi-proxy networks comprising tree-ring and/or ice-core data (e.g., PAGES 2k).

  7. Aerosol-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations

    NASA Astrophysics Data System (ADS)

    Rotstayn, L. D.; Jeffrey, S. J.; Collier, M. A.; Dravitzki, S. M.; Hirst, A. C.; Syktus, J. I.; Wong, K. K.

    2012-02-01

    We use a coupled atmosphere-ocean global climate model (CSIRO-Mk3.6) to investigate the roles of different forcing agents as drivers of summer rainfall trends in the Australasian region. Our results suggest that anthropogenic aerosols have contributed to the observed multi-decadal rainfall increase over north-western Australia. As part of the Coupled Model Intercomparison Project Phase 5 (CMIP5), we performed multiple 10-member ensembles of historical climate change, which are analysed for the period 1951-2010. The historical runs include ensembles driven by "all forcings" (HIST), all forcings except anthropogenic aerosols (NO_AA) and forcing only from long-lived greenhouse gases (GHGAS). Anthropogenic aerosol-induced effects in a warming climate are calculated from the difference of HIST minus NO_AA. We also compare a 10-member 21st century ensemble driven by Representative Concentration Pathway 4.5 (RCP4.5). Simulated aerosol-induced rainfall trends over the Indo-Pacific region for austral summer and boreal summer show a distinct contrast. In boreal summer, there is a southward shift of equatorial rainfall, consistent with the idea that anthropogenic aerosols have suppressed Asian monsoonal rainfall, and caused a southward shift of the local Hadley circulation. In austral summer, the aerosol-induced response more closely resembles a westward shift and strengthening of the upward branch of the Walker circulation, rather than a coherent southward shift of regional tropical rainfall. Thus the mechanism by which anthropogenic aerosols may affect Australian summer rainfall is unclear. Focusing on summer rainfall trends over north-western Australia (NWA), we find that CSIRO-Mk3.6 simulates a strong rainfall decrease in RCP4.5, whereas simulated trends in HIST are weak and insignificant during 1951-2010. The weak rainfall trends in HIST are due to compensating effects of different forcing agents: there is a significant decrease in GHGAS, offset by an aerosol

  8. The Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES): An Observational Campaign for Determining Role of Clouds, Aerosols and Radiation in Climate System

    NASA Astrophysics Data System (ADS)

    McFarquhar, G. M.; Wood, R.; Bretherton, C. S.; Alexander, S.; Jakob, C.; Marchand, R.; Protat, A.; Quinn, P.; Siems, S. T.; Weller, R. A.

    2014-12-01

    The Southern Ocean (SO) region is one of the cloudiest on Earth, and as such clouds determine its albedo and play a major role in climate. Evidence shows Earth's climate sensitivity and the Intertropical Convergence Zone location depend upon SO clouds. But, climate models are challenged by uncertainties and biases in the simulation of clouds, aerosols, and air-sea exchanges in this region which trace back to a poor process-level understanding. Due to the SO's remote location, there have been sparse observations of clouds, aerosols, precipitation, radiation and the air-sea interface apart from those from satellites. Plans for an upcoming observational program, SOCRATES, are outlined. Based on feedback on observational and modeling requirements from a 2014 workshop conducted at the University of Washington, a plan is described for obtaining a comprehensive dataset on the boundary-layer structure and associated vertical distributions of liquid and mixed-phase cloud and aerosol properties across a range of synoptic settings, especially in the cold sector of cyclonic storms. Four science themes are developed: improved climate model simulation of SO cloud and boundary layer structure in a rapidly varying synoptic setting; understanding seasonal and synoptic variability in SO cloud condensation and ice nucleus concentration and the role of local biogenic sources; understanding supercooled liquid and mixed-phase clouds and their impacts; and advancing retrievals of clouds, precipitation, aerosols, radiation and surface fluxes. Testable hypotheses for each theme are identified. The observational strategy consists of long-term ground-based observations from Macquarie Island and Davis, continuous data collection onboard Antarctic supply ships, satellite retrievals, and a dedicated field campaign covering 2 distinct seasons using in-situ and remote sensors on low- and high-altitude aircraft, UAVs, and a ship-borne platform. A timeline for these activities is proposed.

  9. Technical Note: On the use of nudging for aerosol-climate model intercomparison studies

    DOE PAGESBeta

    Zhang, K.; Wan, H.; Liu, X.; Ghan, S. J.; Kooperman, G. J.; Ma, P.-L.; Rasch, P. J.

    2014-04-24

    Nudging is an assimilation technique widely used in the development and evaluation of climate models. Constraining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5, due to the systematic temperature bias in the standard model and the sensitivity of simulated ice formation to anthropogenic aerosolmore » concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on longwave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. This suggests nudging the horizontal winds but not temperature is a good strategy for the investigation of aerosol indirect effects through ice clouds, since it provides well-constrained meteorology without strongly perturbing the model's mean climate.« less

  10. Factors Affecting the Sensitivity of Permafrost to Climate Change

    NASA Astrophysics Data System (ADS)

    Jorgenson, T.; Romanovsky, V.; Harden, J.; Shur, Y.; Hinzman, L.; Marchenko, S.; Bolton, R.; O'Donnell, J.

    2009-05-01

    Permafrost aggradation and degradation are affected by numerous geomorphological and ecological properties of the landscape that confound our ability to accurately predict the response of permafrost to climate change. Permafrost can persist at mean annual air temperatures (MAAT) of +2 °C and can degrade at MAAT of -15 °C with the help of surface water. Permafrost is decoupled from the atmosphere by the active layer, thus, its thermal regime is mediated by numerous factors such as topography, soil texture, organic-matter accumulation, vegetation, snow, surface water, groundwater movement, and disturbance. Topography affects the amount of solar radiation to the soil surface, causing permafrost in the discontinuous zone to occur generally on north-facing slopes that receive less direct radiation and on flat, low- lying areas where vegetation and organic soils have a greater insulating effect and where air temperatures tend to be colder during winter inversions. Soil texture affects soil moisture and thermal properties. For instance, gravelly soils tend to be well-drained with little difference between thermal conductivities when frozen or thawed. In contrast, surface organic soils, as well as clayey and silty soils, in lowland areas tend to be poorly drained and have much higher thermal conductivities when frozen in winter than unfrozen in summer. In well- drained upland sites, however, organic soils typically are well below saturation. Differences in frozen and unfrozen thermal conductivities lead to more rapid heat loss in winter, depending on snow, and slower heat penetration in summer. Vegetation has important effects through interception of solar radiation, growth of mosses, accumulation of organic matter, and interception of snow by trees and shrubs. Snow protects soil from cooling in winter. Thus, the seasonality (e.g., timing of snowfall in early winter) and depth of snow are very important. Surface water provides an important positive feedback that enhances

  11. A Study of Direct and Cloud-Mediated Radiative Forcing of Climate Due to Aerosols

    NASA Technical Reports Server (NTRS)

    Yu, Shao-Cai

    1999-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has reported that in the southeastern US and eastern China, the general greenhouse warming due to anthropogenic gaseous emissions is dominated by the cooling effect of anthropogenic aerosols. To verify this model prediction in eastern China and southeastern US, we analyzed regional patterns of climate changes at 72 stations in eastern China during 1951- 94 (44 years), and at 52 stations in the southeastern US during 1949-94 (46 years) to detect the fingerprint of aerosol radiative forcing. It was found that the mean rates of change of annual mean daily, maximum, minimum temperatures and diurnal temperature range (DTR) in eastern China were 0.8, -0.2, 1.8, and -2.0 C/100 years respectively, while the mean rates of change of annual mean daily, maximum, minimum temperatures and DTR in the southeastern US were -0.2, -0.6, 0.2, and -0.8 C/100 years, respectively. This indicates that the high rate of increase in annual mean minimum temperature in eastern China results in a slightly warming trend of daily temperature, while the high rate of decrease in annual mean maximum temperature and low rate of increase in annual mean minimum temperature lead to the cooling trend of daily temperature in the southeastern US. We found that the warming from the longwave forcing due to both greenhouse gases and aerosols was completely counteracted by the shortwave aerosol forcing in the southeastern US in the past 46 years. A slightly overall warming trend in eastern China is evident; winters have become milder. This finding is explained by hypothesizing that increasing energy usage during the past 44 years has resulted in more coal and biomass burning, thus increasing the emission of absorbing soot and organic aerosols in eastern China. Such emissions, in addition to well-known Asia dust and greenhouse gases, may be responsible for the winter warming trend in eastern China that we have reported here. The sensitivity of aerosol

  12. Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering

    NASA Astrophysics Data System (ADS)

    Aswathy, V. N.; Boucher, O.; Quaas, M.; Niemeier, U.; Muri, H.; Mülmenstädt, J.; Quaas, J.

    2015-08-01

    Simulations from a multi-model ensemble for the RCP4.5 climate change scenario for the 21st century, and for two solar radiation management (SRM) schemes (stratospheric sulfate injection (G3), SULF and marine cloud brightening by sea salt emission SALT) have been analysed in terms of changes in the mean and extremes of surface air temperature and precipitation. The climate engineering and termination periods are investigated. During the climate engineering period, both schemes, as intended, offset temperature increases by about 60 % globally, but are more effective in the low latitudes and exhibit some residual warming in the Arctic (especially in the case of SALT which is only applied in the low latitudes). In both climate engineering scenarios, extreme temperature changes are similar to the mean temperature changes over much of the globe. The exceptions are the mid- and high latitudes in the Northern Hemisphere, where high temperatures (90th percentile of the distribution) of the climate engineering period compared to RCP4.5 control period rise less than the mean, and cold temperatures (10th percentile), much more than the mean. This aspect of the SRM schemes is also reflected in simulated reduction in the frost day frequency of occurrence for both schemes. However, summer day frequency of occurrence increases less in the SALT experiment than the SULF experiment, especially over the tropics. Precipitation extremes in the two SRM scenarios act differently - the SULF experiment more effectively mitigates extreme precipitation increases over land compared to the SALT experiment. A reduction in dry spell occurrence over land is observed in the SALT experiment. The SULF experiment has a slight increase in the length of dry spells. A strong termination effect is found for the two climate engineering schemes, with large temperature increases especially in the Arctic. Globally, SULF is more effective in reducing extreme temperature increases over land than SALT. Extreme

  13. Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Carslaw, K. S.; Mann, G.; Rap, A.; Pringle, K. J.; Spracklen, D. V.; Wilson, M.; Forster, P.

    2013-12-01

    Observations and models have shown that continuously degassing volcanoes have a potentially large effect on the natural background aerosol loading and the radiative state of the atmosphere. We use a global aerosol microphysics model to quantify the impact of these volcanic emissions on the cloud albedo radiative forcing under pre-industrial (PI) and present-day (PD) conditions. We find that volcanic degassing increases global annual mean cloud droplet number concentrations by 40% under PI conditions, but by only 10% under PD conditions. Consequently, volcanic degassing causes a global annual mean cloud albedo effect of -1.06 W m-2 in the PI era but only -0.56 W m-2 in the PD era. This non-equal effect is explained partly by the lower background aerosol concentrations in the PI era, but also because more aerosol particles are produced per unit of volcanic sulphur emission in the PI atmosphere. The higher sensitivity of the PI atmosphere to volcanic emissions has an important consequence for the anthropogenic cloud radiative forcing because the large uncertainty in volcanic emissions translates into an uncertainty in the PI baseline cloud radiative state. Assuming a -50/+100% uncertainty range in the volcanic sulphur flux, we estimate the annual mean anthropogenic cloud albedo forcing to lie between -1.16 W m-2 and -0.86 W m-2. Therefore, the volcanically induced uncertainty in the PI baseline cloud radiative state substantially adds to the already large uncertainty in the magnitude of the indirect radiative forcing of climate. Effect of uncertain volcanic sulphur emissions on the annual global mean cloud albedo effect and anthropogenic cloud albedo forcing. The grey and blue bars show the magnitude and the uncertainty range for the volcanic cloud albedo effect for present-day (PD) and pre-industrial (PI), respectively. In the central panel, the top red bar shows the magnitude of the anthropogenic cloud albedo forcing as estimated by IPCC based on a range of

  14. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate

    NASA Astrophysics Data System (ADS)

    Butt, E. W.; Rap, A.; Schmidt, A.; Scott, C. E.; Pringle, K. J.; Reddington, C. L.; Richards, N. A. D.; Woodhouse, M. T.; Ramirez-Villegas, J.; Yang, H.; Vakkari, V.; Stone, E. A.; Rupakheti, M.; Praveen, P. S.; van Zyl, P. G.; Beukes, J. P.; Josipovic, M.; Mitchell, E. J. S.; Sallu, S. M.; Forster, P. M.; Spracklen, D. V.

    2016-01-01

    Combustion of fuels in the residential sector for cooking and heating results in the emission of aerosol and aerosol precursors impacting air quality, human health, and climate. Residential emissions are dominated by the combustion of solid fuels. We use a global aerosol microphysics model to simulate the impact of residential fuel combustion on atmospheric aerosol for the year 2000. The model underestimates black carbon (BC) and organic carbon (OC) mass concentrations observed over Asia, Eastern Europe, and Africa, with better prediction when carbonaceous emissions from the residential sector are doubled. Observed seasonal variability of BC and OC concentrations are better simulated when residential emissions include a seasonal cycle. The largest contributions of residential emissions to annual surface mean particulate matter (PM2.5) concentrations are simulated for East Asia, South Asia, and Eastern Europe. We use a concentration response function to estimate the human health impact due to long-term exposure to ambient PM2.5 from residential emissions. We estimate global annual excess adult (> 30 years of age) premature mortality (due to both cardiopulmonary disease and lung cancer) to be 308 000 (113 300-497 000, 5th to 95th percentile uncertainty range) for monthly varying residential emissions and 517 000 (192 000-827 000) when residential carbonaceous emissions are doubled. Mortality due to residential emissions is greatest in Asia, with China and India accounting for 50 % of simulated global excess mortality. Using an offline radiative transfer model we estimate that residential emissions exert a global annual mean direct radiative effect between -66 and +21 mW m-2, with sensitivity to the residential emission flux and the assumed ratio of BC, OC, and SO2 emissions. Residential emissions exert a global annual mean first aerosol indirect effect of between -52 and -16 mW m-2, which is sensitive to the assumed size distribution of carbonaceous emissions

  15. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences

    NASA Astrophysics Data System (ADS)

    Lynch, Peng; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Hogan, Timothy F.; Hyer, Edward J.; Curtis, Cynthia A.; Hegg, Dean A.; Shi, Yingxi; Campbell, James R.; Rubin, Juli I.; Sessions, Walter R.; Turk, F. Joseph; Walker, Annette L.

    2016-04-01

    While stand alone satellite and model aerosol products see wide utilization, there is a significant need in numerous atmospheric and climate applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1 × 1° and 6-hourly modal aerosol optical thickness (AOT) reanalysis product. This data set can be applied to basic and applied Earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine- and coarse-mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite-retrieved precipitation, rather than the model field. The final reanalyzed fine- and coarse-mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine- and coarse-mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how

  16. Development studies towards an 11-year global gridded aerosol optical thickness reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Westphal, D. L.; Zhang, J.; Hogan, T. F.; Hyer, E. J.; Curtis, C. A.; Hegg, D. A.; Shi, Y.; Campbell, J. R.; Rubin, J. I.; Sessions, W. R.; Turk, F. J.; Walker, A. L.

    2015-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need in numerous climate and applied applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1° × 1° and 6 hourly modal aerosol optical thickness (AOT) reanalysis product. This dataset can be applied to basic and applied earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine and coarse mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite retrieved precipitation, rather than the model field. The final reanalyzed fine and coarse mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine and coarse mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how the

  17. A regional climate model study of how biomass burning aerosol impacts land-atmosphere interactions over the Amazon

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Fu, Rong; Yu, Hongbin; Dickinson, Robert E.; Juarez, Robinson Negron; Chin, Mian; Wang, Hui

    2008-07-01

    Ensemble simulations of a regional climate model assuming smoke aerosol in the Amazon suggest that dynamic changes of cloud cover contributes to the radiative effect of the smoke on the diurnal cycles of surface fluxes and the depth and structure of planetary boundary layer (PBL). In addition to their local effects, the aerosol radiative forcing also appears to weaken or delay the circulation transition from dry to wet season, leading to a weaker moisture transport into the smoke area where the aerosols optical depth, AOD, exceeds 0.3 and a stronger moisture transport and increase of cloudiness in the region upwind to the smoke area. The land surface scheme is modified to improve the regional climate model simulation of the daily mean and diurnal cycle of the surface sensible and latent heat fluxes over the Amazon rain forest. The aerosol radiative forcing is applied to the model during a dry to wet transition season (August-October) in that region. Cloudiness decreases in early afternoon due to the absorption of solar radiation by smoke aerosols partially compensate for the reduction of surface solar flux by aerosol scattering, shifting the strongest changes of surface flux and the PBL to late morning. The reduction of net solar radiation at the surface by smoke is locally largely compensated by reduction of surface sensible flux, with reduction of latent flux only about 30% as large. The strong aerosol absorption in the top 1 km of the aerosol layer stabilizes the 2 to 3 km layer immediately above the daytime PBL and consequently cloudiness decreases. This reduced surface solar flux and more stable lapse rate at the top of the PBL stabilize the lower troposphere. These changes lead to anomalous wind divergence in the southern Amazon and anomalous wind convergence over the equatorial western Amazon in the upwind direction of the smoke area.

