Science.gov

Sample records for aerosols optical properties

  1. Atmospheric aerosols: Their Optical Properties and Effects

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measured properties of atmospheric aerosol particles are presented. These include aerosol size frequency distribution and complex retractive index. The optical properties of aerosols are computed based on the presuppositions of thermodynamic equilibrium and of Mie-theory.

  2. An investigation of aerosol optical properties: Atmospheric implications and influences

    NASA Astrophysics Data System (ADS)

    Penaloza-Murillo, Marcos A.

    An experimental, observational, and theoretical investigation of aerosol optical properties has been made in this work to study their implications and influences on the atmosphere. In the laboratory the scientific and instrumental methodology consisted of three parts, namely, aerosol generation, optical and mass concentration measurements, and computational calculations. In particular the optical properties of ammonium sulfate and caffeine aerosol were derived from measurements made with a transmissometer cell-reciprocal- integrating nephelometer (TCRIN), equipped with a laser beam at 632.8 nm, and by applying a Mie theory computer code The aerosol generators, optical equipment and calibration procedures were reviewed. The aerosol shape and size distribution were studied by means of scanning electron microscopy and the Gumprecht- Sliepcevich/Lipofsky-Green extinction-sedimentation method. In particular the spherical and cylindrical shape were considered. During this investigation, an alternative method for obtaining the optical properties of monodisperse spherical non-absorbing aerosol using a cell-transmissometer, which is based on a linearisation of the Lambert-Beer law, was found. In addition, adapting the TCRIN to electrooptical aerosol studies, the optical properties of a circular-cylindrical aerosol of caffeine were undertaken under the condition of random orientation in relation with the laser beam, and perpendicular orientation to it. A theoretical study was conducted to assess the sensitivity of aerosol to a change of shape under different polarisation modes. The aerosol optical properties, obtained previously in the laboratory, were then used to simulate the direct radiative forcing. The calculations and results were obtained by applying a one- dimensional energy-balance box model. The influence of atmospheric aerosol on the sky brightness due to a total solar eclipse was studied using the photometric and meteorological observations made during the

  3. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  4. Characterization of aerosol events based on the column integrated optical aerosol properties and polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Mandija, Florian; Markowicz, Krzysztof; Zawadzka, Olga

    2016-12-01

    Aerosol optical properties are very useful tools for analyzing their radiative effects, which are directly or indirectly related to the global radiation budget. Investigation of column-integrated aerosol optical properties is a worldwide and well-accepted method. The introduction of new methodologies, like those of operation with polarimetric measurements, represent a new challenge to interpret the measurement data and give more detailed information about the aerosol events and their characteristics. Aerosol optical properties during the period June - August 2015 in AERONET Strzyzow station in Poland were analyzed. The aerosol properties like aerosol optical depth, Ångström exponent, fine mode fraction, fine mode contribution on AOD, asymmetry parameter, single scattering angle are analyzed synergistically with the polarimetric measurements of the degree of polarization in different solar zenith and zenith viewing angles at several wavelengths. The overall results show that aerosol events in Strzyzow were characterized mostly by fine mode aerosols. Backward-trajectories suggest that the majority of air masses come from the west. The principal component of the aerosol load was urban/industrial contamination, especially from the inner part of the continent. Additionally, the maximal values of the degree of linear polarization were found to be dependent on the solar zenith and zenith viewing angles and aerosol optical properties like aerosol optical depth and Ångström exponent. These dependencies were further analyzed in a specific case with very high mean values of AOD500 (0.59) and AE440-870 (1.91). The diurnal variations of aerosol optical properties investigated during this special case, suggest that biomass burning products are the main cause of that aerosol load over the stations.

  5. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  6. Estimation of aerosol optical properties from all-sky imagers

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  7. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  8. Midinfrared optical properties of petroleum oil aerosols

    NASA Astrophysics Data System (ADS)

    Gurton, K. P.; Bruce, C. W.

    1994-08-01

    The mass normalized absorption and extinction coefficients were measured for fog oil aerosol at 3.4 micrometers with a combined photoacoustic and transmissometer system. An extinction spectral profile was determined over a range of infrared (IR) wavelengths from 2.7 to 4.0 micrometers by an IR scanning transmissometer. The extinction spectrum was mass normalized by referencing it to the photoacoustic portion of the experiment. A corresponding Mie calculation was conducted and compared with the above measurements. Agreement is good for the most recent optical coefficients. An extrapolation of this data to other similar petroleum products such as kerosene or diesel fuel that exhibit similar bulk absorption characteristics were briefly examined.

  9. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  10. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land

    NASA Astrophysics Data System (ADS)

    Levy, Robert C.; Remer, Lorraine A.; Dubovik, Oleg

    2007-07-01

    As more information about global aerosol properties has become available from remotely sensed retrievals and in situ measurements, it is prudent to evaluate this new information, both on its own and in the context of satellite retrieval algorithms. Using the climatology of almucantur retrievals from global Aerosol Robotic Network (AERONET) Sun photometer sites, we perform cluster analysis to determine aerosol type as a function of location and season. We find that three spherical-derived types (describing fine-sized dominated aerosol) and one spheroid-derived types (describing coarse-sized dominated aerosol, presumably dust) generally describe the range of AERONET observed global aerosol properties. The fine-dominated types are separated mainly by their single scattering albedo (ω0), ranging from nonabsorbing aerosol (ω0 ˜ 0.95) in developed urban/industrial regions, to moderately absorbing aerosol (ω0 ˜ 0.90) in forest fire burning and developing industrial regions, to absorbing aerosol (ω0 ˜ 0.85) in regions of savanna/grassland burning. We identify the dominant aerosol type at each site, and extrapolate to create seasonal 1° × 1° maps of expected aerosol types. Each aerosol type is bilognormal, with dynamic (function of optical depth) size parameters (radius, standard deviation, volume distribution) and complex refractive index. Not only are these parameters interesting in their own right, they can also be applied to aerosol retrieval algorithms, such as to aerosol retrieval over land from Moderate Resolution Imaging Spectroradiometer. Independent direct-Sun AERONET observations of spectral aerosol optical depth (τ) are consistent the spectral dependence of the models, indicating that our derived aerosol models are relevant.

  11. Aerosol optical properties measurement by recently developed cavity-enhanced aerosol single scattering albedometer

    NASA Astrophysics Data System (ADS)

    Zhao, Weixiong; Xu, Xuezhe; Zhang, Qilei; Fang, Bo; Qian, Xiaodong; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun

    2015-04-01

    Development of appropriate and well-adapted measurement technologies for real-time in-situ measurement of aerosol optical properties is an important step towards a more accurate and quantitative understanding of aerosol impacts on climate and the environment. Aerosol single scattering albedo (SSA, ω), the ratio between the scattering (αscat) and extinction (αext) coefficients, is an important optical parameter that governs the relative strength of the aerosol scattering and absorption capacity. Since the aerosol extinction coefficient is the sum of the absorption and scattering coefficients, a commonly used method for the determination of SSA is to separately measure two of the three optical parameters - absorption, scattering and extinction coefficients - with different instruments. However, as this method involves still different instruments for separate measurements of extinction and absorption coefficients under different sampling conditions, it might cause potential errors in the determination of SSA value, because aerosol optical properties are very sensitive to the sampling conditions such as temperature and relative humidity (RH). In this paper, we report on the development of a cavity-enhanced aerosol single scattering albedometer incorporating incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) and an integrating sphere (IS) for direct in-situ measurement of aerosol scattering and extinction coefficients on the exact same sample volume. The cavity-enhanced albedometer holds great promise for high-sensitivity and high-precision measurement of ambient aerosol scattering and extinction coefficients (hence absorption coefficient and SSA determination) and for absorbing trace gas concentration. In addition, simultaneous measurements of aerosol scattering and extinction coefficients enable a potential application for the retrieval of particle number size distribution and for faster retrieval of aerosols' complex RI. The albedometer was deployed to

  12. Atmospheric Optical Properties and Spectral Analysis of Desert Aerosols

    NASA Astrophysics Data System (ADS)

    Yvgeni, D.; Karnieli, A.; Kaufman, Y. J.; Andreae, M. O.; Holben, B. N.; Maenhaut, W.

    2002-05-01

    Scientific background Aerosols can interact directly with solar and terrestrial radiation by scattering as well as absorption. In addition, they can indirectly alter the planetary albedo by modifying the properties of clouds. Objectives Investigations have been devoted to two main areas: (1) Aerosol climatology situation in the Negev desert, investigations of physical and chemical characteristics of aerosols, and study of the local and long-range transport trajectory of polluted air masses over the Negev desert; and (2) An estimation of the optical properties throughout the atmospheric column by surface measurements via performance of spectral and statistical analysis of the data received from two measurement systems. Results and conclusions Analyzed data from the Sede Boker site, in the Negev Desert of Israel, shows an increase in aerosol optical depth during the summer seasons and a decrease during winter. One of the possible reasons for this characteristic is an increase of the precipitable water (reaches 3.0-3.5 cm) due to a constant wind stream from the Mediterranean Sea in same time. The highest probability distribution of the aerosol optical depth is in the range of 0.15-0.20; and of the Angstrom parameter is in range of 0.83 - 1.07. During dust storm events, the scattering coefficient range at 670 nm and 440 nm wavelengths were inverted. It was discovered that the dust particles in this case had non-spherical character. Comparison between optical depth, measured through all atmospheric column, and scattering coefficient from surface measurements provides correlation coefficient (r) equal to 0.64. The Angstrom parameter, calculated via optical depth and via scattering coefficient, provides a correlation coefficient of 0.66. Thus we can obtain an estimate of the influence of the surface aerosol situation on column optical properties. The combined analysis of dust cloud altitude and optical depth as a function of the time indicates long-term transport and

  13. Optical properties of aerosols in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Skorov, Yu. V.; Keller, H. U.; Rodin, A. V.

    2008-04-01

    In the frame of fractal modeling of tholin aggregates we made a systematic analysis of their optical properties. Ballistic particle-cluster aggregation (BPCA) and diffusion-limited aggregation (DLA) of spherical primary particles (monomers) identical in material composition were considered. Aggregates composed of identical particles (monodisperse cluster), as well as of size-distributed particles (polydisperse cluster), were simulated. To calculate the light-scattering models, the code based on the superposition T-matrix method is used. Orientationally averaged properties of light scattering by model particles were extracted, and the normalized phase function and the degree of linear polarization were calculated as functions of scattering angle. We concluded that: (a) aggregation mechanism as well as specific internal structure of the clusters play only a minor role, and for the future it is not necessary to investigate aggregates of different types; (b) the intensity is very sensitive both to the size parameter of forming particles x and to the size parameter of the aggregates X; (c) characterization of the aggregates by the number of monomers is insufficient to retrieve physical properties of aggregates from optical measurement; and (d) it is very desirable to include into the analysis polarization data calculated for the different clusters.

  14. Retrieval of Aerosol Optical Properties under Thin Cirrus from MODIS

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Sayer, Andrew Mark.

    2014-01-01

    Retrieval of aerosol optical properties using shortwave bands from passive satellite sensors, such as MODIS, is typically limited to cloud-free areas. However, if the clouds are thin enough (i.e. thin cirrus) such that the satellite-observed reflectance contains signals under the cirrus layer, and if the optical properties of this cirrus layer are known, the TOA reflectance can be corrected for the cirrus layer to be used for retrieving aerosol optical properties. To this end, we first correct the TOA reflectances in the aerosol bands (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 micron for ocean algorithm and 0.412, 0.47, and 0.65 micron for deep blue algorithm) for the effects of thin cirrus using 1.38 micron reflectance and conversion factors that convert cirrus reflectance in 1.38 micron band to those in aerosol bands. It was found that the conversion factors can be calculated by using relationships between reflectances in 1.38 micron band and minimum reflectances in the aerosol bands (Gao et al., 2002). Refer to the example in the figure. Then, the cirrus-corrected reflectance can be calculated by subtracting the cirrus reflectance from the TOA reflectance in the optically thin case. A sensitivity study suggested that cloudy-sky TOA reflectances can be calculated with small errors in the form of simple linear addition of cirrus-only reflectances and clear-sky reflectances. In this study, we correct the cirrus signals up to TOA reflectance at 1.38 micron of 0.05 where the simple linear addition is valid without extensive radiative transfer simulations. When each scene passes the set of tests shown in the flowchart, the scene is corrected for cirrus contamination and passed into aerosol retrieval algorithms.

  15. Retrieval of aerosol optical properties over land using PMAp

    NASA Astrophysics Data System (ADS)

    Grzegorski, Michael; Munro, Rosemary; Lang, Ruediger; Poli, Gabriele; Holdak, Andriy

    2015-04-01

    The retrieval of aerosol optical properties is an important task for industry and climate forecasting. An ideal instrument should include observations with moderate spectral and high spatial resolutions for a wide range of wavelengths (from the UV to the TIR), measurements of the polarization state at different wavelengths and measurements of the same scene for different observation geometries. As such an ideal instrument is currently unavailable the usage of different instruments on one satellite platform is an alternative choice. Since February 2014, the Polar Multi sensor Aerosol product (PMAp) is delivered as operational GOME product to our customers. The algorithms retrieve aerosol optical properties over ocean (AOD, volcanic ash, aerosol type) using a multi-sensor approach (GOME, AVHRR, IASI). The next releases of PMAp will provide an extended set of aerosol and cloud properties which include AOD over land and an improved volcanic ash retrieval combining AVHRR and IASI. This presentation gives an overview on the existing product and the prototypes in development. The major focus is the discussion of the AOD retrieval over land implemented in the upcoming PMAp2 release. In addition, the results of our current validation studies (e.g. comparisons to AERONET, other satellite platforms and model data) are shown.

  16. Optical Properties of Polymers Relevant to Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Marrero-Ortiz, W.; Gomez-Hernandez, M. E.; Xu, W.; Guo, S.; Zhang, R.

    2014-12-01

    Atmospheric aerosols play a critical role in climate directly by scattering and absorbing solar radiation and indirectly by modifying the cloud formation. Currently, the direct and indirect effects of aerosols represent the largest uncertainty in climate predictions models. Some aerosols are directly emitted, but the majority are formed in the atmosphere by the oxidation of gaseous precursors. However, the formation of aerosols at the molecular level is not fully characterized. Certain category of secondary organic aerosols (SOA), which represent a significant fraction of the total aerosol burden, can be light-absorbing, also known as brown carbon. However, the overall contribution of SOA to the brown carbon and the related climate forcing is poorly understood. Such incomplete understanding is due in part to the chemical complexity of SOA and the lack of knowledge regarding SOA formation, transformation, and optical properties. Based on previous laboratory experiments, field measurements, and modeling studies, it has been suggested that the polymers and oligomers play an important role in the SOA formation. Atmospheric polymers could be produced by the hydration or heterogeneous reactions of epoxides and small α-dicarbonyls. Their aqueous chemistry products have been shown to give light-absorbing and high molecular weight oligomeric species, which increase the SOA mass production and alter the direct and indirect effect of aerosols. In this paper, the aerosol chemistry of small α-dicarbonyl compounds with amines is investigated and the associated optical properties are measured using spectroscopic techniques. The differences between primary, secondary and tertiary amines with glyoxal and methylglyoxal are evaluated in terms of SOA browning efficiency. Atmospheric implications of our present work for understanding the formation of light-absorbing SOA will be presented, particularly in terms of the product distribution of light-absorbing SOA formed by aqueous phase

  17. Estimating aerosol light-scattering enhancement from dry aerosol optical properties at different sites

    NASA Astrophysics Data System (ADS)

    Titos, Gloria; Jefferson, Anne; Sheridan, Patrick; Andrews, Elisabeth; Lyamani, Hassan; Ogren, John; Alados-Arboledas, Lucas

    2014-05-01

    Microphysical and optical properties of aerosol particles are strongly dependent on the relative humidity (RH). Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in-situ measurements with satellite and remote sensing retrievals. The scattering enhancement factor, f(RH), is defined as the ratio of the scattering coefficient at a high and reference RH. Predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we explore the relationship between aerosol light-scattering enhancement and dry aerosol optical properties such as the single scattering albedo (SSA) and the scattering Ångström exponent (SAE) at multiple sites around the world. The measurements used in this study were conducted by the US Department of Energy at sites where different aerosol types predominate (pristine marine, polluted marine, dust dominated, agricultural and forest environments, among others). In all cases, the scattering enhancement decreases as the SSA decreases, that is, as the contribution of absorbing particles increases. On the other hand, for marine influenced environments the scattering enhancement clearly increases as the contribution of coarse particles increases (SAE decreases), evidence of the influence of hygroscopic coarse sea salt particles. For other aerosol types the relationship between f(RH) and SAE is not so straightforward. Combining all datasets, f(RH) was found to exponentially increase with SSA with a high correlation coefficient.

  18. Background Maritime Aerosol: Their Optical Thickness and Scattering Properties

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The effect of human induced change in the aerosol concentration and properties, or the aerosol response to climate change (e.g. droughts producing fires or dust) should be measured relative to a "background aerosol". How to define this background aerosol, so that it is both measurable and useful? Here we use 10 stations located in the Pacific, Atlantic and Indian Oceans to answer this question. Using a data set of the spectral optical thickness measured by the Aerosol Robotic network (AERONET), extending 1-3 years, we find the background conditions for these stations. The oceanic background aerosol is the result of ocean emission and spray, and some residual long lived continental aerosol. Its source is very broadly spread and is expected to vary little in time. Pollution or dust sources are from specific locations, emitted and transported to the measuring site in specific combination of meteorological conditions. Therefore they are expected to vary with time. It follows that the background aerosol can be identified as the median for conditions with small variations. To define the background we compute the median of N consequent measurements. We use N=50 that in average cloudy conditions corresponds to 2-3 days of measurements and N=100 (4-5 days). Most high polluted or dusty conditions correspond to data sequences with high standard deviation (greater than 0.02 in optical thickness) and are excluded. From the remaining N point running medians with low standard deviations we derive again the median. This excludes those rare cases of pollution or dust that is stable during the N measurements. The results show that the background aerosol over the Pacific Ocean is characterize by optical thickness of 0.055 at 500 nm and Angstrom exponent of 0.74. Over the Atlantic Ocean the values are 0.070 and 1.1 respectively, with little influence of the assumed value of N (50 or 100). The derivation of the background uses 20,000 and 5000 medians respectively that passed the

  19. Aerosol optical properties in the ABL over arctic sea ice from airborne aerosol lidar measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Lukas; Neuber, Roland; Ritter, Christoph; Maturilli, Marion; Dethloff, Klaus; Herber, Andreas

    2014-05-01

    Between 2009 and 2013 aerosols, sea ice properties and meteorological variables were measured during several airborne campaigns covering a wide range of the western Arctic Ocean. The campaigns were carried out with the aircraft Polar 5 of the German Alfred-Wegener-Institute (AWI) during spring and summer periods. Optical properties of accumulation mode aerosol and clouds were measured with the nadir looking AMALi aerosol lidar covering the atmospheric boundary layer and the free troposphere up to 3000m, while dropsondes provided coincident vertical profiles of meteorological quantities. Based on these data we discuss the vertical distribution of aerosol backscatter in and above the atmospheric boundary layer and its dependence on relative humidity, dynamics and underlying sea ice properties. We analyze vertical profiles of lidar and coincident dropsonde measurements from various locations in the European and Canadian Arctic from spring and summer campaigns. Sea ice cover is derived from modis satellite and aircraft onboard camera images. The aerosol load in the arctic atmospheric boundary layer shows a high variability. Various meteorological parameters and in particular boundary layer properties are discussed with their respective influence on aerosol features. To investigate the effect of the frequency and size of open water patches on aerosol properties, we relate the profiles to the sea ice properties influencing the atmosphere in the upwind region.

  20. Variability of aerosol optical properties in the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Pandolfi, M.; Cusack, M.; Alastuey, A.; Querol, X.

    2011-08-01

    Aerosol light scattering, absorption and particulate matter (PM) concentrations were measured at Montseny, a regional background site in the Western Mediterranean Basin (WMB) which is part of the European Supersite for Atmospheric Aerosol Research (EUSAAR). Off line analyses of 24 h PM filters collected with Hi-Vol instruments were performed for the determination of the main chemical components of PM. Mean scattering and hemispheric backscattering coefficients (@ 635 nm) were 26.6±23.2 Mm-1 and 4.3±2.7 Mm-1, respectively and the mean aerosol absorption coefficient (@ 637 nm) was 2.8±2.2 Mm-1. Mean values of Single Scattering Albedo (SSA) and Ångström exponent (å) (calculated from 450 nm to 635 nm) at MSY were 0.90±0.05 and 1.3±0.5 respectively. A clear relationship was observed between the PM1/PM10 and PM2.5/PM10 ratios as a function of the calculated Ångström exponents. Mass scattering cross sections (MSC) for fine mass and sulfate at 635 nm were 2.8±0.5 m2 g-1 and 11.8±2.2 m2 g-1, respectively, while the mean aerosol absorption cross section (MAC) was 10.4±2.0 m2 g-1. The variability in aerosol optical properties in the WMB were largely explained by the origin and ageing of air masses over the measurement site. The MAC values appear dependent of particles aging: similar to the expected absorption cross-section for fresh emissions under Atlantic Advection episodes and higher under aerosol pollution episodes. The analysis of the Ångström exponent as a function of the origin the air masses revealed that polluted winter anticyclonic conditions and summer recirculation scenarios typical of the WMB led to an increase of fine particles in the atmosphere (å = 1.5±0.1) while the aerosol optical properties under Atlantic Advection episodes and Saharan dust outbreaks were clearly dominated by coarser particles (å = 1.0±0.4). The sea breeze played an important role in transporting pollutants from the developed WMB coastlines towards inland rural areas

  1. Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Chang; Kim, Jiyoung

    In situ measurements at Gosan, South Korea, and onboard C-130 aircraft during ACE-Asia were analyzed to investigate the influence of relative humidity (RH) on aerosol optical properties and radiative forcing. The temporal variation of aerosol chemical composition at the Gosan super-site was highly dependent on the air mass transport pathways and source region. RH in the springtime over East Asia were distributed with very high spatial and temporal variation. The RH profile onboard C-130 aircraft measurements exhibits a mixed layer height of about 2 km. Aerosol scattering coefficient ( σsp) under ambient RH was greatly enhanced as compared with that at dry RH (RH<40%). From the aerosol optical and radiative transfer modeling studies, we found that the extinction and scattering coefficients are greatly enhanced with RH. Single scattering albedo with RH is also sensitively changed in the longer wavelength. Asymmetry parameter ( g) is gradually increased with RH although g decreases with wavelength at a given RH. Aerosol optical depth (AOD) at 550 nm and RH of 50% increased to factors 1.24, 1.51, 2.16, and 3.20 at different RH levels 70, 80, 90, and 95%, respectively. Diurnal-averaged aerosol radiative forcings for surface, TOA, and atmosphere were increased with RH because AOD was increased with RH due to hygroscopic growth of aerosol particles. This result implies that the hygroscopic growth due to water-soluble or hydrophilic particles in the lower troposphere may significantly modify the magnitude of aerosol radiative forcing both at the surface and TOA. However, the diurnal-averaged radiative forcing efficiencies at the surface, TOA, and atmosphere were decreased with increasing RH. The decrease of the forcing efficiency with RH results from the fact that increasing rate of aerosol optical depth with RH is greater than the increasing rate of aerosol radiative forcing with RH.

  2. Influence of semi-volatile aerosol on physical and optical properties of aerosol in Kathmandu valley

    NASA Astrophysics Data System (ADS)

    Shrestha, Sujan; Praveen, Ps; Adhikary, Bhupesh; Shrestha, Kundan; Panday, Arnico

    2016-04-01

    A field study was conducted in the urban atmosphere of Kathmandu valley to study the influence of the semi-volatile aerosol fraction on physical and optical properties of aerosols. The study was carried out during the 2015 pre-monsoon period. Experimental setup consisted of air from an ambient air inlet being split to two sets of identical sampling instruments. The first instrument received the ambient sample directly, while the second instrument received the air sample through a thermodenuder (TDD). Four sets of experiments were conducted to understand aerosol number, size distribution, scattering and absorption properties using Condensation Particle Counter (CPC), Scanning Mobility Particle Sizer (SMPS), Aethalometer (AE33) and Nephelometer. The influence of semi-volatile aerosols was calculated from the fraction of particles evaporated in the TDD at set temparetures: room temperature, 50°C, 100°C, 150°C, 200°C, 250°C and 300°C. Results show that, with increasing temperature, the evaporated fraction of semi-volatile aerosol also increased. At room temperature the fraction of semi-volatile aerosols was 12% while at 300°C it was as high as to 49%. Aerosol size distribution analysis shows that with an increase in TDD temperature from 50°C to 300°C, peak mobility diameter of particles shifted from around 60nm to 40nm. However we found little change in effective diameter of aerosol size distribution with increase in set TDD temperature. The change in size of aerosols due to loss of semi-volatile component has a stronger influence (~70%) in higher size bins when compared to at lower size bins (~20%). Studies using the AE33 showed that absorption by black carbon (BC) is amplified due to influence of semi-volatile aerosols by upto 37% at 880nm wavelength. Similarly nephelometer measurements showed that upto 71% of total scattering was found to be contributed by semi-volatile aerosol fraction. The scattering Angstrom Exponent (SAE) of semi-volatile aerosol

  3. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: an AQMEII-2 perspective

    EPA Science Inventory

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model in...

  4. Optical properties of mineral dust aerosol in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Köhler, Claas H.

    2017-02-01

    The optical properties of mineral dust and biomass burning aerosol in the thermal infrared (TIR) are examined by means of Fourier Transform Infrared Spectrometer (FTIR) measurements and radiative transfer (RT) simulations. The measurements were conducted within the scope of the Saharan Mineral Dust Experiment 2 (SAMUM-2) at Praia (Cape Verde) in January and February 2008. The aerosol radiative effect in the TIR atmospheric window region 800-1200 cm-1 (8-12 µm) is discussed in two case studies. The first case study employs a combination of IASI measurements and RT simulations to investigate a lofted optically thin biomass burning layer with emphasis on its potential influence on sea surface temperature (SST) retrieval. The second case study uses ground based measurements to establish the importance of particle shape and refractive index for benchmark RT simulations of dust optical properties in the TIR domain. Our research confirms earlier studies suggesting that spheroidal model particles lead to a significantly improved agreement between RT simulations and measurements compared to spheres. However, room for improvement remains, as the uncertainty originating from the refractive index data for many aerosol constituents prohibits more conclusive results.

  5. Vertically Resolved Aerosol Optical Properties over the ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Jonsson, H.; Strawa, A.; Provencal, B.; Covert, D.; Arnott, P.; Bucholtz, A.; Pilewskie, P.; Pommier, J.; Rissman, T.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. To this end, the ARM program will conduct an Aerosol Intensive Operational Period (IOP) in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma. The IOP involves airborne measurements from two airplanes over the heavily instrumented SGP site. We will give an overview of early airborne results obtained aboard Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The aircraft will carry instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size including such novel techniques as the photoacoustic and cavity ring-down methods. Aerosol optical depth and extinction will be measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore up- and downwelling solar (broadband and spectral) and infrared radiation will be measured using three different instruments. The up-looking radiation instruments will be mounted on a newly developed stabilized platform, which will keep the instruments level up to aircraft pitch and roll angles of 10 degrees. Additional effort will be directed toward measurement of cloud condensation nucleus concentration as a function of supersaturation and relating CCN concentration to aerosol composition and size distribution. This relation is central to description of the aerosol indirect effect.

  6. Vertical Profiles of Cloud Condensation Nuclei, Condensation Nuclei, Optical Aerosol, Aerosol Optical Properties, and Aerosol Volatility Measured from Balloons

    NASA Technical Reports Server (NTRS)

    Deshler, T.; Snider, J. R.; Vali, G.

    1998-01-01

    Under the support of this grant a balloon-borne gondola containing a variety of aerosol instruments was developed and flown from Laramie, Wyoming, (41 deg N, 105 deg W) and from Lauder, New Zealand (45 deg S, 170 deg E). The gondola includes instruments to measure the concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), optically detectable aerosol (OA.) (r greater than or equal to 0.15 - 2.0 microns), and optical scattering properties using a nephelometer (lambda = 530 microns). All instruments sampled from a common inlet which was heated to 40 C on ascent and to 160 C on descent. Flights with the CN counter, OA counter, and nephelometer began in July 1994. The CCN counter was added in November 1994, and the engineering problems were solved by June 1995. Since then the flights have included all four instruments, and were completed in January 1998. Altogether there were 20 flights from Laramie, approximately 5 per year, and 2 from Lauder. Of these there were one or more engineering problems on 6 of the flights from Laramie, hence the data are somewhat limited on those 6 flights, while a complete data set was obtained from the other 14 flights. Good CCN data are available from 12 of the Laramie flights. The two flights from Lauder in January 1998 were successful for all measurements. The results from these flights, and the development of the balloon-bome CCN counter have formed the basis for five conference presentations. The heated and unheated CN and OA measurements have been used to estimate the mass fraction of the aerosol volatile, while comparisons of the nephelometer measurements were used to estimate the light scattering, associated with the volatile aerosol. These estimates were calculated for 0.5 km averages of the ascent and descent data between 2.5 km and the tropopause, near 11.5 km.

  7. Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites.

    NASA Astrophysics Data System (ADS)

    Delene, David J.; Ogren, John A.

    2002-03-01

    Aerosol optical properties measured over several years at surface monitoring stations located at Bondville, Illinois (BND); Lamont, Oklahoma (SGP); Sable Island, Nova Scotia (WSA); and Barrow, Alaska (BRW), have been analyzed to determine the importance of the variability in aerosol optical properties to direct aerosol radiative forcing calculations. The amount of aerosol present is of primary importance and the aerosol optical properties are of secondary importance to direct aerosol radiative forcing calculations. The mean aerosol light absorption coefficient (ap) is 10 times larger and the mean aerosol scattering coefficient (sp) is 5 times larger at the anthropogenically influenced site at BND than at BRW. The aerosol optical properties of single scattering albedo (o) and hemispheric backscatter fraction (b) have variability of approximately ±3% and ±8%, respectively, in mean values among the four stations. To assess the importance of the variability in o and b on top of the atmosphere aerosol radiative forcing calculations, the aerosol radiative forcing efficiency (F/) is calculated. The F/ is defined as the aerosol forcing (F) per unit optical depth () and does not depend explicitly on the amount of aerosol present. Based on measurements at four North American stations, radiative transfer calculations that assume fixed aerosol properties can have errors of 1%-6% in the annual average forcing at the top of the atmosphere due to variations in average single scattering albedo and backscatter fraction among the sites studied. The errors increase when shorter-term variations in aerosol properties are considered; for monthly and hourly timescales, errors are expected to be greater than 8% and 15%, respectively, approximately one-third of the time. Systematic relationships exist between various aerosol optical properties [ap, o, b, F/, and Ångström exponent (å)] and the amount of aerosol present (measured by sp) that are qualitatively similar but quantitatively

  8. Global Aerosol Radiative Forcing Derived from Sea WiFS-Inferred Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chan, Pui-King; Wang, Menghua

    1999-01-01

    Aerosol optical properties inferred from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiance measurements are used to compute the aerosol shortwave radiative forcing using a radiative transfer model. The aerosol optical thickness at the wavelength of 865-nm is taken from the SeaWIFS archive. It is found that the nominal optical thickness over oceans ranges from 0.1 to 0.2. Using a maritime aerosol model and the radiances measured at the various SeaWiFS channels, the Angstrom exponent is determined to be 0.2174, the single-scattering albedo to be 0.995, and the asymmetry factor to be 0.786. The radiative transfer model has eight bands in the visible and ultraviolet spectral regions and three bands in the near infrared. It includes the absorption due to aerosols, water vapor, carbon dioxide, and oxygen, and the scattering due to aerosols and gases (Rayleigh scattering). The radiative forcing is computed over global oceans for four months (January, April, July, and October, 1998) to represent four seasons. It is found that the aerosol radiative forcing is large and changes significantly with seasons near the continents with large-scale forest fires and desert dust. Averaged over oceans and the four months, the aerosol radiative forcing is approximately 7 W/sq m at the top of the atmosphere. This large radiative forcing is expected to have a significant cooling effect on the Earth's climate as implied from simulations of a number of general circulation models.

  9. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of

  10. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    SciTech Connect

    Paulson, S E

    2012-05-30

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  11. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  12. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2015-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can be present not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase 1,2. Recent laboratory studies conducted with model mixtures representing tropospheric aerosols1,2,3, secondary organic aerosol (SOA) from smog chamber experiments4, and field measurements5 suggest that liquid- liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ ammonium sulfate (AS) particles. During LLPS, particles may adopt different morphologies mainly core- shell and partially engulfed. A core- shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles since the aqueous inorganic-rich phase will be totally enclosed by a probably highly viscous organic coating with low diffusivity for reactants and water. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. In this first experiment, the behavior of single droplets of carminic acid (CA)/ AS/ H2O mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. We also intend to determine the occurrence of LLPS in accumulation- sized particles and the change in their absorption using a cavity ring down aerosol spectrometer. If LLPS alters the absorptive properties of the suggested model aerosols significantly, absorption measurements of accumulation mode

  13. AeroCom INSITU Project: Comparing modeled and measured aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Andrews, Elisabeth; Schmeisser, Lauren; Schulz, Michael; Fiebig, Markus; Ogren, John; Bian, Huisheng; Chin, Mian; Easter, Richard; Ghan, Steve; Kokkola, Harri; Laakso, Anton; Myhre, Gunnar; Randles, Cynthia; da Silva, Arlindo; Stier, Phillip; Skeie, Ragnehild; Takemura, Toshihiko; van Noije, Twan; Zhang, Kai

    2016-04-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data has the unique property of being traceable to physical standards, which is an asset in accomplishing the overall goal of bettering the accuracy of aerosols processes and the predicative capability of global climate models. Here we compare dry, in-situ aerosol scattering and absorption data from ~75 surface, in-situ sites from various global aerosol networks (including NOAA, EUSAAR/ACTRIS and GAW) with a simulated optical properties from a suite of models participating in the AeroCom project. We report how well models reproduce aerosol climatologies for a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis suggest substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography. Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol behaviors, for example, the tendency of in-situ single scattering albedo to decrease with decreasing aerosol extinction coefficient. The endgoal of the INSITU project is to identify specific

  14. Optical properties of aerosols at Grand Canyon National Park

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Day, Derek E.

