Science.gov

Sample records for aerosols including sulfate

  1. Importance of including ammonium sulfate ((NH4)2SO4) aerosols for ice cloud parameterization in GCMs

    SciTech Connect

    Bhattacharjee, P. S.; Sud, Yogesh C.; Liu, Xiaohong; Walker, Greg K.; Yang, R.; Wang, Jun

    2010-02-22

    A common deficiency of many cloud-physics parameterizations including the NASA’s microphysics of clouds with aerosol- cloud interactions (hereafter called McRAS-AC) is that they simulate less (larger) than the observed ice cloud particle number (size). A single column model (SCM) of McRAS-AC and Global Circulation Model (GCM) physics together with an adiabatic parcel model (APM) for ice-cloud nucleation (IN) of aerosols were used to systematically examine the influence of ammonium sulfate ((NH4)2SO4) aerosols, not included in the present formulations of McRAS-AC. Specifically, the influence of (NH4)2SO4 aerosols on the optical properties of both liquid and ice clouds were analyzed. First an (NH4)2SO4 parameterization was included in the APM to assess its effect vis-à-vis that of the other aerosols. Subsequently, several evaluation tests were conducted over the ARM-SGP and thirteen other locations (sorted into pristine and polluted conditions) distributed over marine and continental sites with the SCM. The statistics of the simulated cloud climatology were evaluated against the available ground and satellite data. The results showed that inclusion of (NH4)2SO4 in the SCM made a remarkable improvement in the simulated effective radius of ice clouds. However, the corresponding ice-cloud optical thickness increased more than is observed. This can be caused by lack of cloud advection and evaporation. We argue that this deficiency can be mitigated by adjusting the other tunable parameters of McRAS-AC such as precipitation efficiency. Inclusion of ice cloud particle splintering introduced through well- established empirical equations is found to further improve the results. Preliminary tests show that these changes make a substantial improvement in simulating the cloud optical properties in the GCM, particularly by simulating a far more realistic cloud distribution over the ITCZ.

  2. Fatty acids on continental sulfate aerosol particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Vaida, V.; Tuck, A. F.; Niemi, J. V.; Kupiainen, K.; Kulmala, M.; VehkamäKi, H.

    2005-03-01

    Surface analyses of atmospheric aerosols from different continental sources, such as forest fires and coal and straw burning, show that organic surfactants are found on such aerosols. The predominant organic species detected by time-of-flight secondary ion mass spectrometry on the sulfate aerosols are fatty acids of different carbon chain length up to the C32 acid. These observations are consistent with literature accounts of functional group analysis of bulk samples, but this is the first direct evidence of fatty acid films on the surface of sulfate aerosols. Surface analysis leads to the conclusion that fatty acid films on continental aerosols may be more common than has been previously suggested.

  3. Changes in Sulfate Aerosol Associated with Aqueous Chemistry, Heterogeneous Reactions on Aerosol and Nucleation

    NASA Astrophysics Data System (ADS)

    Penner, J. E.; Herzoa, M.

    2002-12-01

    Changes in sulfate aerosol size distribution and production rates may result from changes in the chemical pathways associated with sulfate formation. Sulfate aerosol formation is the result of homogeneous gas-phase reaction of SO2 and in-cloud oxidation of SO2 by both ozone and peroxides. In addition, sulfate may form in reactions with dust and sea-salt. Here, we examine these reactions using the GRANTOUR global aerosol-chemistry model. The sulfate formed by reaction with dust and sea salt aerosols represents approximately 5% and 4%, respectively, of total sulfate while that formed in aqueous reactions in clouds represents approximately 55%. Gas-phase production of H2 SO4 results in the nucleation of new particles which coagulate with themselves and with other aerosols. We report the increase in aerosol number concentration associated with nucleation of new particles. We also discuss the changes in the sulfate aerosol size distribution associated with these pathways in both the present-day and pre-industrial atmosphere. The consequences of including such size distribution changes for aerosol forcing are discussed.

  4. Volcanic sulfate aerosol formation in the troposphere

    NASA Astrophysics Data System (ADS)

    Martin, Erwan; Bekki, Slimane; Ninin, Charlotte; Bindeman, Ilya

    2014-11-01

    The isotopic composition of volcanic sulfate provides insights into the atmospheric chemical processing of volcanic plumes. First, mass-independent isotopic anomalies quantified by Δ17O and to a lesser extent Δ33S and Δ36S in sulfate depend on the relative importance of different oxidation mechanisms that generate sulfate aerosols. Second, the isotopic composition of sulfate (δ34S and δ18O) could be an indicator of fractionation (distillation/condensation) processes occurring in volcanic plumes. Here we present analyses of O- and S isotopic compositions of volcanic sulfate absorbed on very fresh volcanic ash from nine moderate historical eruptions in the Northern Hemisphere. Most of our volcanic sulfate samples, which are thought to have been generated in the troposphere or in the tropopause region, do not exhibit any significant mass-independent fractionation (MIF) isotopic anomalies, apart from those from an eruption of a Mexican volcano. Coupled to simple chemistry model calculations representative of the background atmosphere, our data set suggests that although H2O2 (a MIF-carrying oxidant) is thought to be by far the most efficient sulfur oxidant in the background atmosphere, it is probably quickly consumed in large dense tropospheric volcanic plumes. We estimate that in the troposphere, at least, more than 90% of volcanic secondary sulfate is not generated by MIF processes. Volcanic S-bearing gases, mostly SO2, appear to be oxidized through channels that do not generate significant isotopically mass-independent sulfate, possibly via OH in the gas phase and/or transition metal ion catalysis in the aqueous phase. It is also likely that some of the sulfates sampled were not entirely produced by atmospheric oxidation processes but came out directly from volcanoes without any MIF anomalies.

  5. Analytical techniques for ambient sulfate aerosols

    SciTech Connect

    Johnson, S.A.; Graczyk, D.G.; Kumar, R.; Cunningham, P.T.

    1981-06-01

    Work done to further develop the infrared spectroscopic analytical method for the analysis of atmospheric aerosol particles, as well as some exploratory work on a new procedure for determining proton acidity in aerosol samples is described. Earlier work had led to the successful use of infrared (ir) spectrophotometry for the analysis of nitrate, ammonium, and neutral and acidic sulfates in aerosol samples collected by an impactor on a Mylar-film substrate. In this work, a filter-extraction method was developed to prepare filter-collected aerosol samples for ir analysis. A study was made comparing the ir analytical results on filter-collected samples with impactor-collected samples. Also, the infrared analytical technique was compared in field studies with light-scattering techniques for aerosol analysis. A highly sensitive instrument for aerosol analysis using attenuated total internal reflection (ATR) infrared spectroscopy was designed, built, and tested. This instrument provides a measurement sensitivity much greater (by a factor of 6 for SO/sub 4//sup 2 -/) than that obtainable using the KBr-pellet method. This instrument collect size- and time-resolved samples and is potentially capable of providing automated, near real-time aerosol analysis. Exploratory work on a novel approach to the determination of proton acidity in filter- or impactor-collected aerosol samples is also described. In this technique, the acidic sample is reacted with an access of a tagged, vapor-phase base. The unreacted base is flushed off and the amount of the tag retained by the sample is a direct measure of the proton acidity of the sample. The base was tagged with Ge, which can be conveniently determined by the x-ray fluorescence technique.

  6. Acidic sulfate aerosols: characterization and exposure.

    PubMed

    Lioy, P J; Waldman, J M

    1989-02-01

    Exposures to acidic aerosol in the atmosphere are calculated from data reported in the scientific literature. The majority of date was not derived from studies necessarily designed to examine human exposures. Most of the studies were designed to investigate the characteristics of the atmosphere. However, the measurements were useful in defining two potential exposure situations: regional stagnation and transport conditions and local plume impacts. Levels of acidic aerosol in excess of 20 to 40 micrograms/m3 (as H2SO4) have been observed for time durations ranging from 1 to 12 hr. These were associated with high, but not necessarily the highest, atmospheric SO4(2)- levels. Exposures of 100 to 900 micrograms/m3/hr were calculated for the acid events that were monitored. In contrast, earlier London studies indicated that apparent acidity in excess of 100 micrograms/m3 (as H2SO4) was present in the atmosphere, and exposures less than 2000 micrograms/m3/hr were possible. Our present knowledge about the frequency, magnitude, and duration of acidic sulfate aerosol events and episodes is insufficient. Efforts must be made to gather more data, but these should be done in such a way that evaluation of human exposure is the focus of the research. In addition, further data are required on the mechanisms of formation of H2SO4 and on what factors can be used to predict acidic sulfate episodes.

  7. Acidic sulfate aerosols: characterization and exposure.

    PubMed Central

    Lioy, P J; Waldman, J M

    1989-01-01

    Exposures to acidic aerosol in the atmosphere are calculated from data reported in the scientific literature. The majority of date was not derived from studies necessarily designed to examine human exposures. Most of the studies were designed to investigate the characteristics of the atmosphere. However, the measurements were useful in defining two potential exposure situations: regional stagnation and transport conditions and local plume impacts. Levels of acidic aerosol in excess of 20 to 40 micrograms/m3 (as H2SO4) have been observed for time durations ranging from 1 to 12 hr. These were associated with high, but not necessarily the highest, atmospheric SO4(2)- levels. Exposures of 100 to 900 micrograms/m3/hr were calculated for the acid events that were monitored. In contrast, earlier London studies indicated that apparent acidity in excess of 100 micrograms/m3 (as H2SO4) was present in the atmosphere, and exposures less than 2000 micrograms/m3/hr were possible. Our present knowledge about the frequency, magnitude, and duration of acidic sulfate aerosol events and episodes is insufficient. Efforts must be made to gather more data, but these should be done in such a way that evaluation of human exposure is the focus of the research. In addition, further data are required on the mechanisms of formation of H2SO4 and on what factors can be used to predict acidic sulfate episodes. PMID:2651103

  8. Formation and deposition of volcanic sulfate aerosols on Mars

    NASA Technical Reports Server (NTRS)

    Settle, M.

    1979-01-01

    The paper considers the formation and deposition of volcanic sulfate aerosols on Mars. The rate limiting step in sulfate aerosol formation on Mars is the gas phase oxidation of SO2 by chemical reactions with O, OH, and HO2; submicron aerosol particles would circuit Mars and then be removed from the atmosphere by gravitational forces, globally dispersed, and deposited over a range of equatorial and mid-latitudes. Volcanic sulfate aerosols on Mars consist of liquid droplets and slurries containing sulfuric acid; aerosol deposition on a global or hemispheric scale could account for the similar concentrations of sulfur within surficial soils at the two Viking lander sites.

  9. A Physically-Based Estimate of Radiative Forcing by Anthropogenic Sulfate Aerosol

    SciTech Connect

    Ghan, Steven J. ); Easter, Richard C. ); Chapman, Elaine G. ); Abdul-Razzak, Hayder; Zhang, Yang ); Leung, Ruby ); Laulainen, Nels S. ); Saylor, Rick D. ); Zaveri, Rahul A. )

    2001-04-01

    Estimates of direct and indirect radiative forcing by anthropogenic sulfate aerosols from an integrated global aerosol and climate modeling system are presented. A detailed global tropospheric chemistry and aerosol model that predicts concentrations of oxidants as well as aerosols and aerosol precursors, is coupled to a general circulation model that predicts both cloud water mass and cloud droplet number. Both number and mass of several externally-mixed aerosol size modes are predicted, with internal mixing assumed for the different aerosol components within each mode. Predicted aerosol species include sulfate, organic and black carbon, soil dust, and sea salt. The models use physically-based treatments of aerosol radiative properties (including dependence on relative humidity) and aerosol activation as cloud condensation nuclei. Parallel simulations with and without anthropogenic sulfate aerosol are performed for a global domain. The global and annual mean direct and indirect radiative forcing due to anthropogenic sulfate are estimated to be -0.3 to -0.5 and -1.5 to -3.0 W m-2, respectively. The radiative forcing is sensitive to the model's horizontal resolution, the use of predicted vs. analyzed relative humidity, the prediction vs. diagnosis of aerosol number and droplet number, and the parameterization of droplet collision/coalescence. About half of the indirect radiative forcing is due to changes in droplet radius and half to increased cloud liquid water.

  10. Acidic sulfate aerosols: characterization and exposure

    SciTech Connect

    Lioy, P.J.; Waldman, J.M.

    1989-02-01

    Exposures to acidic aerosol in the atmosphere are calculated from data reported in the scientific literature. The majority of date was not derived from studies necessarily designed to examine human exposures. Most of the studies were designed to investigate the characteristics of the atmosphere. However, the measurements were useful in defining two potential exposure situations: regional stagnation and transport conditions and local plume impacts. Levels of acidicaerosol in excess of 20 to 40 micrograms/m/sup 3/ (as H/sub 2/SO/sub 4/) have been observed for time durations ranging from 1 to 12 hr. These were associated with high, but not necessarily the highest, atmospheric SO/sub 4/(2)- levels. Exposures of 100 to 900 micrograms/m/sup 3//hr were calculated for the acid events that were monitored. In contrast, earlier London studies indicated that apparent acidity in excess of 100 micrograms/m/sup 3/ (as H/sub 2/SO/sub 4/) was present in the atmosphere, and exposures less than 2000 micrograms/m/sup 3//hr were possible. Our present knowledge about the frequency, magnitude, and duration of acidic sulfate aerosol events and episodes is insufficient. Efforts must be made to gather more data, but these should be done in such a way that evaluation of human exposure is the focus of the research. In addition, further data are required on the mechanisms of formation of H/sub 2/SO/sub 4/ and on what factors can be used to predict acidic sulfate episodes. 96 references.

  11. Sources of Size Segregated Sulfate Aerosols in the Arctic Summer

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Abbatt, J.; Levasseur, M.

    2015-12-01

    Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between <0.49 to 7.0 microns in diameter were collected on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor fitted to a high volume sampler was used for this study and was modified to permit collection of SO2 after aerosols were removed from the gas stream. The isotopic composition of sulfate aerosols and SO2 was measured and apportionment calculations have been performed to quantify the contribution of biogenic as well as anthropogenic sources to the growth of different aerosol size fractions in the atmosphere. The presence of sea salt sulfate aerosols was especially high in coarse mode aerosols as expected. The contribution of biogenic sulfate concentration in this study was higher than anthropogenic sulfate. Around 70% of fine aerosols (<0.49 μm) and 86% of SO2 were from biogenic sources. Concentrations of biogenic sulfate for fine aerosols, ranging from 18 to 625 ng/m3, were five times higher than total biogenic sulfate concentrations measured during Fall in the same region (Rempillo et al., 2011). A comparison of the isotope ratio for SO2 and fine aerosols offers a way to determine aerosol growth from local SO2 oxidation. For some samples, the values for SO2 and fine aerosols were close together suggesting the same source for SO2 and aerosol sulfur.Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between <0.49 to 7.0 microns in diameter were collected on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor

  12. Sulfate aerosol distributions and cloud variations during El Nino anomalies

    SciTech Connect

    Parungo, F. ); Hicks, B. )

    1993-02-20

    The effects of aerosols on cloud characteristics, albedo, rainfall amount, and overall climate changes were investigated by assessing the qualitative associations and quantitative correlations between the relevant variables during El Nino-Southern Oscillation (ENSO) perturbations. Both historical records and data from recent field measurements for the Pacific Ocean region were used for the investigation. The results show that ENSO perturbations could change sulfate aerosol production and distribution over the surveyed regions. Strong correlations were observed between condensation nucleus concentrations and sulfate aerosol concentrations, and between cloud amount and albedo. Weak but significant correlations were also observed between condensation nucleus concentrations and cloud amounts, and between sulfate aerosol concentrations and rainfall amounts. Although sulfate aerosols appeared to have a strong impact on cloud microphysics, the present data confirm that cloud dynamics play the pivotal role in control of cloud types and cloud amount in the studied regions. 31 refs., 5 figs., 3 tabs.

  13. Sulfate Formation on Mars by Volcanic Aerosols: A New Look

    NASA Astrophysics Data System (ADS)

    Blaney, D. L.

    1996-03-01

    Sulfur was measured at both Viking Lander sites in abundances of 5-9 wt % SO3. Because the sulfur was more concentrated in clumps which disintegrated and the general oxidized nature of the Martian soil, these measurements led to the assumption that a sulfate duricrust existed. Two types of models for sulfate formation have been proposed. One is a formation by upwardly migrating ground water. The other is the formation of sulfates by the precipitation of volcanic aerosols. Most investigators have tended to favor the ground water origin of sulfates on Mars. However, evidence assemble since Viking may point to a volcanic aerosol origin.

  14. O-MIF signature in sulfate aerosols from Mexico City

    NASA Astrophysics Data System (ADS)

    Erwann, Legendre; Erwan, Martin; Slimane, Bekki; Armando, Retama; Pierre, Cartigny; Becky, Alexander; Aurora, Armienta Maria; Claus, Siebe

    2016-04-01

    Since the discovery of mass independent fractionation of sulfur and oxygen isotopes (S- and O-MIF) on Earth, the study of sulfate isotopic composition opened a new and wide field of investigation on the evolution of the atmospheric composition and its consequences for the climate. Sulfate aerosols that have a negative forcing on the climate can therefore be studied via their isotopic composition and leads to better constraints on their formation, fate and sinks, which is essential for our understanding of the sulfur cycle on Earth. In this study we focus on the interaction between anthropogenic and volcanic emissions that is necessary to figure out the climatic impact of volcanoes in large urban area. For the first time the O- composition of sulfate aerosols was monitored over the past 25 years in one of the world's largest megacities: Mexico City (MC). Sulfate aerosols from the megalopolis were sampled from 1989 to 2013 in different stations by high volume pumps and collected on glass filters. Additionally, fresh volcanic ash samples were collected during recent eruptions (from 1997 to 2013) of the Popocatepetl, which is only 70km from MC. After extraction and purification of sulfate from filters and volcanic ash, the isotopic composition is measured. The sulfate aerosols from MC show O-MIF composition with Δ17O of about 0.7‰ during the wet season and around 1.2‰ during the dry season and δ18O from -0.4‰ to 17.5‰. However, the volcanic sulfate aerosols from the Popocatepetl do not show O-MIF and δ18O vary from 7.0‰ to 12.2‰. The dataset allows us to discuss the seasonal variations in the SO2 oxidation pathways that lead to sulfate aerosol formation in the troposphere above MC during the last 25 years. Furthermore, since 1997 we are able to trace and quantify the influence of volcanic sulfate aerosols on the megalopolis, which is important for the sulfur budget in the region.

  15. Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols.

    PubMed

    Andreae, M O; Charlson, R J; Bruynseels, F; Storms, H; VAN Grieken, R; Maenhaut, W

    1986-06-27

    Individual aerosol particles from the remote marine atmosphere were investigated by scanning electron microscopy and electron microprobe analysis. A large fraction of the silicate mineral component of the aerosol was found to be internally mixed with sea-salt aerosol particles. This observation explains the unexpected similarity in the size distributions of silicates and sea salt that has been observed in remote marine aerosols. Reentrainment of dust particles previously deposited onto the sea surface and collision between aerosol particles can be excluded as possible source mechanisms for these internally mixed aerosols. The internal mixing could be produced by processes within clouds, including droplet coalescence. Cloud processes may also be responsible for the observed enrichment of excess (nonsea-salt) sulfate on sea-salt particles.

  16. Spectral Signatures of Polar Stratospheric Clouds and Sulfate Aerosol.

    NASA Astrophysics Data System (ADS)

    Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.

    1994-10-01

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm1 (10.8, 8.0, and 6.2 m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.

  17. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    SciTech Connect

    Massie, S.T.; Bailey, P.L.; Gille, J.C.; Lee, E.C.; Mergenthaler, J.L.; Roche, A.E.; Kumer, J.B.; Fishbein, E.F.; Waters, J.W.; Lahoz, W.A.

    1994-10-15

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm{sup {minus}1} (10.8, 8.0, and 6.2 {mu}m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculation and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles. 47 refs., 22 figs., 3 tabs.

  18. Laboratory studies of thin films representative of atmospheric sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Fortin, Tara Jean

    Sulfate aerosols are present globally in both the upper troposphere and lower stratosphere. These aerosols are of great interest because they have a profound influence on Earth's radiation balance, heterogeneous chemistry, and cloud formation mechanisms throughout the atmosphere. The magnitude of these effects is ultimately determined by the size, phase, and chemical composition of the aerosols themselves. This thesis explores some of the questions that remain concerning the phase of these aerosols under atmospheric conditions and the effects of their chemical composition on heterogeneous chemistry and cloud formation mechanisms. In the upper troposphere, cirrus clouds are thought to form via the homogeneous nucleation of ice out of dilute sulfate aerosols such as ammonium sulfate ((NH4)2SO4). To investigate this, the low-temperature phase behavior of ammonium sulfate films has been studied using Fourier transform infrared (FTIR) spectroscopy. Experiments performed as a function of increasing relative humidity demonstrate that a phase transition from crystalline (NH 4)2SO4 to a metastable aqueous solution can occur at temperatures below the eutectic at 254 K. However, on occasion, direct deposition of ice from the vapor phase was observed, possibly indicating selective heterogeneous nucleation. In addition to serving as nuclei for cirrus clouds, sulfate aerosols can participate in heterogeneous reactions. The interaction of HNO3 with ammonium sulfate has been investigated as a possible loss mechanism for gas-phase HNO3 using a Knudsen cell reactor coupled with transmission FTIR spectroscopy. The results show that HNO3 reacts with solid ammonium sulfate to produce ammonium nitrate and letovicite at 203 K. Furthermore, this reaction is enhanced as a function of relative humidity from 0 to 41%. In the lower stratosphere, polar stratospheric clouds (PSCs) are important for springtime ozone depletion. The vapor deposition of ice on sulfuric acid tetrahydrate (SAT) has

  19. Ambient aerosols remain highly acidic despite dramatic sulfate reductions

    NASA Astrophysics Data System (ADS)

    Nenes, Athanasios; Weber, Rodney; Guo, Hongyu; Russell, Armistead

    2016-04-01

    The pH of fine particles has many vital environmental impacts. By affecting aerosol concentrations, chemical composition and toxicity, particle pH is linked to regional air quality and climate, and adverse effects on human health. Sulfate is often the main acid component that drives pH of fine particles (i.e., PM2.5) and is neutralized to varying degrees by gas phase ammonia. Sulfate levels have decreased by approximately 70% over the Southeastern United States in the last fifteen years, but measured ammonia levels have been fairly steady implying the aerosol may becoming more neutral. Using a chemically comprehensive data set, combined with a thermodynamic analysis, we show that PM2.5 in the Southeastern U.S. is highly acidic (pH between 0 and 2), and that pH has remained relatively unchanged throughout the past decade and a half of decreasing sulfate. Even with further sulfate reductions, pH buffering by gas-particle partitioning of ammonia is expected to continue until sulfate drops to near background levels, indicating that fine particle pH will remain near current levels into the future. These results are non-intuitive and reshape expectations of how sulfur emission reductions impact air quality in the Southeastern U.S. and possibly other regions across the globe.

  20. Geo-Engineering Climate Change with Sulfate Aerosol

    NASA Astrophysics Data System (ADS)

    Rasch, P. J.; Crutzen, P. J.

    2006-12-01

    We explore the impact of injecting a precursor of sulfate aerosols into the middle atmosphere where they would act to increase the planetary albedo and thus counter some of the effects of greenhouse gase forcing. We use an atmospheric general circulation model (CAM, the Community Atmosphere Model) coupled to a slab ocean model for this study. Only physical effects are examined, that is we ignore the biogeochemical and chemical implications of changes to greenhouse gases and aerosols, and do not explore the important ethical, legal, and moral issues that are associated with deliberate geo-engineering efforts. The simulations suggest that the sulfate aerosol produced from the SO2 source in the stratosphere is sufficient to counterbalance most of the warming associated with the greenhouse gas forcing. Surface temperatures return to within a few tenths of a degree(K) of present day levels. Sea ice and precipitation distributions are also much closer to their present day values. The polar region surface temperatures remain 1-3 degrees warm in the winter hemisphere than present day values. This study is very preliminary. Only a subset of the relevant effects have been explored. The effect of such an injection of aerosols on middle atmospheric chemistry, and the effect on cirrus clouds are obvious missing components that merit scrutiny. There are probably others that should be considered. The injection of such aerosols cannot help in ameliorating the effects of CO2 changes on ocean PH, or other effects on the biogeochemistry of the earth system.

  1. Sulfate aerosols and polar stratospheric cloud formation

    SciTech Connect

    Tolbert, M.A. )

    1994-04-22

    Before the discovery of the Antarctic ozone hole, it was generally assumed that gas-phase chemical reactions controlled the abundance of stratospheric ozone. However, the massive springtime ozone losses over Antarctica first reported by Farman et al in 1985 could not be explained on the basis of gas-phase chemistry alone. In 1986, Solomon et al suggested that chemical reactions occurring on the surfaces of polar stratospheric clouds (PSCs) could be important for the observed ozone losses. Since that time, an explosion of laboratory, field, and theoretical research in heterogeneous atmospheric chemistry has occurred. Recent work has indicated that the most important heterogeneous reaction on PSCs is ClONO[sub 2] + HCl [yields] Cl[sub 2] + HNO[sub 3]. This reaction converts inert chlorine into photochemically active Cl[sub 2]. Photolysis of Cl[sub 2] then leads to chlorine radicals capable of destroying ozone through very efficient catalytic chain reactions. New observations during the second Airborne Arctic Stratospheric Expedition found stoichiometric loss of ClONO[sub 2] and HCl in air processed by PSCs in accordance with reaction 1. Attention is turning toward understanding what kinds of aerosols form in the stratospheric, their formation mechanism, surface area, and specific chemical reactivity. Some of the latest findings, which underline the importance of aerosols, were presented at a recent National Aeronautics and Space Administration workshop in Boulder, Colorado.

  2. Analysis of reversibility and reaction products of glyoxal uptake onto ammonium sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Chhabra, P. S.; Chan, A. W.; Surratt, J. D.; Kwan, A. J.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.; Keutsch, F. N.

    2009-04-01

    Glyoxal, the smallest alpha-dicarbonyl, is an oxidation product of both biogenic and anthropogenic volatile organic compounds (Fu et al. JGR 113, D15303, 2008). Despite its low molecular weight, its role in secondary organic aerosol (SOA) formation has gained interest and a recent study suggested that it accounts for more than 15% of SOA in Mexico City (Volkamer et al. GRL 34, L19807, 2007). Despite numerous previous studies, questions remain regarding the processes controlling glyoxal uptake onto aerosol, including the role of acid catalysis, degree of reversibility, and identity of aerosol phase reaction products. We present results of chamber aerosol studies (Galloway et al. ACPD 8, 20799, 2008) and laboratory studies of bulk samples aimed at improving the understanding of these processes, in particular formation of oligomers and organosulfates of glyoxal, as well as the formation of imidazoles (carbon-nitrogen containing heterocyclic aromatic compounds) under dark and irradiated conditions. The relevance of these classes of reaction products extends beyond glyoxal, as evidence of oligomers and organosulfates other than those of glyoxal have been found in ambient aerosol (Surratt et al. JPCA 112, 8345, 2008; Denkenberger et al. Environ. Sci. Technol. 41, 5439, 2007). Experiments in which a chamber air mass was diluted after equilibration of glyoxal uptake onto ammonium sulfate seed aerosol (relative humidity 60% and glyoxal mixing ratios of 25-200 ppbv) shows that under these conditions uptake is reversible. The most important condensed phase products are hydrated oligomers of glyoxal, which are also formed reversibly under these conditions. Our studies show that organosulfates were not formed under dark conditions for neutral or acidified aerosol; similarly, Minerath et al. have recently shown that formation of a different class of organosulfates (alkyl sulfates) also proceeds very slowly even under acidic conditions (Environ. Sci. Technol. 42, 4410, 2008). The

  3. Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism.

    PubMed

    Misra, Amit; Krissansen-Totton, Joshua; Koehler, Matthew C; Sholes, Steven

    2015-06-01

    Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism and therefore of a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosols with lifetimes of months to years. We demonstrate that the rapid increase and gradual decrease in sulfate aerosol loading associated with these eruptions may be detectable in transit transmission spectra with future large-aperture telescopes, such as the James Webb Space Telescope (JWST) and European Extremely Large Telescope (E-ELT), for a planetary system at a distance of 10 pc, assuming an Earth-like atmosphere, bulk composition, and size. Specifically, we find that a signal-to-noise ratio of 12.1 and 7.1 could be achieved with E-ELT (assuming photon-limited noise) for an Earth analogue orbiting a Sun-like star and M5V star, respectively, even without multiple transits binned together. We propose that the detection of this transient signal would strongly suggest an exoplanet volcanic eruption, if potential false positives such as dust storms or bolide impacts can be ruled out. Furthermore, because scenarios exist in which O2 can form abiotically in the absence of volcanic activity, a detection of transient aerosols that can be linked to volcanism, along with a detection of O2, would be a more robust biosignature than O2 alone.

  4. Measuring 35S of Aerosol Sulfate: Techniques and First Results

    NASA Astrophysics Data System (ADS)

    Brothers, L. A.; Dominguez, G.; Bluen, B.; Corbin, A.; Abramian, A.; Thiemens, M. H.

    2007-12-01

    On a global and regional level, the cycling of sulfur in the environment has consequences for air quality, human health, and may contribute to global climate change. Due to its multiple oxidation states, the sulfur cycle is very complex and poorly understood. Stable isotopes are currently used to understand reaction pathways as well as sources and sinks of sulfurous compounds in the environment. Sulfur also has one short lived (τ1/2 ~87 d) radioactive isotope (35S) which is continuously made in the atmosphere by the cosmic ray spallation of argon, is then quickly oxidized to 35SO2 and enters the atmospheric sulfur cycle. The short-lived radioactive nature of this isotope of sulfur provides us with potentially powerful tracer for understanding the time scales at which sulfur is oxidized, deposited, and transported in the atmosphere and the deposition of atmospheric sulfate into rivers and water catchments. However, despite its potential, the use of 35S as a tracer of aerosol chemistry has not been fully exploited, Here we present details of instrumental set up for measuring 35S in aerosol sulfate and some preliminary results of measurements of 35S abundances in aerosols from Riverside (inland) and La Jolla (coastal) CA and discuss the sensitivity and limitations of the measurements in providing insights into day/night aerosol chemistry (Riverside) as well as the uptake of SO2 pollution in coastal environments by sea-salt aerosols. Also, we present preliminary results from measurement of sulfate in river water in Ecuador before and after precipitation events.

  5. Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism.

    PubMed

    Misra, Amit; Krissansen-Totton, Joshua; Koehler, Matthew C; Sholes, Steven

    2015-06-01

    Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism and therefore of a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosols with lifetimes of months to years. We demonstrate that the rapid increase and gradual decrease in sulfate aerosol loading associated with these eruptions may be detectable in transit transmission spectra with future large-aperture telescopes, such as the James Webb Space Telescope (JWST) and European Extremely Large Telescope (E-ELT), for a planetary system at a distance of 10 pc, assuming an Earth-like atmosphere, bulk composition, and size. Specifically, we find that a signal-to-noise ratio of 12.1 and 7.1 could be achieved with E-ELT (assuming photon-limited noise) for an Earth analogue orbiting a Sun-like star and M5V star, respectively, even without multiple transits binned together. We propose that the detection of this transient signal would strongly suggest an exoplanet volcanic eruption, if potential false positives such as dust storms or bolide impacts can be ruled out. Furthermore, because scenarios exist in which O2 can form abiotically in the absence of volcanic activity, a detection of transient aerosols that can be linked to volcanism, along with a detection of O2, would be a more robust biosignature than O2 alone. PMID:26053611

  6. Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols

    SciTech Connect

    Grant, K.E.; Chuang, C.C.; Grossman, A.S.; Penner, J.E.

    1997-09-01

    The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from offline calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99 percent. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 {micro}m and 4 {micro}m. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest albedo. A similar treatment was done for aerosols from biomass burning. In this case, size distributions were taken as having two carbonaceous size modes and a larger dust mode. The two carbonaceous modes were considered to be humidity dependent. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and Chandrasekhar averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity

  7. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Kravitz, Ben; Robock, Alan; Oman, Luke; Stenchikov, Georgiy; Marquardt, Allison B.

    2009-07-01

    We used a general circulation model of Earth's climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m-2 a-1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m-2 a-1 is enough to negatively impact most ecosystems.

  8. Freezing Behavior of Stratospheric Sulfate Aerosols Inferred from Trajectory Studies

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Toon, O. B.; Hamill, Patrick

    1995-01-01

    Based on the trajectory analysis presented in this paper, a new mechanism is described for the freezing of the stratospheric sulfate aerosols. Temperature histories based on 10-day back trajectories for six ER-2 flights during AASE-I (1989) and AAOE (1987) are presented. The mechanism requires, as an initial step, the cooling of a H2SO4/H2O aerosol to low temperatures. If a cooling cycle is then followed up by a warming to approximately 196-198 K, the aerosols may freeze due to the growth of the crystallizing embryos formed at the colder temperature. The HNO3 absorbed at colder temperatures may increase the nucleation rate of the crystalling embryos and therefore influence the crystallization of the supercooled aerosols upon warming. Of all the ER-2 flights described, only the polar stratospheric clouds (PSC), observed on the flights of January 24, and 25, 1989 are consistent with the thermodynamics of liquid ternary solutions of H2SO4/HNO3/H2O (type Ib PSCs). For those two days, back trajectories indicate that the air mass was exposed to sulfuric acid tetrahydrate (SAT) melting temperatures about 24 hours prior to being sampled by the ER-2. Temperature histories, recent laboratory measurements, and the properties of glassy solids suggest that stratospheric H2SO4 aerosols may undergo a phase transition to SAT upon warming at approximately 198 K after going through a cooling cycle to about 194 K or lower.

  9. Arctic climate response to geoengineering with stratospheric sulfate aerosols

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2010-12-01

    Recent warming and record summer sea-ice area minimums have spurred expressions of concern for arctic ecosystems, permafrost, and polar bear populations, among other things. Geoengineering by stratospheric sulfate aerosol injections to deliberately cancel the anthropogenic temperature rise has been put forth as a possible solution to restoring Arctic (and global) climate to modern conditions. However, climate is particularly sensitive in the northern high latitudes, responding easily to radiative forcing changes. To that end, we explore the extent to which tropical injections of stratospheric sulfate aerosol can accomplish regional cancellation in the Arctic. We use the Community Climate System Model version 3 global climate model to execute simulations with combinations of doubled CO2 and imposed stratospheric sulfate burdens to investigate the effects on high latitude climate. We further explore the sensitivity of the polar climate to ocean dynamics by running a suite of simulations with and without ocean dynamics, transiently and to equilibrium respectively. We find that, although annual, global mean temperature cancellation is accomplished, there is over-cooling on land in Arctic summer, but residual warming in Arctic winter, which is largely due to atmospheric circulation changes. Furthermore, the spatial extent of these features and their concurrent impacts on sea-ice properties are modified by the inclusion of ocean dynamical feedbacks.

  10. Global microphysical simulation of stratospheric sulfate aerosol after the Mt. Pinatubo eruption

    NASA Astrophysics Data System (ADS)

    Sekiya, T.; Sudo, K.

    2014-12-01

    An explosive volcanic eruption can inject a large amount of SO2 into the stratosphere, which is oxidized to form sulfate aerosol. Such aerosol has an impact on the Earth's radiative budget by enhancing back-scattering of the solar radiation. Changes in the size distribution of the aerosol were observed after large volcanic eruptions. Representing the changes in size distribution is important for climate simulation, because the changes affect climate responses to large volcanic eruptions. This study newly developed an aerosol microphysics module and investigated changes in stratospheric sulfate aerosol after the Mt. Pinatubo eruption in the framework of a chemistry-aerosol coupled climate model MIROC-CHASER/SPRINTARS. The module represents aerosol size distribution with three lognormal modes (nucleation, Aitken, and accumulation modes) and includes nucleation, condensation growth/evaporation, and coagulation processes. As a model evaluation, we tested reproducibility of the impacts of the Mt. Pinatubo eruption. We carried out a simulation, in which 20 Mt of SO2 and 100 Mt of volcanic ash were injected respectively into 25 km and 16—22 km altitudes over Mt. Pinatubo (120.4°E, 15.1°N) on June 15th 1991. We compared the model results with space-borne and balloon-borne observations. Although our model overestimated a near-global mean (60°N—60°S) of stratospheric aerosol optical depth (SAOD) observed by SAGE II instrument until one year after the eruption, it reproduced the observed SAOD in the subsequent period. The model well captured the observed increase of effective radius at 20 km altitude in the northern midlatitudes. In addition, we analyzed the pathway of volcanic sulfur from SO2 to sulfate aerosol. The most amount of the volcanic sulfur was converted from SO2 to accumulation mode aerosol by 100 days after the eruption. The conversion into the accumulation mode aerosol is attributable to coagulation until the first 14 days and to condensation growth

  11. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  12. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    NASA Astrophysics Data System (ADS)

    Pyle, David M.

    2012-09-01

    Understanding of volcanic activity and its impacts on the atmosphere has evolved in discrete steps, associated with defining eruptions. The eruption of Krakatau, Indonesia, in August 1883 was the first whose global reach was recorded through observations of atmospheric phenomena around the world (Symons 1888). The rapid equatorial spread of Krakatau's ash cloud revealed new details of atmospheric circulation, while the vivid twilights and other optical phenomena were soon causally linked to the effects of particles and gases released from the volcano (e.g. Stothers 1996, Schroder 1999, Hamilton 2012). Later, eruptions of Agung, Bali (1963), El Chichón, Mexico (1982) and Pinatubo, Philippines (1991) led to a fuller understanding of how volcanic SO2 is transformed to a long-lived stratospheric sulfate aerosol, and its consequences (e.g. Meinel and Meinel 1967, Rampino and Self 1982, Hoffman and Rosen 1983, Bekki and Pyle 1994, McCormick et al 1995). While our ability to track the dispersal of volcanic emissions has been transformed since Pinatubo, with the launch of fleets of Earth-observing satellites (e.g. NASA's A-Train; ESA's MetOp) and burgeoning networks of ground-based remote-sensing instruments (e.g. lidar and sun-photometers; infrasound and lightning detection systems), there have been relatively few significant eruptions. Thus, there have been limited opportunities to test emerging hypotheses including, for example, the vexed question of the role of 'smaller' explosive eruptions in perturbations of the atmosphere—those that may just be large enough to reach the stratosphere (of size 'VEI 3', Newhall and Self 1982, Pyle 2000). Geological evidence, from ice-cores and historical eruptions, suggests that small explosive volcanic eruptions with the potential to transport material into the stratosphere should be frequent (5-10 per decade), and responsible for a significant proportion of the long-term time-averaged flux of volcanic sulfur into the stratosphere

  13. The relative roles of sulfate aerosols and greenhouse gases in climate forcing

    NASA Technical Reports Server (NTRS)

    Kiehl, J. T.; Briegleb, B. P.

    1993-01-01

    Calculations of the effects of both natural and anthropogenic tropospheric sulfate aerosols indicate that the aerosol climate forcing is sufficiently large in a number of regions of the Northern Hemisphere to reduce significantly the positive forcing from increased greenhouse gases. Summer sulfate aerosol forcing in the Northern Hemisphere completely offsets the greenhouse forcing over the eastern United States and central Europe. Anthropogenic sulfate aerosols contribute a globally averaged annual forcing of -0.3 watt per square meter as compared with +2.1 watts per square meter for greenhouse gases. Sources of the difference in magnitude with the previous estimate of Charlson et al. (1992) are discussed.

  14. Evolution of stratospheric sulfate aerosol from the 1991 Pinatubo eruption: Roles of aerosol microphysical processes

    NASA Astrophysics Data System (ADS)

    Sekiya, T.; Sudo, K.; Nagai, T.

    2016-03-01

    This study investigates the role of aerosol microphysics in stratospheric sulfate aerosol changes after the 1991 Mount Pinatubo eruption using an atmospheric general circulation model that is coupled interactively with a chemistry module and a modal aerosol microphysical module with three modes. Our model can reproduce the global mean stratospheric aerosol optical depth (SAOD) observed by the Stratospheric Aerosol and Gas Experiment (SAGE) II during June 1991 to January 1993. The model underestimates the observed SAOD before the eruption and after January 1993. The model also underestimates the integrated backscatter coefficient observed by ground-based lidar at Tsukuba, Naha, and Lauder. The modeled effective radius becomes larger (about 0.5 μm) and agrees with the balloon-borne measurements at Laramie, Wyoming (41°N, 105°W). We further investigate effects of the inclusion of evaporation along with the condensation processes and the inclusion of van der Waals and viscous forces in the coagulation processes. The inclusion of evaporation along with the condensation processes reduces the global mean effective radius by up to 0.04 μm and increases the global burden of stratospheric sulfate aerosols (about 15% in late 1993). The inclusion of van der Waals and viscous forces in the coagulation processes increases the global mean effective radius by up to 0.06-0.07 μm and decreases the global burden (15-30% in late 1993). The effects of van der Waals and viscous forces differ between two schemes. However, we do not conclude which simulation is superior because all simulations fall within error bars.

  15. Studies of the aerosol indirect effect from sulfate and black carbon aerosols

    NASA Astrophysics Data System (ADS)

    Kristjánsson, Jón Egill

    2002-08-01

    The indirect effect of anthropogenic aerosols is investigated using the global climate model National Center for Atmospheric Research Community Climate Model Version 3 (NCAR CCM3). Two types of anthropogenic aerosols are considered, i.e., sulfate and black carbon aerosols. The concentrations and horizontal distributions of these aerosols were obtained from simulations with a life-cycle model incorporated into the global climate model. They are then combined with size-segregated background aerosols. The aerosol size distributions are subjected to condensation, coagulation, and humidity swelling. By making assumptions on supersaturation, we determine cloud droplet number concentrations in water clouds. Cloud droplet sizes and top of atmosphere (TOA) radiative fluxes are in good agreement with satellite observations. Both components of the indirect effect, i.e., the radius and lifetime effects, are computed as pure forcing terms. Using aerosol data for 2000 from the Intergovernmental Panel on Climate Change (IPCC), we find, globally averaged, a 5% decrease in cloud droplet radius and a 5% increase in cloud water path due to anthropogenic aerosols. The largest changes are found over SE Asia, followed by the North Atlantic, Europe, and the eastern United States. This is also the case for the radiative forcing (``indirect effect''), which has a global average of -1.8 W m-2. When the experiment is repeated using data for 2100 from the IPCC A2 scenario, an unchanged globally averaged radiative forcing is found, but the horizontal distribution has been shifted toward the tropics. Sensitivity experiments show that the radius effect is ~3 times as important as the lifetime effect and that black carbon only contributes marginally to the overall indirect effect.

  16. Sensitivity studies for incorporating the direct effect of sulfate aerosols into climate models

    NASA Astrophysics Data System (ADS)

    Miller, Mary Rawlings Lamberton

    2000-09-01

    Aerosols have been identified as a major element of the climate system known to scatter and absorb solar and infrared radiation, but the development of procedures for representing them is still rudimentary. This study addresses the need to improve the treatment of sulfate aerosols in climate models by investigating how sensitive radiative particles are to varying specific sulfate aerosol properties. The degree to which sulfate particles absorb or scatter radiation, termed the direct effect, varies with the size distribution of particles, the aerosol mass density, the aerosol refractive indices, the relative humidity and the concentration of the aerosol. This study develops 504 case studies of altering sulfate aerosol chemistry, size distributions, refractive indices and densities at various ambient relative humidity conditions. Ammonium sulfate and sulfuric acid aerosols are studied with seven distinct size distributions at a given mode radius with three corresponding standard deviations implemented from field measurements. These test cases are evaluated for increasing relative humidity. As the relative humidity increases, the complex index of refraction and the mode radius for each distribution correspondingly change. Mie theory is employed to obtain the radiative properties for each case study. The case studies are then incorporated into a box model, the National Center of Atmospheric Research's (NCAR) column radiation model (CRM), and NCAR's community climate model version 3 (CCM3) to determine how sensitive the radiative properties and potential climatic effects are to altering sulfate properties. This study found the spatial variability of the sulfate aerosol leads to regional areas of intense aerosol forcing (W/m2). These areas are particularly sensitive to altering sulfate properties. Changes in the sulfate lognormal distribution standard deviation can lead to substantial regional differences in the annual aerosol forcing greater than 2 W/m 2. Changes in the

  17. Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhad, Roghayeh; Norman, Ann-Lise; Abbatt, Jonathan P. D.; Levasseur, Maurice; Thomas, Jennie L.

    2016-04-01

    Size-segregated aerosol sulfate concentrations were measured on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic during July 2014. The objective of this study was to utilize the isotopic composition of sulfate to address the contribution of anthropogenic and biogenic sources of aerosols to the growth of the different aerosol size fractions in the Arctic atmosphere. Non-sea-salt sulfate is divided into biogenic and anthropogenic sulfate using stable isotope apportionment techniques. A considerable amount of the average sulfate concentration in the fine aerosols with a diameter < 0.49 µm was from biogenic sources (> 63 %), which is higher than in previous Arctic studies measuring above the ocean during fall (< 15 %) (Rempillo et al., 2011) and total aerosol sulfate at higher latitudes at Alert in summer (> 30 %) (Norman et al., 1999). The anthropogenic sulfate concentration was less than that of biogenic sulfate, with potential sources being long-range transport and, more locally, the Amundsen's emissions. Despite attempts to minimize the influence of ship stack emissions, evidence from larger-sized particles demonstrates a contribution from local pollution. A comparison of δ34S values for SO2 and fine aerosols was used to show that gas-to-particle conversion likely occurred during most sampling periods. δ34S values for SO2 and fine aerosols were similar, suggesting the same source for SO2 and aerosol sulfate, except for two samples with a relatively high anthropogenic fraction in particles < 0.49 µm in diameter (15-17 and 17-19 July). The high biogenic fraction of sulfate fine aerosol and similar isotope ratio values of these particles and SO2 emphasize the role of marine organisms (e.g., phytoplankton, algae, bacteria) in the formation of fine particles above the Arctic Ocean during the productive summer months.

  18. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Jing, Bo; Tong, Shengrui; Liu, Qifan; Li, Kun; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2016-03-01

    Water-soluble organic compounds (WSOCs) are important components of organics in the atmospheric fine particulate matter. Although WSOCs play an important role in the hygroscopicity of aerosols, knowledge on the water uptake behavior of internally mixed WSOC aerosols remains limited. Here, the hygroscopic properties of single components such as levoglucosan, oxalic acid, malonic acid, succinic acid, phthalic acid, and multicomponent WSOC aerosols mainly involving oxalic acid are investigated with the hygroscopicity tandem differential mobility analyzer (HTDMA). The coexisting hygroscopic species including levoglucosan, malonic acid, and phthalic acid have a strong influence on the hygroscopic growth and phase behavior of oxalic acid, even suppressing its crystallization completely during the drying process. The phase behaviors of oxalic acid/levoglucosan mixed particles are confirmed by infrared spectra. The discrepancies between measured growth factors and predictions from Extended Aerosol Inorganics Model (E-AIM) with the Universal Quasi-Chemical Functional Group Activity Coefficient (UNIFAC) method and Zdanovskii-Stokes-Robinson (ZSR) approach increase at medium and high relative humidity (RH) assuming oxalic acid in a crystalline solid state. For the internal mixture of oxalic acid with levoglucosan or succinic acid, there is enhanced water uptake at high RH compared to the model predictions based on reasonable oxalic acid phase assumption. Organic mixture has more complex effects on the hygroscopicity of ammonium sulfate than single species. Although hygroscopic species such as levoglucosan account for a small fraction in the multicomponent aerosols, they may still strongly influence the hygroscopic behavior of ammonium sulfate by changing the phase state of oxalic acid which plays the role of "intermediate" species. Considering the abundance of oxalic acid in the atmospheric aerosols, its mixtures with hygroscopic species may significantly promote water uptake

  19. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Jing, B.; Tong, S. R.; Liu, Q. F.; Li, K.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2015-08-01

    Water soluble organic compounds (WSOCs) are important components of organics in the atmospheric fine particulate matter. Although WSOCs play an important role in the hygroscopicity of aerosols, water uptake behavior of internally mixed WSOC aerosols remains limited characterization. Here, the hygroscopic properties of single component such as levoglucosan, oxalic acid, malonic acid, succinic acid and phthalic acid and multicomponent WSOC aerosols mainly involving oxalic acid are investigated with the hygroscopicity tandem differential mobility analyzer (HTDMA). The coexisting hygroscopic species including levoglucosan, malonic acid and phthalic acid have strong influence on the hygroscopic growth and phase behavior of oxalic acid, even suppress its crystallization completely. The interactions between oxalic acid and levoglucosan are confirmed by infrared spectra. The discrepancies between measured growth factors and predictions from Extended Aerosol Inorganics Model (E-AIM) with UNIFAC method and Zdanovskii-Stokes-Robinson (ZSR) approach increase at medium and high relative humidity (RH) assuming oxalic acid in a solid state. For the internal mixture of oxalic acid with levoglucosan or succinic acid, there is enhanced water uptake at high RH due to positive chemical interactions between solutes. Organic mixture has more complex effect on the hygroscopicity of ammonium sulfate than single species. Although hygroscopic species such as levoglucosan accounts for a small fraction in the multicomponent aerosols, they may still strongly influence the hygroscopic behavior of ammonium sulfate by changing phase state of oxalic acid which plays the role of "intermediate" species. Considering the abundance of oxalic acid in the atmospheric aerosols, its mixtures with hygroscopic species may significantly promote water uptake under high RH conditions and thus affect the cloud condensation nuclei (CCN) activity, optical properties and chemical reactivity of atmospheric particles.

  20. Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China

    SciTech Connect

    Huang, Xin; Song, Yu; Zhao, Chun; Li, Mengmeng; Zhu, Tong; Zhang, Qiang; Zhang, Xiaoye

    2014-12-27

    China, the world’s largest consumer of coal, emits approximately 30 million tons of sulfur dioxide (SO₂) per year. SO₂ is subsequently oxidized to sulfate in the atmosphere. However, large gaps exist between model-predicted and measured sulfate levels in China. Long-term field observations and numerical simulations were integrated to investigate the effect of mineral aerosols on sulfate formation. We found that mineral aerosols contributed a nationwide average of approximately 22% to sulfate production in 2006. The increased sulfate concentration was approximately 2 μg m⁻³ in the entire China. In East China and the Sichuan Basin, the increments reached 6.3 μg m⁻³ and 7.3 μg m⁻³, respectively. Mineral aerosols led to faster SO₂ oxidation through three pathways. First, more SO₂ was dissolved as cloud water alkalinity increased due to water-soluble mineral cations. Sulfate production was then enhanced through the aqueous-phase oxidation of S(IV) (dissolved sulfur in oxidation state +4). The contribution to the national sulfate production was 5%. Second, sulfate was enhanced through S(IV) catalyzed oxidation by transition metals. The contribution to the annual sulfate production was 8%, with 19% during the winter that decreased to 2% during the summer. Third, SO₂ reacts on the surface of mineral aerosols to produce sulfate. The contribution to the national average sulfate concentration was 9% with 16% during the winter and a negligible effect during the summer. The inclusion of mineral aerosols does resolve model discrepancies with sulfate observations in China, especially during the winter. These three pathways, which are not fully considered in most current chemistry-climate models, will significantly impact assessments regarding the effects of aerosol on climate change in China.

  1. Effects of ammonium sulfate aerosols on vegetation—II. Mode of entry and responses of vegetation

    NASA Astrophysics Data System (ADS)

    Gmur, Nicholas F.; Evans, Lance S.; Cunningham, Elizabeth A.

    These experiments were designed to provide information on the rates of aerosol deposition, mode of entry, and effects of deposition of submicrometer ammonium sulfate aerosols on foliage of Phaseolus vulgaris L. A deposition velocity of 3.2 × 10 3cms-1 was constant during 3-week exposures of plants to aerosol concentrations of 26mg m -3 (i.e. about two orders of magnitude above ambient episode concentrations). Mean deposition rate on foliage was 4.1 × 10 -11 μg cm -2s -1. Visible injury symptoms included leaf chlorosis, necrosis and loss of turgor. Chlorosis was most frequent near leaf margins causing epinasty and near major veins. Internal injury occurred initially in spongy mesophyll cells. Eventually abaxial epidermal and palisade parenchyma cells were injured. These results suggest that submicrometer aerosols enter abaxial stomata and affect more internal cells before affecting leaf surface cells. Exposure to aerosols decreased both abaxial and adaxial leaf resistances markedly. Although visible injury to foliage occurred, no changes in dry mass of roots and shoots or leaf area occurred. These results suggest that for the plant developmental stage studied, while leaf resistances decreased and cellular injury occurred in foliage, these factors were not significantly related to plant growth and development.

  2. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  3. Effect of anthropogenic sulfate aerosols on low-level cloud albedo over oceans

    NASA Technical Reports Server (NTRS)

    Kim, Youngseung; Cess, Robert D.

    1993-01-01

    By reducing cloud droplet size, anthropogenic sulfate aerosols are capable of increasing cloud albedo and thus possibly changing the climate. To test the detectability of this effect, we examined satellite-measured low-level cloud albedo off the east coasts of North America and Asia at midlatitudes where anthropogenic sulfate sources are large and aerosols are transported eastward over the oceans by prevailing westerlies. The satellite data demonstrate enhanced cloud albedo near the coastal boundaries where sulfate concentrations are large. Similar trends are absent over ocean regions of the Southern Hemisphere that are removed from anthropogenic sulfate sources.

  4. Organosulfate formation during the uptake of pinonaldehyde on acidic sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, John; Li, Shao-Meng

    2006-07-01

    Organosulfates are observed in studies of pinonaldehyde reactions with acidic sulfate aerosols using aerosol mass spectrometry, during which a significant fraction of the pinonaldehyde reaction products were found to consist of organosulfate compounds that account for 6-51% of the initial SO4= mass. Resultant aerosol mass spectra were consistent with proposed sulfate ester mechanisms, which likely form stable products. The existence of organosulfates was also confirmed in studies of the reaction system in bulk solution. The formation of organosulfates suggests that conventional inorganic SO4= chemical analysis may underestimate total SO4= mass in ambient aerosols.

  5. Inability of stratospheric sulfate aerosol injections to preserve the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2015-06-01

    Injection of sulfate aerosols into the stratosphere has the potential to reduce the climate impacts of global warming, including sea level rise (SLR). However, changes in atmospheric and oceanic circulation that can significantly influence the rate of basal melting of Antarctic marine ice shelves and the associated SLR have not previously been considered. Here we use a fully coupled global climate model to investigate whether rapidly increasing stratospheric sulfate aerosol concentrations after a period of global warming could preserve Antarctic ice sheets by cooling subsurface ocean temperatures. We contrast this climate engineering method with an alternative strategy in which all greenhouse gases (GHG) are returned to preindustrial levels. We find that the rapid addition of a stratospheric aerosol layer does not effectively counteract surface and upper level atmospheric circulation changes caused by increasing GHGs, resulting in continued upwelling of warm water in proximity of ice shelves, especially in the vicinity of the already unstable Pine Island Glacier in West Antarctica. By contrast, removal of GHGs restores the circulation, yielding relatively cooler subsurface ocean temperatures to better preserve West Antarctica.

  6. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    NASA Astrophysics Data System (ADS)

    Pyle, David M.

    2012-09-01

    Understanding of volcanic activity and its impacts on the atmosphere has evolved in discrete steps, associated with defining eruptions. The eruption of Krakatau, Indonesia, in August 1883 was the first whose global reach was recorded through observations of atmospheric phenomena around the world (Symons 1888). The rapid equatorial spread of Krakatau's ash cloud revealed new details of atmospheric circulation, while the vivid twilights and other optical phenomena were soon causally linked to the effects of particles and gases released from the volcano (e.g. Stothers 1996, Schroder 1999, Hamilton 2012). Later, eruptions of Agung, Bali (1963), El Chichón, Mexico (1982) and Pinatubo, Philippines (1991) led to a fuller understanding of how volcanic SO2 is transformed to a long-lived stratospheric sulfate aerosol, and its consequences (e.g. Meinel and Meinel 1967, Rampino and Self 1982, Hoffman and Rosen 1983, Bekki and Pyle 1994, McCormick et al 1995). While our ability to track the dispersal of volcanic emissions has been transformed since Pinatubo, with the launch of fleets of Earth-observing satellites (e.g. NASA's A-Train; ESA's MetOp) and burgeoning networks of ground-based remote-sensing instruments (e.g. lidar and sun-photometers; infrasound and lightning detection systems), there have been relatively few significant eruptions. Thus, there have been limited opportunities to test emerging hypotheses including, for example, the vexed question of the role of 'smaller' explosive eruptions in perturbations of the atmosphere—those that may just be large enough to reach the stratosphere (of size 'VEI 3', Newhall and Self 1982, Pyle 2000). Geological evidence, from ice-cores and historical eruptions, suggests that small explosive volcanic eruptions with the potential to transport material into the stratosphere should be frequent (5-10 per decade), and responsible for a significant proportion of the long-term time-averaged flux of volcanic sulfur into the stratosphere

  7. The role of sulfate aerosol in the formation of cloudiness over the sea

    NASA Astrophysics Data System (ADS)

    Aloyan, A. E.; Yermakov, A. N.; Arutyunyan, V. O.

    2016-07-01

    We estimate the impact of sulfate aerosols on cloudiness formation over the sea in the middle troposphere and the involvement of these particles in the formation of polar stratospheric clouds (PSCs) in the lower stratosphere. The first of these problems is solved using a combined model of moist convection and the formation of cloudiness and sulfate aerosols in the troposphere and lower stratosphere over the sea, incorporating natural emissions of sulfur-containing compounds. We have found that a significant source of condensation nuclei in the troposphere is the photochemical transformation of biogenic dimethyl sulfide (in addition to NaCl). The results of numerical experiments indicate that the absence of sulfate aerosols hinders the cloudiness formation over the sea in the middle and upper troposphere. The problem of sulfate aerosol involvement in the formation of supercooled ternary solutions (STSs) (PSC Type Ib) in the lower stratosphere is solved using a mathematical model of global transport of multicomponent gas pollutants and aerosols in the atmosphere. Using the combined model, numerical experiments were performed for the winter season in both hemispheres. Sulfate aerosols were found to really participate in the formation of STS particles. Without their participation, the formation of STS particles in the lower stratosphere would be hindered. We present the results of numerical calculations and discuss the distribution of concentrations of gaseous nitric and sulfuric acids, as well as mass concentrations of these components in STS particles.

  8. Evaluating Ammonium, Nitrate and Sulfate Aerosols in 3-Dimensions

    NASA Technical Reports Server (NTRS)

    Mezuman, Keren; Bauer, Susanne E.; Tsigaridis, Kostas

    2015-01-01

    The effect aerosols have on climate and air quality is a func-on of their chemical composi-on, concentra-on and spa-al distribu-on. These parameters are controlled by emissions, heterogeneous and homogeneous chemistry, where thermodynamics plays a key role, transport, which includes stratospheric-­- tropospheric exchange, and deposi-onal sinks. In this work we demonstrate the effect of some of these processes on the SO4-NH4­-NO3 system using the GISS ModelE2 Global Circula-on Model (GCM).

  9. Detection of volcanic sulfate aerosol with Envisat MIPAS shown for the Kasatochi, Sarychev, and Nabro eruptions

    NASA Astrophysics Data System (ADS)

    Griessbach, Sabine; Hoffmann, Lars; Spang, Reinhold; von Hobe, Marc; Müller, Rolf; Riese, Martin

    2013-04-01

    Stratospheric sulfate aerosol is known to have a strong impact on climate. Transport pathways of sulfur dioxide and sulfate aerosol to the stratosphere are still discussed. It is known that volcanic eruptions can inject significant amounts of sulfur directly into the stratosphere. Most sulfur, however, is injected into the troposphere and only a fraction of it can make its way into the stratosphere. Global and altitude resolved time series of observations are a valuable source of information for sulfur dioxide and sulfate aerosol detection. Here we present a new aerosol detection method for the infrared limb sounder Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the results for the Kasatochi, Sarychev, and Nabro eruptions. The new detection method utilizes three infrared window regions that are located around 830, 960, and 1224 cm-1. The combination of these three windows allows for a better detection of enhanced aerosol events in the troposphere as well as the discrimination from ice clouds. With this new method the 10 year record of MIPAS measurements was analyzed. The most remarkable sulfate aerosol events follow the Kasatochi, Sarychev, and Nabro eruptions. After these eruptions enhanced aerosol is detected in the upper troposphere and lower stratosphere (UTLS) region. Within one to two months it spreads over most of the northern hemisphere. In the tropics the aerosol reaches altitudes up to around 20 km and in the Arctic up to 15 km. The enhanced aerosol signal can be observed for about 5, 7, and up to 10 month for the Kasatochi, Sarychev, and Nabro eruptions, respectively. During this period the enhanced aerosol detections decrease in number, strength, and observation altitude. After the Nabro eruption on 13 June 2011 volcanic aerosol is detected in the UTLS region two days after the initial eruption. The following days the aerosol moves around the northern edge of the Asian monsoon region, is then transported southwards and later

  10. Satellite observations and EMAC model calculations of sulfate aerosols from Kilauea: a study of aerosol formation, processing, and loss

    NASA Astrophysics Data System (ADS)

    Penning de Vries, Marloes; Beirle, Steffen; Brühl, Christoph; Dörner, Steffen; Pozzer, Andrea; Wagner, Thomas

    2016-04-01

    The currently most active volcano on Earth is Mount Kilauea on Hawaii, as it has been in a state of continuous eruption since 1983. The opening of a new vent in March 2008 caused half a year of strongly increased SO2 emissions, which in turn led to the formation of a sulfate plume with an extent of at least two thousand kilometers. The plume could be clearly identified from satellite measurements from March to November, 2008. The steady trade winds in the region and the lack of interfering sources allowed us to determine the life time of SO2 from Kilauea using only satellite-based measurements (no a priori or model information). The current investigation focuses on sulfate aerosols: their formation, processing and subsequent loss. Using space-based aerosol measurements by MODIS, we study the evolution of aerosol optical depth, which first increases as a function of distance from the volcano due to aerosol formation from SO2 oxidation, and subsequently decreases as aerosols are deposited to the surface. The outcome is compared to results from calculations using the EMAC (ECHAM/MESSy Atmospheric Chemistry) model to test the state of understanding of the sulfate aerosol life cycle. For this comparison, a particular focus is on the role of clouds and wet removal processes.