  18. A reduced-form approach to characterizing sulfate aerosol effects on climate in integrated assessment models. Final report

    SciTech Connect

    Wigley, T.M.L.

    1996-04-01

    The objective of this study was to devise a methodology for estimating the spatial patterns of future climate change accounting for the effects of both greenhouse gases and sulfate aerosols under a wide range of emissions scenarios, using the results of General Circulation Models.

  19. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    SciTech Connect

    Nemesure, S.; Wagener, R.; Schwartz, S.E.

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  20. How Does Climate Change Affect the Bering Sea Ecosystem?

    NASA Astrophysics Data System (ADS)

    Sigler, Michael F.; Harvey, H. Rodger; Ashjian, Carin J.; Lomas, Michael W.; Napp, Jeffrey M.; Stabeno, Phyllis J.; Van Pelt, Thomas I.

    2010-11-01

    The Bering Sea is one of the most productive marine ecosystems in the world, sustaining nearly half of U.S. annual commercial fish catches and providing food and cultural value to thousands of coastal and island residents. Fish and crab are abundant in the Bering Sea; whales, seals, and seabirds migrate there every year. In winter, the topography, latitude, atmosphere, and ocean circulation combine to produce a sea ice advance in the Bering Sea unmatched elsewhere in the Northern Hemisphere, and in spring the retreating ice; longer daylight hours; and nutrient-rich, deep-ocean waters forced up onto the broad continental shelf result in intense marine productivity (Figure 1). This seasonal ice cover is a major driver of Bering Sea ecology, making this ecosystem particularly sensitive to changes in climate. Predicted changes in ice cover in the coming decades have intensified concern about the future of this economically and culturally important region. In response, the North Pacific Research Board (NPRB) and the U.S. National Science Foundation (NSF) entered into a partnership in 2007 to support the Bering Sea Project, a comprehensive $52 million investigation to understand how climate change is affecting the Bering Sea ecosystem, ranging from lower trophic levels (e.g., plankton) to fish, seabirds, marine mammals, and, ultimately, humans. The project integrates two research programs, the NSF Bering Ecosystem Study (BEST) and the NPRB Bering Sea Integrated Ecosystem Research Program (BSIERP), with substantial in-kind contributions from the U.S. National Oceanic and Atmospheric Administration (NOAA) and the U.S. Fish and Wildlife Service.

  1. Corrigendum to "Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM" published in Atmos. Chem. Phys., 12, 5985-6007, 2012

    NASA Astrophysics Data System (ADS)

    Peters, K.; Stier, P.; Quaas, J.; Graßl, H.

    2013-07-01

    An error in the calculation of the emitted number of primary sulfate particles for a given mass of emitted elementary sulfur has recently been identified in HAM, i.e. the aerosol module utilised in the ECHAM-HAM aerosol climate model. Correcting for this error substantially alters the estimates of top-of-atmosphere radiative forcing due to aerosol indirect effects from global shipping emissions (year 2000) as presented in Peters et al. (2012). Here, we shortly present these new results.

  2. Comparing Climate Impacts of Carbonaceous Aerosols and CO2; a new Metric Concept

    NASA Astrophysics Data System (ADS)

    Berntsen, T.; Fuglestvedt, J. S.

    2006-12-01

    The UN Framework Convention on Climate Change (UNFCCC) states that policies and measures to address a human-induced climate change should cover "all relevant sources, sinks and reservoirs" and be "cost-effective" (Art. 3.3). This implies that policies and measures should consider all emissions affecting climate change through a multi-gas abatement strategy. Then a metric is needed to put emissions on a common scale (e.g. "equivalent CO2 emissions"). The metric provides an "exchange rate" to allow the climate effect of emissions of compound x to be compared with emissions of a reference gas y (normally CO2). Ideally, the same equivalent CO2 emissions produce the same climate effect regardless of their composition. The Global Warming Potential (GWP) is widely accepted as an appropriate metric for well-mixed GHGs by the user community (cf. the Kyoto protocol). However, aside from the scientific uncertainties in the total climate impact of BC, there are several more fundamentally problematic issues related to the GWP for BC and other short-lived species. This includes: i) The climate effect may depend on location and timing of the emissions and ii) the long term climate effect of BC emissions are very different than for long lived GHGs like CO2. In this study we focus on the latter issue, and propose to use an extension of the Global Temperature Potential (GTP) concept proposed by Shine et al. (Climatic Change, 2005) by using the time integrated GTP (IGTP) as a metric for BC emissions. A central issue is how short-term impacts due to BC can be compared to long term effects of CO2. To illustrate the IGTP concept and its potential utility for short-lived species it is applied to compare the net climate impact of BC, OC and CO2 emissions from diesel cars (low CO2, high BC and OC) versus gasoline cars (high CO2, low BC and OC).

  3. Aerosol Radiative Effects: Expected Variations in Optical Depth Spectra and Climate Forcing, with Implications for Closure Experiment Strategies

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Stowe, L. L.; Hobbs, P. V.; Podolske, James R. (Technical Monitor)

    1995-01-01

    We examine measurement strategies for reducing uncertainties in aerosol direct radiative forcing by focused experiments that combine surface, air, and space measurements. Particularly emphasized are closure experiments, which test the degree of agreement among different measurements and calculations of aerosol properties and radiative effects. By combining results from previous measurements of large-scale smokes, volcanic aerosols, and anthropogenic aerosols with models of aerosol evolution, we estimate the spatial and temporal variability in optical depth spectra to be expected in the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, planned for summer 1996 off the Eastern U.S. seaboard). In particular, we examine the expected changes in the wavelength dependence of optical depth as particles evolve through nucleation, growth by condensation and coagulation, and removal via sedimentation. We then calculate the expected radiative climate forcing (i.e. change in net radiative flux) for typical expected aerosols and measurement conditions (e.g. solar elevations, surface albedos, radiometer altitudes). These calculations use new expressions for flux and albedo changes, which account not only for aerosol absorption, but also for instantaneous solar elevation angles and the dependence of surface albedo on solar elevation. These factors, which are usually ignored or averaged in calculations of global aerosol effects, can have a strong influence on fluxes measured in closure experiments, and hence must be accounted for in calculations if closure is to be convincingly tested. We compare the expected measurement signal to measurement uncertainties expected for various techniques in various conditions. Thereby we derive recommendations for measurement strategies that combine surface, airborne, and spaceborne measurements.

  4. Land cover maps, BVOC emissions, and SOA burden in a global aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Stanelle, Tanja; Henrot, Alexandra; Bey, Isaelle

    2015-04-01

    It has been reported that different land cover representations influence the emission of biogenic volatile organic compounds (BVOC) (e.g. Guenther et al., 2006). But the land cover forcing used in model simulations is quite uncertain (e.g. Jung et al., 2006). As a consequence the simulated emission of BVOCs depends on the applied land cover map. To test the sensitivity of global and regional estimates of BVOC emissions on the applied land cover map we applied 3 different land cover maps into our global aerosol-climate model ECHAM6-HAM2.2. We found a high sensitivity for tropical regions. BVOCs are a very prominent precursor for the production of Secondary Organic Aerosols (SOA). Therefore the sensitivity of BVOC emissions on land cover maps impacts the SOA burden in the atmosphere. With our model system we are able to quantify that impact. References: Guenther et al. (2006), Estimates of global terrestrial isoprene emissions using MEGAN, Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006. Jung et al. (2006), Exploiting synergies of global land cover products for carbon cycle modeling, Rem. Sens. Environm., 101, 534-553, doi:10.1016/j.rse.2006.01.020.

  5. Investigation of aviation emission impacts on global tropospheric chemistry and climate using a size-resolved aerosol-chemistry model

    NASA Astrophysics Data System (ADS)

    Kapadia, Zarashpe; Spracklen, Dominick; Arnold, Stephen; Borman, Duncan; Mann, Graham; Pringle, Kirsty; Monks, Sarah; Reddington, Carly; Rap, Alexandru; Scott, Catherine

    2014-05-01

    Aviation is responsible for 3% of global anthropogenic CO2 emissions, but 2-14% of anthropogenic induced climate warming due to contributions from short lived climate forcers. The global civil aviation fleet is projected to double by 2026 in relation to a 2006 baseline and so will play a substantial role in future climate change. Uncertainty in the net impact of aviation on climate is largely due to uncertainty in the impacts of aviation emissions on ozone and aerosol. To study the impact of aviation emissions we use the GLOMAP-mode global aerosol microphysics model coupled to the 3-D chemical transport model TOMCAT. GLOMAP-mode has been extended to include treatment of nitrate aerosol. We include a full suite of non-CO2 aviation emissions (including NOX, SO2, HCs, BC and OC) in the model. We combined the simulated changes in ozone and aerosol with a 3D radiative transfer model to quantify the radiative effect due to aviation non-CO2 emissions. We find that aviation emissions increase O3 concentrations by up to 5.3% in the upper troposphere (UT), broadly matching previous studies. Black carbon (BC) and organic carbon (OC) concentrations increase by 26.5% and 14.6% respectively in the UT, whereas nitrate aerosol is reduced in some regions due to co-emission of NOX and SO2 In the UT, aviation emissions increase both total aerosol number as well as the concentration of particles greater than 70 nm diameter (N70). Entrainment of these particles into the free troposphere results in aviation emissions also increasing N70 in the boundary layer, causing a cooling through the first aerosol indirect effect. We explore differences in these responses compared with those simulated when using the recommended aviation emissions from CMIP5 (5th Climate Model Intercomparison Project), which only include NOX and BC emissions. Our results suggest that aviation emissions of SO2 and HCs neglected by CMIP5 produce important effects on ozone, aerosol number, and N70. We suggest CMIP5

  6. Dust Aerosols Investigated Using an Integrated Microphysical-Climate-Radiation Model

    NASA Astrophysics Data System (ADS)

    Su, Lin

    I have developed a three-dimensional coupled microphysical-climate-radiation model based on the National Center for Atmospheric Research (NCAR) Community Atmospheres Model (CAM3.0 and CAM5.0) and the University of Colorado/NASA Community Aerosol and Radiation Model for Atmospheres (CARMA2.3 and CARMA3.0). The model has been used to investigate the sources, removal processes, transport, optical properties, and radiative effects of Asian dust aerosols on climate. In the initial project, a A Weibull distribution is implemented to estimate the sub-grid scale wind speed variability. The dust AOD agrees well with AERONET data and the timing of dust events is comparable to the National Institute for Environmental Studies (NIES) lidar data in Beijing and Nagasaki. In the second project, the simulated properties of atmospheric dust from the Saharan deserts and the Asian deserts are compared using data from CALIPSO and AERONET during 2006 and 2007. In my model the yearly horizontal dust flux just downwind of the African dust source is about 1088 Tg (10S-40N, 10W) and from the Asian dust source it is about 355 Tg (25N-55N, 105E) in 2007. I find the difference in dust flux is mainly due to the larger area over which dust is lifted in Africa than Asia. However, Africa also has stronger winds in some seasons. Some previous studies suggested that the observed descent of Saharan dust is due to sedimentation of the particles, but my work and satellite data show instead it is dominated by meteorology. I find the size distributions of Asian and African dust are similar when the dust is lifted, but the mode size can differ and secondary size modes can develop probably due to differences in vertical wind velocities during transport. The importance of the uncertainty in the single scattering albedo (SSA) to the radiative effects of dust on the climate of China is explored in my final project through two case studies based on the modeled and observed solar diffuse fluxes/irradiances at

  7. Development and basic evaluation of a prognostic aerosol scheme (v1) in the CNRM Climate Model CNRM-CM6

    NASA Astrophysics Data System (ADS)

    Michou, M.; Nabat, P.; Saint-Martin, D.

    2015-03-01

    We have implemented a prognostic aerosol scheme (v1) in CNRM-CM6, the climate model of CNRM-GAME and CERFACS, based upon the GEMS/MACC aerosol module of the ECMWF operational forecast model. This scheme describes the physical evolution of the five main types of aerosols, namely black carbon, organic matter, sulfate, desert dust and sea salt. In this work, we describe the characteristics of our implementation, for instance, taking into consideration a different dust scheme or boosting biomass burning emissions by a factor of 2, as well as the evaluation performed on simulation output. The simulations consist of time slice simulations for 2004 conditions and transient runs over the 1993-2012 period, and are either free-running or nudged towards the ERA-Interim Reanalysis. Evaluation data sets include several satellite instrument AOD (aerosol optical depth) products (i.e., MODIS Aqua classic and Deep-Blue products, MISR and CALIOP products), as well as ground-based AERONET data and the derived AERONET climatology, MAC-v1. The uncertainty of aerosol-type seasonal AOD due to model internal variability is low over large parts of the globe, and the characteristics of a nudged simulation reflect those of a free-running simulation. In contrast, the impact of the new dust scheme is large, with modelled dust AODs from simulations with the new dust scheme close to observations. Overall patterns and seasonal cycles of the total AOD are well depicted with, however, a systematic low bias over oceans. The comparison to the fractional MAC-v1 AOD climatology shows disagreements mostly over continents, while that to AERONET sites outlines the capability of the model to reproduce monthly climatologies under very diverse dominant aerosol types. Here again, underestimation of the total AOD appears in several cases, sometimes linked to insufficient efficiency of the aerosol transport away from the aerosol sources. Analysis of monthly time series at 166 AERONET sites shows, in general

  8. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; di Sarra, A.; Alados, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Brogniez, G.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Denjean, C.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, J.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Wenger, J.; Zapf, P.

    2015-07-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental set-up also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modelling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to produce high level of atmospheric pollutants nor

  9. A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle

    PubMed Central

    Kok, Jasper F.

    2011-01-01

    Mineral dust aerosols impact Earth’s radiation budget through interactions with clouds, ecosystems, and radiation, which constitutes a substantial uncertainty in understanding past and predicting future climate changes. One of the causes of this large uncertainty is that the size distribution of emitted dust aerosols is poorly understood. The present study shows that regional and global circulation models (GCMs) overestimate the emitted fraction of clay aerosols (< 2 μm diameter) by a factor of ∼2–8 relative to measurements. This discrepancy is resolved by deriving a simple theoretical expression of the emitted dust size distribution that is in excellent agreement with measurements. This expression is based on the physics of the scale-invariant fragmentation of brittle materials, which is shown to be applicable to dust emission. Because clay aerosols produce a strong radiative cooling, the overestimation of the clay fraction causes GCMs to also overestimate the radiative cooling of a given quantity of emitted dust. On local and regional scales, this affects the magnitude and possibly the sign of the dust radiative forcing, with implications for numerical weather forecasting and regional climate predictions in dusty regions. On a global scale, the dust cycle in most GCMs is tuned to match radiative measurements, such that the overestimation of the radiative cooling of a given quantity of emitted dust has likely caused GCMs to underestimate the global dust emission rate. This implies that the deposition flux of dust and its fertilizing effects on ecosystems may be substantially larger than thought. PMID:21189304

  10. Technical Note: On the Use of Nudging for Aerosol-Climate Model Intercomparison Studies

    SciTech Connect

    Zhang, Kai; Wan, Hui; Liu, Xiaohong; Ghan, Steven J.; Kooperman, G. J.; Ma, Po-Lun; Rasch, Philip J.; Neubauer, David; Lohmann, U.

    2014-08-26

    Nudging is an assimilation technique widely used in the development and evaluation of climate models. Con- straining the simulated wind and temperature fields using global weather reanalysis facilitates more straightforward comparison between simulation and observation, and reduces uncertainties associated with natural variabilities of the large-scale circulation. On the other hand, the artificial forcing introduced by nudging can be strong enough to change the basic characteristics of the model climate. In the paper we show that for the Community Atmosphere Model version 5, due to the systematic temperature bias in the standard model and the relatively strong sensitivity of homogeneous ice nucleation to aerosol concentration, nudging towards reanalysis results in substantial reductions in the ice cloud amount and the impact of anthropogenic aerosols on longwave cloud forcing. In order to reduce discrepancies between the nudged and unconstrained simulations and meanwhile take the advantages of nudging, two alternative experimentation methods are evaluated. The first one constrains only the horizontal winds. The second method nudges both winds and temperature, but replaces the long-term climatology of the reanalysis by that of the model. Results show that both methods lead to substantially improved agreement with the free-running model in terms of the top-of-atmosphere radiation budget and cloud ice amount. The wind-only nudging is more convenient to apply, and provides higher correlations of the wind fields, geopotential height and specific humidity between simulation and reanalysis. This suggests that nudging the horizontal winds but not temperature is a good strategy, especially for studies that involve both warm and cold clouds.