    Visibility in the United States is expected to improve over the next few decades because of reduced emissions, especially sulfur dioxide. In the eastern United States, sulfates make up about 60-70% of aerosol extinction, while in the inner mountain west that fraction is only about 30%. In the inner mountain west, carbon aerosols make up about 35% of extinction, while coarse mass contributes between 15 and 25% depending on how absorption is estimated. Although sulfur dioxide emissions are projected to decrease, carbon emissions due to prescribed fire activity will increase by factors of 5-10, and while optical properties of sulfates have been extensively studied, similar properties of carbon and coarse particles are less well understood. The inability to conclusively apportion about 50% of the extinction budget motivated a study to examine aerosol physio-chemical-optical properties at Grand Canyon, Arizona during the months of July and August. Coarse particle mass has usually been assumed to consist primarily of wind-blown dust, with a mass-scattering efficiency between about 0.4 and 0.6 m 2 g -1. Although there were episodes where crustal material made up most of the coarse mass, on the average, organics and crustal material mass were about equal. Furthermore, about one-half of the sampling periods had coarse-mass-scattering efficiencies greater than 0.6 m 2 g -1 and at times coarse-mass-scattering efficiencies were near 1.0 m 2 g -1. It was shown that absorption by coarse- and fine-particle absorption were about equal and that both fine organic and sulfate mass-scattering efficiencies were substantially less than the nominal values of 4.0 and 3.0 m 2 g -1 that have typically been used.

  15. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: An AQMEII-2 perspective

    NASA Astrophysics Data System (ADS)

    Curci, G.; Hogrefe, C.; Bianconi, R.; Im, U.; Balzarini, A.; Baró, R.; Brunner, D.; Forkel, R.; Giordano, L.; Hirtl, M.; Honzak, L.; Jiménez-Guerrero, P.; Knote, C.; Langer, M.; Makar, P. A.; Pirovano, G.; Pérez, J. L.; San José, R.; Syrakov, D.; Tuccella, P.; Werhahn, J.; Wolke, R.; Žabkar, R.; Zhang, J.; Galmarini, S.

    2015-08-01

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. In the framework of the AQMEII-2 model intercomparison, we used the bulk mass profiles of aerosol chemical species sampled over the locations of AERONET stations across Europe and North America to calculate the aerosol optical properties under a range of common assumptions for all models. Several simulations with parameters perturbed within a range of observed values are carried out for July 2010 and compared in order to infer the assumptions that have the largest impact on the calculated aerosol optical properties. We calculate that the most important factor of uncertainty is the assumption about the mixing state, for which we estimate an uncertainty of 30-35% on the simulated aerosol optical depth (AOD) and single scattering albedo (SSA). The choice of the core composition in the core-shell representation is of minor importance for calculation of AOD, while it is critical for the SSA. The uncertainty introduced by the choice of mixing state choice on the calculation of the asymmetry parameter is the order of 10%. Other factors of uncertainty tested here have a maximum average impact of 10% each on calculated AOD, and an impact of a few percent on SSA and g. It is thus recommended to focus further research on a more accurate representation of the aerosol mixing state in models, in order to have a less uncertain simulation of the related optical properties.

  16. Aerosol optical properties from multiwavelength lidar measurements in Romania

    NASA Astrophysics Data System (ADS)

    Nicolae, Doina; Talianu, Camelia; Carstea, Emil; Nemuc, Anca

    2009-09-01

    Vertically resolved profiles of optical properties of aerosols were measured using a multi-wavelength lidar system-RALI, set up at the scientific research center in Magurele, Bucharest area (44.35 N latitude, 26.03 E longitude) during 2008. The use of multiple laser wavelengths has enabled us to observe significant variations in backscatter profiles depending on the particle origins. An air mass backward trajectory analysis, using Hysplit-4, was carried out to track the aerosol plumes. Aerosols can serve as valuable tracers of air motion in the planetary boundary layer (PBL). The height of layers in the lower troposphere from lidar signal was calculated using the gradient method- minima of the first derivative. The Richardson number method was used to estimate PBL height from the radio-soundings. We have used pressure, temperature and dew point profiles as well as the wind direction profiles from NOAA (National Oceanic and Atmospheric Administration) data base. The results were consistent with the ones obtained from LIDAR.

  17. Calibrated sky imager for aerosol optical properties determination

    NASA Astrophysics Data System (ADS)

    Cazorla, A.; Shields, J. E.; Karr, M. E.; Burden, A.; Olmo, F. J.; Alados-Arboledas, L.

    2008-11-01

    The calibrated ground-based sky imager developed in the Marine Physical Laboratory, the Whole Sky Imager (WSI), has been tested to determine optical properties of the atmospheric aerosol. Different neural network-based models calculate the aerosol optical depth (AOD) for three wavelengths using the radiance extracted from the principal plane of sky images from the WSI as input parameters. The models use data from a CIMEL CE318 photometer for training and validation and the wavelengths used correspond to the closest wavelengths in both instruments. The spectral dependency of the AOD, characterized by the Ångström exponent α in the interval 440 870, is also derived using the standard AERONET procedure and also with a neural network-based model using the values obtained with a CIMEL CE318. The deviations between the WSI derived AOD and the AOD retrieved by AERONET are within the nominal uncertainty assigned to the AERONET AOD calculation (±0.01), in 80% of the cases. The explanation of data variance by the model is over 92% in all cases. In the case of α, the deviation is within the uncertainty assigned to the AERONET α (±0.1) in 50% for the standard method and 84% for the neural network-based model. The explanation of data variance by the model is 63% for the standard method and 77% for the neural network-based model.

  18. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    SciTech Connect

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew E.; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  19. Morphology and Optical Properties of Mixed Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Fard, Mehrnoush M.; Krieger, Ulrich; Rudich, Yinon; Marcolli, Claudia; Peter, Thomas

    2016-04-01

    Experiments and modeling studies have shown that deliquesced aerosols can exist not only as one-phase system containing organics, inorganic salts and water, but often as two-phase systems consisting of a predominantly organic and a predominantly inorganic aqueous phase (1,2). Recent laboratory studies conducted with model mixtures representing tropospheric aerosols (1,2,3), secondary organic aerosol (SOA) from smog chamber experiments (4), and field measurements (5) suggest that liquid-liquid phase separations (LLPS) is indeed a common phenomenon in mixed organic/ inorganic particles. During LLPS, particles may adopt different morphologies mainly core-shell and partially engulfed. A core-shell configuration will have consequences for heterogeneous chemistry and hygroscopicity and as a result will alter the optical properties of the particles in particular for organic phases containing absorbing molecules, e.g. brown carbon. The primary objective of this project is to establish a method for investigating the morphology of mixed inorganic and absorbing organic compounds of atmospheric relevance and study their radiative properties before, during, and after phase transitions mainly during LLPS. This will be the first study looking into the radiative effect of LLPS in detail. Our ternary model system consist of ammonium sulfate (AS)/ Polyethylene Glycol (PEG)/ and water (H2O). Carminic acid (CA) was added as a proxy for an absorbing organic compound to the system. The behavior of single droplets of above ternary mixture was monitored during relative humidity (RH) cycles using optical microscopy. The same ternary mixture particle was levitated in an electrodynamic balance (EDB) and the change in its absorption properties was measured at varying RH. In addition, Mie-code modeling is used to predict the absorption efficiency of the same ternary system and the result will be compared with the data obtained from EDB experiment. We also intend to determine the occurrence of

  20. Aerosol optical properties over the midcontinental United States

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi N.; Markham, Brian L.; Ferrare, Richard A.; Aro, Theo. O.

    1992-01-01

    Solar and sky radiation measurements were analyzed to obtain aerosol properties such as the optical thickness and the size distribution. The measurements were conducted as part of the First International Satellite Land Surface Climatology Project Field Experiment during the second intensive field campaign (IFC) from June 25 to July 14, 1987, and the fifth IFC from July 25 to August 12, 1989, on the Konza Prairie near Manhattan, Kansas. Correlations with climatological and meteorological parameters show that during the period of observations in 1987, two types of air masses dominated the area: an air mass with low optical thickness and low temperature air associated with a northerly breeze, commonly referred to as the continental air, and an air mass with a higher optical thickness and higher temperature air associated with a southerly wind which we call 'Gulf air'. The size distributions show a predominance of the larger size particles in 'Gulf air'. Because of the presence of two contrasting air masses, correlations with parameters such as relative humidity, specific humidity, pressure, temperature, and North Star sky radiance reveal some interesting aspects. In 1989, clear distinctions between continental and Gulf air cannot be made; the reason for this will be discussed.

  1. Effect of Dust and Anthropogenic Aerosols on Columnar Aerosol Optical Properties over Darjeeling (2200 m asl), Eastern Himalayas, India

    PubMed Central

    Chatterjee, Abhijit; Ghosh, Sanjay K.; Adak, Anandamay; Singh, Ajay K.; Devara, Panuganti C. S.; Raha, Sibaji

    2012-01-01

    Background The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. Methodology/Principal Findings An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca2+) during pre-monsoon (Apr – May) which was higher by 162% than its annual mean whereas during winter (Dec – Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO42− and black carbon) were higher (76% for black carbon and 96% for fine mode SO42−) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. Conclusion/Significance The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas. PMID:22792264

  2. Aerosols, light, and water: Measurements of aerosol optical properties at different relative humidities

    NASA Astrophysics Data System (ADS)

    Orozco, Daniel

    The Earth's atmosphere is composed of a large number of different gases as well as tiny suspended particles, both in solid and liquid state. These tiny particles, called atmospheric aerosols, have an immense impact on our health and on our global climate. Atmospheric aerosols influence the Earth's radiation budget both directly and indirectly. In the direct effect, aerosols scatter and absorb sunlight changing the radiative balance of the Earth-atmosphere system. Aerosols indirectly influence the Earth's radiation budget by modifying the microphysical and radiative properties of clouds as well as their water content and lifetime. In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering coefficient and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. This dissertation presents the aerosol hygroscopicity experiment investigated using a novel dryer-humidifier system, coupled to a TSI-3563 nephelometer, to obtain the light scattering coefficient (sp) as a function of relative humidity (RH) in hydration and dehydration modes. The measurements were performed in Porterville, CA (Jan 10-Feb 6, 2013), Baltimore, MD (Jul 3-30, 2013), and Golden, CO (Jul 12-Aug 10, 2014). Observations in Porterville and Golden were part of the NASA-sponsored DISCOVER-AQ project. The measured sp under varying RH in the three sites was combined with ground aerosol extinction, PM2:5mass concentrations, particle composition measurements, and compared with airborne observations performed during campaigns. The enhancement factor, f(RH), defined as the ratio of sp

  3. Quantitative retrieval of aerosol optical properties by means of ceilometers

    NASA Astrophysics Data System (ADS)

    Wiegner, Matthias; Gasteiger, Josef; Geiß, Alexander

    2016-04-01

    In the last few years extended networks of ceilometers have been established by several national weather services. Based on improvements of the hardware performance of these single-wavelength backscatter lidars and their 24/7 availability they are increasingly used to monitor mixing layer heights and to derive profiles of the particle backscatter profile. As a consequence they are used for a wide range of applications including the dispersion of volcanic ash plumes, validation of chemistry transport models and air quality studies. In this context the development of automated schemes to detect aerosol layers and to identify the mixing layer are essential, in particular as the latter is often used as a proxy for air quality. Of equal importance is the calibration of ceilometer signals as a pre-requisite to derive quantitative optical properties. Recently, it has been emphasized that the majority of ceilometers are influenced by water vapor absorption as they operate in the spectral range of 905 - 910 nm. If this effect is ignored, errors of the aerosol backscatter coefficient can be as large as 50%, depending on the atmospheric water vapor content and the emitted wavelength spectrum. As a consequence, any other derived quantity, e.g. the extinction coefficient or mass concentration, would suffer from a significant uncertainty in addition to the inherent errors of the inversion of the lidar equation itself. This can be crucial when ceilometer derived profiles shall be used to validate transport models. In this presentation, the methodology proposed by Wiegner and Gasteiger (2015) to correct for water vapor absorption is introduced and discussed.

  4. Microphysical, chemical and optical aerosol properties in the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Kikas, Ülle; Reinart, Aivo; Pugatshova, Anna; Tamm, Eduard; Ulevicius, Vidmantas

    2008-11-01

    The microphysical structure, chemical composition and prehistory of aerosol are related to the aerosol optical properties and radiative effect in the UV spectral range. The aim of this work is the statistical mapping of typical aerosol scenarios and adjustment of regional aerosol parameters. The investigation is based on the in situ measurements in Preila (55.55° N, 21.00° E), Lithuania, and the AERONET data from the Gustav Dalen Tower (58 N, 17 E), Sweden. Clustering of multiple characteristics enabled to distinguish three aerosol types for clear-sky periods: 1) clean maritime-continental aerosol; 2) moderately polluted maritime-continental aerosol; 3) polluted continental aerosol. Differences between these types are due to significant differences in aerosol number and volume concentration, effective radius of volume distribution, content of SO 4- ions and Black Carbon, as well as different vertical profiles of atmospheric relative humidity. The UV extinction, aerosol optical depth (AOD) and the Ångstrom coefficient α increased with the increasing pollution. The value α = 1.96 was observed in the polluted continental aerosol that has passed over central and eastern Europe and southern Russia. Reduction of the clear-sky UV index against the aerosol-free atmosphere was of 4.5%, 27% and 41% for the aerosol types 1, 2 and 3, respectively.

  5. Satellite and ground-based study of optical properties of 1997 Indonesian Forest Fire aerosols

    NASA Astrophysics Data System (ADS)

    Nakajima, Teruyuki; Higurashi, Akiko; Takeuchi, Nobuo; Herman, Jay R.

    Optical properties of biomass burning aerosols in the event of Indonesian forest fires in 1997 were studied by groundbased sky radiometry and satellite remote sensing with AVHRR and TOMS radiometers. The AVHRR-derived optical thickness distribution agreed with the distribution of TOMS-derived UV-absorbing aerosol index and with the optical thickness measured by sky radiometry and sunphotometry. The single scattering albedo of aerosols was fairly constant as 0.9 in the September-October period. Relationship between Ångström turbidity factor and exponent supported the polydispersion consisted of aged small particles. This observation was consistent with the fact that the retrieved volume size distribution by sky radiometry has a distinct accumulation mode with a peak radius of 0.25 µm. Those optical properties of smoke aerosols seem to reflect the specific chemical structure of Indonesian forest fire aerosols, i.e., a mixture of carbonaceous and sulfate particles.

  6. Baseline Maritime Aerosol: Methodology to Derive the Optical Thickness and Scattering Properties

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Smirnov, Alexander; Holben, Brent N.; Dubovik, Oleg; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Satellite Measurements of the global distribution of aerosol and their effect on climate should be viewed in respect to a baseline aerosol. In this concept, concentration of fine mode aerosol particles is elevated above the baseline by man-made activities (smoke or urban pollution), while coarse mode by natural processes (e.g. dust or sea-spray). Using 1-3 years of measurements in 10 stations of the Aerosol Robotic network (ACRONET we develop a methodology and derive the optical thickness and properties of this baseline aerosol for the Pacific and Atlantic Oceans. Defined as the median for periods of stable optical thickness (standard deviation < 0.02) during 2-6 days, the median baseline aerosol optical thickness over the Pacific Ocean is 0.052 at 500 am with Angstrom exponent of 0.77, and 0.071 and 1.1 respectively, over the Atlantic Ocean.

  7. Aerosol optical properties in Northern Norway and Svalbard

    NASA Astrophysics Data System (ADS)

    Chen, Y.-C.; Hamre, B.; Frette, Ø.; Blindheim, S.; Stebel, K.; Sobolewski, P.; Toledano, C.; Stamnes, J. J.

    2013-12-01

    We present comparisons between estimates of the aerosol optical thickness and the Ångström exponent in Northern Norway and Svalbard based on data from AERONET (Aerosol Robotic Network) stations at Andenes (69.28° N, 16.01° E, 379 m altitude) and Hornsund (77.00° N, 15.56° E, 10 m altitude) for the period 2008-2011. The four-year annual mean values for the aerosol optical thickness at 500 nm τ(500) at Andenes and Hornsund both were 0.10. At Hornsund, there was less variation of the monthly mean value of τ(500) than at Andenes. The annual mean values of the Ångström exponent α at Andenes and Hornsund were 1.25 and 1.37, respectively. At Andenes and Hornsund α was found to be larger than 1.1 in 64% and 86% of the observations, respectively, indicating that fine-mode particles were dominating at both sites. Both sites had a similar seasonal variation of the aerosol size distribution although one site is in an arctic area while the other site is in a sub-arctic area.

  8. Aerosol optical properties in Northern Norway and Svalbard.

    PubMed

    Chen, Yi-Chun; Hamre, Børge; Frette, Øyvind; Muyimbwa, Dennis; Blindheim, Sandra; Stebel, Kerstin; Sobolewski, Piotr; Toledano, Carlos; Stamnes, Jakob J

    2016-02-01

    We present comparisons between estimates of the aerosol optical thickness and the Ångström exponent in Northern Norway and Svalbard based on data from AERONET (Aerosol Robotic Network) stations at Andenes (69.28°N, 16.01°E, 379 m altitude) and Hornsund (77.00°N, 15.56°E, 10 m altitude) for the period 2008-2013. The five/six-year annual mean values for the aerosol optical thickness at 500 nm τ(500) at Andenes and Hornsund both were 0.09. At Hornsund, there was less variation of the monthly mean value of τ(500) than at Andenes. The annual mean values of the Ångström exponent α at Andenes and Hornsund were 1.29 and 1.34, respectively. At Andenes and Hornsund α was found to be larger than 1.1 in 68% and 84% of the observations, respectively, indicating that fine-mode particles were dominating at both sites. Both sites had a similar aerosol size distribution during summer although one site is in an arctic area while the other site is in a subarctic area.

  9. Optical properties of salt aerosols with and without inclusions as a function of relative humidity

    NASA Astrophysics Data System (ADS)

    Greenslade, Margaret E.; Attwood, Alexis R.; Galpin, Tyler

    2016-05-01

    Salt aerosols will undergo deliquescence as humidity is increased. This deliquescent transition dramatically affects the ability of aerosols to extinguish light. It is known that the relative humidity is very high in the viscous sublayer at the ocean surface (~98%) but decreases to an average of 80% in the surface layer. We present results of an investigation of the impact of inclusions on the deliquescence point and correlated optical properties of salt aerosols.

  10. Climatology of aerosol optical properties in Northern Norway and Svalbard

    NASA Astrophysics Data System (ADS)

    Chen, Y.-C.; Hamre, B.; Frette, Ø.; Stamnes, J. J.

    2012-10-01

    We present comparisons between estimates of the aerosol optical thickness and the Ångström exponent in Northern Norway and Svalbard based on data from AERONET stations at Andenes (69° N, 16° E, 379 m altitude) and Hornsund (77° N, 15° E, 10 m altitude) for the period 2008-2010. The three-year annual mean values for the aerosol optical thickness at 500 nm τ(500) at Andenes and Hornsund were 0.11 and 0.10, respectively. At Hornsund, there was less variation of the monthly mean value of τ(500) than at Andenes. The annual mean values of the Ångström exponent α at Andenes and Hornsund were 1.18 and 1.37, respectively. At Andenes and Hornsund α was found to be larger than 1.0 in 68% and 93% of the observations, respectively, indicating that fine-mode particles were dominating at both sites. Both sites had a similar seasonal variation of the aerosol size distribution although one site is in an Arctic area while the other site is in a sub-arctic area.

  11. Influences of external vs. core-shell mixing on aerosol optical properties at various relative humidities.

    PubMed

    Ramachandran, S; Srivastava, Rohit

    2013-05-01

    Aerosol optical properties of external and core-shell mixtures of aerosol species present in the atmosphere are calculated in this study for different relative humidities. Core-shell Mie calculations are performed using the values of radii, refractive indices and densities of aerosol species that act as core and shell, and the core-shell radius ratio. The single scattering albedo (SSA) is higher when the absorbing species (black carbon, BC) is the core, while for a sulfate core SSA does not vary significantly as the BC in the shell dominates the absorption. Absorption gets enhanced in core-shell mixing of absorbing and scattering aerosols when compared to their external mixture. Thus, SSA is significantly lower for a core-shell mixture than their external mixture. SSA is more sensitive to core-shell ratio than mode radius when BC is the core. The extinction coefficient, SSA and asymmetry parameter are higher for external mixing when compared to BC (core)-water soluble aerosol (shell), and water soluble aerosol (core)-BC (shell) mixtures in the relative humidity range of 0 to 90%. Spectral SSA exhibits the behaviour of the species which acts as a shell in core-shell mixing. The asymmetry parameter for an external mixture of water soluble aerosol and BC is higher than BC (core)-water soluble aerosol (shell) mixing and increases as function of relative humidity. The asymmetry parameter for the water soluble aerosol (core)-BC (shell) is independent of relative humidity as BC is hydrophobic. The asymmetry parameter of the core-shell mixture decreases when BC aerosols are involved in mixing, as the asymmetry parameter of BC is lower. Aerosol optical depth (AOD) of core-shell mixtures increases at a higher rate when the relative humidity exceeds 70% in continental clean and urban aerosol models, whereas AOD remains the same when the relative humidity exceeds 50% in maritime aerosol models. The SSA for continental aerosols varies for core-shell mixing of water soluble

  12. Background Southeast United States Aerosol Optical Properties and Their Dependence Upon Meteorology

    NASA Astrophysics Data System (ADS)

    Pawlyszyn, C.; West, M.; Sherman, J. P.; Link, M.; Zhou, Y.

    2015-12-01

    Aerosol effects on SE U.S. radiation budget are highly-seasonal. Aerosol loading is much higher in summer, due largely to high levels of biogenic secondary organic aerosol and sulfates. Aerosol loading is lowest in winter. Aerosol optical properties relevant to radiative forcing have been measured continuously at the Appalachian Atmospheric Interdisciplinary Research facility (AppalAIR) since the summer of 2009. AppalAIR is the only site in the eastern US to house co-located NOAA ESRL and NASA AeroNET instrumentation and is located in the mountains of Boone, NC. Lower tropospheric sub-micron (PM1) light scattering and absorption coefficients measured over seven summers and six winters are presented here, in addition to PM1 organic and sulfate aerosol mass concentrations measured during summers 2012-2013 as well as winter 2013. The objective is to determine the influence of aerosol sources and meteorology along the air mass back-trajectories on aerosol loading and composition. PM1 aerosol mass was dominated by organic aerosol and sulfate during the periods measured. Aerosol light scattering and organic aerosol concentrations were positively correlated during summer with temperature and solar flux along the parcel back-trajectory and negatively-correlated with rainfall along the back-trajectory. Wet deposition was a major factor in the difference between the upper and lower scattering coefficient quartiles for both summer and winter. Summer PM1 light scattering coefficient declined by approximately 30-40% since 2009, with smaller decreases during winter months. Long-term studies of aerosol optical properties from the regionally-representative AppalAIR site are necessary to determine the relationships between changing SE U.S. air quality and aerosol effects on regional climate and weather.

  13. Sensitivity of aerosol optical depth, single scattering albedo, and phase function calculations to assumptions on physical and chemical properties of aerosol

    EPA Science Inventory

    In coupled chemistry-meteorology simulations, the calculation of aerosol optical properties is an important task for the inclusion of the aerosol effects on the atmospheric radiative budget. However, the calculation of these properties from an aerosol profile is not uniquely defi...

  14. Aerosol optical and microphysical properties from POLDER-PARASOL multi-angle photo-polarimetric measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, O.; Litvinov, P.; Butz, A.

    2010-12-01

    The large uncertainty on the aerosol effects on clouds and climate is reflected in considerable discrepancies between different model simulations of the radiative forcing caused by these effects. Also, there exist even larger differences between values for radiative forcing calculated by models and those estimated from satellites (and model calculations constrained by satellite measurements). Relationships between aerosols and clouds derived from satellite measurements are subject to a number of important limitations. First of all, with current satellite aerosol products it is hard to determine which fraction of the aerosols is anthropogenic and which fraction is natural. Often the rather crude assumption is used that the fine mode contribution is fully anthropogenic. Furthermore, most aerosol types are strongly hygroscopic, which means that in an environment with high relative humidity (in the surrounding of clouds) the particle size increases considerably leading, in turn, to an increase in optical thickness. This effect may be misinterpreted as an apparent relation between aerosol concentration and cloud cover. Also, meteorology effects can be misinterpreted as apparent aerosol-cloud relationships. Accurate information on aerosol size and refractive index (related to chemical composition of aerosols and absorption) is needed to distinguish between natural and anthropogenic aerosols and to distinguish between aerosol effects on cloud formation and apparent relationships due to humidity and meteorology effects. Multi-angle photopolarimetric measurements have the potential to provide the necessary information on these aerosol properties. The POLDER instrument onboard the PARASOL micro-satellite is the only instrument currently in space that performs multi-angle photopolarimetric measurements. To fully exploit the information contained in these measurements a new type of retrieval algorithm is needed that retrieves detailed information on aerosol microphysical and

  15. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions.

  16. Analysis of aerosol optical and microphysical properties observed during the DC3 field study

    NASA Astrophysics Data System (ADS)

    Chen, G.; Schuster, G. L.; Anderson, B. E.; Jimenez, J. L.; Campuzano Jost, P.; Dibb, J. E.; Scheuer, E. M.; Ziemba, L. D.; Beyersdorf, A. J.; Thornhill, K. L.; Moore, R.; Winstead, E.; Markovic, M. Z.

    2013-12-01

    The Deep Convective Clouds and Chemistry Experiment (DC3) consisted of 18 research flights from Salina, KS. During cloud inflow and outflow surveys, various aged aerosol layers and plumes, including biomass burning, were sampled by the NASA DC-8 aircraft which was equipped with a broad suite of instruments for aerosol optical, microphysical, and chemical properties. As a result, the DC3 dataset includes detailed aerosol number size distribution, bulk aerosol mass concentration, black carbon mass concentration, and mass size distribution for sulfate, nitrate, ammonium and organics, together with scattering and absorption coefficients. We use this comprehensive dataset to perform a detailed closure analysis to examine the consistency between the observed aerosol properties and the literature reported aerosol refractive index values. In this context, we report aerosol observations, and comparisons between the aerosol mass and number size distribution for various aerosol layers. Closure tests will also be presented in terms of the impact of the aerosol composition and size distribution on the scattering and absorption.

  17. Aerosols optical properties in Titan's Detached Haze Layer

    NASA Astrophysics Data System (ADS)

    Seignovert, Benoit; Rannou, Pascal; Lavvas, Panayotis; West, Robert

    2016-10-01

    Titan's Detached Haze Layer (DHL) was first observed in 1983 by Rages and Pollack during the Voyager 2 is a consistent spherical haze feature surrounding Titan's upper atmosphere and detached from the main haze. Since 2005, the Imaging Science Subsystem (ISS) instrument on board the Cassini mission performs a continuous survey of the Titan's atmosphere and confirmed its persistence at 500 km up to the equinox (2009) before its drop and disappearance in 2012 (West et al. 2011). Previous analyses showed, that this layer corresponds to the transition area between small spherical aerosols and large fractal aggregates and play a key role in the aerosols formation in Titan's atmosphere (Rannou et al. 2000, Lavvas et al. 2009, Cours et al. 2011).In this talk we will present the UV photometric analyses based on radiative transfer inversion to retrieve aerosols particles properties in the DHL (bulk and monomer radius and local density) performed on ISS observations taken from 2005 to 2007.References:- Rages and Pollach, Icarus 55 (1983)- West, et al., Icarus 38 (2011)- Rannou, et al., Icarus 147 (2000)- Lavvas, et al., Icarus 201 (2009)- Cours, et al., ApJ Lett. 741 (2015)

  18. Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols

    SciTech Connect

    Grant, K.E.; Chuang, C.C.; Grossman, A.S.; Penner, J.E.

    1997-09-01

    The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from offline calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99 percent. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 {micro}m and 4 {micro}m. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest albedo. A similar treatment was done for aerosols from biomass burning. In this case, size distributions were taken as having two carbonaceous size modes and a larger dust mode. The two carbonaceous modes were considered to be humidity dependent. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and Chandrasekhar averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity

  19. The surface aerosol optical properties in the urban area of Nanjing, west Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhuang, Bingliang; Wang, Tijian; Liu, Jane; Li, Shu; Xie, Min; Han, Yong; Chen, Pulong; Hu, Qiduo; Yang, Xiu-qun; Fu, Congbin; Zhu, Jialei

    2017-01-01

    Observational studies of aerosol optical properties are useful for reducing uncertainties in estimations of aerosol radiative forcing and forecasting visibility. In this study, the observed near-surface aerosol optical properties in urban Nanjing are analysed from March 2014 to February 2016. Results show that near-surface urban aerosols in Nanjing are mainly from local emissions and the surrounding regions. They have lower loadings but are more scattering than aerosols in most cities in China. The annual mean aerosol extinction coefficient (EC), single-scattering albedo (SSA) and asymmetry parameter (ASP) at 550 nm are 381.96 Mm-1, 0.9 and 0.57, respectively. The aerosol absorption coefficient (AAC) is about 1 order of magnitude smaller than its scattering coefficient (SC). However, the absorbing aerosol has a larger Ångström exponent (AAE) value, 1.58 at 470/660 nm, about 0.2 larger than the scattering aerosols (SAE). All the aerosol optical properties follow a near-unimodal pattern, and their values are mostly concentrated around their averages, accounting for more than 60 % of the total samplings. Additionally, they have substantial seasonality and diurnal variations. High levels of SC and AAC all appear in winter due to higher aerosol and trace gas emissions. AAE (ASP) is the smallest (largest) in summer, possibly because of high relative humidity (RH) which also causes considerably larger SC and smaller SAE, although intensive gas-to-particle transformation could produce a large number of finer scattering aerosols in this season. Seasonality of EC is different from the columnar aerosol optical depth. Larger AACs appear during the rush hours of the day while SC and back-scattering coefficient (Bsp) only peak in the early morning. Aerosols are fresher in the daytime than at night-time, leading to their larger Ångström exponent and smaller ASP. Different temporal variations between AAC and SC cause the aerosols to be more absorbing (smaller SSA) in autumn

  20. Titan's aerosol optical properties with VIMS observations at the limb

    NASA Astrophysics Data System (ADS)

    Rannou, Pascal; Seignovert, Benoit; Le Mouelic, Stephane; Sotin, Christophe

    2016-06-01

    The study of Titan properties with remote sensing relies on a good knowledge of the atmosphere properties. The in-situ observations made by Huygens combined with recent advances in the definition of methane properties enable to model and interpret observations with a very good accuracy. Thanks to these progresses, we can analyze in this work the observations made at the limb of Titan in order to retrieve information on the haze properties as its vertical profiles but also the spectral behaviour between 0.88 and 5.2 µm. To study the haze layer and more generally the source of opacities in the stratosphere, we use some observation made at the limb of Titan by the VIMS instrument onboard Cassini. We used a model in spherical geometry and in single scattering, and we accounted for the multiple scattering with a parallel plane model that evaluate the multiple scattering source function at the plane of the limb. Our scope is to retrieve informations about the vertical distribution of the haze, its spectral properties, but also to obtain details about the shape of the methane windows to desantangle the role of the methane and of the aerosols. We started our study at the latitude of 55°N, with a image taken in 2006 with a relatively high spatial resolution (for VIMS). Our preliminary results shows the spectral properties of the aerosols are the same whatever the altitude. This is a consequence of the large scale mixing. From limb profile between 0.9 and 5.2 µm, we can probe the haze layer from about 500 km (at 0.9 µm) to the ground (at 5.2 µm). We find that the vertical profile of the haze layer shows three distinct scale heights with transitions around 250 km and 350 km. We also clearly a transition around 70-90 km that may be due to the top of a condensation layer.

  1. Vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Wang, Yuan; Kuang, Zhongyu; Fang, Sihua; Chen, Yonghang; Kang, Yanming; Zhang, Hua; Wang, Daoyuan; Fu, Yingying

    2016-06-01

    A comparative study on the vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai was conducted based on the data obtained from a micro pulse lidar. There was a distinct difference in layer thickness and extinction coefficient under the two types of weather conditions. Aerosols were concentrated below 1 km and the aerosol extinction coefficients ranged from 0.25 to 1.50 km-1 on haze days. In contrast, aerosols with smaller extinction coefficients (0.20-0.35 km-1) accumulated mainly from the surface to 2 km on floating dust days. The seasonal variations of extinction and aerosol optical depth (AOD) for both haze and floating dust cases were similar—greatest in winter, smaller in spring, and smallest in autumn. More than 85% of the aerosols appeared in the atmosphere below 1 km during severe haze and floating dust weather. The diurnal variation of the extinction coefficient of haze exhibited a bimodal shape with two peaks in the morning or at noon, and at nightfall, respectively. The aerosol extinction coefficient gradually increased throughout the day during floating dust weather. Case studies showed that haze aerosols were generated from the surface and then lifted up, but floating dust aerosols were transported vertically from higher altitude to the surface. The AOD during floating dust weather was higher than that during haze. The boundary layer was more stable during haze than during floating dust weather.