  11. Effects of sulfate aerosol on the central Pennsylvania surface shortwave radiation budget. Master's thesis

    SciTech Connect

    Guimond, P.W.

    1994-12-01

    Surface radiation measurements are taken simultaneously with measurements of meteorological variables including temperature, pressure, relative humidity, and visibility to evaluate the impact of sulfate haze on the surface radiation budget. A relationship is sought between flux losses due only to aerosol and relative humidity, visibility or both, with the goal of facilitating parameterization of sulfate hazes by climate modelers. At the same time, a rotating shadowband radiometer (RSR) is compared with a more costly sun photometer to determine the feasibility of substituting the former for the latter in future research. It is found that depletion of surface radiation due to aerosol is typically ten to twenty percent of initial insolation, and that the losses can be correlated with zenith angle, relative humidity and optical depth. In the case of flux loss as a function of optical depth, the two are related in a nearly linear fashion. It is also discovered that the RSR has a predictable error owing to a wider field of view than the sun photometer, and can be used as a replacement for the former by correcting for the error.

  12. Evaluation of sulfate aerosol optical depths over the North Atlantic and comparison with satellite observations

    SciTech Connect

    Berkowitz, C.M.; Ghan, S.J.; Benkovitz, C.M.; Wagener, R.; Nemesure, S.; Schwartz, S.E.

    1993-11-01

    It has been postulated that scattering of sunlight by aerosols can significantly reduce the amount of solar energy absorbed by the climate system. Aerosol measurement programs alone cannot provide all the information needed to evaluate the radiative forcing due to anthropogenic aerosols. Thus, comprehensive global-scale aerosol models, properly validated against surface-based and satellite measurements, are a fundamental tool for evaluating the impacts of aerosols on the planetary radiation balance. Analyzed meteorological fields from the European Centre for Medium-Range Weather Forecasts are used to drive a modified version of the PNL Global Chemistry Model, applied to the atmospheric sulfur cycle. The resulting sulfate fields are used to calculate aerosol optical depths, which in turn are compared to estimates of aerosol optical depth based on satellite observations.

  13. On numerical simulation of the global distribution of sulfate aerosol produced by a large volcanic eruption

    SciTech Connect

    Pudykiewicz, J.A.; Dastoor, A.P.

    1994-12-31

    Volcanic eruptions play an important role in the global sulfur cycle of the Earth`s atmosphere and can significantly perturb the global atmospheric chemistry. The large amount of sulfate aerosol produced by the oxidation of SO{sub 2} injected into the atmosphere during volcanic eruptions also has a relatively big influence on the radiative equilibrium of the Earth`s climatic system. The submicron particles of the sulfate aerosol reflect solar radiation more effectively than they trap radiation in the infrared range. The effect of this is observed as cooling of the Earth`s surface. The modification of the global radiation budget following volcanic eruption can subsequently cause significant fluctuations of atmospheric variables on a subclimatic scale. The resulting perturbation of weather patterns has been observed and well documented since the eruptions of Mt. Krakatau and Mt. Tambora. The impact of the sulfate aerosol from volcanic eruptions on the radiative equilibrium of the Earth`s atmosphere was also confirmed by the studies done with Global Circulation Models designed to simulate climate. The objective of the present paper is to present a simple and effective method to estimate the global distribution of the sulfate aerosol produced as a consequence of volcanic eruptions. In this study we will present results of the simulation of global distribution of sulfate aerosol from the eruption of Mt Pinatubo.

  14. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years

    NASA Astrophysics Data System (ADS)

    Weber, Rodney J.; Guo, Hongyu; Russell, Armistead G.; Nenes, Athanasios

    2016-04-01

    Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate is often the main acid component of aerosols, and largely determines the acidity of fine particles under 2.5 μm in diameter, PM2.5. Over the past 15 years, atmospheric sulfate concentrations in the southeastern United States have decreased by 70%, whereas ammonia concentrations have been steady. Similar trends are occurring in many regions globally. Aerosol ammonium nitrate concentrations were assumed to increase to compensate for decreasing sulfate, which would result from increasing neutrality. Here we use observed gas and aerosol composition, humidity, and temperature data collected at a rural southeastern US site in June and July 2013 (ref. ), and a thermodynamic model that predicts pH and the gas-particle equilibrium concentrations of inorganic species from the observations to show that PM2.5 at the site is acidic. pH buffering by partitioning of ammonia between the gas and particle phases produced a relatively constant particle pH of 0-2 throughout the 15 years of decreasing atmospheric sulfate concentrations, and little change in particle ammonium nitrate concentrations. We conclude that the reductions in aerosol acidity widely anticipated from sulfur reductions, and expected acidity-related health and climate benefits, are unlikely to occur until atmospheric sulfate concentrations reach near pre-anthropogenic levels.

  15. Anthropogenic sulfate and organic aerosols, CCN, and cloud project concentration at a marine site

    SciTech Connect

    Novakao, T.; Rivera-Carpio, C.; Penner, J.E.; Rogers, C.F.

    1993-10-01

    The need to establish the relationships between the number concentration of cloud droplets, cloud condensation nuclei (CCN), and the mass concentrations of major aerosol species has been heightened by the results of recent modeling studies suggesting that anthropogenic sulfate and biomass smoke aerosols may cause a globally averaged climate forcing comparable in magnitude but opposite in sign to the forcing due to ``greenhouse`` gases. In this paper we present the results of measurements of nonseasalt (nss) sulfate and organic carbon mass concentrations and mass size distributions, CCN, and cloud droplet number concentrations obtained in 1991 and 1992 on El Yunque peak, Puerto Rico . This peak (18{degree}19N, 65{degree}45W; elevation 1000 m) is located the eastern end of the island, directly exposed to the ocean winds and frequently covered with clouds. Our results show that although CCN number concentrations (measured at 0.5% supersaturation) and nss sulfate mass concentrations are significantly correlated at this site, estimates based on measured mass size distributions of organic and sulfate aerosols indicate that the organic aerosols may account for the majority of CCN number concentrations. Droplet concentrations in the cumulus clouds do not show a discernible trend with nss sulfate mass concentrations. In stratocumulus clouds a small increase in droplet concentrations with nss sulfate mass concentrations was observed.

  16. Thermochemical, cloud condensation nucleation ability and optical properties of alkyl aminium sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Lavi, A.; Bluvshtein, N.; Segre, E.; Segev, L.; Flores, J.; Rudich, Y.

    2013-12-01

    The increased interest in the chemistry of alkylamines and their possible roles in the atmosphere increased recently due to field observations of the correlation between new particle formation and post nucleation growth events and the presence of alkylamines in their cationic form. Due to their high saturation vapor pressure it is unlikely that short chain alkylamines will contribute to particle formation or growth by condensation. Therefore, it was previously suggested that their contribution to particulate phase is the result of acid-base reactions between the basic alkylamines and atmospherically relevant acids such as sulfuric and nitric acid. In this study we present laboratory data on the thermochemical, CCN activity and optical properties of selected atmospherically relevant alkyl aminium sulfate salts: Monomethyl aminium sulfate (MMAS), dimethyaminium sulfate (DMAS), trimethylaminium sulfate, monoethylaminium sulfate (MEAS), diethylaminium sulfate (DEAS) and triethylaminium sulfate (TEAS)). We found that the vapor pressure of these aminium salts is 1-3 orders of magnitude lower than that of ammonium sulfate and as such they can contribute to new aerosols and secondary aerosols formation. We infer that these species have very high CCN activity, with hygroscopicity parameter that is lower but close to that ammonium sulfate. Finally, we present the optical properties of these alkyl aminium sulfate salts between 360 and 420 nm. These compounds are less scattering than ammonium sulfate and show minimal wavelength dependence in this range. These compounds also do not absorb light. These derived parameters can contribute to the better understanding and characterization of the role that these compounds play in atmospheric chemical reactions, gas-solid partitioning and their possible contribution to the microphysical and radiative effects of atmospheric aerosols.

  17. Fingerprinting Volcanic and Anthropogenic Sulfur Dioxide in the Air: A 25 Year Record of Sulfate Aerosols from the South Pole Snowpit, Antarctica

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Abaunza-Quintero, M.; Jackson, T. L.; McCabe, J.; Savarino, J. P.; Thiemens, M. H.

    2012-12-01

    (IV) to S(VI), are strictly mass dependent (Δ17O = 0‰).), including gas-phase oxidation by OH in the troposphere. Since S(IV) oxidation by O3 is the only mechanism producing sulfate Δ17O values >1‰. The bulk sulfate Δ17O values greater than 1‰. therfore, quantitatively indicates the relative contribution of O3 in sulfate formation. The oxygen isotopic anomaly of sulfate aerosols correlates with the ozone concentrations obtained by TOMS (Total Ozone mapping spectrometer) at mid-latitudes, partially reflecting sulfate provenance. The sulfate oxygen isotopic composition of the pristine marine background (samples obtained from Cape Grim, Australia) of the Southern Ocean will be used to further constrain the natural background variation and anthropogenic input to the total sulfate aerosols deposited at the South Pole, Antarctica.

  18. Antarctic polar stratospheric aerosols: The roles of nitrates, chlorides and sulfates

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Snetsinger, K. G.; Goodman, J. K.; Ferry, G. V.; Oberbeck, V. R.; Verma, S.; Fong, W.

    1988-01-01

    Nitric and hydrochloric acids have been postulated to condense in the winter polar stratosphere to become an important component of polar stratospheric clouds. One implication is that the removal of NO(y) from the gas phase by this mechanism allows high Cl(x) concentrations to react with O3, because the formation of ClNO3 is inhibited. Contributions of NO3 and Cl to the stratospheric aerosol were determined during the 1987 Airborne Antarctic Ozone Experiment by testing for the presence of nitrates and chlorides in the condensed phase. Aerosol particles were collected on four 500 micron diameter gold wires, each pretreated differently to give results that were specific to certain physical and chemical aerosol properties. One wire was carbon-coated for concentration and size analyses by scanning electron microscopy; X-ray energy dispersive analyses permitted the detection of S and Cl in individual particles. Three more wires were coated with Nitron, barium chloride and silver nitrate, respectively, to detect nitrate, sulfate and chloride in aerosol particles. All three ions, viz., sulfates, nitrates and chlorides were detected in the Antarctic stratospheric aerosol. In terms of number concentrations, the aerosol was dominated by sulfates, followed by chlorides and nitrates. An inverse linear regression can be established between nitrate concentrations and ozone mixing ratio, and between temperature and nitrates.

  19. Comparison of normal and asthmatic subjects' responses to sulfate pollutant aerosols

    SciTech Connect

    Utell, M.J.; Morrow, P.E.; Hyde, R.W.

    1980-01-01

    Epidemiological studies support an association between elevated levels of sulfates and acute respiratory disease. To determine if these pollutants produce airway hyperreactivity, 16 normal and 17 asthmatic subjects inhaled a control NaCl aerosol and the following sulfates: ammonium sulfate, sodium bisulfate, ammonium bisulfate, and sulfuric acid. A Lovelace generator produced particles with an average MMAD of approx. 1.0 ..mu..m (sigma/sub g/ approx. = 2.0) and concentrations of 0.1 and 1.0 mg/m/sup 3/. By double-blind randomization, all subjects breathed these aerosols for a 16-minute period. To determine if sulfate inhalation caused increased reactivity to a known bronchoconstrictor, all subjects inhaled carbachol following each 16-minute exposure. Before, during, and after exposure, pulmonary function studies were performed. When compared to NaCl, sulfate (1 mg/m/sup 3/) produced significant reductions in airway conductance and flow rates in asthmatics. The two most sensitive asthmatics demonstrated changes even at 0.1 mg/m/sup 3/ sulfate. To a far more significant degree, the bronchoconstrictor action of carbachol was potentiated by sulfates more or less in relation to their acidity in normals and asthmatics.

  20. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China

    PubMed Central

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-01-01

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ34Ssulfate and δ18Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ34S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ34Ssulfate and δ18Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere. PMID:27435991

  1. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China

    NASA Astrophysics Data System (ADS)

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-07-01

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ34Ssulfate and δ18Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ34S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ34Ssulfate and δ18Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere.

  2. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China.

    PubMed

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-01-01

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ(34)Ssulfate and δ(18)Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ(34)S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ(34)Ssulfate and δ(18)Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere. PMID:27435991

  3. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China.

    PubMed

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-07-20

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ(34)Ssulfate and δ(18)Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ(34)S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ(34)Ssulfate and δ(18)Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere.

  4. Pacific marine aerosol 2. Equatorial gradients in chlorophyll, ammonium, and excess sulfate during SAGA 3

    SciTech Connect

    Clarke, A.D.; Porter, J.N.

    1993-09-20

    In February and March 1990, measurements of aerosol physicochemistry were made during five transects across the equator between 15{degrees}N and 10{degrees}S. Marked equatorial gradients in both the aerosol NH{sub 4}{sup +}/SO{sub 4}{sup 2{minus}} ratio and the strong surface water chlorophyll were associated with boundaries separating oligotrophic waters and regions of equatorial upwelling. Highest aerosol ammonium concentrations appeared to be unrelated to continental signatures but corresponded to regions of highest chlorophyll concentrations. Favorable aerosol chemistry, wind directions, and cruise tracks in conjunction with rapid aerosol sampling made it possible to estimate the flux of ammonia from in surface in these transition regions at about 10 {mu}mol m{sup {minus}2} d{sup {minus}1} with possibly greater values in regions where higher chlorophyll concentrations exceeded about 0.25 mg m{sup {minus}3}. Low NH{sub 4}{sup +}/SO{sub 4}{sup 2{minus}} values in aerosol over oligotrophic regions with chlorophyll concentrations below 0.1 mg m{sup {minus}3} suggest the flux in these regions was about an order of magnitude lower. Aerosol sulfate concentrations were also generally elevated over the upwelling region but showed a less pronounced relationship to chlorophyll abundance, suggesting independent source mechanisms for ammonium and sulfate. Rapid variability in mass and number concentrations were evident in convective regions. Both depletion of larger aerosol (mass) through precipitation scavenging and an increase in the number of smaller aerosol in region of subsidence indicate the complex relationship among CN, CCN, and aerosol mass in the remote marine boundary layer. 37 refs., 11 figs., 1 tab.

  5. Delineating the effect of El-Nino Southern Oscillations using oxygen and sulfur isotope anomalies of sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Abaunza Quintero, M. M.; Jackson, T.; McCabe, J.; Savarino, J. P.; Thiemens, M. H.

    2013-12-01

    Sulfate aerosols, unlike greenhouse gases, contribute to global cooling by acting as cloud condensation nuclei in the troposphere and by directly reflecting solar radiation in the stratosphere. To understand the long-term effect of natural and anthropogenic sulfate aerosol on the climate cycle, it is critical to obtain a clear picture of the factors controlling the transport and transformation of sulfate aerosols. We have employed both oxygen triple isotopes and sulfur quadruple isotopes on sulfates from Antarctic ice samples to define the oxidation history, long range transport dynamics, and sources of sulfate aerosols over time. The measurements are used to deconvolve the impact of natural and anthropogenic aerosols on the stratospheric sulfate aerosol composition. Sulfate aerosols were extracted from a snow pit at the South Pole (1979-2002) with a high resolution temporal (6 month) record of the winter and summer seasons covering two largest volcanic events, Pinatubo and El-chichon and three largest ENSO events of the century. All three oxygen and four sulfur isotopes were measured on the extracted sulfate (Shaheen et al., 2013). The high temperature pyrolysis (1000oC) of silver sulfate yielded O2 and SO2. The oxygen triple isotopic composition of the O2 gas was used to determine the oxidation history of sulfate aerosol and SO2 gas obtained during this reaction was utilized to measure sulfur quadruple isotopes following appropriate reaction chemistry (Farquhar et al., 2001). The data revealed that oxygen isotope anomalies in Antarctic aerosols (Δ17O = 0.8-3.7‰) from 1990 to 2001 are strongly linked to the variation in ozone levels in the upper stratosphere/lower stratosphere. The variations in ozone levels are reflective of the intensity of the ENSO events and changes in relative humidity in the atmosphere during this time period. Sulfate concentrations and sulfur quadruple isotopic composition and associated anomalies were used to elucidate the sources of

  6. Fingerprinting El Nino Southern Ocean events using oxygen triple isotopic composition of aerosol sulfate from the South Pole snow pit samples

    NASA Astrophysics Data System (ADS)

    Thiemens, M. H.; Abaunza Quintero, M. M.; Shaheen, R.; Jackson, T. L.; McCabe, J.; Savarino, J. P.

    2011-12-01

    According to the Intergovernmental Panel on Climate Change 4th assessment report [IPCC 2007], aerosols are the largest source of uncertainty in modeling the earth's radiative budget. Sulfate aerosols contributes to global cooling that may mask warming effect by greenhouse gases, therefore, high resolution record of aerosol sulfate can help to understand the impact of anthropogenic activities and natural variations on climate change. Sulfate aerosols were extracted from the ice pit samples obtained from the South Pole (1979-2002) at a high resolution temporal record of the winter and summer seasons. To insure highest measurement ability of very small samples (few nano moles) a hydrogen peroxide cleaning method was developed to remove organic impurities from aerosols which otherwise significantly affect O-triple isotopic measurement of the sulfates. Preliminary data indicated non sea salt contributions of 70-95% with a range in δ18OVSMOW = -1.86 -12% and Δ17O = 0.8-3.7% for the years 1990-2001. The positive Δ17O of sulfate derives from aqueous phase oxidation of SO2 by H2O2 and O3 and involves transfer of the isotopic anomaly from the oxidant to the product sulfate. All other sulfate sources (sea salt sulfates and primary sulfates from fossil fuel combustion), including gas-phase oxidation by OH in the troposphere, metal catalyzed oxidation of S(IV) to S(VI), are strictly mass dependent (Δ17O = 0%). The magnitude of the transfer of the Δ17O varies according to the relative contribution from H2O2 at pH < 6 (Δ17O = 1%) and O3 at pH > 6 (Δ17O = 8%). Seasonal variations of these oxidants and their contribution to S(IV) oxidation will be discussed. Since our samples include the time period 1977-2002, each year divided into two parts (winter and summer season's aerosols), in addition to seasonal variation in sulfate oxidation pathways, we may also be able to assess if the oxidation cycle of sulfate changes during El Niño years.

  7. Condensed nitrate, sulfate, and chloride in Antarctic stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Snetsinger, K. G.; Toon, O. B.; Ferry, G. V.; Oberbeck, V. R.; Starr, W. L.; Chan, K. R.; Goodman, J. K.

    1989-01-01

    The 1987 Airborne Antarctic Ozone Experiment, in which the NO3, Cl, and SO4 contents of stratospheric aerosols were estimated, is discussed. The aerosol size and chemical composition measurements were carried out on samples collected during August 17 to September 4, 1987. The data indicate that condensed nitrate is found below a threshold temperature of 193.6 + or - 3.0 K, which is generally found at latitudes exceeding 64 deg S. A negative correlation exists between condensed nitrate and ozone correlation.

  8. SAGE II aerosol validation: selected altitude measurements, including particle micromeasurements.

    PubMed

    Oberbeck, V R; Livingston, J M; Russell, P B; Pueschel, R F; Rosen, J N; Osborn, M T; Kritz, M A; Snetsinger, K G; Ferry, G V

    1989-06-20

    Correlative aerosol measurements taken at a limited number of altitudes during coordinated field experiments are used to test the validity of particulate extinction coefficients derived from limb path solar radiance measurements taken by the Stratospheric Aerosol and Gas Experiment (SAGE) II Sun photometer. In particular, results are presented from correlative measurement missions that were conducted during January 1985, August 1985, and July 1986. Correlative sensors included impactors, laser spectrometers, and filter samplers aboard an U-2-airplane, an upward pointing lidar aboard a P-3 airplane, and balloon-borne optical particle counters (dustsondes). The main body of this paper focuses on the July 29, 1986, validation experiment, which minimized the many difficulties (e.g., spatial and temporal inhomogeneities, imperfect coincidences) that can complicate the validation process. On this day, correlative aerosol measurements taken at an altitude of 20.5 km agreed with each other within their respective uncertainties, and particulate extinction values calculated at SAGE II wavelengths from these measurements validated corresponding SAGE II values. Additional validation efforts on days when measurement and logistical conditions were much less favorable for validation are discussed in an appendix.

  9. The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols

    NASA Astrophysics Data System (ADS)

    Trainic, M.; Riziq, A. A.; Lavi, A.; Flores, J. M.; Rudich, Y.

    2011-07-01

    The heterogeneous reaction between gas phase glyoxal and ammonium sulfate (AS) aerosols, a proxy for inorganic atmospheric aerosol, was studied in terms of the dependence of the optical, physical and chemical properties of the product aerosols on initial particle size and ambient RH. The reactions were studied under different relative humidity (RH) conditions, varying from dry conditions (~20 % RH) and up to 90 % RH, covering conditions prevalent in many atmospheric environments. At λ = 355 nm, the reacted aerosols demonstrate a substantial growth in optical extinction cross section, as well as in mobility diameter under a broad range of RH values (35-90 %). The ratio of the product aerosol to seed aerosol geometric cross section reached up to ~3.5, and the optical extinction cross-section up to ~250. The reactions show a trend of increasing physical and optical growth with decreasing seed aerosol size, from 100nm to 300 nm, as well as with decreasing RH values from 90 % to ~40 %. Optically inactive aerosols, at the limit of the Mie range (100 nm diameter) become optically active as they grow due to the reaction. AMS analyses of the reaction of 300 nm AS at RH values of 50 %, 75 % and 90 % show that the main products of the reaction are glyoxal oligomers, formed by acetal formation in the presence of AS. In addition, imidazole formation, which is a minor channel, is observed for all reactions, yielding a product which absorbs at λ = 290 nm, with possible implications on the radiative properties of the product aerosols. The ratio of absorbing substances (C-N compounds, including imidazoles) increases with increasing RH value. A core/shell model used for the investigation of the optical properties of the reaction products of AS 300nm with gas phase glyoxal, shows that the refractive index (RI) of the reaction products are in the range between 1.57-1.71 for the real part and between 0-0.02 for the imaginary part of the RI at 355 nm. The observed increase in the

  10. Modeling the direct and indirect climatic effects of tropospheric sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Cox, Stephen J.

    2000-10-01

    Modeling studies of the climatic effects of tropospheric sulfate aerosols are presented. Both the direct scattering by the aerosols and the indirect effect of enhanced cloud albedo from increased aerosol numbers are addressed, in separate studies. The direct effect study uses aerosol mass concentrations from the MOGUNTIA chemical transport model. A parameterization is developed to model the radiative forcing due to direct shortwave scattering by the aerosols in the NCAR Community Climate Model, an atmospheric general circulation model. Aerosol layer optical properties are folded into the direct and diffuse surface albedo. The aerosol forcing is similar in magnitude, but opposite in sign, to the longwave forcing by anthropogenic greenhouse gases such as CO 2, CH4, N2O, CF2CL2, and CFCL3. CCM1 is run for thirty-five years with equal and opposite global annual mean aerosol and greenhouse forcings, and the results compared to a control run with no forcing. It is determined that the global mean temperate responds to the forcings equally, with a global sensitivity of 1.25 K/(W m -2), but the regional temperature response shows marked variation, which could not be predicted simply from the forcing pattern. The aerosol forcing is concentrated in the industrial continental areas of the Northern Hemisphere midlatitudes, yet a strong cooling response is noted in regions thousands of kilometers away (for instance, western Canada) from centers of aerosol concentration. The indirect effect is studied with more recent sulfate estimates, from the Oslo Chemical Transport Model. Field studies are used to relate sulfate mass concentration to cloud droplet number concentration, and subsequently to cloud droplet effective radius. The indirect parameterization is incorporated into NCAR CCM3, along with a new shortwave parameterization which allows the full vertical distribution of the aerosols to be accounted for. The indirect radiative forcing is found to be a cooling of 0.47 W m-2

  11. The effect of aerosol vertical profiles on satellite-estimated surface particle sulfate concentrations

    SciTech Connect

    Liu, Yang; Wang, Zifeng; Wang, Jun; Ferrare, Richard A.; Newsom, Rob K.; Welton, Ellsworth J.

    2011-02-15

    The aerosol vertical distribution is an important factor in determining the relationship between satellite retrieved aerosol optical depth (AOD) and ground-level fine particle pollution concentrations. We evaluate how aerosol profiles measured by ground-based lidar and simulated by models can help improve the association between AOD retrieved by the Multi-angle Imaging Spectroradiometer (MISR) and fine particle sulfate (SO4) concentrations using matched data at two lidar sites. At the Goddard Space Flight Center (GSFC) site, both lidar and model aerosol profiles marginally improve the association between SO4 concentrations and MISR fractional AODs, as the correlation coefficient between cross-validation (CV) and observed SO4 concentrations changes from 0.87 for the no-scaling model to 0.88 for models scaled with aerosol vertical profiles. At the GSFC site, a large amount of urban aerosols resides in the well-mixed boundary layer so the column fractional AODs are already excellent indicators of ground-level particle pollution. In contrast, at the Atmospheric Radiation Measurement Program (ARM) site with relatively low aerosol loadings, scaling substantially improves model performance. The correlation coefficient between CV and observed SO4 concentrations is increased from 0.58 for the no-scaling model to 0.76 in the GEOS-Chem scaling model, and the model bias is reduced from 17% to 9%. In summary, despite the inaccuracy due to the coarse horizontal resolution and the challenges of simulating turbulent mixing in the boundary layer, GEOS-Chem simulated aerosol profiles can still improve methods for estimating surface aerosol (SO4) mass from satellite-based AODs, particularly in rural areas where aerosols in the free troposphere and any long-range transport of aerosols can significantly contribute to the column AOD.

  12. Stratospheric sulfate aerosol in and near the Northern Hemisphere polar vortex - The morphology of the sulfate layer, multimodal size distributions, and the effect of denitrification

    NASA Technical Reports Server (NTRS)

    Wilson, J. G.; Stolzenburg, M. R.; Clark, W. E.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.; Kelly, K. K.

    1992-01-01

    Measurements were made of stratospheric sulfate aerosols using a passive cavity aerosol spectrometer and a condensation nucleus counter on a NASA ER-2 aircraft in the Airborne Arctic Stratospheric Experiment of 1989. The problems of representative and accurate sampling and particle evaporation were explicitly addressed in the design of the inlets and reduction of the data. The measurements suggest that the sulfate aerosol is bimodal in the polar vortex above the mass mixing ratio maximum in the sulfate layer. It appears that a nuclei mode of small, newly formed particles exists in this region. A stronger case is made for a nuclei mode in the upper few kilometers of the troposphere and in the lower few kilometers of the stratosphere. This mode is probably a global phenomenon occurring in all seasons. Comparison of denitrified and nondenitrified air suggests that denitrification removes some of the larger sulfate particles.

  13. Intercommunity differences in acid aerosol (H+)/sulfate (SO4(2-) ratios.

    PubMed

    Ozkaynak, H; Xue, J; Zhou, H; Spengler, J D; Thurston, G D

    1996-01-01

    Exposures to acid aerosols have been associated with acute and chronic health effects. Beginning in 1988, extensive monitoring of acid aerosols (H+), sulfates (SO4(2-)), and ammonia (NH3) was conducted in 24 communities in the United States and Canada in order to characterize the seasonal and daily variations of these pollutants. More recently, in 1992 and 1993, summer monitoring of the same pollutants was conducted by Harvard researchers at multiple locations in Philadelphia, Pennsylvania to examine the factors causing spatial variation in the acidity levels in the greater metropolitan Philadelphia area. Earlier, a similar study also was conducted by Harvard in a more rural community, State College, Ohio, providing data on acidity, sulfate, and ammonia levels. In addition to these studies, New York University researchers have gathered substantial data on aerosol acidity, sulfates, and NH3 levels from sites in the New York City metropolitan region, Albany, Buffalo, and the Toronto metropolitan region between 1988 and 1992. This paper examines the relationships among H+, SO4(2-), ozone, and population density using summer measurements from sites in 24 cities across the United States and Canada, as well as Philadelphia, State College, the New York City region, Buffalo, and Albany. While past studies have consistently shown that H+ and SO4(2-) are correlated over time at sites in eastern North America, the results of our analysis show that spatial variations in the ratios of mean acid-to-sulfate levels also can be predicted satisfactorily with the use of either a linear or a quadratic model, once variations in population density are addressed (R2 = 0.6). These models may be useful in retrospective epidemiological investigations of acid aerosol exposures and health effects, using widely available sulfate measurements and data on local population size.

  14. Sulfate Aerosol Formation and Oxidation Pathways on Haze Event over East Asia Region Focusing on Korea.

    NASA Astrophysics Data System (ADS)

    Choi, D.; Koo, Y. S.

    2014-12-01

    The aerosol transports from China largely contribute to high PM (Particulate Matter) concentration in Korea. Especially, secondary inorganic aerosol (SIA) such as nitrate, sulfate and ammonium are largely transported from China to Korea during haze event. The measured PM2.5 (Particle Matter with aerodynamic diameters less than 2.5㎛) concentrations at the supersite monitoring stations in Korea are normally over 100 ug/m3 and SIAs are major chemical species with more than 70% of PM2.5 during the event. According to our air quality forecast model, sulfate concentrations are largely under-predicted in winter and slightly over-predicted in summer. Those discrepancies between model predicted and observed sulfate concentrations are mainly due to uncertainties of precursor emissions of NOx, SO2, and VOCs (Volatile Organic Compounds) and chemical mechanism of the sulfate formation in the chemical forecast model of CMAQ (Community Multiscale Air Quality Model). Formation of sulfate is chemically linked to primary emissions of sulfur dioxide and to be abundancy of atmospheric oxidants such as hydroxyl radical, hydrogen peroxide, ozone, methyl hydroperoxide, and peroxyacetic acid. All of these oxidant species are formed via photochemical reactions with NOx and VOCs. The aim of this work is to investigate the dependency of sulfate formation on oxidant levels in winter and summer during episode event using CMAQ and its sulfate tracking probing tool. The sensitivity of the precursor emissions of SO2, NOx, VOCs and NH3 was also tested to understand the pathways of the sulfate formation. The results show that long range transport from China is a major factor to determine sulfate level in Korea during haze events and dominant mechanisms in the sulfate formation are the gas-phase OH and aqueous phase H2O2 reactions. NOx-SO2-VOCs chemical regimes for the sulfate formation is the VOCs limited regimes in Korea. The further details of the sensitivity run of the precursor emissions and

  15. Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation.

    PubMed

    Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2015-11-17

    The effects of particle-phase water and the acidity of pre-existing sulfate seed particles on the formation of isoprene secondary organic aerosol (SOA) was investigated. SOA was generated from the photo-oxidation of isoprene in a flow tube reactor at 70% relative humidity (RH) and room temperature in the presence of three different sulfate seeds (effloresced and deliquesced ammonium sulfate and ammonium bisulfate) under low NOx conditions. High OH exposure conditions lead to little isoprene epoxydiol (IEPOX) SOA being generated. The primary result is that particle-phase water had the largest effect on the amount of SOA formed, with 60% more SOA formation occurring with deliquesced ammonium sulfate seeds as compared to that on effloresced ones. The additional organic material was highly oxidized. Although the amount of SOA formed did not exhibit a dependence on the range of seed particle acidity examined, perhaps because of the low amount of IEPOX SOA, the levels of high-molecular-weight material increased with acidity. While the uptake of organics was partially reversible under drying, the results nevertheless indicate that particle-phase water enhanced the amount of organic aerosol material formed and that the RH cycling of sulfate particles may mediate the extent of isoprene SOA formation in the atmosphere. PMID:26460477

  16. Optical constants of ammonium sulfate in the infrared. [stratospheric aerosol refractive and absorption indices

    NASA Technical Reports Server (NTRS)

    Downing, H. D.; Pinkley, L. W.; Sethna, P. P.; Williams, D.

    1977-01-01

    The infrared spectral reflectance at near normal incidence has been measured for 3.2 M, 2.4 M, and 1.6 M solutions of ammonium sulfate, an aerosol abundant in the stratosphere and also present in the troposphere. Kramers-Kronig analysis was used to determine values of the refractive and absorption indices from the measured spectral reflectance. A synthetic spectrum of crystalline ammonium sulfate was obtained by extrapolation of the absorption index obtained for the solution to the absorber number densities of the NH4 and SO4 ions characteristic of the crystal.

  17. Source contributions of sulfate aerosol over East Asia estimated by CMAQ-DDM.

    PubMed

    Itahashi, Syuichi; Uno, Itsushi; Kim, Soontae

    2012-06-19

    We applied the decoupled direct method (DDM), a sensitivity analysis technique for computing sensitivities accurately and efficiently, to determine the source-receptor relationships of anthropogenic SO(2) emissions to sulfate aerosol over East Asia. We assessed source contributions from East Asia being transported to Oki Island downwind from China and Korea during two air pollution episodes that occurred in July 2005. The contribution from China, particularly that from central eastern China (CEC), was found to dominate the sulfate aerosols. To study these contributions in more detail, CEC was divided into three regions, and the contributions from each region were examined. Source contributions exhibited both temporal and vertical variability, largely due to transport patterns imposed by the Asian summer monsoon. Our results are consistent with backward trajectory analyses. We found that anthropogenic SO(2) emissions from China produce significant quantities of summertime sulfate aerosols downwind of source areas. We used a parametric scaling method for estimating anthropogenic SO(2) emissions in China. Using column amounts of SO(2) derived from satellite data, and relationships between the column amounts of SO(2) and anthropogenic emissions, 2009 emissions were diagnosed. The results showed that 2009 emissions of SO(2) from China were equivalent to 2004 levels. PMID:22642816

  18. Effects of sulfate aerosol forcing on East Asian summer monsoon for 1985-2010

    NASA Astrophysics Data System (ADS)

    Kim, Minjoong J.; Yeh, Sang-Wook; Park, Rokjin J.

    2016-02-01

    We examine the effect of anthropogenic aerosol forcing on the East Asian summer monsoon (EASM) using the Community Atmosphere Model version 5.1.1. One control and two sensitivity model experiments were conducted in order to diagnose the separate roles played by sea surface temperature (SST) variations and anthropogenic sulfate aerosol forcing changes in East Asia. We find that the SST variation has been a major driver for the observed weakening of the EASM, whereas the effect of the anthropogenic aerosol forcing has been opposite and has slightly intensified the EASM over the recent decades. The reinforcement of the EASM results from radiative cooling by the sulfate aerosol forcing, which decelerates the jet stream around the jet's exit region. Subsequently, the secondary circulation induced by such a change in the jet stream leads to the increase in precipitation around 18-23°N. This result indicates that the increase in anthropogenic emissions over East Asia may play a role in compensating for the weakening of the EASM caused by the SST forcing.

  19. Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident.

    PubMed

    Kaneyasu, Naoki; Ohashi, Hideo; Suzuki, Fumie; Okuda, Tomoaki; Ikemori, Fumikazu

    2012-06-01

    To date, areas contaminated by radionuclides discharged from the Fukushima Dai-ichi nuclear power plant accident have been mapped in detail. However, size of the radionuclides and their mixing state with other aerosol components, which are critical in their removal from the atmosphere, have not yet been revealed. We measured activity size distributions of (134)Cs and (137)Cs in aerosols collected 47 days after the accident at Tsukuba, Japan, and found that the activity median aerodynamic diameters of (134)Cs and (137)Cs in the first sample (April 28-May 12) were 0.54 and 0.53 μm, respectively, and those in the second sample (May 12-26) were both 0.63 μm. The activity size distributions of these radiocesium were within the accumulation mode size range and almost overlapped with the mass size distribution of non-sea-salt sulfate aerosol. From the analysis of other aerosol components, we found that sulfate was the potential transport medium for these radionuclides, and resuspended soil particles that attached radionuclides were not the major airborne radioactive substances at the time of measurement. This explains the relatively similar activity sizes of radiocesium measured at various sites during the Chernobyl accident. Our results can serve as basic data for modeling the transport/deposition of radionuclides.

  20. An aerosol formulation of R-salbutamol sulfate for pulmonary inhalation.

    PubMed

    Zhang, Xuemei; Liu, Qing; Hu, Junhua; Xu, Ling; Tan, Wen

    2014-02-01

    An aerosol formulation containing 7.5 mg of R-salbutamol sulfate was developed. The aerosol was nebulized with an air-jet nebulizer, and further assessed according to the new European Medicines Agency (EMA) guidelines. A breath simulator was used for studies of delivery rate and total amount of the active ingredient at volume of 3 mL. A next generation impactor (NGI) with a cooler was used for analysis of the particle size and in vitro lung deposition rate of the active ingredient at 5 °C. The anti-asthmatic efficacy of the aerosol formulation was assessed in guinea pigs with asthma evoked by intravenous injection of histamine compared with racemic salbutamol. Our results show that this aerosol formulation of R-salbutamol sulfate met all the requirements of the new EMA guidelines for nebulizer. The efficacy of a half-dose of R-salbutamol equaled that of a normal dose of racemic salbutamol.

  1. An aerosol formulation of R-salbutamol sulfate for pulmonary inhalation

    PubMed Central

    Zhang, Xuemei; Liu, Qing; Hu, Junhua; Xu, Ling; Tan, Wen

    2014-01-01

    An aerosol formulation containing 7.5 mg of R-salbutamol sulfate was developed. The aerosol was nebulized with an air-jet nebulizer, and further assessed according to the new European Medicines Agency (EMA) guidelines. A breath simulator was used for studies of delivery rate and total amount of the active ingredient at volume of 3 mL. A next generation impactor (NGI) with a cooler was used for analysis of the particle size and in vitro lung deposition rate of the active ingredient at 5 °C. The anti-asthmatic efficacy of the aerosol formulation was assessed in guinea pigs with asthma evoked by intravenous injection of histamine compared with racemic salbutamol. Our results show that this aerosol formulation of R-salbutamol sulfate met all the requirements of the new EMA guidelines for nebulizer. The efficacy of a half-dose of R-salbutamol equaled that of a normal dose of racemic salbutamol. PMID:26579368

  2. Aerosolized delivery of oxime MMB-4 in combination with atropine sulfate protects against soman exposure in guinea pigs.

    PubMed

    Perkins, Michael W; Pierre, Zdenka; Sabnekar, Praveena; Sciuto, Alfred M; Song, Jian; Soojhawon, Iswarduth; Oguntayo, Samuel; Doctor, Bhupendra P; Nambiar, Madhusoodana P

    2012-08-01

    We evaluated the efficacy of aerosolized acetylcholinesterase (AChE) reactivator oxime MMB-4 in combination with the anticholinergic atropine sulfate for protection against respiratory toxicity and lung injury following microinstillation inhalation exposure to nerve agent soman (GD) in guinea pigs. Anesthetized animals were exposed to GD (841 mg/m(3), 1.2 LCt(50)) and treated with endotracheally aerosolized MMB-4 (50 µmol/kg) plus atropine sulfate (0.25 mg/kg) at 30 sec post-exposure. Treatment with MMB-4 plus atropine increased survival to 100% compared to 38% in animals exposed to GD. Decreases in the pulse rate and blood O(2) saturation following exposure to GD returned to normal levels in the treatment group. The body-weight loss and lung edema was significantly reduced in the treatment group. Similarly, bronchoalveolar cell death was significantly reduced in the treatment group while GD-induced increase in total cell count was decreased consistently but was not significant. GD-induced increase in bronchoalveolar protein was diminished after treatment with MMB-4 plus atropine. Bronchoalveolar lavage AChE and BChE activity were significantly increased in animals treated with MMB-4 plus atropine at 24 h. Lung and diaphragm tissue also showed a significant increase in AChE activity in the treatment group. Treatment with MMB-4 plus atropine sulfate normalized various respiratory dynamics parameters including respiratory frequency, tidal volume, peak inspiratory and expiratory flow, time of inspiration and expiration, enhanced pause and pause post-exposure to GD. Collectively, these results suggest that aerosolization of MMB-4 plus atropine increased survival, decreased respiratory toxicity and lung injury following GD inhalation exposure.

  3. Large sulfur-isotope anomaly in nonvolcanic sulfate aerosol and its implications for the Archean atmosphere

    PubMed Central

    Shaheen, Robina; Abaunza, Mariana M.; Jackson, Teresa L.; McCabe, Justin; Savarino, Joël; Thiemens, Mark H.

    2014-01-01

    Sulfur-isotopic anomalies have been used to trace the evolution of oxygen in the Precambrian atmosphere and to document past volcanic eruptions. High-precision sulfur quadruple isotope measurements of sulfate aerosols extracted from a snow pit at the South Pole (1984–2001) showed the highest S-isotopic anomalies (Δ33S = +1.66‰ and Δ36S = +2‰) in a nonvolcanic (1998–1999) period, similar in magnitude to Pinatubo and Agung, the largest volcanic eruptions of the 20th century. The highest isotopic anomaly may be produced from a combination of different stratospheric sources (sulfur dioxide and carbonyl sulfide) via SOx photochemistry, including photoexcitation and photodissociation. The source of anomaly is linked to super El Niño Southern Oscillation (ENSO) (1997–1998)-induced changes in troposphere–stratosphere chemistry and dynamics. The data possess recurring negative S-isotope anomalies (Δ36S = −0.6 ± 0.2‰) in nonvolcanic and non-ENSO years, thus requiring a second source that may be tropospheric. The generation of nonvolcanic S-isotopic anomalies in an oxidizing atmosphere has implications for interpreting Archean sulfur deposits used to determine the redox state of the paleoatmosphere. PMID:25092338

  4. Large sulfur-isotope anomaly in nonvolcanic sulfate aerosol and its implications for the Archean atmosphere.

    PubMed

    Shaheen, Robina; Abaunza, Mariana M; Jackson, Teresa L; McCabe, Justin; Savarino, Joël; Thiemens, Mark H

    2014-08-19

    Sulfur-isotopic anomalies have been used to trace the evolution of oxygen in the Precambrian atmosphere and to document past volcanic eruptions. High-precision sulfur quadruple isotope measurements of sulfate aerosols extracted from a snow pit at the South Pole (1984-2001) showed the highest S-isotopic anomalies (Δ(33)S = +1.66‰ and Δ(36)S = +2‰) in a nonvolcanic (1998-1999) period, similar in magnitude to Pinatubo and Agung, the largest volcanic eruptions of the 20th century. The highest isotopic anomaly may be produced from a combination of different stratospheric sources (sulfur dioxide and carbonyl sulfide) via SOx photochemistry, including photoexcitation and photodissociation. The source of anomaly is linked to super El Niño Southern Oscillation (ENSO) (1997-1998)-induced changes in troposphere-stratosphere chemistry and dynamics. The data possess recurring negative S-isotope anomalies (Δ(36)S = -0.6 ± 0.2‰) in nonvolcanic and non-ENSO years, thus requiring a second source that may be tropospheric. The generation of nonvolcanic S-isotopic anomalies in an oxidizing atmosphere has implications for interpreting Archean sulfur deposits used to determine the redox state of the paleoatmosphere.

  5. Large sulfur-isotope anomaly in nonvolcanic sulfate aerosol and its implications for the Archean atmosphere.

    PubMed

    Shaheen, Robina; Abaunza, Mariana M; Jackson, Teresa L; McCabe, Justin; Savarino, Joël; Thiemens, Mark H

    2014-08-19

    Sulfur-isotopic anomalies have been used to trace the evolution of oxygen in the Precambrian atmosphere and to document past volcanic eruptions. High-precision sulfur quadruple isotope measurements of sulfate aerosols extracted from a snow pit at the South Pole (1984-2001) showed the highest S-isotopic anomalies (Δ(33)S = +1.66‰ and Δ(36)S = +2‰) in a nonvolcanic (1998-1999) period, similar in magnitude to Pinatubo and Agung, the largest volcanic eruptions of the 20th century. The highest isotopic anomaly may be produced from a combination of different stratospheric sources (sulfur dioxide and carbonyl sulfide) via SOx photochemistry, including photoexcitation and photodissociation. The source of anomaly is linked to super El Niño Southern Oscillation (ENSO) (1997-1998)-induced changes in troposphere-stratosphere chemistry and dynamics. The data possess recurring negative S-isotope anomalies (Δ(36)S = -0.6 ± 0.2‰) in nonvolcanic and non-ENSO years, thus requiring a second source that may be tropospheric. The generation of nonvolcanic S-isotopic anomalies in an oxidizing atmosphere has implications for interpreting Archean sulfur deposits used to determine the redox state of the paleoatmosphere. PMID:25092338

  6. SAGE II aerosol validation - Selected altitude measurements, including particle micromeasurements

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Russell, Philip B.; Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Ferry, Guy V.; Livingston, John M.; Rosen, James N.; Osborn, Mary T.; Kritz, Mark A.

    1989-01-01

    The validity of particulate extinction coefficients derived from limb path solar radiance measurements obtained during the Stratospheric Aerosol and Gas Experiment (SAGE) II is tested. The SAGE II measurements are compared with correlative aerosol measurements taken during January 1985, August 1985, and July 1986 with impactors, laser spectrometers, and filter samplers on a U-2 aircraft, an upward pointing lidar on a P-3 aircraft, and balloon-borne optical particle counters. The data for July 29, 1986 are discussed in detail. The aerosol measurements taken on this day at an altitude of 20.5 km produce particulate extinction values which validate the SAGE II values for similar wavelengths.

  7. Assessment of the first indirect radiative effect of ammonium-sulfate-nitrate aerosols in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Skorokhod, Andrei

    2016-09-01

    A physically based cloud nucleation parameterization was introduced into an optical properties/radiative transfer module incorporated with the off-line air quality modeling system Regional Atmospheric Modeling System (RAMS)-Models-3 Community Multi Scale Air Quality (CMAQ) to investigate the distribution features of the first indirect radiative effects of sulfate, nitrate, and ammonium-sulfate-nitrate (ASN) over East Asia for the years of 2005, 2010, and 2013. The relationship between aerosol particles and cloud droplet number concentration could be properly described by this parameterization because the simulated cloud fraction and cloud liquid water path were generally reliable compared with Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved data. Simulation results showed that the strong effect of indirect forcing was mainly concentrated in Southeast China, the East China Sea, the Yellow Sea, and the Sea of Japan. The highest indirect radiative forcing of ASN reached -3.47 W m-2 over Southeast China and was obviously larger than the global mean of the indirect forcing of all anthropogenic aerosols. In addition, sulfate provided about half of the contribution to the ASN indirect forcing effect. However, the effect caused by nitrate was weak because the mass burden of nitrate was very low during summer, whereas the cloud fraction was the highest. The analysis indicated that even though the interannual variation of indirect forcing magnitude generally followed the trend of aerosol mass burden from 2005 to 2013, the cloud fraction was an important factor that determined the distribution pattern of indirect forcing. The heaviest aerosol loading in North China did not cause a strong radiative effect because of the low cloud fraction over this region.

  8. Continuous Monitoring of Nitrate and Sulfate in Aerosols with Microchip Electrophoresis

    NASA Astrophysics Data System (ADS)

    Noblitt, S. D.; Henry, C. S.; Collett, J. L.; Hering, S. V.

    2007-12-01

    Routine monitoring of aerosol composition is important since aerosols can negatively affect both the environment and health. Water-soluble inorganic ions are commonly monitored using the particle-into-liquid-sampler coupled to ion chromatography (PILS-IC). However, a less-expensive, faster, and more portable analysis system is desirable. Here, we present the coupling of microchip capillary electrophoresis (MCE) to a water-based condensation particle counter (WCPC) for rapid and continuous monitoring of chloride, nitrate, and sulfate in atmospheric aerosols. To achieve a working system, several obstacles were overcome. A working interface between the electrophoresis microchip and the WCPC sampler was developed. This interface was designed to remove insoluble particles from the analysis stream and to prevent the sampling-induced pressure gradient from altering flow in the microfluidic device. The electrophoresis separation chemistry was optimized for the small chip size, to be free from potential interfering compounds, and to operate continuously for several hours. In-field performance of the integrated system was tested with ambient aerosols. Anion analyses can be performed in less than two minutes with aerosol detection limits similar to the PILS-IC, but with greater portability and reduced cost. Coupling microfluidic devices to aerosol sampling technology proves successful for inorganic anion analysis and shows potential for faster and more sensitive measurements as well as monitoring of other water- soluble aerosol components such as organic acids, cations, and carbohydrates. The reduced cost and size relative to current technology indicate that greater deployment of monitoring stations or the advent of portable analyzers may be feasible.

  9. Non-sulfate sulfur in fine aerosols across the United States: Insight for organosulfate prevalence

    NASA Astrophysics Data System (ADS)

    Shakya, Kabindra M.; Peltier, Richard E.

    2015-01-01

    We investigated the discrepancies in long-term sulfur measurements from 2000 to 2012 by two separate speciation methods, X-ray fluorescence (XRF) spectroscopy and ion chromatography (IC) across the United States (334 sites). Overall, there was a good correlation between sulfur measurements by XRF spectroscopy and IC (R ≥ 0.90 for most of the sites). However, the inorganic sulfate measured by ion chromatography was not sufficient to account for all the sulfur measured by XRF spectroscopy at many of the sites. Discrepancies were observed with the high ratios of sulfur measured by XRF spectroscopy to that by IC. Such high ratios also exhibited seasonal variation, and differed across land use types; significant differences occurred at locations classified as forest, agriculture, and mobile, but not in locations classified as commercial, desert, industrial, and residential. On average, the excess, or non-sulfate, sulfur (unmeasured organic sulfur or other inorganic species of sulfur) was variable and observed as high as ∼13% of organic carbon and ∼2% of PM2.5. The contribution of such assumed organosulfur was larger in the eastern region than other geographical locations in the United States. Besides the temporal and spatial trends, the additional sulfur was found to be related to other factors such as aerosol acidity and emission sources. The results suggest that these unmeasured sulfur species could have significant contribution to aerosol burden, and the understanding of these could help to control PM2.5 levels and to assess other effects of sulfur aerosols.

  10. Microphysical and compositional influences on shortwave radiative forcing of climate by sulfate aerosols

    SciTech Connect

    Schwartz, S.E.; Wagener, R.; Nemesure, S.

    1995-02-01

    Anthropogenic sulfate aerosols scatter shortwave (solar) radiation iincident upon the atmosphere, thereby exerting a cooling influence on climate relative to pre-industrial times. Previous estimates of this forcing place its global and annual average value at about {minus}1 W M{sup {minus}2}, uncertain to a factor of somewhat more than 2, comparable in magnitude to greenhouse gas forcing over the same period but opposite in sign and much more uncertain. Key sources of uncertainty are atmospheric chemistry factors (yield, residence time), and microphysical factors (scattering efficiency, upscatter fraction, and the dependence of these quantities on particle size and relative humidity, RH). This paper examines these microphysical influences to indentify properties required to obtain more a accurate description of this forcing. The mass scattering efficiency exhibits a maximum at a particle diameter ({approximately}0.5 {mu}m) roughly equal to the wavelength of maximum power in the solar spectrum and roughly equal to diameter typical of anthropogenic sulfate aerosols. Particle size, and hence mass scattering efficiency, increase with increasing on RH because of accretion of water by deliquescent salt aerosols.

  11. Non-sulfate sulfur in fine aerosols across the United States: Insight for organosulfate prevalence

    PubMed Central

    Shakya, Kabindra M.; Peltier, Richard E.

    2014-01-01

    We investigated the discrepancies in long-term sulfur measurements from 2000 to 2012 by two separate speciation methods, X-ray fluorescence (XRF) spectroscopy and ion chromatography (IC) across the United States (334 sites). Overall, there was a good correlation between sulfur measurements by XRF spectroscopy and IC (R ≥ 0.90 for most of the sites). However, the inorganic sulfate measured by ion chromatography was not sufficient to account for all the sulfur measured by XRF spectroscopy at many of the sites. Discrepancies were observed with the high ratios of sulfur measured by XRF spectroscopy to that by IC. Such high ratios also exhibited seasonal variation, and differed across land use types; significant differences occurred at locations classified as forest, agriculture, and mobile, but not in locations classified as commercial, desert, industrial, and residential. On average, the excess, or non-sulfate, sulfur (unmeasured organic sulfur or other inorganic species of sulfur) was variable and observed as high as ~13% of organic carbon and ~2% of PM2.5. The contribution of such assumed organosulfur was larger in the eastern region than other geographical locations in the United States. Besides the temporal and spatial trends, the additional sulfur was found to be related to other factors such as aerosol acidity and emission sources. The results suggest that these unmeasured sulfur species could have significant contribution to aerosol burden, and the understanding of these could help to control PM2.5 levels and to assess other effects of sulfur aerosols. PMID:25620874

  12. The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols

    NASA Astrophysics Data System (ADS)

    Trainic, M.; Abo Riziq, A.; Lavi, A.; Flores, J. M.; Rudich, Y.

    2011-09-01

    The heterogeneous reaction between gas phase glyoxal and ammonium sulfate (AS) aerosols, a proxy for inorganic atmospheric aerosol, was studied in terms of the dependence of the optical, physical and chemical properties of the product aerosols on initial particle size and ambient relative humidity (RH). Our experiments imitate an atmospheric scenario of a dry particle hydration at ambient RH conditions in the presence of glyoxal gas followed by efflorescence due to decrease of the ambient RH. The reactions were studied under different RH conditions, starting from dry conditions (~20% RH) and up to 90% RH, covering conditions prevalent in many atmospheric environments, and followed by consequent drying of the reacted particles before their analysis by the aerosol mass spectrometer (AMS), cavity ring down (CRD) and scanning mobility particle sizer (SMPS) systems. At λ = 355 nm, the reacted aerosols demonstrate a substantial growth in optical extinction cross section, as well as in mobility diameter under a broad range of RH values (35-90%). The ratio of the product aerosol to seed aerosol geometric cross section reached up to ~3.5, and the optical extinction cross-section up to ~250. The reactions show a trend of increasing physical and optical growth with decreasing seed aerosol size, from 100 nm to 300 nm, as well as with decreasing RH values from 90% to ~40%. Optically inactive aerosols, at the limit of the Mie range (100 nm diameter) become optically active as they grow due to the reaction. AMS analyses of the reaction of 300 nm AS at RH values of 50%, 75% and 90% show that the main products of the reaction are glyoxal oligomers, formed by acetal formation in the presence of AS. In addition, imidazole formation, which is a minor channel, is observed for all reactions, yielding a product which absorbs at λ = 290 nm, with possible implications on the radiative properties of the product aerosols. The ratio of absorbing substances (C-N compounds, including

  13. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Lin, L.; Gettelman, A.; Xu, Y.; Fu, Q.

    2016-01-01

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.

  14. Simulation of nitrate, sulfate, and ammonium aerosols over the United States

    NASA Astrophysics Data System (ADS)

    Walker, J. M.; Philip, S.; Martin, R. V.; Seinfeld, J. H.

    2012-11-01

    Atmospheric concentrations of inorganic gases and aerosols (nitrate, sulfate, and ammonium) are simulated for 2009 over the United States using the chemical transport model GEOS-Chem. Predicted aerosol concentrations are compared with surface-level measurement data from the Interagency Monitoring of Protected Visual Environments (IMPROVE), the Clean Air Status and Trends Network (CASTNET), and the California Air Resources Board (CARB). Sulfate predictions nationwide are in reasonably good agreement with observations, while nitrate and ammonium are over-predicted in the East and Midwest, but under-predicted in California, where observed concentrations are the highest in the country. Over-prediction of nitrate in the East and Midwest is consistent with results of recent studies, which suggest that nighttime nitric acid formation by heterogeneous hydrolysis of N2O5 is over-predicted based on current values of the N2O5 uptake coefficient, γ, onto aerosols. After reducing the value of γ by a factor of 10, predicted nitrate levels in the US Midwest and East still remain higher than those measured, and over-prediction of nitrate in this region remains unexplained. Comparison of model predictions with satellite measurements of ammonia from the Tropospheric Emissions Spectrometer (TES) indicates that ammonia emissions in GEOS-Chem are underestimated in California and that the nationwide seasonality applied to ammonia emissions in GEOS-Chem does not represent California very well, particularly underestimating winter emissions. An ammonia sensitivity study indicates that GEOS-Chem simulation of nitrate is ammonia-limited in southern California and much of the state, suggesting that an underestimate of ammonia emissions is likely the main cause for the under-prediction of nitrate aerosol in many areas of California. An approximate doubling of ammonia emissions is needed to reproduce observed nitrate concentrations in southern California and in other ammonia sensitive areas

  15. Simulation of nitrate, sulfate, and ammonium aerosols over the United States

    NASA Astrophysics Data System (ADS)

    Walker, J. M.; Seinfeld, J. H.; Clarisse, L.; Coheur, P.-F.; Clerbaux, C.; Van Damme, M.

    2012-08-01

    Atmospheric concentrations of inorganic gases and aerosols (nitrate, sulfate, and ammonium) are simulated for 2009 over the United States using the chemical transport model GEOS-Chem. This work is motivated, in part, by the inability of previous modeling studies to reproduce observed high nitrate aerosol concentrations in California. Nitrate aerosol concentrations over most of the US are over-predicted relative to Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network (CASTNET) data. In California, on the other hand, nitrate and ammonium are under-predicted as compared to California Air Resources Board (CARB) measurements. Over-prediction of nitrate in the East and Midwest is consistent with results of recent studies, which have suggested that nighttime nitric acid formation by heterogeneous hydrolysis of N2O5 is over-predicted with current values of the N2O5 uptake coefficient, γ, onto aerosols. Accordingly, the value of γ is reduced here by a factor of 10. Despite this, predicted nitrate levels in the US Midwest remain higher than those measured and over-prediction of nitrate in this region remains to be explained. Data from the Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp-A satellite indicate the presence of a strong ammonia maximum in central and southern California that is not present in the simulations, which are based on the EPA National Emissions Inventory (NEI) NH3 emission inventory. In order to predict ammonia columns similar to the satellite measurements in the San Joaquin Valley, CA and Riverside, CA, the current ammonia emission inventory in California would need to be increased substantially. Based on the sensitivity of ammonium nitrate formation to the availability of ammonia, the present results suggest that under-prediction of ammonia emissions is likely the main cause for the under-prediction of nitrate aerosol in California.

  16. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    NASA Astrophysics Data System (ADS)

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  17. Tales of volcanoes and El-Niño southern oscillations with the oxygen isotope anomaly of sulfate aerosol

    PubMed Central

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L.; McCabe, Justin; Savarino, Joel; Thiemens, Mark H.

    2013-01-01

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth’s system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980–2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher ∆17O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and ∆17O = 3.3‰, OEI = 11 and ∆17O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that ∆17O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations. PMID:23447567

  18. Tales of volcanoes and El-Nino southern oscillations with the oxygen isotope anomaly of sulfate aerosol.

    PubMed

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L; McCabe, Justin; Savarino, Joel; Thiemens, Mark H

    2013-10-29

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth's system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980-2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher (17)O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and (17)O = 3.3‰, OEI = 11 and (17)O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that (17)O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations. PMID:23447567

  19. Tales of volcanoes and El-Nino southern oscillations with the oxygen isotope anomaly of sulfate aerosol.

    PubMed

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L; McCabe, Justin; Savarino, Joel; Thiemens, Mark H

    2013-10-29

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth's system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980-2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher (17)O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and (17)O = 3.3‰, OEI = 11 and (17)O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that (17)O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations.

  20. Tales of volcanoes and El-Niño southern oscillations with the oxygen isotope anomaly of sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L.; McCabe, Justin; Savarino, Joel; Thiemens, Mark H.

    2013-10-01

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth's system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980-2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher ∆17O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and ∆17O = 3.3‰, OEI = 11 and ∆17O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that ∆17O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations.