  11. Leader charisma and affective team climate: the moderating role of the leader's influence and interaction.

    PubMed

    Hernández Baeza, Ana; Araya Lao, Cristina; García Meneses, Juliana; González Romá, Vicente

    2009-11-01

    In this study, we evaluate the role of leader charisma in fostering positive affective team climate and preventing negative affective climate. The analysis of a longitudinal database of 137 bank branches by means of hierarchical moderated regression shows that leader charisma has a stronger effect on team optimism than on team tension. In addition, the leader's influence and the frequency of leader-team interaction moderate the relationship between charisma and affective climate. However, whereas the leader's influence enhances the relationship between leader charisma and positive affective climate, the frequency of interaction has counterproductive effects. PMID:19861091

  12. The Influence of Tropical Air-Sea Interaction on the Climate Impact of Aerosols: A Hierarchical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Hsieh, W. C.; Saravanan, R.; Chang, P.; Mahajan, S.

    2014-12-01

    In this study, we use a hierarchical modeling approach to investigate the influence of tropical air-sea feedbacks on climate impacts of aerosols in the Community Earth System Model (CESM). We construct four different models by coupling the atmospheric component of CESM, the Community Atmospheric Model (CAM), to four different ocean models: (i) the Data Ocean Model (DOM; prescribed SST), (i) Slab Ocean Model (SOM; thermodynamic coupling), (iii) Reduced Gravity Ocean Model (RGOM; dynamic coupling), and (iv) the Parallel Ocean Program (POP; full ocean model). These four models represent progressively increasing degree of coupling between the atmosphere and the ocean. The RGOM model, in particular, is tuned to produce a good simulation of ENSO and the associated tropical air-sea interaction, without being impacted by the climate drifts exhibited by fully-coupled GCMs. For each method of coupling, a pair of numerical experiments, including present day (year 2000) and preindustrial (year 1850) sulfate aerosol loading, were carried out. Our results indicate that the inclusion of air-sea interaction has large impacts on the spatial structure of the climate response induced by aerosols. In response to sulfate aerosol forcing, ITCZ shifts southwards as a result of the anomalous clockwise MMC change which transports moisture southwardly across the Equator. We present analyses of the regional response to sulfate aerosol forcing in the equatorial Pacific as well as the zonally-averaged response. The decomposition of the change in the net surface energy flux shows the most dominant terms are net shortwave radiative flux at the surface and latent heat flux. Further analyses show all ocean model simulations simulate a positive change of northward atmospheric energy transport across the Equator in response to the perturbed radiative sulfate forcing. This positive northward atmospheric energy transport change plays a role in compensating partially cooling caused by sulfate aerosols.

  13. Role of aerosols on the Indian Summer Monsoon variability, as simulated by state-of-the-art global climate models

    NASA Astrophysics Data System (ADS)

    Cagnazzo, Chiara; Biondi, Riccardo; D'Errico, Miriam; Cherchi, Annalisa; Fierli, Federico; Lau, William K. M.

    2016-04-01

    Recent observational and modeling analyses have explored the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. By using global scale climate model simulations, we show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump (EHP) mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface that may also be amplified through solar dimming (SD) by more cloudiness and aerosol loading with subsequent reduction in monsoon rainfall over India. We extend this analyses to a subset of CMIP5 climate model simulations. Our results suggest that 1) absorbing aerosols, by influencing the seasonal variability of the Indian summer monsoon with the discussed time-lag, may act as a source of predictability for the Indian Summer Monsoon and 2) if the EHP and SD effects are operating also in a number of state-of-the-art climate models, their inclusion could potentially improve seasonal forecasts.

  14. Implementation of the Missing Aerosol Physics into LLNL IMPACT

    SciTech Connect

    Chuang, C

    2005-02-09

    In recent assessments of climate forcing, the Intergovernmental Panel on Climate Change lists aerosol as one o f the most important anthropogenic agents that influence climate. Atmospheric aerosols directly affect the radiative fluxes at the surface and top of the Earth's atmosphere by scattering and/or absorbing radiation. Further, aerosols indirectly change cloud microphysical properties (such as cloud drop effective radius) that also affect the radiative fluxes. However, the estimate of the magnitude of aerosol climatic effect varies widely, and aerosol/cloud interactions remain one of the most uncertain aspects of climate models today. The Atmospheric Sciences Division has formulated a plan to enhance and expand our modeling expertise in aerosol/cloud/climate interactions. Under previous LDRD support, we successfully developed a computationally efficient version of IMPACT to simulate aerosol climatology. This new version contains a compact chemical mechanism for the prediction of sulfate and also predicts the distributions of organic carbon (OC), black carbon (BC), dust, and sea salt. Furthermore, we implemented a radiation package into IMPACT to calculate the radiative forcing and heating/cooling rates by aerosols. This accomplishment built the foundation of our currently funded projects under the NASA Global Modeling and Analysis Program as well as the DOE Atmospheric Radiation Program. Despite the fact that our research is being recognized as an important effort to quantify the effects of anthropogenic aerosols on climate, the major shortcoming of our previous simulations on aerosol climatic effects is the over simplification of spatial and temporal variations of aerosol size distributions that are shaped by complicated nucleation, growth, transport and removal processes. Virtually all properties of atmospheric aerosols and clouds depend strongly on aerosol size distribution. Moreover, molecular processing on aerosol surfaces alters the hygroscopic

  15. Comparative Climate Responses of Anthropogenic Greenhouse Gases, All Major Aerosol Components, Black Carbon, and Methane, Accounting for the Evolution of the Aerosol Mixing State and of Clouds/Precipitation from Multiple Aerosol Size Distributions

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2005-12-01

    Several modeling studies to date have simulated the global climate response of anthropogenic greenhouse gases and bulk (non-size-resolved) sulfate or generic aerosol particles together, but no study has examined the climate response of greenhouse gases simultaneously with all major size- and composition resolved aerosol particle components. Such a study is important for improving our understanding of the effects of anthropogenic pollutants on climate. Here, the GATOR-GCMOM model is used to study the global climate response of (a) all major greenhouse gases and size-resolved aerosol components, (b) all major greenhouse gases alone, (c) fossil-fuel soot (black carbon, primary organic matter, sulfuric acid, bisulfate, sulfate), and (d) methane. Aerosol components treated in all simulations included water, black carbon, primary organic carbon, secondary organic carbon, sulfuric acid, bisulfate, sulfate, nitrate, chloride, ammonium, sodium, hydrogen ion, soil dust, and pollen/spores. Fossil-fuel soot (FFS) was emitted into its own size distribution. All other components, including biofuel and biomass soot, sea-spray, soil dust, etc., were emitted into a second distribution (MIX). The FFS distribution grew by condensation of secondary organic matter and sulfuric acid, hydration of water, and dissolution of nitric acid, ammonia, and hydrochloric acid. It self-coagulated and heterocoagulated with the MIX distribution, which also grew by condensation, hydration, and dissolution. Treatment of separate distributions for FFS allowed FFS to evolve from an external mixture to an internal mixture. In both distributions, black carbon was treated as a core component for optical calculations. Both aerosol distributions served as CCN during explicit size-resolved cloud formation. The resulting clouds grew by coagulation and condensation, coagulated with interstitial aerosol particles, and fell to the surface as rain and snow, carrying aerosol constituents with them. Thus, cloud

  16. A Simulated Climatology of Asian Dust Aerosol and Its Trans-Pacific Transport. Part I: Mean Climate and Validation.

    NASA Astrophysics Data System (ADS)

    Zhao, T. L.; Gong, S. L.; Zhang, X. Y.; Blanchet, J.-P.; McKendry, I. G.; Zhou, Z. J.

    2006-01-01

    The Northern Aerosol Regional Climate Model (NARCM) was used to construct a 44-yr climatology of spring Asian dust aerosol emission, column loading, deposition, trans-Pacific transport routes, and budgets during 1960 2003. Comparisons with available ground dust observations and Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) measurements verified that NARCM captured most of the climatological characteristics of the spatial and temporal distributions, as well as the interannual and daily variations of Asian dust aerosol during those 44 yr. Results demonstrated again that the deserts in Mongolia and in western and northern China (mainly the Taklimakan and Badain Juran, respectively) were the major sources of Asian dust aerosol in East Asia. The dust storms in spring occurred most frequently from early April to early May with a daily averaged dust emission (diameter d < 41 μm) of 1.58 Mt in April and 1.36 Mt in May. Asian dust aerosol contributed most of the dust aerosol loading in the troposphere over the midlatitude regions from East Asia to western North America during springtime. Climatologically, dry deposition was a dominant dust removal process near the source areas, while the removal of dust particles by precipitation was the major process over the trans-Pacific transport pathway (where wet deposition exceeded dry deposition up to a factor of 20). The regional transport of Asian dust aerosol over the Asian subcontinent was entrained to an elevation of <3 km. The frontal cyclone in Mongolia and northern China uplifted dust aerosol in the free troposphere for trans-Pacific transport. Trans-Pacific dust transport peaked between 3 and 10 km in the troposphere along a zonal transport axis around 40°N. Based on the 44-yr-averaged dust budgets for the modeling domain from East Asia to western North America, it was estimated that of the average spring dust aerosol (diameter d < 41 μm) emission of 120 Mt from Asian source regions, about 51% was

  17. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations

    NASA Astrophysics Data System (ADS)

    Zhang, K.; O'Donnell, D.; Kazil, J.; Stier, P.; Kinne, S.; Lohmann, U.; Ferrachat, S.; Croft, B.; Quaas, J.; Wan, H.; Rast, S.; Feichter, J.

    2012-10-01

    This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Nudged simulations of the year 2000 are carried out to compare the aerosol properties and global distribution in HAM1 and HAM2, and to evaluate them against various observations. Sensitivity experiments are performed to help identify the impact of each individual update in model formulation. Results indicate that from HAM1 to HAM2 there is a marked weakening of aerosol water uptake in the lower troposphere, reducing the total aerosol water burden from 75 Tg to 51 Tg. The main reason is the newly introduced κ-Köhler-theory-based water uptake scheme uses a lower value for the maximum relative humidity cutoff. Particulate organic matter loading in HAM2 is considerably higher in the upper troposphere, because the explicit treatment of secondary organic aerosols allows highly volatile oxidation products of the precursors to be vertically transported to regions of very low temperature and to form aerosols there. Sulfate, black carbon, particulate organic matter and mineral dust in HAM2 have longer lifetimes than in HAM1 because of weaker in-cloud scavenging, which is in turn related to lower autoconversion efficiency in the newly introduced two-moment cloud microphysics scheme. Modification in the sea salt emission scheme causes a significant increase in the ratio (from 1.6 to 7.7) between accumulation mode and coarse mode emission fluxes of aerosol number concentration. This

  18. Characterization of Atmospheric Aerosol Behavior and Climatic Effects by Analysis of SAGE 2 and Other Space, Air, and Ground Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.

    1999-01-01

    This report documents the research performed under NASA Ames Cooperative Agreement NCC 2-991, which covered the period 1 April 1997 through 31 March 1999. Previously, an interim technical report (Technical Report No. 1, 20 March 1998) summarized the work completed during the period 1 April 1997 through 31 March 1998. The objective of the proposed research was to advance our understanding of atmospheric aerosol behavior, aerosol-induced climatic effects, and the remote measurement and retrieval capabilities of spaceborne sensors such as SAGE II by combining and comparing data from these instruments and from airborne and ground-based instruments.

  19. Impact of aerosols on regional climate in southern and northern China during strong/weak East Asian summer monsoon years

    NASA Astrophysics Data System (ADS)

    Li, Shu; Wang, Tijian; Solmon, Fabien; Zhuang, Bingliang; Wu, Hao; Xie, Min; Han, Yong; Wang, Xuemei

    2016-04-01

    In this work, we mainly simulate the effects of aerosols on regional climate in southern China (SC) and northern China (NC) and compare the differences of aerosol climatic effects in strong/weak summer monsoon years with a modified regional climate model RegCM4. The results show that the total climatic effects of aerosols cause the decline of averaged air temperature and precipitation of SC and NC in summer. In NC, the strength of temperature drop in strong summer monsoon years is higher than that in weak summer monsoon years, indicating the possible impact from the different changes of radiation, circulation, and precipitation. The decrease of precipitation is more significant in NC in weak summer monsoon years, while it is stronger in SC in strong summer monsoon years due to the difference of aerosol distribution as well as the effects on circulation and cloud microphysics processes. Besides, aerosol effects also cause a decrease of zonal wind at 850 hPa in SC and an increase in NC. The cooling center is more northerly and stronger in strong monsoon year, while it is more southerly and weaker in weak summer monsoon years, which results in the differences of vertical circulation anomaly and meridional wind anomaly at 850 hPa. In weak summer monsoon years, meridional wind at 850 hPa is increased in NC, while it is found to be decreased in SC. In strong summer monsoon years, meridional winds at 850 hPa in both NC and SC are weakened. However, the decrease in SC is much more distinct and clear.

  20. Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990-2009 using a regional climate model

    NASA Astrophysics Data System (ADS)

    Ji, Zhenming; Kang, Shichang; Zhang, Qianggong; Cong, Zhiyuan; Chen, Pengfei; Sillanpää, Mika

    2016-09-01

    Mineral aerosols scatter and absorb incident solar radiation in the atmosphere, and play an important role in the regional climate of High Mountain Asia (the domain includes the Himalayas, Tibetan Plateau, Pamir, Hindu-kush, Karakorum and Tienshan Mountains). Dust deposition on snow/ice can also change the surface albedo, resulting in perturbations in the surface radiation balance. However, most studies that have made quantitative assessments of the climatic effect of mineral aerosols over the High Mountain Asia region did not consider the impact of dust on snow/ice at the surface. In this study, a regional climate model coupled with an aerosol-snow/ice feedback module was used to investigate the emission, distribution, and deposition of dust and the climatic effects of aerosols over High Mountain Asia. Two sets of simulations driven by a reanalysis boundary condition were performed, i.e., with and without dust-climate feedback. Results indicated that the model captured the spatial and temporal features of the climatology and aerosol optical depth (AOD). High dust emission fluxes were simulated in the interior of the Tibetan Plateau (TP) and the Yarlung Tsangpo Valley in March-April-May (MAM), with a decreasing trend during 1990-2009. Dry deposition was controlled by the topography, and its spatial and seasonal features agreed well with the dust emission fluxes. The maximum wet deposition occurred in the western (southern and central) TP in MAM (JJA). A positive surface radiative forcing was induced by dust, including aerosol-snow/ice feedback, resulting in 2-m temperature increases of 0.1-0.5 °C over the western TP and Kunlun Mountains in MAM. Mineral dust also caused a decrease of 5-25 mm in the snow water equivalent (SWE) over the western TP, Himalayas, and Pamir Mountains in DJF and MAM. The long-term regional mean radiative forcing via dust deposition on snow showed an rising trend during 1990-2009, which suggested the contribution of aerosols surface

  1. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; Denjean, C.; Brogniez, G.; di Sarra, A.; Alados-Arboledas, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, T.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Waquet, F.; Wenger, J.; Zapf, P.

    2016-01-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high

  2. Next generation aerosol-cloud microphysics for advanced high-resolution climate predictions

    SciTech Connect

    Bennartz, Ralf; Hamilton, Kevin P; Phillips, Vaughan T.J.; Wang, Yuqing; Brenguier, Jean-Louis

    2013-01-14

    The three top-level project goals are: -We proposed to develop, test, and run a new, physically based, scale-independent microphysical scheme for those cloud processes that most strongly affect greenhouse gas scenarios, i.e. warm cloud microphysics. In particular, we propsed to address cloud droplet activation, autoconversion, and accretion. -The new, unified scheme was proposed to be derived and tested using the University of Hawaii's IPRC Regional Atmospheric Model (iRAM). -The impact of the new parameterizations on climate change scenarios will be studied. In particular, the sensitivity of cloud response to climate forcing from increased greenhouse gas concentrations will be assessed.

  3. North Atlantic Oscillation affecting aerosols ground levels over Europe through local processes: asymmetries in time and space

    NASA Astrophysics Data System (ADS)

    Jerez, Sonia; Jimenez-Guerrero, Pedro; Montávez, Juan Pedro; Trigo, Ricardo M.