  2. Climatology of aerosol optical properties near the New England coast: preparation for the Two Column Aerosol Program (TCAP) field campaign

    NASA Astrophysics Data System (ADS)

    Berkowitz, C. M.; Chand, D.; Berg, L.; Kassianov, E.; Chapman, E.

    2011-12-01

    A key objective of the U.S. Department of Energy's Two Column Aerosol Project (TCAP) is to provide observations with which to evaluate the uncertainty in model simulations of aerosol optical depth (AOD) and their relation to estimates of aerosol radiative forcing and hence, to climate. To meet this objective, detailed ground-based aerosol measurements will be made via deployment of the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) at Cape Cod, Massachusetts for a 12-month period starting in the summer of 2012. These measurements will be supported by two scheduled aircraft campaigns using the ARM Aerial Facility's (AAF) G-1 aircraft and the NASA B-200 aircraft in July 2012 and again in February 2013. Each campaign will include sampling within two atmospheric columns using the aircrafts; one column will be located directly over, or very close to, Cape Cod, while the second will be over a relatively remote maritime location. This preliminary study presented here is designed to select the optimum location of the second, remote maritime atmospheric column using the mean and standard deviation of previously observed AODs from surface and space. An area with the large variability in AOD will be considered as a potential location for evaluation of the outputs from atmospheric models. In this study, we present regional climatological values of (1) AOD from the Moderate Resolution Imaging Spectrometer (MODIS) on Terra and Aqua satellite platforms; (2) single scattering albedo from the Multi-angle Imaging SpectroRadiometer (MISR) satellite; (3) the vertical distribution of aerosol layers from the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite; and (4) the long term aerosol optical properties from the Aerosol Robotic Network (AERONET) surface sunphotometer at Martha's Vineyard, MA. Seasonal and geographical variations in these quantities will be analyzed and possible explanations will be presented based on

  3. Validation of Retrieved Aerosol Optical Properties over Northeast Asia for Five Years from GOSAT TANSO-Cloud and Aerosol Imager

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lee, S.; KIM, M.; Choi, M.; Go, S.; Lim, H.; Goo, T. Y.; Nakajima, T.; Kuze, A.; Shiomi, K.; Yokota, T.

    2015-12-01

    An aerosol retrieval algorithm was developed from Thermal And Near infrared Sensor for carbon Observation-Cloud and Aerosol Imager (TANSO-CAI) onboard the Greenhouse Gases Observing Satellite (GOSAT). The algorithm retrieves aerosol optical depth (AOD), size distribution of aerosol, and aerosol type in 0.1 degree grid resolution by look-up tables, which is used in retrieving optical properties of aerosol using inversion products from Aerosol Robotic NETwork (AERONET) sun-photometer observation. To improve the accuracy of aerosol algorithm, first, this algorithm considered the annually estimated radiometric degradation factor of TANSO-CAI suggested by Kuze et al. (2014). Second, surface reflectance was determined by two methods: one using the clear sky composite method from CAI measurements and the other the database from MODerate resolution Imaging Sensor (MODIS) surface reflectance data. At a given pixel, the surface reflectance is selected by using normalized difference vegetation index (NDVI) depending on season (Hsu et al., 2013). In this study, the retrieved AODs were compared with those of AERONET and MODIS dataset for different season over five years. Comparisons of AODs between AERONET and CAI show reasonable agreement with correlation coefficients of 0.65 ~ 0.97 and regression slopes between 0.7 and 1.2 for the whole period, depending on season and sites. Moreover, those between MODIS and CAI for the same period show agreements with correlation coefficients of 0.7 ~ 0.9 and regression slopes between 0.7 and 1.0, depending on season and regions. The results show reasonably good correlation, however, the largest error source in aerosol retrieval has been surface reflectance of TANSO-CAI due to its 3-days revisit orbit characteristics.

  4. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  5. Climatological Aspects of the Optical Properties of Fine/Coarse Mode Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Sinyuk, A.; Pinker, R. T.; Goloub, P.; Chen, H.; Chatenet, B.; Li, Z.; Singh, R. P.; Tripathi, S.N.; Reid, J. S.; Giles, D. M.; Dubovik O.; O'Neill, N. T.; Smirnov, A.; Wang, P.; Xia, X.

    2010-01-01

    Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD.

  6. AERONET-based microphysical and optical properties of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-09-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad ''families'' of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA ∼0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA ∼0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average SSA ∼0.85 in the midvisible. These can serve as candidate sets of aerosol microphysical/optical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  7. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the

  8. On the variation of aerosol properties over Finland based on the optical columnar measurements

    NASA Astrophysics Data System (ADS)

    Aaltonen, V.; Rodriguez, E.; Kazadzis, S.; Arola, A.; Amiridis, V.; Lihavainen, H.; de Leeuw, G.

    2012-10-01

    Long-range aerosol transport over Finland has been studied using ground-based sunphotometer measurements of aerosol optical properties. Cimel sunphotometers were used at an urban site (Helsinki), a rural site (Hyytiälä) and a semiurban site (Kuopio) and PFR sunphotometer measurements were made at two rural sites, Jokioinen and Sodankylä. The CIMEL measurements are part of the AERONET (Aerosol robotic network) network and Jokioinen and Sodankylä are GAW-PFR (Global Atmosphere Watch-Precision Filter Radiometer) Associate Stations. Sunphotometers provide information on local columnar aerosol properties such as aerosol optical depth (AOD) and Ångström exponent (ÅE) that were used to investigate the aerosol content and aerosol type in this region. A set of representative event days, i.e. days with high turbidity, covering the time period between March 2006 and June 2010 has been selected for further analysis. For these days the AOD results were combined with air mass back trajectories to provide information about the air mass origin, especially for cases with moderate turbidity produced by long-range transported aerosols from mid latitudes to Finland. As expected, episodes with high AOD are connected with the transport of polluted air masses originating from the east or southeast or from industrial areas in Central Europe. We distinguished events with long range transported air pollution from cases where pollution was accumulated in the area due to the local meteorological factors.

  9. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  10. Model analysis of influences of aerosol mixing state upon its optical properties in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Zhu, Lingyun; Xu, Liren

    2013-07-01

    The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach ±5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.

  11. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  12. Optical properties of aerosol emissions from biomass burning in the tropics, BASE-A

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Kaufman, Yoram J.; Setzer, Alberto W.; Tanre, Didre D.; Ward, Darold E.

    1991-01-01

    Ground-based and airborne measurements of biomass-burning smoke particle optical properties, obtained with a view to aerosol-absorption properties, are presented as a function of time and atmospheric height. The wavelength dependence of the optical thickness can be explained by a log-normal size distribution, with particles' effective radius varying between 0.1 and 0.2 microns. The strong correlation noted between aerosol particle profile and CO profile indicates that smoke particulates constitute a good tracer for emission trace gases from tropical biomass burning.

  13. Relationship between column aerosol optical properties and surface aerosol gravimetric concentrations during the Distributed Regional Aerosol Gridded Observation Network - Northeast ASIA 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Seo, S.; Choi, M.; Kim, W. V.; Holben, B. N.; Lee, S.; Kim, J.

    2012-12-01

    One of the main objectives of Distributed Regional Aerosol Gridded Observation Network (DRAGON) campaign in Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission is to understand the relationship between the column optical properties of the atmosphere and the surface level air quality in terms of aerosols and gases. This study aims to identify the important parameters that affecting the relationship between those variables during the DRAGON - northeast Asia 2012 campaign. Column aerosol optical properties from ten Cimel sun photometers at DRAGON sites in Seoul, MODIS (Moderate Resolution Imaging Spectroradiometer), and GOCI (Geostationary Ocean Color Imager) and particulate matter (PM10) sampling from 40 NIER (National Institute of Environmental Research of South Korea) measurement sites in Seoul during the period of 1st March - 31th May 2012 were employed in this study. The key parameters in relationship between aerosol optical depth (AOD) and PM are reported to be aerosol vertical profile and hygroscopicity of the aerosols. The meteorological conditions including relative humidity, surface temperature, and wind speed that could affect those parameters were investigated.

  14. Sensitivity of Multiangle Imaging to the Optical and Microphysical Properties of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.

    2008-01-01

    The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.

  15. AeroCom INSITU Project: Comparison of Aerosol Optical Properties from In-situ Surface Measurements and Model Simulations

    NASA Astrophysics Data System (ADS)

    Schmeisser, L.; Andrews, E.; Schulz, M.; Fiebig, M.; Zhang, K.; Randles, C. A.; Myhre, G.; Chin, M.; Stier, P.; Takemura, T.; Krol, M. C.; Bian, H.; Skeie, R. B.; da Silva, A. M., Jr.; Kokkola, H.; Laakso, A.; Ghan, S.; Easter, R. C.

    2015-12-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data have the unique property of being traceable to physical standards, which is a big asset in accomplishing the overarching goal of bettering the accuracy of aerosol processes and predicative capability of global climate models. The INSITU project looks at how well models reproduce aerosol climatologies on a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis, using GOCART and other models participating in this AeroCom project, show substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location and optical property. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography (see Figure 1). Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol co-dependencies, for example, the tendency of in-situ surface single scattering albedo to decrease with decreasing aerosol extinction coefficient. This study elucidates specific problems with current aerosol models and suggests additional model runs and perturbations that could further evaluate the discrepancies between measured and modeled

  16. A Global Survey of Shipboard Measurements of Aerosol Optical Properties over the Oceans

    NASA Astrophysics Data System (ADS)

    Miller, M. A.; Reynolds, R. M.; Quinn, P.; Bartholomew, M. J.

    2001-12-01

    Marine aerosols contribute to the global albedo in two ways: direct scattering of incoming solar radiation to space (the direct effect) and modulation of the scattering properties of marine clouds (the indirect effect). The shortwave scattering and absorption characteristics of the marine atmosphere vary widely in space and time due to the variety of aerosol types, aerosol concentrations, and cloud structures that can be present. Aerosols over the oceans may originate from a variety of sources. Some are locally produced by wind-wave interaction while others are advected over great distances by the wind. In clear skies, advected continental aerosols can have a significantly different radiative impact than those that are locally produced. In cloudy skies, continental aerosol can cause modifications to the cloud droplet distribution in marine boundary layer clouds. Therefore, it is important to understand the spatial, temporal, and physical characteristics of aerosol over the world's oceans. Although information about aerosol optical properties over the world's oceans is critical, shipboard sun photometer measurements of these properties are relatively sparse. As part of our NASA SIMBIOS work and with additional support from the Department of Energy's (DOE) Atmospheric Radiation Program (ARM) program, the number of shipboard measurements has increased exponentially due to the development of a marine version of the Fast-Rotating, Shadow-band spectral Radiometer (FRSR). This instrument makes continuous, semi-automated shipboard measurements of the direct-normal, diffuse, and global irradiance in seven channels (415 nm, 500 nm, 610 nm, 660 nm, 862 nm, 936 nm, and broadband) and does not require a mechanically stabilized platform, thereby making it cost effective and reliable. The aerosol optical thickness is computed continuously from the direct-normal component of irradiance using calibration constants obtained using the Langley technique. The FRSR has been deployed on

  17. Aeronet-based Microphysical and Optical Properties of Smoke-dominated Aerosol near Source Regions and Transported over Oceans, and Implications for Satellite Retrievals of Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-01-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad families of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA 0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA 0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savanna at Mongu (Zambia), with average SSA 0.85 in the midvisible. These can serve as candidate sets of aerosol microphysicaloptical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  18. Evaluating the representation of aerosol optical properties using an online coupled model over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Palacios-Peña, Laura; Baró, Rocío; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas; Brunner, Dominik; Jiménez-Guerrero, Pedro

    2017-01-01

    The effects of atmospheric aerosol particles on the Earth's climate mainly depend on their optical, microphysical and chemical properties, which modify the Earth's radiative budget. The aerosol radiative effects can be divided into direct and semi-direct effects, produced by the aerosol-radiation interactions (ARIs), and indirect effects, produced by aerosol-cloud interactions (ACIs). In this sense the objective of this work is to assess whether the inclusion of aerosol radiative feedbacks in the online coupled WRF-Chem model improves the modelling outputs over the Iberian Peninsula (IP) and surrounding water areas. For this purpose, the methodology is based on the evaluation of modelled aerosol optical properties under different simulation scenarios. The evaluated data come from two WRF-Chem simulations for the IP differing in the inclusion/no-inclusion of ARIs and ACIs (RF/NRF simulations). The case studies cover two episodes with different aerosol types over the IP in 2010, namely a Saharan dust outbreak and a forest fire episode. The evaluation uses observational data from AERONET (Aerosol Robotic Network) stations and MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, including aerosol optical depth (AOD) and Ångström exponent (AE). Experimental data of aerosol vertical distribution from the EARLINET (European Aerosol Research Lidar Network) Granada station are used for checking the models. The results indicate that for the spatial distribution the best-represented variable is AOD and the largest improvements when including the aerosol radiative feedbacks are found for the vertical distribution. In the case of the dust outbreak, a slight improvement (worsening) is produced over the areas with medium (high/low) levels of AOD(-9 % / +12 % of improvement) when including the aerosol radiative feedbacks. For the wildfire episode, improvements of AOD representation (up to 11 %) over areas further away from emission sources are estimated

  19. Quantification of black carbon mixing state from traffic: Implications for aerosol optical properties

    SciTech Connect

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; West, Matthew; Wang, Jon M.; Jeong, Cheol -Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.; Lee, Alex K. Y.

    2016-04-14

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was  < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Lastly, significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.

  20. Quantification of black carbon mixing state from traffic: Implications for aerosol optical properties

    DOE PAGES

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; ...

    2016-04-14

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) inmore » two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was  < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Lastly, significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.« less

  1. Modelling the optical properties of aerosols in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  2. Airborne in situ characterization of dry urban aerosol optical properties around complex topography

    NASA Astrophysics Data System (ADS)

    Targino, Admir Créso; Noone, Kevin J.

    2006-02-01

    In situ data from the 1997 Southern California Ozone Study—NARSTO were used to describe the aerosol optical properties in an urban area whose aerosol distribution is modified as the aerosols are advected over the surrounding topography. The data consist of measurements made with a nephelometer and absorption photometer onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Pelican aircraft. The cases investigated in this study include vertical profiles flown over coastal sites as well as sites located along some important mountain ranges in southern California. The vertical distribution of the aerosol in the Los Angeles Basin showed a complex configuration, directly related with the local meteorological circulations and the surrounding topography. High spatial and temporal variability in air pollutant concentrations within a relatively small area was found, as indicated by the aerosol scattering and absorption coefficient data. The results suggest that in areas with such complex terrain, a high spatial resolution is required in order to adequately describe the aerosol optical quantities. Principal components analysis (PCA) has been applied to aerosol chemical samples in order to identify the major aerosol types in the Los Angeles Basin. The technique yielded four components that accounted for 78% of the variance in the data set. These were indicative of marine aerosols, urban aerosols, trace elements and secondary aerosol components of traffic emissions and agricultural activities. A Monte Carlo radiation transfer model has been employed to simulate the effects that different aerosol vertical profiles have on the attenuation of solar energy. The cases examined were selected using the results of the PCA and in situ data were used to describe the atmospheric optical properties in the model. These investigations comprise a number of sensitivity tests to evaluate the effects on the results of the location of the aerosol layers as well as

  3. Aerosol optical properties and types over the tropical urban region of Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Kharol, Shailesh Kumar; Kaskaoutis, D. G.; Rani Sharma, Anu; Kvs, Badarinath; Kambezidis, H. D.

    India is densely populated, industrialized and in the recent years has witnessed an impressive economic development. Aerosols over and around India not only affect the Indian monsoon but also the global climate. The growing population coupled with revolution in industry has resulted in higher demands for energy and transport. With more and more urbanization the usage pattern of fossil and bio-fuels are leading to changes in aerosol properties, which may cause changes in precipitation and can decelerate the hydrological cycle. Over urban areas of India aerosol emissions from fossil fuels such as coal, petrol and diesel oil dominate. Further-more, the Indian subcontinent exhibits different land characteristics ranging from vegetated areas and forests to semiarid and arid environments and tall mountains. India experiences large seasonal climatic variations, which result in extreme temperatures, rainfall and relative humidity. These meteorological and climatic features introduce large variabilities in aerosol op-tical and physico-chemical characteristics at spatial and temporal scales. In the present study, seasonal variations in aerosol properties and types were analysed over tropical urban region of Hyderabad, India during October 2007-September 2008 using MICROTOPS II sun photometer measurements. Higher aerosol optical depth (AOD) values are observed in premonsoon, while the variability of the ˚ngstrüm exponent (α) seems to be more pronounced with higher values A in winter and premonsoon and lower in the monsoon periods. The AOD at 500 nm (AOD500 ) is very large over Hyderabad, varying from 0.46±0.17 in postmonsoon to 0.65±0.22 in premon-soon periods. A discrimination of the different aerosol types over Hyderabad is also attempted using values of AOD500 and α380-870. Such discrimination is rather difficult to interpret since a single aerosol type can partly be identified only under specific conditions (e.g. anthropogenic emissions, biomass burning or dust

  4. A new approach for retrieving the UV-vis optical properties of ambient aerosols

    NASA Astrophysics Data System (ADS)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Rudich, Yinon

    2016-08-01

    Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol-radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.

  5. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    EPA Science Inventory

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  6. Aerosol Optical Properties Characterization By Means Of The CNR-IMAA Multi-Wavelength Raman Lidar

    NASA Astrophysics Data System (ADS)

    Mona, L.; Amodeo, A.; D'Amico, G.; Pappalardo, G.

    2007-12-01

    A Raman/elastic lidar for tropospheric aerosol study is operational at CNR-IMAA (40°36'N, 15°44'E, 760 m above sea level) since May 2000 in the framework of EARLINET. Since August 2005, this system provides aerosol backscatter coefficient profiles at 1064 nm, and independent measurements of aerosol extinction and backscatter coefficient profiles at 355 and 532 nm. In this way, lidar ratio (i.e. extinction to backscatter ratio) profiles at 355 and 532 nm are also obtained. In addition, depolarization ratio measurements at 532 nm are obtained by means of detection of components of backscattered light polarized perpendicular and parallel to the direction of the linearly polarized transmitted laser beam. Depolarization ratio measurements provide information about shape and orientation of aerosolic particles, while lidar ratio measurements and wavelength dependences of both backscatter and extinction are important for aerosol characterization in terms of aerosol type and size. In addition, high quality multi-wavelength measurements (3 backscatter + 2 extinction) can allow the determination of microphysical aerosol properties (refractive index, single-scattering albedo and effective particles radii). Systematic measurements are performed three times per week according to the EARLINET schedule since May 2000, and further measurements are performed in order to investigate particular events, like dust intrusions, volcanic eruptions and forest fires. This extended dataset allows the optical characterization of aerosol located close to the surface, namely in the Planetary Boundary Layer, as well as in the free troposphere. In the free troposphere, an high occurrence of Saharan dust intrusions at CNR-IMAA (about 1 day of Saharan dust intrusion every 10 days) has been identified by means of back-trajectory analysis and in accordance with satellite images, because of the short distance from the Sahara region. In addition, CNR-IMAA is pretty close to Etna, the largest European

  7. An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan S.; Slusser, James R.; Stephens, Graeme L.; Goering, Christian D.

    2008-02-01

    This paper describes a number of practical considerations concerning the optimization and operational implementation of an algorithm used to characterize the optical properties of aerosols across part of the ultraviolet (UV) spectrum. The algorithm estimates values of aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) at seven wavelengths in the UV, as well as total column ozone (TOC) and wavelength-independent asymmetry factor (g) using direct and diffuse irradiances measured with a UV multifilter rotating shadowband radiometer (UV-MFRSR). A novel method for cloud screening the irradiance data set is introduced, as well as several improvements and optimizations to the retrieval scheme which yield a more realistic physical model for the inversion and increase the efficiency of the algorithm. Introduction of a wavelength-dependent retrieval error budget generated from rigorous forward model analysis as well as broadened covariances on the a priori values of AOD, SSA and g and tightened covariances of TOC allows sufficient retrieval sensitivity and resolution to obtain unique solutions of aerosol optical properties as demonstrated by synthetic retrievals. Analysis of a cloud screened data set (May 2003) from Panther Junction, Texas, demonstrates that the algorithm produces realistic values of the optical properties that compare favorably with pseudo-independent methods for AOD, TOC and calculated Ångstrom exponents. Retrieval errors of all parameters (except TOC) are shown to be negatively correlated to AOD, while the Shannon information content is positively correlated, indicating that retrieval skill improves with increasing atmospheric turbidity. When implemented operationally on more than thirty instruments in the Ultraviolet Monitoring and Research Program's (UVMRP) network, this retrieval algorithm will provide a comprehensive and internally consistent climatology of ground-based aerosol properties in the UV spectral range that can be used

  8. Optical and Structural Properties of Aerosols Emitted from Open Biomass Burning (Invited)

    NASA Astrophysics Data System (ADS)

    Moosmuller, H.; Chakrabarty, R. K.; Lewis, K.; Gyawali, M.; Mazzoleni, C.; Dubey, M. K.; Kreidenweis, S. M.; Arnott, W. P.

    2010-12-01

    Open biomass burning including wildland fires and agricultural burning emits substantial quantities of carbonaceous aerosols into the atmosphere. Fuel, soil, and atmospheric conditions largely determine the combustion phase. High temperature flaming combustion emits black aerosols, generally consisting of fractal-like chain aggregates that have a high black carbon content and therefore strongly absorb visible light. Low temperature, smoldering combustion, on the other hand, emits fairly white aerosols, often consisting of near-spherical particles that have high organic carbon content. While this organic carbon is traditionally considered to cause negligent absorption of visible light, more recent studies have shown that organic carbon from biomass burning often contains brown carbon. Brown carbon is a component of organic carbon, optically defined by its increasing light absorption toward shorter wavelengths. The physical characteristics of biomass combustion aerosol particles are determined by a combination of their morphology, monomer size, and shape, all of which can be determined from electron microscopy and image analysis. Here, we review optical and structural properties of aerosols emitted from open biomass burning with a focus on relevance for radiative forcing and climate change and satellite remote sensing. This review is followed by a discussion of measurements and modeling of brown carbon optical properties, of associated metrics such as the Ångström absorption coefficient, and of future research needs.

  9. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  10. Investigation the optical and radiative properties of aerosol vertical profile of boundary layer by lidar and ground based measurements

    NASA Astrophysics Data System (ADS)

    Chen, W.; Chou, C.; Lin, P.; Wang, S.

    2011-12-01

    The planetary boundary layer is the air layer near the ground directly affected by diurnal heat, moisture, aerosol, and cloud transfer to or from the surface. In the daytime solar radiation heats the surface, initiating thermal instability or convection. Whereas, the scattering and absorption of aerosols or clouds might decrease the surface radiation or heat atmosphere which induce feedbacks such as the enhanced stratification and change in relative humidity in the boundary layer. This study is aimed to understand the possible radiative effect of aerosols basing on ground based aerosol measurements and lidar installed in National Taiwan University in Taipei. The optical and radiative properties of aerosols are dominated by aerosol composition, particle size, hygroscopicity property, and shape. In this study, aerosol instruments including integrating nephelometer, open air nephelometer, aethalometer are applied to investigate the relationship between aerosol hygroscopicity properties and aerosol types. The aerosol hygroscopicity properties are further applied to investigate the effect of relative humidity on aerosol vertical profiles measured by a dual-wavelength and depolarization lidar. The possible radiative effect of aerosols are approached by vertical atmospheric extinction profiles measured by lidar. Calculated atmospheric and aerosol heating effects was compared with vertical meteorological parameters measured by radiosonde. The result shows light-absorbing aerosol has the potential to affect the stability of planetary boundary layer.

  11. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan

    Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to

  12. [Aerosol optical properties during different air-pollution episodes over Beijing].

    PubMed

    Shi, Chan-Zhen; Yu, Xing-Na; Zhou, Bin; Xiang, Lei; Nie, Hao-Hao

    2013-11-01

    Based on the 2005-2011 data from Aerosol Robotic Network (AERONET), this study conducted analysis on aerosol optical properties over Beijing during different air-pollution episodes (biomass burning, CNY firework, dust storm). The aerosol optical depth (AOD) showed notable increases in the air-pollution episodes while the AOD (at 440 nm) during dust storm was 4. 91, 4. 07 and 2.65 times higher as background, biomass burning and firework aerosols. AOD along with Angstrom exponent (alpha) can be used to determine the aerosol types. The dust aerosol had the highest AOD and the lowest alpha. The alpha value of firework (1.09) was smaller than biomass burning (1.21) and background (1.27), indicating that coarse particles were dominant in the former type. Higher AOD of burnings (than background) can be attributed to the optical extinction capability of black carbon aerosol. The single scattering albedo (SSA) was insensitive to wavelength. The SSA value of dust (0.934) was higher than background (0.878), biomass burning (0.921) and firework (0.905). Additionally, the extremely large SSA of burnings here maybe was caused by the aging smoke, hygroscopic growth and so on. The peak radius of aerosol volume size distributions were 0.1-0.2 microm and 2.24 -3.85 microm in clear and polluted conditions. The value of volume concentration ratio between coarse and fine particles was in the order of clear background (1.04), biomass burning (1.10), CNY firework (1.91) and dust storm (4.96) episode.

  13. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent

  14. Uncertainties in Carbonaceous Aerosol Emissions, Scavenging Parameterizations, and Optical Properties

    NASA Astrophysics Data System (ADS)

    Koch, D.; Bond, T.; Kinne, S.; Klimont, Z.; Sun, H.; van Aardenne, J.; van der Werf, G.

    2006-12-01

    Estimates of human influence on climate are especially hindered by poor constraint on the amount of anthropogenic carbonaceous aerosol absorption in the atmosphere. Coordination of observation and model analyses attempt to constrain particle absorption amount, however these are limited by uncertainties in aerosol emission estimates, model scavenging parameterization, aerosol size assumption, contributions from organic aerosol absorption, air concentration observational techniques and by sparsity of data coverage. We perform multiple simulations using GISS modelE and six present-day emission estimates for black carbon (BC) and organic carbon (OC) (Bond et al 2004 middle and upper estimates, IIASA, EDGAR, GFED v1 and v2); for one of these emissions we apply 4 different BC/OC scavenging parameterizations. The resulting concentrations will be compared with a new compilation of observed BC/OC concentrations. We then use these model concentrations, together with effective radius assumptions and estimates of OC absorption to calculate a range of carbonaceous aerosol absorption. We constrain the wavelength-dependent model τ- absorption with AERONET sun-photometer observations. We will discuss regions, seasons and emission sectors with greatest uncertainty, including those where observational constraint is lacking. We calculate the range of model radiative forcing from our simulations and discuss the degree to which it is constrained by observations.

  15. Effects of data assimilation on the global aerosol key optical properties simulations

    NASA Astrophysics Data System (ADS)

    Yin, Xiaomei; Dai, Tie; Schutgens, Nick A. J.; Goto, Daisuke; Nakajima, Teruyuki; Shi, Guangyu

    2016-09-01

    We present the one month results of global aerosol optical properties for April 2006, using the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM), by assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) with Local Ensemble Transform Kalman Filter (LETKF). The simulated AOD, Ångström Exponent (AE) and single scattering albedo (SSA) are validated by independent Aerosol Robotic Network (AERONET) observations over the global sites. The data assimilation has the strongest positive effect on the AOD simulation and slight positive influences on the AE and SSA simulations. For the time-averaged globally spatial distribution, the data assimilation increases the model skill score (S) of AOD, AE, and SSA from 0.55, 0.92, and 0.75 to 0.79, 0.94, and 0.80, respectively. Over the North Africa (NAF) and Middle East region where the aerosol composition is simple (mainly dust), the simulated AODs are best improved by the data assimilation, indicating the assimilation correctly modifies the wrong dust burdens caused by the uncertainties of the dust emission parameterization. Assimilation also improves the simulation of the temporal variations of the aerosol optical properties over the AERONET sites, with improved S at 60 (62%), 45 (55%) and 11 (50%) of 97, 82 and 22 sites for AOD, AE and SSA. By analyzing AOD and AE at five selected sites with best S improvement, this study further indicates that the assimilation can reproduce short duration events and ratios between fine and coarse aerosols more accurately.

  16. Optical properties of urban aerosols in the region Bratislava-Vienna—II: Comparisons and results

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Horvath, H.; Hrvoľ, J.

    The optical and microphysical properties of aerosols in highly urbanized region Bratislava-Vienna were determined by means of ground-based optical methods during campaign in August and September 2004. Although both cities are close to each other forming a common metropolitan region, the features of their aerosol systems are distinct. While urban and suburban zones around Vienna have mostly a clean air without major influences of emissions from industry, Bratislava itself need to be classified as polluted area—the optical data collected in the measuring site are influenced mainly by Technické Sklo factory (NW positioned), Matador (SSE), Istrochem (ENE) and Slovnaft (ESE). In contrary to an observed smooth evolution of the aerosol system in Vienna, the aerosol environment is quite unstable in Bratislava and usually follows the day changes of the wind directions (as they correspond to the position of individual sources of pollution). The particle sizes in Bratislava are predominately larger compared to Vienna. A subsidiary mode within surface size distribution frequently occurs at radius about 0.7 μm in Bratislava but not in Vienna. The size distribution of airborne particles in Vienna is more dependent on relative humidity than in Bratislava. It suggests the particles in Bratislava are larger whenever, or non-deliquescent to a great extent. The spectral attenuation of solar radiation by aerosol particles shows a typical mode at λ≈0.4μm in Bratislava, which is not observed in the spectral aerosol extinction coefficient in Vienna. In Bratislava, the average aerosol optical thickness grows from morning hours to the evening, while an opposite effect can be observed in Vienna in the same time.

  17. Comparing the relationships between aerosol optical depth and cloud properties in observations and global models

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, Edward; Quaas, Johannes

    2016-04-01

    Aerosols impact the climate both directly, through their interaction with radiation and indirectly, via their ability to act as cloud condensation nuclei (CCN), modifying cloud properties. The influence of aerosols on cloud properties is highly uncertain. Many relationships between aerosol optical depth (AOD) and cloud properties have been observed using satellite data, but previous work has shown that some of these relationships are the product of the strong AOD-cloud fraction (CF) relationship. The confounding influence of local meteorology obscures the magnitude of any aerosol impact on CF, and so also the impact of aerosol on other cloud properties. For example, both AOD and CF are strongly influenced by relative humidity, which can generate a correlation between them. Previous studies have used reanalysis data to account for confounding meteorological variables. This requires knowledge of the relevant meteorological variables and is limited by the accuracy of the reanalysis data. Recent work has shown that by using the cloud droplet number concentration (CDNC) to mediate the AOD-CF relationship, the impact of relative humidity can be significantly reduced. This method removes the limitations imposed by the finite accuracy of reanalysis data. In this work we investigate the impact of the CDNC mediation on the AOD-CF relationship and on the relationship between AOD and other cloud properties in global atmospheric models. By comparing pre-industrial and present day runs, we investigate the success of the CDNC mediated AOD-CF relationship to predict the change in CF from the pre-industrial to the present day using only observations of the present day relationships between clouds and aerosol properties. This helps to determine whether the satellite-derived relationship provides a constraint on the aerosol indirect forcing due to changes in CF.

  18. A new method of measuring aerosol optical properties from digital twilight photographs

    NASA Astrophysics Data System (ADS)

    Saito, M.; Iwabuchi, H.

    2015-01-01

    An optimal-estimation algorithm for inferring aerosol optical properties from digital twilight photographs is proposed. The sensitivity of atmospheric components and surface characteristics to brightness and color of twilight sky is investigated, and the results suggest that tropospheric and stratospheric aerosol optical thickness (AOT) are sensitive to condition of the twilight sky. The coarse-fine particle volume ratio is moderately sensitive to the sky condition near the horizon under a clean-atmosphere condition. A radiative transfer model that takes into account a spherical-shell atmosphere, refraction, and multiple scattering is used as a forward model. Error analysis shows that the tropospheric and stratospheric AOT can be retrieved without significant bias. Comparisons with results from other ground-based instruments exhibit reasonable agreement on AOT. A case study suggests that the AOT retrieval method can be applied to atmospheric conditions with varying aerosol vertical profiles and vertically inhomogeneous species in the troposphere.

  19. A new method of measuring aerosol optical properties from digital twilight photographs

    NASA Astrophysics Data System (ADS)

    Saito, M.; Iwabuchi, H.

    2015-10-01

    An optimal-estimation algorithm for inferring aerosol optical properties from digital twilight photographs is proposed. The sensitivity of atmospheric components and surface characteristics to brightness and color of twilight sky is investigated, and the results suggest that tropospheric and stratospheric aerosol optical thickness (AOT) are sensitive to condition of the twilight sky. The coarse-fine particle volume ratio is moderately sensitive to the sky condition near the horizon under a clean-atmosphere condition. A radiative transfer model that takes into account a spherical-shell atmosphere, refraction, and multiple scattering is used as a forward model. Error analysis shows that the tropospheric and stratospheric AOT can be retrieved without significant bias. Comparisons with results from other ground-based instruments exhibit reasonable agreement on AOT. A case study suggests that the AOT retrieval method can be applied to atmospheric conditions with varying aerosol vertical profiles and vertically inhomogeneous species in the troposphere.