  1. Fog Induced Aerosol Modification Observed by AERONET, Including Occurrences During Major Air Pollution Events

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Li, Z.; Platnick, S. E.; Arnold, T.; Ferrare, R. A.; Hostetler, C. A.; Burton, S. P.; Kim, J.; Kim, Y. J.; Sinyuk, A.; Dubovik, O.; Arola, A. T.; Schafer, J.; Artaxo, P.; Smirnov, A.; Chen, H.; Goloub, P.

    2014-12-01

    The modification of aerosol optical properties due to interaction with fog is examined from measurements made by sun/sky radiometers at several AERONET sites. Retrieved total column volume size distributions for cases identified as aerosol modified by fog often show very a large 'middle mode' submicron radius (~0.4 to 0.5 microns), which is typically seen as a component of a bimodal sub-micron distribution. These middle mode sized particles are often called cloud-processed or residual aerosol. This bimodal accumulation mode distribution may be due to one mode (the larger one) from fog-processed aerosol and the other from interstitial aerosol, or possibly from two different aerosol species (differing chemical composition) with differing hygroscopic growth factors. The size of the fine mode particles from AERONET retrieved for these cases exceeds the size of sub-micron sized particles retrieved for nearly all other aerosol types, suggesting significant modification of aerosols within the fog or cloud environment. In-situ measured aerosol size distributions made during other fog events are compared to the AERONET retrievals, and show close agreement in the residual mode particle size. Almucantar retrievals are analyzed from the Kanpur site in the Indo-Gangetic Plain in India (fog in January), Beijing (fog in winter), Fresno, CA in the San Joaquin Valley (fog in winter), South Korea (Yellow Sea fog in spring), Arica on the northern coast of Chile (stratocumulus), and several other sites with aerosol observations made after fog dissipated. Additionally, several major air pollution events are discussed where extremely high aerosol concentrations were measured at the surface and during which fog also occurred, resulting in the detection very large fine mode aerosols (residual mode) from AERONET retrievals in some of these events. Low wind speeds that occurred during these events were conducive to both pollutant accumulation and also fog formation. The presence of fog then

  2. Fog Induced Aerosol Modification Observed by AERONET, Including Occurrences During Major Air Pollution Events

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Li, Z.; Platnick, S. E.; Arnold, T.; Ferrare, R. A.; Hostetler, C. A.; Burton, S. P.; Kim, J.; Kim, Y. J.; Sinyuk, A.; Dubovik, O.; Arola, A. T.; Schafer, J.; Artaxo, P.; Smirnov, A.; Chen, H.; Goloub, P.

    2015-12-01

    The modification of aerosol optical properties due to interaction with fog is examined from measurements made by sun/sky radiometers at several AERONET sites. Retrieved total column volume size distributions for cases identified as aerosol modified by fog often show very a large 'middle mode' submicron radius (~0.4 to 0.5 microns), which is typically seen as a component of a bimodal sub-micron distribution. These middle mode sized particles are often called cloud-processed or residual aerosol. This bimodal accumulation mode distribution may be due to one mode (the larger one) from fog-processed aerosol and the other from interstitial aerosol, or possibly from two different aerosol species (differing chemical composition) with differing hygroscopic growth factors. The size of the fine mode particles from AERONET retrieved for these cases exceeds the size of sub-micron sized particles retrieved for nearly all other aerosol types, suggesting significant modification of aerosols within the fog or cloud environment. In-situ measured aerosol size distributions made during other fog events are compared to the AERONET retrievals, and show close agreement in the residual mode particle size. Almucantar retrievals are analyzed from the Kanpur site in the Indo-Gangetic Plain in India (fog in January), Beijing (fog in winter), Fresno, CA in the San Joaquin Valley (fog in winter), South Korea (Yellow Sea fog in spring), Arica on the northern coast of Chile (stratocumulus), and several other sites with aerosol observations made after fog dissipated. Additionally, several major air pollution events are discussed where extremely high aerosol concentrations were measured at the surface and during which fog also occurred, resulting in the detection very large fine mode aerosols (residual mode) from AERONET retrievals in some of these events. Low wind speeds that occurred during these events were conducive to both pollutant accumulation and also fog formation. The presence of fog then

  3. A reduced-form approach to characterizing sulfate aerosol effects on climate in integrated assessment models. Final report

    SciTech Connect

    Wigley, T.M.L.

    1996-04-01

    The objective of this study was to devise a methodology for estimating the spatial patterns of future climate change accounting for the effects of both greenhouse gases and sulfate aerosols under a wide range of emissions scenarios, using the results of General Circulation Models.

  4. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    SciTech Connect

    Nemesure, S.; Wagener, R.; Schwartz, S.E.

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  5. Isotopic constraints on the role of hypohalous acids in sulfate aerosol formation in the remote marine boundary layer

    NASA Astrophysics Data System (ADS)

    Chen, Qianjie; Geng, Lei; Schmidt, Johan A.; Xie, Zhouqing; Kang, Hui; Dachs, Jordi; Cole-Dai, Jihong; Schauer, Andrew J.; Camp, Madeline G.; Alexander, Becky

    2016-09-01

    Sulfate is an important component of global atmospheric aerosol, and has partially compensated for greenhouse gas-induced warming during the industrial period. The magnitude of direct and indirect radiative forcing of aerosols since preindustrial times is a large uncertainty in climate models, which has been attributed largely to uncertainties in the preindustrial environment. Here, we report observations of the oxygen isotopic composition (Δ17O) of sulfate aerosol collected in the remote marine boundary layer (MBL) in spring and summer in order to evaluate sulfate production mechanisms in pristine-like environments. Model-aided analysis of the observations suggests that 33-50 % of sulfate in the MBL is formed via oxidation by hypohalous acids (HOX = HOBr + HOCl), a production mechanism typically excluded in large-scale models due to uncertainties in the reaction rates, which are due mainly to uncertainties in reactive halogen concentrations. Based on the estimated fraction of sulfate formed via HOX oxidation, we further estimate that daily-averaged HOX mixing ratios on the order of 0.01-0.1 parts per trillion (ppt = pmol/mol) in the remote MBL during spring and summer are sufficient to explain the observations.

  6. The optical constants of several atmospheric aerosol species - Ammonium sulfate, aluminum oxide, and sodium chloride

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.; Khare, B. N.

    1976-01-01

    An investigation is conducted of problems which are related to a use of measured optical constants in the simulation of the optical constants of real atmospheric aerosols. The techniques of measuring optical constants are discussed, taking into account transmission measurements through homogeneous and inhomogeneous materials, the immersion of a material in a liquid of a known refractive index, the consideration of the minimum deviation angle of prism measurement, the interference of multiply reflected light, reflectivity measurements, and aspects of mathematical analysis. Graphs show the real and the imaginary part of the refractive index as a function of wavelength for aluminum oxide, NaCl, and ammonium sulfate. Tables are provided for the dispersion parameters and the optical constants.

  7. Direct comparison of the hygroscopic properties of ammonium sulfate and sodium chloride aerosol at relative humidities approaching saturation.

    PubMed

    Walker, Jim S; Wills, Jon B; Reid, Jonathan P; Wang, Liangyu; Topping, David O; Butler, Jason R; Zhang, Yun-Hong

    2010-12-01

    Holographic optical tweezers are used to make comparative measurements of the hygroscopic properties of single component aqueous aerosol containing sodium chloride and ammonium sulfate over a range of relative humidity from 84% to 96%. The change in RH over the course of the experiment is monitored precisely using a sodium chloride probe droplet with accuracy better than ±0.09%. The measurements are used to assess the accuracy of thermodynamic treatments of the relationship between water activity and solute mass fraction with particular attention focused on the dilute solute limit approaching saturation vapor pressure. The consistency of the frequently used Clegg-Brimblecombe-Wexler (CBW) treatment for predicting the hygroscopic properties of sodium chloride and ammonium sulfate aerosol is confirmed. Measurements of the equilibrium size of ammonium sulfate aerosol are found to agree with predictions to within an uncertainty of ±0.2%. Given the accuracy of treating equilibrium composition, the inconsistencies highlighted in recent calibration measurements of critical supersaturations of sodium chloride and ammonium sulfate aerosol cannot be attributed to uncertainties associated with the thermodynamic predictions and must have an alternative origin. It is concluded that the CBW treatment can allow the critical supersaturation to be estimated for sodium chloride and ammonium sulfate aerosol with an accuracy of better than ±0.002% in RH. This corresponds to an uncertainty of ≤1% in the critical supersaturation for typical supersaturations of 0.2% and above. This supports the view that these systems can be used to accurately calibrate instruments that measure cloud condensation nuclei concentrations at selected supersaturations. These measurements represent the first study in which the equilibrium properties of two particles of chemically distinct composition have been compared simultaneously and directly alongside each other in the same environment.

  8. Human health benefits of ambient sulfate aerosol reductions under Title IV of the 1990 Clean Air Act amendments

    SciTech Connect

    Chestnut, L.G.; Watkins, A.M.

    1997-12-31

    The Acid Rain Provisions (Title IV) of the Clean Air Act Amendments of 1990 call for about a 10 million ton reduction in annual SO{sub 2} emissions in the United States by the year 2010. Although the provisions apply nationwide, most of the reduction will take place in the eastern half of the United States, where use of high sulfur coal for electricity generation is most common. One potentially large benefit of Title IV is the expected reduction in adverse human health effects associated with exposure to ambient sulfate aerosols, a secondary pollutant formed in the atmosphere when SO{sub 2} is present. Sulfate aerosols are a significant constituent of fine particulate (PM{sub 2.5}). This paper combines available epidemiologic evidence of health effects associated with sulfate aerosols and economic estimates of willingness to pay for reductions in risks or incidence of health effects with available estimates of the difference between expected ambient sulfate concentrations in the eastern United States and southeastern Canada with and without Title IV to estimate the expected health benefits of Title IV. The results suggest a mean annual benefit in the eastern United States of $10.6 billion (in 1994 dollars) in 1997 and $40.0 billion in 2010, with an additional $1 billion benefit each year in Ontario and Quebec provinces.

  9. Sensitivity of modelled sulfate aerosol and its radiative effect on climate to ocean DMS concentration and air-sea flux

    NASA Astrophysics Data System (ADS)

    Tesdal, Jan-Erik; Christian, James R.; Monahan, Adam H.; von Salzen, Knut

    2016-09-01

    Dimethylsulfide (DMS) is a well-known marine trace gas that is emitted from the ocean and subsequently oxidizes to sulfate in the atmosphere. Sulfate aerosols in the atmosphere have direct and indirect effects on the amount of solar radiation reaching the Earth's surface. Thus, as a potential source of sulfate, ocean efflux of DMS needs to be accounted for in climate studies. Seawater concentration of DMS is highly variable in space and time, which in turn leads to high spatial and temporal variability in ocean DMS emissions. Because of sparse sampling (in both space and time), large uncertainties remain regarding ocean DMS concentration. In this study, we use an atmospheric general circulation model with explicit aerosol chemistry (CanAM4.1) and several climatologies of surface ocean DMS concentration to assess uncertainties about the climate impact of ocean DMS efflux. Despite substantial variation in the spatial pattern and seasonal evolution of simulated DMS fluxes, the global-mean radiative effect of sulfate is approximately linearly proportional to the global-mean surface flux of DMS; the spatial and temporal distribution of ocean DMS efflux has only a minor effect on the global radiation budget. The effect of the spatial structure, however, generates statistically significant changes in the global-mean concentrations of some aerosol species. The effect of seasonality on the net radiative effect is larger than that of spatial distribution and is significant at global scale.

  10. Absorption and scattering properties of organic carbon versus sulfate dominant aerosols at Gosan climate observatory in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Lim, S.; Lee, M.; Kim, S.-W.; Yoon, S.-C.; Lee, G.; Lee, Y. J.

    2014-08-01

    Carbonaceous and soluble ionic species of PM1.0 and PM10 were measured along with the absorption and scattering properties and aerosol number size distributions at Gosan Climate Observatory (GCO) from January to September 2008. The daily averaged equivalent black carbon (EBC) measured as aerosol absorption exhibited two types of spectral dependence with a distinct maximum (peak) at either 370 nm or 880 nm, by which two subsets were extracted and classified into the respective groups (370 and 880 nm). The 370 nm group was distinguished by high organic carbon (OC) concentrations relative to elemental carbon (EC) and sulfate, but sulfate was predominant for the 880 nm group. The PM1.0 OC of the 370 nm group was mainly composed of refractory and pyrolized components that correlated well with PM1.0 EC1, referred to as char EC, which suggests biofuel and biomass combustion as the source of these OC fractions, particularly during winter. The scanning electron microscope (SEM) images and the number size distributions implied that aerosols of the 370 nm group were externally mixed upon transport in fast-moving air masses that passed through the Beijing area in about one day. In contrast, the aerosols of the 880 nm group were characterized by high sulfate concentrations, and seemed to be internally mixed during slow transport over the Yellow Sea region over approximately 2 to 4 days. The absorption and scattering coefficients of the 880 nm group were noticeably higher compared to those of the 370 nm group. The average absorption ångström exponent (AAE) was estimated to be 1.29 and 1.0 for the 370 and 880 nm groups, respectively, in the range 370-950 nm. These results demonstrated that the optical properties of aerosols were intimately linked to chemical composition and mixing state, characteristics determined both by source and atmospheric aging processes. In OC dominant aerosols, absorption was enhanced in the UV region, which was possibly due to refractory and pyrolized

  11. SECONDARY ORGANIC AEROSOL FORMATION FROM THE OXIDATION OF AROMATIC HYDROCARBONS IN THE PRESENCE OF DRY SUBMICRON AMMONIUM SULFATE AEROSOL

    EPA Science Inventory

    A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas-aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds ...

  12. A Quarter Century Record of Stratospheric Sulfate Aerosol: implication for the past, present and future climates

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Abaunza, M.; Jackson, T. L.; McCabe, J.; Savarino, J.; Thiemens, M. H.

    2014-12-01

    Stratospheric sulfate aerosol (SSA) plays an important role in the earth climate system by reflecting solar radiation making it an attractive candidate in geoengineering to counter greenhouse warming. However, these planetary scales perturbations demand a priori understanding of SSA over a longer time period to resolve anthropogenic and natural perturbations to the delicate and thin layers- SSA and ozone layers. Here we present a quarter century high resolution seasonal record of SSA and its linkage to the ozone layer. Sulfate was extracted from a (1x1m) and 25m deep snow pit at the South Pole. The combination of cations, anions, O-triple isotopes and S-quadruple isotope measurements allowed us to deconvolve the oxidation history of SSA and tease out natural and anthropogenic components. The period (1980 to 2002) encompasses the largest volcanic eruptions of the century, El-Chichon, Pinatubo, Cerro Hudson and the three largest El-Nino Southern Oscillation events. The highest O-isotope anomaly (∆17O = 3.7‰) in SSA was observed during the super ENSO event (1997-98) and recorded changes in ozone levels of the upper troposphere-lower stratosphere (1). ENSO is another flavor of natural climate variability and is important as it links hydrosphere and the atmosphere in unique ways controlling rainfall and temperature. The highest S-isotope anomaly was observed in 1998-99 and records changes in atmospheric dynamics and transport of sulfur compounds to the stratosphere following intense wild fires as a consequence of the Super ENSO event. The highest S-isotopic anomaly (∆33S = +2.26‰ and ∆36S= +0.51 ‰) is ~ 3 times higher compared to the Pinatubo signal, the largest volcanic eruption of the 20th century. The pattern of S-isotope anomalies in this period fits within the pre-Cambrian record of S-isotopes in three billion year old rock. The generation of such a large S-isotope anomaly in the present day oxygen rich atmosphere may have implications for the

  13. Uptake of Organic Vapors by Sulfate Aerosols: Physical and Chemical Processes

    NASA Technical Reports Server (NTRS)

    Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L.T.; Staton, S. J. R.

    2003-01-01

    While it is known that upper tropospheric sulfate particles contain a significant amount of organic matter, both the source of the organic fraction and its form in solution are unknown. These studies explore how the chemical characteristics of the molecules and surfaces in question affect heterogeneous interactions. The solubilities of acetaldehyde [CH3CHO] and ethanol [CH3CH20H] in cold, aqueous sulfuric acid solutions have been measured by Knudsen cell studies. Henry's law solubility coefficients range from 10(exp 2) to 10(exp 5) M/atm for acetaldehyde, and from 10(exp 4) to 10(exp 9) M/atm for ethanol under upper tropospheric conditions (210-240 K, 40-80 wt. % H2S04). The multiple solvation pathways (protonation, enolization, etc.) available to these compounds in acidic aqueous environments will be discussed. Preliminary results from the interaction of acetaldehyde with solutions of formaldehyde in sulfuric acid will be presented as well. The physical and chemical processes that affect organic uptake by aqueous aerosols will be explored, with the aim of evaluating organic species not yet studied in low temperature aqueous sulfuric acid.

  14. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol.

    PubMed

    Tan, Yi; Perri, Mark J; Seitzinger, Sybil P; Turpin, Barbara J

    2009-11-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30-3000 microM) and the presence of acidic sulfate (0-840 microM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 microM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA. PMID:19924930

  15. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol.

    PubMed

    Tan, Yi; Perri, Mark J; Seitzinger, Sybil P; Turpin, Barbara J

    2009-11-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30-3000 microM) and the presence of acidic sulfate (0-840 microM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 microM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA.

  16. Dependence of Aerosol Light Absorption and Single-Scattering Albedo On Ambient Relative Humidity for Sulfate Aerosols with Black Carbon Cores

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Hamill, Patrick

    2001-01-01

    Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can

  17. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy

    NASA Astrophysics Data System (ADS)

    Park, Rokjin J.; Jacob, Daniel J.; Field, Brendan D.; Yantosca, Robert M.; Chin, Mian

    2004-08-01

    We use a global three-dimensional coupled oxidant-aerosol model (GEOS-CHEM) to estimate natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosol concentrations in the United States. This work is motivated in part by the Regional Haze Rule of the U.S. Environmental Protection Agency (EPA), which requires immediate action to improve visibility in U.S. wilderness areas along a linear trajectory toward an endpoint of "natural visibility conditions" by 2064. We present full-year simulations for 1998 and 2001 and evaluate them with nationwide networks of observations in the United States and Europe (Interagency Monitoring of Protected Visual Environments (IMPROVE), Clean Air Status and Trends Network (CASTNET), National Atmospheric Deposition Program (NADP), European Monitoring and Evaluation Programme (EMEP)) and with Asian outflow observations from the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission. Shutting off U.S. anthropogenic emissions in the model defines "background" aerosol concentrations representing contributions from both natural and transboundary pollution sources. We find that transboundary transport of pollution from Canada, Mexico, and Asia dominates over natural influences for both sulfate and nitrate. Trans-Pacific transport of Asian pollution accounts for 30% of background sulfate in both the western and eastern United States. Our best estimates of natural concentrations for ammonium sulfate and ammonium nitrate in the United States are either consistent with or lower than the default values recommended by EPA for natural visibility calculations. However, the large transboundary pollution influence in our calculation suggests that a natural visibility objective cannot be approached without international emission controls.

  18. Aerosolized terbutaline sulfate--an evalution of efficacy and side effects in patients with reversible airway disease.

    PubMed

    Trautlein, J; Allegra, J; Gillin, M

    1977-01-01

    Aerosolized terbutaline sulfate at a dose of 0.50 mg has been shown to produce significant bronchodilation in patients with reversible airway disease. The purpose of this study was to evaluate the safety and efficacy of 0.50 mg terbutaline aerosol used on a regular dosage schedule over a six-week period. Sixteen ambulant patients with chronic obstructive pulmonary disease with a component of reversible airway disease were evaluated. The patients were tested at two-week intervals during a six-week period. The patients abstained from all bronchodilatory medications for at least 10 hours prior to the time of evaluation. The evaluation consisted of baseline pulmonary function tests, ECG, CBC, urinalysis, and renal and liver function tests. After the terbutaline was administered, a rhythm strip and pulmonary function tests were repeated at 5, 15, 30, 60, 120, and 180 minutes. Throughout the six-week study, there was a statistically significant increase in FEV1.0 and MMEFR (P less than 0.001): deltaFEV1.0 (ml) 740 (63%) 550 (45%) 340 (25%) 320 (25%) deltaMMEFR (liters/min) 42 (74%) 29 (46%) 28 (43%) 36 (42%). No abnormal laboratory results or paradoxical bronchospasm were noted during the study period; however, sympathomimetic side effects were observed. Aerosolized terbutaline sulfate (0.50 mg) when used on a regular schedule over a six-week period is effective in the treatment of reversible airway disease.

  19. Inferring ammonium and sulfate aerosol concentrations using laser particle counters and condensation nuclei counters at summit, Greenland

    SciTech Connect

    Kuhns, H.; Davidson, C.; Bergin, M.

    1995-12-31

    Atmospheric measurements have been conducted in central Greenland over the last 10 years in connection with ice core research. While the primary objective of this research is to facilitate the quantitative interpretation of ice cores, interesting findings are being made in the field of Arctic air chemistry. In recent years, aerosol filters were run simultaneously with laser particle counters (LPC`s) and condensation nuclei counters (CNC`s). The LPC`s used in the this study count particles with diameters greater than 0.5 {mu}m, while the CNC`s count particles larger than approximately 0.01 {mu}m. Results from summertime aerosol sampling at Summit, Greenland are presented from the 1994 field season. Excellent agreement is observed between LPC data and particulate ammonium and sulfate. The correlation between ammonium and LPC data is r=0.88. Of all of the ionic species measured on the filters, the CNC results are in best agreement with MSA. The correlation for CNC and MSA is r=0.58. The relationship between the real-time particle sensor data and the aerosol chemistry has significant implications. The link between MSA and CNC supports the theory that marine biological activity enhances the production of cloud condensation nuclei. Also, this technique shows promise for remote sensing applications since once calibrated, the real time particle count data could be used to infer high temporal resolution aerosol chemistry.

  20. Effects of breathing sulfur dioxide and an acidic sulfate aerosol during exercise on selected pulmonary function measurements

    SciTech Connect

    Jones, D.L.

    1985-01-01

    This study was undertaken to determine the effects of ambient air, acidic sulfate aerosol, sulfur dioxide, and the combination of sulfur dioxide and aerosol on selected pulmonary function measurements after 20 minutes of exercise at 75%-80% maximal heart rate in a hot (36-19/sup 0/C) and humid (70-90% RH) environment. Six male subjects between the ages 26 and 33 years with no pre-existing pulmonary or cardiovascular problems rode a stationary bicycle for 20 minutes during each exposure condition at a workload pre-set to assure that each subject would attain an average minute ventilation of 50-60 1/min (BTPS). Exposure to 2.5 ppm sulfur dioxide alone led to a significant lowering of FVC, FEV1, and FEF50. Exposure to sulfur dioxide plus aerosol led to a significant decrease of FVC. Baseline comparisons reflected a significant decline in FVC, FEV1, FEF25, FEF50, FEF75, and FEF25-75 between the pre-ambient and post-exposure. This decline suggests a residual effect of the air pollutant exposures. Significant differences were also observed between the pre-aerosol and pre-sulfur dioxide exposures for FVC, FEV1, FEF50, and FEF25-75.

  1. Sensitivity of thermal infrared nadir instruments to the chemical and microphysical properties of UTLS secondary sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Legras, B.

    2016-01-01

    Monitoring upper-tropospheric-lower-stratospheric (UTLS) secondary sulfate aerosols and their chemical and microphysical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealised UTLS sulfate aerosol layers. The extinction properties of sulfuric acid/water droplets, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulfate and bisulfate ions and the undissociated sulfuric acid, with the main absorption peaks at 1170 and 905 cm-1. The dependence of the aerosol spectral signature to the sulfuric acid mixing ratio, and effective number concentration and radius, as well as the role of interfering parameters like the ozone, sulfur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile uncertainties

  2. Characterization of particulate products for aging of ethylbenzene secondary organic aerosol in the presence of ammonium sulfate seed aerosol.

    PubMed

    Huang, Mingqiang; Zhang, Jiahui; Cai, Shunyou; Liao, Yingmin; Zhao, Weixiong; Hu, Changjin; Gu, Xuejun; Fang, Li; Zhang, Weijun

    2016-09-01

    Aging of secondary organic aerosol (SOA) particles formed from OH- initiated oxidation of ethylbenzene in the presence of high mass (100-300μg/m(3)) concentrations of (NH4)2SO4 seed aerosol was investigated in a home-made smog chamber in this study. The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with a Fuzzy C-Means (FCM) clustering algorithm. Experimental results showed that nitrophenol, ethyl-nitrophenol, 2,4-dinitrophenol, methyl glyoxylic acid, 5-ethyl-6-oxo-2,4-hexadienoic acid, 2-ethyl-2,4-hexadiendioic acid, 2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid, 1H-imidazole, hydrated N-glyoxal substituted 1H-imidazole, hydrated glyoxal dimer substituted imidazole, 1H-imidazole-2-carbaldehyde, N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight (HMW) components were the predominant products in the aged particles. Compared to the previous aromatic SOA aging studies, imidazole compounds, which can absorb solar radiation effectively, were newly detected in aged ethylbenzene SOA in the presence of high concentrations of (NH4)2SO4 seed aerosol. These findings provide new information for discussing aromatic SOA aging mechanisms. PMID:27593289

  3. Estimation of sulfate trends at selected national park service sites: Does the wet deposition record parallel the aerosol record?

    SciTech Connect

    Shealy, R.T.; Bowersox, V.C.

    1997-12-31

    Recently temporal trends in sulfate concentration in fine-particle aerosols have been measured at a set of twelve National Park Service (NPS) sites using the Interagency Monitoring of Visual Environments (IMPROVE) network. Trends were computed for each climatological season over the period 1982-1993. The distribution of trend direction was nearly symmetric; of the 48 possible site-season combinations, 11 were negative, 8 positive, and the remainder exhibited no trend. These are surprising findings in the context of nearly constant SO{sub 2} emissions in the East over this period (EPA, 1991) and generally-decreasing trends over the entire US computed from wet deposition sulfate concentrations collected by the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Of particular interest are the three largest positive trends: Grand Canyon exhibited a 4.2% increase in winter, Great Smoky Mountains had an increase of 3.9% in summer, and Shenandoah had an increase of 3.7% in summer, Recently, the latter two sites have been studied over a period more recent than the original study (1982-1995) and the trends are smaller, but they remain positive. It has been suggested that these findings are a statistical artifact: that in a large set of trend tests over many sites and seasons, a few will by chance be found to have statistically significant positive trends, even under the condition of no trends.A special study was undertaken using the subset of the NPS sites with co-located IMPROVE and NADP/NTN samplers. Direct comparison of aerosol sulfur and wet deposition sulfate trends is done to determine their relationship to each other. The NPS sites that qualify as candidates in the study are: Shenandoah, Great Smoky Mountains, Glacier, Yosemite, Grand Canyon, Mesa Verde, and Big Bend Parks.

  4. Identification and characterization of aging products in the glyoxal/ammonium sulfate system - implications for light-absorbing material in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kampf, C. J.; Jakob, R.; Hoffmann, T.

    2012-02-01

    In this study we report the identification of bicyclic imidazoles in aqueous aerosol mimics using HPLC-ESI-MS/MS. 2,2´-Biimidazole was identified to be a major contributor to the 280 nm absorbance band observed in mixtures of glyoxal and ammonium sulfate, despite the fact that its production rate is two orders of magnitude lower than the previously reported production rates of imidazole or imidazole-2-carboxaldehyde. The molar absorptivity of 2,2´-biimidazole was determined to be (36 690±998) M-1 cm-1. This demonstrates the necessity of molecular product identification at trace levels to enable a better understanding of relevant absorbing species. Additionally the formation of lower polarity products including formamides of imidazoles is proposed. The role of imidazoles and other light-absorbing species in the formation of SOA and optical properties of SOA is discussed and potentially interesting fields for future investigations are outlined.

  5. Identification and characterization of aging products in the glyoxal/ammonium sulfate system - implications for light-absorbing material in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kampf, C. J.; Jakob, R.; Hoffmann, T.

    2012-07-01

    In this study we report the identification of bicyclic imidazoles in aqueous aerosol mimics using HPLC-ESI-MS/MS. 2,2'-Biimidazole was identified to be a major contributor to the 280 nm absorbance band observed in mixtures of glyoxal and ammonium sulfate, despite the fact that its production rate is two orders of magnitude lower than the previously reported production rates of imidazole or imidazole-2-carboxaldehyde. The molar absorptivity of 2,2'-biimidazole was determined to be (36 690 ± 998) M-1 cm-1. This demonstrates the necessity of molecular product identification at trace levels to enable a better understanding of relevant absorbing species. Additionally, the formation of lower polarity products including formamides of imidazoles is proposed. The role of imidazoles and other light-absorbing species in the formation of SOA and optical properties of SOA is discussed and potentially interesting fields for future investigations are outlined.

  6. Global Simulation of Ammonium-sulfate-nitrate Inorganic Aerosols: Implications for Natural Visibility in the United States and Intercontinental Transport of Pollution

    NASA Astrophysics Data System (ADS)

    Park, R. J.; Jacob, D. J.; Field, B. D.; Evans, M. J.; Yantosca, R. M.; Chin, M.

    2003-12-01

    We use a global 3-D coupled oxidant-aerosol model (GEOS-CHEM) to quantify natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosol concentrations in the United States. This work is motivated by the EPA Regional Haze Rule, which requires immediate action to improve visibility in U.S. wilderness areas towards an endpoint of natural visibility conditions by 2064. We present full-year simulations for 1998 and 2001 and evaluate them with nationwide networks of observations in the U.S. and Europe (IMPROVE, CASTNET, NADP, EMEP). Sulfate results are unbiased across all seasons, representing a major improvement over previous models. Ammonia emissions are too high in fall and possible reasons are discussed. Shutting off U.S. anthropogenic emissions in the model defines residual aerosol concentrations in the U.S. representing contributions from natural and transboundary pollution sources. We find that this residual is dominated by transboundary transport of pollution from Canada, Mexico, and Asia. Transpacific transport of Asian anthropogenic aerosol accounts for 30% of residual ammonium sulfate in both the western and eastern U.S. We find that achievement of natural visibility anywhere in the U.S. is seriously compromised by transboundary transport of anthropogenic sulfate-nitrate-ammonium aerosols. This is in contrast to carbonaceous aerosols, for which we previously found that natural sources dominate over transboundary transport of pollution. Our best estimates of residual aerosol concentrations in the U.S. are 2-4 times higher than the default values recommended by the EPA for natural visibility calculations, with major implications for emission controls to be implemented over the next decade.

  7. 21 CFR 700.14 - Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... propellant of cosmetic aerosol products. 700.14 Section 700.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.14 Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol...

  8. 21 CFR 700.14 - Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... propellant of cosmetic aerosol products. 700.14 Section 700.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.14 Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol...

  9. 21 CFR 700.14 - Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... propellant of cosmetic aerosol products. 700.14 Section 700.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.14 Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol...

  10. 21 CFR 700.14 - Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... propellant of cosmetic aerosol products. 700.14 Section 700.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.14 Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol...

  11. The formation of sulfate and elemental sulfur aerosols under varying laboratory conditions: implications for early earth.

    PubMed

    DeWitt, H Langley; Hasenkopf, Christa A; Trainer, Melissa G; Farmer, Delphine K; Jimenez, Jose L; McKay, Christopher P; Toon, Owen B; Tolbert, Margaret A

    2010-10-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 × 10(9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO(2)) by UV light with λ < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S(8)) and sulfuric acid (H(2)SO(4)) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO(2) either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H(2)) or methane (CH(4)), increased the formation of S(8). With UV photolysis, formation of S(8) aerosols is highly dependent on the initial SO(2) pressure; and S(8) is only formed at a 2% SO(2) mixing ratio and greater in the absence of a reductant, and at a 0.2% SO(2) mixing ratio and greater in the presence of 1000 ppmv CH(4). We also found that organosulfur compounds are formed from the photolysis of CH(4) and moderate amounts of SO(2). The implications for sulfur aerosols on early Earth are discussed. Key Words: S-MIF-Archean atmosphere-Early Earth-Sulfur aerosols.

  12. Evidence for an unrecognized secondary anthropogenic source of organosulfates and sulfonates: gas-phase oxidation of polycyclic aromatic hydrocarbons in the presence of sulfate aerosol.

    PubMed

    Riva, Matthieu; Tomaz, Sophie; Cui, Tianqu; Lin, Ying-Hsuan; Perraudin, Emilie; Gold, Avram; Stone, Elizabeth A; Villenave, Eric; Surratt, Jason D

    2015-06-01

    In the present study, formation of aromatic organosulfates (OSs) from the photo-oxidation of polycyclic aromatic hydrocarbons (PAHs) was investigated. Naphthalene (NAP) and 2-methylnaphthalene (2-MeNAP), two of the most abundant gas-phase PAHs and thought to represent "missing" sources of urban SOA, were photochemically oxidized in an outdoor smog chamber facility in the presence of nonacidified and acidified sulfate seed aerosol. Effects of seed aerosol composition, acidity and relative humidity on OS formation were examined. Chemical characterization of SOA extracts by ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry revealed the formation of OSs and sulfonates from photo-oxidation in the presence of sulfate seed aerosol. Many of the organosulfur compounds identified in the smog chamber extracts were also measured in urban fine aerosol collected at Lahore, Pakistan, and Pasadena, USA, demonstrating that PAH photo-oxidation in the presence of sulfate aerosol is a hitherto unrecognized source of anthropogenic secondary organosulfur compounds, and providing new PAH SOA tracers. PMID:25879928

  13. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  14. The Formation of Sulfate and Elemental Sulfur Aerosols Under Varying Laboratory Conditions: Implications for Early Earth

    NASA Technical Reports Server (NTRS)

    DeWitt, H. Langley; Hasenkopf, Christa A.; Trainer, Melissa G.; Farmer, Delphine K.; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A.

    2010-01-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 x 10(exp 9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO2) by UV light with lambda < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S8) and sulfuric acid (H2S04) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO2 either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H2) or methane (CH4), increased the formation of S8. With UV photolysis, formation of S8 aerosols is highly dependent on the initial SO2 pressure; and S8 is only formed at a 2% SO2 mixing ratio and greater in the absence of a reductant, and at a 0.2% SO2 mixing ratio and greater in the presence of 1000 ppmv CH4. We also found that organosulfur compounds are formed from the photolysis of CH4 and moderate amounts of SO2, The implications for sulfur aerosols on early Earth are discussed.

  15. Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice

    NASA Astrophysics Data System (ADS)

    Vance, Steve; Bouffard, Mathieu; Choukroun, Mathieu; Sotin, Christophe

    2014-06-01

    The large icy moons of Jupiter contain vast quantities of liquid water, a key ingredient for life. Ganymede and Callisto are weaker candidates for habitability than Europa, in part because of the model-based assumption that high-pressure ice layers cover their seafloors and prevent significant water-rock interaction. Water-rock interactions may occur, however, if heating at the rock-ice interface melts the high pressure ice. Highly saline fluids would be gravitationally stable, and might accumulate under the ice due to upward migration, refreezing, and fractionation of salt from less concentrated liquids. To assess the influence of salinity on Ganymede's internal structure, we use available phase-equilibrium data to calculate activity coefficients and predict the freezing of water ice in the presence of aqueous magnesium sulfate. We couple this new equation of state with thermal profiles in Ganymede's interior-employing recently published thermodynamic data for the aqueous phase-to estimate the thicknesses of layers of ice I, III, V, and VI. We compute core and silicate mantle radii consistent with available constraints on Ganymede's mass and gravitational moment of inertia. Mantle radii range from 800 to 900 km for the values of salt and heat flux considered here (4-44 mW m-2 and 0 to 10 wt% MgSO4). Ocean concentrations with salinity higher than 10 wt% have little high pressure ice. Even in a Ganymede ocean that is mostly liquid, achieving such high ocean salinity is permissible for the range of likely S/Si ratios. However, elevated salinity requires a smaller silicate mantle radius to satisfy mass and moment-of-inertia constraints, so ice VI is always present in Ganymede's ocean. For lower values of heat flux, oceans with salinity as low as 3 wt% can co-exist with ice III. Available experimental data indicate that ice phases III and VI become buoyant for salinity higher than 5 wt% and 10 wt%, respectively. Similar behavior probably occurs for ice V at salinities

  16. Hourly Measurements of Fine Particulate Sulfate and Carbon Aerosols at the Harvard–U.S. Environmental Protection Agency Supersite in Boston

    PubMed Central

    Kang, Choong-Min; Koutrakis, Petros; Suh, Helen H.

    2013-01-01

    Hourly concentrations of ambient fine particle sulfate and carbonaceous aerosols (elemental carbon [EC], organic carbon [OC], and black carbon [BC]) were measured at the Harvard–U.S. Environmental Protection Agency Supersite in Boston, MA, between January 2007 and October 2008. These hourly concentrations were compared with those made using integrated filter-based measurements over 6-day or 24-hr periods. For sulfate, the two measurement methods showed good agreement. Semicontinuous measurements of EC and OC also agreed (but not as well as for sulfate) with those obtained using 24-hr integrated filter-based and optical BC reference methods. During the study period, 24-hr PM2.5 (particulate matter [PM] ≤ 2.5 μm in aerodynamic diameter) concentrations ranged from 1.4 to 37.6 μg/m3, with an average of 9.3 μg/m3. Sulfate as the equivalent of ammonium sulfate accounted for 39.1% of the PM2.5 mass, whereas EC and OC accounted for 4.2 and 35.2%, respectively. Hourly sulfate concentrations showed no distinct diurnal pattern, whereas hourly EC and BC concentrations peaked during the morning rush hour between 7:00 and 9:00 a.m. OC concentrations also exhibited nonpronounced, small peaks during the day, most likely related to traffic, secondary organic aerosol, and local sources, respectively. PMID:21141426

  17. Hourly measurements of fine particulate sulfate and carbon aerosols at the Harvard-U.S. Environmental Protection Agency Supersite in Boston.

    PubMed

    Kang, Choong-Min; Koutrakis, Petros; Suh, Helen H

    2010-11-01

    Hourly concentrations of ambient fine particle sulfate and carbonaceous aerosols (elemental carbon [EC], organic carbon [OC], and black carbon [BC]) were measured at the Harvard-U.S. Environmental Protection Agency Supersite in Boston, MA, between January 2007 and October 2008. These hourly concentrations were compared with those made using integrated filter-based measurements over 6-day or 24-hr periods. For sulfate, the two measurement methods showed good agreement. Semicontinuous measurements of EC and OC also agreed (but not as well as for sulfate) with those obtained using 24-hr integrated filter-based and optical BC reference methods. During the study period, 24-hr PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter) concentrations ranged from 1.4 to 37.6 microg/m3, with an average of 9.3 microg/m3. Sulfate as the equivalent of ammonium sulfate accounted for 39.1% of the PM2.5 mass, whereas EC and OC accounted for 4.2 and 35.2%, respectively. Hourly sulfate concentrations showed no distinct diurnal pattern, whereas hourly EC and BC concentrations peaked during the morning rush hour between 7:00 and 9:00 a.m. OC concentrations also exhibited nonpronounced, small peaks during the day, most likely related to traffic, secondary organic aerosol, and local sources, respectively.

  18. Production of sulfate aerosols in the plume of a coal-fired power plant under normal and reduced precipitator operation

    SciTech Connect

    Meagher, J.F.; Bailey, E.M.; Stockburger, L. III

    1981-12-01

    A series of field experiments were conducted at TVA's Cumberland Steam Plant to examine the effect of primary aerosol on sulfate aerosol production. Plume measurements were made using an instrumented helicopter and flue gas analyses were performed on each of the two stacks. The plume particle loading was increased during four of the experiments through a reduction in the electrostatic precipitator (ESP) capacity. The average rate of oxidation of SO/sub 2/ to SO/sub 4//sup 2 -/ in the plume was found to be 0.014 +- 0.015 h/sup -1/. The average rate measured for daytime and normal ESP operation was 0.019 +- 0.015 h/sup -1/. The average nighttime rate was also 0.019 +- 0.021 h/sup -1/. The average rate measured during periods of reduced ESP operation was 0.007 +- 0.01 h/sup -1/. The relatively high night-time rates were measured just after sunset and may result from delayed reactions of free radical precursors which were produced during the day-light hours. The difference between extrapolated intercepts from aircraft measurements and flue gas sampling indicates that a region of rapid SO/sub 2/ oxidation must exist for the first few minutes after the flue gas is emitted from the stacks.

  19. Airborne Sunphotometer Studies of Aerosol Properties and Effects, Including Closure Among Satellite, Suborbital Remote, and In situ Measurements

    NASA Technical Reports Server (NTRS)

    Russlee, Philip B.; Schmid, B.; Redemann, J.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Airborne sunphotometry has been used to measure aerosols from North America, Europe, and Africa in coordination with satellite and in situ measurements in TARFOX (1996), ACE-2 (1997), PRIDE (2000), and SAFARI 2000. Similar coordinated measurements of Asian aerosols are being conducted this spring in ACE-Asia and are planned for North American aerosols this summer in CLAMS. This paper summarizes the approaches used, key results, and implications for aerosol properties and effects, such as single scattering albedo and regional radiative forcing. The approaches exploit the three-dimensional mobility of airborne sunphotometry to access satellite scenes over diverse surfaces (including open ocean with and without sunglint) and to match exactly the atmospheric layers sampled by airborne in situ measurements and other radiometers. These measurements permit tests of the consistency, or closure, among such diverse measurements as aerosol size-resolved chemical composition; number or mass concentration; light extinction, absorption, and scattering (total, hemispheric back and 180 deg.); and radiative fluxes. In this way the airborne sunphotometer measurements provide a key link between satellite and in situ measurements that helps to understand any discrepancies that are found. These comparisons have led to several characteristic results. Typically these include: (1) Better agreement among different types of remote measurements than between remote and in situ measurements. (2) More extinction derived from transmission measurements than from in situ measurements. (3) Larger aerosol absorption inferred from flux radiometry than from in situ measurements. Aerosol intensive properties derived from these closure studies have been combined with satellite-retrieved fields of optical depth to produce fields of regional radiative forcing. We show results for the North Atlantic derived from AVHRR optical depths and aerosol intensive properties from TARFOX and ACE-2. Companion papers

  20. An Expanded UV Irradiance Database from TOMS Including the Effects of Ozone, Clouds, and Aerosol Attenuation

    NASA Technical Reports Server (NTRS)

    Herman, J.; Krotkov, N.

    2003-01-01

    The TOMS UV irradiance database (1978 to 2003) has been expanded to include five new products (noon irradiance at 305,310,324, and 380 nm, and noon erythemal-weighted irradiance), in addition to the existing erythemal daily exposure, that permit direct comparisons with ground-based measurements from spectrometers and broadband instruments. The new data are available on http://toms.gsfc.nasa.gov/>http://toms.gsfc.nasa.gov. Comparisons of the TOMS estimated irradiances with ground-based instruments are given along with a review of the sources of known errors, especially the recent improvements in accounting for aerosol attenuation. Trend estimations from the new TOMS irradiances permit the clear separation of changes caused by ozone and those caused by aerosols and clouds. Systematic differences in cloud cover are shown to be the most important factor in determining regional differences in UV radiation reaching the ground for locations at the same latitude (e.g., the summertime differences between Australia and the US southwest).

  1. An integrated biodesulfurization process, including inoculum preparation, desulfurization and sulfate removal in a single step, for removing sulfur from oils.

    SciTech Connect

    Tangaromsuk, Jantana; Borole, Abhijeet P; Kruatrachue, Maleeya; Pokethitiyook, Prayad

    2008-01-01

    BACKGROUND: A single-stage reactor, in which the growth of bacterial culture, induction of desulfurizing enzymes, and desulfurization reaction are carried out in a single step, was adopted to investigate desulfurization of DBT at high cell densities. IGTS8 was used as the biocatalyst. Optimal condition for the bacterial growth and DBT desulfurization were also investigated. RESULTS: Optimization of fermentation conditions was necessary to obtain high cell densities including controlling accumulation of acetate. Under optimal operating conditions, the maximum OD600 was measured to be 26.6 at 118 h of cultivation. When biodesulfurization of DBT in model oil with a high cell density culture of IGTS8 was investigated, accumulation of sulfate was found to limit the extent of desulfurization. A sulfate removal step was added to obtain a single-stage integrated biodesulfurization process. Sulfate removal was achieved via an aqueous bleed stream and use of a separation unit to recycle the organic phase. CONCLUSION : A proof of principle of a complete system capable of biocatalyst growth, induction, desulfurization and by-product separation was demonstrated. This system enables simplification of the biodesulfurization process and has potential to lower the operating cost of the bioprocess.

  2. Isotopic analysis of aerosol sulfate and nitrate during ITCT-2k2: Determination of different formation pathways as a function of particle size

    NASA Astrophysics Data System (ADS)

    Patris, N.; Cliff, S. S.; Quinn, P. K.; Kasem, M.; Thiemens, M. H.

    2007-12-01

    The triple isotopic composition of oxygen in sulfate and nitrate, and the sulfur isotopic composition of the sulfate fine fraction, have been measured on size-segregated aerosol samples collected at Trinidad Head, coastal California, alongside the ITCT-2k2 campaign in April-May 2002. The isotopic anomaly Δ17O = δ17O - 0.52 × δ18O has been determined in both sulfate and nitrate and was used as a specific tracer of the formation pathways of these species. Coarse mode sulfate in all samples exhibited a small but significant Δ17O anomaly indicating either uptake or in situ formation of secondary sulfate on sea spray. Non-sea-salt sulfate Δ17O in the coarse fraction is consistent with (1) either primarily coagulation of finer sulfate particles, when Δ17O is low in all size fractions, or (2) ozone-driven oxidation of SO2 within the sea spray, as observed in the relatively higher Δ17O in coarse particles compared to fine. It is proposed that triple-isotope measurements of sulfate oxygen can be used to quantify the budget of in situ sea spray nss-SO4 formation. The Δ17O measured in size-resolved nitrate revealed, for the first time, differences in the nitrate formation budget as a function of particle size in a given air mass. The coarse particle nitrate possessed a higher Δ17O, suggesting a relatively larger N2O5 hydrolysis contribution to the nitrate formation budget compared to fine particles where homogeneous formation is more important. We conclude that the complete isotope ratio analysis may provide a basis for future modeling of the formation and transformation processes of the soluble aerosol, based on direct observation of the mechanisms.

  3. Formation of Secondary Particulate Matter by Reactions of Gas Phase Hexanal with Sulfate Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2003-12-01

    The formation of secondary particulate matter from the atmospheric oxidation of organic compounds can significantly contribute to the particulate burden, but the formation of organic secondary particulate matter is poorly understood. One way of producing organic secondary particulate matter is the oxidation of hydrocarbons with seven or more carbon atoms to get products with low vapor pressure. However, several recent reports suggest that relatively low molecular weight carbonyls can enter the particle phase by undergoing heterogeneous reactions. This may be a very important mechanism for the formation of organic secondary particulate matter. Atmospheric aldehydes are important carbonyls in the gas phase, which form via the oxidation of hydrocarbons emitted from anthropogenic and biogenic sources. In this poster, we report the results on particle growth by the heterogeneous reactions of hexanal. A 5 L Continuous Stirred Tank Reactor (CSTR) is set up to conduct the reactions in the presence of seed aerosol particles of deliquesced ammonia bisulfate. Hexanal is added into CSTR by syringe pump, meanwhile the concentrations of hexanal are monitored with High Pressure Liquid Chromatograph (HPLC 1050). A differential Mobility Analyzer (TSI 3071) set to an appropriate voltage is employed to obtain monodisperse aerosols, and another DMA associated with a Condensation Nuclear Counter (TSI 7610) is used to measure the secondary particle size distribution by the reaction in CSTR. This permits the sensitive determination of particle growth due to the heterogeneous reaction, very little growth occurs when hexanal added alone. Results for the simultaneous addition of hexanal and alcohols will also be presented.

  4. Reacto-Diffusive Length of N2O5 in Aqueous Sulfate- and Chloride-Containing Aerosol Particles.

    PubMed

    Gaston, Cassandra J; Thornton, Joel A

    2016-02-25

    Heterogeneous reactions of dinitrogen pentoxide (N2O5) on aerosol particles impact air quality and climate, yet aspects of the relevant physical chemistry remain unresolved. One important consideration is the competing effects of diffusion and the rate of chemical reaction within the particle, which determines the length that N2O5 travels within a particle before reacting, referred to as the reacto-diffusive length (l). Large values of l imply a dependence of the reactive uptake efficiency of N2O5, i.e., γ(N2O5), on particle size. We present measurements of the size dependence of γ(N2O5) on aqueous sodium chloride, ammonium sulfate, and ammonium bisulfate particles. γ(N2O5) on ammonium sulfate and ammonium bisulfate particles ranged from 0.016 ± 0.005 to 0.036 ± 0.001 as the surface-area-weighted particle radius increased from 39 to 127 nm, resulting in an estimated l of 32 ± 6 nm. In contrast, γ(N2O5) on sodium chloride particles was independent of particle size, suggesting a near-surface reaction dominated the uptake of N2O5. Differences in the reactivity of the N2O5 intermediate, NO2(+), with water and chloride can explain the observed dependencies. These results allow for parameterizations in atmospheric models to determine a more robust population mean value of γ(N2O5) that accounts for the distribution of particle sizes.

  5. CHEMICAL ANALYSIS METHODS FOR ATMOSPHERIC AEROSOL COMPONENTS

    EPA Science Inventory

    This chapter surveys the analytical techniques used to determine the concentrations of aerosol mass and its chemical components. The techniques surveyed include mass, major ions (sulfate, nitrate, ammonium), organic carbon, elemental carbon, and trace elements. As reported in...

  6. Uptake of Nitrate and Sulfate on Dust Aerosols during TRACE-P

    NASA Technical Reports Server (NTRS)

    Jordan, C. E.; Dibb, J. E.; Anderson, B. E.; Fuelberg, H. E.

    2003-01-01

    Aerosol data collected near Asia on the DC-8 aircraft platform during TRACE-P has been examined for evidence of uptake of NO3(-) and SO4(-) on dust surfaces. Data is compared between a sector where dust was predominant and a sector where dust was less of an influence. Coincident with dust were higher mixing ratios of anthropogenic pollutants. HNO3, SO2, and CO were higher in the dust sector than the nondust sector by factors of 2.7, 6.2, and 1.5, respectively. The colocation of dust and pollution sources allowed for the uptake of NO3(-) and nss-SO4(-) on the coarse dust aerosols, increasing the mixing ratios of these particulates by factors of 5.7 and 2.6 on average. There was sufficient nss-SO4(-) to take up all of the NH4(+) present, with enough excess nss-SO4(-) to also react with dust CaCO3. This suggests that the enhanced NO3(-) was not in fine mode NH4NO3. Particulate NO3(-) (p-NO3(-)) constituted 54% of the total NO3(-), (t-NO3(-)) on average, reaching a maximum of 72% in the dust sector. In the nondust sector, p-NO3(-) contributed 37% to t-NO3(-), likely due to the abundance of sea salts there. In two other sectors where the influence of dust and sea salt were minimal, p-NO3(-), accounted for < 15% of t-NO3(-).

  7. Metal and Silicate Particles Including Nanoparticles Are Present in Electronic Cigarette Cartomizer Fluid and Aerosol

    PubMed Central

    Williams, Monique; Villarreal, Amanda; Bozhilov, Krassimir; Lin, Sabrina; Talbot, Prue

    2013-01-01

    Background Electronic cigarettes (EC) deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol. Objectives We tested the hypothesis that EC aerosol contains metals derived from various components in EC. Methods Cartomizer contents and aerosols were analyzed using light and electron microscopy, cytotoxicity testing, x-ray microanalysis, particle counting, and inductively coupled plasma optical emission spectrometry. Results The filament, a nickel-chromium wire, was coupled to a thicker copper wire coated with silver. The silver coating was sometimes missing. Four tin solder joints attached the wires to each other and coupled the copper/silver wire to the air tube and mouthpiece. All cartomizers had evidence of use before packaging (burn spots on the fibers and electrophoretic movement of fluid in the fibers). Fibers in two cartomizers had green deposits that contained copper. Centrifugation of the fibers produced large pellets containing tin. Tin particles and tin whiskers were identified in cartridge fluid and outer fibers. Cartomizer fluid with tin particles was cytotoxic in assays using human pulmonary fibroblasts. The aerosol contained particles >1 µm comprised of tin, silver, iron, nickel, aluminum, and silicate and nanoparticles (<100 nm) of tin, chromium and nickel. The concentrations of nine of eleven elements in EC aerosol were higher than or equal to the corresponding concentrations in conventional cigarette smoke. Many of the elements identified in EC aerosol are known to cause respiratory distress and disease. Conclusions The presence of metal and silicate particles in cartomizer aerosol demonstrates the need for improved quality control in EC design and manufacture and studies on how EC aerosol impacts the health of

  8. In situ observations of aerosol and chlorine monoxide after the 1991 eruption of Mount Pinatubo - Effect of reactions on sulfate aerosol

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Jonsson, H. H.; Brock, C. A.; Toohey, D. W.; Avallone, L. M.; Baumgardner, D.; Dye, J. E.; Poole, L. R.; Woods, D. C.; Decoursey, R. J.

    1993-01-01

    Highly resolved aerosol size distributions measured from high-altitude aircraft can be used to describe the effect of the 1991 eruption of Mount Pinatubo on the stratospheric aerosol. In some air masses, aerosol mass mixing ratios increased by factors exceeding 100 and aerosol surface area concentrations increased by factors of 30 or more. Increases in aerosol surface area concentration were accompanied by increases in chlorine monoxide at mid-latitudes when confounding factors were controlled. This observation supports the assertion that reactions occurring on the aerosol can increase the fraction of stratospheric chlorine that occurs in ozone-destroying forms.

  9. Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the south Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Bates, Timothy S.; Calhoun, Julie A.; Quinn, Patricia K.

    1992-01-01

    Seawater concentrations of dimethylsulfide (DMS) and atmospheric concentrations of DMS, sulfur dioxide, methanesulfonate (MSA), and non-sea-salt (nss) sulfate were measured over the eastern Pacific Ocean between 105 deg and 110 deg W from 20 deg N to 60 deg S during February and March 1989. Although the samples collected in the Southern Hemisphere appear to be of marine origin, no significant correlation was found between the latitudinal distributions of DMS, SO2, MSA, and nss SO4(2-). However, an inverse correlation was found between atmospheric temperature and the MSA to nss SO4(2-) molar ratio in submicrometer aerosol particles with a decrease in temperature corresponding to an increase in the molar ratio. Although this trend is consistent with laboratory results indicating the favored production of MSA at lower temperatures, it is contrary to Southern Hemisphere baseline station data. This suggests either a decrease in the supply of DMS relative to nonmarine sources of nss SO4(2-) at the baseline stations in winter or additional mechanisms that affect the relative production of MSA and nss SO4(2-).

  10. Heterogeneous Chemistry of HONO on Liquid Sulfuric Acid: A New Mechanism of Chlorine Activation on Stratospheric Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1996-01-01

    Heterogeneous chemistry of nitrous acid (HONO) on liquid sulfuric acid (H2SO4) Was investigated at conditions that prevail in the stratosphere. The measured uptake coefficient (gamma) of HONO on H2SO4 increased with increasing acid content, ranging from 0.03 for 65 wt % to about 0.1 for 74 wt %. In the aqueous phase, HONO underwent irreversible reaction with H2SO4 to form nitrosylsulfuric acid (NO(+)HSO4(-). At temperatures below 230 K, NO(+)HSO4(-) was observed to be stable and accumulated in concentrated solutions (less than 70 wt % H2SO4) but was unstable and quickly regenerated HONO in dilute solutions (less than 70 wt %). HCl reacted with HONO dissolved in sulfuric acid, releasing gaseous nitrosyl chloride (ClNO). The reaction probability between HCl and HONO varied from 0.01 to 0.02 for 60-72 wt % H2SO4. In the stratosphere, ClNO photodissociates rapidly to yield atomic chlorine, which catalytically destroys ozone. Analysis of the laboratory data reveals that the reaction of HCl with HONO on sulfate aerosols can affect stratospheric ozone balance during elevated sulfuric acid loadings after volcanic eruptions or due to emissions from the projected high-speed civil transport (HSCT). The present results may have important implications on the assessment of environmental acceptability of HSCT.

  11. Balloon profiles of stratospheric NO2 and HNO3 for testing the heterogeneous hydrolysis of N2O5 on sulfate aerosols

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; May, R. D.; Allen, M.; Jaegle, L.; Mccormick, M. P.

    1994-01-01

    Simultaneous in situ measurements of stratospheric NO2, HNO3, HCl, and CH4 from 34 to 24 km were made in August 1992 from Palestine, Texas, using the Balloon-borne Laser In-Situ Sensor (BLISS) tunable diode laser spectrometer. Although the measurements of NO2, HNO3, and NO2/HNO3 agree well with gas-phase model calculations near 34 km where Stratospheric Aerosol and Gas Experiment (SAGE) 2 data show little sulfate aerosol, this is not true at the lower altitudes where SAGE 2 shows high aerosol loadings. At 24 km the BLISS NO2 and HNO3 measurements are 70% lower and 50% higher, respectively, than the gas phase model predictions, with a measured NO2/HNO3 ratio 5 times smaller. When the heterogeneous hydrolysis of N2O5 and ClONO2 on sulfate aerosol of surface area densities matching the SAGE 2 measurements is added to the model, good agreement with the BLISS measurements is found over the whole altitude range.

  12. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  13. Direct radiative effect modeled for regional aerosols in central Europe including the effect of relative humidity

    NASA Astrophysics Data System (ADS)

    Iorga, G.; Hitzenberger, R.; Kasper-Giebl, A.; Puxbaum, Hans

    2007-01-01

    In view of both the climatic relevance of aerosols and the fact that aerosol burdens in central Europe are heavily impacted by anthropogenic sources, this study is focused on estimating the regional-scale direct radiative effect of aerosols in Austria. The aerosol data (over 80 samples in total) were collected during measurement campaigns at five sampling sites: the urban areas of Vienna, Linz, and Graz and on Mt. Rax (1644 m, regional background aerosol) and Mt. Sonnblick (3106 m, background aerosol). Aerosol mass size distributions were obtained with eight-stage (size range: 0.06-16 μm diameter) and six-stage (size range 0.1-10 μm) low-pressure cascade impactors. The size-segregated samples were analyzed for total carbon (TC), black carbon (BC), and inorganic ions. The aerosol at these five locations is compared in terms of size distributions, optical properties, and direct forcing. Mie calculations are performed for the dry aerosol at 60 wavelengths in the range 0.3-40 μm. Using mass growth factors determined earlier, the optical properties are also estimated for higher relative humidities (60%, 70%, 80%, and 90%). A box model was used to estimate direct radiative forcing (DRF). The presence of absorbing species (BC) was found to reduce the cooling effect of the aerosols. The water-soluble substances dominate radiative forcing at the urban sites, while on Rax and Sonnblick BC plays the most important role. This result can be explained by the effect of the surface albedo, which is much lower in the urban regions (0.16) than at the ice and snow-covered mountain sites. Shortwave (below 4 μm) and longwave surface albedo values for ice were 0.35 and 0.5, while for snow surface albedo, values of 0.8 (shortwave) and 0.5 (longwave) were used. In the case of dry aerosol, especially for urban sites, the unidentified material may contribute a large part to the forcing. Depending on the sampling site the estimated forcing gets more negative with increasing humidity

  14. Aerosol Modeling for the Global Model Initiative

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.

    2001-01-01

    The goal of this project is to develop an aerosol module to be used within the framework of the Global Modeling Initiative (GMI). The model development work will be preformed jointly by the University of Michigan and AER, using existing aerosol models at the two institutions as starting points. The GMI aerosol model will be tested, evaluated against observations, and then applied to assessment of the effects of aircraft sulfur emissions as needed by the NASA Subsonic Assessment in 2001. The work includes the following tasks: 1. Implementation of the sulfur cycle within GMI, including sources, sinks, and aqueous conversion of sulfur. Aerosol modules will be added as they are developed and the GMI schedule permits. 2. Addition of aerosol types other than sulfate particles, including dust, soot, organic carbon, and black carbon. 3. Development of new and more efficient parameterizations for treating sulfate aerosol nucleation, condensation, and coagulation among different particle sizes and types.

  15. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  16. [Seasonal Variation Characteristics and Potential Source Contribution of Sulfate, Nitrate and Ammonium in Beijing by Using Single Particle Aerosol Mass Spectrometry].

    PubMed

    Liu, Lang; Zhang, Wen-jie; Du, Shi-yong; Hou, Lu-jian; Han, Bin; Yang, Wen; Chen, Min-dong; Bai, Zhi-peng

    2016-05-15

    Single particle aerosol mass spectrometry (SPAMS) was deployed to continuously observe the aerosol particles of Beijing urban area from 2013-12 to 2014-11, and the hourly average data of sulfate, nitrate and ammonium (SNA) were obtained using the characteristic ion tracer method. The mixing state and size distribution of SNA were analyzed. In addition, based on Hysplit 48 h back air mass trajectory results in combination with Concentration Weighted Trajectory method (CWT), we obtained the seasonal potential source contribution area of SNA. The results showed that the mixture of sulfate, nitrate and ammonium in spring and summer was more stable than that in autumn and winter. The size distribution of sulfate and nitrate was very similar. The size distribution characteristics of SNA followed the order of autumn > summer > spring > winter. The potential source region of SNA had similar spatial distribution characteristics, and the potential source region of SNA was mainly located in Beijing and south areas, especially at Tianjin, Langfang, Hengshui, Baoding and Shijiazhuang. PMID:27506011

  17. [Seasonal Variation Characteristics and Potential Source Contribution of Sulfate, Nitrate and Ammonium in Beijing by Using Single Particle Aerosol Mass Spectrometry].