    2013-04-01

    Air pollution is a major environmental and health problem. Hence, understanding when and why episodes of air pollution arise becomes essential. Besides emissions, air pollution levels depend on the atmospheric conditions handling and transforming them through processes related to chemistry, transport and removal. In this sense, this contribution assesses the variation in ground-level aerosols concentrations over Europe associated to changes in the phase of the North Atlantic Oscillation (NAO) motivated by the well-known strong impact of the NAO on the European climate variability. For that we used a high-resolution (25 km) air quality simulation spanning the period 1970-1999 and covering western Europe and most of the Mediterranean basin. Additionally, we used observed aerosol data from the EMEP database whose observational periods range between 1993 and 2010. The simulation was performed by using climatological boundary conditions for the aerosols concentrations, hence allowing to isolate the influence of the local atmospheric processes, as they are governed by the NAO, on the levels of the various aerosol species analyzed (namely sea salt, wind-blown and resuspended dust, secondary inorganic aerosols, organic matter and elemental carbon) from the influence of large-scale mechanisms. The results highlight that positive NAO phases favor increased aerosols levels in southern (northern) regions in winter (summer), while negative NAO phases enhance them in northern (southern) regions in winter (summer), being generally in good agreement with the analysis based on the observational database. Variations are up to and over 100% for most aerosols, being clearly related to the NAO-impact on local precipitation and wind, as they act to clean the atmosphere through removal and dispersion processes, but equally resulting from the NAO-impact on the radiation balance (i.e. cloudiness) as it rebounds on the biogenic emitting activity and on the oxidative capacity of the

  4. Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing

    SciTech Connect

    Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.; Rasch, Philip J.; Yoon, Jin-Ho; Eaton, Brian

    2012-10-01

    The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic aerosol on solar and infrared radiation through droplet and crystal nucleation on aerosol, and semidirect effects through the influence of solar absorption on the distribution of clouds. A three-mode representation of the aerosol in version 5.1 of the Community Atmosphere Model (CAM5.1) yields global annual mean radiative forcing estimates for each of these forcing mechanisms that are within 0.1 W m–2 of estimates using a more complex seven-mode representation that distinguishes between fresh and aged black carbon and primary organic matter. Simulating fresh black carbon particles separately from internally mixed accumulation mode particles is found to be important only near fossil fuel sources. In addition to the usual large indirect effect on solar radiation, this study finds an unexpectedly large positive longwave indirect effect (because of enhanced cirrus produced by homogenous nucleation of ice crystals on anthropogenic sulfate), small shortwave and longwave semidirect effects, and a small direct effect (because of cancelation and interactions of direct effects of black carbon and sulfate). Differences between the threemode and seven-mode versions are significantly larger (up to 0.2 W m–2) when the hygroscopicity of primary organic matter is decreased from 0.1 to 0 and transfer of the primary carbonaceous aerosol to the accumulation mode in the seven-mode version requires more hygroscopic material coating the primary particles. Radiative forcing by cloudborne anthropogenic black carbon is only 20.07 W m–2.

  5. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    m, PM10=1.1 μg m-3; estimated coefficient of light scattering by particulate matter, σep, at 570 nm=12 Mm-1). (b) High aerosol concentration (PM2.5=43.9 μg m-3; PM10=83.4 μg m-3; estimated σep at 570 nm=245 Mm-1) (reproduced by permission of National Park Service, 2002). Although comprising only a small fraction of the mass of Earth's atmosphere, aerosol particles are highly important constituents of the atmosphere. Special interest has focused on aerosols in the troposphere, the lowest part of the atmosphere, extending from the land or ocean surface typically to ˜8 km at high latitudes, ˜12 km in mid-latitudes, and ˜16 km at low latitudes. That interest arises in large part because of the importance of aerosol particles in geophysical processes, human health impairment through inhalation, environmental effects through deposition, visibility degradation, and influences on atmospheric radiation and climate.Anthropogenic aerosols are thought to exert a substantial influence on Earth's climate, and the need to quantify this influence has sparked much of the current interest in and research on tropospheric aerosols. The principal mechanisms by which aerosols influence the Earth radiation budget are scattering and absorbing solar radiation (the so-called "direct effects") and modifying clouds and precipitation, thereby affecting both radiation and hydrology (the so-called "indirect effects"). Light scattering by aerosols increases the brightness of the planet, producing a cooling influence. Light-absorbing aerosols such as black carbon exert a warming influence. Aerosols increase the reflectivity of clouds, another cooling influence. These radiative influences are quantified as forcings, where a forcing is a perturbation to the energy balance of the atmosphere-Earth system, expressed in units of watts per square meter, W m-2. A warming influence is denoted a positive forcing, and a cooling influence, negative. The radiative direct and indirect forcings by

  6. EDITORIAL: Aerosol cloud interactions—a challenge for measurements and modeling at the cutting edge of cloud climate interactions

    NASA Astrophysics Data System (ADS)

    Spichtinger, Peter; Cziczo, Daniel J.

    2008-04-01

    Research in aerosol properties and cloud characteristics have historically been considered two separate disciplines within the field of atmospheric science. As such, it has been uncommon for a single researcher, or even research group, to have considerable expertise in both subject areas. The recent attention paid to global climate change has shown that clouds can have a considerable effect on the Earth's climate and that one of the most uncertain aspects in their formation, persistence, and ultimate dissipation is the role played by aerosols. This highlights the need for researchers in both disciplines to interact more closely than they have in the past. This is the vision behind this focus issue of Environmental Research Letters. Certain interactions between aerosols and clouds are relatively well studied and understood. For example, it is known that an increase in the aerosol concentration will increase the number of droplets in warm clouds, decrease their average size, reduce the rate of precipitation, and extend the lifetime. Other effects are not as well known. For example, persistent ice super-saturated conditions are observed in the upper troposphere that appear to exceed our understanding of the conditions required for cirrus cloud formation. Further, the interplay of dynamics versus effects purely attributed to aerosols remains highly uncertain. The purpose of this focus issue is to consider the current state of knowledge of aerosol/cloud interactions, to define the contemporary uncertainties, and to outline research foci as we strive to better understand the Earth's climate system. This focus issue brings together laboratory experiments, field data, and model studies. The authors address issues associated with warm liquid water, cold ice, and intermediate temperature mixed-phase clouds. The topics include the uncertainty associated with the effect of black carbon and organics, aerosol types of anthropogenic interest, on droplet and ice formation. Phases

  7. The relationship of boundary layer clouds in the tropical southeast Atlantic to absorbing aerosols, meteorology and climate change

    NASA Astrophysics Data System (ADS)

    Zuidema, P.; Adebiyi, A. A.; Ramajiguru, L.

    2015-12-01

    Ascension Island, a remote island located in the middle of the Atlantic Ocean within the trade-wind region oat 8S, 14.5W, experiences the outflow of biomass-burning aerosols from continental Africa, over 2000 km away, from July through November, peaking in August and September. The shortwave-absorbing free-tropospheric aerosols, located in a region of high solar irradiance, provide a climate warming that is poorly represented in global aerosol climate models. The low clouds can respond to the smoke layer in myriad possible ways that are not yet well-documented. The shortwave-warming can stabilize the free-troposphere, enhancing the low cloud fraction. The deepening boundary layer and subsiding smoke layer also increase the likelihood of aerosol-cloud microphysical interactions. Interest in this climate regime is supporting an observational strategy of a year-long DOE ARM Mobile Facility deployment to Ascension (Layered Atlantic Smoke Interactions with Clouds, or LASIC), and an NSF aircraft campaign (ObservatioNs of Fireʼs Impact on the southeast atlantic REgion, or ONFIRE) based on Sao Tome Island. These campaigns will be integrated with NASA, UK and African activities sharing similar goals based further south in Namibia. Initial analysis is distinguishing meteorology from aerosol impacts on the boundary layer cloud fields. The forward trajectories of emissions from over 24,000 fire sources on continental Africa show that a free-tropospheric jet can advect aerosols to above Ascension island in just one-two days. The fast transport time encourages retention of signatures of the fire sources, in particular the radiatively-crucial single-scattering albedo value. Thereafter, a deep land-based anticyclonic high recirculates over one-third of these trajectories back to the African continent, explaining the widespread extent of the aerosol layer. The free-tropospheric jet also reduces the mean atmospheric subsidence independently of shortwave absorption by the aerosols

  8. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  9. Study on impact of aerosols on solar radiation and its climate effect in Southwest China

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaobo; Zhao, Tianliang; Zhang, Xiaojuan

    Air temperature in Southwest China has changed out of phase with the Northern Hemispheric temperature change since last century, which could be connected to increasing aerosols in that region. By using the 50-year (1961-2010) data of meteorology observed at 19 ground sites in Southwest China and 10-year MODIS-AOD data, the change in global solar radiation and its correlations to the influencing elements of horizontal visibility, cloud amount, wind and AOD are analysed. The analysis results show 1) over the area with high AOD(AOD>0.3),solar radiation had decreased significantly over the 1960s-1990s, but in this century, the decreased trend in solar radiation has ceased and even slightly levelled up at some sites, but the solar radiation has not recovered to the level in the 1960s. The decreased solar radiation is corresponded with less visibility, more aerosols and weakening wind as well as is also related with change in cloud amounts. 2) over the low AOD area(AOD≦0.3)in Southwest China, solar radiation has varied in the insignificant trends excepting the significant increase in solar radiation at Emei Mountain with altitude of 3047m after the 1990s. 3) Meteorological elements are responded to climate change in solar radiation. The sunshine duration is positively correlated with solar radiation at all sites with passing significance test of 99% level at the most sites in Southwest China. Decreases in solar radiation lead to cooling in temperature and decline in evaporation at high AOD regions. The maximum temperature and solar radiation vary in relatively good phase but with a complex response of evaporation to solar radiation over low AOD sites in Southwest China.

  10. Aerosol Types using Passive Remote Sensing: Global Distribution, Consistency Check, Total-Column Investigation and Translation into Composition Derived from Climate and Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Dawson, K. W.; Johnson, M. S.; Burton, S. P.; Redemann, J.; Hasekamp, O. P.; Hair, J. W.; Ferrare, R. A.; Butler, C. F.; Holben, B. N.; Beyersdorf, A. J.; Ziemba, L. D.; Froyd, K. D.; Dibb, J. E.; Shingler, T.; Sorooshian, A.; Jimenez, J. L.; Campuzano Jost, P.; Jacob, D. J.

    2015-12-01

    To improve the predictions of aerosol composition in chemical transport models (CTMs) and global climate models (GCMs), we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. We apply the SCMC method to two different total-column datasets of aerosol optical properties: inversions from the ground-based AErosol RObotic NETwork (AERONET) and retrievals from the space-borne POLDER (Polarization and Directionality of Earth's Reflectances) instrument. The POLDER retrievals that we use differ from the standard POLDER retrievals [Deuzé et al., 2001] as they make full use of multi-angle, multispectral polarimetric data [Hasekamp et al., 2011]. We analyze agreement in the aerosol types inferred from both AERONET and POLDER globally. Then, we investigate how our total-column "effective" SCMC aerosol types relate to different aerosol types within the column (i.e. either a mixture of different types within one layer in the vertical or the stacking of different aerosol types within the vertical column). For that, we compare AERONET-SCMC aerosol types to collocated NASA LaRC HSRL vertically resolved aerosol types [Burton et al., 2012] during the SEAC4RS and DISCOVER-AQ airborne field experiments, mostly over Texas in Aug-Sept 2013. Finally, in order to evaluate the GEOS-Chem CTM aerosol types, we translate each of our SCMC aerosol type into a unique distribution of GEOS-Chem aerosol composition (e.g. biomass burning, dust, sulfate, sea salt). We bridge the gap between remote sensing and model-inferred aerosol types by using multiple years of collocated AERONET

  11. Premonsoon Aerosol Characterization and Radiative Effects Over the Indo-Gangetic Plains: Implications for Regional Climate Warming

    NASA Technical Reports Server (NTRS)

    Gautam, Ritesh; Hsu, N. Christina; Lau, K.-M.

    2010-01-01

    The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 W/sq m per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89+/- 0.01 (at approx.550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 W/sq m and +1.4 to +12 W/sq m, respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of approx.5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 C/decade+/-0.08 C

  12. The relative impacts of greenhouse gas and aerosol climate forcing on mountain glacier melt at the third pole

    NASA Astrophysics Data System (ADS)

    Wilcox, E. M.

    2010-12-01

    The third pole region resides within a hot spot for atmospheric brown clouds owing to the widespread emissions of dust, soot, and organic carbon aerosols in South and East Asia. As much as one-half of the regional climate warming over South Asia in the later 20th and early 21st centuries has been attributed to the direct radiative heating of the troposphere by aerosol solar absorption. The other half is attributed to the global greenhouse gas forcing. While the increase in temperature and infrared back radiation attributable to greenhouse gas warming is expected to accelerate melting of Himalayan glaciers, aerosol radiative forcing, and the climate response to it, contribute a host of additional impacts on mountain glaciers, many of which exacerbate the melting. These impacts include atmospheric warming, increased infrared back radiation, reduced surface insolation, surface albedo modification by soot deposition, and reductions in monsoon precipitation. The contributions of each of these effects upon melting of Himalayan mountain glaciers is explored in a glacier mass model based on energy balance calculations. The surface energy balance from the base to the top of several glaciers is calculated based on remote sensing and in-situ time series of radiative fluxes and precipitation. The model is calibrated against recent in-situ measurements of glacier mass balance and equilibrium altitude where available. Perturbations to the radiative fluxes and precipitation are then imposed on the mass balance calculations based on published estimates of the aerosol radiative forcing magnitudes and observed changes in regional temperature and precipitation over the modern era. In light of the substantial uncertainty surrounding regional forcing values and mountain glacier characteristics, the study emphasizes sensitivity studies comparing the relative responses of glaciers to the components of aerosol and greenhouse gas forcing mentioned above. Of particular interest are: (a) the

  13. Atmospheric Carbon Dioxide and Aerosols: Effects of Large Increases on Global Climate

    ERIC Educational Resources Information Center

    Science, 1971

    1971-01-01

    Mathematical models indicate increasing atmospheric carbon dioxide causes an increase in surface temperature at a decreasing rate, and the rate of temperature decrease caused by increasing aerosols increases with aerosol concentration. (AL)

  14. WILL CLIMATE CHANGE AFFECT BIODIVERSITY IN PACIFIC NORTHWEST FORESTS?

    EPA Science Inventory

    Global climate change could have significant consequences for biological diversity in Pacific Northwest (PNW) forested ecosystems, particularly in areas already threatened by anthropogenic activities and the resultant habitat modification and fragmentation. he forests of the Paci...

  15. An overview of dust aerosol effect on semi-arid climate during 2008 China-US joined field campaign

    NASA Astrophysics Data System (ADS)

    Huang, J.; Bi, J.; Zhang, W.; Shi, J.; Tsay, S.; Li, Z.; Chen, H.; Wang, X.; Huang, Z.; Zhang, B.; Wang, G.; Zhang, L.

    2009-12-01

    To improve understanding and capture the direct evident of the impact of dust aerosol on semi-arid climate, the 2008 China-US joined field campaign are conducted. Three sites involved this campaign, including one permanent site (Semi-Arid Climate & Environment Observatory of Lanzhou University (SACOL)) (located in Yuzhong, 35.95°N/104.1°E), one SACOL’s Mobile Facility (SMF) (deployed in Jintai, 37.57°N/104.23°E) and the U.S. Department of Energy Atmospheric Radiation Measurements(ARM) Ancillary Facility (AAF mobile laboratories, SMART-COMMIT) (deployed in Zhangye, 39.08°N/100.27°E). This study presents a description the objectives, measurements, and sampling strategies for this joined campaign. Major dust episodes captured during the campaign were investigated. Preliminary observation results show that the semi-direct effect may be dominated by the interaction between dust aerosols and clouds over arid and semi-arid areas and partly contribute to reduced precipitation. These results suggest that the local anthropogenic and nature absorbing aerosols make significant contribution to the regional interaction among aerosol-cloud-radiation-precipitation processes and need to be future investigation.

  16. Polarimetric Retrievals of Surface and Aerosol Properties in the Region Affected by the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Ottaviani, M.; Cairns, B.; Chowdhary, J.; Knobelspiesse, K. D.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R.; Obland, M. D.; Zhai, P.; Hu, Y.