  20. Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Barragan, Rubén; Dulac, François; Alados-Arboledas, Lucas; Mallet, Marc

    2016-09-01

    In the framework of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr/) program, the seasonal variability of the aerosol optical, microphysical and radiative properties derived from AERONET (Aerosol Robotic Network; http://aeronet.gsfc.nasa.gov/) is examined in two regional background insular sites in the western Mediterranean Basin: Ersa (Corsica Island, France) and Palma de Mallorca (Mallorca Island, Spain). A third site, Alborán (Alborán Island, Spain), with only a few months of data is considered for examining possible northeast-southwest (NE-SW) gradients of the aforementioned aerosol properties. The AERONET dataset is exclusively composed of level 2.0 inversion products available during the 5-year period 2011-2015. AERONET solar radiative fluxes are compared with ground- and satellite-based flux measurements. To the best of our knowledge this is the first time that AERONET fluxes are compared with measurements at the top of the atmosphere. Strong events (with an aerosol optical depth at 440 nm greater than 0.4) of long-range transport aerosols, one of the main drivers of the observed annual cycles and NE-SW gradients, are (1) mineral dust outbreaks predominant in spring and summer in the north and in summer in the south and (2) European pollution episodes predominant in autumn. A NE-SW gradient exists in the western Mediterranean Basin for the aerosol optical depth and especially its coarse-mode fraction, which all together produces a similar gradient for the aerosol direct radiative forcing. The aerosol fine mode is rather homogeneously distributed. Absorption properties are quite variable because of the many and different sources of anthropogenic particles in and around the western Mediterranean Basin: North African and European urban areas, the Iberian and Italian peninsulas, most forest fires and

  1. Optical and Physicochemical Properties of Brown Carbon Aerosol: Light Scattering, FTIR Extinction Spectroscopy, and Hygroscopic Growth.

    PubMed

    Tang, Mingjin; Alexander, Jennifer M; Kwon, Deokhyeon; Estillore, Armando D; Laskina, Olga; Young, Mark A; Kleiber, Paul D; Grassian, Vicki H

    2016-06-23

    A great deal of attention has been paid to brown carbon aerosol in the troposphere because it can both scatter and absorb solar radiation, thus affecting the Earth's climate. However, knowledge of the optical and chemical properties of brown carbon aerosol is still limited. In this study, we have investigated different aspects of the optical properties of brown carbon aerosol that have not been previously explored. These properties include extinction spectroscopy in the mid-infrared region and light scattering at two different visible wavelengths, 532 and 402 nm. A proxy for atmospheric brown carbon aerosol was formed from the aqueous reaction of ammonium sulfate with methylglyoxal. The different optical properties were measured as a function of reaction time for a period of up to 19 days. UV/vis absorption experiments of bulk solutions showed that the optical absorption of aqueous brown carbon solution significantly increases as a function of reaction time in the spectral range from 200 to 700 nm. The analysis of the light scattering data, however, showed no significant differences between ammonium sulfate and brown carbon aerosol particles in the measured scattering phase functions, linear polarization profiles, or the derived real parts of the refractive indices at either 532 or 402 nm, even for the longest reaction times with greatest visible extinction. The light scattering experiments are relatively insensitive to the imaginary part of the refractive index, and it was only possible to place an upper limit of k ≤ 0.01 on the imaginary index values. These results suggest that after the reaction with methylglyoxal the single scattering albedo of ammonium sulfate aerosol is significantly reduced but that the light scattering properties including the scattering asymmetry parameter, which is a measure of the relative amount of forward-to-backward scattering, remain essentially unchanged from that of unprocessed ammonium sulfate. The optical extinction properties

  2. Aerosol physical, chemical and optical properties observed in the ambient atmosphere during haze pollution conditions

    NASA Astrophysics Data System (ADS)

    Li, Zhengqiang; Xie, Yisong; Li, Donghui; Li, Kaitao; Zhang, Ying; Li, Li; Lv, Yang; Qie, Lili; Xu, Hua

    Aerosol’s properties in the ambient atmosphere may differ significantly from sampling results due to containing of abundant water content. We performed sun-sky radiometer measurements in Beijing during 2011 and 2012 winter to obtain distribution of spectral and angular sky radiance. The measurements are then used to retrieve aerosol physical, chemical and optical properties, including single scattering albedo, size distribution, complex refractive indices and aerosol component fractions identified as black carbon, brown carbon, mineral dust, ammonium sulfate-like components and water content inside particle matters. We found that during winter haze condition aerosol is dominated by fine particles with center radius of about 0.2 micron. Fine particles contribute about 93% to total aerosol extinction of solar light, and result in serious decrease of atmospheric visibility during haze condition. The percentage of light absorption of haze aerosol can up to about 10% among its total extinction, much higher than that of unpolluted conditions, that causes significant radiative cooling effects suppressing atmospheric convection and dispersion of pollutants. Moreover, the average water content occupies about one third of the ambient aerosol in volume which suggests the important effect of ambient humidity in the formation of haze pollution.

  3. Enhanced water vapor in Asian dust layer: Entrainment processes and implication for aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Chang; Kim, Sang-Woo; Kim, Jiyoung; Sohn, Byung-Ju; Jefferson, Anne; Choi, Suk-Jin; Cha, Dong-Hyun; Lee, Dong-Kyou; Anderson, Theodore L.; Doherty, Sarah J.; Weber, Rodney J.

    The entrainment process of water vapor into the dust layer during Asian dust events and the effect of water vapor associated with the Asian dust layer (ADL) on aerosol hygroscopic properties are investigated. The entrainment processes of water vapor into the ADL is examined by using a PSU/NCAR MM5 together with the backward trajectory model, radiosonde data, and remotely sensed aerosol vertical distribution data. Two dust events in the spring of 1998 and 2001 are examined in detail. The results reveal that the water vapor mixing ratio (WVMR) derived by the MM5 fits in well with the WVMR observed by radiosonde, and is well coincident with the aerosol extinction coefficient ( σep) measured by the micro-pulse lidar. The temporal evolution of the vertical distributions of WVMR and σep exhibited similar features. On the basis of a well simulation of the enhanced water vapor within the dust layer by the MM5, we trace the dust storms to examine the entrainment mechanism. The enhancement of WVMR within the ADL was initiated over the mountainous areas. The relatively moist air mass in the well-developed mixing layer over the mountainous areas is advected upward from the boundary layer by an ascending motion. However, a large portion of the water vapor within the ADL is enhanced over the edge of a highland and the plains in China. This is well supported by the simulated WVMR and the wind vectors. Aircraft-based in situ measurements of the chemical and optical properties of aerosol enable a quantitative estimation of the effect of the enhanced WVMR on the aerosol hygroscopic properties. The submicron aerosol accompanied by the dust storm caused an increase of aerosol scattering through water uptakes during the transport. This increase could be explained by the chemical fact that water-soluble submicron pollution aerosols are enriched in the ADL.

  4. Determination of the broadband optical properties of biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Lin, Peng; Laskin, Alexander; Rudich, Yinon

    2016-04-01

    The direct and semi-direct effects of atmospheric aerosol on the Earth's energy balance are still the two of the largest uncertainties in our understanding of anthropogenic radiative forcing. In this study we developed a new approach for determining high sensitivity broadband UV-Vis spectrum (300-650 nm) of extinction, scattering and absorption coefficients, single scattering albedo and the complex refractive index for continuous, spectral and time dependent, monitoring of polydisperse aerosols population. This new approach was applied in a study of biomass burning aerosol. Extinction, scattering and absorption coefficients (αext, αsca, αabs, respectively) were continually monitored using photoacoustic spectrometer coupled to a cavity ring down spectrometer (PA-CRD-AS) at 404 nm, a dual-channel Broadband cavity-enhanced spectrometer (BBCES) at 315-345 nm and 390-420 nm and a three channel integrating nephelometer (IN) centered at 457, 525 and 637 nm. During the biomass burning event, the measured aerosol number concentration increased by more than an order of magnitude relative to other week nights and the mode of the aerosols size distribution increased from 40-50 nm to 110nm diameter. αext and αsca increased by a factor of about 5.5 and 4.5, respectively. The αabs increased by a factor over 20, indicating a significant change in the aerosol overall chemical composition. The imaginary part of the complex RI at 404nm increased from its background level at about 0.02 to a peak of about 0.08 and the SSA decreased from 0.9 to about 0.6. Significant change of the absorption spectral dependence indicates formation of visible-light absorbing compounds. The mass absorption cross section of the water soluble organic aerosol (MACWSOA) reached up to about 12% of the corresponding value for black carbon (BC) at 450 nm and up to 30% at 300 nm. These results demonstrate the importance of biomass burning in understanding global and regional radiative forcing.

  5. Variation of aerosol optical properties from AERONET observation at Mt. Muztagh Ata, Eastern Pamirs

    NASA Astrophysics Data System (ADS)

    Yan, Ni; Wu, Guangjian; Zhang, Xuelei; Zhang, Chenglong; Xu, Tianli; Lazhu

    2015-02-01

    Using data from the ground-based remote sensing Aerosol Robotic Network (AERONET), aerosol optical properties, including aerosol optical depth (AOD), Ångström exponent (α), and volume size distribution were investigated for the period June to December 2011 at Mt. Muztagh Ata (Muztagata), Eastern Pamirs. The monthly average values of AOD (500 nm) and α (440-870 nm) varied from 0.08 ± 0.02 to 0.16 ± 0.11, and from 0.56 ± 0.06 to 0.93 ± 0.28, respectively. The daily AOD averages 0.14 ± 0.07, with the maximum (0.5) occurring in August and the minimum (0.05) occurring in November. A small increase in AOD is expected with a noticeable decrease in the α value. The daily α averages 0.70 ± 0.27, and most exponents are less than 1, indicating the majority of larger aerosol particles. The volume size distribution of aerosol particles shows bimodal log-normal characteristics, with a fine mode radius of 0.2 μm and a coarse mode radius of 3 μm. The MODIS AOD and AERONET AOD display a similar variation, while the former is always noticeably higher than the latter with a difference of 0.1-0.4, indicating that the MODIS data might overestimate the aerosol load. Our results indicate that high aerosol volume concentration occurs in summer with the dominance of coarse particles over Muztagh Ata. The low AOD shows a clean atmosphere in this region, revealing that it is an atmospheric background site for continental aerosol monitoring.

  6. Absorbing aerosols at high relative humidity: linking hygroscopic growth to optical properties

    NASA Astrophysics Data System (ADS)

    Flores, J. Michel; Bar-Or, R. Z.; Bluvshtein, N.; Abo-Riziq, A.; Kostinski, A.; Borrmann, S.; Koren, I.; Koren, I.; Rudich, Y.

    2012-06-01

    One of the major uncertainties in the understanding of Earth's climate system is the interaction between solar radiation and aerosols in the atmosphere. Aerosols exposed to high humidity will change their chemical, physical, and optical properties due to their increased water content. To model hydrated aerosols, atmospheric chemistry and climate models often use the volume weighted mixing rule to predict the complex refractive index (RI) of aerosols when they interact with high relative humidity, and, in general, assume homogeneous mixing. This study explores the validity of these assumptions. A humidified cavity ring down aerosol spectrometer (CRD-AS) and a tandem hygroscopic DMA (differential mobility analyzer) are used to measure the extinction coefficient and hygroscopic growth factors of humidified aerosols, respectively. The measurements are performed at 80% and 90%RH at wavelengths of 532 nm and 355 nm using size-selected aerosols with different degrees of absorption; from purely scattering to highly absorbing particles. The ratio of the humidified to the dry extinction coefficients (fRHext(%RH, Dry)) is measured and compared to theoretical calculations based on Mie theory. Using the measured hygroscopic growth factors and assuming homogeneous mixing, the expected RIs using the volume weighted mixing rule are compared to the RIs derived from the extinction measurements. We found a weak linear dependence or no dependence of fRH(%RH, Dry) with size for hydrated absorbing aerosols in contrast to the non-monotonically decreasing behavior with size for purely scattering aerosols. No discernible difference could be made between the two wavelengths used. Less than 7% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. However, for substances with growth factor less than 1.15 the volume weighted mixing rule assumption

  7. Optical and chemical properties of aerosols transported to Mount Bachelor during spring 2010

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Perry, K. D.; Jaffe, D. A.

    2011-09-01

    We report on springtime 2010 observations of aerosol optical properties and size-resolved elemental composition from Mount Bachelor Observatory (MBO; 2763 meters above sea level). Observations included multiwavelength aerosol scattering and absorption, made with a nephelometer and a particle soot absorption photometer, and size-resolved composition, made using a rotating DRUM impactor with substrates analyzed by synchrotron X-ray fluorescence. Our main tool for investigating variability in composition was empirical orthogonal function (EOF) analysis. In April, dust and sulfate explained 96% of the variance in the observed fine composition and accounted for the majority of the fine mode scattering. Three coincident Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation overpasses also identified aerosol layers classified as dust or polluted dust over MBO. Later in the spring, we deduce that organics and nitrate comprised more than 50% of the submicrometer aerosol mass. We used the EOF analysis to identify systematic relationships between composition and optical properties. We observed dust accompanied by anthropogenic pollutants including sulfate. When present, dust aerosol controlled ˜30% of the variability in the wavelength dependence of fine mode scattering. Many of the samples containing sulfate had absorption Ångstrom exponents near 1, suggesting black carbon was also present. Most of the sulfate was in the fine mode, but sulfate was also observed on coarse aerosols, and we inferred that much of the coarse sulfur was coated on the dust or had formed CaSO4 during transport. The relationships between Fe, Ca, Al, and Si observed at MBO were consistent with previous observations of Asian dust transported to North America.

  8. Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL sunphotometer over Beijing, China

    NASA Astrophysics Data System (ADS)

    Che, H.; Shi, G.; Uchiyama, A.; Yamazaki, A.; Chen, H.; Goloub, P.; Zhang, X.

    2007-11-01

    This study compares the aerosol optical and physical properties simultaneously measured by a SKYNET PREDE skyradiometer and AERONET/PHOTONS CIMEL sunphotometer at a location in Beijing, China. Aerosol optical properties (AOP) including the Aerosol Optical Depth (AOD), Angstrom exponent (α), volume size distribution, single scattering albedo (ω) and the complex refractive index were compared. The difference between the two types of instruments was less than 1.3% for the AOD and less than 4% for the single scattering albedo below the wavelength of 670 nm. There is a difference between the volume size distribution patterns derived from two instruments, which is probablely due to difference of measurement protocols and inversion algorithms for the respective instruments. AOP under three distinct weather conditions (background, haze, and dust days) over Beijing were compared by using the retrieved skyradiometer and sunphotometer data combined with MODIS satellite results, pyranometer measurements, PM10 measurements, and backtrajectory analysis. The results show that the significant difference of AOP under background, haze, and dust days over Beijing is probablely due to different aerosol components under distinct weather conditions.

  9. Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL sunphotometer over Beijing, China

    NASA Astrophysics Data System (ADS)

    Che, H.; Shi, G.; Uchiyama, A.; Yamazaki, A.; Chen, H.; Goloub, P.; Zhang, X.

    2008-06-01

    This study compares the aerosol optical and physical properties simultaneously measured by a SKYNET PREDE skyradiometer and AERONET/PHOTONS CIMEL sunphotometer at a location in Beijing, China. Aerosol optical properties (AOP) including the Aerosol Optical Depth (AOD), Angstrom exponent (α), volume size distribution, single scattering albedo (ω) and the complex refractive index were compared. The difference between the two types of instruments was less than 1.3% for the AOD and less than 4% for the single scattering albedo below the wavelength of 670 nm. There is a difference between the volume size distribution patterns derived from two instruments, which is probably due to difference of measurement protocols and inversion algorithms for the respective instruments. AOP under three distinct weather conditions (background, haze, and dust days) over Beijing were compared by using the retrieved skyradiometer and sunphotometer data combined with MODIS satellite results, pyranometer measurements, PM10 measurements, and backtrajectory analysis. The results show that the significant difference of AOP under background, haze, and dust days over Beijing is probably due to different aerosol components under distinct weather conditions.

  10. Optical properties and cross-sections of biological aerosols

    NASA Astrophysics Data System (ADS)

    Thrush, E.; Brown, D. M.; Salciccioli, N.; Gomes, J.; Brown, A.; Siegrist, K.; Thomas, M. E.; Boggs, N. T.; Carter, C. C.

    2010-04-01

    There is an urgent need to develop standoff sensing of biological agents in aerosolized clouds. In support of the Joint Biological Standoff Detection System (JBSDS) program, lidar systems have been a dominant technology and have shown significant capability in field tests conducted in the Joint Ambient Breeze Tunnel (JABT) at Dugway Proving Ground (DPG). The release of biological agents in the open air is forbidden. Therefore, indirect methods must be developed to determine agent cross-sections in order to validate sensor against biological agents. A method has been developed that begins with laboratory measurements of thin films and liquid suspensions of biological material to obtain the complex index of refraction from the ultraviolet (UV) to the long wave infrared (LWIR). Using that result and the aerosols' particle size distribution as inputs to Mie calculations yields the backscatter and extinction cross-sections as a function of wavelength. Recent efforts to model field measurements from the UV to the IR have been successful. Measurements with aerodynamic and geometric particle sizers show evidence of particle clustering. Backscatter simulations of these aerosols show these clustered particles dominate the aerosol backscatter and depolarization signals. In addition, these large particles create spectral signatures in the backscatter signal due to material absorption. Spectral signatures from the UV to the IR have been observed in simulations of field releases. This method has been demonstrated for a variety of biological simulant materials such as Ovalbumin (OV), Erwinia (EH), Bacillus atrophaeus (BG) and male specific bacteriophage (MS2). These spectral signatures may offer new methods for biological discrimination for both stand-off sensing and point detection systems.

  11. Long term measurements of aerosol optical properties at a primary forest site in Amazonia

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Artaxo, P.; Müller, T.; Wiedensohler, A.; Paixão, M.; Cirino, G. G.; Arana, A.; Swietlicki, E.; Roldin, P.; Fors, E. O.; Wiedemann, K. T.; Leal, L. S. M.; Kulmala, M.

    2013-03-01

    A long term experiment was conducted in a primary forest area in Amazonia, with continuous in-situ measurements of aerosol optical properties between February 2008 and April 2011, comprising, to our knowledge, the longest database ever in the Amazon Basin. Two major classes of aerosol particles, with significantly different optical properties were identified: coarse mode predominant biogenic aerosols in the wet season (January-June), naturally released by the forest metabolism, and fine mode dominated biomass burning aerosols in the dry season (July-December), transported from regional fires. Dry particle median scattering coefficients at the wavelength of 550 nm increased from 6.3 Mm-1 to 22 Mm-1, whereas absorption at 637 nm increased from 0.5 Mm-1 to 2.8 Mm-1 from wet to dry season. Most of the scattering in the dry season was attributed to the predominance of fine mode (PM2) particles (40-80% of PM10 mass), while the enhanced absorption coefficients are attributed to the presence of light absorbing aerosols from biomass burning. As both scattering and absorption increased in the dry season, the single scattering albedo (SSA) did not show a significant seasonal variability, in average 0.86 ± 0.08 at 637 nm for dry aerosols. Measured particle optical properties were used to estimate the aerosol forcing efficiency at the top of the atmosphere. Results indicate that in this primary forest site the radiative balance was dominated by the cloud cover, particularly in the wet season. Due to the high cloud fractions, the aerosol forcing efficiency absolute values were below -3.5 W m-2 in 70% of the wet season days and in 46% of the dry season days. Besides the seasonal variation, the influence of out-of-Basin aerosol sources was observed occasionally. Periods of influence of the Manaus urban plume were detected, characterized by a consistent increase on particle scattering (factor 2.5) and absorption coefficients (factor 5). Episodes of biomass burning and mineral dust

  12. Long term measurements of aerosol optical properties at a pristine forest site in Amazonia

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Artaxo, P.; Müller, T.; Wiedensohler, A.; Paixão, M.; Cirino, G. G.; Arana, A.; Swietlicki, E.; Roldin, P.; Fors, E. O.; Wiedemann, K. T.; Leal, L. S. M.; Kulmala, M.

    2012-09-01

    A long term experiment was conducted in a pristine area in the Amazon forest, with continuous in situ measurements of aerosol optical properties between February 2008 and April 2011, comprising, to our knowledge, the longest database ever in Amazonia. Two types of aerosol particles, with significantly different optical properties were identified: coarse mode predominant biogenic aerosols in the wet season (January-June), naturally released by the forest metabolism, and fine mode dominated biomass burning aerosols in the dry season (July-December), transported from regional fires. Dry particle median scattering coefficients at the wavelength of 550 nm increased from 6.3 Mm-1 to 22 Mm-1, whereas absorption at 637 nm increased from 0.5 Mm-1 to 2.8 Mm-1 from wet to dry season. Most of the scattering in the dry season was attributed to the predominance of fine mode particles (40-80% of PM10 mass), while the enhanced absorption coefficients are attributed to the presence of light absorbing aerosols from biomass burning. As both scattering and absorption increased in the dry season, the single scattering albedo (SSA) did not show a significant seasonal variability, in average 0.86 ± 0.08 at 637 nm for dry particles. Measured particle optical properties were used to estimate the aerosol forcing efficiency at the top of the atmosphere. Results indicate that in this pristine forest site the radiative balance was dominated by the cloud cover, or, in other words, the aerosol indirect effect predominated over the direct effect, particularly in the wet season. Due to the high cloud fractions, the aerosol forcing efficiency was below -3.5 W m-2 in 70% of the wet season days and in 46% of the dry season days. These values are lower than the ones reported in the literature, which are based on remote sensing data. Besides the seasonal variation, the influence of external aerosol sources was observed occasionally. Periods of influence of the Manaus urban plume were detected

  13. Aerosol optical properties and mixing state of black carbon in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Tan, Haobo; Liu, Li; Fan, Shaojia; Li, Fei; Yin, Yan; Cai, Mingfu; Chan, P. W.

    2016-04-01

    Aerosols contribute the largest uncertainty to the total radiative forcing estimate, and black carbon (BC) that absorbs solar radiation plays an important role in the Earth's energy budget. This study analysed the aerosol optical properties from 22 February to 18 March 2014 at the China Meteorological Administration Atmospheric Watch Network (CAWNET) station in the Pearl River Delta (PRD), China. The representative values of dry-state particle scattering coefficient (σsp), hemispheric backscattering coefficient (σhbsp), absorption coefficient (σabsp), extinction coefficient (σep), hemispheric backscattering fraction (HBF), single scattering albedo (SSA), as well as scattering Ångström exponent (α) were presented. A comparison between a polluted day and a clean day shows that the aerosol optical properties depend on particle number size distribution, weather conditions and evolution of the mixing layer. To investigate the mixing state of BC at the surface, an optical closure study of HBF between measurements and calculations based on a modified Mie model was employed for dry particles. The result shows that the mixing state of BC might be between the external mixture and the core-shell mixture. The average retrieved ratio of the externally mixed BC to the total BC mass concentration (rext-BC) was 0.58 ± 0.12, and the diurnal pattern of rext-BC can be found. Furthermore, considering that non-light-absorbing particles measured by a Volatility-Tandem Differential Mobility Analyser (V-TDMA) exist independently with core-shell and homogenously internally mixed BC particles, the calculated optical properties were just slightly different from those based on the assumption that BC exist in each particle. This would help understand the influence of the BC mixing state on aerosol optical properties and radiation budget in the PRD.

  14. Study on aerosol optical properties and radiative effect in cloudy weather in the Guangzhou region.

    PubMed

    Deng, Tao; Deng, XueJiao; Li, Fei; Wang, ShiQiang; Wang, Gang

    2016-10-15

    Currently, Guangzhou region was facing the problem of severe air pollution. Large amount of aerosols in the polluted air dramatically attenuated solar radiation. This study investigated the vertical optical properties of aerosols and inverted the height of boundary layer in the Guangzhou region using the lidar. Simultaneously, evaluated the impact of different types of clouds on aerosol radiation effects using the SBDART. The results showed that the height of the boundary layer and the surface visibility changed consistently, the average height of the boundary layer on the hazy days was only 61% of that on clear days. At the height of 2km or lower, the aerosol extinction coefficient profile distribution decreased linearly along with height on clear days, but the haze days saw an exponential decrease. When there was haze, the changing of heating rate of atmosphere caused by the aerosol decreased from 3.72K/d to 0.9K/d below the height of 2km, and the attenuation of net radiation flux at the ground surface was 97.7W/m(2), and the attenuation amplitude was 11.4%; when there were high clouds, the attenuation was 125.2W/m(2) and the attenuation amplitude was 14.6%; where there were medium cloud, the attenuation was 286.4W/m(2) and the attenuation amplitude was 33.4%. Aerosol affected mainly shortwave radiation, and affected long wave radiation very slightly.

  15. [A floating-dust case study based on the vertical distribution of aerosol optical properties].

    PubMed

    Wang, Yuan; Deng, Jun-Ying; Shi, Lan-Hong; Chen, Yong-Hang; Zhang, Qiang; Wang, Sheng; Xu, Ting-Ting

    2014-03-01

    The vertical distribution of aerosol optical properties of a typical floating-dust event on October 19, 2009 in Shanghai was analyzed by using Micro-pulse Lidar (MPL) and the CALIPSO satellite. The results showed that the floating-dust aerosol mainly existed below 2 km of height. The floating-dust aerosol backscatter coefficient ranged from 0 to 0.015 km(-1) x sr(-1), and the MPL extinction coefficient ranged from 0 to 0.32 km(-1). The MPL data showed that the aerosol extinction coefficient first increased and then decreased during the floating-dust event. At the same time, the aerosol layer was constantly lifting. The CALIPSO data showed that a large number of small particles were suspended in air at a height of below 2 km, while the big particles always stayed near the ground (0-0.5 km). At the height of 2-10 km, there was only few aerosols; in the range of 4-6 km, there was a mixture of particles with regular and irregular shapes. The vertical distribution of CALIPSO 532 nm total attenuated backscatter coefficient and MPL normalized relative backscatter signal was basically the same, but the extinction coefficient values gained by them were different. Observations by CALIPSO and MPL together could be more comprehensive and objective for monitoring floating-dust in Shanghai.

  16. Calculation of aerosol optical properties under different assumptions on mixing state, refractive index, density and hygroscopicity: uncertainties and importance of representation of aerosol mixing state

    NASA Astrophysics Data System (ADS)

    Curci, Gabriele

    2015-04-01

    The calculation of aerosol optical properties from aerosol mass is a process subject to uncertainty related to necessary assumptions on the treatment of the chemical species mixing state, density, refractive index, and hygroscopic growth. We used the FlexAOD post-processing tool to calculate the optical properties (aerosol optical depth (AOD), single scattering albedo (SSA) and asymmetry parameter (g)) from chemistry-transport model aerosol profiles, using a wide range of assumptions on aerosol chemical and physical properties. We calculated that the most important factor of uncertainty is the assumption about the mixing state, for which we estimate an uncertainty of 30-35% on the simulated aerosol optical depth (AOD) and single scattering albedo (SSA). The choice of the core composition in the core-shell representation is of minor importance for calculation of AOD, while it is critical for the SSA. Other factors of uncertainty tested here have a maximum average impact of 10% each on calculated AOD, and an impact of a few percent on SSA and g. We then tested simple parameterizations of the aerosol mixing state, expressed as a function of the aerosol aging, and verified that they may be helpful in reducing the uncertainty when comparing simulations with AERONET retrievals.

  17. Optical properties of aerosols over a tropical rain forest in Xishuangbanna, South Asia

    NASA Astrophysics Data System (ADS)

    Ma, Yongjing; Xin, Jinyuan; Zhang, Wenyu; Wang, Yuesi

    2016-09-01

    Observation and analysis of the optical properties of atmospheric aerosols in a South Asian tropical rain forest showed that the annual mean aerosol optical depth (AOD) and aerosol Ångström exponent (α) at 500 nm were 0.47 ± 0.30 (± value represents the standard deviation) and 1.35 ± 0.32, respectively, from 2012 to 2014, similar with that of Amazon region. Aerosol optical properties in this region varied significantly between the dry and wet seasons. The mean AOD and α were 0.50 ± 0.32 and 1.41 ± 0.28, respectively, in the dry season and 0.41 ± 0.20 and 1.13 ± 0.41 in the wet season. Because of the combustion of the rich biomass in the dry season, fine modal smoke aerosols increased, which led to a higher AOD and smaller aerosol control mode than in the wet season. The average atmospheric humidity in the wet season was 85.50%, higher than the 79.67% during the dry season. In the very damp conditions of the wet season, the aerosol control mode was relatively larger, while AOD appeared to be lower because of the effect of aerosol hygroscopic growth and wet deposition. The trajectories were similar both in dry and wet, but with different effects on the aerosol concentration. The highest AOD values 0.66 ± 0.34 (in dry) and 0.45 ± 0.21 (in wet) both occurred in continental air masses, while smaller (0.38-0.48 in dry and 0.30-0.35 in wet) in oceanic air masses. The range of AOD values during the wet season was relatively narrow (0.30-0.45), but the dry season range was wider (0.38-0.66). For the Ångström exponent, the range in the wet season (0.74-1.34) was much greater than that in the dry season (1.33-1.54).

  18. Studies of seasonal variations of aerosol optical properties with use of remote techniques

    NASA Astrophysics Data System (ADS)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Pakszys, Paulina; Markuszewski, Piotr; Makuch, Przemyslaw

    2014-05-01

    According to the IPCC report, atmospheric aerosols due to their properties -extinction of Sun and Earth radiation and participation in processes of creation of clouds, are among basic "unknowns" in climate studies. Aerosols have large effect on the radiation balance of the Earth which has a significant impact on climate changes. They are also a key issue in the case of remote sensing measurements. The optical properties of atmospheric aerosols depend not only on their type but also on physical parameters such as pressure, humidity, wind speed and direction. The wide range of properties in which atmospheric aerosols affect Earth's climate is the reason of high unrelenting interest of scientists from different disciplines such as physics, chemistry and biology. Numerous studies have dealt with aerosol optical properties, e.g. Dubovik et al. (2002), but only in a few have regarded the influence of meteorological parameters on the optical properties of aerosols in the Baltic Sea area. Studies of aerosol properties over the Baltic were conducted already in the last forty years, e.g. Zielinski T. et. al. (1999) or Zielinski T. & A. Zielinski (2002). The experiments carried out at that time involved only one measuring instrument -e.g. LIDAR (range of 1 km) measurements and they were conducted only in selected areas of the Polish coastal zone. Moreover in those publications authors did not use measurements performed on board of research vessel (R/V Oceania), which belongs to Institute of Oceanology Polish Academy of Science (IO PAN) or data received from satellite measurements. In 2011 Zdun and Rozwadowska performed an analysis of all data derived from the AERONET station on the Gotland Island. The data were divided into seasons and supplemented by meteorological factors. However, so far no comprehensive study has been carried out for the entire Baltic Sea area. This was the reason to conduct further research of SEasonal Variations of Aerosol optical depth over the Baltic

  19. The Effects of Mineral Dust on the Hygroscopic and Optical Properties of Inorganic Salt Aerosols

    NASA Astrophysics Data System (ADS)

    Attwood, A. R.; Greenslade, M. E.

    2011-12-01

    Mineral dust particles are a significant fraction of the total aerosol mass, thus they play an important role in the Earth's radiative budget by direct scattering and absorption of radiation. Assessing this impact is complicated by the variability of optical properties resulting from water uptake and changes in chemical composition due to atmospheric mixing. Internal mixtures of montmorillonite, a clay component of mineral dust, with sodium chloride and ammonium sulfate were studied optically using cavity ring down spectroscopy. The effects of the addition of the clay to the optically observed deliquescence relative humidity (DRH) and water uptake of these salts was considered by investigating a series of different salt mass fractions. In most cases, montmorillonite alters the hygroscopic properties and causes the DRH to occur at a lower relative humidity. For ammonium sulfate, optical properties can be approximated by volume weighted mixing rules with some minor deviations around the DRH. For sodium chloride, this approximation is only accurate below the DRH with enhanced water uptake at higher relative humidities. Our results show that salt particles may transition from solid to liquid at a lower relative humidity than is expected based on the salt alone, as observed with changes in optical properties. Further, they contradict current measurements in the literature that suggest little change in the hygroscopic behavior of salts when insoluble mineral dust components are added and should continue to be investigated. Accurate, direct measurements of the effect of the addition of clays to the optical properties of common aerosol species will allow for improvements in the prediction of the aerosol direct effect.

  20. Rigorous bounds on aerosol optical properties from measurement and/or model constraints

    NASA Astrophysics Data System (ADS)

    McGraw, Robert; Fierce, Laura

    2016-04-01

    Sparse-particle aerosol models are an attractive alternative to sectional and modal methods for representation of complex, generally mixed particle populations. In the quadrature method of moments (QMOM) a small set of abscissas and weights, determined from distributional moments, provides the sparse set. Linear programming (LP) yields a generalization of the QMOM that is especially convenient for sparse particle selection. In this paper we use LP to obtain rigorous, nested upper and lower bounds to aerosol optical properties in terms of a prescribed Bayesian-like sequence of model or simulated measurement constraints. Examples of such constraints include remotely-sensed light extinction at different wavelengths, modeled particulate mass, etc. Successive reduction in bound separation with each added constraint provides a quantitative measure of its contextual information content. The present study is focused on univariate populations as a first step towards development of new simulation algorithms for tracking the physical and optical properties of multivariate particle populations.