    PubMed

    Liu, Lang; Zhang, Wen-jie; Du, Shi-yong; Hou, Lu-jian; Han, Bin; Yang, Wen; Chen, Min-dong; Bai, Zhi-peng

    2016-05-15

    Single particle aerosol mass spectrometry (SPAMS) was deployed to continuously observe the aerosol particles of Beijing urban area from 2013-12 to 2014-11, and the hourly average data of sulfate, nitrate and ammonium (SNA) were obtained using the characteristic ion tracer method. The mixing state and size distribution of SNA were analyzed. In addition, based on Hysplit 48 h back air mass trajectory results in combination with Concentration Weighted Trajectory method (CWT), we obtained the seasonal potential source contribution area of SNA. The results showed that the mixture of sulfate, nitrate and ammonium in spring and summer was more stable than that in autumn and winter. The size distribution of sulfate and nitrate was very similar. The size distribution characteristics of SNA followed the order of autumn > summer > spring > winter. The potential source region of SNA had similar spatial distribution characteristics, and the potential source region of SNA was mainly located in Beijing and south areas, especially at Tianjin, Langfang, Hengshui, Baoding and Shijiazhuang.

  18. Size distributions of aerosol sulfates and nitrates in Beijing during the 2008 Olympic Games: Impacts of pollution control measures and regional transport

    NASA Astrophysics Data System (ADS)

    Wang, Xinfeng; Wang, Tao; Pathak, Ravi Kant; Hallquist, Mattias; Gao, Xiaomei; Nie, Wei; Xue, Likun; Gao, Jian; Gao, Rui; Zhang, Qingzhu; Wang, Wenxing; Wang, Shulan; Chai, Fahe; Chen, Yizhen

    2013-03-01

    For the 2008 Olympic Games, drastic control measures were implemented on industrial and urban emissions of sulfur dioxide (SO2), nitrogen oxides (NO x ) and other pollutants to address the issues of poor air quality in Beijing. To investigate the effects of SO2 and NO x reductions on the particulate sulfate and nitrate concentrations as well as their size distributions, size-segregated aerosol samples were collected using micro-orifice uniform deposit impactors (MOUDIs) at urban and downwind rural sites in Beijing before and after full-scale controls. During the sampling period, the mass concentrations of fine particles (PM1.8) at the urban and rural sites were 94.0 and 85.9 μg m-3, respectively. More than 90% of the sulfates and ˜60% of nitrates formed as fine particles. Benefiting from the advantageous meteorological conditions and the source controls, sulfates were observed in rather low concentrations and primarily in condensation mode during the Olympics. The effects of the control measures were separately analyzed for the northerly and the southerly air-mass-dominated days to account for any bias. After the control measures were implemented, PM, sulfates, and nitrates were significantly reduced when the northerly air masses prevailed, with a higher percentage of reduction in larger particles. The droplet mode particles, which dominated the sulfates and nitrates before the controls were implemented, were remarkably reduced in mass concentration after the control measures were implemented. Nevertheless, when the polluted southerly air masses prevailed, the local source control measures in Beijing did not effectively reduce the ambient sulfate concentration due to the enormous regional contribution from the North China Plain.

  19. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Naik, V.; Horowitz, L. W.; Liu, J.; Mauzerall, D. L.

    2008-12-01

    Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO2), a sulfate (SO42-) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct and indirect effects, SO42- and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO2, SO42-, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing. Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration-response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to radiative forcing in 2000 and 2030. In 2000, we estimate these aerosols cause 385,320 premature deaths in China and an additional 18 240 globally. In 2030, aggressive emission controls lead to a reduction in premature deaths to 200,370 in China and 7,740 elsewhere, while under a high emissions scenario premature deaths would increase to 602,950 in China and to 29,750 elsewhere. Because the negative radiative forcing from SO42- and OC is larger than the positive forcing from BC, the Chinese aerosols lead to global net direct radiative forcing of -74 mW m-2 in 2000 and between -15 and -97 mW m-2 in 2030 based on the emissions scenario. Our analysis suggests that environmental policies that simultaneously improve public health and mitigate climate change would be highly beneficial (eg. reductions in BC emissions).

  20. A numerical simulation of atmospheric photochemical processes including interactions with aerosol particles

    SciTech Connect

    Hackler, M.A.

    1989-01-01

    We propose a comprehensive model of atmospheric photochemical processes that can be used to investigate the interactions between gas species and aerosol particles. We considered both gas and particle phase reactions, transport of material between these phases, convection, turbulent diffusion, particle growth, coagulation, nucleation, and sources. The aerosol particle phase is not forced to follow the gas phase in equilibrium; transport to the particles is described by diffusion to the particle surface. The resulting model treats 33 gas phase species and 39 particles phase species; 16 of these are transported between the phases. The particle size distribution is approximated by 9 sections between 0.01 and 10 {mu}m diameter. Strong interactions between the gas and particles are seen. Higher relative humidity results in more particle volume and surface area, allowing the interphase transport to become competitive with the reaction terms. In particular, at high relative humidities the increased scavenging of HO{sub 2} radicals by particles reduces the O{sub 3} maximum concentration. This effect is seen only on days when the maximum relative humidity exceeds 90%. This conclusion has implications for the applicability of models developed for the Los Angeles Basin, where the maximum relative humidity rarely exceeds 75%, to more humid climates like Houston.

  1. Amine-templated one-dimensional metal sulfates including a mixed-valent Fe compound with a half-kagome structure.

    PubMed

    Behera, J N; Rao, C N R

    2006-11-20

    Organically templated metal sulfates are relatively new. Six amine-templated transition-metal sulfates with different types of chain structures, including a novel iron sulfate with a chain structure corresponding to one half of the kagome structure, were synthesized by hydro/solvothermal methods. Amongst the one-dimensional metal sulfates, [C10N2H10][Zn(SO4)Cl2] (1) is the simplest, being formed by corner-linked ZnO2Cl2 and SO4 tetrahedra. [C6N2H18][Mn(SO4)2(H2O)2] (2) and [C2N2H10][Ni(SO4)2(H2O)2] (3) have ladder structures comprising four-membered rings formed by SO4 tetrahedra and metal-oxygen octahedra, just as in the mineral kröhnkite. [C4N2H12][V(III)(OH)(SO4)2]H2O (4) and [C4N2H12][VF3(SO4)] (5) exhibit chain topologies of the minerals tancoite and butlerite, respectively. The structure of [C4N2H12][H3O][Fe(III)Fe(II) F6(SO4)] (6) is noteworthy in that it corresponds to half of the hexagonal kagome structure. It exhibits ferrimagnetic properties at low temperatures and the absence of frustration, unlike the mixed-valent iron sulfate with the full kagome structure.

  2. Development and applications of a stochastic convective parameterization for a smooth transition to cloud resolving scales that includes aerosol interactions

    NASA Astrophysics Data System (ADS)

    Grell, Georg; Freitas, Saulo

    2013-04-01

    With the increasing availability of computing power many numerical weather prediction models now run at computational grids with resolution of dx < 10km, "gray scales" for convective parameterizations, where convective clouds may be resolved as well as unresolved. In addition Air Quality Research and Forecast (AQRF) models have continuously increasing complexity and can treat the interactions of aerosol and cloud microphysics. In this paper we will describe a new convective parameterization that allows for both, a smooth transition to cloud resolving scales as well as a parameterized interaction of aerosols with cloud microphysics (aerosol indirect effect). The parameterization also includes options for the transport of chemical constituents, wet deposition, and some aqueous phase chemistry. The parameterization is a modification of the Grell and Dvenyi (2002) scheme, and is used in version of the Weather Research and Forecast model (WRF and WRF-Chem), the Brazilian Regional Atmospheric Modeling system (B-RAMS) and the global Flow following finite volume Icosahedral Model (FIM and FIM-Chem).

  3. Non-Refractory Submicron Aerosol Mass Loadings during NEAQS

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Matthew, B. M.; Canagaratna, M. R.; Worsnop, D. R.; Quinn, P. K.; Degouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; McKeen, S. A.

    2003-12-01

    During the New England Air Quality Study (NEAQS) in July-August 2002, an Aerosol Mass Spectrometer (AMS) was deployed aboard the NOAA ship RONALD H. BROWN and collected 2-minute averaged data. The AMS, which measures non-refractory components of aerosol particles with aerodynamic diameters between roughly 40 and 1500 nm, produced particle mass spectra as well as aerosol organic, sulfate, ammonium, and nitrate mass distributions. A wide variety of air masses were sampled, including clean marine, clean continental, and polluted continental air masses. In general, the volatile particle composition was mostly organic and sulfate with lesser amounts of ammonium and nitrate and the mass loadings typically peaked around 400-600 nm in vacuum aerodynamic diameter. Although the AMS sulfate and ammonium concentrations were highly correlated with the sulfate and ammonium concentrations from the Particle into Liquid (PILS) instrument also deployed on the ship, the AMS and PILS nitrate concentrations were not correlated and at times anti-correlated. In contrast, the AMS nitrate and organic concentrations as well as the AMS nitrate and gas phase alkyl nitrate concentrations were highly correlated. These results suggest that organic nitrate was present in the submicron aerosol phase. The AMS organic concentrations were generally higher than the AMS sulfate concentrations, consistent with other shipboard measurements. Whenever the sulfate concentration increased, the organic concentration also increased, indicating that sulfate and organic aerosol growth are influenced by the same processes or that sulfate may play a role in organic aerosol growth. The exception to this pattern occurred during a sea fog event where the sulfate concentration increased and the organic concentration decreased, probably due to rapid aqueous phase sulfur oxidation and relatively less oxidation of organic compounds. Furthermore, the organic concentration often increased without concurrent increases in

  4. Rapid identification of triterpenoid sulfates and hydroxy fatty acids including two new constituents from Tydemania expeditionis by LC-MS

    PubMed Central

    Zhang, Jian-Long; Kubanek, Julia; Hay, Mark E.; Aalbersberg, William; Ye, Wen-Cai; Jiang, Ren-Wang

    2011-01-01

    Tydemania expeditionis Weber-van Bosse (Udoteaceae) is a weakly calcified green alga. In the present paper, liquid chromatography coupled with photodiode array detection and electrospray mass spectrometry was developed to identify the fingerprint components. A total of four triterpenoid sulfates and three hydroxy fatty acids in the ethyl acetate fraction of the crude extract were structurally characterized on the basis of retention time, online UV spectrum and mass fragmentation pattern. Furthermore, detailed LC-MS analysis revealed two new hydroxy fatty acids, which were then prepared and characterized by extensive NMR analyses. The proposed method provides a scientific and technical platform for the rapid identification of triterpenoid sulfates and hydroxy fatty acids in similar marine algae and terrestrial plants. PMID:21915955

  5. Biomarkers of sulfate reducing bacteria from a variety of different aged samples including a modern microbial mat

    NASA Astrophysics Data System (ADS)

    Pages, A.; Grice, K.; Lockhart, R.; Holman, A.; Melendez, I.; Van Kranendonk, M.; Jaraula, C.

    2011-12-01

    Most biomarkers present in sediments occur in only trace concentrations, trapped in kerogen or may be highly functionalised especially in recent sedimentary deposits making them difficult to chromatographically resolve, thus presenting considerable analytical challenges, especially for isotope studies. Innovative hydro (Hy) pyrolysis (Py) techniques are able to target or convert many of these compounds into free hydrocarbons more amenable to gas chromatography mass-spectrometry (GC-MS) and compound-specific isotope analysis (CSIA). HyPy has been applied to a modern layered smooth mat from Shark Bay, Western Australia. Saturate and aromatic fractions from different layers of the mat have been analysed by GC-MS and CSIA. After HyPy, an even-odd distribution of n-alkanes has been revealed as well as very long-chain n-alkanes up to n-C38. Stable carbon isotopic values of the n-alkanes indicated the presence of at least two bacterial communities. The short-chain n-alkanes were likely to be representative of a cyanobacteria community (δ13C, C15-C23, - 18 to -25 %VPDB) while the carbon isotopic values of the long-chain n-alkanes supported the presence of sulfate reducing bacteria (δ13C, C25-C33, - 30 to - 34 %VPDB). Long-chain fatty acids have been previously reported in sulfate reducing bacteria. It is hypothesised that this distribution and isotopic character representing sulfate reducing bacteria consortia may be preserved in the rock record. This hypothesis has been tested in Australian rocks: a Devonian carbonaceous concretion containing an exceptionally well preserved fossil invertebrate from the Canning Basin, Western Australia, a Paleoproterozoic sample (1.6 billion years old) from a lead-zinc ore deposit from the McArthur Basin, Northern Territories and a Paleoproterozoic chert (2.3 billion years old) from the Pilbara, Western Australia. Biomarkers of these samples showed a strong predominance of long-chain n-alkanes, up to n-C38 with an even-odd distribution

  6. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol

    NASA Astrophysics Data System (ADS)

    Riva, Matthieu; Budisulistiorini, Sri Hapsari; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.

    2016-04-01

    Isoprene is the most abundant non-methane hydrocarbon emitted into Earth's atmosphere and is predominantly derived from terrestrial vegetation. Prior studies have focused largely on the hydroxyl (OH) radical-initiated oxidation of isoprene and have demonstrated that highly oxidized compounds, such as isoprene-derived epoxides, enhance the formation of secondary organic aerosol (SOA) through heterogeneous (multiphase) reactions on acidified sulfate aerosol. However, studies on the impact of acidified sulfate aerosol on SOA formation from isoprene ozonolysis are lacking and the current work systematically examines this reaction. SOA was generated in an indoor smog chamber from isoprene ozonolysis under dark conditions in the presence of non-acidified or acidified sulfate seed aerosol. The effect of OH radicals on SOA chemical composition was investigated using diethyl ether as an OH radical scavenger. Aerosols were collected and chemically characterized by ultra performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) and gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS). Analysis revealed the formation of highly oxidized compounds, including organosulfates (OSs) and 2-methylterols, which were significantly enhanced in the presence of acidified sulfate seed aerosol. OSs identified in the chamber experiments were also observed and quantified in summertime fine aerosol collected from two rural locations in the southeastern United States during the 2013 Southern Oxidant and Aerosol Study (SOAS).

  7. Influence of aerosol vertical distribution on radiative budget and climate

    NASA Astrophysics Data System (ADS)

    Nabat, Pierre; Michou, Martine; Saint-Martin, David; Watson, Laura

    2016-04-01

    Aerosols interact with shortwave and longwave radiation with ensuing consequences on radiative budget and climate. Aerosols are represented in climate models either using an interactive aerosol scheme including prognostic aerosol variables, or using climatologies, such as monthly aerosol optical depth (AOD) fields. In the first case, aerosol vertical distribution can vary rapidly, at a daily or even hourly scale, following the aerosol evolution calculated by the interactive scheme. On the contrary, in the second case, a fixed aerosol vertical distribution is generally imposed by climatological profiles. The objective of this work is to study the impact of aerosol vertical distribution on aerosol radiative forcing, with ensuing effects on climate. Simulations have thus been carried out using CNRM-CM, which is a global climate model including an interactive aerosol scheme representing the five main aerosol species (desert dust, sea-salt, sulfate, black carbon and organic matter). Several multi-annual simulations covering the past recent years are compared, including either the prognostic aerosol variables, or monthly AOD fields with different aerosol vertical distributions. In the second case, AOD fields directly come from the first simulation, so that all simulations have the same integrated aerosol loads. The results show that modifying the aerosol vertical distribution has a significant impact on radiative budget, with consequences on global climate. These differences, highlighting the importance of aerosol vertical distribution in climate models, probably come from the modification of atmospheric circulation induced by changes in the heights of the different aerosols. Besides, nonlinear effects in the superposition of aerosol and clouds reinforce the impact of aerosol vertical distribution, since aerosol radiative forcing depends highly upon the presence of clouds, and upon the relative vertical position of aerosols and clouds.

  8. Chemical interactions in isolated coal-fired power plant plumes: conversion of sulfur dioxide to sulfate aerosols. Volume II. Data supplement

    SciTech Connect

    Meagher, J.F.; Bailey, E.M.; Stockburger, L. III

    1981-03-01

    The Tennessee Valley Authority (TVA) has conducted several field experiments to examine the chemical interactions in isolated coal-fired power plant plumes, Particularly the conversion of sulfur dioxide (SO/sub 2/) to sulfate (SO/sub 4//sup 2 -/) aerosols. Six field studies have been conducted at three TVA power plants - Cumberland, paradise, and Colbert Steam Plants - each of which has a different boiler configuration. Studies were conducted during all seasons of the year. Samples were usually collected between sunrise and noon; however, at Cumberland and Paradise Steam Plants, samples were also collected in the afternoon and after sunset. The effect of several meteorological parameters on the conversion rate was investigated from the results of these studies. During one study at Cumberland Steam Plant, samples were taken during periods of reduced and normal electrostatic precipitator (ESP) operation; results from this study were used to investigate the effect of particle loading in the plume on the conversion rate.

  9. Assessing new remote sensing aerosol detection algorithms

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-02-01

    Atmospheric aerosols affect the weather and climate by changing cloud formation and the energy balance and, depending on their type and concentration, can negatively affect air quality. Important atmospheric aerosols include dust, ash, volcanic sulfate aerosols, sea salt, biogenic particles, urban/industrial pollution, and smoke. For more than a decade, the twin Moderate Resolution Imaging Spectroradiometers (MODIS) aboard NASA's Aqua and Terra satellites have provided regular global assessments of aerosol loading, and now, following its 2011 launch, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite is ready to contribute to that assessment.

  10. Measurements of aerosol-cloud interactions, including on-line particle chemical composition, at the Jungfraujoch Global Atmospheric Watch Station

    NASA Astrophysics Data System (ADS)

    Coe, H.; Allan, J. D.; Alfarra, M. R.; Williams, P. I.; Bower, K. N.; Gallagher, M. W.; Choularton, T. W.; Weingartner, E.; Corrigan, C.; Baltensperger, U.

    2003-04-01

    The Global Atmospheric Watch research laboratory is located in the Sphinx building, 3580 m asl; 46.55oN, 7.98oE on the Jungfraujoch in the Swiss Alps. The site is exposed to a wide range of conditions and frequently samples long range transported lower free tropospheric air, and is exposed to cloudy conditions. The Paul Scherrer Institute have previously developed a dual inlet system that allows measurements of the total sub-micron aerosol population (dry residuals and interstitial particles) and interstitial particles alone to be made alternately every few minutes. During July 2002 an Aerodyne Aerosol Mass Spectrometer was coupled to the dual inlet and was used to sample the composition of both the total particle distribution and the interstitial fraction and hence derive the mass loadings of the dry droplet residuals. In out of cloud conditions the aerosol composition can be linked to air mass history and age of the air mass. Microphysical measurements include cloud droplet size distributions made using an FSSP and also a new phase Doppler anemometry system. A comparison between these probes will be made. Two different types of cloud droplet spectra were observed. In the first type a large number of cloud droplets were measured with a single, narrow drop size distribution and modal diameter of around 10 um. In the second type, a bimodal cloud droplet spectrum occurred with a smaller mode (by number) at around 20 um, in addition to the 10 um mode. The aerosol mass spectrometry shows that the composition of the residuals from the two spectrum types is very different, the former type being composed mainly of sulphate, the latter a combination of nitrate, sulphate and organic material. We have also shown that the organic material observed is highly oxidized. We argue that the bimodality arises as a result of mixing of cloud droplets below the site that have been activated separately: the larger a less numerous mode in the widespread strato-cumulus forming under low

  11. CMAQ model performance enhanced when in-cloud secondary organic aerosol is included: comparisons of organic carbon predictions with measurements.

    PubMed

    Carlton, Annmarie G; Turpin, Barbara I; Altieri, Katye E; Seitzinger, Sybil P; Mathur, Rohit; Roselle, Shawn J; Weber, Rodney J

    2008-12-01

    Mounting evidence suggests that low-volatility (particle-phase) organic compounds form in the atmosphere through aqueous phase reactions in clouds and aerosols. Although some models have begun including secondary organic aerosol (SOA) formation through cloud processing, validation studies that compare predictions and measurements are needed. In this work, agreement between modeled organic carbon (OC) and aircraft measurements of water soluble OC improved for all 5 of the compared ICARTT NOAA-P3 flights during August when an in-cloud SOA (SOAcld) formation mechanism was added to CMAQ (a regional-scale atmospheric model). The improvement was most dramatic for the August 14th flight, a flight designed specifically to investigate clouds. During this flight the normalized mean bias for layer-averaged OC was reduced from -64 to -15% and correlation (r) improved from 0.5 to 0.6. Underpredictions of OC aloft by atmospheric models may be explained, in part, by this formation mechanism (SOAcld). OC formation aloft contributes to long-range pollution transport and has implications to radiative forcing, regional air quality and climate. PMID:19192800

  12. CMAQ model performance enhanced when in-cloud secondary organic aerosol is included: comparisons of organic carbon predictions with measurements.

    PubMed

    Carlton, Annmarie G; Turpin, Barbara I; Altieri, Katye E; Seitzinger, Sybil P; Mathur, Rohit; Roselle, Shawn J; Weber, Rodney J

    2008-12-01

    Mounting evidence suggests that low-volatility (particle-phase) organic compounds form in the atmosphere through aqueous phase reactions in clouds and aerosols. Although some models have begun including secondary organic aerosol (SOA) formation through cloud processing, validation studies that compare predictions and measurements are needed. In this work, agreement between modeled organic carbon (OC) and aircraft measurements of water soluble OC improved for all 5 of the compared ICARTT NOAA-P3 flights during August when an in-cloud SOA (SOAcld) formation mechanism was added to CMAQ (a regional-scale atmospheric model). The improvement was most dramatic for the August 14th flight, a flight designed specifically to investigate clouds. During this flight the normalized mean bias for layer-averaged OC was reduced from -64 to -15% and correlation (r) improved from 0.5 to 0.6. Underpredictions of OC aloft by atmospheric models may be explained, in part, by this formation mechanism (SOAcld). OC formation aloft contributes to long-range pollution transport and has implications to radiative forcing, regional air quality and climate.

  13. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    PubMed Central

    Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-01-01

    Abstract A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size‐resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1‐CARMA is approximately ∼2.6 times as much computer time as the standard three‐mode aerosol model in CESM1 (CESM1‐MAM3) and twice as much computer time as the seven‐mode aerosol model in CESM1 (CESM1‐MAM7) using similar gas phase chemistry codes. Aerosol spatial‐temporal distributions are simulated and compared with a large set of observations from satellites, ground‐based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data.

  14. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    PubMed Central

    Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-01-01

    Abstract A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size‐resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1‐CARMA is approximately ∼2.6 times as much computer time as the standard three‐mode aerosol model in CESM1 (CESM1‐MAM3) and twice as much computer time as the seven‐mode aerosol model in CESM1 (CESM1‐MAM7) using similar gas phase chemistry codes. Aerosol spatial‐temporal distributions are simulated and compared with a large set of observations from satellites, ground‐based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data. PMID:27668039

  15. Simulations of sulfate-nitrate-ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014

    NASA Astrophysics Data System (ADS)

    Chen, Dan; Liu, Zhiquan; Fast, Jerome; Ban, Junmei

    2016-08-01

    Extreme haze events have occurred frequently over China in recent years. Although many studies have investigated the formation mechanisms associated with PM2.5 for heavily polluted regions in China based on observational data, adequately predicting peak PM2.5 concentrations is still challenging for regional air quality models. In this study, we evaluate the performance of one configuration of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and use the model to investigate the sensitivity of heterogeneous reactions on simulated peak sulfate, nitrate, and ammonium concentrations in the vicinity of Beijing during four extreme haze episodes in October 2014 over the North China Plain. The highest observed PM2.5 concentration of 469 µg m-3 occurred in Beijing. Comparisons with observations show that the model reproduced the temporal variability in PM2.5 with the highest PM2.5 values on polluted days (defined as days in which observed PM2.5 is greater than 75 µg m-3), but predictions of sulfate, nitrate, and ammonium were too low on days with the highest observed concentrations. Observational data indicate that the sulfur/nitric oxidation rates are strongly correlated with relative humidity during periods of peak PM2.5; however, the model failed to reproduce the highest PM2.5 concentrations due to missing heterogeneous/aqueous reactions. As the parameterizations of those heterogeneous reactions are not well established yet, estimates of SO2-to-H2SO4 and NO2/NO3-to-HNO3 reaction rates that depend on relative humidity were applied, which improved the simulation of sulfate, nitrate, and ammonium enhancement on polluted days in terms of both concentrations and partitioning among those species. Sensitivity simulations showed that the extremely high heterogeneous reaction rates and also higher emission rates than those reported in the emission inventory were likely important factors contributing to those peak PM2.5 concentrations.

  16. The climate impact of aviation aerosols

    NASA Astrophysics Data System (ADS)

    Gettelman, A.; Chen, C.

    2013-06-01

    A comprehensive general circulation model (GCM) is used to estimate the climate impact of aviation emissions of black carbon (BC) and sulfate (SO4) aerosols. Aviation BC is found not to exert significant radiative forcing impacts, when BC nucleating efficiencies in line with observations are used. Sulfate emissions from aircraft are found to alter liquid clouds at altitudes below emission (˜200 hPa); contributing to shortwave cloud brightening through enhanced liquid water path and drop number concentration in major flight corridors, particularly in the N. Atlantic. Global averaged sulfate direct and indirect effects on liquid clouds of 46 mWm-2are larger than the warming effect of aviation induced cloudiness of 16 mWm-2. The net result of including contrail cirrus and aerosol effects is a global averaged cooling of -21±11 mWm-2. These aerosol forcings should be considered with contrails in evaluating the total global impact of aviation on climate.

  17. Dimethyl Sulfide Emissions from Dairies and Agriculture as a Potential Contributor to Sulfate Aerosols in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Lebel, E.; Marrero, J. E.; Bertram, T. H.; Blake, D. R.

    2014-12-01

    Whole air samples have been collected throughout Southern California during the previous five years of the NASA Student Airborne Research Program (SARP). During a flight over the Salton Sea in 2014, higher concentrations of dimethyl sulfide (DMS), a known marine emitted gas, were observed over neighboring agricultural land than over the sea itself. A comparison of DMS to methyl iodide, another known marine emitted gas, showed minimal correlation, revealing that DMS was being emitted from local sources. Ground samples at the Salton Sea verified that the DMS was not transported from the Pacific Ocean. Previous SARP studies have shown that DMS is emitted from dairies. The enhancements in ethanol (another dairy tracer) and DMS in several airborne samples collected south of the Salton Sea suggest dairy emissions of the observed DMS. DMS is a compound of interest because its oxidation can form cloud condensation nuclei. Based on data from all six SARP flights between 2009-2014, we propose that dairy and farming emissions of DMS in the San Joaquin Valley may be impacting aerosol loading in this region. A simple model that takes into account the particulate matter mass loadings was used to calculate the percent contribution of DMS to aerosol formation for the San Joaquin Valley.

  18. Role of sea ice and hemispheric circulation mode on sulphur oxidised compounds (Methanesulfonate and Sulfate) in the Artic aerosol

    NASA Astrophysics Data System (ADS)

    Becagli, Silvia; Calzolai, Giulia; Dayan, Uri; Di Biagio, Claudia; di Sarra, Alcide; Frosini, Daniele; Mazzola, Mauro; Rugi, Francesco; Severi, Mirko; Traversi, Rita; Vitale, Vito; Udisti, Roberto

    2013-04-01

    The recent decline in sea ice cover in the Arctic Ocean is expected to affect the regional radiation budget and to influence the ocean-atmosphere exchange of dimethylsulfide (DMS), thus the amount of biogenic aerosols formed from its atmospheric oxidation, such as methanesulfonate (MS-) and non-sea salt sulphate (nssSO42-). This study examines the temporal evolution of atmospheric MS- and nssSO42-, as measured in atmospheric aerosols, at Ny-Ålesund, (78.9°N, 11.9°E, Svalbard islands) and Thule (76.5°N, 68.8°W, Greenland) during three years (2010-12). Aerosol sampling was carried out using a PM10 sampler with Teflon filters, and a 12-stage impactor (SDI, Small Deposit-area Impactor) with polycarbonate filters. Analyses were performed by ion chromatography, for ion composition, and ICP-SFMS, for selected metals; both techniques are sufficiently sensitive, accurate, and reproducible to be applied to very low atmospheric load of aerosol particles, typical of remote polar regions. The evolution of MS- and nssSO4 concentrations was analysed as a function of speciation (as acidic species or ammonium salt), size distribution, and airmass pathways. This study reveals that nssSO4 is meanly associated with long range transport from anthropic sources, and presents a relative maximum in spring. Conversely, MS- arises from natural local sources and shows a peak in mid-summer. A large interannual variability is observed in MS- concentration with values in spring-summer 2010 in both the stations higher than in the other summers. In the previous winter a larger sea ice extent and larger sea ice melting surface in the following spring were observed. Arrigo et al. (2008) have observed a 22% increase in the annual primary productivity, that has been attributed to a longer phytoplankton growing season connected with the progressive decline in sea ice coverage in the Arctic over the past decade. Modeling results (Gabric et al., 2005) suggest that an increase in DMS production would

  19. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    SciTech Connect

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  20. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; Zibordi, G.

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  1. Effects of ammonium sulfate aerosol exposure on lung structure of normal and elastase-impaired rats and guinea pigs

    SciTech Connect

    Busch, R.H.; Buschbom, R.L.; Cannon, W.C.; Lauhala, K.E.; Miller, F.J.; Graham, J.A.; Smith, L.G.

    1984-04-01

    Rats and guinea pigs, pretreated with intratracheally administered elastase or saline, were exposed to 1.03 mg/m/sup 3/ (NH/sub 4/)/sub 2/SO/sub 4/; MMAD, 0.42 ..mu..m. Identically treated controls were sham exposed. Measurements and evaluation of structural changes were conducted using morphometric techniques on SEM photographs and by applying subjective ratings. Pathology studies were conducted by light and electron microscopy. All examination methods confirmed elastase-induced emphysema, which was aggravated by (NH/sub 4/)/sub 2/SO/sub 4/ exposure in the rat. Ammonium sulfate exposure of saline-treated animals produced measurable degrees of enlargement of alveoli, and alveolar ducts and sacs. Electron microscopy revealed increased interstitial collagen in affected lung areas of elastase-treated, (NH/sub 4/)/sub 2/SO/sub 4/-exposed animals. Alveolar-pore size was significantly increased in elastase-treated animals (control and exposed) but not in saline-treated, exposed animals. The data suggest a possible difference between elastase and (NH/sub 4/)/sub 2/SO/sub 4/ in the mechanisms responsible for the increased diameter of alveolar structures. Hypertrophy and hyperplasia of nonciliated epithelial cells of the small airways and of the Type II alveolar cells were observed in otherwise untreated guinea pigs exposed to (NH/sub 4/)/sub 2/SO/sub 4/ but not in elastase-treated guinea pigs, nor in any of the rats. 12 references.

  2. Easy Volcanic Aerosol

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Stevens, Bjorn; Schmidt, Hauke; Timmreck, Claudia

    2016-04-01

    Radiative forcing by stratospheric sulfate aerosol of volcanic origin is one of the strongest drivers of natural climate variability. Transient model simulations attempting to match observed climate variability, such as the CMIP historical simulations, rely on volcanic forcing reconstructions based on observations of a small sample of recent eruptions and coarse proxy data for eruptions before the satellite era. Volcanic forcing data sets used in CMIP5 were provided either in terms of optical properties, or in terms of sulfate aerosol mass, leading to significant inter-model spread in the actual volcanic radiative forcing produced by models and in their resulting climate responses. It remains therefore unclear to what degree inter-model spread in response to volcanic forcing represents model differences or variations in the forcing. In order to isolate model differences, Easy Volcanic Aerosol (EVA) provides an analytic representation of volcanic stratospheric aerosol forcing, based on available observations and aerosol model results, prescribing the aerosol's radiative properties and primary modes of spatial and temporal variability. In contrast to regriddings of observational data, EVA allows for the production of physically consistent forcing for historic and hypothetical eruptions of varying magnitude, source latitude, and season. Within CMIP6, EVA will be used to reconstruct volcanic forcing over the past 2000 years for use in the Paleo-Modeling Intercomparison Project (PMIP), and will provide forcing sets for VolMIP experiments aiming to quantify model uncertainty in the response to volcanic forcing. Here, the functional form of EVA will be introduced, along with illustrative examples including the EVA-based reconstruction of volcanic forcing over the historical period, and that of the 1815 Tambora eruption.

  3. Simulations of Stratospheric Aerosol Under Volcanic and Background Conditions

    NASA Astrophysics Data System (ADS)

    Weisenstein, D. K.; Ko, M. K.; Yue, G. K.; Jackman, C. H.; Fleming, E. L.

    2002-05-01

    The 17 year record of SAGE II aerosol observations has been extremely valuable to the understanding of stratospheric aerosols. This talk will focus on comparisons of the SAGE II version 6.1 aerosol observations with simulations from the AER 2-D sulfate aerosol model. Model simulations for the period from 1982 to 2002, including the eruptions of El Chichon, Ruiz, Kelut, Pinatubo, and Cerro Hudson, are performed with three different transport circulations, one from AER and two from GSFC. Decay rates from the simulated eruptions are compared with the SAGE II record and LIDAR observations from Hampton, Virginia. Since observed aerosol amounts are currently lower than any other period of SAGE II observations, we will compare the non-volcanic aerosol simulated by the models with the the low aerosol periods before and after the eruption of Mt. Pinatubo. Sensitivity to variations in the prescribed emissions of the source gases and to transport rates will be discussed.

  4. Using sulfate oxygen isotopes to quantify sulfate formation pathways in the atmosphere: Lessons learned and open questions

    NASA Astrophysics Data System (ADS)

    Alexander, B.

    2012-12-01

    The abundance of sulfate aerosol in the troposphere has implications for climate, air pollution, acid rain, and pH-dependent chemical reactions. The chemical formation mechanism of sulfate aerosol influences its abundance and its number and size distribution, with implications for both its direct and indirect climate impacts. Sulfate is mainly produced within the atmosphere by oxidation of its precursor, SO2. The oxygen isotopic composition (Δ17O = δ17O - 0.52 x δ18O) of sulfate (Δ17O(SO42-)) reflects the relative importance of different oxidants in the production of sulfate because the oxidants transfer unique oxygen isotope signatures to the oxidation product. Unlike δ18O, processes such as emissions, transport, and deposition do not directly impact the Δ17O value of sulfate. Comparison of observed and modeled Δ17O(SO42-) thus provides a unique means to assess a model's representation of the chemistry of sulfate formation. Large-scale models tend to produce reasonable agreement with observations of sulfate concentrations, but tend to overestimate observations of SO2. These models include gas-phase oxidation of SO2 by the hydroxyl radical, and in-cloud oxidation by hydrogen peroxide and ozone, while neglecting other, potentially important oxidation pathways. Comparison of modeled and observed Δ17O(SO42-) in the Arctic have shown that metal-catalyzed oxidation of SO2 in clouds is the dominant sulfate formation pathway in the northern mid- to high-latitudes during winter. Additional comparisons of modeled and observed Δ17O(SO42-) in the marine boundary layer (MBL) have enabled quantification of the role of sea salt aerosol for sulfate formation rates. These processes tend to increase sulfate formation rates while decreasing modeled concentrations of SO2, and tend to decrease the importance of sulfate formation in the gas-phase which is a prerequisite for new particle formation in the atmosphere. Halogen-containing oxidants such as HOBr have also been

  5. In situ measurements of the non-sulfate fraction of volcanic aerosol following the Pinatubo (1991) and Kelud (2014) eruptions

    NASA Astrophysics Data System (ADS)

    Deshler, Terry; Vernier, Jean-Paul; Fairlie, T. Duncan

    2016-04-01

    In situ size resolved particle concentration observations, from instruments with ambient intakes and with heated intakes, following the eruptions of Pinatubo in 1991 and Kelud in 2014 are used to infer characteristics of the mixing state of the particles, of their gravitational sorting, and of the evolution of the non-volatile component. This approach was used for measurements from Laramie, Wyoming (41°N), 30-50 days following the eruption of Mt. Pinatubo (15°N) in June 1991, and for measurements from Darwin, Australia (11°S), 90 days following the eruption of Mt Kelud (8°S) in February 2014. Following the Pinatubo eruption the particles appear to be internally mixed. Above 20 km the ash appears as 0.25 μm radius particles carried within a 0.5 μm radius particle, indicating the ash is ~15% (20%) of the particle volume (mass). Following the Kelud eruption, the solid particles appear to have persisted just above the tropopause for at least three months. These measurements suggest the particles are externally mixed with almost exclusively sulfate particles, < 0.15 μm, in the upper portion of the volcanic layer, 19-22 km. A second layer at 17-19 km contains particles > 0.25 μm which are almost exclusively non-volatile. These sizes for the ash are similar to the non-volatile cores observed above 20 km following Pinatubo. In both cases the observations show clear evidence of gravitational sorting of the particles. The lapse rate of the heated to ambient concentration ratio had a very characteristic decreasing ratio as altitude increases. Initially the slopes were quite steep and nearly the same for all particle sizes, suggesting rapid sorting by terminal velocity with the denser particles with non-volatile cores moving to the bottom of the layer. As the larger particles were lost the slopes became less steep and there was a separation between the slopes for the various particle sizes, with the smallest particles displaying the least differences between the top

  6. Model intra-comparison of transboundary sulfate loadings over springtime east Asia

    NASA Astrophysics Data System (ADS)

    Goto, D.; Ohara, T.; Nakajima, T.; Takemura, T.; Kajino, M.; Dai, T.; Matsui, H.; Takami, A.; Hatakeyama, S.; Aoki, K.; Sugimoto, N.; Shimizu, A.

    2013-12-01

    Over east Asia, a spatial gradient of sulfate aerosols from source to outflow regions has not fully evaluated by simulations. In the present study, we executed a global aerosol-transport model (SPRINTARS) during April 2006 to investigate the spatial gradient of sulfate aerosols using multiple measurements including surface mass concentration, aerosol optical thickness, and vertical profiles of extinction coefficients for spherical particles. We also performed sensitivity experiments to estimate possible uncertainties of sulfate mass loadings caused by macrophysical processes; emission inventory, dynamic core, and spatial resolution. Among the experiments, although a difference in the surface sulfate mass concentrations over east Asia was large, none of the simulations in the present study as well as regional models reproduced the spatial gradient of the surface sulfate from the source over China to the outflow regions in Japan. The sensitivity of different macrophysical factors to the surface sulfate differs from that to sulfate loadings in the column especially in the marine boundary layers (MBL). Therefore, to properly simulate the transboundary air pollution over east Asia is required to use multiple measurements in both the source and outflow regions especially in the MBL during the polluted days.

  7. Improved aerosol radiative properties as a foundation for solar geoengineering risk assessment

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Keith, D. W.; Keutsch, F. N.

    2016-07-01

    Side effects resulting from the deliberate injection of sulfate aerosols intended to partially offset climate change have motivated the investigation of alternatives, including solid aerosol materials. Sulfate aerosols warm the tropical tropopause layer, increasing the flux of water vapor into the stratosphere, accelerating ozone loss, and increasing radiative forcing. The high refractive index of some solid materials may lead to reduction in these risks. We present a new analysis of the scattering efficiency and absorption of a range of candidate solid aerosols. We utilize a comprehensive radiative transfer model driven by updated, physically consistent estimates of optical properties. We compute the potential increase in stratospheric water vapor and associated longwave radiative forcing. We find that the stratospheric heating calculated in this analysis indicates some materials to be substantially riskier than previous work. We also find that there are Earth-abundant materials that may reduce some principal known risks relative to sulfate aerosols.

  8. Comparison of stratospheric aerosol and gas experiment I (SAGE I) and Umkehr ozone profiles including a search for Umkehr aerosol effects

    SciTech Connect

    Newchurch, M.J.

    1986-01-01

    After briefly reviewing ozone depletion predictions from atmospheric models and results from trend analysis of Umkehr data, this paper outlines the Umkehr method for deducing the vertical profile of ozone and reviews the theoretical and empirical studies of the aerosol effect on Umkehr measurements. A brief description of the Stratospheric Aerosol and Gas Experiment I (SAGE I) is followed by a method for approximating the best representation of the conditions over the Umkehr ground site as seen by the SAGE I satellite. Using a spatially weighted average of SAGE I events derived from an autocorrelation analysis, the authors find 337 co-located SAGE I and Umkehr events. The approximate total column ozone measured by SAGE I is 5% higher than that measured by Umkehr on average. Most of this difference resides in Umkehr layer two, three, and four, while layers seven, eight, and nine contain small differences in average ozone content. Intercomparison with four other ozone studies indicates agreement between SAGE I and SBUV in most layers and at most Umkehr stations north of 30/sup 0/. However, significant differences in Umkehr layer eight between SAGE I and SBUV remain. Ozone differences between SAGE I and Umkehr are strong functions of both total column ozone and season in the lower layers but not in the upper layers.

  9. Modeling aerosol processes at the local scale

    SciTech Connect

    Lazaridis, M.; Isukapalli, S.S.; Georgopoulos, P.G.

    1998-12-31

    This work presents an approach for modeling photochemical gaseous and aerosol phase processes in subgrid plumes from major localized (e.g. point) sources (plume-in-grid modeling), thus improving the ability to quantify the relationship between emission source activity and ambient air quality. This approach employs the Reactive Plume Model (RPM-AERO) which extends the regulatory model RPM-IV by incorporating aerosol processes and heterogeneous chemistry. The physics and chemistry of elemental carbon, organic carbon, sulfate, sodium, chloride and crustal material of aerosols are treated and attributed to the PM size distribution. A modified version of the Carbon Bond IV chemical mechanism is included to model the formation of organic aerosol, and the inorganic multicomponent atmospheric aerosol equilibrium model, SEQUILIB is used for calculating the amounts of inorganic species in particulate matter. Aerosol dynamics modeled include mechanisms of nucleation, condensation and gas/particle partitioning of organic matter. An integrated trajectory-in-grid modeling system, UAM/RPM-AERO, is under continuing development for extracting boundary and initial conditions from the mesoscale photochemical/aerosol model UAM-AERO. The RPM-AERO is applied here to case studies involving emissions from point sources to study sulfate particle formation in plumes. Model calculations show that homogeneous nucleation is an efficient process for new particle formation in plumes, in agreement with previous field studies and theoretical predictions.

  10. An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties

    PubMed Central

    Sorooshian, Armin; Wonaschütz, Anna; Jarjour, Elias G.; Hashimoto, Bryce I.; Schichtel, Bret A.; Betterton, Eric A.

    2014-01-01

    This study reports a comprehensive characterization of atmospheric aerosol particle properties in relation to meteorological and back trajectory data in the southern Arizona region, which includes two of the fastest growing metropolitan areas in the United States (Phoenix and Tucson). Multiple data sets (MODIS, AERONET, OMI/TOMS, MISR, GOCART, ground-based aerosol measurements) are used to examine monthly trends in aerosol composition, aerosol optical depth (AOD), and aerosol size. Fine soil, sulfate, and organics dominate PM2.5 mass in the region. Dust strongly influences the region between March and July owing to the dry and hot meteorological conditions and back trajectory patterns. Because monsoon precipitation begins typically in July, dust levels decrease, while AOD, sulfate, and organic aerosol reach their maximum levels because of summertime photochemistry and monsoon moisture. Evidence points to biogenic volatile organic compounds being a significant source of secondary organic aerosol in this region. Biomass burning also is shown to be a major contributor to the carbonaceous aerosol budget in the region, leading to enhanced organic and elemental carbon levels aloft at a sky-island site north of Tucson (Mt. Lemmon). Phoenix exhibits different monthly trends for aerosol components in comparison with the other sites owing to the strong influence of fossil carbon and anthropogenic dust. Trend analyses between 1988 and 2009 indicate that the strongest statistically significant trends are reductions in sulfate, elemental carbon, and organic carbon, and increases in fine soil during the spring (March–May) at select sites. These results can be explained by population growth, land-use changes, and improved source controls. PMID:24707452

  11. Ice Phase Transitions by Atmospheric Aerosol Particles of Varied Composition

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prenni, A. J.; Archuleta, C. A.; Kreidenweis, S. M.; Cziczo, D. J.; Murphy, D. M.; Thomson, D. S.

    2001-12-01

    This paper describes laboratory and field study measurements of water uptake and ice nucleation by surrogate and real atmospheric aerosol particles. Laboratory measurements of water uptake are made using a humidified tandem differential mobility analyzer (HTDMA) and a cloud condensation nucleus (CCN) instrument operating at 20 to 30 \\deg C. Measurements of ice nucleation are made using a continuous flow ice-thermal diffusion chamber (CFDC) operated to -60 \\deg C for relevance toward understanding cirrus cloud formation. Extending earlier laboratory studies of single composition aerosols, we are investigating water uptake and ice nucleation rates and mechanisms by mixed aerosols of various types, including sulfate-nitrate, sulfate-organic, mineral oxide-sulfate and black carbon-sulfate types. Methodologies will be described and results will be summarized. Field measurements are planned to study heterogeneous and homogeneous ice nucleation by free tropospheric aerosols at a high altitude laboratory. The field study will include measurements of the compositions of aerosols that activate ice formation by homogeneous and heterogeneous ice nucleation mechanisms. This aspect of the study will be facilitated by interfacing the CFDC to the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument. This combined instrument system was tested in the laboratory to quantify sampling efficiencies and validate specificity for sampling ice nucleus aerosol particles. Initial field data, if available at conference time, will be compared and contrasted with the results obtained for laboratory surrogate particles.

  12. Diethyl sulfate

    Integrated Risk Information System (IRIS)

    Diethyl sulfate ; CASRN 64 - 67 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  13. Dimethyl sulfate

    Integrated Risk Information System (IRIS)

    Dimethyl sulfate ; CASRN 77 - 78 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  14. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Harris, E.; Sinha, B.; Hoppe, P.; Foley, S.; Borrmann, S.

    2012-05-01

    The oxidation of SO2 to sulfate on sea salt aerosols in the marine environment is highly important because of its effect on the size distribution of sulfate and the potential for new particle nucleation from H2SO4 (g). However, models of the sulfur cycle are not currently able to account for the complex relationship between particle size, alkalinity, oxidation pathway and rate - which is critical as SO2 oxidation by O3 and Cl catalysis are limited by aerosol alkalinity, whereas oxidation by hypohalous acids and transition metal ions can continue at low pH once alkalinity is titrated. We have measured 34S/32S fractionation factors for SO2 oxidation in sea salt, pure water and NaOCl aerosol, as well as the pH dependency of fractionation. Oxidation of SO2 by NaOCl aerosol was extremely efficient, with a reactive uptake coefficient of ≈0.5, and produced sulfate that was enriched in 32S with αOCl = 0.9882±0.0036 at 19 °C. Oxidation on sea salt aerosol was much less efficient than on NaOCl aerosol, suggesting alkalinity was already exhausted on the short timescale of the experiments. Measurements at pH = 2.1 and 7.2 were used to calculate fractionation factors for each step from SO2(g) → multiple steps → SOOCl2-. Oxidation on sea salt aerosol resulted in a lower fractionation factor than expected for oxidation of SO32- by O3 (αseasalt = 1.0124±0.0017 at 19 °C). Comparison of the lower fractionation during oxidation on sea salt aerosol to the fractionation factor for high pH oxidation shows HOCl contributed 29% of S(IV) oxidation on sea salt in the short experimental timescale, highlighting the potential importance of hypohalous acids in the marine environment. The sulfur isotope fractionation factors measured in this study allow differentiation between the alkalinity-limited pathways - oxidation by O3 and by Cl catalysis (α34 = 1.0163±0.0018 at 19 °C in pure water or 1.0199±0.0024 at pH = 7.2) - which favour the heavy isotope, and the alkalinity non

  15. Enhanced research program on the long-range climatic effects of increased atmospheric carbon dioxide and sulfate aerosols. Final report

    SciTech Connect

    Washington, W.M.; Meehl, G.A.

    1997-04-01

    Consistent with the objectives to extract as much as possible from existing models on the role of the oceans in the greenhouse effect and to improve various aspects of the coupled system, the authors made significant progress in three areas. (1) In a series of manuscripts, they documented how the El Nino-Southern Oscillation operates in the model and how it is enhanced with increased carbon dioxide. (2) In studies with collaborators Branstator, Karoly, and Karl, they explored the possible carbon dioxide ``fingerprint`` in zonal mean temperatures, the effects of changes in extratropical teleconnections, and the regional effects of low-frequency variability and climate change. (3) They experimented with an advanced version of the NCAR community climate model (CCM0) that also includes the Ramanathan and Collins cirrus albedo feedback mechanism. This model was run with a mixed layer and was tested with the 1{degree} 20-level Semtner and Chervin ocean model. The latter includes the Arctic Ocean and dynamic sea ice, both showing realistic results. The authors completed the coupling of the advanced models. The dynamic ocean model was a 1{degree}x1{degree} version of the Semtner-Chervin 1/2{degree}x1/2{degree} ocean model with 20 vertical levels. The 1{degree}x1{degree} version of the Semtner-Chervin model used in this research explicitly resolved some aspects of the mesoscale eddies as did the parent model. The new coupled model system for greenhouse gas simulations on climate change was tested on multidecadal runs.

  16. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming

    2015-10-01

    A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.

  17. A comparison of SAGE 1, SBUV, and Umkehr ozone profiles including a search for Umkehr aerosol effects

    NASA Technical Reports Server (NTRS)

    Newchurch, M. J.; Grams, G. W.; Cunnold, D. M.; Deluisi, J. J.

    1987-01-01

    Using a spatially weighted average for the stratospheric aerosol and gas experiment 1 (SAGE 1) events derived from an autocorrelation analysis, 337 colocated SAGE 1 and Umkehr ozone profiles are found. The total column ozone in layers two through nine measured by SAGE 1 is found to be 4.6 + or - 1.3 percent higher at the 95 percent confidence level than the approximate total column ozone measured by Umkehr. Average layer ozone differences indicate that most of this discrepancy resides in the lower layers. Intercomparison of SAGE 1, Nimbus 7 solar backscattered ultraviolet (SBUV), and Umkehr ozone at stations north of 30 deg indicates that, in layer six, Umkehr values are consistently higher than both SAGE 1 and SBUV by about 10 percent. In layer eight, SBUV ozone is higher than both SAGE 1 and SBUV by about 10 percent. In the upper stratosphere, the SAGE 1-Umkehr ozone differences are small for low stratospheric aerosol optical depth cases, but vary from -3 percent in layer six to -8 percent in layer nine for high optical depth cases.

  18. Composition of glycosaminoglycans in elasmobranchs including several deep-sea sharks: identification of chondroitin/dermatan sulfate from the dried fins of Isurus oxyrinchus and Prionace glauca.

    PubMed

    Higashi, Kyohei; Takeuchi, Yoshiki; Mukuno, Ann; Tomitori, Hideyuki; Miya, Masaki; Linhardt, Robert J; Toida, Toshihiko

    2015-01-01

    Shark fin, used as a food, is a rich source of glycosaminoglyans (GAGs), acidic polysaccharides having important biological activities, suggesting their nutraceutical and pharmaceutical application. A comprehensive survey of GAGs derived from the fin was performed on 11 elasmobranchs, including several deep sea sharks. Chondroitin sulfate (CS) and hyaluronic acid (HA) were found in Isurus oxyrinchus, Prionace glauca, Scyliorhinus torazame, Deania calcea, Chlamydoselachus anguineus, Mitsukurina owatoni, Mustelus griseus and Dasyatis akajei, respectively. CS was only found from Chimaera phantasma, Dalatias licha, and Odontaspis ferox, respectively. Characteristic disaccharide units of most of the CS were comprised of C- and D-type units. Interestingly, substantial amount of CS/dermatan sulfate (DS) was found in the dried fin (without skin and cartilage) of Isurus oxyrinchus and Prionace glauca. 1H-NMR analysis showed that the composition of glucuronic acid (GlcA) and iduronic acid (IdoA) in shark CS/DS was 41.2% and 58.8% (Isurus oxyrinchus), 36.1% and 63.9% (Prionace glauca), respectively. Furthermore, a substantial proportion of this CS/DS consisted of E-, B- and D-type units. Shark CS/DS stimulated neurite outgrowth of hippocampal neurons at a similar level as DS derived from invertebrate species. Midkine and pleiotrophin interact strongly with CS/DS from Isurus oxyrinchus and Prionace glauca, affording Kd values of 1.07 nM, 6.25 nM and 1.70 nM, 1.88 nM, respectively. These results strongly suggest that the IdoA-rich domain of CS/DS is required for neurite outgrowth activity. A detailed examination of oligosaccharide residues, produced by chondroitinase ACII digestion, suggested that the IdoA and B-type units as well as A- and C-type units were found in clusters in shark CS/DS. In addition, it was discovered that the contents of B-type units in these IdoA-rich domain increased in a length dependent manner, while C- and D-type units were located particularly in the

  19. Composition of Glycosaminoglycans in Elasmobranchs including Several Deep-Sea Sharks: Identification of Chondroitin/Dermatan Sulfate from the Dried Fins of Isurus oxyrinchus and Prionace glauca

    PubMed Central

    Higashi, Kyohei; Takeuchi, Yoshiki; Mukuno, Ann; Tomitori, Hideyuki; Miya, Masaki; Linhardt, Robert J.; Toida, Toshihiko

    2015-01-01

    Shark fin, used as a food, is a rich source of glycosaminoglyans (GAGs), acidic polysaccharides having important biological activities, suggesting their nutraceutical and pharmaceutical application. A comprehensive survey of GAGs derived from the fin was performed on 11 elasmobranchs, including several deep sea sharks. Chondroitin sulfate (CS) and hyaluronic acid (HA) were found in Isurus oxyrinchus, Prionace glauca, Scyliorhinus torazame, Deania calcea, Chlamydoselachus anguineus, Mitsukurina owatoni, Mustelus griseus and Dasyatis akajei, respectively. CS was only found from Chimaera phantasma, Dalatias licha, and Odontaspis ferox, respectively. Characteristic disaccharide units of most of the CS were comprised of C- and D-type units. Interestingly, substantial amount of CS/dermatan sulfate (DS) was found in the dried fin (without skin and cartilage) of Isurus oxyrinchus and Prionace glauca. 1H-NMR analysis showed that the composition of glucuronic acid (GlcA) and iduronic acid (IdoA) in shark CS/DS was 41.2% and 58.8% (Isurus oxyrinchus), 36.1% and 63.9% (Prionace glauca), respectively. Furthermore, a substantial proportion of this CS/DS consisted of E-, B- and D-type units. Shark CS/DS stimulated neurite outgrowth of hippocampal neurons at a similar level as DS derived from invertebrate species. Midkine and pleiotrophin interact strongly with CS/DS from Isurus oxyrinchus and Prionace glauca, affording Kd values of 1.07 nM, 6.25 nM and 1.70 nM, 1.88 nM, respectively. These results strongly suggest that the IdoA-rich domain of CS/DS is required for neurite outgrowth activity. A detailed examination of oligosaccharide residues, produced by chondroitinase ACII digestion, suggested that the IdoA and B-type units as well as A- and C-type units were found in clusters in shark CS/DS. In addition, it was discovered that the contents of B-type units in these IdoA-rich domain increased in a length dependent manner, while C- and D-type units were located particularly in the

  20. Composition of glycosaminoglycans in elasmobranchs including several deep-sea sharks: identification of chondroitin/dermatan sulfate from the dried fins of Isurus oxyrinchus and Prionace glauca.

    PubMed

    Higashi, Kyohei; Takeuchi, Yoshiki; Mukuno, Ann; Tomitori, Hideyuki; Miya, Masaki; Linhardt, Robert J; Toida, Toshihiko

    2015-01-01

    Shark fin, used as a food, is a rich source of glycosaminoglyans (GAGs), acidic polysaccharides having important biological activities, suggesting their nutraceutical and pharmaceutical application. A comprehensive survey of GAGs derived from the fin was performed on 11 elasmobranchs, including several deep sea sharks. Chondroitin sulfate (CS) and hyaluronic acid (HA) were found in Isurus oxyrinchus, Prionace glauca, Scyliorhinus torazame, Deania calcea, Chlamydoselachus anguineus, Mitsukurina owatoni, Mustelus griseus and Dasyatis akajei, respectively. CS was only found from Chimaera phantasma, Dalatias licha, and Odontaspis ferox, respectively. Characteristic disaccharide units of most of the CS were comprised of C- and D-type units. Interestingly, substantial amount of CS/dermatan sulfate (DS) was found in the dried fin (without skin and cartilage) of Isurus oxyrinchus and Prionace glauca. 1H-NMR analysis showed that the composition of glucuronic acid (GlcA) and iduronic acid (IdoA) in shark CS/DS was 41.2% and 58.8% (Isurus oxyrinchus), 36.1% and 63.9% (Prionace glauca), respectively. Furthermore, a substantial proportion of this CS/DS consisted of E-, B- and D-type units. Shark CS/DS stimulated neurite outgrowth of hippocampal neurons at a similar level as DS derived from invertebrate species. Midkine and pleiotrophin interact strongly with CS/DS from Isurus oxyrinchus and Prionace glauca, affording Kd values of 1.07 nM, 6.25 nM and 1.70 nM, 1.88 nM, respectively. These results strongly suggest that the IdoA-rich domain of CS/DS is required for neurite outgrowth activity. A detailed examination of oligosaccharide residues, produced by chondroitinase ACII digestion, suggested that the IdoA and B-type units as well as A- and C-type units were found in clusters in shark CS/DS. In addition, it was discovered that the contents of B-type units in these IdoA-rich domain increased in a length dependent manner, while C- and D-type units were located particularly in the

  1. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2003-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine what are the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  2. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  3. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Dubovik, Oleg; Holben, Brent; Torres, Omar; Anderson, Tad; Quinn, Patricia; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET, satellite retrievals from the TOMS instrument, and field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption. and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  4. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Main; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  5. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies Among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Chu, Allen; Levy, Robert; Remer, Lorraine; Kaufman, Yoram; Dubovik, Oleg; Holben, Brent; Eck, Tom; Anderson, Tad; Quinn, Patricia

    2004-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, .biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERON" at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  6. Aged organic aerosol in the Eastern Mediterranean: the Finokalia aerosol measurement experiment-2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Engelhart, G. J.; Mohr, C.; Kostenidou, E.; Lanz, V. A.; Bougiatioti, A.; Decarlo, P. F.; Prévôt, A. S. H.; Baltensperger, U.; Mihalopoulos, N.; Donahue, N. M.; Pandis, S. N.

    2010-01-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008), which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS) was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA) was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with time of day, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm-3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  7. Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment - 2008

    NASA Astrophysics Data System (ADS)

    Hildebrandt, L.; Engelhart, G. J.; Mohr, C.; Kostenidou, E.; Lanz, V. A.; Bougiatioti, A.; Decarlo, P. F.; Prevot, A. S. H.; Baltensperger, U.; Mihalopoulos, N.; Donahue, N. M.; Pandis, S. N.

    2010-05-01

    Aged organic aerosol (OA) was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008), which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS) was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1), and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA) with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA) was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with source region, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm-3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  8. Long-term Observations of Carbonaceous Aerosols (including C isotope) at Alert: Inferring Emission Sources of Black Carbon Transported to the Arctic

    NASA Astrophysics Data System (ADS)

    Huang, Lin; Sharma, Sangeeta; Zhang, Wendy; Brook, Jeff; Leaitch, Richard; He, Kebin; Duan, Fengkui; Yang, Fumo

    2015-04-01

    Black carbon is a major component of carbonaceous aerosols and formed by incomplete combustion of fossil fuels and biomass burning (including biofuels and open fires). It plays unique roles in Earth's climate system through both direct and indirect effects. Identifying and attributing its emission sources, tracking source changes with time and relating them to radiative forcing are important for understanding the impacts of BC on climate at the global and regional levels, as well as necessary for the strategies targeted to reduce BC emission. However, there are many challenges and uncertainties regarding those aspects, particularly for BC aerosols transported to the Arctic region. To address the concerns of BC in the Arctic, carbonaceous aerosol observations, including elemental carbon (EC) content as BC mass, C isotopes as a source tracer, and light absorption coefficient as BC's optical property, have been conducted at Alert, a WMO GAW station (82° 27'N, 62° 31'W) since the early 2000s. In this presentation, nearly a decade of measurements will be presented, with a focus on the isotope results in EC (corresponding data from Beijing will also be shown for the purpose of comparison). Seasonal and inter-annual variations in δ13C (EC) have been characterized, inferring emission sources and suggesting source changes over last 5-6 years. Based on the C isotope results, the possible emission sources of BC contributed to the Arctic will be also discussed.