    2010-12-01

    In July 2010, the Research Scanning Polarimeter (RSP) effectuated two flights in two consecutive days over the region affected by the oil spill of the Deepwater Horizon offshore platform. Integrated on the NASA Langley B-200 aircraft, the instrument is deployed together with the High Spectral Resolution Lidar (HSRL), which provides information on the distribution of the aerosol layers beneath the aircraft including an accurate estimate of aerosol optical depth. We present a sensitivity study to illustrate the merits of polarization measurements in detecting variations of ocean surface properties linked to the presence of an oil slick. In particular, the Degree of Linear Polarization (DoLP) in the glint region does not depend on the surface roughness, while is severely affected by variations in the refractive index of the ocean surface. Exploiting the RSP channel at 2250nm, where virtually all the signal is generated by the Fresnel reflection at the surface, the DoLP at any angle well into the glint region can therefore be used to detect alterations in the ocean surface. More specifically, the glint profile at this wavelength is fitted to the Cox-Munk model with a routine which can optimally estimate wind speed and direction, while taking into account aircraft attitude variations in determining the viewing geometry. The surveyed area also presents a complex mix of aerosol types. At least one major urban layer originating in the US Southeast mixes in the central portion of the flight trajectory with smoke caused by controlled burns around the damaged platform. The constrain on surface reflectance provided by the SWIR RSP channel, together with the aerosol optical depth provided by the HSRL, are used in Radiative Transfer computations to model the channels at shorter wavelengths and retrieve aerosol descriptive parameters such as aerosol size distribution and refractive index. Finally, the presence of smoke is ground for a discussion on the possibility to infer

  17. Anthropogenic climate change affects meteorological drought risk in Europe

    NASA Astrophysics Data System (ADS)

    Gudmundsson, L.; Seneviratne, S. I.

    2016-04-01

    Drought constitutes a significant natural hazard in Europe, impacting societies and ecosystems across the continent. Climate model simulations with increasing greenhouse gas concentrations project increased drought risk in southern Europe, and on the other hand decreased drought risk in the north. Observed changes in water balance components and drought indicators resemble the projected pattern. However, assessments of possible causes of the reported regional changes have so far been inconclusive. Here we investigate whether anthropogenic emissions have altered past and present meteorological (precipitation) drought risk. For doing so we first estimate the magnitude of 20 year return period drought years that would occur without anthropogenic effects on the climate. Subsequently we quantify to which degree the occurrence probability, i.e. the risk, of these years has changed if anthropogenic climate change is accounted for. Both an observational and a climate model-based assessment suggest that it is >95% likely that human emissions have increased the probability of drought years in the Mediterranean, whereas it is >95% likely that the probability of dry years has decreased in northern Europe. In central Europe the evidence is inconclusive. The results highlight that anthropogenic climate change has already increased drought risk in southern Europe, stressing the need to develop efficient mitigation measures.

  18. Plan for a research program on aerosol radiative forcing and climate change. Final report, 1 December 1993-17 April 1996

    SciTech Connect

    1996-04-17

    The panel`s main findings are that (1) anthropogenic aerosols reduce the amount of solar radiation reaching the Earth`s surface, (2) anthropogenic aerosols provide a negative climate forcing function for large regions, (3) global models suggest that sulfate aerosols produce a direct forcing in the Northern Hemisphere of the same order of magnitude as that from anthropogenic greenhouse gases, but opposite in sign, and (4) there is substantial uncertainty about the magnitude and spatial distribution of the radiative forcing by aerosols.

  19. Investigating the impacts of aviation NOX, SO2 and black carbon emissions on ozone, aerosol and climate.

    NASA Astrophysics Data System (ADS)

    Kapadia, Zarashpe; Borman, Duncan; Spracklen, Dominick; Arnold, Stephen; Mann, Graham; Williams, Paul

    2013-04-01

    Aviation is currently responsible for 3% of global anthropogenic CO2 emissions, but 2-14% of anthropogenic induced warming due to the co-emission of NOX, SO2 and black carbon and formation of contrails. The impact of aviation emissions on ozone and aerosol is uncertain with recent research demonstrating the need to include atmospheric nitrate chemistry. The inclusion of nitrate chemistry may lead to a 20% reduction in aviation induced ozone forcing estimates due to the competition for atmospheric oxidants such as OH . Compounding this, uncertainties relating to the effects of NOx on ozone and methane illustrate the need for refining the understanding of aviation induced impacts. Furthermore the role of aerosol microphysics in controlling the climate impacts of aviation has not yet been explored. Here we use the TOMCAT 3-D chemical transport model coupled to the GLOMAP-mode aerosol microphysics model to quantify the impacts of aviation NOX, SO2 and BC emissions on ozone, aerosol and climate. GLOMAP-mode treats size resolved aerosol using a two-moment modal approach. We evaluate the effects of nitrate processing on the diagnosed impacts of aviation emissions on atmospheric composition including the first assessment of the impact on the global concentrations of cloud condensation nuclei. We investigate interactions between gas-phase oxidant photochemistry and aerosol microphysics in regions influenced by aircraft emissions, using fully-coupled tropospheric chemistry and multi-component aerosol treatment (BC, sulphate, nitrate). Finally, we use a 3-D radiative transfer model to quantify the ozone and aerosol direct and indirect radiative effects of aviation emissions. The work presented here is part of a wider research project which will be the first study to combine aviation NOX, SO2 and black carbon emission in a global size-resolved model which considers atmospheric nitrate chemistry, which will aim to add to the science surrounding present day aviation impacts by

  20. Aerosol indirect effects in the ECHAM5-HAM2 climate model with subgrid cloud microphysics in a stochastic framework

    NASA Astrophysics Data System (ADS)

    Tonttila, Juha; Räisänen, Petri; Järvinen, Heikki

    2015-04-01

    Representing cloud properties in global climate models remains a challenging topic, which to a large extent is due to cloud processes acting on spatial scales much smaller than the typical model grid resolution. Several attempts have been made to alleviate this problem. One such method was introduced in the ECHAM5-HAM2 climate model by Tonttila et al. (2013), where cloud microphysical properties, along with the processes of cloud droplet activation and autoconversion, were computed using an ensemble of stochastic subcolumns within the climate model grid columns. Moreover, the subcolumns were sampled for radiative transfer using the Monte Carlo Independent Column Approximation approach. The same model version is used in this work (Tonttila et al. 2014), where 5-year nudged integrations are performed with a series of different model configurations. Each run is performed twice, once with pre-industrial (PI, year 1750) aerosol emission conditions and once with present-day (PD, year 2000) conditions, based on the AEROCOM emission inventories. The differences between PI and PD simulations are used to estimate the impact of anthropogenic aerosols on clouds and the aerosol indirect effect (AIE). One of the key results is that when both cloud activation and autoconversion are computed in the subcolumn space, the aerosol-induced PI-to-PD change in the global-mean liquid water path is up to 19 % smaller than in the reference with grid-scale computations. Together with similar changes in the cloud droplet number concentration, this influences the cloud radiative effects and thus the AIE, which is estimated as the difference in the net cloud radiative effect between PI and PD conditions. Accordingly, the AIE is reduced by 14 %, from 1.59 W m-2 in the reference model version to 1.37 W m-2 in the experimental model configuration. The results of this work explicitly show that careful consideration of the subgrid variability in cloud microphysical properties and consistent

  1. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; Denjean, C.; Brogniez, G.; di Sarra, A.; Alados-Arboledas, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, T.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Waquet, F.; Wenger, J.; Zapf, P.

    2016-01-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high

  2. Biological Invasions Impact Ecosystem Properties and can Affect Climate Predictions

    NASA Astrophysics Data System (ADS)

    Gonzalez-Meler, M.; Matamala, R.; Cook, D. R.; Graham, S.; Fan, Z.; Gomez-Casanovas, N.

    2012-12-01

    Climate change models vary widely in their predictions of the effects of climate forcing, in part because of difficulties in assigning sources of uncertainties and in simulating changes in the carbon source/sink status and climate-carbon cycle feedbacks of terrestrial ecosystems. We studied the impacts of vegetation and weather variations on carbon and energy fluxes at a restored tallgrass prairie in Illinois. The prairie was a strong carbon sink, despite a prolonged drought period and vegetation changes due to the presence of a non-native biennial plant. A model considering the combined effects of air temperature, precipitation, RH, incoming solar radiation, and vegetation was also developed and used to describe net ecosystem exchange for all years. The vegetation factor was represented in the model with summer albedo and/or NDVI. Results showed that the vegetation factor was more important than abiotic factors in describing changes in C and energy fluxes in ecosystems under disturbances. Changes from natives to a non-native forbs species had the strongest effect in reducing net ecosystem production and increasing sensible heat flux and albedo, which may result in positive feedbacks on warming. Here we show that non-native species invasions can alter the ecosystem sensitivity to climatic factors often construed in models.

  3. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  4. Direct and Semi-direct Effects of Aerosol on the Climate System

    NASA Astrophysics Data System (ADS)

    Mahajan, S.; Evans, K. J.; Hack, J. J.; Truesdale, J.

    2011-12-01

    High-resolution (1x1 degree) global tropospheric aerosol datasets are generated using the atmospheric component of CESM1.0 coupled to an active bulk aerosol model for the 1850's and the period 1960-2000. The interactive aerosol module incorporates surface and elevated emissions of anthropogenic and natural aerosol precursors and oxidants. Experiments performed with the new aerosol datasets in atmosphere only GCM runs reveal that current level of aerosols can cause significant surface cooling and shift precipitation when compared to pre-industrial levels of aerosols. Experiments performed with the atmosphere component coupled to a slab ocean model reveal that aerosols can enhance the land-sea contrast, and cross-equatorial SST gradient leading to enhanced reduction in monsoon and shift in the ITCZ over the tropical Atlantic as compared to the atmosphere only runs. AMIP style experiments with the new aerosol dataset further reveal that aerosols could have had a significant impact on the trends in regional surface temperature and precipitation in the later part of the 20th century.

  5. Application of online-coupled WRF/Chem-MADRID in East Asia: Model evaluation and climatic effects of anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Liu, Xu-Yan; Zhang, Yang; Zhang, Qiang; He, Ke-Bin

    2016-01-01

    The online-coupled Weather Research and Forecasting model with Chemistry with the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (referred to as WRF/Chem-MADRID) is applied to simulate meteorological fields, air quality, and the direct and indirect effects of anthropogenic aerosols over East Asia in four months (January, April, July, and October) in 2008. Model evaluation against available surface and satellite measurements shows that despite some model biases, WRF/Chem-MADRID is able to reproduce reasonably well the spatial and seasonal variations of most meteorological fields and chemical concentrations. Large model biases for chemical concentrations are attributed to uncertainties in emissions and their spatial and vertical allocations, simulated meteorological fields, imperfectness of model representations of aerosol formation processes, uncertainties in the observations based on air pollution index, and the use of a coarse grid resolution. The results show that anthropogenic aerosols can reduce net shortwave flux at the surface by up to 40.5-57.2 W m-2, Temperature at 2-m by up to 0.5-0.8 °C, NO2 photolytic rates by up to 0.06-0.1 min-1 and the planetary boundary layer height by up to 83.6-130.4 m. Anthropogenic aerosols contribute to the number concentrations of aerosols by up to 6.2-8.6 × 104 cm-3 and the surface cloud concentration nuclei at a supersaturation of 0.5% by up to 1.0-1.6 × 104 cm-3. They increase the column cloud droplet number concentrations by up to 3.6-11.7 × 108 cm-2 and cloud optical thickness by up to 19.8-33.2. However, anthropogenic aerosols decrease daily precipitation in most areas by up to 3.9-18.6 mm during the 4 months. These results indicate the importance of anthropogenic aerosols in modulating regional climate changes in East Asia through aerosol direct and indirect effects, as well as the need to further improve the performance of online-coupled models.

  6. The effect of interactive gas-phase chemistry and aerosols on climate simulations over the last millennium

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; LeGrande, A. N.; Healy, R. J.; Schmidt, G. A.

    2013-12-01

    Significant computational resources are required for long transient simulations using coupled atmosphere-ocean general circulation models. Individual simulations from the NINT version of GISS ModelE-R (part of the CMIP5 archive) of the last millennium, from year 850 to 2005, enabled with only 3 water isotopologue tracers, required ~9 months of computational time on the state-of-the-art parallel computing cluster of NCCS. The additional requirements of the full chemistry module would increase this by a factor of ~3. And yet, it is well known that chemistry and aerosols are very important on climate, both regional and global. Therefore, we have designed a set of experiments where the ocean and sea ice boundary conditions of the coupled model, paired with the land surface, greenhouse gases, insolation, and total solar irradiance (TSI) forcing from the PMIP3 protocol are applied to a series of full-chemistry GISS ModelE snap-shots each 50-years through the last millennium. We will present results from atmosphere-only model simulations with the GISS ModelE, which includes interactive gas-phase chemistry and aerosols at decadal-scale time slices, driven by millennial-length simulations performed with the same model when coupled with an ocean model. The boundary conditions for the transient simulations follow the last millennium coordinated PMIP3 experiment protocol. This experiment directly links in with other pre-industrial experiments being completed as part of IPCC AR5, using the same model and resolution as in GISS IPCC AR5. The impact of the presence of short-lived gases and aerosols on the simulated climate is studied. The role of previously omitted forcing mechanisms will be performed during the whole simulated period. The results presented are the initial runs from a larger set of experiments that will assess the climate impact of changes to dust, sea-salt, and ocean-derived sulfate, biomass burning ozone-precursors and aerosols, organic carbon, wetland methane

  7. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    NASA Astrophysics Data System (ADS)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 μg m-3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere's near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth's surface with a global average reduction in shortwave radiation of 1.2 W m-2. This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR's CCSM simulation, which does not include the advanced chemistry and aerosol treatment of GU-WRF/Chem and cannot simulate the impacts of changing climate and emissions with the same level of detailed

  8. Sensitivity of dust emissions to aerosol feedback and the impact of dust loading on climate forcing with varied resolutions using FIM-Chem

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Grell, Georg; Henze, Daven; Mckeen, Stuart; Sun, Shan; Li, Haiqin

    2016-04-01

    Meteorological conditions directly impact aerosol loading, especially dust emissions. Variations in dust emissions on the other hand, will also impact meteorology and climate through direct and indirect aerosol forcing. To study these impacts in more detail we use the global Flow-following finite-volume Icosahedra Model (FIM, http://fim.noaa.gov/), a new global weather prediction model currently under development in the Global Systems Division of NOAA/ESRL, as it is coupled online with the aerosol modules from the Goddard Gobal Ozone Chemistry Aerosol Radiation and Transport (GOCART) model (FIM-Chem). FIM-Chem includes direct and semi direct feedback, and uses the dust schemes of GOCART and the Air Force Weather Agency (AFWA). FIM-Chem is able to investigate the contribution of climate feedbacks to simulated hyperspectral data by considering a range of simulations with different dust emissions and different levels of aerosol feedbacks enabled at four different spatial resolutions. The emitted dust flux and total emissions are highly depending on the wind, soil moisture and model resolution. We compare the dust emissions by including and excluding the aerosol radiative feedback in the simulations to quantify the sensitivity of dust emissions to aerosol feedback. The results show that all aerosol-induced dust emissions increase about 10% globally, which is mainly dominated by the contributions of anthropogenic black carbon (EC) aerosol. While the dust-induced percentage changes of dust emissions are about -5.5%, that indicates reduction effect globally. Also, the simulations based on different resolutions of 240x240 km, 120x120 km, 60x60 km and 30x30 km are performed to test the impacts of model resolution on total dust emissions. By comparing the dust emission sensitivity to aerosol feedback and model resolution, we can estimate the uncertainty of model resolution versus aerosol feedback. We also conduct FIM-Chem simulations to investigate the sensitivity of dust

  9. Air pollution and climate response to aerosol direct radiative effects: A modeling study of decadal trends across the northern hemisphere

    NASA Astrophysics Data System (ADS)

    Xing, Jia; Mathur, Rohit; Pleim, Jonathan; Hogrefe, Christian; Gan, Chuen-Meei; Wong, David C.; Wei, Chao; Wang, Jiandong

    2015-12-01

    Decadal hemispheric Weather Research and Forecast-Community Multiscale Air Quality simulations from 1990 to 2010 were conducted to examine the meteorology and air quality responses to the aerosol direct radiative effects. The model's performance for the simulation of hourly surface temperature, relative humidity, wind speed, and direction was evaluated through comparison with observations from NOAA's National Climatic Data Center Integrated Surface Data. The inclusion of aerosol direct radiative effects improves the model's ability to reproduce the trend in daytime temperature range which over the past two decades was increasing in eastern China but decreasing in eastern U.S. and Europe. Trends and spatial and diurnal variations of the surface-level gaseous and particle concentrations to the aerosol direct effect were analyzed. The inclusion of aerosol direct radiative effects was found to increase the surface-level concentrations of SO2, NO2, O3, SO42-, NO3-, and particulate matter 2.5 in eastern China, eastern U.S., and Europe by 1.5-2.1%, 1-1.5%, 0.1-0.3%, 1.6-2.3%, 3.5-10.0%, and 2.2-3.2%, respectively, on average over the entire 21 year period. However, greater impacts are noted during polluted days with increases of 7.6-10.6%, 6.2-6.7%, 2.0-3.0%, 7.8-9.5%, 11.1-18.6%, and 7.2-10.1%, respectively. Due to the aerosol direct radiative effects, stabilizing of the atmosphere associated with reduced planetary boundary layer height and ventilation leads to an enhancement of pollution. Consequently, the continual increase of aerosol optical depth (AOD) in eastern China leads to an increasing trend in the air quality feedback which exacerbates air pollution, while emission reductions in eastern U.S. and Europe result in a declining trend in both AODs and feedback which make the air pollution control strategies more effective.