  1. Optical properties of salt particles of a sea aerosol (laboratory experiment)

    NASA Astrophysics Data System (ADS)

    Gubareva, T. V.

    2002-02-01

    The scientific clause is devoted to complex examinations of optical properties of micro crystals of alkali-halides simulative an atmospheric salt aerosol. In laboratory requirements the interactions in system 'micro crystals of salts - gas phase' were explored at superimposition of high- energy fields. Thus the scale of radiation and cold air plasma was utilized ultraviolet, X-ray. Is shown, that the presence of high-energy fields gives in interaction of micro crystals and gas phase. At interaction the chemical composition, structure and optical properties of salt particles changes. The scientific clause is devoted to study of optical properties of salt particles mainly in infrared range of a spectrum. The purpose of operation is the study of transformation of salt micro crystals and its communications with optical parameters.

  2. Investigation of aerosol distribution patterns and its optical properties at different time scale by using LIDAR system and AERONET

    NASA Astrophysics Data System (ADS)

    Tan, Fuyi; Khor, Wei Ying; Hee, Wan Shen; Choon, Yeap Eng; San, Lim Hwee; Abdullah, Khiruddin

    2015-04-01

    Atmospheric aerosol is a major health-impairment issue in Malaysia especially during southeast monsoon period (June-September) due to the active open burning activities. However, hazy days were an issue in Penang, Malaysia during March, 2014. Haze intruded Penang during March and lasted for a month except for the few days after rain. Rain water had washed out the aerosols from the atmosphere. Therefore, this study intends to analyse the aerosol profile and the optical properties of aerosol during this haze event and after rain. Meanwhile, several days after the haze event (during April, 2014) were also analyzed for comparison purposes. Additionally, the dominant aerosol type (i.e., dust, biomass burning, industrial and urban, marine, and mixed aerosol) during the study period was identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent.

  3. Continuous measurements of Arctic boundary layer aerosol physical and optical properties

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Kondratyev, V.; Brus, D.; Lihavainen, H.; Laurila, T. J.; Aurela, M.; Hatakka, J.; Viisanen, Y.; Reshetnikov, A.; Ivakhov, V.; Uttal, T.; Makshtas, A. P.

    2013-12-01

    The Arctic and northern boreal regions of Eurasia are experiencing rapid environmental changes due to pressures by human activities. The largest anthropogenic climate forcings are due to aerosol particles and greenhouse gases (GHGs). The Arctic environment is highly sensitive to changes in aerosol concentrations or composition, largely due to the high surface reflectance for the most part of the year. Concentrations of aerosols in winter and spring Arctic are affected by 'Arctic Haze', a phenomenon suggested to arise from the transport of pollutants from lower latitudes and further strengthened by the strong stratification of the Arctic wintertime atmosphere. Sources and transport patterns of aerosols into the Arctic are, however, not fully understood. In order to monitor the changes within the Arctic region, as well as to understand the sources and feedback mechanisms, direct measurements of aerosols within the Arctic are needed. So far, direct year-round observations have been inadequate especially within the Russian side of the Arctic. This is the reason why a new climate observatory was founded on the shore of the Arctic Ocean, in Tiksi, Russia. Tiksi meteorological observatory in northern Siberia (71_360N; 128_530E) has been operating since 1930s. Recently, it was upgraded and joint in the network of the IASOA, in the framework of the International Polar Year Activity project. The project is run in collaboration between National Oceanic and Atmospheric Administration (NOAA) with the support of the National Science Foundation (NSF), Roshydromet (AARI and MGO units), government of the Republic of Sakha (Yakutia) and the Finnish Meteorological Institute (FMI). The research activities of FMI in Tiksi include e.g. continuous long-term measurements of aerosol particle physical and optical properties. Measurements were initiated in summer 2010 and further extended in summer 2013. Together with the FMI measurements in Pallas GAW station in northern Finland since 1999

  4. [Optical properties of aerosol during haze-fog episodes in Beijing].

    PubMed

    Yu, Xing-Na; Li, Xin-Mei; Deng, Zen-Grandeng; De, Qing-Yangzong; Yuan, Shuai

    2012-04-01

    The purpose of this study is to investigate the optical properties of aerosol during haze-fog episodes in Beijing. The aerosol optical depth (AOD), Angstrom exponent (alpha), size distribution and single scattering albedo (omega) during haze-fog episodes were analyzed between 2002 and 2008 using AERONENT data. During haze-fog episodes, the aerosol optical depth showed a decreasing trend with wavelengths, and showed high values with an average 1.34 at 440 nm. The magnitude of Angstrom exponent was relatively high during haze-fog episodes and the mean values reached 1.11. The frequency distribution of alpha was up to 94% when alpha > 0.9, indicating the predominance of fine particles during haze-fog episodes in Beijing. The aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The maxima (peaks) radius of fine mode showed an increasing trend with AOD, however, those of coarse mode showed a decreasing trend with AOD. The size distribution showed a distinct difference in dominant mode for the different AOD. The single scattering albedo showed an increasing trend with AOD during haze-fog episodes in Beijing. The mean value of omega was 0.89 at the four wavelengths and the omega exhibited a low sensitivity to wavelengths.

  5. Investigation of aerosol optical properties for remote sensing through DRAGON (distributed regional aerosol gridded observation networks) campaign in Korea

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Hyun; Ahn, Joon Young; Park, Jin-Soo; Hong, You-Deok; Han, Jin-Seok; Kim, Jhoon; Kim, Sang-Woo

    2014-11-01

    Aerosols in the atmosphere, including dust and pollutants, scatters/absorbs solar radiation and change the microphysics of clouds, thus influencing the Earth's energy budget, climate, air quality, visibility, agriculture and water circulation. Pollutants have also been reported to threaten the human health. The present research collaborated with the U.S. NASA and the U.S. Aerosol Robotic Network (AERONET) is to study the aerosol characteristics in East Asia and improve the long-distance transportation monitoring technology by analyzing the observations of aerosol characteristics in East Asia during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March 2012-May 2012). The sun photometers that measure the aerosol optical characteristics were placed evenly throughout the Korean Peninsula and concentrated in Seoul and the metropolitan area. Observation data are obtained from the DRAGON campaign and the first year (2012) observation data (aerosol optical depth and aerosol spatial distribution) are analyzed. Sun photometer observations, including aerosol optical depth (AOD), are utilized to validate satellite observations from Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS). Additional analysis is performed associated with the Northeast Asia, the Korean Peninsula in particular, to determine the spatial distribution of the aerosol.

  6. The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  7. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  8. Microphysical properties of transported biomass burning aerosols in coastal regions, and application to improving retrievals of aerosol optical depth from SeaWiFS data

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.

    2013-05-01

    Due to the limited measurement capabilities of heritage and current spaceborne passive imaging radiometers, algorithms for the retrieval of aerosol optical depth (AOD) and related quantities must make assumptions relating to aerosol microphysical properties and surface reflectance. Over the ocean, surface reflectance can be relatively well-modelled, but knowledge of aerosol properties can remain elusive. Several field campaigns and many studies have examined the microphysical properties of biomass burning (smoke) aerosol. However, these largely focus on properties over land and near to the source regions. In coastal and open-ocean regions the properties of transported smoke may differ, due to factors such as aerosol aging, wet/dry deposition, and mixture with other aerosol sources (e.g. influence of maritime, pollution, or mineral dust aerosols). Hence, models based on near-source aerosol observations may be less representative of such transported smoke aerosols, introducing additional uncertainty into satellite retrievals of aerosol properties. This study examines case studies of transported smoke from select globally-distributed coastal and island Aerosol Robotic Network (AERONET) sites. These are used to inform improved models for over-ocean transported smoke aerosol for AOD retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). These models are used in an updated version of the SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm, which has been combined with the Deep Blue algorithm over land to create a 13-year (1997-2010) high-quality record of AOD over land and ocean. Applying these algorithms to other sensors will enable the creation of a long-term global climate data record of spectral AOD.

  9. Aerosol optical and physical properties during winter monsoon pollution transport in an urban environment.

    PubMed

    Verma, S; Bhanja, S N; Pani, S K; Misra, A

    2014-04-01

    We analysed aerosol optical and physical properties in an urban environment (Kolkata) during winter monsoon pollution transport from nearby and far-off regions. Prevailing meteorological conditions, viz. low temperature and wind speed, and a strong downdraft of air mass, indicated weak dispersion and inhibition of vertical mixing of aerosols. Spectral features of WinMon aerosol optical depth (AOD) showed larger variability (0.68-1.13) in monthly mean AOD at short-wavelength (SW) channels (0.34-0.5 μm) compared to that (0.28-0.37) at long-wavelength (LW) channels (0.87-1.02 μm), thereby indicating sensitivity of WinMon AOD to fine aerosol constituents and the predominant contribution from fine aerosol constituents to WinMon AOD. WinMon AOD at 0.5 μm (AOD 0. 5) and Angstrom parameter ( α) were 0.68-0.82 and 1.14-1.32, respectively, with their highest value in December. Consistent with inference from spectral features of AOD, surface aerosol loading was primarily constituted of fine aerosols (size 0.23-3 μm) which was 60-70 % of aerosol 10- μm (size 0.23-10 μm) concentration. Three distinct modes of aerosol distribution were obtained, with the highest WinMon concentration at a mass median diameter (MMD) of 0.3 μm during December, thereby indicating characteristics of primary contribution related to anthropogenic pollutants that were inferred to be mostly due to contribution from air mass originating in nearby region having predominant emissions from biofuel and fossil fuel combustion. A relatively higher contribution from aerosols in the upper atmospheric layers than at the surface to WinMon AOD was inferred during February compared to other months and was attributed to predominant contribution from open burning emissions arising from nearby and far-off regions. A comparison of ground-based measurements with Moderate Resolution Imaging Spectroradiometer (MODIS) data showed an underestimation of MODIS AOD and α values for most of the days. Discrepancy in

  10. Aerosol optical properties variations over the southern and northern slopes of the Himalayas

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Ma, Yaoming; Yang, Kun; Qin, Jun; Zhu, Zhikun

    2013-04-01

    The Himalayas is the highest mountain on the earth. It blocks off the aerosols obviously, especially during the monsoon seasons. The aerosol optical properties derived from Aerosol Robotic Network (AERONET) dataset over the southern (Pokhara station in Nepal and EVK2-CNR station in Nepal) and northern (Qomolangma(Mt. Everest) station (QOMS_CAS) in Tibet, China) slopes of the Himalayas are analyzed in this study. The low aerosol optical depth (AOD) at QOMS_CAS and EVK2-CNR indicates they are background sites in Himalaya regions. AOD at Pokhara is much higher than the former two sites with a seasonal variation pattern. This is maybe because Pokhara is more influenced by human activities and India summer monsoon. There are both fine and coarse particle mode aerosol in all three sites. Diurnal variation of AOD and Ångström exponent (AE) has a wide range at all three stations. QOMS_CAS mostly influenced by distant sources reveals AOD has no diurnal cycle in all seasons. Simultaneously, there are smaller particles in the morning and late afternoon, however, particles are larger at noon. The diurnal variation at Pokhara shows a higher AOD value in the morning and late afternoon, and reaches its minimum at noon except JJA (June to August). In all seasons, AOD at EVK2-CNR increases continuously during a day, and reaches maximum at late afternoon due to evolution of mountain-valley flows. AE indicating the particle size has no fixed mode at Pokhara and EVK2-CNR. The aerosols in the northern slope are mostly from distinct regions, and transport from the upper troposphere to atmospheric boundary layer (ABL) probably. The changes of ABL make no apparent effect on aerosol daytime variation. Conversely, the aerosols in the southern slope are mostly from local regions, and maybe spread upwards from the ground gradually. Atmospheric mixing layer height changes with the evolution of the ABL, which diffuses aerosols in the troposphere. Therefore, this process leads aerosol daytime

  11. In situ observations of aerosol physical and optical properties in northern India

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Hyvarinen, A.; Hooda, R. K.; Raatikainen, T. E.; Sharma, V.; Komppula, M.

    2012-12-01

    The southern Asia, including India, is exposed to substantial quantities of particulate air pollution originating mainly from fossil fuel combustion and biomass burning. Besides serious adverse health effects, these aerosols cause a large reduction of solar radiation at the surface accompanied by a substantial atmospheric heating, which is expected to have significant influences on the air temperature, crop yields, livestock and water resources over the southern Asia. The various influences by aerosols in this region depend crucially on the development of aerosol emissions from household, industrial, transportation and biomass burning sectors. The main purpose of this study is to investigate several measured aerosol optical and physical properties. We take advantage of observations from two measurement stations which have been established by the Finnish Meteorological Institute and The Energy and Resources Institute. Another station is on the foothills of Himalayas, in Mukteshwar, about 350 km east of New Delhi at elevation about 2 km ASL. This site is considered as a rural background site. Measurements of aerosol size distribution (7-500 nm), PM10, PM2.5, aerosol scattering and absorption coefficients and weather parameters have been conducted since 2006. Another station is located at the outskirts of New Delhi, in Gual Pahari, about 35 km south of city centre. It is considered as an urban background site. Measurements of aerosol size distribution (7 nm- 10 μm), PM10, PM2.5, aerosol scattering and absorption coefficients, aerosol optical depth, aerosol vertical distribution (LIDAR), aerosol filter sampling for chemical characterization and weather parameters were conducted between 2008 and 2010. On the overall average PM10 and PM2.5 values were about 3-4 times higher in Gual Pahari than in Mukteshwar as expected, 216 and 126 μg m^-3, respectively. However, difference depended much on the season, so that during winter time PM10 and PM2.5 concentrations were about

  12. Observations of Aerosol Optical Properties over 15 AERONET Sites in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Chan, J. D.; Lagrosas, N.; Uy, S. N.; Holben, B. N.; Dorado, S.; Tobias, V., Jr.; Anh, N. X.; Po-Hsiung, L.; Janjai, S.; Salinas Cortijo, S. V.; Liew, S. C.; Lim, H. S.; Lestari, P.

    2014-12-01

    Mean column-integrated optical properties from ground sun photometers of the Aerosol Robotic Network (AERONET) are studied to provide an overview of the characteristics of aerosols over the region as part of the 7 Southeast Asian Studies (7-SEAS) mission. The 15 AERONET sites with the most available level 2 data products are selected from Thailand (Chiang Mai, Mukdahan, Songkhla and Silpakorn University), Malaysia (University Sains Malaysia), Laos (Vientiane), Vietnam (Bac Giang, Bac Lieu and Nha Trang), Taiwan (National Cheng Kung University and Central Weather Bureau Taipei), Singapore, Indonesia (Bandung) and the Philippines (Manila Observatory and Notre Dame of Marbel University). For all 15 sites, high angstrom exponent values (α>1) have been observed. Chiang Mai and USM have the highest mean Angstrom exponent indicating the dominance of fine particles that can be ascribed to biomass burning and urbanization. Sites with the lowest Angstrom exponent values include Bac Lieu (α=1.047) and Manila Observatory (α=1.021). From the average lognormal size distribution curves, Songkhla and NDMU show the smallest annual variation in the fine mode region, indicating the observed fine aerosols are local to the sites. The rest of the sites show high variation which could be due to large scale forcings (e.g., monsoons and biomass burnings) that affect aerosol properties in these sites. Both high and low single scattering albedo at 440 nm (ω0440) values are found in sites located in major urban areas. Silpakorn University, Manila Observatory and Vientiane have all mean ω0440 < 0.90. Singapore and CWB Taipei have ω0440 > 0.94. The discrepancy in ω0 suggests different types of major emission sources present in urban areas. The absorptivity of urban aerosols can vary depending on the strength of traffic emissions, types of fuel combusted and automobile engines used, and the effect of biomass burning aerosols during the dry season. High aerosol optical depth values (τa550

  13. Optical and radiative properties of aerosols over Abu Dhabi in the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Romdhane, Haifa Ben; Ali, Mohammed Tauha; Armstrong, Peter; Ghedira, Hosni

    2016-12-01

    The present study is on the aerosol optical and radiative properties in the short-wave radiation and its climate implications at the arid city of Abu Dhabi (24.42 ∘N, 54.61 ∘E, 4.5 m MSL), in the United Arab Emirates. The direct aerosol radiative forcings (ARF) in the short-wave region at the top (TOA) and bottom of the atmosphere (BOA) are estimated using a hybrid approach, making use of discrete ordinate radiative transfer method in conjunction with the short-wave flux and spectral aerosol optical depth (AOD) measurements, over a period of 3 years (June 2012-July 2015), at Abu Dhabi located at the south-west coast of the Arabian Gulf. The inferred microphysical properties of aerosols at the measurement site indicate strong seasonal variations from the dominance of coarse mode mineral dust aerosols during spring (March-May) and summer (June-September), to the abundance of fine/accumulation mode aerosols mainly from combustion of fossil-fuel and bio-fuel during autumn (October-November) and winter (December-February) seasons. The monthly mean diurnally averaged ARF at the BOA (TOA) varies from -13.2 Wm-2 (˜-0.96 Wm-2) in November to -39.4 Wm-2 (-11.4 Wm-2) in August with higher magnitudes of the forcing values during spring/summer seasons and lower values during autumn/winter seasons. The atmospheric aerosol forcing varies from + 12.2 Wm-2 (November) to 28.2 Wm-2 (June) with higher values throughout the spring and summer seasons, suggesting the importance of mineral dust aerosols towards the solar dimming. Seasonally, highest values of the forcing efficiency at the surface are observed in spring (-85.0 ± 4.1 W m-2 τ -1) followed closely by winter (-79.2 ± 7.1 W m-2 τ -1) and the lowest values during autumn season (-54 ± 4.3 W m-2 τ -1). The study concludes with the variations of the atmospheric heating rates induced by the forcing. Highest heating rate is observed in June (0.39 K day -1) and the lowest in November (0.17 K day -1) and the temporal

  14. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to

  15. Direct effect of aerosol optical properties on global dimming and brightening

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Uchiyama, A.

    2011-12-01

    Surface solar radiation observed at numerous locations has decreased from the 1960s to the 1980s (Global dimming), thereafter increased (Global brightening). The dimming and brightening is considered to be due to the changes in both clouds and aerosols. Aerosols have a direct impact on the surface solar radiation by scattering and absorption. The impact is determined by three parameters: optical depth (AOD), single scattering albedo (SSA), and asymmetry factor, but the effect of asymmetry factor is rather smaller than the others. Therefore, the long-term changes in AOD and SSA are necessary to evaluate the aerosol impact on the global dimming and brightening. We have developed the method to estimate AOD and SSA from the hourly accumulated direct and diffuse irradiances measured by the ground-based broadband radiometers. In the estimation, the real part of the refractive index is fixed, and the size distribution is defined by the Junge distribution with a fixed shaping constant. Using the developed method, the measurements from 1975 to 2008 at 14 sites in Japan were analyzed. Consequently, a decrease of AOD by 0.02 and an increase of SSA by 0.2 during the period were seen. The surface solar radiation under the clear sky conditions, which was calculated from the estimated aerosol optical properties, was increased by 5% due to the changes in AOD and SSA; the influence of SSA was dominant. We also investigate the cloud impact on the surface solar radiation which was simply defined as the difference between the surface solar radiation under the cloudy sky conditions and under the clear sky conditions; the cloud impact had no statistically significant trends. The brightening in Japan may be due to the changes in aerosol optical properties, especially SSA. Our developed method can be applied to measurements at other sites around the world and would be helpful to understand the causes of the global dimming and brightening.

  16. Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign.

    PubMed

    Lee, Hyung Joo; Son, Youn-Suk

    2016-04-05

    We investigated spatial variability in aerosol optical properties, including aerosol optical depth (AOD), fine-mode fraction (FMF), and single scattering albedo (SSA), observed at 21 Aerosol Robotic Network (AERONET) sites and satellite remote sensing data in South Korea during the spring of 2012. These dense AERONET networks established in a National Aeronautics and Space Administration (NASA) field campaign enabled us to examine the spatially detailed aerosol size distribution and composition as well as aerosol levels. The springtime particle air quality was characterized by high background aerosol levels and high contributions of coarse-mode aerosols to total aerosols. We found that between-site correlations and coefficient of divergence for AOD and FMF strongly relied on the distance between sites, particularly in the south-north direction. Higher AOD was related to higher population density and lower distance from highways, and the aerosol size distribution and composition reflected source-specific characteristics. The ratios of satellite NO2 to AOD, which indicate the relative contributions of local combustion sources to aerosol levels, represented higher local contributions in metropolitan Seoul and Pusan. Our study demonstrates that the aerosol levels were determined by both local and regional pollution and that the relative contributions of these pollutions to aerosols generated spatial heterogeneity in the particle air quality.

  17. In situ airborne measurements of aerosol optical properties during photochemical pollution events

    NASA Astrophysics Data System (ADS)

    Mallet, M.; van Dingenen, R.; Roger, J. C.; Despiau, S.; Cachier, H.

    2005-02-01

    Dry aerosol optical properties (scattering, absorbing coefficients, and single scattering albedo) were derived from in situ airborne measurements during two photochemical pollution events (25 and 26 June) observed during the Experience sur Site pour Contraindre les Modeles de Pollution atmospherique et de Transport d'Emissions (ESCOMPTE) experiment. Two flights were carried out during daytime (one during the morning and one at noon) over a domain, allowing the investigation of how an air pollution event affects the particle optical properties. Both horizontal distribution and vertical profiles are presented. Results from the horizontal mapping show that plumes of enhanced scattering and absorption are formed in the planetary boundary layer (PBL) during the day in the sea breeze-driven outflow of the coastal urban-industrial area of Marseille-Fos de Berre. The domain-averaged scattering coefficient (at 550 nm) over land σs changes from 35 (28) Mm-1 during land breeze to 63 (43) Mm-1 during sea breeze on 25 June (26 June), with local maxima reaching > 100 Mm-1. The increase in the scattering coefficient is associated with new particle formation, indicative of secondary aerosol formation. Simultaneously, the domain-averaged absorption coefficient increases from 5.6 (3.4) Mm-1 to 9.3 (8.0) Mm-1. The pollution plume leads to strong gradients in the single scattering albedo ωo over the domain studied, with local values as low as 0.73 observed inside the pollution plume. The role of photochemistry and secondary aerosol formation during the 25 June case is shown to increase ωo and to make the aerosol more `reflecting' while the plume moves away from the sources. The lower photochemical activity, observed in the 26 June case, induces a relatively higher contribution of black carbon, making the aerosol more absorbing. Results from vertical profiles at a single near-urban location in the domain indicate that the changes in optical properties happen almost entirely within

  18. Measurement of aerosol optical properties by cw cavity enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei

    2016-10-01

    The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.

  19. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE PAGES

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; ...

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore » sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.« less

  20. Aerosol climatology over Mexico City basin: Characterization of their optical properties

    NASA Astrophysics Data System (ADS)

    Carabali-Sandoval, Giovanni; Valdéz-Barrón, Mauro; Bonifaz-Alfonso, Roberto; Riveros-Rosas, David; Estévez, Héctor

    2015-04-01

    Climatology of aerosol optical depth (AOD), single scattering albedo (SSA) and size parameters were analyzed using a 15-year (1999-2014) data set from AErosol RObotic NETwork (AERONET) observations over Mexico City basin. Since urban air pollution is one of the biggest problems that face this megacity, many studies addressing these issues have been published. However few studies have examined the climatology of aerosol taking into account their optical properties over long-time period. Pollution problems in Mexico City have been generated by the daily activities of some 21 million people coupled with the vast amount of industry located within the city's metropolitan area. Another contributing factor is the unique geographical setting of the basin encompassing Mexico City. The basin covers approximately 5000 km2 of the Mexican Plateau at an average elevation of 2250 m above sea level (ASL) and is surrounded on three sides by mountains averaging over 3000 m ASL. In this work we present preliminary results of aerosol climatology in Mexico City.

  1. Aerosol optical properties under the condition of heavy haze over an urban site of Beijing, China.

    PubMed

    Che, Huizheng; Xia, Xiangao; Zhu, Jun; Wang, Hong; Wang, Yaqiang; Sun, Junying; Zhang, Xiaoye; Shi, Guangyu

    2015-01-01

    In January 2013, several serious haze pollution events happened in North China. Cimel sunphotometer measurements at an urban site of Beijing (Chinese Academy of Meteorological Sciences-CAMS) from 1 to 30 January 2013 were used to investigate the detailed variation of aerosol optical properties. It was found that Angstrom exponents were mostly larger than 0.80 when aerosol optical depth values are higher than 0.60 at the urban region of Beijing during January 2013. The aerosol optical depth (AOD) at the urban region of Beijing can remain steady at approximately 0.40 before haze happening and then increased sharply to more than 1.50 at 500 nm with the onset of haze, which suggests that the fine-mode AOD is a factor of 20 of the coarse-mode AOD during a serious haze pollution event. The single scattering albedo was approximately 0.90 ± 0.03 at 440, 675, 870 and 1,020 nm during the haze pollution period. The single scattering albedo at 440 nm as a function of the fine-mode fraction was relatively consistent, but it was highly variable at 675, 870 and 1,020 nm. Except on January 12 and 18, all the fine-mode particle volumes were larger than those of coarse particles, which suggests that fine particles from anthropogenic activities made up most of the haze. Aerosol type classification analysis showed that the dominant aerosol types can be classified as both "mixed" and "urban/industrial (U/I) and biomass burning (BB)" categories during the heavy haze period of Beijing in January of 2013. The mixed category occurrence was about 31 %, while the U/I and BB was about 69 %.

  2. Black carbon aerosol optical properties are influenced by initial mixing state

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Healy, R. M.; Riemer, N.; West, M.; Wang, J. M.; Jeong, C. H.; Wenger, J.; Abbatt, J.; Lee, A.

    2015-12-01

    Incomplete combustion emits teragram quantities of black carbon (BC) aerosol to the troposphere each year, resulting in a significant warming effect on climate that may be second only to carbon dioxide. The magnitude of BC impacts on a global scale remains poorly constrained and is intimately related to its particle-scale physical and chemical properties. Using particle-resolved modeling informed by novel quantitative measurements from an Aerodyne soot-particle aerosol mass spectrometer (SP-AMS), we show that initial mixing state (or the distribution of co-emitted components amongst fresh BC-containing particles) significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble observations indicate that BC near emission co-exists with hydrocarbon-like organic aerosol (HOA) in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon (mfBC) in HOA- and BC-rich particle types was 0.02-0.08 and 0.72-0.93, respectively. Notably, positive matrix factorization (PMF) analysis of ensemble SP-AMS measurements indicates that BC-rich particles contribute the majority of BC mass (> 90%) in freshly emitted particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection to the atmosphere.

  3. Effect of aging on morphology, hygroscopicity, and optical properties of soot aerosol

    NASA Astrophysics Data System (ADS)

    Khalizov, A. F.; Xue, H.; Pagels, J.; McMurry, P. H.; Zhang, R.

    2009-12-01

    Soot from incomplete combustion represents one of the major forms of particulate matter pollution, profoundly impacting human health, air quality, and climate. The direct and indirect radiative effects of soot aerosol depend on particle composition and morphology, which may vary significantly when aerosol is subjected to atmospheric aging. We will present an overview of a comprehensive set of experimental measurements performed in our laboratory at Texas A&M to study the effect of internal mixing with atmospheric species on morphology, hygroscopicity, and optical properties of combustion soot. In our experiments, size-classified soot aerosol was exposed to 0.1 - 1000 ppb (part per billion) mixing ratios of sulfuric acid and dicarboxylic organic acids and resulting changes particle morphology and mixing state under dry and humid conditions were characterized through mass-mobility measurements by aerosol particle mass analyzer (APM) and tandem differential mobility analyzer (TDMA). Light absorption and scattering cross-sections for well-characterized fresh and coated soot aerosol were derived using a cavity ring-down spectrometer and an integrating nephelometer in order to assess the effect of atmospheric processing on the radiative properties of atmospheric soot. Internally mixed soot shows significant changes in particle morphology, increasing with the mass fraction of the coating material and relative humidity. Restructuring was the strongest for aggregates coated by sulfuric and glutaric acids whereas succinic acid coating did not result in observable morphology change. Sulfuric acid - coated particles experienced large hygroscopic growth at sub-saturated conditions and activated to cloud droplets at atmospherically relevant supersaturations. Furthermore, coating and subsequent hygroscopic growth considerably altered the optical properties of soot aerosol, increasing light scattering and absorption cross-sections. We found that irreversible restructuring of soot

  4. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing

    PubMed Central

    Zhang, Renyi; Khalizov, Alexei F.; Pagels, Joakim; Zhang, Dan; Xue, Huaxin; McMurry, Peter H.

    2008-01-01

    The atmospheric effects of soot aerosols include interference with radiative transfer, visibility impairment, and alteration of cloud formation and are highly sensitive to the manner by which soot is internally mixed with other aerosol constituents. We present experimental studies to show that soot particles acquire a large mass fraction of sulfuric acid during atmospheric aging, considerably altering their properties. Soot particles exposed to subsaturated sulfuric acid vapor exhibit a marked change in morphology, characterized by a decreased mobility-based diameter but an increased fractal dimension and effective density. These particles experience large hygroscopic size and mass growth at subsaturated conditions (<90% relative humidity) and act efficiently as cloud-condensation nuclei. Coating with sulfuric acid and subsequent hygroscopic growth enhance the optical properties of soot aerosols, increasing scattering by ≈10-fold and absorption by nearly 2-fold at 80% relative humidity relative to fresh particles. In addition, condensation of sulfuric acid is shown to occur at a similar rate on ambient aerosols of various types of a given mobility size, regardless of their chemical compositions and microphysical structures. Representing an important mechanism of atmospheric aging, internal mixing of soot with sulfuric acid has profound implications on visibility, human health, and direct and indirect climate forcing. PMID:18645179

  5. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing.

    PubMed

    Zhang, Renyi; Khalizov, Alexei F; Pagels, Joakim; Zhang, Dan; Xue, Huaxin; McMurry, Peter H

    2008-07-29

    The atmospheric effects of soot aerosols include interference with radiative transfer, visibility impairment, and alteration of cloud formation and are highly sensitive to the manner by which soot is internally mixed with other aerosol constituents. We present experimental studies to show that soot particles acquire a large mass fraction of sulfuric acid during atmospheric aging, considerably altering their properties. Soot particles exposed to subsaturated sulfuric acid vapor exhibit a marked change in morphology, characterized by a decreased mobility-based diameter but an increased fractal dimension and effective density. These particles experience large hygroscopic size and mass growth at subsaturated conditions (<90% relative humidity) and act efficiently as cloud-condensation nuclei. Coating with sulfuric acid and subsequent hygroscopic growth enhance the optical properties of soot aerosols, increasing scattering by approximately 10-fold and absorption by nearly 2-fold at 80% relative humidity relative to fresh particles. In addition, condensation of sulfuric acid is shown to occur at a similar rate on ambient aerosols of various types of a given mobility size, regardless of their chemical compositions and microphysical structures. Representing an important mechanism of atmospheric aging, internal mixing of soot with sulfuric acid has profound implications on visibility, human health, and direct and indirect climate forcing.

  6. Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements

    NASA Astrophysics Data System (ADS)

    Reed Espinosa, W.; Remer, Lorraine A.; Dubovik, Oleg; Ziemba, Luke; Beyersdorf, Andreas; Orozco, Daniel; Schuster, Gregory; Lapyonok, Tatyana; Fuertes, David; Vanderlei Martins, J.

    2017-03-01

    A method for the retrieval of aerosol optical and microphysical properties from in situ light-scattering measurements is presented and the results are compared with existing measurement techniques. The Generalized Retrieval of Aerosol and Surface Properties (GRASP) is applied to airborne and laboratory measurements made by a novel polar nephelometer. This instrument, the Polarized Imaging Nephelometer (PI-Neph), is capable of making high-accuracy field measurements of phase function and degree of linear polarization, at three visible wavelengths, over a wide angular range of 3 to 177°. The resulting retrieval produces particle size distributions (PSDs) that agree, within experimental error, with measurements made by commercial optical particle counters (OPCs). Additionally, the retrieved real part of the refractive index is generally found to be within the predicted error of 0.02 from the expected values for three species of humidified salt particles, with a refractive index that is well established. The airborne measurements used in this work were made aboard the NASA DC-8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field campaign, and the inversion of this data represents the first aerosol retrievals of airborne polar nephelometer data. The results provide confidence in the real refractive index product, as well as in the retrieval's ability to accurately determine PSD, without assumptions about refractive index that are required by the majority of OPCs.

  7. Detection of a gas flaring signature in the AERONET optical properties of aerosols at a tropical station in West Africa

    NASA Astrophysics Data System (ADS)

    Fawole, Olusegun G.; Cai, Xiaoming; Levine, James G.; Pinker, Rachel T.; MacKenzie, A. R.

    2016-12-01

    The West African region, with its peculiar climate and atmospheric dynamics, is a prominent source of aerosols. Reliable and long-term in situ measurements of aerosol properties are not readily available across the region. In this study, Version 2 Level 1.5 Aerosol Robotic Network (AERONET) data were used to study the absorption and size distribution properties of aerosols from dominant sources identified by trajectory analysis. The trajectory analysis was used to define four sources of aerosols over a 10 year period. Sorting the AERONET aerosol retrievals by these putative sources, the hypothesis that there exists an optically distinct gas flaring signal was tested. Dominance of each source cluster varies with season: desert-dust (DD) and biomass burning (BB) aerosols are dominant in months prior to the West African Monsoon (WAM); urban (UB) and gas flaring (GF) aerosol are dominant during the WAM months. BB aerosol, with single scattering albedo (SSA) at 675 nm value of 0.86 ± 0.03 and GF aerosol with SSA (675 nm) value of 0.9 ± 0.07, is the most absorbing of the aerosol categories. The range of Absorption Angstr&öm Exponent (AAE) for DD, BB, UB and GF classes are 1.99 ± 0.35, 1.45 ± 0.26, 1.21 ± 0.38 and 0.98 ± 0.25, respectively, indicating different aerosol composition for each source. The AAE (440-870 nm) and Angstr&öm Exponent (AE) (440-870 nm) relationships further show the spread and overlap of the variation of these optical and microphysical properties, presumably due in part to similarity in the sources of aerosols and in part, due to mixing of air parcels from different sources en route to the measurement site.