  9. Sensitivity of high-spectral resolution and broadband thermal infrared nadir instruments to the chemical and microphysical properties of secondary sulfate aerosols in the upper-troposphere/lower-stratosphere

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Legras, Bernard

    2016-04-01

    The observation of upper-tropospheric/lower-stratospheric (UTLS) secondary sulfate aerosols (SSA) and their chemical and microphysical properties from satellite nadir observations (with better spatial resolution than limb observations) is a fundamental tool to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Thermal infrared (TIR) observations are sensitive to the chemical composition of the aerosols due to the strong spectral variations of the imaginary part of the refractive index in this band and, correspondingly, of the absorption, as a function of the composition Then, these observations are, in principle, well adapted to detect and characterize UTLS SSA. Unfortunately, the exploitation of nadir TIR observations for sulfate aerosol layer monitoring is today very limited. Here we present a study aimed at the evaluation of the sensitivity of TIR satellite nadir observations to the chemical composition and the size distribution of idealised UTLS SSA layers. The sulfate aerosol particles are assumed as binary systems of sulfuric acid/water solution droplets, with varying sulphuric acid mixing ratios. The extinction properties of the SSA, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. High-spectral resolution pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on

  10. Sensitivity of high-spectral resolution and broadband thermal infrared nadir instruments to the chemical and microphysical properties of secondary sulfate aerosols in the upper-troposphere/lower-stratosphere

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Legras, Bernard

    2016-04-01

    The observation of upper-tropospheric/lower-stratospheric (UTLS) secondary sulfate aerosols (SSA) and their chemical and microphysical properties from satellite nadir observations (with better spatial resolution than limb observations) is a fundamental tool to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Thermal infrared (TIR) observations are sensitive to the chemical composition of the aerosols due to the strong spectral variations of the imaginary part of the refractive index in this band and, correspondingly, of the absorption, as a function of the composition Then, these observations are, in principle, well adapted to detect and characterize UTLS SSA. Unfortunately, the exploitation of nadir TIR observations for sulfate aerosol layer monitoring is today very limited. Here we present a study aimed at the evaluation of the sensitivity of TIR satellite nadir observations to the chemical composition and the size distribution of idealised UTLS SSA layers. The sulfate aerosol particles are assumed as binary systems of sulfuric acid/water solution droplets, with varying sulphuric acid mixing ratios. The extinction properties of the SSA, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. High-spectral resolution pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on

  11. What is the "Clim-Likely" aerosol product?

    Atmospheric Science Data Center

    2014-12-08

    ... model were medium and coarse mode mineral dust, sulfate, sea salt, black carbon, and carbonaceous aerosols. Five aerosol air mass "Mixing ... component particles in the column for climatologically common aerosol air masses. Each sub-group identifies the dominant particles ...

  12. Chondroitin sulfate

    MedlinePlus

    ... is usually manufactured from animal sources, such as shark and cow cartilage. Chondroitin sulfate is used for ... contain chondroitin sulfate, in combination with glucosamine sulfate, shark cartilage, and camphor. Some people also inject chondroitin ...

  13. Sulfur speciation in individual aerosol particles

    NASA Astrophysics Data System (ADS)

    Neubauer, Kenneth R.; Sum, Stephen T.; Johnston, Murray V.; Wexler, Anthony S.

    1996-08-01

    Sulfur aerosols play an important role in acid deposition and the Earth's energy balance. Important species in these aerosols include methanesulfonates, hydroxymethanesulfonates, sulfates, and sulfites. Because the relative amounts of these species indicate different sources and atmospheric processes, it is important to distinguish them in single-aerosol particles. To accomplish this task, we use rapid single-particle mass spectrometry (RSMS), a technique that permits individual particles to be analyzed in an online mode. Each sulfur species produces a characteristic set of ions in the mass spectra. In simulated marine and urban aerosols the relative amounts of methanesulfonic acid (MSA) and sodium hydroxymethanesulfonate (NaHMSA) in a single particle can be determined from peak area ratios in the mass spectra. Improved quantitation is possible by application of the classification and regression tree (CART) algorithm to distinguish the mass spectra of particles having different compositions. Factors that influence speciation include particle size, morphology, and laser fluence.

  14. Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Spracklen, D. V.; Carslaw, K. S.; Mann, G. W.; Woodhouse, M. T.; Forster, P. M.; Haywood, J.; Johnson, C. E.; Dalvi, M.; Bellouin, N.; Sanchez-Lorenzo, A.

    2015-08-01

    Substantial changes in anthropogenic aerosols and precursor gas emissions have occurred over recent decades due to the implementation of air pollution control legislation and economic growth. The response of atmospheric aerosols to these changes and the impact on climate are poorly constrained, particularly in studies using detailed aerosol chemistry-climate models. Here we compare the HadGEM3-UKCA (Hadley Centre Global Environment Model-United Kingdom Chemistry and Aerosols) coupled chemistry-climate model for the period 1960-2009 against extensive ground-based observations of sulfate aerosol mass (1978-2009), total suspended particle matter (SPM, 1978-1998), PM10 (1997-2009), aerosol optical depth (AOD, 2000-2009), aerosol size distributions (2008-2009) and surface solar radiation (SSR, 1960-2009) over Europe. The model underestimates observed sulfate aerosol mass (normalised mean bias factor (NMBF) = -0.4), SPM (NMBF = -0.9), PM10 (NMBF = -0.2), aerosol number concentrations (N30 NMBF = -0.85; N50 NMBF = -0.65; and N100 NMBF = -0.96) and AOD (NMBF = -0.01) but slightly overpredicts SSR (NMBF = 0.02). Trends in aerosol over the observational period are well simulated by the model, with observed (simulated) changes in sulfate of -68 % (-78 %), SPM of -42 % (-20 %), PM10 of -9 % (-8 %) and AOD of -11 % (-14 %). Discrepancies in the magnitude of simulated aerosol mass do not affect the ability of the model to reproduce the observed SSR trends. The positive change in observed European SSR (5 %) during 1990-2009 ("brightening") is better reproduced by the model when aerosol radiative effects (ARE) are included (3 %), compared to simulations where ARE are excluded (0.2 %). The simulated top-of-the-atmosphere aerosol radiative forcing over Europe under all-sky conditions increased by > 3.0 W m-2 during the period 1970-2009 in response to changes in anthropogenic emissions and aerosol concentrations.

  15. Effect of nitrate and sulfate relative abundance in PM2.5 on liquid water content explored through half-hourly observations of inorganic soluble aerosols at a polluted receptor site

    NASA Astrophysics Data System (ADS)

    Xue, Jian; Griffith, Stephen M.; Yu, Xin; Lau, Alexis K. H.; Yu, Jian Zhen

    2014-12-01

    Liquid water content (LWC) is the amount of liquid water on aerosols. It contributes to visibility degradation, provides a surface for gas condensation, and acts as a medium for heterogeneous gas/particle reactions. In this study, 520 half-hourly measurements of ionic chemical composition in PM2.5 at a receptor site in Hong Kong are used to investigate the dependence of LWC on ionic chemical composition, particularly on the relative abundance of sulfate and nitrate. LWC was estimated using a thermodynamic model (AIM-III). Within this data set of PM2.5 ionic compositions, LWC was highly correlated with the multivariate combination of sulfate and nitrate concentrations and RH (R2 = 0.90). The empirical linear regression result indicates that LWC is more sensitive to nitrate mass than sulfate. During a nitrate episode, the highest LWC (80.6 ± 17.9 μg m-3) was observed and the level was 70% higher than that during a sulfate episode despite a similar ionic PM2.5 mass concentration. A series of sensitivity tests were conducted to study LWC change as a function of the relative nitrate and sulfate abundance, the trend of which is expected to shift to more nitrate in China as a result of SO2 reduction and increase in NOx emission. Starting from a base case that uses the average of measured PM2.5 ionic chemical composition (63% SO42-, 11% NO3-, 19% NH4+, and 7% other ions) and an ionic equivalence ratio, [NH4+]/(2[SO42-] + [NO3-]), set constant to 0.72, the results show LWC would increase by 204% at RH = 40% when 50% of the SO42- is replaced by NO3- mass concentration. This is largely due to inhibition of (NH4)3H(SO4)2 crystallization while PM2.5 ionic species persist in the aqueous phase. At RH = 90%, LWC would increase by 12% when 50% of the SO42- is replaced by NO3- mass concentration. The results of this study highlight the important implications to aerosol chemistry and visibility degradation associated with LWC as a result of a shift in PM2.5 ionic chemical

  16. Initial Verification of GEOS-4 Aerosols Using CALIPSO and MODIS: Scene Classification

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Colarco, Peter R.; Hlavka, Dennis; Levy, Robert C.; Vaughan, Mark A.; daSilva, Arlindo

    2007-01-01

    A-train sensors such as MODIS and MISR provide column aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important because retrievals are often dependent upon selection of the right aerosol model. In addition, aerosol scene classification helps place the retrieved products in context for comparisons and analysis with aerosol transport models. The recent addition of CALIPSO to the A-train now provides a means of classifying aerosol distribution with altitude. CALIPSO level 1 products include profiles of attenuated backscatter at 532 and 1064 nm, and depolarization at 532 nm. Backscatter intensity, wavelength ratio, and depolarization provide information on the vertical profile of aerosol concentration, size, and shape. Thus similar estimates of aerosol type using MODIS or MISR are possible with CALIPSO, and the combination of data from all sensors provides a means of 3D aerosol scene classification. The NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-4) provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS-4 aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures along the flight track for NASA's Geoscience Laser Altimeter System (GLAS) satellite lidar. GLAS launched in 2003 and did not have the benefit of depolarization measurements or other sensors from the A-train. Aerosol typing from GLAS data alone was not possible, and the GEOS-4 aerosol classifier has been used to identify aerosol type and improve the retrieval of GLAS products. Here we compare 3D aerosol scene classification using CALIPSO and MODIS with the GEOS-4 aerosol classifier. Dust, smoke, and pollution examples will be discussed in the context of providing an initial verification of the 3D GEOS-4 aerosol products. Prior model verification has only been attempted with surface mass

  17. Water Uptake and Hygroscopic Growth of Organosulfate Aerosol.

    PubMed

    Estillore, Armando D; Hettiyadura, Anusha P S; Qin, Zhen; Leckrone, Erin; Wombacher, Becky; Humphry, Tim; Stone, Elizabeth A; Grassian, Vicki H

    2016-04-19

    Organosulfates (OS) are important components of secondary organic aerosol (SOA) that have been identified in numerous field studies. This class of compounds within SOA can potentially affect aerosol physicochemical properties such as hygroscopicity because of their polar and hydrophilic nature as well as their low volatility. Currently, there is a dearth of information on how aerosol particles that contain OS interact with water vapor in the atmosphere. Herein we report a laboratory investigation on the hygroscopic properties of a structurally diverse set of OS salts at varying relative humidity (RH) using a Hygroscopicity-Tandem Differential Mobility Analyzer (H-TDMA). The OS studied include the potassium salts of glycolic acid sulfate, hydroxyacetone sulfate, 4-hydroxy-2,3-epoxybutane sulfate, and 2-butenediol sulfate and the sodium salts of benzyl sulfate, methyl sulfate, ethyl sulfate, and propyl sulfate. In addition, mixtures of OS and sodium chloride were also studied. The results showed gradual deliquescence of these aerosol particles characterized by continuous uptake and evaporation of water in both hydration and dehydration processes for the OS, while the mixture showed prompt deliquescence and effloresce transitions, albeit at a lower relative humidity relative to pure sodium chloride. Hygroscopic growth of these OS at 85% RH were also fit to parameterized functional forms. This new information provided here has important implications about the atmospheric lifetime, light scattering properties, and the role of OS in cloud formation. Moreover, results of these studies can ultimately serve as a basis for the development and evaluation of thermodynamic models for these compounds in order to consider their impact on the atmosphere. PMID:26967467

  18. Sulfate in fetal development.

    PubMed

    Dawson, Paul A

    2011-08-01

    Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies.

  19. Sulfate in fetal development.

    PubMed

    Dawson, Paul A

    2011-08-01

    Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies. PMID:21419855

  20. Chemical and size effects of hygroscopic aerosols on light scattering coefficients

    NASA Astrophysics Data System (ADS)

    Tang, Ignatius N.

    1996-08-01

    The extensive thermodynamic and optical properties recently reported [Tang and Munkelwitz, 1994a] for sulfate and nitrate solution droplets are incorporated into a visibility model for computing light scattering by hygroscopic aerosols. The following aerosol systems are considered: NH4HSO4, (NH4)2SO4, (NH4)3H(SO4), NaHSO4, Na2SO4, NH4NO3, and NaNO3. In addition, H2SO4 and NaCl are included to represent freshly formed sulfate and background sea-salt aerosols, respectively. Scattering coefficients, based on 1 μg dry salt per cubic meter of air, are calculated as a function of relative humidity for aerosols of various chemical compositions and lognormal size distributions. For a given size distribution the light scattered by aerosol particles per unit dry-salt mass concentration is only weakly dependent on chemical constituents of the hygroscopic sulfate and nitrate aerosols. Sulfuric acid and sodium chloride aerosols, however, are exceptions and scatter light more efficiently than all other inorganic salt aerosols considered in this study. Both internal and external mixtures exhibit similar light-scattering properties. Thus for common sulfate and nitrate aerosols, since the chemical effect is outweighed by the size effect, it follows that observed light scattering by the ambient aerosol can be approximated, within practical measurement uncertainties, by assuming the aerosol being an external mixture. This has a definite advantage for either visibility degradation or climatic impact modeling calculations, because relevant data are now available for external mixtures but only very scarce for internal mixtures.

  1. Aromatic organosulfates in atmospheric aerosols: Synthesis, characterization, and abundance

    NASA Astrophysics Data System (ADS)

    Staudt, Sean; Kundu, Shuvashish; Lehmler, Hans-Joachim; He, Xianran; Cui, Tianqu; Lin, Ying-Hsuan; Kristensen, Kasper; Glasius, Marianne; Zhang, Xiaolu; Weber, Rodney J.; Surratt, Jason D.; Stone, Elizabeth A.

    2014-09-01

    Aromatic organosulfates are identified and quantified in fine particulate matter (PM2.5) from Lahore, Pakistan, Godavari, Nepal, and Pasadena, California. To support detection and quantification, authentic standards of phenyl sulfate, benzyl sulfate, 3- and 4-methylphenyl sulfate and 2-, 3-, and 4-methylbenzyl sulfate were synthesized. Authentic standards and aerosol samples were analyzed by ultra-performance liquid chromatography (UPLC) coupled to negative electrospray ionization (ESI) quadrupole time-of-flight (ToF) mass spectrometry. Benzyl sulfate was present in all three locations at concentrations ranging from 4 to 90 pg m-3. Phenyl sulfate, methylphenyl sulfates and methylbenzyl sulfates were observed intermittently with abundances of 4 pg m-3, 2-31 pg m-3, 109 pg m-3, respectively. Characteristic fragment ions of aromatic organosulfates include the sulfite radical (rad SO3-, m/z 80) and the sulfate radical (rad SO4-, m/z 96). Instrumental response factors of phenyl and benzyl sulfates varied by a factor of 4.3, indicating that structurally-similar organosulfates have significantly different instrumental responses and highlighting the need to develop authentic standards for absolute quantitation organosulfates. In an effort to better understand the sources of aromatic organosulfates to the atmosphere, chamber experiments with the precursor toluene were conducted under conditions that form biogenic organosulfates. Aromatic organosulfates were not detected in the chamber samples, suggesting that they form through different pathways, have different precursors (e.g. naphthalene or methylnaphthalene), or are emitted from primary sources.

  2. Parameter sensitivity study of Arctic aerosol vertical distribution in CAM5

    NASA Astrophysics Data System (ADS)

    Jiao, C.; Flanner, M.

    2015-12-01

    Arctic surface temperature response to light-absorbing aerosols (black carbon, brown carbon and dust) depends strongly on their vertical distributions. Improving model simulations of three dimensional aerosol fields in the remote Arctic region will therefore lead to improved projections of the climate change caused by aerosol emissions. In this study, we investigate how different physical parameterizations in the Community Atmosphere Model version 5 (CAM5) influence the simulated vertical distribution of Arctic aerosols. We design experiments to test the sensitivity of the simulated aerosol fields to perturbations of selected aerosol process-related parameters in the Modal Aerosol Module with seven lognormal modes (MAM7), such as those govern aerosol aging, in-cloud and below-cloud scavenging, aerosol hygroscopicity and so on. The simulations are compared with observed aerosol vertical distributions and total optical depth to assess model performance and quantify uncertainties associated with these model parameterizations. Observations applied here include Arctic aircraft measurements of black carbon and sulfate vertical profiles, along with Aerosol Robotic Network (AERONET) optical depth measurements. We also assess the utility of using High Spectral Resolution Lidar (HSRL) measurements from the ARM Barrow site to infer vertical profiles of aerosol extinction. The sensitivity study explored here will provide guidance for optimizing global aerosol simulations.

  3. Towards a Global Aerosol Climatology: Preliminary Trends in Tropospheric Aerosol Amounts and Corresponding Impact on Radiative Forcing between 1950 and 1990

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Koch, Dorothy; Lacis, Andrew A.; Sato, Makiko

    1999-01-01

    A global aerosol climatology is needed in the study of decadal temperature change due to natural and anthropogenic forcing of global climate change. A preliminary aerosol climatology has been developed from global transport models for a mixture of sulfate and carbonaceous aerosols from fossil fuel burning, including also contributions from other major aerosol types such as soil dust and sea salt. The aerosol distributions change for the period of 1950 to 1990 due to changes in emissions of SO2 and carbon particles from fossil fuel burning. The optical thickness of fossil fuel derived aerosols increased by nearly a factor of 3 during this period, with particularly strong increase in eastern Asia over the whole time period. In countries where environmental laws came into effect since the early 1980s (e.g. US and western Europe), emissions and consequently aerosol optical thicknesses did not increase considerably after 1980, resulting in a shift in the global distribution pattern over this period. In addition to the optical thickness, aerosol single scattering albedos may have changed during this period due to different trends in absorbing black carbon and reflecting sulfate aerosols. However, due to the uncertainties in the emission trends, this change cannot be determined with any confidence. Radiative forcing of this aerosol distribution is calculated for several scenarios, resulting in a wide range of uncertainties for top-of-atmosphere (TOA) forcings. Uncertainties in the contribution of the strongly absorbing black carbon aerosol leads to a range in TOA forcings of ca. -0.5 to + 0.1 Wm (exp. -2), while the change in aerosol distributions between 1950 to 1990 leads to a change of -0.1 to -0.3 Wm (exp. -2), for fossil fuel derived aerosol with a "moderate" contribution of black carbon aerosol.

  4. Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Mary

    Atmospheric mineral dust has a large impact on the earth's radiation balance and climate. The radiative effects of mineral dust depend on factors including, particle size, shape, and composition which can all be extremely complex. Mineral dust particles are typically irregular in shape and can include sharp edges, voids, and fine scale surface roughness. Particle shape can also depend on the type of mineral and can vary as a function of particle size. In addition, atmospheric mineral dust is a complex mixture of different minerals as well as other, possibly organic, components that have been mixed in while these particles are suspended in the atmosphere. Aerosol optical properties are investigated in this work, including studies of the effect of particle size, shape, and composition on the infrared (IR) extinction and visible scattering properties in order to achieve more accurate modeling methods. Studies of particle shape effects on dust optical properties for single component mineral samples of silicate clay and diatomaceous earth are carried out here first. Experimental measurements are modeled using T-matrix theory in a uniform spheroid approximation. Previous efforts to simulate the measured optical properties of silicate clay, using models that assumed particle shape was independent of particle size, have achieved only limited success. However, a model which accounts for a correlation between particle size and shape for the silicate clays offers a large improvement over earlier modeling approaches. Diatomaceous earth is also studied as an example of a single component mineral dust aerosol with extreme particle shapes. A particle shape distribution, determined by fitting the experimental IR extinction data, used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the scattering data, the fits are generally better than those obtained using more commonly invoked particle shape

  5. Implementation of the Missing Aerosol Physics into LLNL IMPACT

    SciTech Connect

    Chuang, C

    2005-02-09

    In recent assessments of climate forcing, the Intergovernmental Panel on Climate Change lists aerosol as one o f the most important anthropogenic agents that influence climate. Atmospheric aerosols directly affect the radiative fluxes at the surface and top of the Earth's atmosphere by scattering and/or absorbing radiation. Further, aerosols indirectly change cloud microphysical properties (such as cloud drop effective radius) that also affect the radiative fluxes. However, the estimate of the magnitude of aerosol climatic effect varies widely, and aerosol/cloud interactions remain one of the most uncertain aspects of climate models today. The Atmospheric Sciences Division has formulated a plan to enhance and expand our modeling expertise in aerosol/cloud/climate interactions. Under previous LDRD support, we successfully developed a computationally efficient version of IMPACT to simulate aerosol climatology. This new version contains a compact chemical mechanism for the prediction of sulfate and also predicts the distributions of organic carbon (OC), black carbon (BC), dust, and sea salt. Furthermore, we implemented a radiation package into IMPACT to calculate the radiative forcing and heating/cooling rates by aerosols. This accomplishment built the foundation of our currently funded projects under the NASA Global Modeling and Analysis Program as well as the DOE Atmospheric Radiation Program. Despite the fact that our research is being recognized as an important effort to quantify the effects of anthropogenic aerosols on climate, the major shortcoming of our previous simulations on aerosol climatic effects is the over simplification of spatial and temporal variations of aerosol size distributions that are shaped by complicated nucleation, growth, transport and removal processes. Virtually all properties of atmospheric aerosols and clouds depend strongly on aerosol size distribution. Moreover, molecular processing on aerosol surfaces alters the hygroscopic

  6. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  7. Direct radiative effect by multicomponent aerosol over China

    SciTech Connect

    Huang, Xin; Song, Yu; Zhao, Chun; Cai, Xuhui; Zhang, Hongsheng; Zhu, Tong

    2015-05-01

    The direct radiative effect (DRE) of multiple aerosol species (sulfate, nitrate, ammonium, black carbon (BC), organic carbon (OC), and mineral aerosol) and their spatiotemporal variations over China were investigated using a fully coupled meteorology–chemistry model (WRF-Chem) for the entire year of 2006. We made modifications to improve model performance, including updating land surface parameters, improving the calculation of transition metal-catalyzed oxidation of SO2, and adding in heterogeneous reactions between mineral aerosol and acid gases. The modified model well reproduced the magnitude, seasonal pattern, and spatial distribution of the measured meteorological conditions, concentrations of PM10 and its components, and aerosol optical depth (AOD). A diagnostic iteration method was used to estimate the overall DRE of aerosols and contributions from different components. At the land surface, all kinds of aerosol species reduced the incident net radiation flux with a total DRE of 10.2 W m-2 over China. Aerosols significantly warm the atmosphere with the national mean DRE of +10.8 W m-2. BC was the leading radiative-heating component (+8.7 W m-2), followed by mineral aerosol (+1.1 W m-2). At the top of the atmosphere (TOA), BC introduced the largest radiative perturbation (+4.5 W m-2), followed by sulfate (-1.4 W m-2). The overall perturbation of aerosols on radiation transfer is quite small over China, demonstrating the counterbalancing effect between scattering and adsorbing aerosols. Aerosol DRE at the TOA had distinct seasonality, generally with a summer maximum and winter minimum, mainly determined by mass loadings, hygroscopic growth, and incident radiation flux.

  8. 21 CFR 700.14 - Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... inhalation exposure to vinyl chloride. Furthermore, vinyl chloride has recently been linked to liver disease, including liver cancer, in workers engaged in the polymerization of vinyl chloride. It is the view of...

  9. Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Spracklen, D. V.; Carslaw, K. S.; Mann, G. W.; Woodhouse, M. T.; Forster, P. M.; Haywood, J.; Johnson, C. E.; Dalvi, M.; Bellouin, N.; Sanchez-Lorenzo, A.

    2015-05-01

    Substantial changes in anthropogenic aerosols and precursor gas emissions have occurred over recent decades due to the implementation of air pollution control legislation and economic growth. The response of atmospheric aerosols to these changes and the impact on climate are poorly constrained, particularly in studies using detailed aerosol chemistry climate models. Here we compare the HadGEM3-UKCA coupled chemistry-climate model for the period 1960 to 2009 against extensive ground based observations of sulfate aerosol mass (1978-2009), total suspended particle matter (SPM, 1978-1998), PM10 (1997-2009), aerosol optical depth (AOD, 2000-2009) and surface solar radiation (SSR, 1960-2009) over Europe. The model underestimates observed sulfate aerosol mass (normalised mean bias factor (NMBF) = -0.4), SPM (NMBF = -0.9), PM10 (NMBF = -0.2) and aerosol optical depth (AOD, NMBF = -0.01) but slightly overpredicts SSR (NMBF = 0.02). Trends in aerosol over the observational period are well simulated by the model, with observed (simulated) changes in sulfate of -68% (-78%), SPM of -42% (-20%), PM10 of -9% (-8%) and AOD of -11% (-14%). Discrepancies in the magnitude of simulated aerosol mass do not affect the ability of the model to reproduce the observed SSR trends. The positive change in observed European SSR (5%) during 1990-2009 ("brightening") is better reproduced by the model when aerosol radiative effects (ARE) are included (3%), compared to simulations where ARE are excluded (0.2%). The simulated top-of-the-atmosphere aerosol radiative forcing over Europe under all-sky conditions increased by 3 W m-2 during the period 1970-2009 in response to changes in anthropogenic emissions and aerosol concentrations.

  10. Spatial variation of biogenic sulfur in the south Yellow Sea and the East China Sea during summer and its contribution to atmospheric sulfate aerosol.

    PubMed

    Zhang, Sheng-Hui; Yang, Gui-Peng; Zhang, Hong-Hai; Yang, Jian

    2014-08-01

    Spatial distributions of biogenic sulfur compounds including dimethylsulfide (DMS), dissolved and particulate dimethylsulfoniopropionate (DMSPd and DMSPp) were investigated in the South Yellow Sea (SYS) and the East China Sea (ECS) in July 2011. The concentrations of DMS and DMSPp were significantly correlated with the levels of chlorophyll a in the surface water. Simultaneously, relatively high ratio values of DMSP/chlorophyll a and DMS/chlorophyll a occurred in the areas where the phytoplankton community was dominated by dinoflagellates. The DMSPp and chlorophyll a size-fractionation showed that larger nanoplankton (5-20 μm) was the most important producer of DMSPp in the study area. The vertical profiles of DMS and DMSP were characterized by a maximum at the upper layer and the bottom concentrations were also relatively higher compared with the overlying layer of the bottom. In addition, a positive linear correlation was observed between dissolved dimethylsulfoxide (DMSOd) and DMS concentrations in the surface waters. The sea-to-air fluxes of DMS in the study area were estimated to be from 0.03 to 102.35 μmol m(-2) d(-1) with a mean of 16.73 μmol m(-2) d(-1) and the contribution of biogenic non-sea-salt SO4(2-) (nss-SO4(2-)) to the measured total nss-SO4(2-) in the atmospheric aerosol over the study area varied from 1.42% to 30.98%, with an average of 8.2%.

  11. Enhancement of aerosol responses to changes in emissions over East Asia by gas-oxidant-aerosol coupling and detailed aerosol processes

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.

    2016-06-01

    We quantify the responses of aerosols to changes in emissions (sulfur dioxide, black carbon (BC), primary organic aerosol, nitrogen oxides (NOx), and volatile organic compounds) over East Asia by using simulations including gas-oxidant-aerosol coupling, organic aerosol (OA) formation, and BC aging processes. The responses of aerosols to NOx emissions are complex and are dramatically changed by simulating gas-phase chemistry and aerosol processes online. Reduction of NOx emissions by 50% causes a 30-40% reduction of oxidant (hydroxyl radical and ozone) concentrations and slows the formation of sulfate and OA by 20-30%. Because the response of OA to changes in NOx emissions is sensitive to the treatment of emission and oxidation of semivolatile and intermediate volatility organic compounds, reduction of the uncertainty in these processes is necessary to evaluate gas-oxidant-aerosol coupling accurately. Our simulations also show that the sensitivity of aerosols to changes in emissions is enhanced by 50-100% when OA formation and BC aging processes are resolved in the model. Sensitivity simulations show that the increase of NOx emissions from 1850 to 2000 explains 70% (40%) of the enhancement of aerosol mass concentrations (direct radiative effects) over East Asia during that period through enhancement of oxidant concentrations and that this estimation is sensitive to the representation of OA formation and BC aging processes. Our results demonstrate the importance of simultaneous simulation of gas-oxidant-aerosol coupling and detailed aerosol processes. The impact of NOx emissions on aerosol formation will be a key to formulating effective emission reduction strategies such as BC mitigation and aerosol reduction policies in East Asia.

  12. Global climate forcing of aerosols embodied in international trade

    NASA Astrophysics Data System (ADS)

    Lin, Jintai; Tong, Dan; Davis, Steven; Ni, Ruijing; Tan, Xiaoxiao; Pan, Da; Zhao, Hongyan; Lu, Zifeng; Streets, David; Feng, Tong; Zhang, Qiang; Yan, Yingying; Hu, Yongyun; Li, Jing; Liu, Zhu; Jiang, Xujia; Geng, Guannan; He, Kebin; Huang, Yi; Guan, Dabo

    2016-10-01

    International trade separates regions consuming goods and services from regions where goods and related aerosol pollution are produced. Yet the role of trade in aerosol climate forcing attributed to different regions has never been quantified. Here, we contrast the direct radiative forcing of aerosols related to regions' consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols, including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers such as Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences between consumption- and production-related radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of aerosols while lowering global emissions.

  13. Lagrangian Sampling of 3-D Air Quality Model Results for Regional Transport Contributions to Sulfate Aerosol Concentrations at Baltimore, MD in Summer of 2004

    EPA Science Inventory

    The Lagrangian method provides estimates of the chemical and physical evolution of air arriving in the daytime boundary layer at Baltimore. Study results indicate a dominant role for regional transport contributions of those days when sulfate air pollution is highest in Baltimor...

  14. Heterogeneous Chemistry: Understanding Aerosol/Oxidant Interactions

    SciTech Connect

    Joyce E. Penner

    2005-03-14

    Global radiative forcing of nitrate and ammonium aerosols has mostly been estimated from aerosol concentrations calculated at thermodynamic equilibrium or using approximate treatments for their uptake by aerosols. In this study, a more accurate hybrid dynamical approach (DYN) was used to simulate the uptake of nitrate and ammonium by aerosols and the interaction with tropospheric reactive nitrogen chemistry in a three-dimensional global aerosol and chemistry model, IMPACT, which also treats sulfate, sea salt and mineral dust aerosol. 43% of the global annual average nitrate aerosol burden, 0.16 TgN, and 92% of the global annual average ammonium aerosol burden, 0.29 TgN, exist in the fine mode (D<1.25 {micro}m) that scatters most efficiently. Results from an equilibrium calculation differ significantly from those of DYN since the fraction of fine-mode nitrate to total nitrate (gas plus aerosol) is 9.8%, compared to 13% in DYN. Our results suggest that the estimates of aerosol forcing from equilibrium concentrations will be underestimated. We also show that two common approaches used to treat nitrate and ammonium in aerosol in global models, including the first-order gas-to-particle approximation based on uptake coefficients (UPTAKE) and a hybrid method that combines the former with an equilibrium model (HYB), significantly overpredict the nitrate uptake by aerosols especially that by coarse particles, resulting in total nitrate aerosol burdens higher than that in DYN by +106% and +47%, respectively. Thus, nitrate aerosol in the coarse mode calculated by HYB is 0.18 Tg N, a factor of 2 more than that in DYN (0.086 Tg N). Excessive formation of the coarse-mode nitrate in HYB leads to near surface nitrate concentrations in the fine mode lower than that in DYN by up to 50% over continents. In addition, near-surface HNO{sub 3} and NO{sub x} concentrations are underpredicted by HYB by up to 90% and 5%, respectively. UPTAKE overpredicts the NO{sub x} burden by 56% and near

  15. WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia

    SciTech Connect

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

  16. Global Aerosol Radiative Forcing using Satellite and Surface Measurements

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Christopher, S. A.

    2007-12-01

    Over the industrial period, aerosols have increased due to human activities and their effects on climate are the largest source of uncertainty in the current IPCC estimates of global climate forcing due to human activities. Inhomogeneous distribution of aerosols in space and time poses a challenge in their characterization and requires global measurements to assess their effects and reduce the associated uncertainties. In this paper we use global measurements from both satellite and ground based observations for one year time period to estimate the shortwave aerosol radiative forcing (SWARF) at the top-of-atmosphere (TOA) and discuss the associated uncertainties. For this, aerosol properties (optical depth) derived from AErosol RObotic NETwork (AERONET), a federation of ground-based remote sensing instruments, are used in this paper in conjunction with measurements of the TOA shortwave flux from CERES instrument (onboard Terra satellite). High spectral and spatial resolution observations from Imager (MODIS) will be used to identify clear sky conditions within CERES foot print and GOCART results will also be used for separating aerosol types. Global aerosol forcing and corresponding radiative forcing efficiencies will be presented as a function of major aerosol types [including anthropogenic (sulfate, soot, black carbon) and natural (dust) aerosols], region and season. This study should serve as a useful constraint for both numerical modeling simulations and satellite based estimates of SWARF.

  17. Global Aerosol Radiative Forcing Using Satellite and Surface Measurements

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Christopher, S. A.

    2008-05-01

    Over the industrial period, aerosols have increased due to human activities and their effects on climate are the largest source of uncertainty in the current IPCC estimates of global climate forcing due to human activities. Inhomogeneous distribution of aerosols in space and time poses a challenge in characterizing their properties and requires global measurements to assess their effects and reduce the associated uncertainties. In this paper we use global measurements from both satellite and ground based observations for one year time period to estimate the shortwave aerosol radiative forcing (SWARF) at the top-of-atmosphere (TOA) and discuss the associated uncertainties. For this, aerosol properties (optical depth) derived from AErosol RObotic NETwork (AERONET), a federation of ground-based remote sensing instruments, are used in this paper in conjunction with measurements of the TOA shortwave flux from CERES instrument (onboard Terra satellite). High spectral and spatial resolution observations from Imager (MODIS) is used to identify clear sky conditions within CERES foot print and GOCART results will also be used for separating aerosol types. Global aerosol forcing and corresponding radiative forcing efficiencies will be presented as a function of major aerosol types [including anthropogenic (sulfate, soot, black carbon) and natural (dust) aerosols], region and season. This study should serve as a useful constraint for both numerical modeling simulations and satellite based estimates of SWARF.

  18. Interaction of gaseous pollutants with aerosols in Asia during March 2002.

    PubMed

    Jeong, Jae-In; Park, Soon-Ung

    2008-03-25

    The Asian Dust Aerosol Model (ADAM) and the aerosol dynamic model with the output of the fifth generation of mesoscale model (MM5) in a grid of 60x60 km2 over the Asian domain have been performed with and without the heterogeneous reaction (gas-aerosol interaction) to estimate the effect of the gas-aerosol interaction on the formation of aerosol for the period of 1-31 March 2002 when a severe Asian dust event has been observed during this period. The simulated gas-phase pollutants concentrations and aerosols are compared with those observed in South Korea and the East Asia Network (EANET). The results indicate that the present modeling system including ADAM, aerosol dynamic model and MM5 model simulates quite well and the gas-phase pollutants concentrations observed in South Korea and the simulated aerosol concentrations with the gas-aerosol interaction yield much better results in concentrations than those without the gas-aerosol interaction. It is found that the favorable regions for the gas-aerosol interaction in Asia are eastern China (high pollutants emissions), Korea, Japan and the East China Sea that are downstream regions of the Asian dust sources and relatively high relative humidity. In these regions the concentrations of SO2 and O3 decrease whereas the concentrations of sulfate and nitrate increase significantly due to the gas-aerosol interaction. In particular, the increase of sulfate concentration due to the interaction is more than 30% of the corresponding concentration without the gas-aerosol interaction. It is also found that the time-area mean column concentrations of PM10, sulfate, nitrate in the model domain are respectively to be 154.9, 3.2, 3.6 mg m(-2) without the gas-aerosol interaction. However, with the gas-aerosol interaction these values have been increased to 0.6% (155.8 mg m(-2)), 16% (3.7 mg m(-2)), and 14% (4.1 mg m(-2)) of the corresponding concentration without the gas-aerosol interaction. On the other hand, the time-area mean

  19. Preliminary Results of Aerosol Chemical Composition Measurements in the Gulf of Maine with an Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Middlebrook, A. M.; Canagaratna, M. R.; Worsnop, D. R.

    2002-12-01

    The New England Air Quality Study is a multi-institutional research project to improve understanding of the atmospheric processes that control the production and distribution of air pollutants in the New England region. During July-August, 2002 a large, collaborative, intensive period of atmospheric measurement and model comparisons took place. As part of this study, an Aerosol Mass Spectrometer (AMS) was deployed aboard the NOAA ship RONALD H. BROWN in the Gulf of Maine. The AMS measures semi-volatile components of aerosol particles with aerodynamic diameters between roughly 40 and 1500 nm. During this study, the AMS collected 2-minute averaged particle mass spectra as well as speciated organic, sulfate, and nitrate size distributions. Sodium chloride, sodium sulfate, and sodium nitrate components of the aerosol, which are relatively non-volatile at the AMS heater temperature, were not detected with the AMS. A wide variety of air masses were sampled during the intensive period, including clean marine, clean continental, and polluted continental air masses. In general, the volatile particle composition was mostly organic and sulfate with lesser amounts of nitrate. Furthermore, particle mass loadings typically peaked around 400-600 nm in aerodynamic diameter. Several events with high aerosol organic, sulfate, and/or nitrate mass loadings were observed and the atmospheric processes that cause them will be discussed.

  20. Retrieval of aerosol composition using ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Xie, Yisong; Li, Zhengqiang; Zhang, Ying; Li, Donghui; Li, Kaitao

    2016-04-01

    The chemical composition and mixing states of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurements. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of ambient aerosol or lead to some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it is able to detect aerosol information of entire atmosphere by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduces a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. Different mixing models such as Maxwell-Garnett (MG), Bruggeman (BR) and Volume Average (VA) are also studied. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing

  1. Retrieval of aerosol composition using ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Li, Z.; Xu, H.; Chen, X.; Li, K.; Lv, Y.; Li, D.; Zhang, Y.

    2015-12-01

    The chemical composition and mixing status of ambient aerosol are the main factors deciding aerosol microphysical and optical properties, and thus have significant impacts on regional or global climate change and air quality. Traditional approaches to detect atmospheric aerosol composition include sampling with laboratory analysis and in-situ measurement. They can accurately acquire aerosol components, however, the sampling or air exhausting could change the status of aerosol or have some mass loss. Additionally, aerosol is usually sampled at the surface level so that it is difficult to detect the columnar aerosol properties. Remote sensing technology, however, can overcome these problems because it investigate aerosol information by optical and microphysical properties without destructing the natural status of ambient aerosol. This paper introduce a method to acquire aerosol composition by the remote sensing measurements of CIMEL CE318 ground-based sun-sky radiometer. A six component aerosol model is used in this study, including one strong absorbing component Black Carbon (BC), two partly absorbing components Brown Carbon (BrC) and Mineral Dust (MD), two scattering components Ammonia Sulfate-like (AS) and Sea Salt (SS), and Aerosol Water uptake (AW). Sensitivity analysis are performed to find the most sensitive parameters to each component and retrieval method for each component is accordingly developed. The residual minimization method is used by comparing remote sensing measurements and simulation outputs to find the optimization of aerosol composition (including volume fraction and mass concentration of each component). This method is applied to real measurements obtained from Beijing site under different weather conditions, including polluted haze, dust storm and clean days, to investigate the impacts of mixing states of aerosol particles on aerosol composition retrieval.

  2. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  3. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    depth gradient, with AOD(500 nm) extremes from 0.1 to 1.1. On the Pacific transit from Honolulu to Hachijo AOD(500 nm) averaged 0.2, including increases to 0.4 after several storms, suggesting the strong impact of wind-generated seasalt. The AOD maximum, found in the Sea of Japan, was influenced by dust and anthropogenic sources. (4) In Beijing, single scattering albedo retrieved from AERONET sun-sky radiometry yielded midvisible SSA=0.88 with strong wavelength dependence, suggesting a significant black carbon component. SSA retrieved during dust episodes was approx. 0.90 and variable but wavelength neutral reflecting the presence of urban haze with the dust. Downwind at Anmyon Island SSA was considerably higher, approx. 0.94, but wavelength neutral for dust episodes and spectrally dependent during non dust periods. (5) Satellite retrievals show major aerosol features moving from Asia over the Pacific; however, determining seasonal-average aerosol effects is hampered by sampling frequency and large-scale cloud systems that obscure key parts of aerosol patterns. Preliminary calculations using, satellite-retrieved AOD fields and initial ACE-Asia aerosol properties (including sulfates, soot, and dust) yield clear-sky aerosol radiative effects in the seasonal-average ACE-Asia plume exceeding those of manmade greenhouse gases. Quantifying all-sky direct aerosol radiative effects is complicated by the need to define the height of absorbing aerosols with respect to cloud decks.

  4. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  5. Secondary inorganic aerosol formation and its shortwave direct radiative forcing in China

    NASA Astrophysics Data System (ADS)

    Huang, Xin

    2015-04-01

    Secondary inorganic aerosol (SIA), including sulfate, nitrate and ammonium, is an important part of fine particle. SIA plays a significant role in shortwave radiation transfer. Numerical simulation is usually used to study SIA formation and its climate effect. In this work, we used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to study SIA formation and its direct radiative forcing (DRF) over China. SO2 oxidation pathways related to mineral aerosol, including transition metal-catalyzed oxidation in aqueous phase and heterogeneous reactions, play an important role in sulfate production, but they are not well treated in current atmospheric models. In this work, we improved the WRF-Chem model by simulating the enhancement role of mineral aerosol in sulfate production. Firstly, we estimated mineral cations based on local measurements in order to well represent aqueous phase acidity. Secondly, we scaled the transition metal concentration to the mineral aerosol levels according to the existing observations and improved transition metal-catalyzed oxidation calculation. Lastly, heterogeneous reactions of acid gases on the surface of mineral aerosol were included in this simulation. Accuracy in the prediction of sulfate by the model was significantly improved and we concluded that mineral aerosol can facilitate SO2 oxidation and subsequent sulfate formation. It was demonstrated that, over China, mineral aerosol was responsible for 21.8% of annual mean sulfate concentration. The enhanced aqueous oxidation was more significant compared to the heterogeneous reactions. In winter, mineral aerosol was responsible for 39.6% of sulfate production. In summer, gaseous oxidation and aqueous oxidation of SO2 by hydrogen peroxide and ozone were the dominant pathways of sulfate formation. Mineral aerosol only contributed 11.9% to the total sulfate production. The increase in annual mean sulfate concentration due to mineral aerosol could reach up to over 6

  6. A pathway analysis of global aerosol processes

    NASA Astrophysics Data System (ADS)

    Schutgens, Nick; Stier, Philip

    2014-05-01

    Although budgets for aerosol emission and deposition (macrophysical fluxes) have been studied before, much less is known about the budgets of processes e.g. nucleation, coagulation and condensation. A better understanding of their relative importance would improve our understanding of the aerosol system and help model development and evaluation. Aerosols are not only emitted from and deposited to the Earth's surface but are modified during their transport. The processes for these modifications include nucleation of H2SO4 gas into new aerosol, coagulation with other aerosol and condensation of H2SO4 unto existing aerosol. As a result of these processes, aerosol grow in size and change their chemical composition, often becoming hydrophilic where they were hydrophobic before. This affects their characteristics for various deposition processes (sedimentation, dry or wet deposition) as well as their radiative properties and hence climate forcing by aerosol. We present a complete budget of all aerosol processes in the aerosol-climate model ECHAM-HAM including the M7 microphysics. This model treats aerosol as 7 distinct but interacting two-moment modes of mixed species (soot, organic carbons, sulfate, sea salt and dust). We will show both global budgets as well as regional variations in dominant processes. Some of our conclusions are: condensation of H2SO4 gas onto pre-existing particles is an important process, dominating the growth of small particles in the nucleation mode to the Aitken mode and the ageing of hydrophobic matter. Together with in-cloud production of H2SO4, it significantly contributes to (and often dominates) the mass burden (and hence composition) of the hydrophilic Aitken and accumulation mode particles. Particle growth itself is the leading source of number densities in the hydrophilic Aitken and accumulation modes, with their hydrophobic counterparts contributing (even locally) relatively little. However, the coarse mode is mostly decoupled from the

  7. Global modeling of tropospheric iodine aerosol

    NASA Astrophysics Data System (ADS)

    Sherwen, Tomás. M.; Evans, Mat J.; Spracklen, Dominick V.; Carpenter, Lucy J.; Chance, Rosie; Baker, Alex R.; Schmidt, Johan A.; Breider, Thomas J.

    2016-09-01

    Natural aerosols play a central role in the Earth system. The conversion of dimethyl sulfide to sulfuric acid is the dominant source of oceanic secondary aerosol. Ocean emitted iodine can also produce aerosol. Using a GEOS-Chem model, we present a simulation of iodine aerosol. The simulation compares well with the limited observational data set. Iodine aerosol concentrations are highest in the tropical marine boundary layer (MBL) averaging 5.2 ng (I) m-3 with monthly maximum concentrations of 90 ng (I) m-3. These masses are small compared to sulfate (0.75% of MBL burden, up to 11% regionally) but are more significant compared to dimethyl sulfide sourced sulfate (3% of the MBL burden, up to 101% regionally). In the preindustrial, iodine aerosol makes up 0.88% of the MBL burden sulfate mass and regionally up to 21%. Iodine aerosol may be an important regional mechanism for ocean-atmosphere interaction.

  8. The importance of aerosol water for air pollution effects on weather and climate

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Lelieveld, J.

    2007-12-01

    We apply a new concept to study air pollution effects on weather and climate, which is based on thermodynamic principles that explain hydration and osmosis - including the required transformation of laboratory based concepts to atmospheric conditions. Under ambient conditions the equilibrium relative humidity (ERH) determines the saturation molality, solute and solvent activities (and activity coefficients), and the aerosol associated water mass, sine the water content is fixed by ERH for a given aerosol concentration and type. As a consequence, aerosol water drives the gas/liquid/solid aerosol partitioning, ambient aerosol size-distributions and directly links aerosol hygroscopic growth into fog, haze and clouds. Various modeling results indicate that a) our new concept is not limited to dilute binary solutions, b) sensitive aerosol properties such as the pH of binary and mixed inorganic/organic salt solutions up to saturation can be computed accurately, and c) that anthropogenic emissions can be directly linked to visibility reduction, cloud formation and climate forcing, if we explicitly account for the aerosol water mass. Our new concept is more explicit than the traditional CCN concept as it abandons the use of ambiguous terms such as "marine" and "continental" aerosols, and refines lumped categories such as mineral dust, biomass burning, sea salt, organic or sulfate aerosols currently used in atmospheric modeling. Despite, our concept is computationally very efficient as it allows solving the whole gas/liquid/solid aerosol partitioning analytically without numerical iterations. It is therefore especially suited for regional high resolution, or global climate applications.

  9. Sulfate metabolism in mycobacteria.

    PubMed

    Schelle, Michael W; Bertozzi, Carolyn R

    2006-10-01

    Pathogenic bacteria have developed numerous mechanisms to survive inside a hostile host environment. The human pathogen Mycobacterium tuberculosis (M. tb) is thought to control the human immune response with diverse biomolecules, including a variety of exotic lipids. One prevalent M. tb-specific sulfated metabolite, termed sulfolipid-1 (SL-1), has been correlated with virulence though its specific biological function is not known. Recent advances in our understanding of SL-1 biosynthesis will help elucidate the role of this curious metabolite in M. tb infection. Furthermore, the study of SL-1 has led to questions regarding the significance of sulfation in mycobacteria. Examples of sulfated metabolites as mediators of interactions between bacteria and plants suggest that sulfation is a key modulator of extracellular signaling between prokaryotes and eukaryotes. The discovery of novel sulfated metabolites in M. tb and related mycobacteria strengthens this hypothesis. Finally, mechanistic and structural data from sulfate-assimilation enzymes have revealed how M. tb controls the flux of sulfate in the cell. Mutants with defects in sulfate assimilation indicate that the fate of sulfur in M. tb is a critical survival determinant for the bacteria during infection and suggest novel targets for tuberculosis drug therapy.

  10. Tropospheric Trace Gas Interactions with Aerosols

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.; Maddrea, George L., Jr. (Technical Monitor)

    2002-01-01

    Tropospheric aerosols are of considerable environmental importance. They modify the radiative budget of Earth by scattering and absorbing radiation, and by providing nuclei for cloud formation. Additionally, they provide surfaces for heterogeneous and multiphase reactions that affect tropospheric chemistry. For example, Dentener and Crutzen (1993) showed that reactions of N2O5 and NO3 with sulfate aerosols may significantly alter the tropospheric concentrations of NO(x), O3, and OH by converting NOx to HNO3 which is rapidly removed by precipitation. Zhang et al. (1994) assumed these same reactions would occur on dust aerosols and showed that dust outbreaks may reduce NO(x) levels by up to 50%. Dentener et al. (1996) studied the possible effect of reactions on dust on sulfate, nitrate, and O3 concentration. Heterogeneous and multiphase reactions on aerosols may also perturb the sulfur cycle the chlorine cycle and the bromine cycle. Because these reactions can release free chlorine and free bromine they might lead to the destruction of ozone in the marine boundary layer that may be important to include in models of tropospheric chemistry. The goal of our proposed work is to examine the role of heterogeneous and multiphase reactions in the tropospheric cycles of reactive nitrogen and sulfur.

  11. Measurements of Volatile Organic Compounds (Including Dimethyl Sulfide), Aerosol Particles, and CCN in the Canadian Arctic: Preliminary Results from the Summer 2014 NETCARE Expedition Aboard the CCGS Amundsen

    NASA Astrophysics Data System (ADS)

    Mungall, E. L.; Abbatt, J.; Lee, A.; Ladino Moreno, L.

    2014-12-01

    The Arctic in summer is a cloud condensation nucleus (CCN) limited environment, and the controls on aerosol number and composition, and thus cloud formation, are poorly understood. A better understanding of these controls and their consequences is required in order to understand the region's changing climate. In order to advance that understanding, during Summer 2014 we deployed instrumentation aboard the CCGS Amundsen, the Canadian research icebreaker. We participated in Legs 1a and 1b of the cruise, affording us observations in locations as varied as the Gulf of St. Lawrence, Lancaster Sound, and the Nares Strait. We collected on-line measurements with high time resolution of particle number, size and CCN activity as well as mixing ratios of volatile organic compounds (VOCs) including dimethyl sulfide, which has been implicated as an important contributor to the CCN population in the Arctic. We also attempted to directly measure air-sea fluxes of dimethyl sulfide using a high resolution time of flight mass spectrometer (HR-ToF-CIMS, Aerodyne) sampling at 10 Hz. Here, we report preliminary results from those measurements.

  12. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE PAGES

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Menqistu; Brooks, Sarah D.; Cziczo, Dan; et al

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  13. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    SciTech Connect

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Menqistu; Brooks, Sarah D.; Cziczo, Dan; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor; Gultepe, Ismail; Hubbe, John; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. Richard; Liu, Peter; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, Ann -Marie; Moffet, Ryan C.; Morrison, Hugh; Ovchinnikov, Mikhail; Ronfeld, Debbie; Shupe, Matthew D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matt; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41 stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.

  14. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg A.; Peckham, Steven E.

    2006-11-01

    A new fully coupled meteorology-chemistry-aerosol model is used to simulate the urban- to regional-scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a 5 day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during the 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still underestimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  15. Upper-atmosphere Aerosols: Properties and Natural Cycles

    NASA Technical Reports Server (NTRS)

    Turco, Richard P.

    1992-01-01

    The middle atmosphere is rich in its variety of particulate matter, which ranges from meteorite debris, to sulfate aerosols, to polar stratospheric ice clouds. Volcanic eruptions strongly perturb the stratospheric sulfate (Junge) layer. High-altitude 'noctilucent' ice clouds condense at the summer mesopause. The properties of these particles, including their composition, sizes, and geographical distribution, are discussed, and their global effects, including chemical, radiative, and climatic roles, are reviewed. Polar stratospheric clouds (PSCs) are composed of water and nitric acid in the form of micron-sized ice crystals. These particles catalyze reactions of chlorine compounds that 'activate' otherwise inert chlorine reservoirs, leading to severe ozone depletions in the southern polar stratosphere during austral spring. PSCs also modify the composition of the polar stratosphere through complex physiocochemical processes, including dehydration and denitrification, and the conversion of reactive nitrogen oxides into nitric acid. If water vapor and nitric acid concentrations are enhanced by high-altitude aircraft activity, the frequency, geographical range, and duration of PSCs might increase accordingly, thus enhancing the destruction of the ozone layer (which would be naturally limited in geographical extent by the same factors that confine the ozone hole to high latitudes in winter). The stratospheric sulfate aerosol layer reflects solar radiation and increases the planetary albedo, thereby cooling the surface and possibly altering the climate. Major volcanic eruptions, which increase the sulfate aerosol burden by a factor of 100 or more, may cause significant global climate anomalies. Sulfate aerosols might also be capable of activating stratospheric chlorine reservoirs on a global scale (unlike PCSs, which represent a localized polar winter phenomenon), although existing evidence suggests relatively minor perturbations in chlorine chemistry. Nevertheless, if

  16. Lidar determination of the composition of atmosphere aerosols

    NASA Technical Reports Server (NTRS)

    Wright, M. L.

    1980-01-01

    Theoretical and experimental studies of the feasibility of using DIfferential SCatter (DISC) lidar to measure the composition of atmospheric aerosols are described. This technique involves multiwavelength measurements of the backscatter cross section of aerosols in the middle infrared, where a number of materials display strong restrahlen features that significantly modulate the backscatter spectrum. The theoretical work indicates that a number of materials of interest, including sulfuric acid, ammonium sulfate, and silicates, can be discriminated among with a CO2 lidar. An initial evaluation of this procedure was performed in which cirrus clouds and lower altitude tropospheric aerosols were developed. The observed ratio spectrum of the two types of aerosol displays structure that is in crude accord with theoretical expectations.

  17. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  18. Global fine-mode aerosol radiative effect, as constrained by comprehensive observations

    NASA Astrophysics Data System (ADS)

    Chung, Chul E.; Chu, Jung-Eun; Lee, Yunha; van Noije, Twan; Jeoung, Hwayoung; Ha, Kyung-Ja; Marks, Marguerite

    2016-07-01

    Aerosols directly affect the radiative balance of the Earth through the absorption and scattering of solar radiation. Although the contributions of absorption (heating) and scattering (cooling) of sunlight have proved difficult to quantify, the consensus is that anthropogenic aerosols cool the climate, partially offsetting the warming by rising greenhouse gas concentrations. Recent estimates of global direct anthropogenic aerosol radiative forcing (i.e., global radiative forcing due to aerosol-radiation interactions) are -0.35 ± 0.5 W m-2, and these estimates depend heavily on aerosol simulation. Here, we integrate a comprehensive suite of satellite and ground-based observations to constrain total aerosol optical depth (AOD), its fine-mode fraction, the vertical distribution of aerosols and clouds, and the collocation of clouds and overlying aerosols. We find that the direct fine-mode aerosol radiative effect is -0.46 W m-2 (-0.54 to -0.39 W m-2). Fine-mode aerosols include sea salt and dust aerosols, and we find that these natural aerosols result in a very large cooling (-0.44 to -0.26 W m-2) when constrained by observations. When the contribution of these natural aerosols is subtracted from the fine-mode radiative effect, the net becomes -0.11 (-0.28 to +0.05) W m-2. This net arises from total (natural + anthropogenic) carbonaceous, sulfate and nitrate aerosols, which suggests that global direct anthropogenic aerosol radiative forcing is less negative than -0.35 W m-2.

  19. Anthropogenic Sulfate, Clouds, and Climate Forcing

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.

    1997-01-01

    This research work is a joint effort between research groups at the Battelle Pacific Northwest Laboratory, Virginia Tech University, Georgia Institute of Technology, Brookhaven National Laboratory, and Texas A&M University. It has been jointly sponsored by the National Aeronautics and Space Administration, the U.S. Department of Energy, and the U.S. Environmental Protection Agency. In this research, a detailed tropospheric aerosol-chemistry model that predicts oxidant concentrations as well as concentrations of sulfur dioxide and sulfate aerosols has been coupled to a general circulation model that distinguishes between cloud water mass and cloud droplet number. The coupled model system has been first validated and then used to estimate the radiative impact of anthropogenic sulfur emissions. Both the direct radiative impact of the aerosols and their indirect impact through their influence on cloud droplet number are represented by distinguishing between sulfuric acid vapor and fresh and aged sulfate aerosols, and by parameterizing cloud droplet nucleation in terms of vertical velocity and the number concentration of aged sulfur aerosols. Natural sulfate aerosols, dust, and carbonaceous and nitrate aerosols and their influence on the radiative impact of anthropogenic sulfate aerosols, through competition as cloud condensation nuclei, will also be simulated. Parallel simulations with and without anthropogenic sulfur emissions are performed for a global domain. The objectives of the research are: To couple a state-of-the-art tropospheric aerosol-chemistry model with a global climate model. To use field and satellite measurements to evaluate the treatment of tropospheric chemistry and aerosol physics in the coupled model. To use the coupled model to simulate the radiative (and ultimately climatic) impacts of anthropogenic sulfur emissions.

  20. Improving Aerosol Transport to the Arctic in CAM5

    NASA Astrophysics Data System (ADS)

    Wang, H.; Easter, R. C.; Rasch, P.; Wang, M.; Liu, X.; Ghan, S.; Qian, Y.; Yoon, J.; Ma, P.; Vinoj, V.

    2011-12-01

    Of the many factors contributing to the rapid arctic climate change, arctic haze has been identified as a potentially important forcing agent. It has been well established that arctic aerosols largely originate from lower latitudes. Hence, the long-range atmospheric transport of aerosols to the Arctic is of great concern for studying arctic climate change. The treatment of aerosol and cloud processes has been substantially improved in the current version of the Community Atmosphere Model (CAM5) which is widely used in the research of aerosol effects on clouds and climate. However, like many other global models, the CAM5 produces a relatively poor simulation of arctic aerosols and clouds. For example, previous studies have shown that the standard version of CAM5 remarkably underpredicts arctic aerosol concentrations, particularly during the arctic haze season, compared to various measurements. In this study, we focus on improving processes associated with aerosol-cloud interactions, cloud microphysics and macrophysics, and aerosol emission, transformation, removal, and deposition that are key to determining the amount of aerosols reaching the Arctic. Sensitivity experiments are conducted to understand the role of each of the processes and to identify sources of uncertainties, and improvements are made to processes that are not well represented in the CAM5. The evaluation and improvement are guided by aerosol and cloud measurements together with process-oriented model results from the multi-scale aerosol-climate model (PNNL-MMF) that embeds a cloud-resolving model in each CAM5 grid column to explicitly represent convection and aerosol-cloud interactions. Results show that including black carbon (BC) aging process through a more complete 7-mode version of the aerosol module in CAM5 can substantially increase the amount of arctic BC, compared to simulations with the standard 3-mode version, but has minimal effect on other species such as dust and sulfate. Excessive mid

  1. The NASA-AMES Research Center Stratospheric Aerosol Model. 1. Physical Processes and Computational Analogs

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Hamill, P.; Toon, O. B.; Whitten, R. C.; Kiang, C. S.

    1979-01-01

    A time-dependent one-dimensional model of the stratospheric sulfate aerosol layer is presented. In constructing the model, a wide range of basic physical and chemical processes are incorporated in order to avoid predetermining or biasing the model predictions. The simulation, which extends from the surface to an altitude of 58 km, includes the troposphere as a source of gases and condensation nuclei and as a sink for aerosol droplets. The size distribution of aerosol particles is resolved into 25 categories with particle radii increasing geometrically from 0.01 to 2.56 microns such that particle volume doubles between categories.

  2. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above

  3. Aerosol composition and variability in the Baltimore-Washington, DC region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2015-08-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type, such as composition, size and hygroscopicity, and to the surrounding atmosphere, such as temperature, relative humidity (RH) and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in-situ atmospheric profiling in the Baltimore, MD-Washington, DC region was performed during fourteen flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 49 %) due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of ammonium sulfate increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity causing an increase in the water content of the aerosol. Conversely, low aerosol loading days had lower ammonium sulfate and higher black carbon contributions causing lower single scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km decreasing to 35 ng m-3

  4. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger

    PubMed Central

    Golshahi, Laleh; Longest, P. Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-01-01

    Purpose Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Methods Variables of interest included combinations of model drug (i.e. albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1–5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. Results At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~ 0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1 % w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. Conclusions The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs. PMID:25823649

  5. Transport of aerosols into the UTLS and their impact on the Asian monsoon region as seen in a global model simulation

    NASA Astrophysics Data System (ADS)

    Fadnavis, S.; Semeniuk, K.; Pozzoli, L.; Schultz, M. G.; Ghude, S. D.; Das, S.; Kakatkar, R.