  10. Will climate change affect biodiversity in pacific northwest forests

    SciTech Connect

    Henderson, S.; Rosenbaum, B.J.

    1992-01-01

    Global climate change could have significant consequences for biological diversity in Pacific Northwest (PNW) forested ecosystems, particularly in areas already threatened by anthropogenic activities and the resultant habitat modification and fragmentation. The forests of the Pacific Northwest have a high biological diversity, not only in terms of tree species, but also in terms of herbs, bryophytes and hepatophytes, algae, fungi, protist, bacteria, and many groups of vertebrates and invertebrates. Global circulation and vegetation model projections of global climate change effects on PNW forests include reductions in species diversity in low elevation forests as well as elevational and latitudinal shifts in species ranges. As species are most likely to be stressed at the edges of their ranges, plant and animal species with low mobility, or those that are prevented from migrating by lack of habitat corridors, may become regionally extinct. Endangered species with limited distribution may be especially vulnerable to shifts in habitat conditions.

  11. NATURAL AND ATHROPOGENIC FACTORS AFFECTING GLOBAL AND REGIONAL CLIMATE

    EPA Science Inventory

    New England weather is highly variable for a number of
    reasons. Our regional climate is also quite variable. The
    winters of the past decade are milder than they were in the
    1960s and 1970s but as the ice-out and snowfall data show
    (Figs 2.5 and 2.6), the patterns of c...

  12. Absorption and scattering properties of organic carbon vs. sulfate dominant aerosols at Gosan climate observatory in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Lim, S.; Lee, M.; Kim, S.-W.; Yoon, S.-C.; Lee, G.; Lee, Y.

    2013-12-01

    Carbonaceous and soluble ionic species of PM1.0 and PM10 were measured along with the absorption and scattering properties and aerosol number size distributions at Gosan climate observatory (GCO) from January to September 2008. The daily averaged equivalent black carbon (EBC) measured as aerosol absorption exhibited two types of spectral dependence with a distinct maximum (peak) at either 370 nm or 880 nm, by which two subsets were extracted and classified into the respective groups (370 nm and 880 nm). The 370 nm group was distinguished by high organic carbon (OC) concentrations relative to elemental carbon (EC) and sulfate, but sulfate was predominant for the 880 nm group. The PM1.0 OC of the 370 nm group was mainly composed of refractory and pyrolized components that correlated well with PM1.0 EC1, referred to as char EC, which suggests biofuel and biomass combustion as the source of these OC fractions, particularly during winter. The scanning electron microscope (SEM) images and the number size distributions implied that aerosols of the 370 nm group were externally mixed upon transport in fast-moving air masses that passed through the Beijing area in about one day. In contrast, the aerosols of the 880 nm group were characterized by high sulfate concentrations, and seemed to be internally mixed during slow transport over the Yellow Sea region over approximately two to four days. The absorption and scattering coefficients of the 880 nm group were noticeably higher compared to those of the 370 nm group. The average absorption ångström exponent (AAE) was estimated to be 1.29 and 1.0 for the 370 nm and 880 nm groups, respectively, in the range 370-950 nm. These results demonstrated that the optical properties of aerosols were intimately linked to chemical composition and mixing state, characteristics determined both by source and atmospheric aging processes. In OC dominant aerosols, absorption was enhanced in the UV region, which was possibly due to refractory and

  13. Absorption and scattering properties of organic carbon versus sulfate dominant aerosols at Gosan climate observatory in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Lim, S.; Lee, M.; Kim, S.-W.; Yoon, S.-C.; Lee, G.; Lee, Y. J.

    2014-08-01

    Carbonaceous and soluble ionic species of PM1.0 and PM10 were measured along with the absorption and scattering properties and aerosol number size distributions at Gosan Climate Observatory (GCO) from January to September 2008. The daily averaged equivalent black carbon (EBC) measured as aerosol absorption exhibited two types of spectral dependence with a distinct maximum (peak) at either 370 nm or 880 nm, by which two subsets were extracted and classified into the respective groups (370 and 880 nm). The 370 nm group was distinguished by high organic carbon (OC) concentrations relative to elemental carbon (EC) and sulfate, but sulfate was predominant for the 880 nm group. The PM1.0 OC of the 370 nm group was mainly composed of refractory and pyrolized components that correlated well with PM1.0 EC1, referred to as char EC, which suggests biofuel and biomass combustion as the source of these OC fractions, particularly during winter. The scanning electron microscope (SEM) images and the number size distributions implied that aerosols of the 370 nm group were externally mixed upon transport in fast-moving air masses that passed through the Beijing area in about one day. In contrast, the aerosols of the 880 nm group were characterized by high sulfate concentrations, and seemed to be internally mixed during slow transport over the Yellow Sea region over approximately 2 to 4 days. The absorption and scattering coefficients of the 880 nm group were noticeably higher compared to those of the 370 nm group. The average absorption ångström exponent (AAE) was estimated to be 1.29 and 1.0 for the 370 and 880 nm groups, respectively, in the range 370-950 nm. These results demonstrated that the optical properties of aerosols were intimately linked to chemical composition and mixing state, characteristics determined both by source and atmospheric aging processes. In OC dominant aerosols, absorption was enhanced in the UV region, which was possibly due to refractory and pyrolized

  14. Medieval Loess Constraints On the Climate Effect of Dust Aerosols In the Great Plains of North America

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Cook, B. I.; Seager, R.; Mason, J. A.

    2011-12-01

    Loess deposits in the Great Plains of North America, together with tree ring records, suggest the occurrence of medieval megadroughts within the past millenium when rainfall was below average over several decades. Loess results from the deposition of dust aerosols, created by wind erosion, perhaps following vegetation loss after extended drought. Dust aerosols have been previously shown to exacerbate the absence of rainfall during the twentieth century Dust Bowl, reinforcing the drought and loss of vegetation. Ocean temperatures in the equatorial Pacific make the predominant contribution to hydroclimate variability in this region, but dust may have had an amplifying effect during the medieval drought once the vegetation loss was sufficiently extensive. Here, we describe GCM experiments with dust aerosols created by wind erosion over medieval sources within North America. Our goal is twofold: first, to calculate the climate effect of dust, which is believed to reduce precipitation during the Dust Bowl. Second, we calculate dust deposition for comparison to the observed thickness of loess deposits. This comparison serves as a constraint upon the total dust mobilization and the aerosol effect upon precipitation, both of which depend upon the incompletely known source extent and its productivity.

  15. Estimates of the climatic impact of aerosols produced by Space Shuttles, SST's, and other high flying aircraft

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Toon, O. B.; Summers, A.; Van Camp, W.; Baldwin, B.

    1976-01-01

    Solar and terrestrial radiative transfer calculations are performed to evaluate the effect of additional aerosols (sulfuric acid, aluminum oxide) produced by aircraft and Space Shuttles flying through the stratosphere on the global heat balance. The results are presented by plotting the dependence of various quantities of interest as a function of the change in the optical depth of the stratosphere at a reference wavelength of 0.55 micron. Perturbation optical depths that will result from the amount of emission expected from supersonic transports (SSTs) and Space Shuttles over the next several decades are determined. The magnitude and importance of the surface temperature change resulting from the added aerosols are assessed. The effect of added aerosols on ozone destruction is evaluated. It is shown that the aerosols produced by SSTs, other high flying aircraft, and Space Shuttles over the next several decades would not seriously alter the climate. However, the effect of SSTs is sufficiently close to the threshold limit, which requires reevaluation as new data are available.

  16. How will Climate Change Affect Agriculture over the Next 10-30 Years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is dependent upon the climate resources of temperature, sunlight, precipitation, and carbon dioxide. Efficient production depends upon optimum conditions of temperature and water supply and changes in these climatic variables will affect plant and animal systems over the next 10- 30 year...

  17. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; di Sarra, A.; Alados, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Brogniez, G.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Denjean, C.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, J.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Wenger, J.; Zapf, P.

    2015-07-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental set-up also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modelling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to produce high level of atmospheric pollutants nor

  18. Climate change is affecting altitudinal migrants and hibernating species.

    PubMed

    Inouye, D W; Barr, B; Armitage, K B; Inouye, B D

    2000-02-15

    Calendar date of the beginning of the growing season at high altitude in the Colorado Rocky Mountains is variable but has not changed significantly over the past 25 years. This result differs from growing evidence from low altitudes that climate change is resulting in a longer growing season, earlier migrations, and earlier reproduction in a variety of taxa. At our study site, the beginning of the growing season is controlled by melting of the previous winter's snowpack. Despite a trend for warmer spring temperatures the average date of snowmelt has not changed, perhaps because of the trend for increased winter precipitation. This disjunction between phenology at low and high altitudes may create problems for species, such as many birds, that migrate over altitudinal gradients. We present data indicating that this already may be true for American robins, which are arriving 14 days earlier than they did in 1981; the interval between arrival date and the first date of bare ground has grown by 18 days. We also report evidence for an effect of climate change on hibernation behavior; yellow-bellied marmots are emerging 38 days earlier than 23 years ago, apparently in response to warmer spring air temperatures. Migrants and hibernators may experience problems as a consequence of these changes in phenology, which may be exacerbated if climate models are correct in their predictions of increased winter snowfall in our study area. The trends we report for earlier formation of permanent snowpack and for a longer period of snow cover also have implications for hibernating species. PMID:10677510

  19. Impacts of Aerosol Direct Effects on the South Asian Climate: Assessment of Radiative Feedback Processes Using Model Simulations and Satellite/Surface Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Gautam, Ritesh; Lau, William K. M.; Tsay, Si-Chee; Sun, Wen-Yih; Kim, Kyu-Myong; Chern, Jiun-Dar; Hsu, Christina; Lin, Neng-Huei

    2011-01-01

    Current assessment of aerosol radiative effect is hindered by our incomplete knowledge of aerosol optical properties, especially absorption, and our current inability to quantify physical and microphysical processes. In this research, we investigate direct aerosol radiative effect over heavy aerosol loading areas (e.g., Indo-Gangetic Plains, South/East Asia) and its feedbacks on the South Asian climate during the pre-monsoon season (March-June) using the Purdue Regional Climate Model (PRCM) with prescribed aerosol data derived by the NASA Goddard Earth Observing System Model (GEOS-5). Our modeling domain covers South and East Asia (60-140E and 0-50N) with spatial resolutions of 45 km in horizontal and 28 layers in vertical. The model is integrated from 15 February to 30 June 2008 continuously without nudging (i.e., only forced by initial/boundary conditions). Two numerical experiments are conducted with and without the aerosol-radiation effects. Both simulations are successful in reproducing the synoptic patterns on seasonal-to-interannual time scales and capturing a pre-monsoon feature of the northward rainfall propagation over Indian region in early June which shown in Tropical Rainfall Measuring Mission (TRMM) observation. Preliminary result suggests aerosol-radiation interactions mainly alter surface-atmosphere energetics and further result in an adjustment of the vertical temperature distribution in lower atmosphere (below 700 hPa). The modifications of temperature and associated rainfall and circulation feedbacks on the regional climate will be discussed in the presentation.

  20. Adhesion of Mineral and Soot Aerosols can Strongly Affect their Scattering and Absorption Properties

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Jana M.

    2012-01-01

    We use the numerically exact superposition T-matrix method to compute the optical cross sections and the Stokes scattering matrix for polydisperse mineral aerosols (modeled as homogeneous spheres) covered with a large number of much smaller soot particles. These results are compared with the Lorenz-Mie results for a uniform external mixture of mineral and soot aerosols. We show that the effect of soot particles adhering to large mineral particles can be to change the extinction and scattering cross sections and the asymmetry parameter quite substantially. The effect on the phase function and degree of linear polarization can be equally significant.

  1. Aging affects the ice-nucleating properties of volcanic ash aerosol

    NASA Astrophysics Data System (ADS)

    Bingemer, H.; Klein, H.; Ebert, M.; Haunold, W.; Bundke, U.; Herrmann, T.; Kandler, K.; Müller-Ebert, D.; Weinbruch, S.; Judt, A.; Wéber, A.; Nillius, B.; Ardon-Dryer, K.; Levin, Z.; Curtius, J.

    2012-04-01

    The effectiveness of volcanic ash as ice nuclei (IN) has been debated in the past. While some reported enhanced IN concentrations in volcanic plumes, others found no evidence for that. Here we show that "aged" volcanic particles sampled from the atmosphere in central Germany when the ash cloud of the 2010 Eyjafjallajökull eruption was present are very effective IN, as compared to particles of aerosolized "fresh" volcanic sediment that had been collected close to the eruption site in Iceland. The number concentration of atmospheric IN was measured with the same method both at the Taunus Observatory in central Germany and at Tel Aviv University, Israel, as well as in laboratory-generated aerosol of volcanic ash. Aerosol was sampled by electrostatic precipitation of particles onto silicon substrates and was subsequently analyzed at - 8° to -18°C (deposition and condensation nucleation modes) in the isothermal static vapor diffusion chamber FRIDGE. The composition of individual atmospheric IN was analyzed by environmental scanning electron microscopy (ESEM) with EDX. Our daily measurements show a significant enhancement of atmospheric IN when the dispersed ash cloud reached central Europe in April 2010 and the eastern Mediterranean in May 2010. Pure volcanic ash accounts for at least 53-68% of the 239 individual ice nucleating particles that were analyzed by ESEM-EDX in aerosol samples collected at Taunus Observatory during the volcanic peak of April 2010. Volcanic ash samples that had been collected close to the eruption site were aerosolized in the laboratory and measured by FRIDGE. Our analysis confirms the relatively poor ice nucleating efficiency (at -18°C and 119% ice-saturation) of such "fresh" volcanic ash, as it had recently been found by other workers. We find that both the fraction of the aerosol that is active as ice nuclei as well as the density of ice-active sites on the aerosol surface are three orders of magnitude larger in the samples collected

  2. How does the difference between low- and high-latitude climate sensitivity affect climate feedback diagnosis?

    NASA Astrophysics Data System (ADS)

    Park, J.; Choi, Y. S.; Cho, H.

    2014-12-01

    The magnitude of climate feedback has been estimated by using radiative fluxes and sea surface temperature time series from satellite observations. The time-varying radiative forcings, however, hinder one from estimating firmly reliable climate feedbacks. Recent studies have tried to interpret these internal uncertainties using simple forcing-feedback models. As an extension of previous studies, this study aimed to examine the effect of different low- and high-latitude climate sensitivity on climate feedback diagnosis. In this study, we assess whether both the regional and global climate feedbacks are well estimated according to the heat transport strengthening by prescribing latitudinally different climate feedback (2.26 W m-2 K-1 in the low-latitude, 1.11 W m-2 K-1 in the high-latitude as a default). In the presence of the meridional heat transport, model simulated low-latitudinal climate feedback is underestimated by 0.5 W m-2 K-1 while high-latitudinal one is overestimated by similar scale from transient climate simulations. Globally, therefore, no significant variations are caused by the heat transport. Moreover, uncertainties of regional and global estimates slightly decrease with the increasing heat transport. The results of this study possibly provide support for the researches interpreting meridional satellite observational signals.

  3. Reply to Quaas et al.: Can satellites be used to estimate indirect climate forcing by aerosols?

    SciTech Connect

    Penner, J. E.; Zhou, Cheng; Xu, Li; Wang, Minghuai

    2011-11-15

    We welcome the comments by Quaas et al. (1). In our paper (2), we used a model to show that the methods used to estimate indirect aerosol forcing using satellite data, especially those based on relating the slope of present-day (PD) drop number (Nc) to aerosol optical depth (AOD), underestimate the forcing calculated when both PD and preindustrial (PI) data are available.

  4. Impact of Emissions and Long-Range Transport on Multi-Decadal Aerosol Trends: Implications for Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2012-01-01

    We present a global model analysis of the impact of long-range transport and anthropogenic emissions on the aerosol trends in the major pollution regions in the northern hemisphere and in the Arctic in the past three decades. We will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to analyze the multi-spatial and temporal scale data, including observations from Terra, Aqua, and CALIPSO satellites and from the long-term surface monitoring stations. We will analyze the source attribution (SA) and source-receptor (SR) relationships in North America, Europe, East Asia, South Asia, and the Arctic at the surface and free troposphere and establish the quantitative linkages between emissions from different source regions. We will discuss the implications for regional air quality and climate change.