  8. Remote Marine Aerosol: A Characterization of Physical, Chemical and Optical Properties and their Relation to Radiative Transfer in the Troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Porter, John N.

    1997-01-01

    Our research effort is focused on improving our understanding of aerosol properties needed for optical models for remote marine regions. This includes in-situ and vertical column optical closure and involves a redundancy of approaches to measure and model optical properties that must be self consistent. The model is based upon measured in-situ aerosol properties and will be tested and constrained by the vertically measured spectral differential optical depth of the marine boundary layer, MBL. Both measured and modeled column optical properties for the boundary layer, when added to the free-troposphere and stratospheric optical depth, will be used to establish spectral optical depth over the entire atmospheric column for comparison to and validation of satellite derived radiances (AVHRR).

  9. Variations in optical properties of aerosols on monsoon seasonal change and estimation of aerosol optical depth using ground-based meteorological and air quality data

    NASA Astrophysics Data System (ADS)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Holben, B.

    2014-07-01

    In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent. A modified algorithm based on the prototype model of Tan et al. (2014a) was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET because of frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The predicted AOD of the model was generated based on the coefficients and compared against the measured data through standard statistical tests. The predicted AOD in the proposed model yielded a coefficient of determination R2 of 0.68. The corresponding percent mean relative error was less than 0.33% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Validation tests were performed on the model against selected LIDAR data and yielded good correspondence. The predicted AOD can beneficially monitor short- and long-term AOD and provide supplementary information in atmospheric corrections.

  10. Investigation on aerosol optical properties over East Asia: From LEO to GEO satellites

    NASA Astrophysics Data System (ADS)

    Song, C. H.; Park, M.; Park, R.; Lee, J.; Lee, K.; Lee, S.; Kim, J.

    2011-12-01

    Aerosol optical properties (AOP) have been regarded as good proxy indicators of the levels of particulate air pollutants such as PM2.5 and PM10, and have also been widely used for estimating direct radiative forcing (DRF) by aerosols. Up to date, the AOP have been retrieved mainly from the Low Earth Orbit (LEO) satellites such as terra- and aqua-MODIS. However, the critical limitation of the AOP products from the LEO satellites is relatively long temporal resolution of one to several days. In order to overcome this critical limitation, the Geostationary Earth Orbit (GEO) satellite-retrieved data is begun to be used recently. Therefore, in this study, several topics related to the fore-mentioned issues are introduced: (i) current status of the AOP retrieval from the LEO satellites and the AOP calculations from chemistry-transfer model (CTM) simulations over East Asia; (ii) the uses of the AOP data for estimating particulate pollution and DRF by aerosols in East Asia; (iii) preliminary AOP data retrieved from a geostationary sensor (GOCI: Geostationary Ocean Color Imager) on a Korean GEO satellite (COMS: Communication Ocean Meteorology Satellite); and (iv) possible improvements of the GEO-retrieved AOP data, combining them with the AOP data calculated from the CTM simulations over East Asia via a data assimilation technique. Regarding the AOP data retrievals from the COMS-GOCI sensor, two Korean aerosol retrieval algorithms are also introduced briefly: (i) Yonsei algorithm and (ii) GSTAR (GIST Aerosol Retrieval) algorithm. It is also discussed that these researches are being carried out with long-term research goals, aiming at the future applications of the AOP data, which is expected to be available from the world-first Korean environmental GEO sensors (GEMS: Geostationary Environmental Monitoring Sensor and GOCI-2) scheduled to be launched in 2017 or 2018, to the investigations onto the particulate air pollution and the DRF estimation by aerosols over East Asia (as

  11. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008

    SciTech Connect

    Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth; Earle, Michael; MacDonald, A. M.; Liu, Peter S.K.; Leaitch, W. R.

    2014-03-06

    Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 μm (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm-3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust. For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 μm) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of

  12. Relative Humidity Dependent Optical Properties of Clay Aerosols and their Mixtures

    NASA Astrophysics Data System (ADS)

    Greenslade, M. E.; Attwood, A. R.

    2012-12-01

    Mineral dust particles impact the Earth's radiative budget significantly because they comprise a large fraction of the total aerosol mass. Their impact is complex due to variable shapes and compositions that can cause optical properties to deviate from predictive models. A range of clay proxies for mineral dust including montmorillonite, illite and kaolinite have been interrogated with visible cavity ring down spectroscopy to determine the humidity dependent aerosol extinction. In addition, mixtures of montmorillonite with ammonium sulfate, sodium chloride, and three atmospherically relevant dicarboxylic acids (succinic, glutaric, and malonic acid) have been studied. The results are not always in agreement with simple models such as Mie theory or linear mixing rules based on the Zdanovskii, Stokes and Robinson method. Unexpected decreases in the fRH were observed for illite and kaolinite, but these can be explained based on physical and chemical composition. Similar to previous observations by other researchers, the deliquescence relative humidity was lower than predicted for mixed aerosols in cases where the salt fraction was large. The difference between experiment and model for all of the mixed aerosol species was greatest at higher relative humidity, especially above 80%. Explanations for these results will be discussed.

  13. An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Pitts, Michael; Hostetler, Chris; Poole, Lamont; Holden, Carl; Rault, Didier

    2000-01-01

    Atmospheric remote sensing with the O2 A-band has a relatively long history, but most of these studies were attempting to estimate surface pressure or cloud-top pressure. Recent conceptual studies have demonstrated the potential of spaceborne high spectral resolution O2 A-band spectrometers for retrieval of aerosol and cloud optical properties. The physical rationale of this new approach is that information on the scattering properties of the atmosphere is embedded in the detailed line structure of the O2 A-band reflected radiance spectrum. The key to extracting this information is to measure the radiance spectrum at very high spectral resolution. Instrument performance requirement studies indicate that, in addition to high spectral resolution, the successful retrieval of aerosol and cloud properties from A-band radiance spectra will also require high radiometric accuracy, instrument stability, and high signal-to-noise measurements. To experimentally assess the capabilities of this promising new remote sensing application, the NASA Langley Research Center is developing an airborne high spectral resolution A-band spectrometer. The spectrometer uses a plane holographic grating with a folded Littrow geometry to achieve high spectral resolution (0.5 cm-1) and low stray light in a compact package. This instrument will be flown in a series of field campaigns beginning in 2001 to evaluate the overall feasibility of this new technique. Results from these campaigns should be particularly valuable for future spaceborne applications of A-band spectrometers for aerosol and cloud retrievals.

  14. Long-term Observation of Aerosol Optical Properties at the SORPES station in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Shen, Yicheng; Ding, Aijun; Virkkula, Aki; Wang, Jiaping; Chi, Xuguang; Qi, Ximeng; Liu, Qiang; Zheng, Longfei; Xie, Yuning

    2016-04-01

    Atmospheric aerosols influence the earth's radiation budget by scattering and absorbing solar radiation and contribute substantial uncertainty in the estimation of climate forcing. Thorough and comprehensive measurements on different parameters including absorption and scattering coefficient, wavelength dependence and angular dependence along with their daily and seasonal variation help to understand the influence of aerosol on radiation. 2-years continuous measurement of aerosol optical properties has been conducted from June 2013 to May 2015 at the Station for Observing Regional Process of Earth System (SORPES) station, which is a regional background station located in downwind direction of Yangtze River Delta (YRD) urban agglomeration in China. A 7-wavelenths aethalometer and a 3-wavelenths nephelometer were used to measure absorption and scattering coefficient, and also other parameters like single scattering albedo (SSA), absorption angstrom Exponent (AAE), scattering angstrom exponent (SAE) and back-scattering refraction. In addtion, simultaneous measurements on chemical composition and particle size distribution were performed so as to investigate the dependencies of aerosol optical properties on chemical composition and size distribution. To get further insight on the influencing factors, Lagrangian particle dispersion modeling (LPDM) was employed for source identification in this study. The averages of absorption coefficient, scattering coefficient and SSA are 26.0±18.7 Mm-1, 426±327 Mm-1 , 0.936±0.3 at 520nm respectively for whole period. SAE between 450 and 635nm is 1.299±0.34 and have strong negative correlation with particle Surface Mean Diameter (SMD). AAE between 370 and 950nm is 1.043±0.15 for whole period but growth to more than 1.6 in all identified Biomass Burning (BB) events.

  15. Observations of aerosol optical properties at a coastal site in Hong Kong, South China

    NASA Astrophysics Data System (ADS)

    Wang, Jiaping; Virkkula, Aki; Gao, Yuan; Lee, Shuncheng; Shen, Yicheng; Chi, Xuguang; Nie, Wei; Liu, Qiang; Xu, Zheng; Huang, Xin; Wang, Tao; Cui, Long; Ding, Aijun

    2017-02-01

    Temporal variations in aerosol optical properties were investigated at a coastal station in Hong Kong based on the field observation from February 2012 to February 2015. At 550 nm, the average light-scattering (151 ± 100 Mm-1) and absorption coefficients (8.3 ± 6.1 Mm-1) were lower than most of other rural sites in eastern China, while the single-scattering albedo (SSA = 0.93 ± 0.05) was relatively higher compared with other rural sites in the Pearl River Delta (PRD) region. Correlation analysis confirmed that the darkest aerosols were smaller in particle size and showed strong scattering wavelength dependencies, indicating possible sources from fresh emissions close to the measurement site. Particles with Dp of 200-800 nm were less in number, yet contributed the most to the light-scattering coefficients among submicron particles. In summer, both ΔBC / ΔCO and SO2 / BC peaked, indicating the impact of nearby combustion sources on this site. Multi-year backward Lagrangian particle dispersion modeling (LPDM) and potential source contribution (PSC) analysis revealed that these particles were mainly from the air masses that moved southward over Shenzhen and urban Hong Kong and the polluted marine air containing ship exhausts. These fresh emission sources led to low SSA during summer months. For winter and autumn months, contrarily, ΔBC / ΔCO and SO2 / BC were relatively low, showing that the site was more under influence of well-mixed air masses from long-range transport including from South China, East China coastal regions, and aged aerosol transported over the Pacific Ocean and Taiwan, causing stronger abilities of light extinction and larger variability of aerosol optical properties. Our results showed that ship emissions in the vicinity of Hong Kong could have visible impact on the light-scattering and absorption abilities as well as SSA at Hok Tsui.

  16. Optical Properties of Internally Mixed Aerosol Particles Composed of Dicarboxylic Acids and Ammonium Sulfate

    NASA Astrophysics Data System (ADS)

    Freedman, Miriam A.; Hasenkopf, Christa A.; Beaver, Melinda R.; Tolbert, Margaret A.

    2009-10-01

    We have investigated the optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate using cavity ring-down aerosol extinction spectroscopy at a wavelength of 532 nm. The real refractive indices of these nonabsorbing species were retrieved from the extinction and concentration of the particles using Mie scattering theory. We obtain refractive indices for pure ammonium sulfate and pure dicarboxylic acids that are consistent with literature values, where they exist, to within experimental error. For mixed particles, however, our data deviates significantly from a volume-weighted average of the pure components. Surprisingly, the real refractive indices of internal mixtures of succinic acid and ammonium sulfate are higher than either of the pure components at the highest organic weight fractions. For binary internal mixtures of oxalic or adipic acid with ammonium sulfate, the real refractive indices of the mixtures are approximately the same as ammonium sulfate for all organic weight fractions. Various optical mixing rules for homogeneous and slightly heterogeneous systems fail to explain the experimental real refractive indices. It is likely that complex particle morphologies are responsible for the observed behavior of the mixed particles. Implications of our results for atmospheric modeling and aerosol structure are discussed.

  17. A Comparison of Aerosol Optical Property Measurements Made During the DOE Aerosol Intensive Operating Period and Their Effects on Regional Climate

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Hallar, A. G.; Arnott, W. P.; Covert, D.; Elleman, R.; Ogren, J.; Schmid, B.; Luu, A.

    2004-01-01

    The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult to measure aerosol properties. One of the main purposes of the DOE Aerosol Intensive Operating Period (IOP) flown in May, 2003 was to assess our ability to measure absorption coefficient in situ. This paper compares measurements of aerosol optical properties made during the IOP. Measurements of aerosol absorption coefficient were made by Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter (U. Washington) and on the DOE Cessna 172 (NOAA-C,MDL). Aerosol absorption coefficient was also measured by a photoacoustic instrument (DRI) that was operated on an aircraft for the first time during the IOP. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-AkC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Measurements of absorption coefficient from all of these instruments during appropriate periods are compared. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model.

  18. Monsoonal variations in aerosol optical properties and estimation of aerosol optical depth using ground-based meteorological and air quality data in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Holben, B.

    2015-04-01

    Obtaining continuous aerosol-optical-depth (AOD) measurements is a difficult task due to the cloud-cover problem. With the main motivation of overcoming this problem, an AOD-predicting model is proposed. In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the Ångström exponent against the AOD. A new empirical algorithm was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET due to frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The calibrated model coefficients have a coefficient of determination, R2, of 0.72. The predicted AOD of the model was generated based on these calibrated coefficients and compared against the measured data through standard statistical tests, yielding a R2 of 0.68 as validation accuracy. The error in weighted mean absolute percentage error (wMAPE) was less than 0.40% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Performance of our model was compared against selected LIDAR data to yield good correspondence. The predicted AOD can enhance measured short- and long-term AOD and provide supplementary information for climatological studies and monitoring aerosol variation.

  19. Linking aerosol size and optical properties to trace gases emitted from biomass burning in real-time

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Carrico, C. M.; Stockwell, C.; Yokelson, R. J.; Veres, P. R.; DeMott, P. J.; Kreidenweis, S. M.

    2014-12-01

    Biomass burning aerosols have large impacts on regional and global climate that are partly determined by their optical properties. The optical properties of aerosol depend on their size and composition, which in turn are related to fire combustion processes. Here we investigate relationships between a large suite of trace gases and aerosol size and optical properties to better understand processes governing the optical properties of fresh biomass burning aerosol emissions. We examined over 100 individual burns of biomass fuels during the Fire Laboratory at Missoula Experiment 4 (FLAME 4). Emissions were measured directly from an exhaust stack designed to capture all emissions from relatively small-scale fires burned at the base of a large burn chamber. Trace gas species were measured using a combination of an open-path Fourier transform infrared spectrometer (OP-FTIR) and proton-transfer mass spectrometer (PTR-MS). Aerosol optical properties at 870 nm were measured using a photoacoustic extinctiometer (PAX) and particle size distributions were measured using a Fast Mobility Particle Sizer (FMPS) and Aerodynamic Particle Sizer. The rapid response of the instruments allowed for comparisons of the emissions and particle properties over the duration of the fire. For example, we observed correlations between aerosol absorption, particle size, and gas-phase species associated with different types of combustion such as flaming and smoldering. We also report fire-integrated emissions for aerosol absorption and scattering coefficients and compare these to other fire-integrated properties. Many of our burn experiments examined a number of fuels that had not before been characterized in laboratory conditions, including a number of peat fuels, African savanna grasses and crop residuals.

  20. Variability of aerosol optical properties derived from in situ aircraft measurements during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Anderson, Theodore L.; Masonis, Sarah J.; Covert, David S.; Ahlquist, Norman C.; Howell, Steven G.; Clarke, Antony D.; McNaughton, Cameron S.

    2003-12-01

    Airborne measurements of aerosol light scattering (using nephelometers) and absorption (using particle/soot absorption photometers; PSAPs) in the Asian outflow region are presented. Aerosol particles were sampled through a new low turbulence inlet that proved very effective at transmitting coarse-mode particles. Noise and artifacts are characterized using in-flight measurements of particle-free air and measurements with identical instruments operated in parallel. For example, the sensitivities of PSAP noise to changing altitude, changing relative humidity (RH), and particle-loading on the internal filter are quantified. On the basis of these and previous instrument characterizations, we report averages, variations, and uncertainties of optical properties, focusing on data from approximately 300 level-leg samples obtained during 19 research flights in the spring of 2001. Several broad patterns emerge from this analysis. Two dominant components, fine-mode pollution and coarse-mode mineral dust, were observed to vary independently when separated using a cut point of 1 μm aerodynamic diameter at low RH. Fine-mode pollution was found to be moderately absorbing (single scatter albedo at low RH and 550 nm, ω = 0.88 ± 0.03; mean and 95% confidence uncertainty) and moderately hygroscopic (relative increase in scattering from 40% to 85% RH, fRH = 1.7 ± 0.2), while coarse-mode dust was found to have very low absorption (ω = 0.96 ± 0.01) and to be almost nonhygroscopic (fRH = 1.1 ± 0.1). These and other optical properties are intended to serve as constraints on optical models of the Asian aerosol for the purpose of satellite retrievals and calculations of direct radiative effects.

  1. Identification of aerosol types over Indo-Gangetic Basin: implications to optical properties and associated radiative forcing.

    PubMed

    Tiwari, S; Srivastava, A K; Singh, A K; Singh, Sachchidanand

    2015-08-01

    The aerosols in the Indo-Gangetic Basin (IGB) are a mixture of sulfate, dust, black carbon, and other soluble and insoluble components. It is a challenge not only to identify these various aerosol types, but also to assess the optical and radiative implications of these components. In the present study, appropriate thresholds for fine-mode fraction and single-scattering albedo have been used to first identify the aerosol types over IGB. Four major aerosol types may be identified as polluted dust (PD), polluted continental (PC), black carbon-enriched (BCE), and organic carbon-enriched (OCE). Further, the implications of these different types of aerosols on optical properties and radiative forcing have been studied. The aerosol products derived from CIMEL sun/sky radiometer measurements, deployed under Aerosol Robotic Network program of NASA, USA were used from four different sites Karachi, Lahore, Jaipur, and Kanpur, spread over Pakistan and Northern India. PD is the most dominant aerosol type at Karachi and Jaipur, contributing more than 50% of all the aerosol types. OCE, on the other hand, contributes only about 12-15% at all the stations except at Kanpur where its contribution is ∼38%. The spectral dependence of AOD was relatively low for PD aerosol type, with the lowest AE values (<0.5); whereas, large spectral dependence in AOD was observed for the remaining aerosol types, with the highest AE values (>1.0). SSA was found to be the highest for OCE (>0.9) and the lowest for BCE (<0.9) type aerosols, with drastically different spectral variability. The direct aerosol radiative forcing at the surface and in the atmosphere was found to be the maximum at Lahore among all the four stations in the IGB.

  2. Diurnal Evolution of Aerosol Optical Properties and Morphology at Pico Tres Padres: A Phenomenological Analysis

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Chakrabarty, R.; Dubey, M. K.; Moosmuller, H.; Chylek, P.; Onasch, T. B.; Herndon, S.; Zavala, M.; Kolb, C.

    2007-05-01

    Aerosol optical properties affect planetary radiative balance and therefore climate. The optical properties are related to chemical composition, size distribution, and morphology, which also have implications for human health and environmental degradation. During the MILAGRO field campaign, we measured ensemble aerosol absorption and angle-integrated scattering in Mexico City. These measurements were performed using the Los Alamos aerosol photoacoustic instrument with an integrated nephelometer (LAPA) operating at 781 nm. The LAPA was mounted on-board the Aerodyne Inc. mobile laboratory, which hosted a wide variety of gaseous and aerosol instruments. During the campaign, the Aerodyne mobile laboratory was moved to different sites, capturing the influence of spatial and temporal parameters including location, aging, elevation, and sources on ambient air pollution. The LAPA operated almost continuously between the 3rd and the 28th of March 2006. During the same period we collected ambient aerosols on more than 100 Nuclepore filters for scanning electron microscopy (SEM) analysis. Filter samples were collected during specific pollution events and different times of the day. Subsequently, SEM images of selected filters were taken to study particle morphology. The elemental composition of a few individual particles was also qualitatively assessed by energy dispersive X-ray spectroscopy. Between March 7th and 19th the laboratory was sampling air close to the top of the Pico Tres Padres, a ~3000 m high mountain on the north side of the Mexico City. Daily changes of aerosol loading and pollutant concentrations followed the expected diurnal variations of the boundary layer height. Here we report a preliminary analysis of aerosol absorption, scattering, and morphology at Pico Tres Padres for three specific days (9th, 11th and 12th of March 2006). The single scattering albedo (ratio of scattering to total extinction) during these three days showed a characteristic drop in the

  3. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Cassola, F.; Mazzino, A.; Triquet, S.; Chevaillier, S.; Grand, N.; Bourrianne, T.; Momboisse, G.; Sellegri, K.; Schwarzenbock, A.; Freney, E.; Mallet, M.; Formenti, P.

    2016-02-01

    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June-July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of transport (1-5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l.) than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling studies and satellite retrievals

  4. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Cassola, F.; Mazzino, A.; Triquet, S.; Chevaillier, S.; Grand, N.; Bourrianne, T.; Momboisse, G.; Sellegri, K.; Schwarzenbock, A.; Freney, E.; Mallet, M.; Formenti, P.

    2015-08-01

    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June-July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of tranport (1-5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried higher concentration of pollution particles at intermediate altitude (1-3 km) than at elevated altitude (> 3 km), resulting in scattering Angstrom exponent up to 2.2 within the intermediate altitude. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate light absorption of the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00 ± 0.04. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assimilated to those of native dust in radiative transfer simulations, modeling studies and

  5. A new operational EUMETSAT product for the retrieval of aerosol optical properties over land (PMAp v2)

    NASA Astrophysics Data System (ADS)

    Grzegorski, Michael; Munro, Rosemary; Poli, Gabriele; Holdak, Andriy; Lang, Ruediger

    2016-04-01

    The retrieval of aerosol optical properties is an important task to provide data for industry and climate forecasting. An ideal instrument should include observations with moderate spectral and high spatial resolution for a wide range of wavelengths (from the UV to the TIR), measurements of the polarization state at different wavelengths and measurements of the same scene for different observation geometries. As such an ideal instrument is currently unavailable the usage of different instruments on one satellite platform is an alternative choice. Since February 2014, the Polar Multi sensor Aerosol product (PMAp) has been delivered as an operational GOME product to our customers. The algorithm retrieves aerosol optical properties over ocean (AOD, volcanic ash, aerosol type) using a multi-sensor approach (GOME, AVHRR, IASI). The product is now extended to pixels over land using a new release of the operational PMAp processor (PMAp v2). The pre-operational data dissemination of the new PMAp v2 data to our users is scheduled for March 2016. This presentation gives an overview on the new operational product PMAp v2 with a focus on the validation of the PMAp aerosol optical depth over land. The impact of different error sources on the results (e.g. surface contribution to the TOA reflectance) is discussed. We also show first results of upcoming extensions of our PMAp processor, in particular the improvement of the cloud/aerosol discrimination of thick aerosol events (e.g. volcanic ash plumes, desert dust outbreaks).

  6. Evaluation of aerosol optical properties of GEOS-Chem over East Asia during the DRAGON-Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jo, D. S.; Park, R.; Kim, J.

    2015-12-01

    A nested version of 3-D chemical transport model (GEOS-Chem v9-01-02) is evaluated over East Asia during the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia 2012 campaign period, focusing on fine-mode aerosol optical depth (fAOD) and single scattering albedo (SSA). Both are important to assess the effect of anthropogenic aerosols on climate. We compare the daily mean simulated optical properties of aerosols with the observations from DRAGON-Asia campaign for March-May, 2012 (provided in level 2.0: cloud screened and quality assured). We find that the model reproduces the observed daily variability of fAOD (R=0.67), but overestimates the magnitude by 30%, which is in general consistent with other global model comparisons from ACCMIP. However, a significant high bias in the model is found compared to the observed SSA at 440 nm, which is important for determining the sign of aerosol radiative forcing. In order to understand causes for this gap we conduct several sensitivity tests by changing source magnitudes and input parameters of aerosols, affecting the aerosol optical properties under various atmospheric conditions, which allows us to reduce the gap and to find the optimal values in the model.

  7. The impact of air mass advection on aerosol optical properties over Gotland (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Zdun, Agnieszka; Rozwadowska, Anna; Kratzer, Susanne

    2016-12-01

    In the present paper, measurements of aerosol optical properties from the Gotland station of the AERONET network, combined with a two-stage cluster analysis of back trajectories of air masses moving over Gotland, were used to identify the main paths of air mass advection to the Baltic Sea and to relate them to aerosol optical properties, i.e. the aerosol optical thickness at the wavelength λ = 500 nm, AOT (500) and the Ångström exponent for the spectral range from 440 to 870 nm, α(440,870). One- to six-day long back trajectories ending at 300, 500 and 3000 m above the station were computed using the HYSPLIT model. The study shows that in the Gotland region, variability in aerosol optical thickness AOT(500) is more strongly related to advections in the boundary layer than to those in the free troposphere. The observed variability in AOT(500) was best explained by the advection speeds and directions given by clustering of 4-day backward trajectories of air arriving in the boundary layer at 500 m above the station. 17 clusters of 4-day trajectories arriving at altitude 500 m above the Gotland station (sea level) derived using two-stage cluster analysis differ from each other with respect to trajectory length, the speed of air mass movement and the direction of advection. They also show different cluster means of AOT(500) and α(440,870). The cluster mean AOT(500) ranges from 0.342 ± 0.012 for the continental clusters M2 (east-southeast advection with moderate speed) and 0.294 ± 0.025 for S5 (slow south-southeast advection) to 0.064 ± 0.002 and 0.069 ± 0.002 for the respective marine clusters L3 (fast west-northwest advection) and M3 (north-northwest advection with moderate speed). The cluster mean α(440,870) varies from 1.65-1.70 for the short-trajectory clusters to 0.98 ± 0.03 and 1.06 ± 0.03 for the Arctic marine cluster L4 (fast inflow from the north) and marine cluster L5 (fast inflow from the west) respectively.

  8. Aerosol vertical distribution and optical properties over China from long-term satellite and ground-based remote sensing

    NASA Astrophysics Data System (ADS)

    Tian, Pengfei; Cao, Xianjie; Zhang, Lei; Sun, Naixiu; Sun, Lu; Logan, Timothy; Shi, Jinsen; Wang, Yuan; Ji, Yuemeng; Lin, Yun; Huang, Zhongwei; Zhou, Tian; Shi, Yingying; Zhang, Renyi

    2017-02-01

    The seasonal and spatial variations of vertical distribution and optical properties of aerosols over China are studied using long-term satellite observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and ground-based lidar observations and Aerosol Robotic Network (AERONET) data. The CALIOP products are validated using the ground-based lidar measurements at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL). The Taklamakan Desert and Tibetan Plateau regions exhibit the highest depolarization and color ratios because of the natural dust origin, whereas the North China Plain, Sichuan Basin and Yangtze River Delta show the lowest depolarization and color ratios because of aerosols from secondary formation of the anthropogenic origin. Certain regions, such as the North China Plain in spring and the Loess Plateau in winter, show intermediate depolarization and color ratios because of mixed dust and anthropogenic aerosols. In the Pearl River Delta region, the depolarization and color ratios are similar to but higher than those of the other polluted regions because of combined anthropogenic and marine aerosols. Long-range transport of dust in the middle and upper troposphere in spring is well captured by the CALIOP observations. The seasonal variations in the aerosol vertical distributions reveal efficient transport of aerosols from the atmospheric boundary layer to the free troposphere because of summertime convective mixing. The aerosol extinction lapse rates in autumn and winter are more positive than those in spring and summer, indicating trapped aerosols within the boundary layer because of stabler meteorological conditions. More than 80 % of the column aerosols are distributed within 1.5 km above the ground in winter, when the aerosol extinction lapse rate exhibits a maximum seasonal average in all study regions except for the Tibetan Plateau. The aerosol extinction lapse rates in the polluted regions are higher

  9. Classification of Aerosol over Central Europe by Cluster Analysis of Aerosol Columnar Optical Properties and Backward Trajectory Statistics

    NASA Astrophysics Data System (ADS)

    Szkop, Artur; Pietruczuk, Aleksander; Posyniak, Michał

    2016-12-01

    A cluster analysis is applied to the Aerosol Robotic Network (AERONET) data obtained at Belsk, Poland, as well as three nearby Central European stations (Leipzig, Minsk and Moldova) for estimation of atmospheric aerosol types. Absorption Ångstrom exponent (AAE), aerosol optical thickness (AOT) and extinction Ångstrom exponent (EAE) parameters are used. Clustering in both 2D (AOT, EAE) and 3D (AOT, EAE, AAE) is investigated. A method of air mass backward trajectory analysis is then proposed, with the receptor site at Belsk, to determine possible source regions for each cluster. Four dominant aerosol source regions are identified. The biomass burning aerosol source is localized in the vicinity of Belarusian-Ukrainian border. Slovakia and northern Hungary are found to be the source of urban/industrial pollutants. Western Poland and eastern Germany are the main sources of polluted continental aerosols. The most differentiated source region of Scandinavia, Baltic Sea and Northern Atlantic, associated with lowest values of AOT, corresponds to clean continental and possibly maritime type aerosols.

  10. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Xia, X.; Che, H.; Wang, J.; Zhang, J.; Duan, Y.

    2016-03-01

    Seasonal variation of aerosol optical properties and dominant aerosol types at Kunming (KM), an urban site in southwest China, is characterized. Substantial influences of the hygroscopic growth and long-range transport of biomass burning (BB) aerosols on aerosol optical properties at KM are revealed. These results are derived from a detailed analysis of (a) aerosol optical properties (e.g. aerosol optical depth (AOD), columnar water vapor (CWV), single scattering albedo (SSA) and size distribution) retrieved from sunphotometer measurements during March 2012-August 2013, (b) satellite AOD and active fire products, (c) the attenuated backscatter profiles from the space-born lidar, and (d) the back-trajectories. The mean AOD440nm and extinction Angstrom exponent (EAE440 - 870) at KM are 0.42 ± 0.32 and 1.25 ± 0.35, respectively. Seasonally, high AOD440nm (0.51 ± 0.34), low EAE440 - 870 (1.06 ± 0.34) and high CWV (4.25 ± 0.97 cm) during the wet season (May - October) contrast with their counterparts 0.17 ± 0.11, 1.40 ± 0.31 and 1.91 ± 0.37 cm during the major dry season (November-February) and 0.53 ± 0.29, 1.39 ± 0.19, and 2.66 ± 0.44 cm in the late dry season (March-April). These contrasts between wet and major dry season, together with the finding that the fine mode radius increases significantly with AOD during the wet season, suggest the importance of the aerosol hygroscopic growth in regulating the seasonal variation of aerosol properties. BB and Urban/Industrial (UI) aerosols are two major aerosol types. Back trajectory analysis shows that airflows on clean days during the major dry season are often from west of KM where the AOD is low. In contrast, air masses on polluted days are from west (in late dry season) and east (in wet season) of KM where the AOD is often large. BB air mass is found mostly originated from North Burma where BB aerosols are lifted upward to 5 km and then subsequently transported to southwest China via prevailing westerly winds.

  11. Chemical, Physical and Optical Properties of Saharan Dust Aerosols at a Marine Site in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Ortiz Montalvo, D. L.; Mayol Bracero, O. L.; Morales, F.; Sheridan, P.; Ogren, J. A.

    2005-12-01

    Atmospheric dust particles blown from the Sahara across the Atlantic into the Caribbean have an impact on its climate and public health. These particles may play a significant role in radiative forcing, affecting the extinction of solar radiation and thus having an influence on climate. About half of the dust that travels from Africa contains particles that are small enough to inhale. Human breathe them into the respiratory system and they settle in the lungs causing respiratory problems. To have a better understanding of these effects, information is needed on the properties of these aerosols. As part of this study, chemical, physical and optical characterization is being performed on aerosol samples collected at a marine site on the northeastern tip of Puerto Rico (Cabezas de San Juan, Fajardo), during periods with and without Saharan incursions. Stacked-filter units (SFU) are used to collect particles with diameters smaller than 1.7 μm, using Nuclepore, quartz and Teflon filters. These filter samples are analyzed to obtain the chemical composition of the particles. Initially we are focusing on the carbonaceous fraction (elemental and organic carbon, EC, and OC) of the aerosol using thermal/optical analysis. Online measurements of total particle number concentrations and aerosol light scattering coefficients are performed using a condensation particle counter and an integrating nephelometer, respectively. In addition, a sunphotometer, part of AERONET (http://aeronet.gsfc.nasa.gov/), is used to obtain the aerosol optical thickness (AOT). Preliminary results include only samples collected from air masses under the influence of Saharan dust, as signified by AOT satellite images from MODIS and the results from the air masses backward trajectories calculated with the NOAA HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model. In terms of the chemical composition, EC concentrations were at low-to-undetectable levels, indicating that OC concentrations

  12. Thermochemical, cloud condensation nucleation ability and optical properties of alkyl aminium sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Lavi, A.; Bluvshtein, N.; Segre, E.; Segev, L.; Flores, J.; Rudich, Y.