    2013-09-01

    An eight-member ensemble of ECHAM5-HAMMOZ simulations for a boreal summer season is analysed to study the transport of aerosols in the upper troposphere and lower stratosphere (UTLS) during the Asian summer monsoon (ASM). The simulations show persistent maxima in black carbon, organic carbon, sulfate, and mineral dust aerosols within the anticyclone in the UTLS throughout the ASM (period from July to September), when convective activity over the Indian subcontinent is highest, indicating that boundary layer aerosol pollution is the source of this UTLS aerosol layer. The simulations identify deep convection and the associated heat-driven circulation over the southern flanks of the Himalayas as the dominant transport pathway of aerosols and water vapour into the tropical tropopause layer (TTL). Comparison of model simulations with and without aerosols indicates that anthropogenic aerosols are central to the formation of this transport pathway. Aerosols act to increase cloud ice, water vapour, and temperature in the model UTLS. Evidence of ASM transport of aerosols into the stratosphere is also found, in agreement with aerosol extinction measurements from the Halogen Occultation Experiment (HALOE) and Stratospheric Aerosol and Gas Experiment (SAGE) II. As suggested by the observations, aerosols are transported into the Southern Hemisphere around the tropical tropopause by large-scale mixing processes. Aerosol-induced circulation changes also include a weakening of the main branch of the Hadley circulation and a reduction of monsoon precipitation over India.

  6. Balloon observations of organic and inorganic chlorine in the stratosphere: the role of HClO4 production on sulfate aerosols

    NASA Technical Reports Server (NTRS)

    Jaegle, L.; Yung, Y. L.; Toon, G. C.; Sen, B.; Blavier, J. F.

    1996-01-01

    Simultaneous observations of stratospheric organic and inorganic chlorine were made in September 1993 out of Fort Sumner, New Mexico, using JPL balloon-borne MkIV interferometer. Between 15 and 20 km, a significant fraction (20-60%) of the inorganic chlorine could not be accounted for by the sum of measured HCl, ClONO2, and HOCl. Laboratory measurements of the reaction of ClO radicals on sulfuric acid solutions have indicated that, along with HCl, small amounts of perchloric acid, HClO4, were formed. Very little is known about the fate of HClO4 in the stratosphere and we use a photochemical box model to determine the impact of this new species on the partitioning of inorganic chlorine in the stratosphere. Assuming that HClO4 is photochemically stable, it is shown that in the enhanced aerosol loading conditions resulting from Mt. Pinatubo's eruption, HClO4 could represent a significant reservoir of chlorine in the lower stratosphere, sequestering up to 0.2 ppbv (or 50%) of the total inorganic chlorine at 16 km. The occurrence of this new species could bring to closure the inorganic chlorine budget deficiency made apparent by recent ER-2 aircraft in situ measurements of HCl.

  7. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  8. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  9. Transported acid aerosols measured in southern Ontario

    NASA Astrophysics Data System (ADS)

    Keeler, Gerald J.; Spengler, John D.; Koutrakis, Petros; Allen, George A.; Raizenne, Mark; Stern, Bonnie

    During the period 29 June 1986-9 August 1986, a field health study assessing the acute health effects of air pollutants on children was conducted at a summer girls' camp on the northern shore of Lake Erie in SW Ontario. Continuous air pollution measurements of SO 2, O 3, NO x, particulate sulfates, light scattering, and meteorological measurements including temperature, dew point, and wind speed and direction were made. Twelve-hour integrated samples of size fractioned particles were also obtained using dichotomous samplers and Harvard impactors equipped with an ammonia denuder for subsequent hydrogen ion determination. Particulate samples were analyzed for trace elements by X-ray fluorescence and Neutron Activation, and for organic and elemental carbon by a thermal/optical technique. The measured aerosol was periodically very acidic with observed 12-h averaged H + concentrations in the range < 10-560 nmoles m -3. The aerosol H + appeared to represent the net strong acidity after H 2SO 4 reaction with NH 3(g). Average daytime concentrations were higher than night-time for aerosol H +, sulfate, fine mass and ozone. Prolonged episodes of atmospheric acidity, sulfate, and ozone were associated with air masses arriving at the measurement site from the west and from the southwest over Lake Erie. Sulfate concentrations measured at the lakeshore camp were more than twice those measured at inland sites during extreme pollution episodes. The concentration gradient observed with onshore flow was potentially due to enhanced deposition near the lakeshore caused by discontinuities in the meteorological fields in this region.

  10. Comparison of Observed and Modeled Regional Scale Aerosol Characteristics for ACE-ASIA and TRACE-P

    NASA Astrophysics Data System (ADS)

    Kapustin, V.; Clarke, A.; Carmichael, G.; Tang, Y.; McNaughton, C.

    2002-12-01

    During spring of 2001 we measured aerosol physical, chemical and optical properties for Asian aerosol with our similar instrument sets [University of Hawaii] from two aircraft - the NASA P3-B (TRACE-P) and NSF C-130 (ACE-ASIA). Observed aerosol characteristics included aerosol number concentration, measured with Ultrafine Condensation Nuclei counter (UCN) and CN counters; size distributions, obtained from a radial differential mobility analyzer (RDMA), a laser optical particle counter (OPC), aerodynamic particle sizer (APS) and wing mounted probes; aerosol light scattering and absorption obtained from nephelometers and a Particle Soot Absorption Photometers (PSAP). On the C-130 a dry and humidified nephelometer was operated to measure humidity dependence of aerosol light scattering, f(RH). Size distributions and number concentrations were measured with thermal aerosol volatilization to infer particles volatility and refractory properties linked to dust and soot aerosol components. Here we compare these observations to results from the University of Iowa CFORS/STEM model of related aerosol characteristics during these measurement periods. This model includes a wide variety of aerosol chemical and optical properties - black and organic carbon (BC and OC), dust, sulfate concentrations and calculated aerosol optical depth. This comparison is based not only on case studies bur also on regional scale air mass characterization. To facilitate this comparison a set of scatter "signature" plots of measured aerosol parameters like f(RH) vs. fractional submicron aerosol surface area or submicron refractory volume vs. total aerosol absorption is used. This approach generates clusters of data characteristics for different air masses. The model shows a high degree of consistency in identifying the main features of biomass burning, urban/industrial pollution, and dust events. This combination of measured and modeled aerosol parameters is shown to be valuable in quantifying the

  11. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    SciTech Connect

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they

  12. Reducing the Uncertainties in Direct Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2011-01-01

    Airborne particles, which include desert and soil dust, wildfire smoke, sea salt, volcanic ash, black carbon, natural and anthropogenic sulfate, nitrate, and organic aerosol, affect Earth's climate, in part by reflecting and absorbing sunlight. This paper reviews current status, and evaluates future prospects for reducing the uncertainty aerosols contribute to the energy budget of Earth, which at present represents a leading factor limiting the quality of climate predictions. Information from satellites is critical for this work, because they provide frequent, global coverage of the diverse and variable atmospheric aerosol load. Both aerosol amount and type must be determined. Satellites are very close to measuring aerosol amount at the level-of-accuracy needed, but aerosol type, especially how bright the airborne particles are, cannot be constrained adequately by current techniques. However, satellite instruments can map out aerosol air mass type, which is a qualitative classification rather than a quantitative measurement, and targeted suborbital measurements can provide the required particle property detail. So combining satellite and suborbital measurements, and then using this combination to constrain climate models, will produce a major advance in climate prediction.

  13. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS[S

    PubMed Central

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F.; Traupe, Heiko; Wudy, Stefan A.

    2015-01-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. PMID:26239050

  14. Aromatic organosulfates in atmospheric aerosols: synthesis, characterization, and abundance

    PubMed Central

    Staudt, Sean; Kundu, Shuvashish; Lehmler, Hans-Joachim; He, Xianran; Cui, Tianqu; Lin, Ying-Hsuan; Kristensen, Kasper; Glasius, Marianne; Zhang, Xiaolu; Weber, Rodney J.; Surratt, Jason D.; Stone1, Elizabeth A.

    2014-01-01

    Aromatic organosulfates are identified and quantified in fine particulate matter (PM2.5) from Lahore, Pakistan, Godavari, Nepal, and Pasadena, California. To support detection and quantification, authentic standards of phenyl sulfate, benzyl sulfate, 3-and 4-methylphenyl sulfate and 2-, 3-, and 4-methylbenzyl sulfate were synthesized. Authentic standards and aerosol samples were analyzed by ultra-performance liquid chromatography (UPLC) coupled to negative electrospray ionization (ESI) quadrupole time-of-flight (ToF) mass spectrometry. Benzyl sulfate was present in all three locations at concentrations ranging from 4 – 90 pg m−3. Phenyl sulfate, methylphenyl sulfates and methylbenzyl sulfates were observed intermittently with abundances of 4 pg m−3, 2-31 pg m−3, 109 pg m−3, respectively. Characteristic fragment ions of aromatic organosulfates include the sulfite radical (•SO3−, m/z 80) and the sulfate radical (•SO4−,m/z 96). Instrumental response factors of phenyl and benzyl sulfates varied by a factor of 4.3, indicating that structurally-similar organosulfates may have significantly different instrumental responses and highlighting the need to develop authentic standards for absolute quantitation organosulfates. In an effort to better understand the sources of aromatic organosulfates to the atmosphere, chamber experiments with the precursor toluene were conducted under conditions that form biogenic organosulfates. Aromatic organosulfates were not detected in the chamber samples, suggesting that they form through different pathways, have different precursors (e.g. naphthalene or methylnaphthalene), or are emitted from primary sources. PMID:24976783

  15. Seasonal variations in the physico-chemical characteristics of aerosols in North Taiwan

    NASA Astrophysics Data System (ADS)

    Chou, Charles

    2014-05-01

    From 2007 to 2012, this study investigated the mass concentration and chemical composition of ambient aerosols (i.e. PM10, PM2.5, and PMc = PM10-PM2.5) at Cape Fuguei, Yangminshan, and NTU (National Taiwan University) stations in northern Taiwan. It was found that the concentration and composition of aerosols exhibited significant seasonal variations but without an inter-annual trend during the study period. Moderate correlations (R2 = 0.4-0.6) were observed among the aerosol concentrations at the respective stations, indicating that the aerosol concentrations were dominated by factors on regional scales. During the seasons of northeasterly winter monsoons, long range transport of dust and particulate air pollutants from the Asia Continent had negatively impacted the atmospheric environment in this area. On the other hand, as a highly developed urban area, Taipei has substantial local emissions of air pollutants that should have transported to the surrounding areas of Taipei basin and caused deterioration of air quality and visibility in Cape Fuguei and Yangminshan. The results indicated that the major components of aerosols in Taipei include sulfate, sea salts, dust, and organic matters. In addition, contributions from nitrate, ammonium, and elemental carbon were also significant. In terms of mass concentration, most of the sea salts and dust particles existed in the coarse mode of aerosols, whereas sulfate and EC were confined within PM2.5. This suggests that the dust and sea salts particles were externally mixed with EC and sulfate in the aerosols over Taipei area. Further, it was found that nitrate were closely associated with sea salts in aerosols, suggesting the reaction between nitric acid and sea salt particles. Different seasonality was observed for sea salt and dust: sea salts peaked in fall and dust reached the maximal level in springtime, implying their sources were regulated by independent seasonal factors. Particulate pollutants (i.e. sulfate, nitrate

  16. Past and future direct radiative forcing of nitrate aerosol in East Asia

    NASA Astrophysics Data System (ADS)

    Li, Jiandong; Wang, Wei-Chyung; Liao, Hong; Chang, Wenyuan

    2015-08-01

    Nitrate as a rapidly increasing aerosol species in recent years affects the present climate and potentially has large implications on the future climate. In this study, the long-term direct radiative forcing (DRF) of nitrate aerosol is investigated using State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) atmospheric general circulation model (AGCM) and the aerosol dataset simulated by a chemical transport model with focus on East Asia. The DRF due to other aerosols, especially sulfate, is also evaluated for comparisons. Although the chemical transport model underestimates the magnitudes of nitrate and sulfate aerosols when compared with Chinese site observations, some insights into the significances of nitrate climate effects still emerge. The present-day global annual mean all-sky DRF of nitrate is calculated to be -0.025 W m-2 relative to the preindustrial era, which is much weaker than -0.37 W m-2 for sulfate. However, nitrate DRF may become increasingly important in the future especially over East Asia, given the expectation that decreasing trend in global sulfate continues while the projected nitrate maintains at the present level for a mid-range forcing scenario and even be a factor of two larger by the end of the 21st century for high emission scenarios. For example, the anthropogenic nitrate DRF of -2.0 W m-2 over eastern China could persist until the 2050s, and nitrate is projected to account for over 60 % of total anthropogenic aerosol DRF over East Asia by 2100. In addition, we illustrate that the regional nitrate DRF and its seasonal variation are sensitive to meteorological parameters, in particular the relative humidity and cloud amount. It thus remains a need for climate models to include more realistically nitrate aerosol in projecting future climate changes.

  17. Longitudinal distributions of dicarboxylic acids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids in the marine aerosols from the central Pacific including equatorial upwelling

    NASA Astrophysics Data System (ADS)

    Hoque, Mir Md. Mozammal; Kawamura, Kimitaka

    2016-03-01

    Remote marine aerosol samples (total suspended particles) were collected during a cruise in the central Pacific from Japan to Mexico (1°59'N-35°N and 171°54'E-90°58'W). The aerosol samples were analyzed for dicarboxylic acids (C2-C11), ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids as well as organic and elemental carbon, water-soluble organic carbon, and total nitrogen (WSTN). During the study, diacids were the most abundant compound class followed by fatty acids, ω-oxoacids, and α-dicarbonyls. Molecular compositions of diacids showed a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid comprises 74% of total diacids. This result suggests that photochemical production of oxalic acid is significant over the central Pacific. Spatial distributions of diacids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids together with total carbon and WSTN showed higher abundances in the eastern equatorial Pacific where the upwelling of high-nutrient waters followed by high biological productivity is common, indicating that their in situ production is important in the warmer central Pacific through photochemical oxidation from their gaseous and particulate precursors. This study demonstrates that there is a strong linkage in biogeochemical cycles of carbon in the sea-air interface via ocean upwelling, phytoplankton productivity, sea-to-air emissions of organic matter, and formation of secondary organic aerosols in the eastern equatorial Pacific.

  18. Investigating Types and Sources of Organic Aerosol in Rocky Mountain National Park Using Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L.

    2011-12-01

    The Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS) focuses on identifying pathways and sources of nitrogen deposition in Rocky Mountain National Park (RMNP). Past work has combined measurements from a range of instrumentation such as annular denuders, PILS-IC, Hi-Vol samplers, and trace gas analyzers. Limited information from early RoMANS campaigns is available regarding organic aerosol. While prior measurements have produced a measure of total organic carbon mass, high time resolution measures of organic aerosol concentration and speciation are lacking. One area of particular interest is characterizing the types, sources, and amounts of organic nitrogen aerosol. Organic nitrogen measurements in RMNP wet deposition reveal a substantial contribution to the total reactive nitrogen deposition budget. In this study an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in summer 2010 at RMNP to investigate organic aerosol composition and its temporal variability. The species timeline and diurnal species variations are combined with meteorological data to investigate local transport events and chemistry; transport from the Colorado Front Range urban corridor appears to be more significant for inorganic species than for the overall organic aerosol mass. Considerable variation in organic aerosol concentration is observed (0.5 to 20 μg/m3), with high concentration episodes lasting between hours and two days. High resolution AMS data are analyzed for organic aerosol, including organic nitrogen species that might be expected from local biogenic emissions, agricultural activities, and secondary reaction products of combustion emissions. Positive matrix factorization reveals that semi-volatile oxidized OA, low-volatility oxidized OA, and biomass burning OA comprise most organic mass; the diurnal profile of biomass burning OA peaks at four and nine pm and may arise from local camp fires, while constant concentrations of

  19. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    SciTech Connect

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-04-09

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  20. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  1. Anthropogenic Aerosols and Tropical Precipitation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Kim, D.; Ekman, A. M. L.; Barth, M. C.; Rasch, P. J.

    2009-04-01

    Anthropogenic aerosols can affect the radiative balance of the Earth-atmosphere system and precipitation by acting as cloud condensation nuclei (CCN) or ice nuclei (IN) and thus modifying the optical and microphysical properties as well as lifetimes of clouds. Recent studies have also suggested that the direct radiative effect of anthropogenic aerosols, particularly absorbing aerosols, can perturb the large-scale circulation and cause a significant change in both quantity and distribution of critical tropical precipitation systems ranging from Pacific and Indian to Atlantic Oceans. This effect of aerosols on precipitation often appears in places away from aerosol-concentrated regions and current results suggest that the precipitation changes caused by it could be much more substantial than that by the microphysics-based aerosol effect. To understand the detailed mechanisms and strengths of such a "remote impact" and the climate response/feedback to anthropogenic aerosols in general, an interactive aerosol-climate model has been developed based on the Community Climate System Model (CCSM) of NCAR. Its aerosol module describes size, chemical composition, and mixing states of various sulfate and carbonaceous aerosols. Several model processes are derived based on 3D cloud-resolving model simulations. We have conducted a set of long integrations using the model driven by radiative effects of different combinations of various carbonaceous and sulfate aerosols and their mixtures. The responses of tropical precipitation systems to the forcing of these aerosols are analyzed using both model and observational data. Detailed analyses on the aerosol-precipitation causal relations of two systems: i.e., the Indian summer monsoon and Pacific ITCZ will be specifically presented.

  2. simplified aerosol representations in global modeling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Peters, Karsten; Stevens, Bjorn; Rast, Sebastian; Schutgens, Nick; Stier, Philip

    2015-04-01

    The detailed treatment of aerosol in global modeling is complex and time-consuming. Thus simplified approaches are investigated, which prescribe 4D (space and time) distributions of aerosol optical properties and of aerosol microphysical properties. Aerosol optical properties are required to assess aerosol direct radiative effects and aerosol microphysical properties (in terms of their ability as aerosol nuclei to modify cloud droplet concentrations) are needed to address the indirect aerosol impact on cloud properties. Following the simplifying concept of the monthly gridded (1x1 lat/lon) aerosol climatology (MAC), new approaches are presented and evaluated against more detailed methods, including comparisons to detailed simulations with complex aerosol component modules.

  3. Solar geoengineering using solid aerosol in the stratosphere

    NASA Astrophysics Data System (ADS)

    Weisenstein, D. K.; Keith, D. W.; Dykema, J. A.

    2015-10-01

    Solid aerosol particles have long been proposed as an alternative to sulfate aerosols for solar geoengineering. Any solid aerosol introduced into the stratosphere would be subject to coagulation with itself, producing fractal aggregates, and with the natural sulfate aerosol, producing liquid-coated solids. Solid aerosols that are coated with sulfate and/or have formed aggregates may have very different scattering properties and chemical behavior than uncoated non-aggregated monomers do. We use a two-dimensional (2-D) chemistry-transport-aerosol model to capture the dynamics of interacting solid and liquid aerosols in the stratosphere. As an example, we apply the model to the possible use of alumina and diamond particles for solar geoengineering. For 240 nm radius alumina particles, for example, an injection rate of 4 Tg yr-1 produces a global-average shortwave radiative forcing of -1.2 W m-2 and minimal self-coagulation of alumina although almost all alumina outside the tropics is coated with sulfate. For the same radiative forcing, these solid aerosols can produce less ozone loss, less stratospheric heating, and less forward scattering than sulfate aerosols do. Our results suggest that appropriately sized alumina, diamond or similar high-index particles may have less severe technology-specific risks than sulfate aerosols do. These results, particularly the ozone response, are subject to large uncertainties due to the limited data on the rate constants of reactions on the dry surfaces.

  4. Cloud Nucleating Properties of Aerosols During TexAQS - GoMACCS 2006: Influence of Aerosol Sources, Composition, and Size

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Coffman, D. J.; Covert, D. S.; Onasch, T. B.; Alllan, J. D.; Worsnop, D.

    2006-12-01

    TexAQS - GoMACCS 2006 was conducted from July to September 2006 in the Gulf of Mexico and Houston Ship Channel to investigate sources and processing of gas and particulate phase species and to determine their impact on regional air quality and climate. As part of the experiment, the NOAA R.V. Ronald H. Brown transited from Charleston, S.C. to the study region. The ship was equipped with a full compliment of gas and aerosol instruments. To determine the cloud nucleating properties of aerosols, measurements were made of the aerosol number size distribution, aerosol chemical composition, and cloud condensation nuclei (CCN) concentration at five supersaturations. During the transit and over the course of the experiment, a wide range of aerosol sources and types was encountered. These included urban and industrial emissions from the S.E. U.S. as the ship left Charleston, a mixture of Saharan dust and marine aerosol during the transit around Florida and across the Gulf of Mexico, urban emissions from Houston, and emissions from the petrochemical industries, oil platforms, and marine vessels in the Gulf coast region. Highest activation ratios (ratio of CCN to total particle number concentration at 0.4 percent supersaturation) were measured in anthropogenic air masses when the aerosol was composed primarily of ammonium sulfate salts and in marine air masses with an aerosol composed of sulfate and sea salt. A strong gradient in activation ratio was measured as the ship moved from the Gulf of Mexico to the end of the Houston Ship Channel (values decreasing from about 0.8 to less than 0.1) and the aerosol changed from marine to industrial. The activation ratio under these different regimes in addition to downwind of marine vessels and oil platforms will be discussed in the context of the aerosol size distribution and chemical composition. The discussion of composition will include the organic mass fraction of the aerosol, the degree of oxidation of the organics, and the water

  5. Studies of Ambient and Chamber Aerosol Composition using the Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Craven, Jill Suzanne

    This thesis presents composition measurements for atmospherically relevant inorganic and organic aerosol from laboratory and ambient measurements using the Aerodyne aerosol mass spectrometer. Studies include the oxidation of dodecane in the Caltech environmental chambers, and several aircraft- and ground-based field studies, which include the quantification of wildfire emissions off the coast of California, and Los Angeles urban emissions. The oxidation of dodecane by OH under low NO conditions and the formation of secondary organic aerosol (SOA) was explored using a gas-phase chemical model, gas-phase CIMS measurements, and high molecular weight ion traces from particlephase HR-TOF-AMS mass spectra. The combination of these measurements support the hypothesis that particle-phase chemistry leading to peroxyhemiacetal formation is important. Positive matrix factorization (PMF) was applied to the AMS mass spectra which revealed three factors representing a combination of gas-particle partitioning, chemical conversion in the aerosol, and wall deposition. Airborne measurements of biomass burning emissions from a chaparral fire on the central Californian coast were carried out in November 2009. Physical and chemical changes were reported for smoke ages 0--4 h old. CO 2 normalized ammonium, nitrate, and sulfate increased, whereas the normalized OA decreased sharply in the first 1.5--2 h, and then slowly increased for the remaining 2 h (net decrease in normalized OA). Comparison to wildfire samples from the Yucatan revealed that factors such as relative humidity, incident UV radiation, age of smoke, and concentration of emissions are important for wildfire evolution. Ground-based aerosol composition is reported for Pasadena, CA during the sumix mer of 2009. The OA component, which dominated the submicron aerosol mass, was deconvolved into hydrocarbon-like organic aerosol (HOA), semi-volatile oxidized organic aerosol (SVOOA), and low-volatility oxidized organic aerosol

  6. WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, L. Ruby

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF, including direct, semi-direct and indirect forcing) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at many sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korea, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 μm or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan, which indicates the possible influence of pollutant transport from polluted area of East Asia. The model underestimates SO42- and organic carbon (OC) concentrations over mainland China by about a factor of 2, while overestimates NO3- concentration in autumn along the Yangtze River. The model captures the dust events at the Zhangye site in the semi-arid region of China. AOD is high over Southwest and Central China in winter and spring and over North China in winter, spring and summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over adjacent oceans at the top of atmosphere (TOA), 5-30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO42-, NO3- and NH4

  7. Possible Influence of Anthropogenic Aerosols on Cirrus Clouds and Anthropogenic Forcing

    SciTech Connect

    Penner, Joyce E.; Chen, Yang; Wang, Minghuai; Liu, Xiaohong

    2009-02-03

    Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth’s area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We find that fossil fuel and biomass burning soot aerosols exert a radiative forcing of -0.68 to 0.01 Wm-2 while anthropogenic sulfate aerosols exert a forcing of -0.01 to 0.18 Wm-2. Our calculations show that the sign of the forcing by aircraft soot depends on the model configuration and can be both positive or negative, ranging from -0.16 to 0.02 Wm-2. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.

  8. Evaluation of Present-day Aerosols over China Simulated from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Liao, H.; Chang, W.

    2014-12-01

    High concentrations of aerosols over China lead to strong radiative forcing that is important for both regional and global climate. To understand the representation of aerosols in China in current global climate models, we evaluate extensively the simulated present-day aerosol concentrations and aerosol optical depth (AOD) over China from the 12 models that participated in Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP), by using ground-based measurements and satellite remote sensing. Ground-based measurements of aerosol concentrations used in this work include those from the China Meteorological Administration (CMA) Atmosphere Watch Network (CAWNET) and the observed fine-mode aerosol concentrations collected from the literature. The ground-based measurements of AOD in China are taken from the AErosol RObotic NETwork (AERONET), the sites with CIMEL sun photometer operated by Institute of Atmospheric Physics, Chinese Academy of Sciences, and from Chinese Sun Hazemeter Network (CSHNET). We find that the ACCMIP models generally underestimate concentrations of all major aerosol species in China. On an annual mean basis, the multi-model mean concentrations of sulfate, nitrate, ammonium, black carbon, and organic carbon are underestimated by 63%, 73%, 54%, 53%, and 59%, respectively. The multi-model mean AOD values show low biases of 20-40% at studied sites in China. The ACCMIP models can reproduce seasonal variation of nitrate but cannot capture well the seasonal variations of other aerosol species. Our analyses indicate that current global models generally underestimate the role of aerosols in China in climate simulations.

  9. Multidirectional visible and shortwave infrared polarimeter for atmospheric aerosol and cloud observation: OSIRIS (Observing System Including PolaRisation in the Solar Infrared Spectrum)

    NASA Astrophysics Data System (ADS)

    Auriol, F.; Léon, J.-F.; Balois, J.-Y.; Verwaerde, C.; François, P.; Riedi, J.; Parol, F.; Waquet, F.; Tanré, D.; Goloub, P.

    2008-12-01

    The aim of this project is to improve the characterization of radiative and microphysical properties of aerosols and clouds in the atmosphere. These two atmospheric components and their interactions are among the main sources of uncertainty in the numerical forecast of climate change. In this context, we have designed a new airborne polarimeter for measuring directional, total and polarized radiances in the 440 to 2200 nm spectral range. This instrument is based on the POLDER concept, instrument that is currently aboard the PARASOL microsatellite. This new sensor consists in two optical systems for the visible to near infrared range (440 to 940 nm) and the shortwave infrared (940 to 2200 nm). Each optical system is composed of a wide field-of-view optics (114° and 105° respectively) associated to two rotating wheels for interferential filters and analysers respectively, and a 2D array of detectors. For each channel, the total and polarized radiances are computed using the measurements performed with the three analysers shifted by an angle of 60°. Thanks to the large field of view of the optics, any target is seen under several viewing angles during the aircraft motion. This type of instrument has been designed for the retrieval of optical thickness and microphysical properties of aerosols as well as for the determination of microphysical, macrophysical and radiative properties of clouds. In this paper, we will present this new instrument design and some preliminary results recently obtained during the first field campaign in May 2008 over Europe.

  10. Impact of dimethylsulfide chemistry on sulfate over the Northern Hemisphere

    EPA Science Inventory

    Sulfate aerosol forms from the gas- and aqueous-phase oxidation of sulfur dioxide and is an important component of atmospheric aerosols. Dimethylsulfide (DMS) present in sea-water can be emitted into the atmosphere which can then react with atmospheric oxidants to produce sulfur ...

  11. Using the Aerosol Single Scattering Albedo and Angstrom Exponent from AERONET to Determine Aerosol Origins and Mixing States over the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Slutsker, I.; Smirnov, A.; Schafer, J. S.; Dickerson, R. R.; Thompson, A. M.; Tripathi, S. N.; Singh, R. P.; Ghauri, B.

    2012-12-01

    Aerosol mixtures—whether dominated by dust, carbon, sulfates, nitrates, sea salt, or mixtures of them—complicate the retrieval of remotely sensed aerosol properties from satellites and possibly increase the uncertainty of the aerosol radiative impact on climate. Major aerosol source regions in South Asia include the Thar Desert as well as agricultural lands, Himalayan foothills, and large urban centers in and near the Indo-Gangetic Plain (IGP). Over India and Pakistan, seasonal changes in meteorology, including the monsoon (June-September), significantly affect the transport, lifetime, and type of aerosols. Strong monsoonal winds can promote long range transport of dust resulting in mixtures of dust and carbonaceous aerosols, while more stagnant synoptic conditions (e.g., November-January) can prolong the occurrence of urban/industrial pollution, biomass burning smoke, or mixtures of them over the IGP. Aerosol Robotic Network (AERONET) Sun/sky radiometer data are analyzed to show the aerosol optical depth (AOD) seasonality and aerosol dominant mixing states. The Single Scattering Albedo (SSA) and extinction Angstrom exponent (EAE) relationship has been shown to provide sound clustering of dominant aerosol types using long term AERONET site data near known source regions [Giles et al., 2012]. In this study, aerosol type partitioning using the SSA (440 nm) and EAE (440-870 nm) relationship is further developed to quantify the occurrence of Dust, Mixed (e.g., dust and carbonaceous aerosols), Urban/Industrial (U/I) pollution, and Biomass Burning (BB) smoke. Based on EAE thresholds derived from the cluster analysis (for AOD440nm>0.4), preliminary results (2001-2010) for Kanpur, India, show the overall contributions of each dominant particle type (rounded to the nearest 10%): 10% for Dust (EAE≤0.25), 60% for Mixed (0.251.25). In the IGP, BB aerosols may have varying sizes (e.g., corresponding to 1.2

  12. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Han, X.; Liu, X.

    2011-12-01

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W/m2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W/m2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan.

  13. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Han, Zhiwei; Xin, Jinyuan; Liu, Xiaohong

    2011-11-01

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W m -2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W m -2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan

  14. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    SciTech Connect

    Han, Xiao; Zhang, Meigen; Han, Zhiewi; Xin, Jin-Yuan; Liu, Xiaohong

    2011-11-14

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W m-2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W m-2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan

  15. Optical extinction of highly porous aerosol following atmospheric freeze drying

    NASA Astrophysics Data System (ADS)

    Adler, Gabriela; Haspel, Carynelisa; Moise, Tamar; Rudich, Yinon

    2014-06-01

    Porous glassy particles are a potentially significant but unexplored component of atmospheric aerosol that can form by aerosol processing through the ice phase of high convective clouds. The optical properties of porous glassy aerosols formed from a freeze-dry cycle simulating freezing and sublimation of ice particles were measured using a cavity ring down aerosol spectrometer (CRD-AS) at 532 nm and 355 nm wavelength. The measured extinction efficiency was significantly reduced for porous organic and mixed organic-ammonium sulfate particles as compared to the extinction efficiency of the homogeneous aerosol of the same composition prior to the freeze-drying process. A number of theoretical approaches for modeling the optical extinction of porous aerosols were explored. These include effective medium approximations, extended effective medium approximations, multilayer concentric sphere models, Rayleigh-Debye-Gans theory, and the discrete dipole approximation. Though such approaches are commonly used to describe porous particles in astrophysical and atmospheric contexts, in the current study, these approaches predicted an even lower extinction than the measured one. Rather, the best representation of the measured extinction was obtained with an effective refractive index retrieved from a fit to Mie scattering theory assuming spherical particles with a fixed void content. The single-scattering albedo of the porous glassy aerosols was derived using this effective refractive index and was found to be lower than that of the corresponding homogeneous aerosol, indicating stronger relative absorption at the wavelengths measured. The reduced extinction and increased absorption may be of significance in assessing direct, indirect, and semidirect forcing in regions where porous aerosols are expected to be prevalent.

  16. Multiple stable oxygen isotopic studies of atmospheric sulfate: A new quantitative way to understand sulfate formation processes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Charles Chi-Woo

    2000-11-01

    Sulfate is an important trace species in the Earth's atmosphere because of its roles in numerous atmospheric processes. In addition to its inherent light-scattering properties, sulfate can serve as cloud condensation nucleus (CCN), affecting cloud formation as well as microphysical properties of clouds. Consequently, atmospheric sulfate species influence the global radiative energy balance. Sulfate is known to increase acidity of rainwater with negative consequences in both natural and urban environments. In addition, aerosol sulfate (<=2.5 μm) is respirable and poses a threat to human health as a potential carrier of toxic pollutants through the respiratory tract. Despite intense investigative effort, uncertainty regarding the relative significance of gas and aqueous phase oxidation pathways still remains. Acquisition of such information is important because the lifetime and transport of S(IV) species and sulfate aerosols are influenced by the oxidative pathways. In addition, sulfate formation processes affect the aerosol size distribution, which ultimately influences radiative properties of atmospheric aerosols. Therefore, the budgetary information of the sulfur cycle, as well as the radiative effects of sulfate on global climate variation, can be attained from better quantitative understanding of in situ sulfate formation processes in the atmosphere. Multiple stable oxygen isotopic studies of atmospheric sulfate are presented as a new tool to better comprehend the atmospheric sulfate formation processes. Coupled with isotopic studies, 35S radioactivity measurements have been utilized to assess contribution of sulfate from high altitude air masses. Atmospheric sulfate (aerosols and rainwater) samples have been collected from diverse environments. Laboratory experiments of gas and aqueous phase S(IV) oxidation by various oxidants, as well as biomass burning experiments, have also been conducted. The main isotopic results from these studies are as follows: (1

  17. Protein sulfation analysis--A primer.

    PubMed

    Monigatti, Flavio; Hekking, Brian; Steen, Hanno

    2006-12-01

    The aim of this review is to present an overview of protein sulfation in the context of 'modificomics', i.e. post-translational modification-specific proteome research. In addition to a short introduction to the biology of protein sulfation (part 1), we will provide detailed discussion regarding (i) methods and tools for prediction of protein tyrosine sulfation sites (part 2), (ii) biochemical techniques used for protein sulfation analysis (part 3.1), and (iii) mass spectrometric strategies and methods applied to protein sulfation analysis (part 3.2). We will highlight strengths and limitations of different strategies and approaches (including references), providing a primer for newcomers to protein sulfation analysis.

  18. Climate forcing by anthropogenic aerosols.

    PubMed

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  19. Climate Forcing by Anthropogenic Aerosols

    NASA Astrophysics Data System (ADS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  20. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  1. Hydrazine/Hydrazine sulfate

    Integrated Risk Information System (IRIS)

    Hydrazine / Hydrazine sulfate ; CASRN 302 - 01 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non

  2. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  3. Organic Aerosols as Cloud Condensation Nuclei

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.

    2002-05-01

    The large organic component of the atmospheric aerosol contributes to both natural and anthropogenic cloud condensation nuclei (CCN). Moreover, some organic substances may reduce droplet surface tension (Facchini et al. 1999), while others may be partially soluble (Laaksonen et al. 1998), and others may inhibit water condensation. The interaction of organics with water need to be understood in order to better understand the indirect aerosol effect. Therefore, laboratory CCN spectral measurements of organic aerosols are presented. These are measurements of the critical supersaturation (Sc), the supersaturation needed to produce an activated cloud droplet, as a function of the size of the organic particles. Substances include sodium lauryl (dodecyl) sulfate, oxalic, adipic, pinonic, hexadecanedioic, glutaric, stearic, succinic, phthalic, and benzoic acids. These size-Sc relationships are compared with theoretical and measured size-Sc relationships of common inorganic compounds (e.g., NaCl, KI, ammonium and calcium sulfate). Unlike most inorganics some organics display variations in solubility per unit mass as a function of particle size. Those showing relatively greater solubility at smaller sizes may be attributable to surface tension reduction, which is greater for less water dilution, as is the case for smaller particles, which are less diluted at the critical sizes. This was the case for sodium dodecyl sulfate, which does reduce surface tension. Relatively greater solubility for larger particles may be caused by greater dissolution at the higher dilutions that occur with larger particles; this is partial solubility. Measurements are also presented of internal mixtures of various organic and inorganic substances. These measurements were done with two CCN spectrometers (Hudson 1989) operating simultaneously. These two instruments usually displayed similar results in spite of the fact that they have different flow rates and supersaturation profiles. The degree of

  4. Model analysis of influences of aerosol mixing state upon its optical properties in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Zhu, Lingyun; Xu, Liren

    2013-07-01

    The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach ±5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.

  5. Optical properties and radiative forcing of urban aerosols in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Zhuang, B. L.; Wang, T. J.; Li, S.; Liu, J.; Talbot, R.; Mao, H. T.; Yang, X. Q.; Fu, C. B.; Yin, C. Q.; Zhu, J. L.; Che, H. Z.; Zhang, X. Y.

    2014-02-01

    Continuous measurements of atmospheric aerosols were made in Nanjing, a megacity in China, from 18 January to 18 April, 2011 (Phase 1) and from 22 April 2011 to 21 April 2012 (Phase 2). Aerosol characteristics, optical properties, and direct radiative forcing (DRF) were studied through interpretations of these measurements. We found that during Phase 1, mean PM2.5, black carbon (BC), and aerosol scattering coefficient (Bsp) in Nanjing were 76.1 ± 59.3 μg m-3, 4.1 ± 2.2 μg m-3, and 170.9 ± 105.8 M m-1, respectively. High pollution episodes occurred during Spring and Lantern Festivals when hourly PM2.5 concentrations reached 440 μg m-3, possibly due to significant discharge of fireworks. Temporal variations of PM2.5, BC, and Bsp were similar to each other. It is estimated that inorganic scattering aerosols account for about 49 ± 8.6% of total aerosols while BC only accounted for 6.6 ± 2.9%, and nitrate was larger than sulfate. In Phase 2, optical properties of aerosols show great seasonality. High relative humidity (RH) in summer (June, July, August) likely attributed to large optical depth (AOD) and small Angstrom exponent (AE) of aerosols. Due to dust storms, AE of total aerosols was the smallest in spring (March, April, May). Annual mean 550-nm AOD and 675/440-nm AE were 0.6 ± 0.3 and 1.25 ± 0.29 for total aerosols, 0.04 ± 0.02 and 1.44 ± 0.50 for absorbing aerosols, 0.48 ± 0.29 and 1.64 ± 0.29 for fine aerosols, respectively. Annual single scattering albedo of aerosols ranged from 0.90 to 0.92. Real time wavelength-dependent surface albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to assess aerosol DRFs. Both total and absorbing aerosol DRFs had significant seasonal variations in Nanjing and they were the strongest in summer. Annual mean clear sky TOA DRF (including daytime and nighttime) of total and absorbing aerosols was about -6.9 and +4.5 W m-2, respectively. Aerosol DRFs were found to be sensitive to surface

  6. Solar geoengineering using solid aerosol in the stratosphere

    NASA Astrophysics Data System (ADS)

    Weisenstein, D. K.; Keith, D. W.

    2015-04-01

    Solid aerosol particles have long been proposed as an alternative to sulfate aerosols for solar geoengineering. Any solid aerosol introduced into the stratosphere would be subject to coagulation with itself, producing fractal aggregates, and with the natural sulfate aerosol, producing liquid-coated solids. Solid aerosols that are coated with sulfate and/or have formed aggregates may have very different scattering properties and chemical behavior than do uncoated non-aggregated monomers. We use a two-dimensional chemical transport model to capture the dynamics of interacting solid and liquid aerosols in the stratosphere. As an example, we apply the model to the possible use of alumina and diamond particles for solar geoengineering. For 240 nm radius alumina particles, for example, an injection rate of 4 Mt yr-1 produces a global-average radiative forcing of 1.3 W m-2 and minimal self-coagulation of alumina yet almost all alumina outside the tropics is coated with sulfate. For the same radiative forcing, these solid aerosols can produce less ozone loss, less stratospheric heating, and less forward scattering than do sulfate aerosols. Our results suggest that appropriately sized alumina, diamond or similar high-index particles may have less severe technology-specific risks than do sulfate aerosols. These results, particularly the ozone response, are subject to large uncertainties due the limited data on the rate constants of reactions on the dry surfaces.

  7. The Influence of Tropical Air-Sea Interaction on the Climate Impact of Aerosols: A Hierarchical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Hsieh, W. C.; Saravanan, R.; Chang, P.; Mahajan, S.

    2014-12-01

    In this study, we use a hierarchical modeling approach to investigate the influence of tropical air-sea feedbacks on climate impacts of aerosols in the Community Earth System Model (CESM). We construct four different models by coupling the atmospheric component of CESM, the Community Atmospheric Model (CAM), to four different ocean models: (i) the Data Ocean Model (DOM; prescribed SST), (i) Slab Ocean Model (SOM; thermodynamic coupling), (iii) Reduced Gravity Ocean Model (RGOM; dynamic coupling), and (iv) the Parallel Ocean Program (POP; full ocean model). These four models represent progressively increasing degree of coupling between the atmosphere and the ocean. The RGOM model, in particular, is tuned to produce a good simulation of ENSO and the associated tropical air-sea interaction, without being impacted by the climate drifts exhibited by fully-coupled GCMs. For each method of coupling, a pair of numerical experiments, including present day (year 2000) and preindustrial (year 1850) sulfate aerosol loading, were carried out. Our results indicate that the inclusion of air-sea interaction has large impacts on the spatial structure of the climate response induced by aerosols. In response to sulfate aerosol forcing, ITCZ shifts southwards as a result of the anomalous clockwise MMC change which transports moisture southwardly across the Equator. We present analyses of the regional response to sulfate aerosol forcing in the equatorial Pacific as well as the zonally-averaged response. The decomposition of the change in the net surface energy flux shows the most dominant terms are net shortwave radiative flux at the surface and latent heat flux. Further analyses show all ocean model simulations simulate a positive change of northward atmospheric energy transport across the Equator in response to the perturbed radiative sulfate forcing. This positive northward atmospheric energy transport change plays a role in compensating partially cooling caused by sulfate aerosols.

  8. Aerosol Size Distribution, Composition, and Hygroscopicity Measurements During CSTRIPE Using an Aerosol Mass Spectrometer and a Dual Differential Mobility Analyzer

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Varutbangkul, V.; Conant, W. C.; Flagan, R. C.; Seinfeld, J. H.; Buzorius, G.; Jonsson, H. H.

    2003-12-01

    During July 2003, the CIRPAS Twin Otter aircraft was deployed in the CSTRIPE (Coastal STRatocumulus Imposed Perturbation Experiment) field experiment in order to quantify the effects of aerosols on the microphysics and dynamics of marine stratocumulus clouds. In order to characterize the effects of different aerosol types on stratocumulus clouds, various air masses were sampled, including local fire plumes, pollution over the San Joaquin valley, unperturbed marine stratocumulus clouds, and stratocumulus clouds perturbed by seeding flares. Some research flights were also dedicated to characterize the seeding flares in the clear sky. Measurements of aerosol mass distribution and composition, using an Aerodyne Aerosol Mass Spectrometer (AMS), and size distribution and hygroscopic behavior, using a Dual Differential Mobility Analyzer (Dual DMA) with one column at dry conditions and another at a relative humidity of approximately 70 percent, will be presented here. During a number of in-cloud sampling periods, the Counter-flow Virtual Impactor (CVI) was used to select and dry cloud droplets, which were then analyzed by the AMS and the Dual DMA. The AMS composition measurements showed that sulfate and organics comprised most of the mass of the non-refractory components of the aerosol. The DMA showed a mixture of unimodal and bimodal size distributions in most types of air masses. The air mass over the San Joaquin valley, however, showed strong evidence of freshly nucleated particles, with aerosol number concentrations often above 80,000 cm-3.

  9. Extraterrestrial matter and atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.; Cziczo, D. J.; Cziczo, D. J.; Thomson, D. S.; Thomson, D. S.

    2001-12-01

    In situ measurements of the composition of stratospheric aerosols detected Fe, Mg, Na, K, Ca, Ni, and other meteoritic material in a large number of particles. These particles include ablated meteoric material that has recondensed, descended from the upper atmosphere, and combined with the sulfate in the stratosphere. Along with laboratory calibrations and a knowledge of the stratospheric sulfur budget, these measurements allow estimates of the flux of extraterrestrial material reaching the present-day earth. The stratospheric particles are depleted in the more refractory elements, suggesting that some of the incoming material is not ablated. Consideration of the much larger flux of meteors in the earth's early history suggests that ablated meteoric material could have altered the properties of the early atmosphere in ways that might be relevant to the origin of life.

  10. Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer

    PubMed Central

    Yu, Pengfei; Toon, Owen B; Neely, Ryan R; Martinsson, Bengt G; Brenninkmeijer, Carl A M

    2015-01-01

    Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that the ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. The model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations. Key Points The Asian Tropopause Aerosol Layer is composed of sulfate, primary organics, and secondary organics The North American Tropospheric Aerosol Layer is mostly composed of sulfate and secondary organics Aerosol Optical Depth of Asian Tropopause Aerosol Layer increases by 0.002 from 2000 to 2010 PMID:26709320

  11. Comparisons of Aerosol Type Derived from the CALIPSO Level 2 Feature Mask and GEOS-5

    NASA Astrophysics Data System (ADS)

    Welton, E. J.; Colarco, P. R.; Dasilva, A. M.

    2008-12-01

    A-train sensors such as MODIS, MISR, and CALIPSO are used to determine aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important for climate assessment, air quality applications, and for comparisons and analysis with aerosol transport models. The Aerosols-Clouds-Ecosystems (ACE) satellite mission proposed in the NRC Decadal Survey describes a next generation aerosol and cloud suite similar to the current A-train, including a lidar. The future ACE lidar must be able to determine aerosol type effectively in conjunction with modeling activities to achieve ACE objectives. Here we examine the current capabilities of CALIPSO and the NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-5), to place future ACE needs in context. The CALIPSO level 2 feature mask includes vertical profiles of aerosol layers classified by type. GEOS-5 provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures and extinction profiles along the CALIPSO orbit track. In previous work, initial comparisons between GEOS-5 derived aerosol mixtures and CALIPSO derived aerosol types were presented for July 2007. In general, the results showed that model and lidar derived aerosol types did not agree well in the boundary layer. Agreement was poor over Europe, where CALIPSO indicated the presence of dust and pollution mixtures yet GEOS-5 was dominated by pollution with little dust. Over the ocean in the tropics, the model appeared to contain less sea salt than detected by CALIPSO, yet at high latitudes the situation was reserved. Agreement between CALIPSO and GEOS-5 aerosol types improved above the boundary layer, primarily in dust and smoke dominated regions. At higher altitudes (> 5 km), the model contained aerosol layers not detected

  12. Microanalysis of the aerosol collected over south-central New Mexico during the alive field experiment, May-December 1989

    NASA Astrophysics Data System (ADS)

    Sheridan, Patrick J.; Schnell, Russel C.; Kahl, Jonathan D.; Boatman, Joe F.; Garvey, Dennis M.

    Thirty-eight size-segregated aerosol samples were collected in the lower troposphere over the high desert of south-central New Mexico, using cascade impactors mounted onboard two research aircraft. Four of these samples were collected in early May, sixteen in mid-July, and the remaining ones in December 1989, during three segments of the ALIVE field initiative. Analytical electron microscope analyses of aerosol deposits and individual particles from these samples were performed to physically and chemically characterize the major particulate species present in the aerosol. Air-mass trajectories arriving at the sampling area in the May program were quite different from those calculated for the July period. In general, the May trajectories showed strong westerly winds, while the July winds were weaker and southerly, consistently passing over or very near the border cities of El Paso, Texas, and Ciudad Juarez, Mexico. Aerosol samples collected during the May period were predominantly fine (0.1-0.5 μm dia.), liquid H 2SO 4 droplets. Samples from the July experiment were comprised mostly of fine, solid (NH 4) 2SO 4 or mostly neutralized sulfate particles. In both sampling periods, numerous other particle classes were observed, including many types with probable terrestrial or anthropogenic sources. The numbers of these particles, however, were small when compared with the sulfates. Composite particle types, including sulfate/crustal and sulfate/carbonaceous, were also found to be present. The major differences in aerosol composition between the May and July samples (i.e. the extensive neutralization of sulfates in the July samples) can be explained by considering the different aerosol transport pathways and the proximity of the July aerosol to the El Paso/Juarez urban plume. Winds during the December experiment were quite variable, and may have contributed to the widely varying aerosol compositions observed in these samples. When the aircraft sampled the El Paso

  13. Addition of Tropospheric Chemistry and Aerosols to the NCAR Community Climate System Model

    SciTech Connect

    Cameron-Smith, P; Lamarque, J; Connell, P; Chuang, C; Rotman, D; Taylor, J

    2005-11-14

    Atmospheric chemistry and aerosols have several important roles in climate change. They affect the Earth's radiative balance directly: cooling the earth by scattering sunlight (aerosols) and warming the Earth by trapping the Earth's thermal radiation (methane, ozone, nitrous oxide, and CFCs are greenhouse gases). Atmospheric chemistry and aerosols also impact many other parts of the climate system: modifying cloud properties (aerosols can be cloud condensation nuclei), fertilizing the biosphere (nitrogen species and soil dust), and damaging the biosphere (acid rain and ozone damage). In order to understand and quantify the effects of atmospheric chemistry and aerosols on the climate and the biosphere in the future, it is necessary to incorporate atmospheric chemistry and aerosols into state-of-the-art climate system models. We have taken several important strides down that path. Working with the latest NCAR Community Climate System Model (CCSM), we have incorporated a state-of-the-art atmospheric chemistry model to simulate tropospheric ozone. Ozone is not just a greenhouse gas, it damages biological systems including lungs, tires, and crops. Ozone chemistry is also central to the oxidizing power of the atmosphere, which destroys a lot of pollutants in the atmosphere (which is a good thing). We have also implemented a fast chemical mechanism that has high fidelity with the full mechanism, for significantly reduced computational cost (to facilitate millennium scale simulations). Sulfate aerosols have a strong effect on climate by reflecting sunlight and modifying cloud properties. So in order to simulate the sulfur cycle more fully in CCSM simulations, we have linked the formation of sulfate aerosols to the oxidizing power of the atmosphere calculated by the ozone mechanisms, and to dimethyl sulfide emissions from the ocean ecosystem in the model. Since the impact of sulfate aerosols depends on the relative abundance of other aerosols in the atmosphere, we also

  14. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-01

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud-aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is anticipated

  15. Characterization and source apportionment of aerosol light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Zhang, Yu-fen; Feng, Yin-chang; Zheng, Xian-jue; Jiao, Li; Hong, Sheng-mao; Shen, Jian-dong; Zhu, Tan; Ding, Jing; Zhang, Qi

    2016-09-01

    To investigate the characteristics and sources of aerosol light extinction in the Yangtze River Delta of China, a campaign was carried out in Hangzhou from December 2013 to November 2014. Hourly data for air pollutants including PM2.5, SO2, NO2, O3 and CO, and aerosol optical properties including aerosol scattering coefficient and aerosol absorbing coefficient was obtained in the environmental air quality automatic monitoring station. Meteorological parameters were measured synchronously in the automated meteorology monitoring station. Additionally, around seven sets of ambient PM2.5 samples per month were collected and analyzed during the campaign. The annual mean aerosol scattering coefficient, aerosol absorbing coefficient and aerosol single scattering albedo measured in this study was 514 ± 284 Mm- 1, 35 ± 20 Mm- 1 and 94% respectively. The aerosol extinction coefficient reconstructed using the modified IMPROVE (Interagency Monitoring of Protected Visual Environment) formula was compared to the measured extinction coefficient. Better correlations could be found between the measured and reconstructed extinction coefficient when RH was under 90%. A coupled model of CMB (chemical mass balance) and modified IMPROVE was used to apportion the sources of aerosol light extinction in Hangzhou. Vehicle exhaust, secondary nitrate and secondary sulfate were identified as the most significant sources for aerosol light extinction, accounted for 30.2%, 24.1% and 15.8% respectively.

  16. Long-range transport of anthropogenic aerosols to the National Oceanic and Atmospheric Administration baseline station at Mauna Loa Observatory, Hawaii

    NASA Astrophysics Data System (ADS)

    Perry, Kevin D.; Cahill, Thomas A.; Schnell, Russell C.; Harris, Joyce M.

    1999-08-01

    Size-segregated measurements of aerosol mass and composition are used to determine the composition and seasonal variations of natural and anthropogenic aerosols at Mauna Loa Observatory (MLO) from 1993 through 1996. Although the springtime transport of Asian dust to MLO is a well-documented phenomenon, this study shows that fine anthropogenic aerosols, including sulfur, black carbon, and enriched trace metals such as As, Cu, Pb, and Zn, are also routinely transported to MLO each spring. It is estimated that at least one third of the sulfate measured at MLO during the spring is anthropogenic. In addition, indirect measurements indicate that the organic aerosol concentrations are often comparable to the sulfate concentrations. This study also combines size- and time-resolved aerosol composition measurements with isentropic, backward air-mass trajectories and gas measurements of 222Rn, CH4, CO, and CO2 to identify some potential source regions of the anthropogenic aerosols. Three types of long-range transport episodes are identified: (1) anthropogenic aerosols mixed with Asian dust, (2) Asian pollution with relatively small amounts of soil dust, and (3) biomass burning emissions from North America. This study shows that anthropogenic aerosols and gases can be efficiently transported to MLO from both Asia and North America during the spring.

  17. Heparin cofactor II is degraded by heparan sulfate and dextran sulfate.

    PubMed

    Saito, Akio

    2015-02-20

    Heparan sulfate normally binds to heparin cofactor II and modulates the coagulation pathway by inhibiting thrombin. However, when human heparin cofactor II was incubated with heparan sulfate, heparin cofactor II became degraded. Other glycosaminoglycans were tested, including hyaluronic acid, chondroitin sulfates, dermatan sulfate, and heparin, but only dextran sulfate also degraded heparin cofactor II. Pretreatment of heparan sulfate with heparinase reduced its heparin cofactor II-degrading activity. Heparan sulfate and dextran sulfate diminished the thrombin inhibitory activity of heparin cofactor II. Other serpins, including antithrombin III and pigment epithelium-derived factor, were also degraded by heparan sulfate. This is the first evidence of acidic polysaccharides exhibiting protein-degrading activity without the aid of other proteins.

  18. Chemical characterizations of soluble aerosols in southern China.

    PubMed

    Wu, Dui; Tie, Xuexi; Deng, Xuejiao

    2006-07-01

    Soluble aerosols are measured at Guangdong and Hainan Provinces of southern China. The measured chemical composition of aerosols includes F-, Cl-, NO3-, SO4=, Na+, NH4+, K+, Ca2+, and Mg2+. The locations of measurements include a mega city (Guangzhou), a medium city along the coastline (Haiko), a small city along the coastline (Shanya), and a remote island site in the South China Sea (Yongxing island). The results reveal that aerosols in this region are complex and heterogeneous. Sulfate aerosol (SO4=) has the highest concentrations in Guangzhou (approximately 41% of total soluble aerosol mass), suggesting that anthropogenic activities (e.g., coal burning) play important roles in controlling aerosol concentrations in Guangzhou. By contrast, the concentrations of chlorine (Cl-) and sodium (Na+) are higher in Yongxing than in Guangzhou, indicating that the sea salt is the dominant aerosol in this marine environment site. In the medium (Haiko) and small (Shanya) city sites, the effects of anthropogenic and marine activities on aerosols fall in between the values in the mega city and the remote island site. The measured ratio of Cl-/Na+ shows that the ratio is less than 1.16 in all observation sites. The ratio in the Guangzhou city, the Haiko city, the Shanya city, and the Yongxing island is 0.52, 0.91, 0.24, and 0.53, respectively, indicating that significantly heterogeneous chemical reactions occur on sea salt particles. Unlike those in Europe and North America, there are high concentrations of calcium (Ca+) in all observation sites. The percentage of calcium mass to the measured total soluble aerosols mass is 21, 32, 34, and 30 at Guangzhou, Haiko, Sanya, and Yongxing, respectively. The calculations show that calcium plays an important role in neutralizing aerosols. The calculated "cation/anion" (summation operator[ion+]/summation operator[ion-]) ratio is 2.5, 2.5, 3.2, and 2.1, at Guangzhou, Haiko, Shanya, and Yongxing, respectively. The high "cation/anion" ratios

  19. Characterizing the Spatial and Temporal Distribution of Aerosol Optical Thickness Over the Atlantic Basin Utilizing GOES-8 Multispectral Data

    NASA Technical Reports Server (NTRS)

    Fox, Robert; Prins, Elaine Mae; Feltz, Joleen M.

    2001-01-01

    In recent years, modeling and analysis efforts have suggested that the direct and indirect radiative effects of both anthropogenic and natural aerosols play a major role in the radiative balance of the earth and are an important factor in climate change calculations. The direct effects of aerosols on radiation and indirect effects on cloud properties are not well understood at this time. In order to improve the characterization of aerosols within climate models it is important to accurately parameterize aerosol forcing mechanisms at the local, regional, and global scales. This includes gaining information on the spatial and temporal distribution of aerosols, transport regimes and mechanisms, aerosol optical thickness, and size distributions. Although there is an expanding global network of ground measurements of aerosol optical thickness and size distribution at specific locations, satellite data must be utilized to characterize the spatial and temporal extent of aerosols and transport regimes on regional and global scales. This study was part of a collaborative effort to characterize aerosol radiative forcing over the Atlantic basin associated with the following three major aerosol components in this region: urban/sulfate, Saharan dust, and biomass burning. In-situ ground measurements obtained by a network of sun photometers during the Smoke Clouds and Radiation Experiment in Brazil (SCAR-B) and the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) were utilized to develop, calibrate, and validate a Geostationary Operational Environmental Satellite (GOES)-8 aerosol optical thickness (AOT) product. Regional implementation of the GOES-8 AOT product was used to augment point source measurements to gain a better understanding of the spatial and temporal distributions of Atlantic basin aerosols during SCAR-B and TARFOX.

  20. MIRAGE: Model Description and Evaluation of Aerosols and Trace Gases

    SciTech Connect

    Easter, Richard C.; Ghan, Steven J.; Zhang, Yang; Saylor, Rick D.; Chapman, Elaine G.; Laulainen, Nels S.; Abdul-Razzak, Hayder; Leung, Lai-Yung R.; Bian, Xindi; Zaveri, Rahul A.

    2004-10-27

    The MIRAGE (Model for Integrated Research on Atmospheric Global Exchanges) modeling system, designed to study the impacts of anthropogenic aerosols on the global environment, is described. MIRAGE consists of a chemical transport model coupled on line with a global climate model. The chemical transport model simulates trace gases, aerosol number, and aerosol chemical component mass [sulfate, MSA, organic matter, black carbon (BC), sea salt, mineral dust] for four aerosol modes (Aitken, accumulation, coarse sea salt, coarse mineral dust) using the modal aerosol dynamics approach. Cloud-phase and interstitial aerosol are predicted separately. The climate model, based on the CCM2, has physically-based treatments of aerosol direct and indirect forcing. Stratiform cloud water and droplet number are simulated using a bulk microphysics parameterization that includes aerosol activation. Aerosol and trace gas species simulated by MIRAGE are presented and evaluated using surface and aircraft measurements. Surface-level SO2 in N. American and European source regions is higher than observed. SO2 above the boundary layer is in better agreement with observations, and surface-level SO2 at marine locations is somewhat lower than observed. Comparison with other models suggests insufficient SO2 dry deposition; increasing the deposition velocity improves simulated SO2. Surface-level sulfate in N. American and European source regions is in good agreement with observations, although the seasonal cycle in Europe is stronger than observed. Surface-level sulfate at high-latitude and marine locations, and sulfate above the boundary layer, are higher than observed. This is attributed primarily to insufficient wet removal; increasing the wet removal improves simulated sulfate at remote locations and aloft. Because of the high sulfate bias, radiative forcing estimates for anthropogenic sulfur in Ghan et al. [2001c] are probably too high. Surface-level DMS is {approx}40% higher than observed

  1. Direct Observations of the Composition of Sub-20 Nanometer Ambient Aerosol

    NASA Astrophysics Data System (ADS)

    Moore, K. F.; Smith, J. N.; Eisele, F. L.; McMurry, P. H.