  5. Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock

    PubMed Central

    Geels, Camilla; Andersson, Camilla; Hänninen, Otto; Lansø, Anne Sofie; Schwarze, Per E.; Ambelas Skjøth, Carsten; Brandt, Jørgen

    2015-01-01

    Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000–2009, 2050–2059 and 2080–2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future. PMID:25749320

  6. Future premature mortality due to O3, secondary inorganic aerosols and primary PM in Europe--sensitivity to changes in climate, anthropogenic emissions, population and building stock.

    PubMed

    Geels, Camilla; Andersson, Camilla; Hänninen, Otto; Lansø, Anne Sofie; Schwarze, Per E; Skjøth, Carsten Ambelas; Brandt, Jørgen

    2015-03-01

    Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000-2009, 2050-2059 and 2080-2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future. PMID:25749320

  7. A Quarter Century Record of Stratospheric Sulfate Aerosol: implication for the past, present and future climates

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Abaunza, M.; Jackson, T. L.; McCabe, J.; Savarino, J.; Thiemens, M. H.

    2014-12-01

    Stratospheric sulfate aerosol (SSA) plays an important role in the earth climate system by reflecting solar radiation making it an attractive candidate in geoengineering to counter greenhouse warming. However, these planetary scales perturbations demand a priori understanding of SSA over a longer time period to resolve anthropogenic and natural perturbations to the delicate and thin layers- SSA and ozone layers. Here we present a quarter century high resolution seasonal record of SSA and its linkage to the ozone layer. Sulfate was extracted from a (1x1m) and 25m deep snow pit at the South Pole. The combination of cations, anions, O-triple isotopes and S-quadruple isotope measurements allowed us to deconvolve the oxidation history of SSA and tease out natural and anthropogenic components. The period (1980 to 2002) encompasses the largest volcanic eruptions of the century, El-Chichon, Pinatubo, Cerro Hudson and the three largest El-Nino Southern Oscillation events. The highest O-isotope anomaly (∆17O = 3.7‰) in SSA was observed during the super ENSO event (1997-98) and recorded changes in ozone levels of the upper troposphere-lower stratosphere (1). ENSO is another flavor of natural climate variability and is important as it links hydrosphere and the atmosphere in unique ways controlling rainfall and temperature. The highest S-isotope anomaly was observed in 1998-99 and records changes in atmospheric dynamics and transport of sulfur compounds to the stratosphere following intense wild fires as a consequence of the Super ENSO event. The highest S-isotopic anomaly (∆33S = +2.26‰ and ∆36S= +0.51 ‰) is ~ 3 times higher compared to the Pinatubo signal, the largest volcanic eruption of the 20th century. The pattern of S-isotope anomalies in this period fits within the pre-Cambrian record of S-isotopes in three billion year old rock. The generation of such a large S-isotope anomaly in the present day oxygen rich atmosphere may have implications for the

  8. Assessment of aerosol radiative forcing in the North-Eastern region of India using radiative transfer model and regional climate model

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Bhuyan, Pradip

    Regional characterization of atmospheric aerosols is essential from the viewpoint of reducing the current uncertainties in the understanding of their climate implications at regional and global scale. The north-eastern part of India owing to its unique topography and geography located at sub Himalayan range and the middle of Indian Subcontinent and South-East Asian region as well as with scattered local hilly regions persevere complex aerosol environment. Collocated measurements of parameters corresponding to aerosol optical and physical properties i.e., spectral aerosol optical depths (AODs) by a 10 channel Multi-Wavelength solar Radiometer (MWR), near surface aerosol mass concentration of composite aerosols by a Quartz Crystal Microbalance Impactor (QCM) and Black Carbon (BC) mass concentration by an Aethalometer have been used in the Optical Properties of Aerosols and Clouds (OPAC) model to estimate the optical properties of composite aerosols over Dibrugarh (27.3ºN, 94.6ºE, 111 m amsl) for the short wavelength range. The OPAC outputs are then used as inputs to the Rdiative Transfer model ‘Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART)’, developed by the University of California, Santa Barbara, to derive the shortwave aerosol radiative properties. The aerosol optical depth shows maximum value in pre-monsoon season and minimum in post-monsoon season. Columnar aerosols are bimodal in nature with dominant contribution from fine mode aerosols. Unlike columnar aerosols surface aerosol concentration including black carbon shows maximum value in winter and minimum in monsoon season. The aerosol radiative forcing (ARF) estimated for the period pre-monsoon 2008-winter 2013 shows maximum value in the pre-monsoon season at the surface as well as in the atmosphere corresponding to highest columnar aerosol loading. The surface forcing varies between -37 Wm-2 in Pre-monsoon 2009 and 2011 to -13 Wm-2 in Post-monsoon 2008 while forcing in the Atmosphere

  9. Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol - article no. L14701

    SciTech Connect

    Jones, G.S.; Jones, A.; Roberts, D.L.; Stott, P.A.; Williams, K.D.

    2005-07-16

    It is likely that greenhouse gas emissions caused most of the global mean warming observed during the 20th century, and that sulphate aerosols counteracted this warming to some extent, by reflecting solar radiation to space and thereby cooling the planet. However, the importance of another aerosol, namely black carbon, could be underestimated. Here we include fossil fuel black carbon aerosol in a detection and attribution analysis with greenhouse gas and sulphate aerosols. We find that most of the warming of the 20th Century is attributable to changes in greenhouse gases offset by net aerosol cooling. However the pattern of temperature change due to black carbon is currently indistinguishable from the sulphate aerosol pattern of temperature change. The attribution of temperature change due to greenhouse gases is not sensitive to the inclusion of black carbon. We can be confident about the overall attribution of total aerosols, but less so about the contributions of black carbon emissions to 20th century climate change. This work presents no evidence that black carbon aerosol forcing outweighed the cooling due to sulphate aerosol.

  10. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    NASA Astrophysics Data System (ADS)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  11. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    PubMed Central

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-01-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes. PMID:26506134

  12. Large-scale climatic anomalies affect marine predator foraging behaviour and demography.

    PubMed

    Bost, Charles A; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-01-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes. PMID:26506134

  13. Quantifying some of the impacts of dust and other aerosol on the Caspian Sea region using a regional climate model

    NASA Astrophysics Data System (ADS)

    Elguindi, N.; Solmon, F.; Turuncoglu, U.

    2016-01-01

    The Central Asian deserts are a major dust source region that can potentially have a substantial impact on the Caspian Sea. Despite major advances in the modeling and prediction of the Caspian Sea Level (CSL) during recent years, no study to date has investigated the climatic effects of dust on the hydrological budget of the Sea. In this study, we utilize a regional climate model coupled to an interactive emission and transport scheme to simulate the effects of dust and other aerosol in the Caspian region. First, we present a validation of the model using a variety of AOD satellite observations as well as a climatology of dust storms. Compared to the range of satellite estimates, the model's AOD climatology is closer to the lower end of the observations, and exhibit a significant underestimation over the clay deserts found on the Ustyurt plateau and north of the Aral Sea. Nevertheless, we find encouraging results in that the model is able to reproduce the gradient of increasing AOD intensity from the middle to the southern part of the Sea. Spatially, the model reproduces reasonably well the observed climatological dust storm frequency maps which show that the most intense dust source regions to be found in the Karakum desert in Turkmenistan and Kyzylkum desert in Uzbekistan east of the Aral Sea. In the second part of this study we explore some impacts of dust and other aerosol on the climatology of the region and on the energy budget of the Sea. We find that the overall direct radiative effects of dust and other aerosol reduce the amount of shortwave radiation reaching the surface, dampen boundary layer turbulence and inhibit convection over the region. We also show that by including dust and aerosol in our simulation, we are able to reduce the positive biases in sea surface temperatures by 1-2 °C. Evaporation is also considerably reduced, resulting in an average difference of approximately 10 mm year^{-1} in the Sea's hydrological budget which is substantial

  14. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Kloster, S.; Roeckner, E.; Zhang, J.

    2007-07-01

    The double-moment cloud microphysics scheme from ECHAM4 that predicts both the mass mixing ratios and number concentrations of cloud droplets and ice crystals has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass, number concentrations and mixing state. The simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and -35° C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient. The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to -1.9 W m-2 in ECHAM5, when a relative humidity dependent cloud cover scheme and aerosol emissions representative for the years 1750 and 2000 from the AeroCom emission inventory are used. The contribution of the cloud albedo effect amounts to -0.7 W m-2. The total anthropogenic aerosol effect is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed because the cloud lifetime effect increases.

  15. Model-Based Estimation of Sampling-Caused Uncertainty in Aerosol Remote Sensing for Climate Research Applications

    NASA Technical Reports Server (NTRS)

    Geogdzhayev, Igor V.; Cairns, Brian; Mishchenko, Michael I.; Tsigaridis, Kostas; van Noije, Twan

    2014-01-01

    To evaluate the effect of sampling frequency on the global monthly mean aerosol optical thickness (AOT), we use 6 years of geographical coordinates of Moderate Resolution Imaging Spectroradiometer (MODIS) L2 aerosol data, daily global aerosol fields generated by the Goddard Institute for Space Studies General Circulation Model and the chemical transport models Global Ozone Chemistry Aerosol Radiation and Transport, Spectral Radiationtransport Model for Aerosol Species and Transport Model 5, at a spatial resolution between 1.125 deg × 1.125 deg and 2 deg × 3?: the analysis is restricted to 60 deg S-60 deg N geographical latitude. We found that, in general, the MODIS coverage causes an underestimate of the global mean AOT over the ocean. The long-term mean absolute monthly difference between all and dark target (DT) pixels was 0.01-0.02 over the ocean and 0.03-0.09 over the land, depending on the model dataset. Negative DT biases peak during boreal summers, reaching 0.07-0.12 (30-45% of the global long-term mean AOT). Addition of the Deep Blue pixels tempers the seasonal dependence of the DT biases and reduces the mean AOT difference over land by 0.01-0.02. These results provide a quantitative measure of the effect the pixel exclusion due to cloud contamination, ocean sun-glint and land type has on the MODIS estimates of the global monthly mean AOT. We also simulate global monthly mean AOT estimates from measurements provided by pixel-wide along-track instruments such as the Aerosol Polarimetry Sensor and the Cloud-Aerosol LiDAR with Orthogonal Polarization. We estimate the probable range of the global AOT standard error for an along-track sensor to be 0.0005-0.0015 (ocean) and 0.0029-0.01 (land) or 0.5-1.2% and 1.1-4% of the corresponding global means. These estimates represent errors due to sampling only and do not include potential retrieval errors. They are smaller than or comparable to the published estimate of 0.01 as being a climatologically significant

  16. Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts

    NASA Astrophysics Data System (ADS)

    Collins, William D.; Rasch, Phillip J.; Eaton, Brian E.; Fillmore, David W.; Kiehl, Jeffrey T.; Beck, C. Trevor; Zender, Charles S.

    2002-10-01

    The direct radiative forcing by aerosols over the Indian Ocean region is simulated for the Indian Ocean Experiment (INDOEX) Intensive Field Phase during Spring 1999. The forcing is calculated for the top-of-atmosphere (TOA), surface, and atmosphere by differencing shortwave fluxes computed with and without aerosols. The calculation includes the effects of sea-salt, sulfate, carbonaceous, and soil-dust aerosols. The aerosol distributions are obtained from a global aerosol simulation including assimilation of satellite retrievals of aerosol optical thickness (AOT). The time-dependent, three-dimensional aerosol distributions are derived with a chemical transport model driven with meteorological analyses for this period. The surface albedos are obtained from a land-surface model forced with an identical meteorological analysis and satellite-derived rainfall and insolation. These calculations are consistent with in situ observations of the surface insolation over the central Indian Ocean and with satellite measurements of the reflected shortwave radiation. The calculations show that the surface insolation under clear skies is reduced by as much as 40 W/m2 over the Indian subcontinent by natural and anthropogenic aerosols. This reduction in insolation is accompanied by an increase in shortwave flux absorbed in the atmosphere by 25 W/m2. The inclusion of clouds in the calculations changes the direct effect by less than 2 W/m2 over the Indian subcontinent, although the reduction is much larger over China. The magnitude of the difference between all-sky and clear-sky forcing is quite sensitive to the three-dimensional spatial relationship between the aerosol and cloud fields, and other estimates of the difference for the INDOEX Intensive Field Phase are as large as 5 W/m2.

  17. Interannual variabilities in tropospheric constituents during 2000-2013 simulated in a chemistry-aerosol coupled climate model

    NASA Astrophysics Data System (ADS)

    Sudo, K.; Ito, A.

    2014-12-01

    Global distributions and abundances of tropospheric constituents (O3, CH4, NOy, CO, VOCs, NHx, SOx and aerosols) interannually change under the influences of meteorology (transport, temperature, water vapor, clouds, rain, etc.) and emissions from anthropogenic/natural sources and biomass burning. Given the importance of climate effects of these species as short-lived climate pollutants (SLCPs), there have been increasing number of studies to project future changes in individual constituents and assess impacts of emission reduction in future. Since chemistry climate model is basically used for such purpose, model validation against the observations and precise interpretation/understanding of changing processes in a model are essentially needed. In this study, we investigate interannual variability of tropospheric constituents during the years 2000 to 2013 in a chemistry-aerosol coupled climate model. The base chemical model used in this study is CHASER (Sudo et al., 2002, 2007) coupled with the aerosol model SPRINTARS (Takemura et al., 2006). The CHASER model, also developed in the framework of the MIROC earth system model (MIROC-ESM-CHEM), simulates detailed chemistry in the troposphere and stratosphere with an on-line aerosol simulation including production of particulate nitrate and SOA. We use the NCEP reanalysis data (FNL) for constraining the model's meteorology. Anthropogenic and biomass burning emissions are specified using the HTAP2 and MAC inventories, respectively. For biogenic VOCs emissions, we employ calculation by the land ecosystem/trace gas emission model VISIT (Ito et al., 2008). Our results show that temporal variability (anomaly) in surface and lower tropospheric ozone very clearly correlates with that in CO especially in NH, indicating principal importance of biomass burning emission in determining near-surface O3 variability; surface PM (PM2.5) in NH also coincides with CO. Changes in middle to upper tropospheric O3, on the other hand

  18. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  19. Evaluation of aerosol mixing state classes in the GISS modelE-MATRIX climate model using single-particle mass spectrometry measurements

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-09-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 µm, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 µm contain large fractions of organic material, internally mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  20. A New Approach to Modeling Aerosol Effects on East Asian Climate: Parametric Uncertainties Associated with Emissions, Cloud Microphysics and their Interactions

    SciTech Connect

    Yan, Huiping; Qian, Yun; Zhao, Chun; Wang, Hailong; Wang, Minghuai; Yang, Ben; Liu, Xiaohong; Fu, Qiang

    2015-09-16

    In this study, we adopt a parametric sensitivity analysis framework that integrates the quasi-Monte Carlo parameter sampling approach and a surrogate model to examine aerosol effects on the East Asian Monsoon climate simulated in the Community Atmosphere Model (CAM5). A total number of 256 CAM5 simulations are conducted to quantify the model responses to the uncertain parameters associated with cloud microphysics parameterizations and aerosol (e.g., sulfate, black carbon (BC), and dust) emission factors and their interactions. Results show that the interaction terms among parameters are important for quantifying the sensitivity of fields of interest, especially precipitation, to the parameters. The relative importance of cloud-microphysics parameters and emission factors (strength) depends on evaluation metrics or the model fields we focused on, and the presence of uncertainty in cloud microphysics imposes an additional challenge in quantifying the impact of aerosols on cloud and climate. Due to their different optical and microphysical properties and spatial distributions, sulfate, BC, and dust aerosols have very different impacts on East Asian Monsoon through aerosol-cloud-radiation interactions. The climatic effects of aerosol do not always have a monotonic response to the change of emission factors. The spatial patterns of both sign and magnitude of aerosol-induced changes in radiative fluxes, cloud, and precipitation could be different, depending on the aerosol types, when parameters are sampled in different ranges of values. We also identify the different cloud microphysical parameters that show the most significant impact on climatic effect induced by sulfate, BC and dust, respectively, in East Asia.

  1. Aerosol cloud processing with the global model ECHAM5-HAM-SALSA

    NASA Astrophysics Data System (ADS)

    Bergman, T.; Korhonen, H.; Zubair, M.; Romakkaniemi, S.; Lehtinen, K.; Kokkola, H.