    2013-12-01

    The increased interest in the chemistry of alkylamines and their possible roles in the atmosphere increased recently due to field observations of the correlation between new particle formation and post nucleation growth events and the presence of alkylamines in their cationic form. Due to their high saturation vapor pressure it is unlikely that short chain alkylamines will contribute to particle formation or growth by condensation. Therefore, it was previously suggested that their contribution to particulate phase is the result of acid-base reactions between the basic alkylamines and atmospherically relevant acids such as sulfuric and nitric acid. In this study we present laboratory data on the thermochemical, CCN activity and optical properties of selected atmospherically relevant alkyl aminium sulfate salts: Monomethyl aminium sulfate (MMAS), dimethyaminium sulfate (DMAS), trimethylaminium sulfate, monoethylaminium sulfate (MEAS), diethylaminium sulfate (DEAS) and triethylaminium sulfate (TEAS)). We found that the vapor pressure of these aminium salts is 1-3 orders of magnitude lower than that of ammonium sulfate and as such they can contribute to new aerosols and secondary aerosols formation. We infer that these species have very high CCN activity, with hygroscopicity parameter that is lower but close to that ammonium sulfate. Finally, we present the optical properties of these alkyl aminium sulfate salts between 360 and 420 nm. These compounds are less scattering than ammonium sulfate and show minimal wavelength dependence in this range. These compounds also do not absorb light. These derived parameters can contribute to the better understanding and characterization of the role that these compounds play in atmospheric chemical reactions, gas-solid partitioning and their possible contribution to the microphysical and radiative effects of atmospheric aerosols.

  13. Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Das, S. K.; Jayaraman, A.; Misra, A.

    2008-06-01

    A detailed study on the changes in aerosol physical and optical properties during fog events were made in December 2004 at Hissar (29.13° N, 75.70° E), a city located in the Indo-Gangetic basin. The visible aerosol optical depth was relatively low (0.3) during the initial days, which, however, increased (0.86) as the month progressed. The increasing aerosol amount, the decreasing surface temperature and a higher relative humidity condition were found favoring the formation of fog. The fog event is also found to alter the aerosol size distribution. An increase in the number concentration of the nucleation mode (radius<0.1 μm) particles, along with a decrease in the mode radius showed the formation of freshly nucleated aerosols. In the case of accumulation mode (0.1 μmaerosol optical depth spectra are model fitted to infer the aerosol components which are further used to compute the aerosol radiative forcing. The top of the atmosphere forcing is found to increase during foggy days due to large backscattering of radiation back to space. It is also shown that during foggy days, as the day progresses the RH value decreases, which reduces the forcing value while the increasing solar elevation increases the forcing value. Thus the fog event which prolongs longer into the daytime has a stronger effect on the diurnally averaged aerosol radiative forcing than those events which are confined only to the early morning hours.

  14. Retrieval of high-spectral-resolution lidar for atmospheric aerosol optical properties profiling

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Luo, Jing; Yang, Yongying; Cheng, Zhongtao; Zhang, Yupeng; Zhou, Yudi; Duan, Lulin; Su, Lin

    2015-10-01

    High-spectral-resolution lidars (HSRLs) are increasingly being developed for atmospheric aerosol remote sensing applications due to the straightforward and independent retrieval of aerosol optical properties without reliance on assumptions about lidar ratio. In HSRL technique, spectral discrimination between scattering from molecules and aerosol particles is one of the most critical processes, which needs to be accomplished by means of a narrowband spectroscopic filter. To ensure a high retrieval accuracy of an HSRL system, the high-quality design of its spectral discrimination filter should be made. This paper reviews the available algorithms that were proposed for HSRLs and makes a general accuracy analysis of the HSRL technique focused on the spectral discrimination, in order to provide heuristic guidelines for the reasonable design of the spectral discrimination filter. We introduce a theoretical model for retrieval error evaluation of an HSRL instrument with general three-channel configuration. Monte Carlo (MC) simulations are performed to validate the correctness of the theoretical model. Results from both the model and MC simulations agree very well, and they illustrate one important, although not well realized fact: a large molecular transmittance and a large spectral discrimination ratio (SDR, i.e., ratio of the molecular transmittance to the aerosol transmittance) are beneficial t o promote the retrieval accuracy. The application of the conclusions obtained in this paper in the designing of a new type of spectroscopic filter, that is, the field-widened Michelson interferometer, is illustrated in detail. These works are with certain universality and expected to be useful guidelines for HSRL community, especially when choosing or designing the spectral discrimination filter.

  15. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. On regional scales, the impacts are substantial, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado

  16. Optical Properties of the Marine Aerosol as Predicted by a BASIC Version of the Navy Aerosol Model.

    DTIC Science & Technology

    1983-09-02

    microns) would be from the other available inputs and then adjusts all of the three lognormal amplitudes so that the predicted visual range at . 55 ...Knollenberg light scattering aerosol counters", J. Aerosol Sci., 10, p 55 -74. Trusty, G.L. and TS. Cosden (1981) "Optical Extinction Predictions from...FOR CURRENT RH AT . 55 MICRONS 2700 REM 2710 J-4 2720 FOR I=2 TO 4 2730 IF R9=R(I) THEN 2780 2740 IF R9<R(I) THEN 2800 2750 NEXT I 2760 01-Tl(JdI

  17. Optical and microphysical properties of mineral dust and biomass burning aerosol observed over Warsaw on 10th July 2013

    NASA Astrophysics Data System (ADS)

    Janicka, Lucja; Stachlewska, Iwona; Veselovskii, Igor; Baars, Holger

    2016-04-01

    Biomass burning aerosol originating from Canadian forest fires was widely observed over Europe in July 2013. Favorable weather conditions caused long-term westward flow of smoke from Canada to Western and Central Europe. During this period, PollyXT lidar of the University of Warsaw took wavelength dependent measurements in Warsaw. On July 10th short event of simultaneous advection of Canadian smoke and Saharan dust was observed at different altitudes over Warsaw. Different origination of both air masses was indicated by backward trajectories from HYSPLIT model. Lidar measurements performed with various wavelength (1064, 532, 355 nm), using also Raman and depolarization channels for VIS and UV allowed for distinguishing physical differences of this two types of aerosols. Optical properties acted as input for retrieval of microphysical properties. Comparisons of microphysical and optical properties of biomass burning aerosols and mineral dust observed will be presented.

  18. Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect

    NASA Astrophysics Data System (ADS)

    Kuang, Ye; Zhao, Chunsheng

    2016-04-01

    In this paper, the diurnal variations of aerosol optical properties and their influences on the estimation of daily average direct aerosol radiative effect (DARE) in the North China Plain (NCP) are investigated based on in situ measurements from Haze in China campaign. For ambient aerosol, the diurnal patterns of single scattering albedo (SSA) and asymmetry factor (g) in the NCP are both highest at dawn and lowest in the late afternoon, and quite different from those of dry-state aerosol. The relative humidity is the dominant factor which determines the diurnal patterns of SSA and g for ambient aerosol. Basing on the calculated SSA and g, several cases are designed to investigate the impacts of the diurnal changes of aerosol optical properties on DARE. The results demonstrate that the diurnal changes of SSA and g in the NCP have significant influences on the estimation of DARE at the top of the atmosphere (TOA). If the full temporal coverage of aerosol optical depth (AOD), SSA and g are available, an accurate estimation of daily average DARE can be achieved by using the daily averages of AOD, SSA and g. However, due to the lack of full temporal coverage datasets of SSA and g, their daily averages are usually not available. Basing on the results of designed cases, if the RH plays a dominant role in the diurnal variations of SSA and g, we suggest that using both SSA and g averaged over early morning and late afternoon as inputs for radiative transfer model to improve the accurate estimation of DARE. If the temporal samplings of SSA or g are too few to adopt this method, either averaged over early morning or late afternoon of both SSA and g can be used to improve the estimation of DARF at TOA.

  19. Laboratory Measurements of the Effect of Sulfuric and Organic Acid Coatings on the Optical Properties of Carbon Soot Aerosols

    NASA Astrophysics Data System (ADS)

    Xue, H.; Khalizov, A.; Zhang, R.

    2008-12-01

    Aerosol particles perturb the Earth-atmosphere radiative balance through scattering and absorption of the solar energy. Soot or black carbon, produced during combustion of fossil fuels and biofuels, is the major component responsible for light absorption by aerosol particles. The variation in the reported mass-specific absorption cross-sections (MAC) of fresh soot and increased light absorption by aged soot aerosols internally mixed with non-absorbing materials are the major factors leading to large uncertainties in the evaluation of the aerosol optical effects. We have investigated the optical properties of submicron carbon soot aerosols during simulated atmospheric processing with sulfuric acid and dicarboxylic organic acids. Internally mixed soot particles with known size, morphology, and the mixing state were produced by exposing the size-classified, flame-generated soot to sulfuric acid and organic acid vapor. Light extinction and scattering by fresh and internally mixed soot were measured at 532 nm wavelength using a cavity ring-down spectrometer and an integrating nephelometer, respectively; light absorption was derived as the difference between extinction and scattering. Mass-specific absorption cross-sections for fresh and internally mixed soot aggregates were calculated using the measured effective densities of soot cores. The optical properties of fresh soot were independent of the relative humidity (RH). Internally mixed soot exhibited significant enhancement in light absorption and scattering, increasing with the mass fraction of the coating material and RH. Sulfuric acid was found to cause greater enhancement in soot optical properties than organic acids. The higher absorption and scattering resulted in the increased single scattering albedo of coated soot aerosol. The measurements indicate that the irreversible restructuring of soot aggregates to more compact globules is a major contributor to the enhanced optical properties of internally mixed soot.

  20. Contribution of long-range transported aerosols to aerosol optical and physical properties: 3-year measurements at Gosan, Korea

    NASA Astrophysics Data System (ADS)

    Heo, J.; Kim, S. W.; Kim, J. H.; Ogren, J. A.; Yoon, S. C.

    2015-12-01

    Recently, more attentions have been paid to air quality in East Asia due to the enhanced loading of atmospheric pollutants related to rapid industrialization. Gosan Climate Observatory (GCO), Korea is regarded as an ideal site to study the transport of atmospheric pollutants because it is frequently influenced by various airmasses from China, Korea, Japan and Pacific Ocean. In order to understand aerosol optical and physical properties according to airmass transport routes, three-year (2012-2014) continuous measurements of aerosol scattering/absorption coefficient and number size distribution were analyzed, together with 48-hour backward trajectory calculations. The averaged aerosol absorption (σa) and scattering coefficient (σs) for airmasses transported from North China (NC; 36% of all trajectories) were 6.65 Mm-1 and 94.72 Mm-1 at 550 nm wavelength, respectively, which were similar to those for stagnant airmasses (ST; 22% of all trajectories; σa: 6.26 Mm-1, σs: 93.99 Mm-1). The highest values of σa (7.03 Mm-1) and σs (108.34 Mm-1) were observed when airmasses were traveled from South China (SC; 11% of all trajectories). σa and σs for airmasses from Korean Peninsula (KP; 7% of all trajectories) and Pacific Ocean (PO; 14% of all trajectories; in parenthesis) were 5.63 (2.76) Mm-1 and 73.63 (50.93) Mm-1, respectively. Compared to other airmasses, the higher values of Scattering Angstrom Exponent (SAE) for ST (1.65) is thought to be the build-up of anthropogenic fine particulate pollutants. The Absorption Angstrom Exponent (AAE) was estimated to be 1.32 for NC airmass and 1.02 for SC airmass. Over the study period, 130 days of total 557 days were identified as new particle formation and growth event (NPF) from Scanning Mobility Particle Sizer (SMPS) measurements by Cyclostationary Empirical Orthogonal Function (CSEOF) approach. Especially, 55.4% (72 days) of total 130 NPF days were found when a cold and dry airmass comes from NC after passing the frontal

  1. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  2. Optical properties and CCN activity of aerosols in a high-altitude Himalayan environment: Results from RAWEX-GVAX

    NASA Astrophysics Data System (ADS)

    Gogoi, Mukunda M.; Babu, S. Suresh; Jayachandran, V.; Moorthy, K. Krishna; Satheesh, S. K.; Naja, Manish; Kotamarthi, V. R.

    2015-03-01

    The seasonality and mutual dependence of aerosol optical properties and cloud condensation nuclei (CCN) activity under varying meteorological conditions at the high-altitude Nainital site (~2 km) in the Indo-Gangetic Plains were examined using nearly year-round measurements (June 2011 to March 2012) at the Atmospheric Radiation Measurement mobile facility as part of the Regional Aerosol Warming Experiment-Ganges Valley Aerosol Experiment of the Indian Space Research Organization and the U.S. Department of Energy. The results from collocated measurements provided enhanced aerosol scattering and absorption coefficients, CCN concentrations, and total condensation nuclei concentrations during the dry autumn and winter months. The CCN concentration (at a supersaturation of 0.46) was higher during the periods of high aerosol absorption (single scattering albedo (SSA) < 0.80) than during the periods of high aerosol scattering (SSA > 0.85), indicating that the aerosol composition seasonally changes and influences the CCN activity. The monthly mean CCN activation ratio (at a supersaturation of 0.46) was highest (>0.7) in late autumn (November); this finding is attributed to the contribution of biomass-burning aerosols to CCN formation at high supersaturation conditions.

  3. Seasonal variability of optical properties of aerosols in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Vrekoussis, M.; Liakakou, E.; Koçak, M.; Kubilay, N.; Oikonomou, K.; Sciare, J.; Mihalopoulos, N.

    The aerosol optical properties (scattering and absorption coefficients) were investigated at two remote locations in the Eastern Mediterranean in conjunction with aerosol ion composition measurements: Finokalia in the Crete Island in Greece (March 2001-June 2002) and Erdemli in Turkey (July 1999-June 2000). Ambient light-scattering coefficient ( σsp-532 nm ) at Finokalia had a mean value of 50±23 Mm -1 while at Erdemli this value was 90±160 Mm -1, due to a severe dust event that occurred from 17 to 19 April 2000. Scattering coefficients up to 5000 Mm -1 were encountered during the transition periods (spring and autumn) and were associated with dust storm events. During these events significant correlations were observed between dust and σsp and mass scattering efficiencies of 0.21 and 0.96 m 2g -1 were calculated for dust for Finokalia and Erdemli, respectively. Significant correlations were also observed at both locations between non-sea-salt sulphate (nss-SO 42-); σsp and mass scattering efficiencies of 5.9±1.8 and 5.7±1.4 m 2g -1 were calculated for the nss-SO 42- at Finokalia and Erdemli, respectively. At Finokalia absorption measurements were also performed at the same time and the mean absorption coefficient ( σap-565 nm ) was found to be 5.6±3.6 Mm -1. Maxima of absorption coefficient were associated with two distinct meteorological situations indicative of pollution transported from northern Europe and Saharan dust events. Saharan dust can therefore significantly contribute to both scattering and absorption of solar radiation, the latter due to its hematite content. Based on scattering and absorption measurements, an annual mean single-scattering albedo ( ω) adjusted at 550 nm of 0.89±0.04 was calculated for Finokalia. Finally, radiative forcing efficiency (RFE) over the sea at 550 nm induced by aerosols has been calculated for Finokalia. RFE follows a clear seasonal variation, with the lowest mean values during summer (-73W m -2) and the highest

  4. Optical Properties of Boreal Region Biomass Burning Aerosols in Central Alaska and Seasonal Variation of Aerosol Optical Depth at an Arctic Coastal Site

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Sinyuk, A.; Hyer, E. J.; O'Neill, N. T.; Shaw, G. E.; VandeCastle, J. R.; Chapin, F. S.; Dubovik, O.; Smirnov, A.; Vermote, E.; Schafer, J. S.; Giles, D.; Slutsker, I.; Sorokine, M.; Newcomb, W. W.

    2010-01-01

    Long-term monitoring of aerosol optical properties at a boreal forest AERONET site in interior Alaska was performed from 1994 through 2008 (excluding winter). Large interannual variability was observed, with some years showing near background aerosol optical depth (AOD) levels (<0.1 at 500 nm) while 2004 and 2005 had August monthly means similar in magnitude to peak months at major tropical biomass burning regions. Single scattering albedo (omega (sub 0); 440 nm) at the boreal forest site ranged from approximately 0.91 to 0.99 with an average of approximately 0.96 for observations in 2004 and 2005. This suggests a significant amount of smoldering combustion of woody fuels and peat/soil layers that would result in relatively low black carbon mass fractions for smoke particles. The fine mode particle volume median radius during the heavy burning years was quite large, averaging approximately 0.17 micron at AOD(440 nm) = 0.1 and increasing to approximately 0.25 micron at AOD(440 nm) = 3.0. This large particle size for biomass burning aerosols results in a greater relative scattering component of extinction and, therefore, also contributes to higher omega (sub 0). Additionally, monitoring at an Arctic Ocean coastal site (Barrow, Alaska) suggested transport of smoke to the Arctic in summer resulting in individual events with much higher AOD than that occurring during typical spring Arctic haze. However, the springtime mean AOD(500 nm) is higher during late March through late May (approximately 0.150) than during summer months (approximately 0.085) at Barrow partly due to very few days with low background AOD levels in spring compared with many days with clean background conditions in summer.

  5. Optical properties and aging of light-absorbing secondary organic aerosol

    DOE PAGES

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; ...

    2016-10-14

    The light-absorbing organic aerosol (OA) commonly referred to as “brown carbon” (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NOx concentrations, photolysis time, and relative humidity (RH) on the light absorptionmore » of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  6. Optical properties and aging of light-absorbing secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-01

    The light-absorbing organic aerosol (OA) commonly referred to as "brown carbon" (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NOx concentrations, photolysis time, and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  7. The Optical Properties of the Maritime Aerosol and their Correlation to the Electrical Conductivity of the Marine Atmosphere

    DTIC Science & Technology

    2016-06-07

    constrain the conductivity measurements in coastal areas where continental air containing radioactive agents may be present to varying degrees. WORK COMPLETED...this project are also valuable in projects such as those outlined in the last item. Also, however, the results will enhance the value of a century long record of conductivity measurements that exists. ...simultaneously measuring aerosol properties, optical properties, and electrical properties from an aircraft in the marine boundary layer. This

  8. Profiling aerosol optical, microphysical and hygroscopic properties in ambient conditions by combining in situ and remote sensing

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Marenco, Franco; Nenes, Athanasios; Marinou, Eleni; Solomos, Stavros; Rosenberg, Phil; Trembath, Jamie; Nott, Graeme J.; Allan, James; Le Breton, Michael; Bacak, Asan; Coe, Hugh; Percival, Carl; Mihalopoulos, Nikolaos

    2017-01-01

    We present the In situ/Remote sensing aerosol Retrieval Algorithm (IRRA) that combines airborne in situ and lidar remote sensing data to retrieve vertical profiles of ambient aerosol optical, microphysical and hygroscopic properties, employing the ISORROPIA II model for acquiring the particle hygroscopic growth. Here we apply the algorithm on data collected from the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft during the ACEMED campaign in the Eastern Mediterranean. Vertical profiles of aerosol microphysical properties have been derived successfully for an aged smoke plume near the city of Thessaloniki with aerosol optical depth of ˜ 0.4 at 532 nm, single scattering albedos of ˜ 0.9-0.95 at 550 nm and typical lidar ratios for smoke of ˜ 60-80 sr at 532 nm. IRRA retrieves highly hydrated particles above land, with 55 and 80 % water volume content for ambient relative humidity of 80 and 90 %, respectively. The proposed methodology is highly advantageous for aerosol characterization in humid conditions and can find valuable applications in aerosol-cloud interaction schemes. Moreover, it can be used for the validation of active space-borne sensors, as is demonstrated here for the case of CALIPSO.

  9. Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons.

    PubMed

    Li, Kun; Wang, Weigang; Ge, Maofa; Li, Jiangjun; Wang, Dong

    2014-05-12

    The refractive index (RI) is the fundamental characteristic that affects the optical properties of aerosols, which could be some of the most important factors influencing direct radiative forcing. The secondary organic aerosols (SOAs) generated by the photooxidation of benzene, toluene, ethylbenzene and m-xylene (BTEX) under low-NOx and high-NOx conditions are explored in this study. The particles generated in our experiments are considered to be spherical, based on atomic force microscopy (AFM) images, and nonabsorbent at a wavelength of 532 nm, as determined by ultraviolet-visible light (UV-Vis) spectroscopy. The retrieved RIs at 532 nm for the SOAs range from 1.38-1.59, depending on several factors, such as different precursors and NOx levels. The RIs of the SOAs are altered differently as the NOx concentration increases as follows: the RIs of the SOAs derived from benzene and toluene increase, whereas those of the SOAs derived from ethylbenzene and m-xylene decrease. Finally, by comparing the experimental data with the model values, we demonstrate that the models likely overestimate the RI values of the SOA particles to a certain extent, which in turn overestimates the global direct radiative forcing of the organic particles.

  10. Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons

    PubMed Central

    Li, Kun; Wang, Weigang; Ge, Maofa; Li, Jiangjun; Wang, Dong

    2014-01-01

    The refractive index (RI) is the fundamental characteristic that affects the optical properties of aerosols, which could be some of the most important factors influencing direct radiative forcing. The secondary organic aerosols (SOAs) generated by the photooxidation of benzene, toluene, ethylbenzene and m-xylene (BTEX) under low-NOx and high-NOx conditions are explored in this study. The particles generated in our experiments are considered to be spherical, based on atomic force microscopy (AFM) images, and nonabsorbent at a wavelength of 532 nm, as determined by ultraviolet-visible light (UV-Vis) spectroscopy. The retrieved RIs at 532 nm for the SOAs range from 1.38–1.59, depending on several factors, such as different precursors and NOx levels. The RIs of the SOAs are altered differently as the NOx concentration increases as follows: the RIs of the SOAs derived from benzene and toluene increase, whereas those of the SOAs derived from ethylbenzene and m-xylene decrease. Finally, by comparing the experimental data with the model values, we demonstrate that the models likely overestimate the RI values of the SOA particles to a certain extent, which in turn overestimates the global direct radiative forcing of the organic particles. PMID:24815734

  11. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  12. Aerosol optical properties at a coastal site in Hong Kong, South China: temporal features, size dependencies and source analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jiaping; Ding, Aijun; Virkkula, Aki; Lee, Shuncheng; Shen, Yicheng; Chi, Xuguang; Xu, Zheng

    2016-04-01

    Hong Kong is a typical coastal city adjacent to the Pearl River Delta (PRD) region in southern China, which is one of the regions suffering from severe air pollution. Atmospheric aerosols can affect the earth's radiative balance by scattering and absorbing incoming solar radiation. Black Carbon (BC) aerosol is a particularly emphasized component due to its strong light absorption. Aerosol transported from different source areas consists of distinct size distributions, leading to different optical properties. As the byproducts of the incomplete oxidation, BC and CO both have relatively long life time, their relationship is a good indicator for distinguishing different pollutant sources. In this study, temporal variations of aerosol optical properties and concentrations of BC and CO at a coastal background station in Hong Kong were investigated. Transport characteristics and origins of aerosol were elucidated by analyzing backward Lagrangian particle dispersion modeling (LPDM) results, together with related parameters including the relationships between optical properties and particle size, BC-CO correlations, ship location data and meteorological variables. From February 2012 to September 2013 and March 2014 to February 2015, continuous in-situ measurements of light scattering and absorption coefficients, particle size distribution and concentrations of BC and CO were conducted at Hok Tsui (HT), a coastal background station on the southeast tip of Hong Kong Island (22.22°N, 114.25°E, 60 m above the sea level) with few local anthropogenic activities. Affected by the Asian monsoon, this region is dominated by continental outflow in winter and by marine inflow from the South China Sea in summer, which is an ideal station for identifying the transport characteristics of aerosol and their effects on optical properties from different anthropogenic emission sources. 7-day backward Lagrangian particle dispersion modeling was performed for source identification. Three

  13. Laboratory Measurement of the Optical Properties of Hematite and Desert Dust Aerosols to Assess Their Climate Forcing

    NASA Astrophysics Data System (ADS)

    Moosmuller, H.; Aiken, A. C.; Dubey, M. K.; Frey, G.; Garro, B.; Engelbrecht, J. P.

    2012-12-01

    Globally, aerosol mass emissions and optical depths are dominated by entrained mineral dust. While most minerals occurring in dust aerosols do not absorb solar radiation, some minerals cause significant absorption, thereby lowering the single scatter albedo (SSA) significantly below one, potentially contributing to a warmer and drier atmosphere. Therefore, the optical properties of globally relevant dust aerosols need to be characterized to reduce uncertainties in their radiative forcings. A well-known absorbing component found in dust aerosols is hematite, Fe2O3, which absorbs strongly in the blue-green spectral region, giving some soils, rocks, and dust aerosols their characteristic red color. We discuss measurements of the optical properties of ~30 dust aerosols, including a pure hematite standard, hematite-containing mineral dust standards ranging from 9-34% hematite by mass, and various dust samples collected from around the world. Samples are suspended from aqueous solution and/or from dry atomization with a cyclone re-suspension chamber yielding the fine fraction relevant for long-range transport. Size distributions were characterized with an optical aerosol spectrometer; absorption and scattering coefficients were measured with a three-wavelength photoacoustic soot spectrometer (PASS-3) at 405, 532, and 781 nm and with an ultraviolet photoacoustic soot spectrometer (PASS-UV) at 375 nm yielding wavelength-dependent mass absorption coefficients (MAC's), SSA's, and wavelength dependent Angstrom exponents. Hematite MAC's are an order of magnitude smaller than those of black carbon (BC) at 405 nm and 532 nm and are largely non-absorbing at 781 nm with SSA's of 0.49 0.68 and 0.98, respectively.

  14. Technical Note: Determination of aerosol optical properties by a calibrated sky imager

    NASA Astrophysics Data System (ADS)

    Cazorla, A.; Shields, J. E.; Karr, M. E.; Olmo, F. J.; Burden, A.; Alados-Arboledas, L.

    2009-09-01

    The calibrated ground-based sky imager developed in the Marine Physical Laboratory, the Whole Sky Imager (WSI), has been tested with data from the Atmospheric Radiation Measurement Program (ARM) at the Southern Great Plain site (SGP) to determine optical properties of the atmospheric aerosol. Different neural network-based models calculate the aerosol optical depth (AOD) for three wavelengths using the radiance extracted from the principal plane of sky images from the WSI as input parameters. The models use data from a CIMEL CE318 photometer for training and validation and the wavelengths used correspond to the closest wavelengths in both instruments. The spectral dependency of the AOD, characterized by the Ångström exponent α in the interval 440-870 nm, is also derived using the standard AERONET procedure and also with a neural network-based model using the values obtained with a CIMEL CE318. The deviations between the WSI derived AOD and the AOD retrieved by AERONET are within the nominal uncertainty assigned to the AERONET AOD calculation (±0.01), in 80% of the cases. The explanation of data variance by the model is over 92% in all cases. In the case of α, the deviation is within the uncertainty assigned to the AERONET α (±0.1) in 50% of the cases for the standard method and 84% for the neural network-based model. The explanation of data variance by the model is 63% for the standard method and 77% for the neural network-based model.

  15. A three-dimensional sectional representation of aerosol mixing state for simulating optical properties and cloud condensation nuclei

    SciTech Connect

    Ching, Ping Pui; Zaveri, Rahul A.; Easter, Richard C.; Riemer, Nicole; Fast, Jerome D.

    2016-05-27

    Light absorption by black carbon (BC) particles emitted from fossil fuel combustion depends on the how thickly they are coated with non-refractory species such as ammonium, sulfate, nitrate, organics, and water. The cloud condensation nuclei (CCN) activation property of a particle depends on its dry size and the hygroscopicities of all the individual species mixed together. It is therefore necessary to represent both size and mixing state of aerosols to reliably predict their climate-relevant properties in atmospheric models. Here we describe and evaluate a novel sectional framework in the Model for Simulating Aerosol Interactions and Chemistry, referred to as MOSAIC-mix, that represents the mixing state by resolving aerosol dry size (Ddry), BC dry mass fraction (wBC), and hygroscopicity (κ). Using ten idealized urban plume scenarios in which different types of aerosols evolve over 24 hours under a range of atmospherically relevant environmental conditions, we examine errors in CCN concentrations and optical properties with respect to a more explicit aerosol mixing state representation. We find that only a small number of wBC and κ bins are needed to achieve significant reductions in the errors, and propose a configuration consisting of 24 Ddry bins, 2 wBC bins, and 2 κ bins that gives 24-hour average errors of about 5% or less in CCN concentrations and optical properties, 3-4 times lower than those from size-only-resolved simulations. These results show that MOSAIC-mix is suitable for use in regional and global models to examine the effects of evolving aerosol mixing states on aerosol-radiation-cloud feedbacks.

  16. Impact of North American intense fires on aerosol optical properties measured over the European Arctic in July 2015

    NASA Astrophysics Data System (ADS)

    Markowicz, K. M.; Pakszys, P.; Ritter, C.; Zielinski, T.; Udisti, R.; Cappelletti, D.; Mazzola, M.; Shiobara, M.; Xian, P.; Zawadzka, O.; Lisok, J.; Petelski, T.; Makuch, P.; Karasiński, G.

    2016-12-01

    In this paper impact of intensive biomass burning (BB) in North America in July 2015, on aerosol optical and microphysical properties measured in the European Arctic, is discussed. This study was made within the framework of the Impact of Absorbing aerosols on Radiating forcing in the European Arctic project. During the BB event aerosol optical depth (AOD) at 500 nm exceeded 1.2 in Spitsbergen and 0.7 in Andenes (Norway). Angstrom exponent exceeded 1.4, while the absorbing Angstrom exponent varied between 1 and 1.25. BB aerosols were observed in humid atmosphere with a total water vapor column between 2 and 2.5 cm. In such conditions aerosols are activated and may produce clouds at different altitudes. Vertical structure of aerosol plumes over Svalbard, obtained from ceilometers and lidars, shows variability of range-corrected signal between surface and middle and upper troposphere. Aerosol backscattering coefficients show values up to 10-5 m-1 sr-1 at 532 nm. Aerosol surface observations indicate chemical composition typical for biomass burning particles and very high single scattering properties. Scattering and absorption coefficients at 530 nm were up to 130 and 15 Mm-1, respectively. Single scattering albedo at the surface varied from 0.9 to 0.94. The averaged values over the entire atmospheric column ranged from 0.93 to 0.99. Preliminary statistics of model and Sun photometer data as well as previous studies indicate that this event, in the Arctic region, must be considered extreme (such AOD was not observed in Svalbard since 2005) with a significant impact on energy budget.

  17. Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta Region of China

    SciTech Connect

    Liu, Jianjun; Zheng, Youfei; Li, Zhanqing; Flynn, Connor J.; Cribb, Maureen

    2012-02-09

    Four years of columnar aerosol particle optical properties (2006 to 2009) and one year database worth of aerosol particle vertical profile of 527 nm extinction coefficient (June 2008 to May 2009) are analyzed at Taihu in the central Yangtze Delta region in eastern China. Seasonal variations of aerosol optical properties, vertical distribution, and influence on shortwave radiation and heating rates were investigated. Multiyear variations of aerosol optical depths (AOD), Angstrom exponents, single scattering albedo (SSA) and asymmetry factor (ASY) are analyzed, together with the vertical profile of aerosol extinction. AOD is largest in summer and smallest in winter. SSAs exhibit weak seasonal variation with the smallest values occurring during winter and the largest during summer. The vast majority of aerosol particles are below 2 km, and about 62%, 67%, 67% and 83% are confined to below 1 km in spring, summer, autumn and winter, respectively. Five-day back trajectory analyses show that the some aerosols aloft are traced back to northern/northwestern China, as far as Mongolia and Siberia, in spring, autumn and winter. The presence of dust aerosols were identified based on the linear depolarization measurements together with other information (i.e., back trajectory, precipitation, aerosol index). Dust strongly impacts the vertical particle distribution in spring and autumn, with much smaller effects in winter. The annual mean aerosol direct shortwave radiative forcing (efficiency) at the bottom, top and within the atmosphere are -34.8 {+-} 9.1 (-54.4 {+-} 5.3), -8.2 {+-} 4.8 (-13.1 {+-} 1.5) and 26.7 {+-} 9.4 (41.3 {+-} 4.6) W/m{sup 2} (Wm{sup -2} T{sup -1}), respectively. The mean reduction in direct and diffuse radiation reaching surface amount to 109.2 {+-} 49.4 and 66.8 {+-} 33.3 W/m{sup 2}, respectively. Aerosols significantly alter the vertical profile of solar heating, with great implications for atmospheric stability and dynamics within the lower troposphere.

  18. Ground-based remote sensing of aerosol optical properties and their radiative impacts in PRD region of China

    NASA Astrophysics Data System (ADS)

    Mai, Boru; Deng, XueJiao; Li, Zhanqing; Li, Fei; Zou, Yu; Deng, Tao; Liu, Xiantong

    2015-04-01

    Aerosol direct effects on surface irradiance were explored by using 7 years' ground-based broadband and spectral radiation data at Panyu, the main site of atmospheric composition monitoring in Pearl River Delta (PRD) . Aerosol optical properties were derived from a Sun photometer, and the radiations were calculated by SBDART model. Results demonstrated that in dry seasons(from October to next February), the annual mean aerosol optical depth (AOD) at 550nm was 0.535, and more than 60% AOD was in a range of 0.2-0.6. Due to the fact that few dust taken place in PRD region, the course mode of weak or strong absorbing aerosol was negligible. However, the proportion of fine mode, weak radiation absorbing particle was about 9.52%, with the Angstrom exponent (α440/470) = 1.30, single scatter co-albedo (ω0) =0.04.Up to 90% of the aerosol was dominated by fine mode, strong absorbing particles, as given by mean α440/470 = 1.35, ω0 =0.14. Because of strong absorption, the variations in aerosol concentration significantly heated the air, and cooled down the surface. The annual mean shortwave direct radiation forcing at the surface (SFC), inside the atmosphere (ATM), and at the top of atmosphere (TOA) was -33.51

  19. Optical and radiative properties of aerosols over Desalpar, a remote site in western India: Source identification, modification processes and aerosol type discrimination.