    2002-12-01

    Understanding new particle formation in the atmosphere depends upon many factors including detailed knowledge of their chemical composition. The chemical composition of sub-20 nanometer ambient aerosol particles, however, is typically inferred from observations of the aerosol behavior when subjected to varying conditions during sampling. Direct observations of aerosol chemical composition are usually limited to or dominated by larger particles of higher mass. Recently a new instrument has been developed - the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) - which can directly measure the chemical composition of sub-20 nanometer aerosol particles. Briefly, the front end of the TDCIMS functions as an electrostatic precipitator using a strong electric field to collect charged aerosol particles onto a sample wire. After volatilization by heating, the component species of the collected particles are subjected to chemical ionization prior to introduction into the mass spectrometer for analysis. Detection limits on the order of picograms permit sample collection periods as small as five minutes for ambient aerosol concentrations providing near "real-time" resolution. For selected periods from April through June 2002, we used the TDCIMS to measure the chemical composition of ambient aerosol for the first time. We investigated both the positive and negative ion spectrums produced by sub-20 nanometer ambient aerosol particles at the National Center for Atmospheric Research in Boulder, Colorado. Principal species identified include ammonium, sulfate and nitrate although additional peaks consistent with particle-phase origin were readily observed. Diurnal concentration profiles appear to be present and the relative proportion of sulfate and nitrate to each other can vary appreciably over several hours and between days. Validation of the TDCIMS' performance and the interpretation of its results will also be discussed.

  2. A comprehensive climatology of Arctic aerosol properties on the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Creamean, Jessie; de Boer, Gijs; Shupe, Matthew; McComiskey, Allison

    2016-04-01

    Evaluating aerosol properties has implications for the formation of Arctic clouds, resulting in impacts on cloud lifetime, precipitation processes, and radiative forcing. There are many remaining uncertainties and large discrepancies regarding modeled and observed Arctic aerosol properties, illustrating the need for more detailed observations to improve simulations of Arctic aerosol and more generally, projections of the components of the aerosol-driven processes that impact sea ice loss/gain. In particular, the sources and climatic effects of Arctic aerosol particles are severely understudied. Here, we present a comprehensive, long-term record of aerosol observations from the North Slope of Alaska baseline site at Barrow. These measurements include sub- and supermicron (up to 10 μm) total mass and number concentrations, sub- and supermicron soluble inorganic and organic ion concentrations, submicron metal concentrations, submicron particle size distributions, and sub- and supermicron absorption and scattering properties. Aerosol extinction and number concentration measurements extend back to 1976, while the remaining measurements were implemented since. Corroboration between the chemical, physical, and optical property measurements is evident during periods of overlapping observations, demonstrating the reliability of the measurements. During the Arctic Haze in the winter/spring, high concentrations of long-range transported submicron sea salt, mineral dust, industrial metals, pollution (non-sea salt sulfate, nitrate, ammonium), and biomass burning species are observed concurrent with higher concentrations of particles with sizes that span the submicron range, enhanced absorption and scattering coefficients, and largest Ångström exponents. The summer is characterized by high concentrations of small biogenic aerosols (< 100 nm) and low extinction coefficients. Fall is characterized by clean conditions, with supermicron sea salt representing the dominant aerosol

  3. Sub-Antarctic marine aerosol: dominant contributions from biogenic sources

    NASA Astrophysics Data System (ADS)

    Schmale, J.; Schneider, J.; Nemitz, E.; Tang, Y. S.; Dragosits, U.; Blackall, T. D.; Trathan, P. N.; Phillips, G. J.; Sutton, M.; Braban, C. F.

    2013-09-01

    Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea-salt sulfate, 2% nitrate, 8% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea spray signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acid/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 41%), a sea spray OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (N : C ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea spray aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated

  4. Sub-Antarctic marine aerosol: significant contributions from biogenic sources

    NASA Astrophysics Data System (ADS)

    Schmale, J.; Schneider, J.; Nemitz, E.; Tang, Y. S.; Dragosits, U.; Blackall, T. D.; Trathan, P. N.; Phillips, G. J.; Sutton, M.; Braban, C. F.

    2013-03-01

    Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea salt sulfate 2% nitrate, 7% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea salt signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acids/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 40%), a sea salt OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (C : N ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea salt aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated to sea

  5. Fine Iron Aerosols Are Internally Mixed with Nitrate in the Urban European Atmosphere.

    PubMed

    Dall'Osto, Manuel; Beddows, D C S; Harrison, Roy M; Onat, Burcu

    2016-04-19

    Atmospheric iron aerosol is a bioavailable essential nutrient playing a role in oceanic productivity. Using aerosol time-of-flight mass spectrometry (ATOFMS), the particle size (0.3-1.5 μm), chemical composition and mixing state of Fe-containing particles collected at two European urban sites (London and Barcelona) were characterized. Out of the six particle types accounting for the entire Fe-aerosol population, that arising from long-range transport (LRT) of fine Fe-containing particles (Fe-LRT, 54-82% across the two sites) was predominant. This particle type was found to be internally mixed with nitrate and not with sulfate, and likely mostly associated with urban traffic activities. This is in profound contrast with previous studies carried out in Asia, where the majority of iron-containing particles are mixed with sulfate and are of coal combustion origin. Other minor fine iron aerosol sources included mineral dust (8-11%), traffic brake wear material (1-17%), shipping/oil (1-6%), biomass combustion (4-13%) and vegetative debris (1-3%). Overall, relative to anthropogenic Asian Fe-sulfate dust, anthropogenic European dust internally mixed with additional key nutrients such as nitrate is likely to play a different role in ocean global biogeochemical cycles. PMID:27002272

  6. Lagrangian Displacement Ensembles for Aerosol Data Assimilation (Invited)

    NASA Astrophysics Data System (ADS)

    da Silva, A.; Colarco, P. R.; Govindaraju, R. C.

    2010-12-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely-sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentractions for initializing a prognostic model. This problem is exarcebated in the the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols). An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meterorological fields and realistc emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from innacurate emissions, and the Lagrangian misplacement of plumes induced by errors in the driving meterorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of errors is no longer the main order of business. We will describe and aerosol data assimilation scheme in which the anaysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes explicit sequential bias estimation as in Dee and da Silva (1998). Unlikely existing aerosol data assimiltion schemes we do not obtain analysis increments of the 3D concentrations by scalling the background profiles. Instead, we explore the Langrangian characteristics of the problem for generating local displacement ensembles. These high-resolution, state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity comparable to the forecasting step by the aerosol transport model

  7. Aerosols-Cloud-Microphysics Interactions in Tropical Cyclone Earl

    NASA Astrophysics Data System (ADS)

    Luna-Cruz, Yaitza

    Aerosols-cloud-microphysical processes are largely unknown in their influence on tropical cyclone evolution and intensification; aerosols possess the largest uncertainty. For example: What is the link between aerosols and cloud microphysics quantities? How efficient are the aerosols (i.e. dust from the Saharan Air Layer -SAL) as cloud condensation nuclei (CCN) and ice nuclei (IN)? Does aerosols affect the vertical velocity, precipitation rates, cloud structure and lifetime? What are the dominant factors and in which sectors of the tropical cyclone? To address some of the questions in-situ microphysics measurements from the NASA DC-8 aircraft were obtained during the Genesis and Rapid Intensification Processes (GRIP) 2010 field campaign. A total of four named storms (Earl, Gaston, Karl and Mathew) were sampled. Earl presented the excellent opportunity to study aerosols-cloud-microphysics interactions because Saharan dust was present and it underwent rapid intensification. This thesis seeks to explore hurricane Earl to develop a better understanding of the relationship between the SAL aerosols and cloud microphysics evolution. To assist in the interpretation of the microphysics observations, high resolution numerical simulations of hurricane Earl were performed using the Weather Research and Forecasting (WRF-ARW) model with the new Aerosol-Aware bulk microphysics scheme. This new version of Thompson scheme includes explicit activation of cloud condensation nuclei (CCN) from a major CCN source (i.e. sulfates and sea salt) and explicit ice nucleation (IN) from mineral dust. Three simulations are performed: (1) the Control case with the old Thompson scheme and initial conditions from GFS model, (2) the Aerosol-Aware first baseline case with GOCART aerosol module as an input conditions, and (3) the Aerosol-Aware increase case in which the GOCART aerosols concentrations were increased significantly. Overall, results of model simulations along with aircraft observations

  8. Evolution of Ozone, Particulates, and Aerosol Direct Radiative Forcing in the Vicinity of Houston Using a Fully Coupled Meteorology-Chemistry-Aerosol Model

    SciTech Connect

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg; Peckham, S. E.

    2006-11-11

    A new fully-coupled meteorology-chemistry-aerosol model is used to simulate the urban to regional scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a five day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still under-estimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  9. Regional aerosol properties: Comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS

    NASA Astrophysics Data System (ADS)

    Quinn, Patricia K.; Bates, Timothy S.

    2005-07-01

    Means and variability of aerosol chemical composition and optical properties are compared for the first and second Aerosol Characterization Experiments (ACE 1 and ACE 2), a cruise across the Atlantic (Aerosols99), the Indian Ocean Experiment (INDOEX), the Asian Aerosol Characterization Experiment (ACE Asia), the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX), and the New England Air Quality Study (NEAQS). These experiments were focused either on the remote marine atmosphere (ACE 1) or areas downwind of continental aerosol source regions including western Europe, North America, Africa, India, and Asia. Presented here are size-segregated concentrations of aerosol mass, sea salt, non-sea-salt (nss) SO4=, NH4+, NO3-, dust, organic carbon (OC), elemental carbon (EC), and nss K+, as well as mass ratios that are commonly used to identify aerosol sources and to assess aerosol processing (Cl- to Na+, OC to nss SO4=, EC to total carbon (TC), EC to nss SO4=, nss K+ to EC, Fe to Al, and Si to Al). Optical properties that are compared include size-segregated scattering, backscattering, and absorption coefficients, and single-scattering albedo at 550 nm. Size-segregated mass scattering and mass absorption efficiencies for the total aerosol and mass extinction efficiencies for the dominant chemical components also are compared. In addition, we present the contribution to light extinction by the dominant chemical components for each region. All data are based on shipboard measurements performed at a relative humidity of 55 ± 5%. Scattering coefficients and single-scattering albedos also are reported at ambient relative humidity (RH) using published values of f(RH). Finally, aerosol optical depths from each region are compared. Identical sampling protocols were used in all experiments in order to eliminate sampling biases and to make the data directly comparable. Major findings include (1) nss SO4= makes up only 16 to 46% of the submicron aerosol mass

  10. Chemical characterization and physico-chemical properties of aerosols at Villum Research Station, Greenland during spring 2015

    NASA Astrophysics Data System (ADS)

    Glasius, M.; Iversen, L. S.; Svendsen, S. B.; Hansen, A. M. K.; Nielsen, I. E.; Nøjgaard, J. K.; Zhang, H.; Goldstein, A. H.; Skov, H.; Massling, A.; Bilde, M.

    2015-12-01

    The effects of aerosols on the radiation balance and climate are of special concern in Arctic areas, which have experienced warming at twice the rate of the global average. As future scenarios include increased emissions of air pollution, including sulfate aerosols, from ship traffic and oil exploration in the Arctic, there is an urgent need to obtain the fundamental scientific knowledge to accurately assess the consequences of pollutants to environment and climate. In this work, we studied the chemistry of aerosols at the new Villum Research Station (81°36' N, 16°40' W) in north-east Greenland during the "inauguration campaign" in spring 2015. The chemical composition of sub-micrometer Arctic aerosols was investigated using a Soot Particle Time-of-Flight Aerosol Mass Spectrometer (SP-ToF-AMS). Aerosol samples were also collected on filters using both a high-volume sampler and a low-volume sampler equipped with a denuder for organic gases. Chemical analyses of filter samples include determination of inorganic anions and cations using ion-chromatography, and analysis of carboxylic acids and organosulfates of anthropogenic and biogenic origin using ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Previous studies found that organosulfates constitute a surprisingly high fraction of organic aerosols during the Arctic Haze period in winter and spring. Investigation of organic molecular tracers provides useful information on aerosol sources and atmospheric processes. The physico-chemical properties of Arctic aerosols are also under investigation. These measurements include particle number size distribution, water activity and surface tension of aerosol samples in order to deduct information on their hygroscopicity and cloud-forming potential. The results of this study are relevant to understanding aerosol sources and processes as well as climate effects in the Arctic, especially during the Arctic haze

  11. Asthmatic responses to airborne acid aerosols

    SciTech Connect

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. )

    1991-06-01

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

  12. Developing a stronger understanding of aerosol sources and the impact of aqueous phase processing on coastal air quality

    NASA Astrophysics Data System (ADS)

    Prather, K. A.

    2014-12-01

    Atmospheric aerosols are produced by a variety of sources including emissions from cars and trucks, wildfires, ships, dust, and sea spray and play a significant role in impacting air pollution and regional climate. The ability of an aerosol to uptake water and undergo aqueous phase processing strongly depends on composition. On-line single particle mass spectrometry can provide insight into how particle composition impacts the degree of photochemical and aging processes atmospheric aerosols undergo. In particular, specific sulfur species including sulfate, hydroxymethanesulfate (HMS), and methanesulfonic acid (MSA) can serve as indicators of when an air mass has undergone aqueous phase processing. This presentation will describe recent field studies conducted at coastal sites to demonstrate how different aerosol sources and secondary processing impact coastal air quality.

  13. Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition

    SciTech Connect

    Unger, N.; Menon, S.; Shindell, D. T.; Koch, D. M.

    2009-02-02

    The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, aerosol-cloud interactions (ACI). The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI) to present day (PD) and future impacts from PD to 2050 (for the moderate IPCC A1B scenario) that embrace a wide spectrum of precursor emission changes and consequential ACI. The aerosol indirect effect (AIE) is estimated to be -2.0 Wm{sup -2} for PD-PI and -0.6 Wm{sup -2} for 2050-PD, at the high end of current estimates. Inclusion of ACI substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of ACI leads to 20% enhancements in in-cloud sulfate production and {approx}10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions ({approx}10-30%). Nitric acid wet deposition is dampened by 15-20% across the industrialized regions due to ACI allowing additional re-release of reactive nitrogen that contributes to 1-2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that ACI must be considered in studies of methane trends and projections of future changes to particulate matter air quality.

  14. Summertime nitrate aerosol in the upper troposphere and lower stratosphere over the Tibetan Plateau and the South Asian summer monsoon region

    NASA Astrophysics Data System (ADS)

    Gu, Yixuan; Liao, Hong; Bian, Jianchun

    2016-06-01

    We use the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to examine the contribution of nitrate aerosol to aerosol concentrations in the upper troposphere and lower stratosphere (UTLS) over the Tibetan Plateau and the South Asian summer monsoon (TP/SASM) region during summertime of year 2005. Simulated surface-layer aerosol concentrations are compared with ground-based observations, and simulated aerosols in the UTLS are evaluated by using the Stratospheric Aerosol and Gas Experiment II satellite data. Simulations show elevated aerosol concentrations of sulfate, nitrate, ammonium, black carbon, organic carbon, and PM2.5 (particles with diameter equal to or less than 2.5 µm, defined as the sum of sulfate, nitrate, ammonium, black carbon, and organic carbon aerosols in this study) in the UTLS over the TP/SASM region throughout the summer. Nitrate aerosol is simulated to be of secondary importance near the surface but the most dominant aerosol species in the UTLS over the studied region. Averaged over summertime and over the TP/SASM region, CNIT (the ratio of nitrate concentration to PM2.5 concentration) values are 5-35 % at the surface, 25-50 % at 200 hPa, and could exceed 60 % at 100 hPa. The mechanisms for the accumulation of nitrate in the UTLS over the TP/SASM region include vertical transport and the gas-to-aerosol conversion of HNO3 to form nitrate. The high relative humidity and low temperature associated with the deep convection over the TP/SASM region are favorable for the gas-to-aerosol conversion of HNO3.

  15. New Particle Formation and Secondary Organic Aerosol in Beijing

    NASA Astrophysics Data System (ADS)

    Hu, M.; Yue, D.; Guo, S.; Hu, W.; Huang, X.; He, L.; Wiedensohler, A.; Zheng, J.; Zhang, R.

    2011-12-01

    Air pollution in Beijing has been a major concern due to being a mega-city and green Olympic Games requirements. Both long term and intensive field measurements have been conducted at an Urban Air Quality Monitoring Station in the campus of Peking University since 2004. Aerosol characteristics vary seasonally depending on meteorological conditions and source emissions. Secondary compositions of SNA (sum of sulfate, nitrate, and ammonium) and SOA (secondary organic aerosol) become major fraction of fine particles, which may enhance aerosol impacts on visibility and climate change. The transformation processes of new particle formation (NPF) and secondary organic aerosol have been focused on. It was found that gaseous sulfuric acid, ammonia, and organic compounds are important precursors to NPF events in Beijing and H2SO4-NH3-H2O ternary nucleation is one of the important mechanisms. The contributions of condensation and neutralization of sulfuric acid, coagulation, and organics to the growth of the new particles are estimated as 45%, 34%, and 21%, respectively. Tracer-based method to estimate biogenic and anthropogenic SOA was established by using gas chromatography-mass spectrometry. Secondary organic tracers derived from biogenic (isoprene, α-pinene, β-caryophyllene) and anthropogenic (toluene) contributed 32% at urban site and 35% at rural site, respectively. Other source apportionment techniques were also used to estimate secondary organic aerosols, including EC tracer method, water soluble organic carbon content, chemical mass balance model, and AMS-PMF method.

  16. The boiling point of stratospheric aerosols.

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  17. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  18. Radiative Effects of Carbonaceous and Inorganic Aerosols over California during CalNex and CARES: Observations versus Model Predictions

    NASA Astrophysics Data System (ADS)

    Vinoj, V.; Fast, J. D.; Liu, Y.

    2012-12-01

    Aerosols have been identified to be a major contributor to the uncertainty in understanding the present climate. Most of this uncertainty arises due to the lack of knowledge of their micro-physical and chemical properties as well as how to adequately represent their spatial and temporal distributions. Increased process level understanding can be achieved through carefully designed field campaigns and experiments. These measurements can be used to elucidate the aerosol properties, mixing, transport and transformation within the atmosphere and also to validate and improve models that include meteorology-aerosol-chemistry interactions. In the present study, the WRF-Chem model is used to simulate the evolution of carbonaceous and inorganic aerosols and their impact on radiation during May and June of 2010 over California when two field campaigns took place: the California Nexus Experiment (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES). We merged CalNex and CARES data along with data from operational networks such as, California Air Resources Board (CARB's) air quality monitoring network, the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, the AErosol RObotic NETwork (AERONET), and satellites into a common dataset for the Aerosol Modeling Test bed. The resulting combined dataset is used to rigorously evaluate the model simulation of aerosol mass, size distribution, composition, and optical properties needed to understand uncertainties that could affect regional variations in aerosol radiative forcing. The model reproduced many of the diurnal, multi-day, and spatial variations of aerosols as seen in the measurements. However, regionally the performance varied with reasonably good agreement with observations around Los Angeles and Sacramento and poor agreement with observations in the vicinity of Bakersfield (although predictions aloft were much better). Some aerosol species (sulfate and nitrate) were better represented

  19. Measurements of the HO2 uptake coefficients onto single component organic aerosols.

    PubMed

    Lakey, P S J; George, I J; Whalley, L K; Baeza-Romero, M T; Heard, D E

    2015-04-21

    Measurements of HO2 uptake coefficients (γ) were made onto a variety of organic aerosols derived from glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid, squalene, monoethanol amine sulfate, monomethyl amine sulfate, and two sources of humic acid, for an initial HO2 concentration of 1 × 10(9) molecules cm(-3), room temperature and at atmospheric pressure. Values in the range of γ < 0.004 to γ = 0.008 ± 0.004 were measured for all of the aerosols apart from the aerosols from the two sources of humic acid. For humic acid aerosols, uptake coefficients in the range of γ = 0.007 ± 0.002 to γ = 0.09 ± 0.03 were measured. Elevated concentrations of copper (16 ± 1 and 380 ± 20 ppb) and iron (600 ± 30 and 51 000 ± 3000 ppb) ions were measured in the humic acid atomizer solutions compared to the other organics that can explain the higher uptake values measured. A strong dependence upon relative humidity was also observed for uptake onto humic acid, with larger uptake coefficients seen at higher humidities. Possible hypotheses for the humidity dependence include the changing liquid water content of the aerosol, a change in the mass accommodation coefficient or in the Henry's law constant. PMID:25811311

  20. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    PubMed

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    A great deal of attention has been paid to brown carbon aerosol in the troposphere because it can both scatter and absorb solar radiation, thus affecting the Earth's climate. However, knowledge of the optical and chemical properties of brown carbon aerosol is still limited. In this study, we have investigated different aspects of the optical properties of brown carbon aerosol that have not been previously explored. These properties include extinction spectroscopy in the mid-infrared region and light scattering at two different visible wavelengths, 532 and 402 nm. A proxy for atmospheric brown carbon aerosol was formed from the aqueous reaction of ammonium sulfate with methylglyoxal. The different optical properties were measured as a function of reaction time for a period of up to 19 days. UV/vis absorption experiments of bulk solutions showed that the optical absorption of aqueous brown carbon solution significantly increases as a function of reaction time in the spectral range from 200 to 700 nm. The analysis of the light scattering data, however, showed no significant differences between ammonium sulfate and brown carbon aerosol particles in the measured scattering phase functions, linear polarization profiles, or the derived real parts of the refractive indices at either 532 or 402 nm, even for the longest reaction times with greatest visible extinction. The light scattering experiments are relatively insensitive to the imaginary part of the refractive index, and it was only possible to place an upper limit of k ≤ 0.01 on the imaginary index values. These results suggest that after the reaction with methylglyoxal the single scattering albedo of ammonium sulfate aerosol is significantly reduced but that the light scattering properties including the scattering asymmetry parameter, which is a measure of the relative amount of forward-to-backward scattering, remain essentially unchanged from that of unprocessed ammonium sulfate. The optical extinction properties

  1. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    PubMed

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    A great deal of attention has been paid to brown carbon aerosol in the troposphere because it can both scatter and absorb solar radiation, thus affecting the Earth's climate. However, knowledge of the optical and chemical properties of brown carbon aerosol is still limited. In this study, we have investigated different aspects of the optical properties of brown carbon aerosol that have not been previously explored. These properties include extinction spectroscopy in the mid-infrared region and light scattering at two different visible wavelengths, 532 and 402 nm. A proxy for atmospheric brown carbon aerosol was formed from the aqueous reaction of ammonium sulfate with methylglyoxal. The different optical properties were measured as a function of reaction time for a period of up to 19 days. UV/vis absorption experiments of bulk solutions showed that the optical absorption of aqueous brown carbon solution significantly increases as a function of reaction time in the spectral range from 200 to 700 nm. The analysis of the light scattering data, however, showed no significant differences between ammonium sulfate and brown carbon aerosol particles in the measured scattering phase functions, linear polarization profiles, or the derived real parts of the refractive indices at either 532 or 402 nm, even for the longest reaction times with greatest visible extinction. The light scattering experiments are relatively insensitive to the imaginary part of the refractive index, and it was only possible to place an upper limit of k ≤ 0.01 on the imaginary index values. These results suggest that after the reaction with methylglyoxal the single scattering albedo of ammonium sulfate aerosol is significantly reduced but that the light scattering properties including the scattering asymmetry parameter, which is a measure of the relative amount of forward-to-backward scattering, remain essentially unchanged from that of unprocessed ammonium sulfate. The optical extinction properties

  2. Semi-Continuous Measurements of Aerosol Chemical Composition During the Summer 2002 Yosemite National Park Special Study

    SciTech Connect

    Collette, J; Lee, T; Heath, J; Carrico, C; Herckes, P; Engling, G; McMeeking, G; Kreidenweis, S; Day, D; Malm, W; Cahill, T

    2003-02-16

    Semi-continuous measurements of fine particle composition were made over a period of several weeks in summer 2002 in Yosemite National Park, California. These included measurement of aerosol ionic composition (by PILS- Particle-Into-Liquid System) and aerosol carbon (by dual wavelength aethalometer and an R&P particulate carbon monitor). The data reveal that aerosol composition at the site is highly :variable in time, with a strong diurnal cycle. Interestingly, however, different diurnal cycles were sometimes observed for different chemical constituents of the particles. Organic carbon was observed to dominate fine particle mass, with some periods apparently associated with influx of smoke from wildfires in the western U.S. Measurements of fine particle carbon isotopes revealed the fraction of carbon from biogenic sources to range from approximately 73 to 95%. The ionic fraction of the aerosol was usually dominated by ammoniated sulfate. During most periods, PM{sub 2.5} nitrate was found primarily in sea salt particles from which chloride had been displaced. Strong variations in the extent of ammonia neutralization of sulfate were also observed. The ability to observe rapid changes in aerosol composition using these semi-continuous aerosol composition measurements is helpful for understanding the dynamic chemical composition of fine particles responsible for regional haze.

  3. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  4. Infrared limb emission measurements of aerosol in the troposphere and stratosphere

    NASA Astrophysics Data System (ADS)

    Griessbach, Sabine; Hoffmann, Lars; Spang, Reinhold; von Hobe, Marc; Müller, Rolf; Riese, Martin

    2016-09-01

    Altitude-resolved aerosol detection in the upper troposphere and lower stratosphere (UTLS) is a challenging task for remote sensing instruments. Infrared limb emission measurements provide vertically resolved global measurements at day- and nighttime in the UTLS. For high-spectral-resolution infrared limb instruments we present here a new method to detect aerosol and separate between ice and non-ice particles. The method is based on an improved aerosol-cloud index that identifies infrared limb emission spectra affected by non-ice aerosol or ice clouds. For the discrimination between non-ice aerosol and ice clouds we employed brightness temperature difference correlations. The discrimination thresholds for this method were derived from radiative transfer simulations (including scattering) and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)/Envisat measurements obtained in 2011. We demonstrate the value of this approach for observations of volcanic ash and sulfate aerosol originating from the Grímsvötn (Iceland, 64° N), Puyehue-Cordón Caulle (Chile, 40° S), and Nabro (Eritrea, 13° N) eruptions in May and June 2011 by comparing the MIPAS volcanic aerosol detections with Atmospheric Infrared Sounder (AIRS) volcanic ash and SO2 measurements.

  5. On the evaporation of ammonium sulfate solution

    SciTech Connect

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  6. On the evaporation of ammonium sulfate solution.

    PubMed

    Drisdell, Walter S; Saykally, Richard J; Cohen, Ronald C

    2009-11-10

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 +/- 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly. PMID:19861551

  7. Correlation of plume opacity with particles and sulfates from boilers

    SciTech Connect

    Lou, J.C.; Lee, M.; Chen, K.S.

    1997-07-01

    The effects of emission concentrations of particulate matters and sulfates on plume opacity are investigated by in situ measurements. The studies are conducted for three processes of two coal-fired plants and one oil-fired that are all equipped with electrostatic precipitators. Flue-gas sampling and analysis include the concentrations of particles and total water soluble sulfates, particle size distribution, and flue-gas composition; while in-stack and out-of-stack opacities are determined by a transmissometer and certified smoke inspectors, respectively. Experimental results show that plume opacity outside the stack linearly correlates well with the in-stack opacity. The mixing of hot flue gas with cold ambient air would result in the condensation of hygroscopic sulfuric acid aerosols and an increase about 1.6% out of typical 15--25% measured opacity. An empirical equation similar to the Beer-Lambert-Bouger form is derived for predicting the plume opacity in terms of the stack diameter and the concentrations of particles and total water soluble sulfates. Good comparisons are achieved between predictions by the empirical equation and other available field data.

  8. Effect of topography on sulfate redistribution in Cumulonimbus cloud development.

    PubMed

    Vujović, Dragana; Vučković, Vladan; Curić, Mlađen

    2014-03-01

    An aqueous chemical module is created and included into a complex three-dimensional atmospheric cloud-resolving mesoscale model. In the chemical module, oxidation of S(IV) by ozone and hydrogen peroxide in cloud-water and rainwater, as important process of the sulfate production is included. To examine the impact of topography on the sulfate redistribution in a clean and a polluted environment, the complex topography of Serbia is included in the model. Numerical simulations of an isolated summer Cumulonimbus cloud shows that thunderstorms generate very strong vertical sulfate redistribution from the planetary boundary layer to the upper troposphere. This redistribution is sensitive to cloud dynamics, while cloud microphysics and precipitation determine wet removal of the chemical species. In simulations with realistic topography, the chemical species are transported over larger distances close to the surface, while in the upper atmosphere, there is no difference compared to the simulations without topography. The sensitivity tests of cloud chemistry to the physical processes are made. Omission of nucleation and impact scavenging of aerosols in the model simulations shows that 75.8 and 62.5 % of total sulfur mass deposited in the base experiment for the clean and the polluted environment, respectively, is the result of other processes. Exclusion of oxidation accounted for 19.2 and 37.7 % of total sulfur deposited for clean and polluted environment. Ignoring the ice phase almost not change mass of deposited sulfur: there is an increase of 2.9 and 1.5 % for clean and polluted atmosphere, respectively. Real topography conditions affect the sulfate redistribution in the sense of greater possibilities of transport. Numerical simulations without real topography give an artificial increase of deposited sulfur mass of about 25-30 %. PMID:24243093

  9. Effect of topography on sulfate redistribution in Cumulonimbus cloud development.

    PubMed

    Vujović, Dragana; Vučković, Vladan; Curić, Mlađen

    2014-03-01

    An aqueous chemical module is created and included into a complex three-dimensional atmospheric cloud-resolving mesoscale model. In the chemical module, oxidation of S(IV) by ozone and hydrogen peroxide in cloud-water and rainwater, as important process of the sulfate production is included. To examine the impact of topography on the sulfate redistribution in a clean and a polluted environment, the complex topography of Serbia is included in the model. Numerical simulations of an isolated summer Cumulonimbus cloud shows that thunderstorms generate very strong vertical sulfate redistribution from the planetary boundary layer to the upper troposphere. This redistribution is sensitive to cloud dynamics, while cloud microphysics and precipitation determine wet removal of the chemical species. In simulations with realistic topography, the chemical species are transported over larger distances close to the surface, while in the upper atmosphere, there is no difference compared to the simulations without topography. The sensitivity tests of cloud chemistry to the physical processes are made. Omission of nucleation and impact scavenging of aerosols in the model simulations shows that 75.8 and 62.5 % of total sulfur mass deposited in the base experiment for the clean and the polluted environment, respectively, is the result of other processes. Exclusion of oxidation accounted for 19.2 and 37.7 % of total sulfur deposited for clean and polluted environment. Ignoring the ice phase almost not change mass of deposited sulfur: there is an increase of 2.9 and 1.5 % for clean and polluted atmosphere, respectively. Real topography conditions affect the sulfate redistribution in the sense of greater possibilities of transport. Numerical simulations without real topography give an artificial increase of deposited sulfur mass of about 25-30 %.

  10. A perspective on SOA generated in aerosol water from glyoxal and methylglyoxal and its impacts on climate-relevant aerosol properties

    NASA Astrophysics Data System (ADS)

    Sareen, N.; McNeill, V. F.

    2011-12-01

    In recent years, glyoxal and methylglyoxal have emerged to be potentially important SOA precursors with significant implications for climate-related aerosol properties. Here we will discuss how the chemistry of these and similar organic compounds in aerosol water can affect the aerosol optical and cloud formation properties. Aqueous-phase SOA production from glyoxal and methylglyoxal is a potential source of strongly light-absorbing organics, or "brown carbon". We characterized the kinetics of brown carbon formation from these precursors in mixtures of ammonium sulfate and water using UV-Vis spectrophotometry. This mechanism has been incorporated into a photochemical box model with coupled gas phase-aqueous aerosol chemistry. Methylglyoxal and related compounds also may impact an aerosol's ability to act as a cloud condensation nucleus. We recently showed via pendant drop tensiometry and aerosol chamber studies that uptake of methylglyoxal from the gas phase driven by aqueous-phase oligomerization chemistry is a potentially significant, previously unidentified source of surface-active organic material in aerosols. Results from pendant drop tensiometry showed significantly depressed surface tension in methylglyoxal-ammonium sulfate solutions. We further found that ammonium sulfate particles exposed to gas-phase methylglyoxal in a 3.5 m3 aerosol reaction chamber activate into cloud droplets at sizes up to 15% lower at a given supersaturation than do pure ammonium sulfate particles. The observed enhancement exceeds that predicted based on Henry's Law and our measurements of surface tension depression in bulk solutions, suggesting that surface adsorption of methylglyoxal plays a role in determining CCN activity. Methylglyoxal and similar gas-phase surfactants may be an important and overlooked source of enhanced CCN activity in the atmosphere. To characterize the SOA products formed in these solutions, an Aerosol Chemical Ionization Mass Spectrometer (CIMS) was used

  11. Concentrations and sources of organic carbon aerosols in the free troposphere over North America

    NASA Astrophysics Data System (ADS)

    Heald, Colette L.; Jacob, Daniel J.; Turquety, SolèNe; Hudman, Rynda C.; Weber, Rodney J.; Sullivan, Amy P.; Peltier, Richard E.; Atlas, Eliot L.; de Gouw, Joost A.; Warneke, Carsten; Holloway, John S.; Neuman, J. Andrew; Flocke, Frank M.; Seinfeld, John H.

    2006-12-01

    Aircraft measurements of water-soluble organic carbon (WSOC) aerosol over NE North America during summer 2004 (ITCT-2K4) are simulated with a global chemical transport model (GEOS-Chem) to test our understanding of the sources of organic carbon (OC) aerosol in the free troposphere (FT). Elevated concentrations were observed in plumes from boreal fires in Alaska and Canada. WSOC aerosol concentrations outside of these plumes average 0.9 ± 0.9 μg C m-3 in the FT (2-6 km). The corresponding model value is 0.7 ± 0.6 μg C m-3, including 42% from biomass burning, 36% from biogenic secondary organic aerosol (SOA), and 22% from anthropogenic emissions. Previous OC aerosol observations over the NW Pacific in spring 2001 (ACE-Asia) averaged 3.3 ± 2.8 μg C m-3 in the FT, compared to a model value of 0.3 ± 0.3 μg C m-3. WSOC aerosol concentrations in the boundary layer (BL) during ITCT-2K4 are consistent with OC aerosol observed at the IMPROVE surface network. The model is low in the boundary layer by 30%, which we attribute to secondary formation at a rate comparable to primary anthropogenic emission. Observed WSOC aerosol concentrations decrease by a factor of 2 from the BL to the FT, as compared to a factor of 10 decrease for sulfate, indicating that most of the WSOC aerosol in the FT originates in situ. Despite reproducing mean observed WSOC concentrations in the FT to within 25%, the model cannot account for the variance in the observations (R = 0.21). Covariance analysis of FT WSOC aerosol with other measured chemical variables suggests an aqueous-phase mechanism for SOA generation involving biogenic precursors.

  12. Providing Size-Resolved Mixing State Inputs to Improve Aerosol Optics Models: Comparison of ACE-Asia Aerosol Chemical Measurements for Different Source Regions With Simultaneous Optical Measurements

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Poon, G.; Guazzotti, S.; Sodeman, D.; Holecek, J.; Spencer, M.; Prather, K.

    2005-12-01

    Measurements made of the aerodynamic size and chemical composition of single aerosol particles on board the R/V Ronald H. Brown sailing between Hawaii and the Sea of Japan during ACE-Asia in 2001 revealed a complex mixture of mineral dust, organic carbon, elemental carbon, sulfates, nitrates, chloride, ammonium, and sea salt. The air mass source regions included influences from the Pacific Ocean, Miyakejima volcano, Gobi and Taklimakan Deserts, Shanghai, Japan, and Korea. The particle composition sampled from each of these regions showed unique changes in the aerosol's mixing state. This complexity presents major challenges in accurately modeling the optical properties of the Asian aerosol. The degree of closure between the measured chemical and optical properties of this aerosol and those predicted by models has been presented by Quinn et al. [JGR, 109, D19S01, doi: 10.1029/2003JD004010, 2004]. Differences between measured and calculated aerosol absorption coefficients were partly attributed to the assumption of internally mixed homogeneous spheres for the aerosol population. Good correlations between measured and calculated aerosol mass and light scattering were found but relied on particle shapes not confirmed by measurements. To better our understanding of the relationship between aerosol chemistry and optical measurements, and provide more detailed inputs to improve the predictions of optical models, we present size-resolved single-particle mixing state results obtained by an ATOFMS for the seven air mass source regions described by Quinn et al. (2004). Our results do not support the assumption of a homogeneous internally mixed aerosol population for many of the source regions. Particular focus is given to the mixing state and chemical associations of sulfate, nitrate, chloride, ammonium, OC, EC, dust, and sea salt. We demonstrate the segregation of ammonium, sulfate, and nitrate within individual particles throughout the study and discuss the different

  13. Multiple oxygen and sulfur isotopic analyses on water-soluble sulfate in bulk atmospheric deposition from the southwestern United States

    USGS Publications Warehouse

    Bao, H.; Reheis, M.C.

    2003-01-01

    Sulfate is a major component of bulk atmospheric deposition (including dust, aerosol, fog, and rain). We analyzed sulfur and oxygen isotopic compositions of water-soluble sulfate from 40 sites where year-round dust traps collect bulk atmospheric deposition in the southwestern United States. Average sulfur and oxygen isotopic compositions (??34S and ??18O) are 5.8 ?? 1.4 (CDT) and 11.2 ?? 1.9 (SMOW) (n = 47), respectively. Samples have an oxygen 17 anomaly (?? 17O), with an average value of 1.0 ?? 0.6???. Except for a weak positive correlation between ??18O and ??17O values (r2 ??? 0.4), no correlation exists for ??18O versus ??34S, ?? 17O versus ??34S, or any of the three isotopic compositions versus elevation of the sample site. Exceptional positive ?? 17O values (up to 4.23???) are found in samples from sites in the vicinity of large cities or major highways, and near-zero ?? 17O values are found in samples close to dry lakes. Comparison of isotopic values of dust trap sulfate and desert varnish sulfate from the region reveals that varnish sulfate has average isotopic values that are ???4.8??? lower for ??18O, ???2.1??? higher for ??34S , and ???0.3??? lower for ?? 17O than those of the present-day bulk deposition sulfate. Although other factors could cause the disparity, this observation suggests a possibility that varnish sulfate may have recorded a long-term atmospheric sulfate deposition during the Holocene or Pleistocene, as well as the differences between sulfur and oxygen isotopic compositions of the preindustrial bulk deposition sulfate and those of the industrial era.

  14. Multiple oxygen and sulfur isotopic analyses on water-soluble sulfate in bulk atmospheric deposition from the southwestern United States

    NASA Astrophysics Data System (ADS)

    Bao, Huiming; Reheis, Marith C.

    2003-07-01

    Sulfate is a major component of bulk atmospheric deposition (including dust, aerosol, fog, and rain). We analyzed sulfur and oxygen isotopic compositions of water-soluble sulfate from 40 sites where year-round dust traps collect bulk atmospheric deposition in the southwestern United States. Average sulfur and oxygen isotopic compositions (δ34S and δ18O) are 5.8 ± 1.4 (CDT) and 11.2 ± 1.9 (SMOW) (n = 47), respectively. Samples have an oxygen 17 anomaly (Δ17O), with an average value of 1.0 ± 0.6‰. Except for a weak positive correlation between δ18O and Δ17O values (r2 ≈ 0.4), no correlation exists for δ18O versus δ34S, Δ17O versus δ34S, or any of the three isotopic compositions versus elevation of the sample site. Exceptional positive Δ17O values (up to 4.23‰) are found in samples from sites in the vicinity of large cities or major highways, and near-zero Δ17O values are found in samples close to dry lakes. Comparison of isotopic values of dust trap sulfate and desert varnish sulfate from the region reveals that varnish sulfate has average isotopic values that are ˜4.8‰ lower for δ18O, ˜2.1‰ higher for δ34S, and ˜0.3‰ lower for Δ17O than those of the present-day bulk deposition sulfate. Although other factors could cause the disparity, this observation suggests a possibility that varnish sulfate may have recorded a long-term atmospheric sulfate deposition during the Holocene or Pleistocene, as well as the differences between sulfur and oxygen isotopic compositions of the preindustrial bulk deposition sulfate and those of the industrial era.

  15. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo

    2010-01-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of

  16. Secondary Aerosol Formation in the planetary boundary layer observed by aerosol mass spectrometry on a Zeppelin NT

    NASA Astrophysics Data System (ADS)

    Rubach, Florian; Trimborn, Achim; Mentel, Thomas; Wahner, Andreas; Zeppelin Pegasos-Team 2012

    2014-05-01

    The airship Zeppelin NT is an airborne platform capable of flying at low speed throughout the entire planetary boundary layer (PBL). In combination with the high scientific payload of more than 1 ton, the Zeppelin is an ideal platform to study regional processes in the lowest layers of the atmosphere with high spatial resolution. Atmospheric aerosol as a medium long lived tracer substance is of particular interest due to its influence on the global radiation budget. Due its lifetime of up to several days secondaray aerosol at a certain location can result from local production or from transport processes. For aerosol measurements on a Zeppelin, a High-Resolution Time-of-Flight Aerosol Mass spectrometer (DeCarlo et al, 2006) was adapted to the requirements posed by an airborne platform. A weight reduction of over 20 % compared to the commercial instrument was achieved, while space occupation and footprint were each reduced by over 25 %. Within the PEGASOS project, the instrument was part of 10 measurement flight days over the course of seven weeks. Three flights were starting from Rotterdam, NL, seven flights were starting from Ozzano in the Po Valley, IT. Flight patterns included vertical profiles to study the dynamics of the PBL and cross sections through regions of interest to shed light on local production and transport processes. Analysis of data from transects between the Apennin and San Pietro Capofiume in terms of "residence time of air masses in the Po valley" indicates that aerosol nitrate has only local sources while aerosol sulfate is dominated by transport. The organic aerosol component has significant contributions of both processes. The local prodcution yields are commensurable with imultaneously observed precursor concentrations and oxidant levels. The PEGASOS project is funded by the European Commission under the Framework Programme 7 (FP7-ENV-2010-265148). DeCarlo, P.F. et al (2006), Anal. Chem., 78, 8281-8289.

  17. Sulfate adsorption on goethite

    SciTech Connect

    Rietra, R.P.J.J.; Hiemstra, T.; Riemsdijk, W.H. van

    1999-10-15

    Recent spectroscopic work has suggested that only one surface species of sulfate is dominant on hematite. Sulfate is therefore a very suitable anion to test and develop adsorption models for variable charge minerals. The authors have studied sulfate adsorption on goethite covering a large range of sulfate concentrations, surface coverages, pH values, and electrolyte concentrations. Four different techniques were used to cover the entire range of conditions. For characterization at low sulfate concentrations, below the detection limit of sulfate with ICP-AES, the authors used proton-sulfate titrations at constant pH. Adsorption isotherms were studied for the intermediate sulfate concentration range. Acid-base titrations in sodium sulfate and electromobility were used for high sulfate concentrations. All the data can be modeled with one adsorbed species if it is assumed that the charge of adsorbed sulfate is spatially distributed in the interface. The charge distribution of sulfate follows directly from modeling the proton-sulfate adsorption stoichoimemtry sine this stoichiometry is independent of the intrinsic affinity constant of sulfate. The charge distribution can be related to the structure of the surface complex by use of the Pauling bond valence concept and is in accordance with the microscopic structure found by spectroscopy. The intrinsic affinity constant follows from the other measurements. Modeling of the proton-ion stoichoimetry with the commonly used 2-pK models, where adsorbed ions are treated as point charges, is possible only if at least two surface species for sulfate are used.

  18. A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity.

    PubMed

    Powell, B; Martens, M

    2005-01-01

    An estimated 666,000 ha of acid sulfate soils (ASS) occur within the Great Barrier Reef (GBR) catchments of Queensland, Australia. Extensive areas have been drained causing acidification, metal contamination, deoxygenation and iron precipitation in reef receiving waters. The close proximity of ASS to reef waters makes them a substantial threat to water quality. Another important issue linked with ASS is their release of soluble iron, which is known to stimulate nuisance marine algal blooms, in particular Lyngbya majuscula. Known blooms of the cyanobacteria in reef waters have been confirmed at Shoalwater Bay, Corio Bay, the Whitsunday area and Hinchinbrook Channel. Acid sulfate soils are intimately related to coastal wetland landscapes. Where landscapes containing ASS have been disturbed (such as for agriculture, aquaculture, marinas, etc.) the biodiversity of adjacent wetlands can be adversely affected. However, there is no clear knowledge of the real extent of the so-called "hotspot" ASS areas that occur within the GBR catchments. Management of ASS in reef catchments has benefited from the implementation of the Queensland Acid Sulfate Soils Management Strategy through policy development, mapping, training programs, an advisory service, research and community participation. However, major gaps remain in mapping the extent and nature of ASS. Areas of significant acidification (i.e. hotspots) need to be identified and policies developed for their remediation. Research has a critical role to play in understanding ASS risk and finding solutions, to prevent the adverse impacts that may be caused by ASS disturbance. A case study is presented of the East Trinity site near Cairns, a failed sugar cane development that episodically discharges large amounts of acid into Trinity Inlet, resulting in periodic fish kills. Details are presented of scientific investigations, and a lime-assisted tidal exchange strategy that are being undertaken to remediate a serious ASS problem

  19. Application of Aerosol Assimilation System of MODIS Radiances to Regional Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    D'Allura, A.; Charmichael, G. R.; Tang, Y.; Chai, T.; Chung, C. E.; Anderson, T. L.

    2006-12-01

    We present results from an assimilation system of radiances from the MODIS channels that sense atmospheric aerosols over land and ocean on the chemical transport model STEM. A test case is designed to simulate transport of aerosols tracers over the area of interest which includes India, east and south Asia at 50km horizontal resolution. A detailed treatment of the source, transport and deposition of the aerosol species are included. The model simulates five aerosol components: sulfate, organic carbon, black carbon, dust and sea salt. Total AODs at 550nm wavelength over land and ocean and fine mode AODs at 550nm wavelength over ocean are the level 2 aerosol products from Terra MODIS channel four used in this application. The intent of the study is to verify the improvement in the model performances while the initial conditions are corrected using an Optimum Interpolation technique to assimilate the MODIS data. The model results are compared with ground-based measurements of aerosol optical depth (AOD) from the AERONET network. Sensitivity analyses are provided in order to describe the effect of changing in assimilation technique's free parameters. The method is designed to optimize the use of the information provided by fine mode AODs, which are available over ocean, coupled with the total AODs available also over land. Improvements on the model results using this approach are highlighted during specific event where the model has experienced low agreement with observed data. Results are also compared to other assimilations methods.

  20. The formation of dimethyl sulfate in power plant plumes

    SciTech Connect

    Hansen, L.D.; Eatough, D.J. ); Cheney, J.L. ); Eatough, N.L. )

    1987-01-01

    The purpose of this paper is to report the results of a study which was designed to determine if dimethyl sulfate is a primary emission of power plants or is instead formed in the plume after mixing with the ambient atmosphere. The authors previously reported the presence of dimethyl sulfate and monomethyl sulfuric acid in particulate matter collected from the flue lines and plumes of coal-fired power plants. The mole ratios of methylated sulfate in particles to total emitted sulfur were found to be one and two orders of magnitude higher in the plume than in the flue line of a coal- and an oil-fired plant, respectively. In addition, while only monomethyl sulfate was found in the particles collected at 150{sup 0}C in the flue line, the principal species found in the plume aerosol was dimethyl sulfate. Dimethyl sulfate has been found in particulate matter collected from the flue line of another coal-fired power plant where the sample was collected at 110{sup 0}C, however. These previously reported results can either be interpreted to indicate that primary emissions from power plants contain gas phase alkyl sulfate compounds which subsequently condense onto aerosols, or the data can be interpreted to show formation of dimethyl sulfate in the atmosphere. The data presented in this paper show the latter to be the case.

  1. Assessing the direct occupational and public health impacts of solar radiation management with stratospheric aerosols.

    PubMed

    Effiong, Utibe; Neitzel, Richard L

    2016-01-19

    Geoengineering is the deliberate large-scale manipulation of environmental processes that affects the Earth's climate, in an attempt to counteract the effects of climate change. Injecting sulfate aerosol precursors and designed nanoparticles into the stratosphere to (i.e., solar radiation management [SRM]), has been suggested as one approach to geoengineering. Although much is being done to unravel the scientific and technical challenges around geoengineering, there have been few efforts to characterize the potential human health impacts of geoengineering, particularly with regards to SRM approaches involving stratospheric aerosols. This paper explores this information gap. Using available evidence, we describe the potential direct occupational and public health impacts of exposures to aerosols likely to be used for SRM, including environmental sulfates, black carbon, metallic aluminum, and aluminum oxide aerosols. We speculate on possible health impacts of exposure to one promising SRM material, barium titanate, using knowledge of similar nanomaterials. We also explore current regulatory efforts to minimize exposure to these toxicants. Our analysis suggests that adverse public health impacts may reasonably be expected from SRM via deployment of stratospheric aerosols. Little is known about the toxicity of some likely candidate aerosols, and there is no consensus regarding acceptable levels for public exposure to these materials. There is also little infrastructure in place to evaluate potential public health impacts in the event that stratospheric aerosols are deployed for solar radiation management. We offer several recommendations intended to help characterize the potential occupation and public health impacts of SRM, and suggest that a comprehensive risk assessment effort is needed before this approach to geoengineering receives further consideration.

  2. Assessing the direct occupational and public health impacts of solar radiation management with stratospheric aerosols.

    PubMed

    Effiong, Utibe; Neitzel, Richard L

    2016-01-01

    Geoengineering is the deliberate large-scale manipulation of environmental processes that affects the Earth's climate, in an attempt to counteract the effects of climate change. Injecting sulfate aerosol precursors and designed nanoparticles into the stratosphere to (i.e., solar radiation management [SRM]), has been suggested as one approach to geoengineering. Although much is being done to unravel the scientific and technical challenges around geoengineering, there have been few efforts to characterize the potential human health impacts of geoengineering, particularly with regards to SRM approaches involving stratospheric aerosols. This paper explores this information gap. Using available evidence, we describe the potential direct occupational and public health impacts of exposures to aerosols likely to be used for SRM, including environmental sulfates, black carbon, metallic aluminum, and aluminum oxide aerosols. We speculate on possible health impacts of exposure to one promising SRM material, barium titanate, using knowledge of similar nanomaterials. We also explore current regulatory efforts to minimize exposure to these toxicants. Our analysis suggests that adverse public health impacts may reasonably be expected from SRM via deployment of stratospheric aerosols. Little is known about the toxicity of some likely candidate aerosols, and there is no consensus regarding acceptable levels for public exposure to these materials. There is also little infrastructure in place to evaluate potential public health impacts in the event that stratospheric aerosols are deployed for solar radiation management. We offer several recommendations intended to help characterize the potential occupation and public health impacts of SRM, and suggest that a comprehensive risk assessment effort is needed before this approach to geoengineering receives further consideration. PMID:26786592

  3. Insights into Submicron Aerosol Composition and Sources from the WINTER Aircraft Campaign Over the Eastern US.

    NASA Astrophysics Data System (ADS)

    Schroder, J. C.; Campuzano Jost, P.; Day, D. A.; Fibiger, D. L.; McDuffie, E. E.; Blake, N. J.; Hills, A. J.; Hornbrook, R. S.; Apel, E. C.; Weinheimer, A. J.; Campos, T. L.; Brown, S. S.; Jimenez, J. L.

    2015-12-01

    The WINTER aircraft campaign was a recent field experiment to probe the sources and evolution of gas pollutants and aerosols in Northeast US urban and industrial plumes during the winter. A highly customized Aerodyne aerosol mass spectrometer (AMS) was flown on the NCAR C-130 to characterize submicron aerosol composition and evolution. Thirteen research flights were conducted covering a wide range of conditions, including rural, urban, and marine environments during day and night. Organic aerosol (OA) was a large component of the submicron aerosol in the boundary layer. The fraction of OA (fOA) was smaller (35-40%) than in recent US summer campaigns (~60-70%). Biomass burning was observed to be an important source of OA in the boundary layer, which is consistent with recent wintertime studies that show a substantial contribution of residential wood burning to the OA loadings. OA oxygenation (O/C ratio) shows a broad distribution with a substantial fraction of smaller O/C ratios when compared to previous summertime campaigns. Since measurements were rarely made very close to primary sources (i.e. directly above urban areas), this is consistent with oxidative chemistry being slower during winter. SOA formation and aging in the NYC plume was observed during several flights and compared with summertime results from LA (CalNex) and Mexico City (MILAGRO). Additionally, an oxidation flow reactor (OFR) capable of oxidizing ambient air up to several equivalent days of oxidation was deployed for the first time in an aircraft platform. The aerosol outflow of the OFR was sampled with the AMS to provide real-time snapshots of the potential for aerosol formation and aging. For example, a case study of a flight through the Ohio River valley showed evidence of oxidation of SO2 to sulfate. The measured sulfate enhancements were in good agreement with our OFR chemical model. OFR results for SOA will be discussed.

  4. Martian Polar Sulfate Formation Under Extremely Cold Water-Limited Environments

    NASA Astrophysics Data System (ADS)

    Niles, P. B.; Michalski, J.

    2016-09-01

    Mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for sulfate formation in the martian polar environment.

  5. Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

    NASA Astrophysics Data System (ADS)

    Hock, N.; Schneider, J.; Borrmann, S.; Römpp, A.; Moortgat, G.; Franze, T.; Schauer, C.; Pöschl, U.; Plass-Dülmer, C.; Berresheim, H.

    2007-06-01

    Detailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. The online measurement data and techniques included: size-resolved chemical composition of submicron particles by aerosol mass spectrometry (AMS); total particle number concentrations and size distributions over the diameter range of 3 nm to 9 μm (CPC, SMPS, OPC); monoterpenes determined by gas chromatography- ion trap mass spectrometry; OH and H2SO4 determined by atmospheric pressure chemical ionization mass spectrometry (CIMS). Filter sampling and offline analytical techniques were used to determine: fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 μg m-3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 μg m-3). The relative proportions of non-refractory submicron particle components were: 11% ammonium, 19% nitrate, 20% sulfate, and 50% organics (OM1). In spite of strongly changing meteorological conditions and absolute concentration levels of particulate matter (3-13 μg m-3 PM1), OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. In contrast, the ratio of nitrate to sulfate was highly dependent on temperature (14-32°C) and relative humidity (20-100%), which could be explained by thermodynamic model calculations of NH3/HNO3/NH4NO3 gas-particle partitioning. From the combination of optical and other sizing techniques (OPC, AMS, SMPS), an average refractive index of 1.40-1.45 was inferred for the measured rural aerosol

  6. Postdeposition dispersion of aerosol medications using surfactant carriers.

    PubMed

    Marcinkowski, Amy L; Garoff, Stephen; Tilton, Robert D; Pilewski, Joseph M; Corcoran, Timothy E

    2008-12-01

    Inhaled aerosol drugs provide a means of directly treating the lungs; however, aerosol deposition and drug distribution can be nonuniform, especially in obstructive lung disease. We hypothesize that surfactant-based aerosol carriers will disperse medications over airway surfaces after deposition through surface tension driven flows, increasing dose uniformity and improving drug distribution into underventilated regions. We considered saline and surfactant aerosol delivery via cannula onto several model airway surfaces including porcine gastric mucus (PGM) and both cystic fibrosis (CF) and non-CF human bronchial epithelial cells (HBEs). Fluorescent dye and microspheres (d = 100 nm, 1 mum) were used to qualitatively and quantitatively assess postdeposition dispersion. Aerosol volume median diameters were in the 1-4 mum range. The tested surfactants included sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium bromide (CTAB), tyloxapol, and calfactant. All surfactants tested on PGM (tyloxapol, calfactant, SDS, and CTAB) significantly increased dispersion area versus saline with all markers (2-20-fold increases; all p < 0.04). Both surfactants tested on CF HBEs (tyloxapol and calfactant) significantly increased dispersion area versus saline with all markers (1.6-4.1-fold increases; all p aerosol deposition onto model airway surfaces, and may improve the efficacy of inhaled preparations such as inhaled antibiotics for cystic fibrosis.

  7. Interactions of mineral dust with pollution and clouds: An individual-particle TEM study of atmospheric aerosol from Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Pósfai, Mihály; Axisa, Duncan; Tompa, Éva; Freney, Evelyn; Bruintjes, Roelof; Buseck, Peter R.

    2013-03-01

    Aerosol particles from desert dust interact with clouds and influence climate on regional and global scales. The Riyadh (Saudi Arabia) aerosol campaign was initiated to study the effects of dust particles on cloud droplet nucleation and cloud properties. Here we report the results of individual-particle studies of samples that were collected from an aircraft in April 2007. We used analytical transmission electron microscopy, including energy-dispersive X-ray spectrometry, electron diffraction, and imaging techniques for the morphological, chemical, and structural characterization of the particles. Dust storms and regional background conditions were encountered during four days of sampling. Under dusty conditions, the coarse (supermicrometer) fraction resembles freshly crushed rock. The particles are almost exclusively mineral dust grains and include common rock-forming minerals, among which clay minerals, particularly smectites, are most abundant. Unaltered calcite grains also occur, indicating no significant atmospheric processing. The particles have no visible coatings but some contain traces of sulfur. The fine (submicrometer) fraction is dominated by particles of anthropogenic origin, primarily ammonium sulfate (with variable organic coating and some with soot inclusions) and combustion-derived particles (mostly soot). In addition, submicrometer, iron-bearing clay particles also occur, many of which are internally mixed with ammonium sulfate, soot, or both. We studied the relationships between the properties of the aerosol and the droplet microphysics of cumulus clouds that formed above the aerosol layer. Under dusty conditions, when a large concentration of coarse-fraction mineral particles was in the aerosol, cloud drop concentrations were lower and droplet diameters larger than under regional background conditions, when the aerosol was dominated by submicrometer sulfate particles.

  8. Longwave radiative forcing by aqueous aerosols

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1995-01-01

    Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

  9. A Global Aerosol Model Forecast for the ACE-Asia Field Experiment

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Lucchesi, Robert; Huebert, Barry; Weber, Rodney; Anderson, Tad; Masonis, Sarah; Blomquist, Byron; Bandy, Alan; Thornton, Donald

    2003-01-01

    We present the results of aerosol forecast during the Aerosol Characterization Experiment (ACE-Asia) field experiment in spring 2001, using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model and the meteorological forecast fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The aerosol model forecast provides direct information on aerosol optical thickness and concentrations, enabling effective flight planning, while feedbacks from measurements constantly evaluate the model, making successful model improvements. We verify the model forecast skill by comparing model predicted total aerosol extinction, dust, sulfate, and SO2 concentrations with those quantities measured by the C-130 aircraft during the ACE-Asia intensive operation period. The GEOS DAS meteorological forecast system shows excellent skills in predicting winds, relative humidity, and temperature for the ACE-Asia experiment area as well as for each individual flight, with skill scores usually above 0.7. The model is also skillful in forecast of pollution aerosols, with most scores above 0.5. The model correctly predicted the dust outbreak events and their trans-Pacific transport, but it constantly missed the high dust concentrations observed in the boundary layer. We attribute this missing dust source to the desertification regions in the Inner Mongolia Province in China, which have developed in recent years but were not included in the model during forecasting. After incorporating the desertification sources, the model is able to reproduce the observed high dust concentrations at low altitudes over the Yellow Sea. Two key elements for a successful aerosol model forecast are correct source locations that determine where the emissions take place, and realistic forecast winds and convection that determine where the aerosols are transported. We demonstrate that our global model can not only account for the large

  10. Interactions of Gas-Phase Nitric/Nitrous Acids and Primary Organic Aerosol in the Atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Whitlow, S. I.; Lefer, B. L.; Flynn, J.; Rappenglück, B.

    2007-12-01

    Concentrations of aerosol and gas-phase pollutants were measured on the roof of an 18-story building during the Texas Air Quality Study II Radical and Aerosol Measurement Project (TRAMP) from August 15 through September 28, 2006. Aerosol measurements included size-resolved, non-refractory mass concentrations of ammonium, nitrate, sulfate, chloride, and organic aerosol in submicron particles using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS). Particulate water-soluble organic carbon (PWSOC) was quantified using a mist chamber/total organic carbon analysis system. Concentration data for gas-phase pollutants included those for nitric acid (HNO3), nitrous acid (HONO), and hydrochloric acid (HCl) collected using a mist chamber/ion chromatographic technique, oxides of nitrogen (NOx) collected using a chemiluminescent method, and carbon monoxide (CO) collected using an infrared gas correlation wheel instrument. Coincident increases in nitrate and organic aerosol mass concentrations were observed on many occasions throughout the measurement campaign, most frequently during the morning rush hour. Based on the lack of organic aerosol processing (defined by the ratio of m/z = 44/57 in the Q-AMS spectra), strong correlation with NOx and CO, and a lack of significant increase in PWSOC concentration, the spikes in organic aerosol were likely associated with primary organic aerosol (POA). During these events, gas-phase HNO3 concentration decreases were observed simultaneously with increases in gas-phase HONO concentrations. These data likely indicate uptake of HNO3 and subsequent heterogeneous conversion to HONO involving POA. Preliminary calculations show that HNO3 partitioning could account for the majority of the observed HONO and aerosol nitrate concentrations during these events. Q-AMS chloride and HCl data also indicate uptake of chloride by particles during these events. This phenomenon was also observed during the night, but these nocturnal events were less

  11. File Specification for the MERRA Aerosol Reanalysis (MERRAero): MODIS AOD Assimilation based on a MERRA Replay

    NASA Technical Reports Server (NTRS)

    Da Silva, A. M.; Randles, C. A.; Buchard, V.; Darmenov, A.; Colarco, P. R.; Govindaraju, R.