    2012-04-01

    Atmospheric aerosols and their interactions with clouds constitute the largest uncertainty in the radiative forcing of the Earth's atmosphere. Increasing aerosol number concentrations increases the cloud droplet concentration and droplet surface and hence the cloud albedo. This mechanism is called the aerosol indirect effect on climate. Understanding the changes in cloud droplet number concentrations and size by anthropogenic aerosols are the key factors in the study of future climate change. Therefore the aerosols' formation and growth from nanoparticles to cloud condensation nuclei (CCN) must be described accurately. The formation and growth of aerosols are shown to be described more accurately with sectional representations than with bulk (total aerosol mass only), modal (lognormal modes describing mass and number size distribution) or moment (processes tied to different moments of particle number size distribution) approaches. Recently the sectional aerosol models have been implemented to global climate models. However, the resolution of sectional models must be optimised to reduce the computational cost. We have implemented the sectional aerosol model SALSA in ECHAM5-HAM. SALSA describes the aerosol population with 20 size sections. The dynamics are optimised for large scale applications and the model includes an improved moving center sectional method. The particulate mass consists of five compounds: sulphate, organic carbon, black carbon, sea salt and dust. The aerosol processing has been studied extensively and there are many numerical models used to predict CCN number concentrations. However, due to computational limitations many of them are not suitable for utilisation in global climate models. Therefore in most global climate studies on aerosol activation to CCN is examined using cloud activation parameterisations. We study the aerosol cloud processing and its affect on transport of aerosols using Abdul-Razzak-Ghan aerosol cloud activation

  2. Impact of Aerosols and Atmospheric Thermodynamics on Cloud Properties within the Climate System

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Masunaga, Hirohiko; Pielke, Roger, Sr.; Tao, Wei-Kuo

    2003-01-01

    A combination of cloud-top and columnar droplet sizes derived from the multi Tropical Rainfall Measurement Mission (TRMM) sensors reveals the sensitivity of the aerosols effect on cloud-precipitation process due to environmental vertical thermodynamic structure. First, the magnitude of aerosol indirect effect could be larger with the analysis of columnar droplet sizes than that derived from the cloud-top droplet sizes, since column-droplet size can account for the broader droplet spectra in the cloud layers. Second, a combination of cloud- top and columnar droplet sizes reveals that the warm rain process is prevented regardless of the aerosols concentration under a high static stability such as when a strong temperature inversion exists, while a high aerosol concentration suppresses the warm rain formulation under a low static stability.

  3. Surgical Care Required for Populations Affected by Climate-related Natural Disasters: A Global Estimation

    PubMed Central

    Lee, Eugenia E.; Stewart, Barclay; Zha, Yuanting A.; Groen, Thomas A.; Burkle, Frederick M.; Kushner, Adam L.

    2016-01-01

    Background: Climate extremes will increase the frequency and severity of natural disasters worldwide.  Climate-related natural disasters were anticipated to affect 375 million people in 2015, more than 50% greater than the yearly average in the previous decade. To inform surgical assistance preparedness, we estimated the number of surgical procedures needed.   Methods: The numbers of people affected by climate-related disasters from 2004 to 2014 were obtained from the Centre for Research of the Epidemiology of Disasters database. Using 5,000 procedures per 100,000 persons as the minimum, baseline estimates were calculated. A linear regression of the number of surgical procedures performed annually and the estimated number of surgical procedures required for climate-related natural disasters was performed. Results: Approximately 140 million people were affected by climate-related natural disasters annually requiring 7.0 million surgical procedures. The greatest need for surgical care was in the People’s Republic of China, India, and the Philippines. Linear regression demonstrated a poor relationship between national surgical capacity and estimated need for surgical care resulting from natural disaster, but countries with the least surgical capacity will have the greatest need for surgical care for persons affected by climate-related natural disasters. Conclusion: As climate extremes increase the frequency and severity of natural disasters, millions will need surgical care beyond baseline needs. Countries with insufficient surgical capacity will have the most need for surgical care for persons affected by climate-related natural disasters. Estimates of surgical are particularly important for countries least equipped to meet surgical care demands given critical human and physical resource deficiencies. PMID:27617165

  4. Aerosols-cloud-climate -interactions in the Norwegian Earth System Model (NorESM). Importance of biogenic particles for cloud properties and anthropogenic indirect effect.

    NASA Astrophysics Data System (ADS)

    Seland, Ø.; Iversen, T.; Kirkevâg, A.

    2012-04-01

    According to the 4th assessment report of IPCC, major sources of uncertainty in anthropogenic climate change projections are inaccurate model description and weak knowledge of aerosols and their interactions with radiation and clouds, as well as the cloud feedback to radiative forcing. One important aspect of the associated uncertainty is the natural atmosphere. Anthropogenic climate change is an increment caused by anthropogenic emissions relative to the properties of the climate system untouched by man. This is crucial for the direct and indirect effects of aerosols, since the amount, size and physical properties of natural background particles strongly influence the same properties of the anthropogenic aerosol components. In many climate models where CDNC is calculated explicitly, CDNC is constrained by prescribing a lower bound below which calculated values are not allowed. This is done in order to keep the aerosol in-direct effect within estimated values. The rationale for using such a lower bound is to keep the aerosol radiative forcing constrained by the forcing of green-house gases and 20th century climate.We hypothesize this lower bound can be removed or made less strict by including aerosols of biogenic origin. We will present results and sensitivity studies from simulations with the NorESM where we have added contributions from organic carbon of natural origin both from vegetation and oceanic sources. By including aerosols of biogenic origin we obtain close to the median indirect radiative forcing reported by IPCC AR4, as well as reproducing the temperature increase in the 20th century. NorESM is based on the Earth system model CCSM4.0 from NCAR, but is using CAM4-Oslo instead of CAM4 as atmosphere model and an updated version of MICOM from the Bergen Climate Model (BCM) instead of the ocean model POP2. The aerosol module includes sea-salt, dust, sulphate, black carbon (BC) and particulate organic matter (OM). Primary aerosol size-distributions are

  5. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    SciTech Connect

    Rosenfeld, Daniel

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  6. The effect of aerosols and sea surface temperature on China's climate in the late twentieth century from ensembles of global climate simulations

    NASA Astrophysics Data System (ADS)

    Folini, D.; Wild, M.

    2015-03-01

    Over the late twentieth century, China has seen a strong increase in aerosol emissions, whose quantitative role for observed changes in surface solar radiation (SSR), surface air temperature (SAT), and precipitation remains debated. We use ensembles of transient sensitivity experiments with the global climate model ECHAM5 from the Max Planck Institute for Meteorology, Hamburg, Germany, combined with the Hamburg Aerosol Module to examine the effect of aerosols and prescribed, observation-based sea surface temperatures (SSTs) on the above variables. Observations and control experiments agree reasonably well in eastern China in terms of SSR dimming (-6 ± 2 W/m2/decade, 1960-2000; stronger than in models of the Coupled Model Intercomparison Project Phase 5, CMIP5), statistically nonsignificant summer SAT trend (1950-2005), and drying in summer from 1950 to 1990 (-2.5% to -3.5% per decade, essentially via reduction of convective precipitation). Other observed features are not reproduced by the model, e.g., precipitation increase in the 1990s in the Yangtze River valley or, from the 1960s onward, the strong winter warming in northern China and Mongolia and SSR dimming in western China. Aerosol effects are stronger for sulfur dioxide than for black and organic carbon and are more pronounced at lower model resolution. Transient SSTs are crucial for decadal-scale SAT variability over land, especially the strong warming in the 1990s, and, via SST forced reduction of cloud cover, for the ceasing of SSR dimming around the year 2000. Unforced cloud variability leads to relevant scatter (up to ±2 W/m2/decade) of modeled SSR trends at individual observation sites.

  7. Studies of organic aerosol and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Duong, Hanh To

    Atmospheric aerosols can influence society and the environment in many ways including altering the planet's energy budget, the hydrologic cycle, and public health. However, the Fourth Assessment Report of the Intergovernmental Panel on Climate Change indicates that the anthropogenic radiative forcing associated with aerosol effects on clouds has the highest uncertainty in the future climate predictions. This thesis focuses on the nature of the organic fraction of ambient particles and how particles interact with clouds using a combination of tools including aircraft and ground measurements, models, and satellite data. Fine aerosol particles typically contain between 20 - 90% organic matter by mass and a major component of this fraction includes water soluble organic carbon (WSOC). Consequently, water-soluble organic species can strongly influence aerosol water-uptake and optical properties. However, the chemical composition of this fraction is not well-understood. PILS-TOC was used to characterize WSOC in ambient aerosol in Los Angeles, California. The spatial distribution of WSOC was found to be influenced by (i) a wide range of aerosol sources within this urban metropolitan area, (ii) transport of pollutants by the characteristic daytime sea breeze trajectory, (iii) topography, and (iv) secondary production during transport. Meteorology is linked with the strength of many of these various processes. Many methods and instruments have been used to study aerosol-cloud interactions. Each observational platform is characterized by different temporal/spatial resolutions and operational principles, and thus there are disagreements between different studies for the magnitude of mathematical constructs used to represent the strength of aerosol-cloud interactions. This work points to the sensitivity of the magnitude of aerosol-cloud interactions to cloud lifetime and spatial resolution of measurements and model simulations. Failure to account for above-cloud aerosol layers

  8. Validation of aerosol extinction and water vapor profiles from routine Atmospheric Radiation Measurement Climate Research Facility measurements

    SciTech Connect

    Schmid, Beat; Flynn, Connor J.; Newsom, Rob K.; Turner, David D.; Ferrare, Richard; Clayton, Marian F.; Ogren, John A.; Russell, P. B.; Gore, W.; Dominguez, Roseanne

    2009-11-26

    The accuracy with which vertical profiles of aerosol extinction σep(λ) can be retrieved from ARM Climate Research Facility (ACRF) routine measurements was assessed using data from two airborne field campaigns, the ARM Aerosol Intensive Operation Period (AIOP, May 2003), and the Aerosol Lidar Validation Experiment (ALIVE, September 2005). This assessment pertains to the aerosol at its ambient concentration and thermodynamic state (i.e. σep(λ) either free of or corrected for sampling artifacts) and includes the following ACRF routine methods: Raman Lidar, Micro Pulse Lidar (MPL) and in-situ aerosol profiles (IAP) with a small aircraft. Profiles of aerosol optical depth τp(λ), from which the profiles of σep(λ)are derived through vertical differentiation, were measured by the NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14); these data were used as truth in this evaluation. The ACRF IAP σep(550 nm) were lower by 16% (during AIOP) and higher by 10% (during ALIVE) when compared to AATS-14. The ACRF MPL σep(523 nm) were higher by 24% (AIOP) and 19%-21% (ALIVE) compared to AATS-14 but the correlation improved significantly during ALIVE. In the AIOP a second MPL operated by NASA showed a smaller positive bias (13%) with respect to AATS-14. The ACRF Raman Lidar σep(355 nm) were higher by 54% (AIOP) and higher by 6% (ALIVE) compared to AATS-14. The large bias in AIOP stemmed from a gradual loss of the sensitivity of the Raman Lidar starting about the end of 2001 going unnoticed until after AIOP. A major refurbishment and upgrade of the instrument and improvements to a data-processing algorithm led to the significant improvement and very small bias in ALIVE. Finally we find that during ALIVE the Raman Lidar water vapor densities ρw are higher by 8% when compared to AATS-14, whereas comparisons between AATS-14 and in-situ measured ρw aboard two different aircraft showed small negative biases (0 to

  9. A GCM investigation of dust aerosol impact on the regional climate of North Africa and South/East Asia

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Xue, Y.; De Sales, F.; Liou, K. N.

    2016-04-01

    The climatic effects of dust aerosols in North Africa and South/East Asia have been investigated using an atmospheric general circulation model, NCEP/GCM/SSiB (Simplified Simple Biosphere Model) and the three-dimensional aerosol data simulated by the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. GCM simulations show that due to the scattering and absorption of solar radiation by dust particles, surface temperature decreases over both regions, accompanied by a reduced sensible heat flux. However, precipitation responses are different in these two regions. Due to differences in dust location and the associated heating with respect to the rainfall band and circulation, the effect of dust could either enhance or suppress precipitation. Over the North Africa region where dust particles are mainly located to the north of rainfall band, heating of the air column by dust particles forces a stronger ascent motion over dust layers, which induces an anomalous subsidence (or a weakened upward motion) and suppressed cyclonic circulation to its south where precipitation reduces. Furthermore, both humidity and cloud decrease due to the heating in the middle troposphere (semi-direct effect). In South/East Asia, dust particles are located in the upper troposphere over the major rainfall band during the monsoon season, especially Southwest India and the coastal area of Bay of Bengal. Heating of the air column increases upward motion and strengthens cyclonic circulation. Humidity also increases due to the draw-in of the low level moist air. Therefore, cloud and precipitation increase over South/East Asia associated with dust effect. During the pre-monsoon season, when dust particles are located to the north of the monsoon rainfall band, the heating effect results in shifting precipitation northward. The heating of air column due to dust particles, not surface cooling, plays the major role in precipitation changes. The anomalous upward motion over dust regions will

  10. Evaluating aerosol indirect effect through marine stratocumulus clouds

    SciTech Connect

    Kogan, Z.N.; Kogan, Y.L.; Lilly, D.K.

    1996-04-01

    During the last decade much attention has been focused on anthropogenic aerosols and their radiative influence on the global climate. Charlson et al. and Penner et al. have demonstrated that tropospheric aerosols and particularly anthropogenic sulfate aerosols may significantly contribute to the radiative forcing exerting a cooling influence on climate (-1 to -2 W/m{sup 2}) which is comparable in magnitude to greenhouse forcing, but opposite in sign. Aerosol particles affect the earth`s radiative budget either directly by scattering and absorption of solar radiation by themselves or indirectly by altering the cloud radiative properties through changes in cloud microstructure. Marine stratocumulus cloud layers and their possible cooling influence on the atmosphere as a result of pollution are of special interest because of their high reflectivity, durability, and large global cover. We present an estimate of thet aerosol indirect effect, or, forcing due to anthropogenic sulfate aerosols.

  11. Aerosol transmission of a viable virus affecting swine: Explanation of an epizootic of pseudorabies

    NASA Astrophysics Data System (ADS)

    Grant, Richard H.; Scheidt, Alan B.; Rueff, Larry R.

    1994-03-01

    A Gaussian diffusion model was applied to an epizootic of pseudorabies in ten swine herds located in Decatur County, Indiana, USA to test the hypothesis that the virus can be spread via aerosol. The epizootic occurred during January to March, 1988, spreading through ten farms across an area of about 150 km2. The model included a receptor component that provided an estimate of viruses received by the pig within an enclosed barn. Results show that the diffusion model can explain the spread of the virus during the epizootic for all nine farms to which the virus spread.

  12. Nature, Origin, Potential Composition, and Climate Impact of the Asian Tropopause Aerosol Layer (ATAL)

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Vernier, J.-P.; Thomason, L. W.; Natarajan, M.; Bedka, K.; Wienhold, F.; Bian J.; Martinsson, B.

    2015-01-01

    Satellite observations from SAGE II and CALIPSO indicate that summertime aerosol extinction has more than doubled in the Asian Tropopause Aerosol Layer (ATAL) since the late 1990s. Here we show remote and in-situ observations, together with results from a chemical transport model (CTM), to explore the likely composition, origin, and radiative forcing of the ATAL. We show in-situ balloon measurements of aerosol backscatter, which support the high levels observed by CALIPSO since 2006. We also show in situ measurements from aircraft, which indicate a predominant carbonaceous contribution to the ATAL (Carbon/Sulfur ratios of 2- 10), which is supported by the CTM results. We show that the peak in ATAL aerosol lags by 1 month the peak in CO from MLS, associated with deep convection over Asia during the summer monsoon. This suggests that secondary formation and growth of aerosols in the upper troposphere on monthly timescales make a significant contribution to ATAL. Back trajectory calculations initialized from CALIPSO observations provide evidence that deep convection over India is a significant source for ATAL through the vertical transport of pollution to the upper troposphere.

  13. Toxicity of atmospheric aerosols on marine phytoplankton

    PubMed Central

    Paytan, Adina; Mackey, Katherine R. M.; Chen, Ying; Lima, Ivan D.; Doney, Scott C.; Mahowald, Natalie; Labiosa, Rochelle; Post, Anton F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus. We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere–ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia. PMID:19273845

  14. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  15. Toxicity of atmospheric aerosols on marine phytoplankton.

    PubMed

    Paytan, Adina; Mackey, Katherine R M; Chen, Ying; Lima, Ivan D; Doney, Scott C; Mahowald, Natalie; Labiosa, Rochelle; Post, Anton F

    2009-03-24

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus. We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia. PMID:19273845