    2015-01-01

    This document describes the gridded output files produced by the Goddard Earth Observing System version 5 (GEOS-5) Goddard Aerosol Assimilation System (GAAS) from July 2002 through December 2014. The MERRA Aerosol Reanalysis (MERRAero) is produced with the hydrostatic version of the GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), ozone, carbon monoxide and carbon dioxide. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic emission sources. Meteorology is replayed from the MERRA Reanalysis.

  12. Physical and Chemical Characterization of Particles in the Upper Troposphere and Lower Stratosphere: Microanalysis of Aerosol Impactor Samples

    NASA Technical Reports Server (NTRS)

    Sheridan, Patrick J.

    1999-01-01

    Herein is reported activities to support the characterization of the aerosol in the upper troposphere (UT) and lower stratosphere (LS) collected during the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) missions in 1994. Through a companion proposal, another group was to measure the size distribution of aerosols in the 0.008 to 2 micrometer diameter range and to collect for us impactor samples of particles larger than about 0.02 gm. In the first year, we conducted laboratory studies related to particulate deposition patterns on our collection substrates, and have performed the analysis of many ASHOE/MAESA aerosol samples from 1994 using analytical electron microscopy (AEM). We have been building an "aerosol climatology" with these data that documents the types and relative abundances of particles observed at different latitudes and altitudes. The second year (and non-funded extension periods) saw continued analyses of impactor aerosol samples, including more ASHOE/MAESA samples, some northern hemisphere samples from the NASA Stratospheric Photochemistry Aerosols and Dynamics Expedition (SPADE) program for comparison, and a few aerosol samples from the NASA Stratospheric TRacers of Atmospheric Transport (STRAT) program. A high-resolution field emission microscope was used for the analysis and re-analysis of a number of samples to determine if this instrument was superior in performance to our conventional electron microscope. In addition, some basic laboratory studies were conducted to determine the minimum detectable and analyzable particle size for different types of aerosols. In all, 61 aerosol samples were analyzed, with a total of over 30,000 individual particle analyses. In all analyzed samples, sulfate particles comprised the major aerosol number fraction. It must be stressed that particles composed of more than one species, for example sulfate and organic carbon, were classified

  13. Quantifying the Aerosol Semi-Direct Effect in the NASA GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Randles, Cynthia A.; Colarco, Peter R.; daSilva, Arlindo

    2011-01-01

    Aerosols such as black carbon, dust, and some organic carbon species both scatter and absorb incoming solar radiation. This direct aerosol radiative forcing (DARF) redistributes solar energy both by cooling the surface and warming the atmosphere. As a result, these aerosols affect atmospheric stability and cloud cover (the semi-direct effect, or SDE). Furthermore, in regions with persistent high loadings of absorbing aerosols (e.g. Asia), regional circulation patterns may be altered, potentially resulting in changes in precipitation patterns. Here we investigate aerosol-climate coupling using the NASA Goddard Earth Observing System model version 5 (GEOS-5) atmospheric general circulation model (AGCM), in which we have implemented an online version of the Goddard Chemistry, Aerosol, Radiation and Transport (GOCART) model. GOCART includes representations of the sources, sinks, and chemical transformation of externally mixed dust, sea salt, sulfate, and carbonaceous aerosols. We examine a series of free-running ensemble climate simulations of the present-day period (2000-2009) forced by observed sea surface temperatures to determine the impact of aerosols on the model climate. The SDE and response of each simulation is determined by differencing with respect to the control simulation (no aerosol forcing). In a free-running model, any estimate of the SDE includes changes in clouds due both to atmospheric heating from aerosols and changes in circulation. To try and quantify the SDE without these circulation changes we then examine the DARF and SDE in GEOS-5 with prescribed meteorological analyses introduced by the MERRA analysis. By doing so, we are able to examine changes in model clouds that occur on shorter scales (six hours). In the GEOS-5 data assimilation system (DAS), the analysis is defined as the best estimate of the atmospheric state at any given time, and it is determined by optimally combining a first-guess short-term GCM forecast with all available

  14. Evaluating aerosol indirect effect through marine stratocumulus clouds

    SciTech Connect

    Kogan, Z.N.; Kogan, Y.L.; Lilly, D.K.

    1996-04-01

    During the last decade much attention has been focused on anthropogenic aerosols and their radiative influence on the global climate. Charlson et al. and Penner et al. have demonstrated that tropospheric aerosols and particularly anthropogenic sulfate aerosols may significantly contribute to the radiative forcing exerting a cooling influence on climate (-1 to -2 W/m{sup 2}) which is comparable in magnitude to greenhouse forcing, but opposite in sign. Aerosol particles affect the earth`s radiative budget either directly by scattering and absorption of solar radiation by themselves or indirectly by altering the cloud radiative properties through changes in cloud microstructure. Marine stratocumulus cloud layers and their possible cooling influence on the atmosphere as a result of pollution are of special interest because of their high reflectivity, durability, and large global cover. We present an estimate of thet aerosol indirect effect, or, forcing due to anthropogenic sulfate aerosols.

  15. Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Qing Fu, Ping; Boreddy, Suresh K. R.; Watanabe, Tomomi; Hatakeyama, Shiro; Takami, Akinori; Wang, Wei

    2016-05-01

    Vertical profiles of dicarboxylic acids, related organic compounds and secondary organic aerosol (SOA) tracer compounds in particle phase have not yet been simultaneously explored in East Asia, although there is growing evidence that aqueous-phase oxidation of volatile organic compounds may be responsible for the elevated organic aerosols (OA) in the troposphere. Here, we found consistently good correlation of oxalic acid, the most abundant individual organic compounds in aerosols globally, with its precursors as well as biogenic-derived SOA compounds in Chinese tropospheric aerosols by aircraft measurements. Anthropogenically derived dicarboxylic acids (i.e., C5 and C6 diacids) at high altitudes were 4-20 times higher than those from surface measurements and even occasionally dominant over oxalic acid at altitudes higher than 2 km, which is in contrast to the predominance of oxalic acid previously reported globally including the tropospheric and surface aerosols. This indicates an enhancement of tropospheric SOA formation from anthropogenic precursors. Furthermore, oxalic acid-to-sulfate ratio maximized at altitudes of ˜ 2 km, explaining aqueous-phase SOA production that was supported by good correlations with predicted liquid water content, organic carbon and biogenic SOA tracers. These results demonstrate that elevated oxalic acid and related SOA compounds from both the anthropogenic and biogenic sources may substantially contribute to tropospheric OA burden over polluted regions of China, implying aerosol-associated climate effects and intercontinental transport.

  16. Tropospheric aerosols: size-differentiated chemistry and large-scale spatial distributions.

    PubMed

    Hidy, George M; Mohnen, Volker; Blanchard, Charles L

    2013-04-01

    Worldwide interest in atmospheric aerosols has emerged since the late 20th century as a part of concerns for air pollution and radiative forcing of the earth's climate. The use of aircraft and balloons for sampling and the use of remote sensing have dramatically expanded knowledge about tropospheric aerosols. Our survey gives an overview of contemporary tropospheric aerosol chemistry based mainly on in situ measurements. It focuses on fine particles less than 1-2.5 microm in diameter. The physical properties of particles by region and altitude are exemplified by particle size distributions, total number and volume concentration, and optical parameters such as extinction coefficient and aerosol optical depth. Particle chemical characterization is size dependent, differentiated by ubiquitous sulfate, and carbon, partially from anthropogenic activity. Large-scale particle distributions extend to intra- and intercontinental proportions involving plumes from population centers to natural disturbances such as dust storms and vegetation fires. In the marine environment, sea salt adds an important component to aerosols. Generally, aerosol components, most of whose sources are at the earth's surface, tend to dilute and decrease in concentration with height, but often show different (layered) profiles depending on meteorological conditions. Key microscopic processes include new particle formation aloft and cloud interactions, both cloud initiation and cloud evaporation. Measurement campaigns aloft are short term, giving snapshots of inherently transient phenomena in the troposphere. Nevertheless, these data, combined with long-term data at the surface and optical depth and transmission observations, yield a unique picture of global tropospheric particle chemistry. PMID:23687724

  17. Chemical Characterization of Secondary Organic Aerosol from Oxidation of Isoprene Hydroxyhydroperoxides.

    PubMed

    Riva, Matthieu; Budisulistiorini, Sri H; Chen, Yuzhi; Zhang, Zhenfa; D'Ambro, Emma L; Zhang, Xuan; Gold, Avram; Turpin, Barbara J; Thornton, Joel A; Canagaratna, Manjula R; Surratt, Jason D

    2016-09-20

    Atmospheric oxidation of isoprene under low-NOx conditions leads to the formation of isoprene hydroxyhydroperoxides (ISOPOOH). Subsequent oxidation of ISOPOOH largely produces isoprene epoxydiols (IEPOX), which are known secondary organic aerosol (SOA) precursors. Although SOA from IEPOX has been previously examined, systematic studies of SOA characterization through a non-IEPOX route from 1,2-ISOPOOH oxidation are lacking. In the present work, SOA formation from the oxidation of authentic 1,2-ISOPOOH under low-NOx conditions was systematically examined with varying aerosol compositions and relative humidity. High yields of highly oxidized compounds, including multifunctional organosulfates (OSs) and hydroperoxides, were chemically characterized in both laboratory-generated SOA and fine aerosol samples collected from the southeastern U.S. IEPOX-derived SOA constituents were observed in all experiments, but their concentrations were only enhanced in the presence of acidified sulfate aerosol, consistent with prior work. High-resolution aerosol mass spectrometry (HR-AMS) reveals that 1,2-ISOPOOH-derived SOA formed through non-IEPOX routes exhibits a notable mass spectrum with a characteristic fragment ion at m/z 91. This laboratory-generated mass spectrum is strongly correlated with a factor recently resolved by positive matrix factorization (PMF) of aerosol mass spectrometer data collected in areas dominated by isoprene emissions, suggesting that the non-IEPOX pathway could contribute to ambient SOA measured in the Southeastern United States. PMID:27466979

  18. Sulfur mass loading of the atmosphere from volcanic eruptions: Calibration of the ice core record on basis of sulfate aerosol deposition in polar regions from the 1982 El Chichon eruption

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Haraldur; Laj, Paolo

    1990-01-01

    Major volcanic eruptions disperse large quantities of sulfur compound throughout the Earth's atmosphere. The sulfuric acid aerosols resulting from such eruptions are scavenged by snow within the polar regions and appear in polar ice cores as elevated acidity layers. Glacio-chemical studies of ice cores can, thus, provide a record of past volcanism, as well as the means for understanding the fate of volcanic sulfur in the atmosphere. The primary objectives of this project are to study the chemistry and physical properties of volcanic fallout in a Greenland Ice Core in order to evaluate the impact of the volcanic gases on the atmospheric chemistry and the total atmospheric mass of volcanic aerosols emitted by major volcanic eruptions. We propose to compare the ice core record to other atmospheric records performed during the last 10 years to investigate transport and deposition of volcanic materials.

  19. Impact of geoengineered aerosols on the troposphere and stratosphere

    SciTech Connect

    Tilmes, S.; Garcia, Rolando R.; Kinnison, Douglas E.; Gettelman, A.; Rasch, Philip J.

    2009-06-27

    A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of geoengineered aerosols on atmospheric processes. In contrast to previous model studies, the impact on stratospheric chemistry, including heterogeneous chemistry in the polar regions, is considered in this simulation. In the geoengineering simulation, a constant stratospheric distribution of volcanic-sized, liquid sulfate aerosols is imposed in the period 2020–2050, corresponding to an injection of 2 Tg S/a. The aerosol cools the troposphere compared to a baseline simulation. Assuming an Intergovernmental Panel on Climate Change A1B emission scenario, global warming is delayed by about 40 years in the troposphere with respect to the baseline scenario. Large local changes of precipitation and temperatures may occur as a result of geoengineering. Comparison with simulations carried out with the Community Atmosphere Model indicates the importance of stratospheric processes for estimating the impact of stratospheric aerosols on the Earth’s climate. Changes in stratospheric dynamics and chemistry, especially faster heterogeneous reactions, reduce the recovery of the ozone layer in middle and high latitudes for the Southern Hemisphere. In the geoengineering case, the recovery of the Antarctic ozone hole is delayed by about 30 years on the basis of this model simulation. For the Northern Hemisphere, a onefold to twofold increase of the chemical ozone depletion occurs owing to a simulated stronger polar vortex and colder temperatures compared to the baseline simulation, in agreement with observational estimates.

  20. LLNL Scientists Use NERSC to Advance Global Aerosol Simulations

    SciTech Connect

    Bergmann, D J; Chuang, C; Rotman, D

    2004-10-13

    While ''greenhouse gases'' have been the focus of climate change research for a number of years, DOE's ''Aerosol Initiative'' is now examining how aerosols (small particles of approximately micron size) affect the climate on both a global and regional scale. Scientists in the Atmospheric Science Division at Lawrence Livermore National Laboratory (LLNL) are using NERSC's IBM supercomputer and LLNL's IMPACT (atmospheric chemistry) model to perform simulations showing the historic effects of sulfur aerosols at a finer spatial resolution than ever done before. Simulations were carried out for five decades, from the 1950s through the 1990s. The results clearly show the effects of the changing global pattern of sulfur emissions. Whereas in 1950 the United States emitted 41 percent of the world's sulfur aerosols, this figure had dropped to 15 percent by 1990, due to conservation and anti-pollution policies. By contrast, the fraction of total sulfur emissions of European origin has only dropped by a factor of 2 and the Asian emission fraction jumped six fold during the same time, from 7 percent in 1950 to 44 percent in 1990. Under a special allocation of computing time provided by the Office of Science INCITE (Innovative and Novel Computational Impact on Theory and Experiment) program, Dan Bergmann, working with a team of LLNL scientists including Cathy Chuang, Philip Cameron-Smith, and Bala Govindasamy, was able to carry out a large number of calculations during the past month, making the aerosol project one of the largest users of NERSC resources. The applications ran on 128 and 256 processors. The objective was to assess the effects of anthropogenic (man-made) sulfate aerosols. The IMPACT model calculates the rate at which SO{sub 2} (a gas emitted by industrial activity) is oxidized and forms particles known as sulfate aerosols. These particles have a short lifespan in the atmosphere, often washing out in about a week. This means that their effects on climate tend to be

  1. Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds

    PubMed Central

    Lin, Ying-Hsuan; Zhang, Zhenfa; Docherty, Kenneth S.; Zhang, Haofei; Budisulistiorini, Sri Hapsari; Rubitschun, Caitlin L.; Shaw, Stephanie L.; Knipping, Eladio M.; Edgerton, Eric S.; Kleindienst, Tadeusz E.; Gold, Avram; Surratt, Jason D.

    2011-01-01

    Isoprene epoxydiols (IEPOX), formed from the photooxidation of isoprene under low-NOx conditions, have recently been proposed as precursors of secondary organic aerosol (SOA) on the basis of mass spectrometric evidence. In the present study, IEPOX isomers were synthesized in high purity (> 99%) to investigate their potential to form SOA via reactive uptake in a series of controlled dark chamber studies followed by reaction product analyses. IEPOX-derived SOA was substantially observed only in the presence of acidic aerosols, with conservative lower-bound yields of 4.7–6.4% for β-IEPOX and 3.4–5.5% for δ-IEPOX, providing direct evidence for IEPOX isomers as precursors to isoprene SOA. These chamber studies demonstrate that IEPOX uptake explains the formation of known isoprene SOA tracers found in ambient aerosols, including 2-methyltetrols, C5-alkene triols, dimers, and IEPOX-derived organosulfates. Additionally, we show reactive uptake on the acidified sulfate aerosols supports a previously unreported acid-catalyzed intramolecular rearrangement of IEPOX to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase. Analysis of these novel tracer compounds by aerosol mass spectrometry (AMS) suggests that they contribute to a unique factor resolved from positive matrix factorization (PMF) of AMS organic aerosol spectra collected from low-NOx, isoprene-dominated regions influenced by the presence of acidic aerosols. PMID:22103348

  2. Reactions and mass spectra of complex particles using Aerosol CIMS

    NASA Astrophysics Data System (ADS)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  3. Characterization of aerosols in East Asia with the Asian Dust and Aerosol Lidar Observation Network (AD-Net)

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro; Jin, Yoshitaka

    2014-11-01

    Continuous observations of aerosols are being conducted with the Asian Dust and aerosol lidar observation Network (AD-Net). Currently, two-wavelength (1064 nm and 532 nm) polarization-sensitive (532 nm) lidars are operated at 20 stations in East Asia. At the primary stations (6 stations), nitrogen vibrational Raman scattering is also measured to obtain the extinction coefficient at 532 nm. Recently, continuous observations with a three-wavelength (1064 nm, 532 nm and 355 nm) lidar having a high-spectral-resolution receiver at 532 nm and a Raman receiver at 355 nm and polarization-sensitive receivers at 532 nm and 355 nm) was started in Tsukuba. Also, continuous observations with multi-wavelength Raman lidars are being prepared in Fukuoka, Okinawa Hedo, and Toyama. A data analysis method for deriving distributions of aerosol components (weak absorption fine (such as sulfate), weak absorption coarse (sea salt), strong absorption fine (black carbon), non-spherical (dust)) has been developed for these multi-parameter lidars. Major subjects of the current studies with AD-Net include data assimilation of multi-parameter lidars, mixing states of Asian dust with air pollution particulate matter, and validation of EarthCARE ATLID based on the aerosol component analysis method.

  4. Comparison of aerosol properties over Beijing and Kanpur: Optical, physical properties and aerosol component composition retrieved from 12 years ground-based Sun-sky radiometer remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, Zhengqiang; Li, Lei; Zhang, Fengxia; Li, Donghui; Xie, Yisong; Xu, Hua

    2015-02-01

    Aerosol mixtures composed of coarse and fine particles occur frequently in metropolitan areas in the world, especially in developing countries. Beijing, China, and Kanpur, India, are both in Asian monsoon regions and experience strong aerosol loading because of increased economic activities, vehicles, and urbanization. Observations originating from the Aerosol Robotic Network (AERONET) have played a vital role in the field of aerosol study. In order to understand the variations of aerosol optical, physical properties and component composition over Beijing and Kanpur, we focus on AERONET measurements collected at these two sites from 2002 to 2013 and employ a five-component (including black carbon, BC; mineral dust, DU; brown carbon, BrC; ammonium sulfate like, AS; and aerosol water content, AW) aerosol mixture model to retrieve the aerosol component composition. Particle size distribution, spectral characteristics of single-scattering albedo, and refractive indices of the aerosols over Beijing and Kanpur are found to be distinct and with regular seasonal variations. Correspondingly, aerosol components show distinct temporal characteristics at both sites. In Beijing, BC shows a significant decrease from 2002 to 2013 (especially after 2007) with an average declining rate of 0.69 mg m-2 yr-1. Among the five components, BC and BrC are higher during winter and autumn especially at Beijing, while DU and AS are higher during spring and summer at the two sites. With respect to site differences, BC and BrC are usually higher in Beijing in most of the year, while DU and AS are higher in Kanpur especially from April to June. Moreover, AW is similar and quite comparable at two sites.

  5. In vitro proteoglycan sulfation derived from sulfhydryl compounds in sulfate transporter chondrodysplasias.

    PubMed

    Rossi, Antonio; Cetta, Giuseppe; Piazza, Rocco; Bonaventure, Jacky; Steinmann, Beat; Supereti-Furga, Andrea

    2003-01-01

    Mutations in a sulfate-chloride antiporter gene, the diastrophic dysplasia sulfate transporter (DTDST), have been associated with a family of skeletal dysplasias including recessive multiple epiphyseal dysplasia, diastrophic dysplasia (DTD), atelosteogenesis type 2, and achondrogenesis type 1B (ACG1B). DTDST function is crucial for uptake of extracellular sulfate required for proteoglycan (PG) sulfation; the tissue-specific expression of the clinical phenotype may be the consequence of the high rate of PG synthesis in chondrocytes and the ensuing high sulfate requirement. We have studied the contribution of cysteine and its derivatives to PG sulfation in fibroblast and chondrocyte cultures from sulfate transporter dysplasia patients. Incubation of ACG1B fibroblasts in medium containing different concentrations of cystine indicated partial recovery of PG sulfation as measured by HPLC disaccharide analysis of chondroitin sulfate PGs; similar results were observed after incubation with N-acetylcysteine. When both compounds were tested in primary chondrocytes from a DTD patient, partial rescue of PG sulfation was observed, suggesting that the metabolic pathways producing cytoplasmic sulfate from thiols are also active in this cell type. PMID:14692227

  6. Uptake of CF3COOH in Upper Tropospheric Sulfate Particles: Effects of Fluorination on the Accommodation of Oxygenated Organic Vapors.

    NASA Astrophysics Data System (ADS)

    Sulbaek Andersen, M. P.; Nielsen, O. J.; Michelsen, R. R.; Iraci, L. T.

    2005-12-01

    Recognition of the adverse impact of chlorofluorocarbon (CFC) release into the atmosphere has led to an international effort to replace CFCs with environmentally acceptable alternatives. Laboratory studies indicate that some of these, including HFC-134a, degrade to yield trifluoroacetyl halides of the form CF3C(O)X. Hydrolysis of trifluoroacetyl halides in cloud water is expected to form trifluoroacetic acid (TFA). Although TFA is produced in aqueous phase chemistry, is highly soluble and also partitions into the water phase, the evaporation of cloud droplets can relocate TFA to the gas phase where it can react with OH radicals. Still this reaction is slow and can only account for to account for <10-20% of the tropospheric loss of TFA. The main atmospheric fate of TFA is believed to be wet and dry deposition to the surface. Submicrometer aerosol particles are ubiquitous in the upper troposphere where they drive such processes as cloud droplet condensation and scattering of incoming solar radiation, and have impact on regional and global climate. While these particles are known to be predominantly sulfuric acid solutions, neutralized with different amounts of ammonia depending on their location and history, their trace composition is largely uncertain. Organic species may be the controlling factor in many processes of interest, and thus identifying organic components and their sources is important for understanding the role of aerosols in the troposphere. While studies show that cloud and fog water will act as a sink for atmospheric TFA, an accurate knowledge of the Henry's law coefficient is required to assess gas/liquid partitioning in upper tropospheric sulfate aerosols, where the temperature and liquid phase pH is much lower. The purpose of this work is to evaluate the role of upper tropospheric sulfate aerosols as a potential sink for TFA, and more generally, the effects of fluorine substitution on uptake of organic compounds into upper tropospheric aerosols

  7. Evolution of Organic Aerosols in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Q.; Kroll, J. H.; DeCarlo, P. F.; Allan, J. D.; Coe, H.; Ng, N. L.; Aiken, A. C.; Docherty, K. S.; Ulbrich, I. M.; Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.; Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.; Tomlinson, J. M.; Collins, D. R.; Cubison, M. J.; Dunlea, J.; Huffman, J. A.; Onasch, T. B.; Alfarra, M. R.; Williams, P. I.; Bower, K.; Kondo, Y.; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, R.; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, J. R.; Sueper, D.; Jayne, J. T.; Herndon, S. C.; Trimborn, A. M.; Williams, L. R.; Wood, E. C.; Middlebrook, A. M.; Kolb, C. E.; Baltensperger, U.; Worsnop, D. R.

    2009-12-01

    Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high-time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.

  8. Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.

    2013-07-01

    Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps), are here used to reconstruct past aerosol load and composition of the free European troposphere from before World War II to present. Available ice core records include inorganic (Na+, Ca2+, NH4+, Cl-, NO3-, and SO42-) and organic (carboxylates, HCHO, humic-like substances, dissolved organic carbon, water-insoluble organic carbon, and black carbon) compounds and fractions that permit reconstructing the key aerosol components and their changes over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921-1951 to 1971-1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). Thus, not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water-soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarios dealing with climate forcing by atmospheric aerosol.

  9. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    SciTech Connect

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  10. Implications of East Asian summer and winter monsoons for interannual aerosol variations over central-eastern China

    NASA Astrophysics Data System (ADS)

    Cheng, Xugeng; Zhao, Tianliang; Gong, Sunling; Xu, Xiangde; Han, Yongxiang; Yin, Yan; Tang, Lili; He, Hongchang; He, Jinhai

    2016-03-01

    Air quality change is generally driven by two factors: pollutant emissions and meteorology, which are difficult to distinguish via observations. To identify the contribution of meteorological factor to air quality change, an aerosol simulation from 1995 to 2004 with the global air quality model GEM-AQ/EC was designed without year-to-year changes in the anthropogenic aerosol (including sulfate and organic and black carbon) emissions over the 10-year span. To assess the impact of interannual variations of East Asian monsoon (EAM) on air quality change in China, this modeling study focused on the region of central-eastern China (CEC), a typical East Asian monsoon (EAM) region with high anthropogenic aerosol emissions. The simulation analysis showed that the interannual variability in surface aerosols over CEC was driven by fluctuation in meteorological factors associated with EAM changes. Large amplitudes of interannual variability in surface aerosol concentrations reaching 20-30% relative to the 10-year averages were found over southern CEC in summer and over northern CEC in winter. The weakened near-surface winds of EAMs in both summer and winter were significantly correlated with aerosol increases over most areas of CEC. The summer and winter monsoon changes enhance the surface aerosol concentrations with increasing trend rates exceeding 30% and 40% over the southern and northern CEC region, respectively, during the 10 years. The composite analyses of aerosol concentrations in weak and strong monsoon years revealed that positive anomalies in surface aerosol concentrations during weak summer monsoon years were centered over the vast CEC region from the North China Plain to the Sichuan Basin, and the anomaly pattern with "northern higher" and "southern lower" surface aerosol levels was distributed over CEC in weak winter monsoon years. Aerosol washout by summer monsoon rainfall exerted an impact on CEC aerosol distribution in summer; aerosol dry depositions in

  11. [Application of on-line single particle aerosol mass spectrometry (SPAMS) for studying major components in fine particulate matter].

    PubMed

    Fu, Huai-yu; Yan, Cai-qing; Zheng, Mei; Cai, Jing; Li, Xiao-ying; Zhang, Yan-jun; Zhou Zhen; Fu, Zhong; Li, Mei; Li, Lei; Zhang, Yuan-Hang

    2014-11-01

    Based on preliminary studies by aerosol time-of-flight mass spectrometer (ATOFMS) and single particle aerosol mass spectrometer (SPAMS), typical methods for identifying the number of particles (or particle count) for five major components including sulfate, nitrate, ammonium, organic carbon (OC), and elemental carbon (EC) in China and abroad were summarized. In this study, combined with the characteristics of single particle mass spectrum by SPAMS, an optimized method is proposed. With field measurement using SPAMS during January 2013 in Beijing, particle counts of sulfate, nitrate, ammonium, OC, and EC determined by different methods were compared. The comparison with results of off-line filter analyses for these five components proved that the method proposed in this study is comparable and optimized. We also suggest factors needed to be considered in future application of SPAMS and other areas that require in-depth research. PMID:25639078

  12. [Application of on-line single particle aerosol mass spectrometry (SPAMS) for studying major components in fine particulate matter].

    PubMed

    Fu, Huai-yu; Yan, Cai-qing; Zheng, Mei; Cai, Jing; Li, Xiao-ying; Zhang, Yan-jun; Zhou Zhen; Fu, Zhong; Li, Mei; Li, Lei; Zhang, Yuan-Hang

    2014-11-01

    Based on preliminary studies by aerosol time-of-flight mass spectrometer (ATOFMS) and single particle aerosol mass spectrometer (SPAMS), typical methods for identifying the number of particles (or particle count) for five major components including sulfate, nitrate, ammonium, organic carbon (OC), and elemental carbon (EC) in China and abroad were summarized. In this study, combined with the characteristics of single particle mass spectrum by SPAMS, an optimized method is proposed. With field measurement using SPAMS during January 2013 in Beijing, particle counts of sulfate, nitrate, ammonium, OC, and EC determined by different methods were compared. The comparison with results of off-line filter analyses for these five components proved that the method proposed in this study is comparable and optimized. We also suggest factors needed to be considered in future application of SPAMS and other areas that require in-depth research.

  13. Satellite-based global volcanic SO2 emissions and sulfate direct radiative forcing during 2005-2012

    NASA Astrophysics Data System (ADS)

    Ge, Cui; Wang, Jun; Carn, Simon; Yang, Kai; Ginoux, Paul; Krotkov, Nickolay

    2016-04-01

    An 8 year volcanic SO2 emission inventory for 2005-2012 is obtained based on satellite measurements of SO2 from OMI (Ozone Monitoring Instrument) and ancillary information from the Global Volcanism Program. It includes contributions from global volcanic eruptions and from eight persistently degassing volcanoes in the tropics. It shows significant differences in the estimate of SO2 amount and injection height for medium to large volcanic eruptions as compared to the counterparts in the existing volcanic SO2 database. Emissions from Nyamuragira (DR Congo) in November 2006 and Grímsvötn (Iceland) in May 2011 that were not included in the Intergovernmental Panel on Climate Change 5 (IPCC) inventory are included here. Using the updated emissions, the volcanic sulfate (SO42-) distribution is simulated with the global transport model Goddard Earth Observing System (GEOS)-Chem. The simulated time series of sulfate aerosol optical depth (AOD) above 10 km captures every eruptive volcanic sulfate perturbation with a similar magnitude to that measured by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The 8 year average contribution of eruptive SO42- to total SO42- loading above 10 km is ~10% over most areas of the Northern Hemisphere, with a maxima of 30% in the tropics where the anthropogenic emissions are relatively smaller. The persistently degassing volcanic SO42- in the tropics barely reaches above 10 km, but in the lower atmosphere it is regionally dominant (60%+ in terms of mass) over Hawaii and other oceanic areas northeast of Australia. Although the 7 year average (2005-2011) of eruptive volcanic sulfate forcing of -0.10 W m-2 in this study is comparable to that in the 2013 IPCC report (-0.09 W m-2), significant discrepancies exist for each year. Our simulations also imply that the radiative forcing per unit AOD for volcanic eruptions can vary from -40 to -80 W m-2, much higher than the -25 W m-2 implied in the IPCC calculations. In

  14. Infrared refractive index of atmospheric aerosol substances.

    PubMed

    Volz, F E

    1972-04-01

    The optical constants in the ir from lambda2.5 microm to 40 microm (4000-250 cm(-1)) of dry natural aerosol substances and of sea salt are presented. The aerosol substances were obtained from rain and snow water: dust and soot by sedimentation, and water soluble salts by evaporation. The spectra of the absorption index n' were derived from our published transmittance measurements of potassium bromide disks. The real part n of the refractive index was calculated from the specular reflectance at near normal incidence of disks of pure aerosol substance. The observed spectral features are being related to chemical constituents, notably sulfates and alcohol soluble organics. Optical constants of composite and wet aerosol are discussed. A simple model confirms the measured transmission of a coarse dry powder of water solubles and shows that the extinction by natural aerosol should have a minimum near 8 microm and a strong maximum near 9 microm.

  15. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  16. Effects of aerosol species on atmospheric visibility in Kaohsiung City, Taiwan

    SciTech Connect

    Chang-Gai Lee; Chung-Shin Yuan; Jui-Cheng Chang; Ching Yuan

    2005-07-01

    Visibility data collected from Kaohsiung City, Taiwan, for the past two decades indicated that the air pollutants have significantly degraded visibility in recent years. During the study period, the seasonal mean visibilities in spring, summer, fall, and winter were only 5.4, 9.1, 8.2, and 3.4 km, respectively. To ascertain how urban aerosols influence the visibility, we conducted concurrent visibility monitoring and aerosol sampling in 1999 to identify the principal causes of visibility impairments in the region. In this study, ambient aerosols were sampled and analyzed for 11 constituents, including water-soluble ions and carbon materials, to investigate the chemical composition of Kaohsiung aerosols. Stepwise regression method was used to correlate the impact of aerosol species on visibility impairments. Both seasonal and diurnal variation patterns were found from the monitoring of visibility. Results showed that light scattering was attributed primarily to aerosols with sizes that range from 0.26 to 0.90 {mu}m, corresponding with the wavelength region of visible light, which accounted for {approximately} 72% of the light scattering coefficient. Sulfate was a dominant component that affected both the light scattering coefficient and the visibility in the region. On average, (NH{sub 4}){sup 2}SO{sub 4}, NH{sub 4}NO{sub 3}, total carbon, and fine particulate matter (PM2.5)-remainder contributed 53%, 17%, 16%, and 14% to total light scattering, respectively. An empirical regression model of visibility based on sulfate, elemental carbon, and humidity was developed, and the comparison indicated that visibility in an urban area could be properly simulated by the equation derived herein. 35 refs., 10 figs., 4 tabs.

  17. RACORO aerosol data processing

    SciTech Connect

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  18. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    SciTech Connect

    Saide, Pablo; Spak, S. N.; Carmichael, Gregory; Mena-Carrasco, M. A.; Yang, Qing; Howell, S. G.; Leon, Dolislager; Snider, Jefferson R.; Bandy, Alan R.; Collett, Jeffrey L.; Benedict, K. B.; de Szoeke, S.; Hawkins, Lisa; Allen, Grant; Crawford, I.; Crosier, J.; Springston, S. R.

    2012-03-30

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.

  19. Salting Constants of Small Organic Molecules in Aerosol-Relevant Salts and Application to Aerosol Formation in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Carlton, A. M. G.; Ziemann, P. J.; Volkamer, R. M.

    2014-12-01

    Secondary organic aerosol (SOA) formation from small water-soluble molecules such as glyoxal and methyl glyoxal is a topic of emerging interest. Results from recent field campaigns, e.g. Waxman et al. (2013, GRL) and Knote et al. (2014, ACP), show that these molecules can form significant SOA mass as a result of 'salting-in'. Salting-in happens when a molecule's solubility increases with salt concentration and salting-out is the reverse. Salting effects modify the solubility exponentially with increasing salt concentration, and thus the effective Henry's law constant can strongly modify partitioning, and multiphase chemical reaction rates in aerosol water. Moreover, the solubility in aerosol water cannot easily inferred based on the solubility in cloud water, as the salting effects could change the solubility by a factor of 104 or more. In this work, we have devised and applied a novel experimental setup to measure salting constants using an ion trap mass spectrometer. We focus on small, water soluble molecules like methyl glyoxal and similar compounds and measure salting constants for aerosol-relevant salts including ammonium sulfate, ammonium nitrate, and sodium chloride. The Setschenow salting-constant values are then used to parameterize the effects of salting in CMAQ. We present a series of sensitivity studies of the effects that inorganic aerosols have on the SOA formation from small soluble molecules in the southeastern United States.

  20. Origin of surface and columnar Indian Ocean Experiment (INDOEX) aerosols using source- and region-tagged emissions transport in a general circulation model - article no. D24211

    SciTech Connect

    Verma, S.; Venkataraman, C.; Boucher, O.

    2008-12-15

    We study the relative influence of aerosols emitted from different sectors and geographical regions on aerosol loading in south Asia. Sectors contributing aerosol emissions include biofuel and fossil fuel combustion, open biomass burning, and natural sources. Geographical regions include India, southeast Asia, east Asia, Africa-west Asia, and the rest of the world. Simulations of the Indian Ocean Experiment (INDOEX), from January to March 1999, are made in the general circulation model of Laboratoire de Meteorologie Dynamique (LMD-ZT GCM) with emissions tagged by sector and geographical region. Anthropogenic emissions dominate (54-88%) the predicted aerosol optical depth (AOD) over all the receptor regions. Among the anthropogenic sectors, fossil fuel combustion has the largest overall influence on aerosol loading, primarily sulfate, with emissions from India (50-80%) and rest of the world significantly influencing surface concentrations and AOD. Biofuel combustion has a significant influence on both the surface and columnar black carbon (BC) in particular over the Indian subcontinent and Bay of Bengal with emissions largely from the Indian region (60-80%). Open biomass burning emissions influence organic matter (OM) significantly, and arise largely from Africa-west Asia. The emissions from Africa-west Asia affect the carbonaceous aerosols AOD in all receptor regions, with their largest influence (AOD-BC: 60%; and AOD-OM: 70%) over the Arabian Sea. Among Indian regions, the Indo-Gangetic Plain is the largest contributor to anthropogenic surface mass concentrations and AOD over the Bay of Bengal and India. Dust aerosols are contributed mainly through the long-range transport from Africa-west Asia over the receptor regions. Overall, the model estimates significant intercontinental incursion of aerosol, for example, BC, OM, and dust from Africa-west Asia and sulfate from distant regions (rest of the world) into the INDOEX domain.

  1. Water Soluble Ions in Bulk Aerosol During the WINTER 2015 Campaign.

    NASA Astrophysics Data System (ADS)

    Dibb, J. E.; Scheuer, E. M.; Brown, S. S.; Campuzano Jost, P.; Fibiger, D. L.; Guo, H.; Jimenez, J. L.; Lopez-Hilfiker, F.; McDuffie, E. E.; Schroder, J. C.; Sullivan, A.; Thornton, J. A.; Veres, P. R.; Weber, R. J.

    2015-12-01

    Aerosol samples were collected on filters from the NCAR C-130 during the WINTER campaign using an inlet believed to transmit particles up to 4 micron in diameter. Filter integration times were nominally 7 minutes. Aqueous extracts of the filter samples were analyzed by ion chromatography for 5 anions and 5 cations, we focus primarily on chloride and nitrate due to their roles coupling chlorine and nitrogen oxide chemistry. Comparison to measurements of submicron aerosol (by PILS and AMS) indicates that there was significant coarse chloride in the boundary layer on all WINTER flights, including the 7 flights over the continent. Significant super micron chloride at altitudes above 2 km was seen in just 3 of the filter samples from the entire mission, all of these were well inland. During the 6 flights over the Atlantic ocean we observed displacement of chloride from the dominant seasalt aerosol at times, but evidence for coarse mode nitrate or sulfate aerosol to explain this is less clear. While coarse aerosol chloride mixing ratios were sufficient to support observed production of nitryl chloride, no correlations between these compounds were observed on any flights. However, nitrate was positively correlated with nitryl chloride, as expected, on all flights when the latter exceeded several 100's of pptv for extended periods. Aerosol nitrate was also positively correlated with dinitrogen pentoxide when mixing ratios of the latter exceeded ~500 pptv for significant portions of a flight. On the WINTER flights in February aerosol nitrate was often more abundant than nitric acid, this was less often the case for the flights in March. This change in partitioning of nitrate between gas and particle phases reflects an increasing trend of nitric acid and a small decrease in abundance of aerosol nitrate through the campaign.

  2. Photochemical organonitrate formation in wet aerosols

    NASA Astrophysics Data System (ADS)

    Lim, Yong Bin; Kim, Hwajin; Kim, Jin Young; Turpin, Barbara J.

    2016-10-01

    Water is the most abundant component of atmospheric fine aerosol. However, despite rapid progress, multiphase chemistry involving wet aerosols is still poorly understood. In this work, we report results from smog chamber photooxidation of glyoxal- and OH-containing ammonium sulfate or sulfuric acid particles in the presence of NOx and O3 at high and low relative humidity. Particles were analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). During the 3 h irradiation, OH oxidation products of glyoxal that are also produced in dilute aqueous solutions (e.g., oxalic acids and tartaric acids) were formed in both ammonium sulfate (AS) aerosols and sulfuric acid (SA) aerosols. However, the major products were organonitrogens (CHNO), organosulfates (CHOS), and organonitrogen sulfates (CHNOS). These were also the dominant products formed in the dark chamber, indicating non-radical formation. In the humid chamber (> 70 % relative humidity, RH), two main products for both AS and SA aerosols were organonitrates, which appeared at m / z- 147 and 226. They were formed in the aqueous phase via non-radical reactions of glyoxal and nitric acid, and their formation was enhanced by photochemistry because of the photochemical formation of nitric acid via reactions of peroxy radicals, NOx and OH during the irradiation.

  3. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  4. Physico-chemical properties of aerosols in Sao Paulo, Brazil and mechanisms of secondary organic aerosol formation.

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Luiza Godoy, Maria; Godoy, Jose Marcus

    2013-04-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an increasingly important role. Sao Paulo is a megacity with a population of about 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in Sao Paulo is bellow WMO standards for aerosol particles and ozone. Many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission characteristics, we are running a source apportionment study in Sao Paulo focused on the mechanisms of organic aerosol formation. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles). This study comprises four sampling sites with continuous measurements for one year, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, O3, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to measure in real time VOCs and aerosol composition, respectively. Trace elements were measured using XRF and OC/EC analysis was determined with a Sunset OC/EC instrument. A TSI Nephelometer with 3 wavelengths measure light scattering and a MAAP measure black carbon. Results show aerosol number concentrations ranging between 10,000 and 35,000 cm-3, mostly concentrated in the nucleation and Aitken modes, with a peak in size at 80

  5. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    SciTech Connect

    Saide P. E.; Springston S.; Spak, S. N.; Carmichael, G. R.; Mena-Carrasco, M. A.; Yang, Q.; Howell, S.; Leon, D. C.; Snider, J. R.; Bandy, A. R.; Collett, J. L.; Benedict, K. B.; de Szoeke, S. P.; Hawkins, L. N.; Allen, G.; Crawford, I.; Crosier, J.

    2012-03-29

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and three aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign-averaged longitudinal gradients, and highlight differences in model simulations with (W) and without (NW) wet deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, especially in the activation parameterization, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions, and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, and may do so with the reliability required for policy analysis.

  6. Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Nozière, Barbara; Ekström, Sanna; Alsberg, Tomas; Holmström, Sara

    2010-03-01

    Many atmospheric aerosols contain both organic compounds and inorganic material, such as sulfate salts. In this work, we show that these sulfates could trigger some chemical transformations of the organic compounds by producing sulfate radicals, SO4-, when exposed to UV light (280-320 nm). In particular, we show by mass spectrometry (LC/ESI-MSMS) that isoprene, methyl vinyl ketone, methacrolein, and α-pinene in irradiated sulfate solutions (ammonium and sodium sulfate) produce the same organosulfates as previously identified in aerosols, and even some that had remained unidentified until now. With a typical time constant of 9 h instead of 4600 days for esterifications, these radical reactions would be a plausible origin for the atmospheric organosulfates. These reactions also produced efficient surfactants, possibly resembling the long-chain organosulfates found in the experiments. Thus, photochemistry in mixed sulfate/organic aerosols could increase cloud condensation nuclei (CCN) numbers, which would be supported by previous atmospheric observations.

  7. Photophoretic levitation of engineered aerosols for geoengineering.

    PubMed

    Keith, David W

    2010-09-21

    Aerosols could be injected into the upper atmosphere to engineer the climate by scattering incident sunlight so as to produce a cooling tendency that may mitigate the risks posed by the accumulation of greenhouse gases. Analysis of climate engineering has focused on sulfate aerosols. Here I examine the possibility that engineered nanoparticles could exploit photophoretic forces, enabling more control over particle distribution and lifetime than is possible with sulfates, perhaps allowing climate engineering to be accomplished with fewer side effects. The use of electrostatic or magnetic materials enables a class of photophoretic forces not found in nature. Photophoretic levitation could loft particles above the stratosphere, reducing their capacity to interfere with ozone chemistry; and, by increasing particle lifetimes, it would reduce the need for continual replenishment of the aerosol. Moreover, particles might be engineered to drift poleward enabling albedo modification to be tailored to counter polar warming while minimizing the impact on equatorial climates.

  8. The Life Cycle of Stratospheric Aerosol Particles

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Jensen, Eric J.; Russell, P. B.; Bauman, Jill J.

    1997-01-01

    This paper describes the life cycle of the background (nonvolcanic) stratospheric sulfate aerosol. The authors assume the particles are formed by homogeneous nucleation near the tropical tropopause and are carried aloft into the stratosphere. The particles remain in the Tropics for most of their life, and during this period of time a size distribution is developed by a combination of coagulation, growth by heteromolecular condensation, and mixing with air parcels containing preexisting sulfate particles. The aerosol eventually migrates to higher latitudes and descends across isentropic surfaces to the lower stratosphere. The aerosol is removed from the stratosphere primarily at mid- and high latitudes through various processes, mainly by isentropic transport across the tropopause from the stratosphere into the troposphere.

  9. Photophoretic levitation of engineered aerosols for geoengineering.

    PubMed

    Keith, David W

    2010-09-21

    Aerosols could be injected into the upper atmosphere to engineer the climate by scattering incident sunlight so as to produce a cooling tendency that may mitigate the risks posed by the accumulation of greenhouse gases. Analysis of climate engineering has focused on sulfate aerosols. Here I examine the possibility that engineered nanoparticles could exploit photophoretic forces, enabling more control over particle distribution and lifetime than is possible with sulfates, perhaps allowing climate engineering to be accomplished with fewer side effects. The use of electrostatic or magnetic materials enables a class of photophoretic forces not found in nature. Photophoretic levitation could loft particles above the stratosphere, reducing their capacity to interfere with ozone chemistry; and, by increasing particle lifetimes, it would reduce the need for continual replenishment of the aerosol. Moreover, particles might be engineered to drift poleward enabling albedo modification to be tailored to counter polar warming while minimizing the impact on equatorial climates. PMID:20823254

  10. Photophoretic levitation of engineered aerosols for geoengineering

    PubMed Central

    Keith, David W.

    2010-01-01

    Aerosols could be injected into the upper atmosphere to engineer the climate by scattering incident sunlight so as to produce a cooling tendency that may mitigate the risks posed by the accumulation of greenhouse gases. Analysis of climate engineering has focused on sulfate aerosols. Here I examine the possibility that engineered nanoparticles could exploit photophoretic forces, enabling more control over particle distribution and lifetime than is possible with sulfates, perhaps allowing climate engineering to be accomplished with fewer side effects. The use of electrostatic or magnetic materials enables a class of photophoretic forces not found in nature. Photophoretic levitation could loft particles above the stratosphere, reducing their capacity to interfere with ozone chemistry; and, by increasing particle lifetimes, it would reduce the need for continual replenishment of the aerosol. Moreover, particles might be engineered to drift poleward enabling albedo modification to be tailored to counter polar warming while minimizing the impact on equatorial climates. PMID:20823254

  11. Heparan Sulfate Proteoglycans

    PubMed Central

    Sarrazin, Stephane; Lamanna, William C.; Esko, Jeffrey D.

    2011-01-01

    Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein–heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level. PMID:21690215

  12. Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization

    SciTech Connect

    Friedman, Beth; Herich, Hanna; Kammermann, Lukas; Gross, Deborah S.; Ameth, Almut; Holst, Thomas; Lohmann, U.; Cziczo, Daniel J.

    2009-07-10

    Sub-Arctic aerosol was sampled during July 2007 at the Abisko Research Station Stordalen field site operated by the Royal Swedish Academy of Sciences. Located in northern Sweden at 68º latitude and 385 meters above sea level (msl), this site is classified as a semi-continuous permafrost mire. Number density, size distribution, cloud condensation nucleus properties, and chemical composition of the ambient aerosol were determined. Backtrajectories showed that three distinct airmasses were present over Stordalen during the sampling period. Aerosol properties changed and correlated with airmass origin to the south, northeast, or west. We observe that Arctic aerosol is not compositionally unlike that found in the free troposphere at mid-latitudes. Internal mixtures of sulfates and organics, many on insoluble biomass burning and/or elemental carbon cores, dominate the number density of particles from ~200 to 2000 nm aerodynamic diameter. Mineral dust which had taken up gas phase species was observed in all airmasses. Sea salt, and the extent to which it had lost volatile components, was the aerosol type that most varied with airmass.

  13. Aerosol and CCN properties at Princess Elisabeth station, East Antarctica: seasonality, new particle formation events and properties around precipitation events

    NASA Astrophysics Data System (ADS)

    Mangold, Alexander; Laffineur, Quentin; De Backer, Hugo; Herenz, Paul; Wex, Heike; Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina; Van Lipzig, Nicole

    2016-04-01

    Since 2010, several complementary ground-based instruments for measuring the aerosol composition of the Antarctic atmosphere have been operated at the Belgian Antarctic research station Princess Elisabeth, in Dronning Maud Land, East Antarctica (71.95° S, 23.35° E, 1390 m asl.). In addition, three ground-based remote sensing instruments for cloud and precipitation observations have been installed for continuous operation, including a ceilometer (cloud base height, type, vertical extent), a 24 Ghz micro-rain radar (vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (cloud base temperature). The station is inhabited from November to end of February and operates under remote control during the other months. In this contribution, the general aerosol and cloud condensation nuclei (CCN) properties will be described with a special focus on new particle formation events and around precipitation events. New particle formation events are important for the atmospheric aerosol budget and they also show that aerosols are not only transported to Antarctica but are also produced there, also inland. Aerosols are essential for cloud formation and therefore also for precipitation, which is the only source for mass gain of the Antarctic ice sheet. Measured aerosol properties comprise size distribution, total number, total mass concentration, mass concentration of light-absorbing aerosol and absorption coefficient and total scattering coefficient. In addition, a CCN counter has been operated during austral summers 2013/14, 2014/15 and 2015/16. The baseline total number concentration N-total was around some hundreds of particles/cm3. During new particle formation events N-total increased to some thousands of particles/cm3. Simultaneous measurements of N-total, size distribution and CCN number revealed that mostly the number of particles smaller than 100 nm increased and that the concentration of cloud condensation nuclei increased only very

  14. Application of the VH-TDMA technique to coastal ambient aerosols

    NASA Astrophysics Data System (ADS)

    Johnson, G.; Ristovski, Z.; Morawska, L.

    2004-08-01

    A newly developed VH-TDMA has been used for the first time to measure the volatile fractions and post volatilization hygroscopic growth factors of ambient aerosols in the coastal marine and urban environments. The results are compared with comparable data for laboratory generated aerosols of known composition. Measurements conducted on coastal Aitken mode particles showed volatilization behavior similar to laboratory generated aerosols composed of methane sulfonic acid and ammonium sulfate. Measurements conducted on 60 nm particles during nucleation events contained a greater fraction of material with similar volatility to ammonium sulfate than was found at other times. These particles were hygroscopic but less so than pure ammonium sulfate. Measurements conducted in the Brisbane central business district during sea breeze conditions show similar behavior to the coastal aerosol, but with additional low volatility species. This aerosol may originate from urban sources or from marine particles acquiring additional secondary aerosol species during transport.

  15. Comparative Climate Responses of Anthropogenic Greenhouse Gases, All Major Aerosol Components, Black Carbon, and Methane, Accounting for the Evolution of the Aerosol Mixing State and of Clouds/Precipitation from Multiple Aerosol Size Distributions

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2005-12-01

    Several modeling studies to date have simulated the global climate response of anthropogenic greenhouse gases and bulk (non-size-resolved) sulfate or generic aerosol particles together, but no study has examined the climate response of greenhouse gases simultaneously with all major size- and composition resolved aerosol particle components. Such a study is important for improving our understanding of the effects of anthropogenic pollutants on climate. Here, the GATOR-GCMOM model is used to study the global climate response of (a) all major greenhouse gases and size-resolved aerosol components, (b) all major greenhouse gases alone, (c) fossil-fuel soot (black carbon, primary organic matter, sulfuric acid, bisulfate, sulfate), and (d) methane. Aerosol components treated in all simulations included water, black carbon, primary organic carbon, secondary organic carbon, sulfuric acid, bisulfate, sulfate, nitrate, chloride, ammonium, sodium, hydrogen ion, soil dust, and pollen/spores. Fossil-fuel soot (FFS) was emitted into its own size distribution. All other components, including biofuel and biomass soot, sea-spray, soil dust, etc., were emitted into a second distribution (MIX). The FFS distribution grew by condensation of secondary organic matter and sulfuric acid, hydration of water, and dissolution of nitric acid, ammonia, and hydrochloric acid. It self-coagulated and heterocoagulated with the MIX distribution, which also grew by condensation, hydration, and dissolution. Treatment of separate distributions for FFS allowed FFS to evolve from an external mixture to an internal mixture. In both distributions, black carbon was treated as a core component for optical calculations. Both aerosol distributions served as CCN during explicit size-resolved cloud formation. The resulting clouds grew by coagulation and condensation, coagulated with interstitial aerosol particles, and fell to the surface as rain and snow, carrying aerosol constituents with them. Thus, cloud

  16. Using Terrestrial Sulfate Efflorescences as an Analogue of Hydrated Sulfate Formation in Valles Marineris on Mars

    NASA Astrophysics Data System (ADS)

    Smith, P. C.; Szynkiewicz, A.

    2015-12-01

    Hydrated sulfate minerals provide conclusive evidence that a hydrologic cycle was once active on the surface of Mars. Two classes of hydrated sulfate minerals have been detected by robotic instruments on Mars: monohydrated sulfate minerals comprised of kieserite and gypsum, and various polyhydrated sulfates with Fe-Ca-Na-Mg-rich compositions. These minerals are found in various locations on Mars, including large surface exposures in valley settings of Valles Marineris. However, the sulfate sources and formation mechanisms of these minerals are not yet well understood.Recently, it has been suggested that the sulfate minerals in Valles Marineris might have formed in a manner similar to sulfate efflorescences found in dry environments on Earth. In this study, we use sulfate effloresences from the Rio Puerco Watershed, New Mexico as a terrestrial analogue to assess major factors that might have led to deposition of sulfate minerals in Valles Marineris. In different seasons indicative of dry and wet conditions, we collected field photographs and sediment samples for chemical and stable isotopic analyses (sulfur content, δ34S) to determine major sources of sulfate ions for efflorescences and to assess how the seasonal changes in surface/groundwater activity affect their formation. Preliminary sulfur isotope results suggest that oxidation of bedrock sulfides (0.01-0.05 wt. S %) is a major source of sulfate ion for efflorescences formation because their δ34S varied in negative range (-28 to -20‰) similar to sulfides (average -32‰). Using field photographs collected in Oct 2006, Feb and Nov 2012, May 2013, Mar and Oct 2014, we infer that the highest surface accumulation of sulfate efflorescences in the studied analog site was observed after summer monsoon seasons when more water was available for surface and subsurface transport of solutes from chemical weathering. Conversely, spring snow melt led to enhanced dissolution of sulfate efflorescences.

  17. Acid Sulfate Alteration on Mars

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    aqueous formation of sulfate-bearing phases under acidic conditions on the surface of Mars including (1) sulfuric acid weathering of basaltic materials; (2) oxidative weathering of ultramafic igneous rocks containing sulfides; (3) acid fog weathering of basaltic materials, and (4) near-neutral pH subsurface solutions rich in Fe2(+) that were rapidly oxidized to Fe3(+), which produced excess acidity as iron was oxidized on exposure to O2 or photo-oxidized by ultraviolet radiation at the martian surface. Next, we briefly describe evidence for these hypothesis.

  18. Graphical techniques for interpreting the composition of individual aerosol particles

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Rahn, Kenneth A.; Zhuang, Guoshun

    A graphical technique that uses X- Y and ternary plots is presented for interpreting elemental data for individual aerosol particles. By revealing the multiple functional relationships between the elements, it offers more insight into the groups of particles and the transitions between them than traditional techniques such as factor analysis and cluster analysis alone are able to. For a sample of dust storm aerosol from Beijing in March 2002, X-Y plots revealed areas, lines, and "dots" that represented clays, smooth transitions to asymptotes of pure single-component minerals, and pure minor minerals or special particles, respectively. Ternary plots further revealed ratios of elements and potential minerals. Careful use of cluster analysis revealed subgroups of particles that were not separated by clear borders. The dust storm had three major components, clay/quartz (Al 2O 3, SiO 2, etc.), basic calcium (CaO, CaCO 3), and salts (sulfate, phosphate, chloride). Some sulfates, including CaSO 4 and (NH 4) xH 2-xSO 4, were mixed with the quartz and clay. A five-step sequence that combines graphics, basic statistics, cluster analysis, and SEM photography seems to extract the maximum information from suites of single particles.

  19. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  20. Graphical aerosol classification method using aerosol relative optical depth

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Xiang; Yuan, Yuan; Shuai, Yong; Tan, He-Ping

    2016-06-01

    A simple graphical method is presented to classify aerosol types based on a combination of aerosol optical thickness (AOT) and aerosol relative optical thickness (AROT). Six aerosol types, including maritime (MA), desert dust (DD), continental (CO), sub-continental (SC), urban industry (UI) and biomass burning (BB), are discriminated in a two dimensional space of AOT440 and AROT1020/440. Numerical calculations are performed using MIE theory based on a multi log-normal particle size distribution, and the AROT ranges for each aerosol type are determined. More than 5 years of daily observations from 8 representative aerosol sites are applied to the method to confirm spatial applicability. Finally, 3 individual cases are analyzed according to their specific aerosol status. The outcomes indicate that the new graphical method coordinates well with regional characteristics and is also able to distinguish aerosol variations in individual situations. This technique demonstrates a novel way to estimate different aerosol types and provide information on radiative forcing calculations and satellite data corrections.

  1. Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

    NASA Astrophysics Data System (ADS)

    Hock, N.; Schneider, J.; Borrmann, S.; Römpp, A.; Moortgat, G.; Franze, T.; Schauer, C.; Pöschl, U.; Plass-Dülmer, C.; Berresheim, H.

    2008-02-01

    Detailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. Online measurements included: Size-resolved chemical composition of submicron particles; total particle number concentrations and size distributions over the diameter range of 3 nm to 9 μm; gas-phase concentration of monoterpenes, CO, O3, OH, and H2SO4. Filter sampling and offline analytical techniques were used to determine: Fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 μg m-3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 μg m-3). The relative proportions of non-refractory submicron particle components were: (23±39)% ammonium nitrate, (27±23)% ammonium sulfate, and (50±40)% organics (OM1). OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. The average ratio of OM1 to OC2.5 was 2.1±1.4, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA) inferred from the AMS results (4:1), and also with the high abundance of proteins (~3%) indicating a high proportion of primary biological material (~30%) in PM2.5. This finding was confirmed by low abundance of PAHs (<1 ng m-3) and EC (<1 μg m-3) in PM2.5 and detection of several secondary organic aerosol compounds (dicarboxylic acids) and their precursors (monoterpenes). New particle formation was observed almost

  2. High-sensitivity microchip electrophoresis determination of inorganic anions and oxalate in atmospheric aerosols with adjustable selectivity and conductivity detection.

    PubMed

    Noblitt, Scott D; Schwandner, Florian M; Hering, Susanne V; Collett, Jeffrey L; Henry, Charles S

    2009-02-27

    A sensitive and selective separation of common anionic constituents of atmospheric aerosols, sulfate, nitrate, chloride, and oxalate, is presented using microchip electrophoresis. The optimized separation is achieved in under 1 min and at low background electrolyte ionic strength (2.9 mM) by combining a metal-binding electrolyte anion (17 mM picolinic acid), a sulfate-binding electrolyte cation (19 mM HEPBS), a zwitterionic surfactant with affinity towards weakly solvated anions (19 mM N-tetradecyl,N,N-dimethyl-3-ammonio-1-propansulfonate), and operation in counter-electroosmotic flow (EOF) mode. The separation is performed at pH 4.7, permitting pH manipulation of oxalate's mobility. The majority of low-concentration organic acids are not observed at these conditions, allowing for rapid subsequent injections without the presence of interfering peaks. Because the mobilities of sulfate, nitrate, and oxalate are independently controlled, other minor constituents of aerosols can be analyzed, including nitrite, fluoride, and formate if desired using similar separation conditions. Contact conductivity detection is utilized, and the limit of detection for oxalate (S/N=3) is 180 nM without stacking. Sensitivity can be increased with field-amplified sample stacking by injecting from dilute electrolyte with a detection limit of 19 nM achieved. The high-sensitivity, counter-EOF operation, and short analysis time make this separation well-suited to continuous online monitoring of aerosol composition.

  3. Characteristics and Composition of Atmospheric Aerosols in Phimai, Central Thailand During BASE-ASIA

    NASA Technical Reports Server (NTRS)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; Bell, Shaun W.

    2012-01-01

    +/- 8 Mm(exp -1); PM(sub 10) concentration: 33 +/- 17 miro-g/ cubic m and dominated by submicron particles. Major aerosol compounds included carbonaceous (OC: 9.5 +/- 3.6miro-g/ cubic m; EC: 2.0 2.3 miro-g/ cubic m and secondary species (SO4(2-): 6.4 +/- 3.7 miro-g/ cubic m, NH4(+): 2.2 +/- 1.3 miro-g/ cubic m). While the site was seldom under the direct influence of large forest fires to its north, agricultural fires were ubiquitous during the experiment, as suggested by the substantial concentration of K+ (0.56 +/- 0.33 micro-g/ cubic m). Besides biomass burning, aerosols in Phimai during the experiment were also strongly influenced by industrial and vehicular emissions from the Bangkok metropolitan region and long-range transport from southern China. High humidity played an important role in determining the aerosol composition and properties in the region. Sulfate was primarily formed via aqueous phase reactions, and hygroscopic growth could enhance the aerosol light scattering by up to 60%, at the typical morning RH level of 85%. The aerosol single scattering albedo demonstrated distinct diurnal variation, ranging from 0.86 +/- 0.04 in the evening to 0.92 +/- 0.02 in the morning. This experiment marks the first time such comprehensive characterization of