    PubMed

    Patel, Piyushkumar N; Dumka, U C; Kaskaoutis, D G; Babu, K N; Mathur, Alok K

    2017-01-01

    Aerosol optical properties are analyzed for the first time over Desalpar (23.74°N, 70.69°E, 30m above mean sea level) a remote site in western India during October 2014 to August 2015. Spectral aerosol optical depth (AOD) measurements were performed using the CIMEL CE-318 automatic Sun/sky radiometer. The annual-averaged AOD500 and Ångström exponent (α440-870) values are found to be 0.43±0.26 and 0.69±0.39, respectively. On the seasonal basis, high AOD500 of 0.45±0.30 and 0.61±0.34 along with low α440-870 of 0.41±0.27 and 0.41±0.35 during spring (March-May) and summer (June-August), respectively, suggest the dominance of coarse-mode aerosols, while significant contribution from anthropogenic sources is observed in autumn (AOD500=0.47±0.26, α440-870=1.02±0.27). The volume size distribution and the spectral single-scattering albedo also confirm the presence of coarse-mode aerosols during March-August. An overall dominance of a mixed type of aerosols (~56%) mostly from October to February is found via the AOD500 vs α440-870 relationship, while marine aerosols contribute to ~18%. Spectral dependence of α and its second derivative (α') are also used for studying the aerosol modification processes. The average direct aerosol radiative forcing (DARF) computed via the SBDART model is estimated to range from -27.08Wm(-2) to -10.74Wm(-2) at the top of the atmosphere, from -52.21Wm(-2) to -21.71Wm(-2) at the surface and from 10.97Wm(-2) to 26.54Wm(-2) within the atmosphere. This atmospheric forcing translates into heating rates of 0.31-0.75Kday(-1). The aerosol properties and DARF are also examined for different trajectory clusters in order to identify the sources and to assess the influence of long-range transported aerosols over Desalpar.

  20. Influence of biogenic pollen on optical properties of atmospheric aerosols observed by lidar over Gwangju, South Korea

    NASA Astrophysics Data System (ADS)

    Noh, Young Min; Müller, Detlef; Lee, Hanlim; Choi, Tae Jin

    2013-04-01

    For the first time, optical properties of biogenic pollen, i.e., backscatter coefficients and depolarization ratios at 532 nm were retrieved by lidar observations. The extinction coefficient was derived with the assumption of possible values of the extinction-to-backscatter (lidar) ratio. We investigate the effect of the pollen on the optical properties of the observed atmospheric aerosols by comparing lidar and sun/sky radiometer measurements carried out at the lidar site. The observations were made with a depolarization lidar at the Gwangju Institute of Science & Technology (GIST) in Gwangju, Korea (35.13°N, 126.50°E) during an intensive observational period that lasted from 5 to 7 May 2009. The pollen concentration was measured with a Burkard trap sampler at the roof top of the Gwangju Bohoon hospital which is located 1 km away from the lidar site. During the observation period, high pollen concentrations of 1360, 2696, and 1952 m-3 day-1 were measured on 5, 6, and 7 May, respectively. A high lidar depolarization ratio caused by biogenic pollen was only detected during daytime within the planetary boundary layer which was at 1.5-2.0 km height above ground during the observational period. The contribution of biogenic pollen to the total backscatter coefficient was estimated from the particle depolarization ratio. Average hourly values of pollen optical depth were retrieved by integrating the pollen extinction coefficients. We find average values of 0.062 ± 0.037, 0.041 ± 0.028 and 0.067 ± 0.036 at 532 nm on 5, 6, and 7 May, respectively. The contribution of pollen optical depth to total aerosol optical depth was 2-34%. The sun/sky radiometer data show that biogenic pollen can affect optical properties of atmospheric aerosol by increasing aerosol optical depth and decreasing the Ångström exponent during daytime during the season of high pollen emission.

  1. Diurnal Cycles of Aerosol Optical Properties at Pico Tres Padres, Mexico City: Evidences for Changes in Particle Morphology and Secondary Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Dubey, M.; Chakrabarty, R.; Moosmuller, H.; Onasch, T.; Zavala, M.; Herndon, S.; Kolb, C.

    2007-12-01

    Aerosol optical properties affect planetary radiative balance and depend on chemical composition, size distribution, and morphology. During the MILAGRO field campaign, we measured aerosol absorption and scattering in Mexico City using the Los Alamos aerosol photoacoustic (LAPA) instrument operating at 781 nm. The LAPA was mounted on-board the Aerodyne Research Inc. mobile laboratory, which hosted a variety of gaseous and aerosol instruments. During the campaign, the laboratory was moved to different sites, capturing spatial and temporal variability. Additionally, we collected ambient aerosols on Nuclepore filters for scanning electron microscopy (SEM) analysis. SEM images of selected filters were taken to study particle morphology. Between March 7th and 19th air was sampled at the top of Pico Tres Padres, a mountain on the north side of Mexico City. Aerosol absorption and scattering followed diurnal patterns related to boundary layer height and solar insulation. We report an analysis of aerosol absorption, scattering, and morphology for three days (9th, 11th and 12th of March 2006). The single scattering albedo (SSA, ratio of scattering to total extinction) showed a drop in the tens-of-minutes-to-hour time frame after the boundary layer grew above the sampling site. Later in the day the SSA rose steadily reaching a maximum in the afternoon. The SEM images showed a variety of aerosol shapes including fractal-like aggregates, spherical particles, and other shapes. The absorption correlated with the CO2 signal and qualitatively with the fraction of fractal-like particles to the total particle count. In the afternoon the SSA qualitatively correlated with a relative increase in spherical particles and total particle count. These observed changes in optical properties and morphology can be explained by the dominant contribution of freshly emitted particles in the morning and by secondary particle formation in the afternoon. SSA hourly averaged values ranged from ~0.63 in

  2. Optical properties of aerosols during APEX and ACE-Asia experiments

    NASA Astrophysics Data System (ADS)

    Sano, Itaru; Mukai, Sonoyo; Okada, Yasuhiko; Holben, Brent N.; Ohta, Sachio; Takamura, Tamio

    2003-12-01

    Sun/sky photometry and polarimetry of atmospheric light have been undertaken by multispectral photometers (CE-318-1 and -2, Cimel Electronique, France) and a polarimeter (PSR-1000, Opto Research, Japan) over Amami, Noto, and Shirahama, Japan, during APEX-E1, -E2, and ACE-Asia field campaigns. Radiometers provide us with the optical thickness of aerosols and Ångström exponent. Other aerosol characteristics, e.g., size distribution, refractive index, etc., are retrieved based on each inversion method corresponding each equipment. The former takes a standard AERONET processing, and the latter is according to our own procedure to analyze the polarimetry with PSR-1000. After several aerosol parameters are derived, the HYSPLIT4 backward trajectory analysis is adopted to search the origin of aerosols. It is shown from these ground measurements that aerosol optical thickness, Ångström exponent, and refractive index are classified into two typical categories as a background type detected in winter, and a soil dust type appeared in Asian dust events in spring. Further, it is found that the obtained size distribution of Asian dust indicates the dominance of large particles.

  3. The aerosol optical properties measurement by ground remote sensing in Zhejiang, China

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Jiang, Hong; Chen, Jian; Jiang, Zishan; Yu, Shuquan; Ma, Yuandan

    2009-10-01

    The aerosol optical depth was affected by the chemical composition, the particle size and the shape of aerosol as well as the water vapor in the atmosphere; it is an important indicator for air pollution. The special and temporal characteristics of aerosol optical depth (AOD) was measured by CE318 sun-photometer, Angstrom wavelength exponent (Alpha) and the aerosol turbidity coefficient (β) were calculated in Ningbo, Lin'an and Qiandaohu of Zhejiang province from 2007 to 2008. We also analyzed the relationship between AOD and Angstrom wavelength exponent (Alpha) in these stations. The results show that there are different pattern of AOD in this gradient of urban and suburban region. Lin'an station had two peaks of AOD, but Ningbo and Qiandaohu stations had single peak of AOD in measurement year. The difference of AOD seasonal pattern exists in three sites. The Angstrom wavelength exponent (Alpha) analysis suggests that the aerosol sizes in three stations various from fine particle in autumn to coarse particle in spring. The seasonal patterns show that spring air pollution is serious, summer is relatively clean, and autumn and winter are relative serious in three stations.

  4. Optical Properties of Aerosols from Long Term Ground-Based Aeronet Measurements

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tanre, D.; Smirnov, A.; Eck, T. F.; Slutsker, I.; Dubovik, O.; Lavenu, F.; Abuhassen, N.; Chatenet, B.

    1999-01-01

    AERONET is an optical ground-based aerosol monitoring network and data archive supported by NASA's Earth Observing System and expanded by federation with many non-NASA institutions including AEROCAN (AERONET CANada) and PHOTON (PHOtometrie pour le Traiteinent Operatonnel de Normalisation Satellitaire). The network hardware consists of identical automatic sun-sky scanning spectral radiometers owned by national agencies and universities purchased for their own monitoring and research objectives. Data are transmitted hourly through the data collection system (DCS) on board the geostationary meteorological satellites GMS, GOES and METEOSAT and received in a common archive for daily processing utilizing a peer reviewed series of algorithms thus imposing a standardization and quality control of the product data base. Data from this collaboration provides globally distributed near real time observations of aerosol spectral optical depths, aerosol size distributions, and precipitable water in diverse aerosol regimes. Access to the AERONET data base has shifted from the interactive program 'demonstrat' (reserved for PI's) to the AERONET homepage allowing faster access and greater development for GIS object oriented retrievals and analysis with companion geocoded data sets from satellites, LIDAR and solar flux measurements for example. We feel that a significant yet under utilized component of the AERONET data base are inversion products made from hourly principal plane and almucanter measurements. The current inversions have been shown to retrieve aerosol volume size distributions. A significant enhancement to the inversion code has been developed and is presented in these proceedings.

  5. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  6. Cavity Ring-Down Measurement of Aerosol Optical Properties During the Asian Dust Above Monterey Experiment and DOE Aerosol Intensive Operating Period

    NASA Technical Reports Server (NTRS)

    Ricci, K.; Strawa, A. W.; Provencal, R.; Castaneda, R.; Bucholtz, A.; Schmid, B.

    2004-01-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300/Mm with an estimated precision of 0.1/Mm for 1550 nm light and 0.2/Mm for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects. We present comparisons between the Cadenza measurements and those from a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  7. Optical properties of mixed aerosol layers over Japan derived with multi-wavelength Mie-Raman lidar system

    NASA Astrophysics Data System (ADS)

    Hara, Yukari; Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Pan, Xiaole; Kobayashi, Hiroshi; Osada, Kazuo; Uno, Itsushi

    2017-02-01

    Mixing state of aerosols and optical properties including lidar ratio, particle depolarization ratio, and Ångström exponent were investigated at Fukuoka in western Japan using a multi-wavelength Mie-Raman lidar (MMRL), various aerosol mass-concentration measurements, and a polarization optical particle counter during Winter-Spring 2015. Aerosol extinction coefficient, backscatter coefficient, and depolarization at 355 and 532 nm and attenuated backscatter coefficient at 1064 nm are obtained from the MMRL measurements. Ten aerosol episodes were classified into three categories (air pollution, mineral dust, and marine aerosol) based on aerosol mass-concentration measurements in the fine-mode (particle diameter Dp<2.5 μm) and coarse-mode (2.5 μmaerosols. The lowest lidar ratio was obtained for marine case. Classification of aerosol types using the lidar ratio and particle depolarization ratio was conducted based on the results obtained in this study. The classified aerosol types almost corresponded to aerosol category obtained by previous studies. We found no remarkable correlation between the fraction of black carbon and the lidar ratio: this might be due to the complexity of the mixing state among various aerosols. The obtained lidar ratio was rather correlated with the ratio of PMf to PM10, representing the mixing state of fine- and coarse-mode particles.

  8. Comparison of the aerosol optical properties and size distribution retrieved by sun photometer with in situ measurements at midlatitude

    NASA Astrophysics Data System (ADS)

    Chauvigné, Aurélien; Sellegri, Karine; Hervo, Maxime; Montoux, Nadège; Freville, Patrick; Goloub, Philippe

    2016-09-01

    Aerosols influence the Earth radiative budget through scattering and absorption of solar radiation. Several methods are used to investigate aerosol properties and thus quantify their direct and indirect impacts on climate. At the Puy de Dôme station, continuous high-altitude near-surface in situ measurements and low-altitude ground-based remote sensing atmospheric column measurements give the opportunity to compare the aerosol extinction measured with both methods over a 1-year period. To our knowledge, it is the first time that such a comparison is realised with continuous measurements of a high-altitude site during a long-term period. This comparison addresses to which extent near-surface in situ measurements are representative of the whole atmospheric column, the aerosol mixing layer (ML) or the free troposphere (FT). In particular, the impact of multi-aerosol layers events detected using lidar backscatter profiles is analysed. A good correlation between in situ aerosol extinction coefficient and aerosol optical depth (AOD) measured by the Aerosol Robotic Network (AERONET) sun photometer is observed with a correlation coefficient around 0.80, indicating that the in situ measurements station is representative of the overall atmospheric column. After filtering for multilayer cases and correcting for each layer optical contribution (ML and FT), the atmospheric structure seems to be the main factor influencing the comparison between the two measurement techniques. When the site lies in the ML, the in situ extinction represents 45 % of the sun photometer ML extinction while when the site lies within the FT, the in situ extinction is more than 2 times higher than the FT sun photometer extinction. Moreover, the assumption of a decreasing linear vertical aerosol profile in the whole atmosphere has been tested, significantly improving the instrumental agreement. Remote sensing retrievals of the aerosol particle size distributions (PSDs) from the sun photometer

  9. Analysis of aerosol optical properties from continuous sun-sky radiometer measurements at Halley and Rothera, Antarctica over seven years

    NASA Astrophysics Data System (ADS)

    Campanelli, Monica; Estellés, Victor; Colwell, Steve; Shanklin, Jonathan; Ningombam, Shantikumar S.

    2015-04-01

    The Antarctic continent is located far from most anthropogenic emission sources on the planet, it has limited areas of exposed rock and human activities are less developed. Air circulation over Antarctica also seems to prevent the direct transport of air originating from anthropogenic sources of pollution at lower latitudes. Therefore Antarctica is considered an attractive site for studying aerosol properties as unaltered as possible by human activity. Long term monitoring of the optical and physical properties is necessary for observing possible changes in the atmosphere over time and understanding if such changes are due to human activity or natural variation. Columnar aerosol optical and physical properties can be obtained from sun-sky radiometers, very compact instruments measuring spectral direct and diffuse solar irradiance at the visible wavelengths and using fast and efficient inversion algorithms. The British Antarctic Survey has continuously operated two Prede Pom-01 sun-sky radiometers in Antarctica as part of the ESR-European Skynet Radiometers network (www.euroskyrad.net, Campanelli et al, 2012). They are located at Halley and Rothera, and have operated since 2009 and 2008 respectively. In the present study the aerosol optical thickness, single scattering albedo, Ångström exponent, volume size distribution and refractive index were retrieved from cloud-screened measurements of direct and diffuse solar irradiance using the Skyrad 4.2 pack code (Nakajima et al., 1986). The analysis of the daily and yearly averages showed an important increase of the absorbing properties of particles at Halley from 2013 to the beginning of 2014 related to the increasing presence of smaller particles (from 2012) but with a non-significant variation of aerosol optical depth. The same increase of absorption was visible at Rothera only in 2013. Air pressure measurements, wind directions and intensity, and vertical profiles from radio-soundings, together with HYSPLIT model

  10. MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Fiedler, Stephanie; Kinne, Stefan; Peters, Karsten; Rast, Sebastian; Müsse, Jobst; Smith, Steven J.; Mauritsen, Thorsten

    2017-02-01

    A simple plume implementation of the second version (v2) of the Max Planck Institute Aerosol Climatology, MACv2-SP, is described. MACv2-SP provides a prescription of anthropogenic aerosol optical properties and an associated Twomey effect. It was created to provide a harmonized description of post-1850 anthropogenic aerosol radiative forcing for climate modeling studies. MACv2-SP has been designed to be easy to implement, change and use, and thereby enable studies exploring the climatic effects of different patterns of aerosol radiative forcing, including a Twomey effect. MACv2-SP is formulated in terms of nine spatial plumes associated with different major anthropogenic source regions. The shape of the plumes is fit to the Max Planck Institute Aerosol Climatology, version 2, whose present-day (2005) distribution is anchored by surface-based observations. Two types of plumes are considered: one predominantly associated with biomass burning, the other with industrial emissions. These differ in the prescription of their annual cycle and in their optical properties, thereby implicitly accounting for different contributions of absorbing aerosol to the different plumes. A Twomey effect for each plume is prescribed as a change in the host model's background cloud-droplet population density using relationships derived from satellite data. Year-to-year variations in the amplitude of the plumes over the historical period (1850-2016) are derived by scaling the plumes with associated national emission sources of SO2 and NH3. Experiments using MACv2-SP are performed with the Max Planck Institute Earth System Model. The globally and annually averaged instantaneous and effective aerosol radiative forcings are estimated to be -0.6 and -0.5 W m-2, respectively. Forcing from aerosol-cloud interactions (the Twomey effect) offsets the reduction of clear-sky forcing by clouds, so that the net effect of clouds on the aerosol forcing is small; hence, the clear-sky forcing, which is more

  11. Linking surface in-situ measurements to columnar aerosol optical properties at Hyytiälä, Finland

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Aalto, P.; Aaltonen, V.; Äijälä, M.; Backman, J.; Ehn, M.; Hong, J.; Krejci, R.; Laborde, M.; de Leeuw, G.; Petäjä, T.; Pfüller, A.; Rosati, B.; Tesche, M.; Väänänen, R.

    2014-12-01

    Ambient optical properties of aerosols strongly depend on the particles' hygroscopicity and the relative humidity (RH) of the surrounding air. The key parameter to describe the influence of RH on the particle light scattering is the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value. Knowledge of this hygroscopicity effect is of crucial importance for climate forcing calculations and is needed for the comparison or validation of remote sensing with in-situ measurements. We will present results of an intensive field campaign carried out in summer 2013 at the SMEAR II station in Hyytiälä, Finland, which was part of the EU-FP7 project PEGASOS (Pan-European Gas-Aerosols-climate interaction Study). Ground-based and airborne measurements of aerosol optical, chemical and microphysical properties were conducted. The f(RH) measured at ground by a humidified nephelometer was found to be significantly lower (1.53 ± 0.24 at RH=85% and wavelength λ=450 nm) than observed at other European sites (Zieger et al., 2013). One reason is the high organic mass fraction of the boreal aerosol as measured by an aerosol chemical speciation monitor (ACSM). A closure study using Mie theory showed the consistency of the ground based in-situ measurements. Our measurements allowed to determine the ambient particle light extinction coefficient. Together with intensive aircraft measurements (lasting one month) of the particle number size distribution and ambient humidity, different columnar values were determined and compared to direct measurements and inversions of the AERONET Sun photometer (e.g., the columnar aerosol volume size distribution). The aerosol optical depth strongly correlated (R2≈0.9 for λ=440 nm to R2≈0.6 for λ=1020 nm) with the in situ derived values, but was significantly lower compared to the direct measurements of the Sun photometer (slope ≈0.5). This was explained by the loss of

  12. Extensive aerosol optical properties and aerosol mass related measurements during TRAMP/TexAQS 2006 - Implications for PM compliance and planning

    NASA Astrophysics Data System (ADS)

    Wright, Monica E.; Atkinson, Dean B.; Ziemba, Luke; Griffin, Robert; Hiranuma, Naruki; Brooks, Sarah; Lefer, Barry; Flynn, James; Perna, Ryan; Rappenglück, Bernhard; Luke, Winston; Kelley, Paul

    2010-10-01

    Extensive aerosol optical properties, particle size distributions, and Aerodyne quadrupole aerosol mass spectrometer measurements collected during TRAMP/TexAQS 2006 were examined in light of collocated meteorological and chemical measurements. Much of the evident variability in the observed aerosol-related air quality is due to changing synoptic meteorological situations that direct emissions from various sources to the TRAMP site near the center of the Houston-Galveston-Brazoria (HGB) metropolitan area. In this study, five distinct long-term periods have been identified. During each of these periods, observed aerosol properties have implications that are of interest to environmental quality management agencies. During three of the periods, long range transport (LRT), both intra-continental and intercontinental, appears to have played an important role in producing the observed aerosol. During late August 2006, southerly winds brought super-micron Saharan dust and sea salt to the HGB area, adding mass to fine particulate matter (PM 2.5) measurements, but apparently not affecting secondary particle growth or gas-phase air pollution. A second type of LRT was associated with northerly winds in early September 2006 and with increased ozone and sub-micron particulate matter in the HGB area. Later in the study, LRT of emissions from wildfires appeared to increase the abundance of absorbing aerosols (and carbon monoxide and other chemical tracers) in the HGB area. However, the greatest impacts on Houston PM 2.5 air quality are caused by periods with low-wind-speed sea breeze circulation or winds that directly transport pollutants from major industrial areas, i.e., the Houston Ship Channel, into the city center.

  13. Light absorption, optical and microphysical properties of trajectory-clustered aerosols at two AERONET sites in West Africa

    NASA Astrophysics Data System (ADS)

    Fawole, O. G.; Cai, X.; MacKenzie, A. R.

    2015-12-01

    Aerosol remote sensing techniques and back-trajectory modeling can be combined to identify aerosol types. We have clustered 7 years of AERONET aerosol signals using trajectory analysis to identify dominant aerosol sources at two AERONET sites in West Africa: Ilorin (4.34 oE, 8.32 oN) and Djougou (1.60 oE, 9.76 oN). Of particular interest are air masses that have passed through the gas flaring region in the Niger Delta area, of Nigeria, en-route the AERONET sites. 7-day back trajectories were calculated using the UK UGAMP trajectory model driven by ECMWF wind analyses data. Dominant sources identified, using literature classifications, are desert dust (DD), Biomass burning (BB) and Urban-Industrial (UI). Below, we use a combination of synoptic trajectories and aerosol optical properties to distinguish a fourth source: that due to gas flaring. Gas flaring, (GF) the disposal of gas through stack in an open-air flame, is believed to be a prominent source of black carbon (BC) and greenhouse gases. For these different aerosol source signatures, single scattering albedo (SSA), refractive index , extinction Angstrom exponent (EEA) and absorption Angstrom exponent (AAE) were used to classify the light absorption characteristics of the aerosols for λ = 440, 675, 870 and1020 nm. A total of 1625 daily averages of aerosol data were collected for the two sites. Of which 245 make up the GF cluster for both sites. For GF cluster, the range of fine-mode fraction is 0.4 - 0.7. Average values SSA(λ), for the total and GF clusters are 0.90(440), 0.93(675), 0.95(870) and 0.96(1020), and 0.93(440), 0.92(675), 0.9(870) and 0.9(1020), respectively. Values of for the GF clusters for both sites are 0.62 - 1.11, compared to 1.28 - 1.66 for the remainder of the clusters, which strongly indicates the dominance of carbonaceous particles (BC), typical of a highly industrial area. An average value of 1.58 for the real part of the refractive index at low SSA for aerosol in the GF cluster is also

  14. Correlations between Optical, Chemical and Physical Properties ofBiomass Burn Aerosols

    SciTech Connect

    Hopkins, Rebecca J.; Lewis, K.; Desyaterik, Yury; Wang, Z.; Tivanski, Alexei V.; Arnott, W.P.; Laskin, Alexander; Gilles, M.K.

    2008-01-29

    Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo ({omega}) and Angstrom absorption coefficients ({alpha}{sub ap}) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp{sup 2} hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured {omega} (0.4-1.0 at 405 nm) and {alpha}{sub ap} (1.0-3.5) values displayed a fuel dependence. The category with sp{sup 2} hybridization >80% had values of {omega} (<0.5) and {alpha}{sub ap} ({approx}1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher {omega} (>0.8) and {alpha}{sub ap} (1.0 to 3.5) values, indicating increased absorption spectral selectivity.

  15. Remote sensing of aerosol optical properties and solar heating rate by the combination of sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori; Fujiyoshi, Yasushi; Higuchi, Yuji; Hayashi, Masahiko; Shimizu, Atsushi; Aoki, Kazuma

    2017-02-01

    The SKYLIDAR algorithm was developed to estimate the vertical profiles of aerosol optical properties from combining the measurements of the sky radiometer in SKYNET and the lidar in AD-Net. The derived parameters are the vertical profiles of extinction coefficient, single-scattering albedo, asymmetry factor, real and imaginary parts of the refractive index, and size distribution. The solar heating rate was estimated from these parameters. The algorithm was applied to the transported dust case, and the detailed vertical structures of the optical properties and the solar heating rate and their relationship were shown. For the validation of the SKYLIDAR algorithm, the vertical profile of the aerosol size distribution from the surface to the altitude of about 3 km was directly observed by the optical particle counter on board the glider. The comparison of the SKYLIDAR derived extinction coefficient with that estimated from OPC measurements showed that the SKYLIDAR result had a bias error due to the optimization of aerosol parameters to the optical thickness measured by the sky radiometer.

  16. Variability in optical properties of atmospheric aerosols and their frequency distribution over a mega city "New Delhi," India.

    PubMed

    Tiwari, S; Tiwari, Suresh; Hopke, P K; Attri, S D; Soni, V K; Singh, Abhay Kumar

    2016-05-01

    The role of atmospheric aerosols in climate and climate change is one of the largest uncertainties in understanding the present climate and in capability to predict future climate change. Due to this, the study of optical properties of atmospheric aerosols over a mega city "New Delhi" which is highly polluted and populated were conducted for two years long to see the aerosol loading and its seasonal variability using sun/sky radiometer data. Relatively higher mean aerosol optical depth (AOD) (0.90 ± 0.38) at 500 nm and associated Angstrom exponent (AE) (0.82 ± 0.35) for a pair of wavelength 400-870 nm is observed during the study period indicating highly turbid atmosphere throughout the year. Maximum AOD value is observed in the months of June and November while minimum is in transition months March and September. Apart from this, highest value of AOD (AE) value is observed in the post-monsoon [1.00 ± 0.42 (1.02 ± 0.16)] season followed by the winter [0.95 ± 0.36 (1.02 ± 0.20)] attributed to significance contribution of urban as well as biomass/crop residue burning aerosol which is further confirmed by aerosol type discrimination based on AOD vs AE. During the pre-monsoon season, mostly dust and mixed types aerosols are dominated. AODs value at shorter wavelength observed maximum in June and November while at longer wavelength maximum AOD is observed in June only. For the better understanding of seasonal aerosol modification process, the aerosol curvature effect is studied which show a strong seasonal dependency under a high turbid atmosphere, which are mainly associated with various emission sources. Five days air mass back trajectories were computed. They suggest different patterns of particle transport during the different seasons. Results suggest that mixtures of aerosols are present in the urban environment, which affect the regional air quality as well as climate. The present study will be very much useful to the modeler for

  17. Optical properties of aerosols in the Kuwait oil fire smoke plume, May-June 1991. Data report

    SciTech Connect

    Sheridan, P.J.; Quincy, C.E.; Schnell, R.C.

    1993-12-01

    The vast oil field fires in Kuwait ignited by the Iraqi Army in early 1991 released enormous quantities of smoke into the atmosphere. The report focuses on aerosol data collected during one of the American missions, which has since come to be called the Kuwait Oil Field Fire Experiment (KOFFE). Aerosol optical scattering and absorption data presented in the report were obtained by sensors onboard the NCAR Electra aircraft. The objectives of these flights were to (1) determine the chemical composition of the smoke plumes, (2) examine the rates of emissions of particles and gases, (3) investigate the nature of the smoke particles, (4) ascertain the optical and radiative properties of the smoke, (5) provide air-truth' measurements for subsequent satellite intercomparison studies, and (6) determine the effects of atmospheric transport and aging on the smoke, for estimation of atmospheric residence times.

  18. Aerosol optical properties in ultraviolet ranges and respiratory diseases in Thailand

    NASA Astrophysics Data System (ADS)

    Kumharn, Wilawan; Hanprasert, Kasarin

    2016-10-01

    This study investigated the values of Angstrom parameters (α,β) in ultraviolet (UV) ranges by using AERONET Aerosol Optical Depth (AOD) data. A second-order polynomial was applied to the AERONET data in order to extrapolate to 320 nm from 2003 to 2013 at seven sites in Thailand. The α,β were derived by applying the Volz Method (VM) and Linear Method (LM) at 320-380 nm at seven monitoring sites in Thailand. Aerosol particles were categorized in both coarse and fine modes, depending on regions. Aerosol loadings were related to dry weather, forest fires, sea salt and most importantly, biomass burning in the North, and South of Thailand. Aerosol particles in the Central region contain coarse and fine modes, mainly emitted from vehicles. The β values obtained were associated with turbid and very turbid skies in Northern and Central regions except Bangkok, while β results are associated with clean skies in South. Higher values of the β at all sites were found in the winter and summer compared with the rainy season, in contrast to South where the highest AOD was observed in June. The β values were likely to increase during 2003-2013. These values correlate with worsening health situations as evident from increasing respiratory diseases reported.

  19. Regional Aerosol Optical Properties and Radiative Impact of the Extreme Smoke Event in the European Arctic in Spring 2006

    NASA Technical Reports Server (NTRS)

    Lund Myhre, C.; Toledano, C.; Myhre, G.; Stebel, K.; Yttri, K.; Aaltonen, V.; Johnsrud, M.; Frioud, M.; Cachorro, V.; deFrutos, A.; Lihavainen, H.; Campbell, J.; Chaikovsky, A.; Shiobara, M.; Welton, E.; Torseth, K.

    2007-01-01

    In spring 2006 a special meteorological situation occurred in the European Arctic region giving record high levels of air pollution. The synoptic situation resulted in extensive transport of pollution predominantly from agricultural fires in Eastern Europe into the Arctic region and record high air-pollution levels were measured at the Zeppelin observatory at Ni-Alesun(78deg 54'N, 11deg 53'E) in the period from 25 April to 12 May. In the present study we investigate the optical properties of the aerosols from this extreme event and we estimate the radiative forcing of this episode. We examine the aerosol optical properties from the source region and into the European Arctic and explore the evolution of the episode and the changes in the optical properties. A number of sites in Eastern Europe, Northern Scandinavia and Svalbard are included in the study. In addition to AOD measurements, we explored lidar measurements from Minsk, ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research at Andenes) and Ny-Alesund. For the AERONET sites included (Minsk, Toravere, Hornsund) we have further studied the evolution of the aerosol size. Importantly, at Svalbard it is consistency between the AERONET measurements and calculations of single scattering albedo based on aerosol chemical composition. We have found strong agreement between the satellite dally MODIS AOD and the ground-based AOD observations. This agreement is crucial for the radiative forcing calculations. We calculate a strong negative radiative forcing for the most polluted days employing the analysed ground based data, MODIS AOD and a multi-stream model for radiative transfer of solar radiation.

  20. Regional aerosol optical properties and radiative impact of the extreme smoke event in the European Arctic in spring 2006

    NASA Astrophysics Data System (ADS)

    Lund Myhre, C.; Toledano, C.; Myhre, G.; Stebel, K.; Yttri, K. E.; Aaltonen, V.; Johnsrud, M.; Frioud, M.; Cachorro, V.; de Frutos, A.; Lihavainen, H.; Campell, J. R.; Chaikovsky, A. P.; Shiobara, M.; Welton, E. J.; Tørseth, K.

    2007-07-01

    In spring 2006 a special meteorological situation occurred in the European Arctic region giving record high levels of air pollution. The synoptic situation resulted in extensive transport of pollution predominantly from agricultural fires in Eastern Europe into the Arctic region and record high air-pollution levels were measured at the Zeppelin observatory at Ny-Ålesund (78°54' N, 11°53' E) in the period from 25 April to 12 May. In the present study we investigate the optical properties of the aerosols from this extreme event and we estimate the radiative forcing of this episode. We examine the aerosol optical properties from the source region and into the European Arctic and explore the evolution of the episode and the changes in the optical properties. A number of sites in Eastern Europe, Northern Scandinavia and Svalbard are included in the study. In addition to AOD measurements, we explored lidar measurements from Minsk, ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research at Andenes) and Ny-Ålesund. For the AERONET sites included (Minsk, Toravere, Hornsund) we have further studied the evolution of the aerosol size. Importantly, at Svalbard it is consistency between the AERONET measurements and calculations of single scattering albedo based on aerosol chemical composition. We have found strong agreement between the satellite daily MODIS AOD and the ground-based AOD observations. This agreement is crucial for the radiative forcing calculations. We calculate a strong negative radiative forcing for the most polluted days employing the analysed ground based data, MODIS AOD and a multi-stream model for radiative transfer of solar radiation.

  1. An Intensive Study of Aerosol Optical Properties in the Outflow of the Manaus Urban Plume, in Central Amazon

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Cirino, G. G.; Brito, J.; Rizzo, L. V.; Barbosa, H. M.; Carbone, S.; Holanda, B. A.; Souza, R. A. F. D.; Tota, J.; Martin, S. T.

    2015-12-01

    In this study, one year of ground-based observations of aerosol optical properties from a site impacted by urban emissions in Central Amazon of Brazil are assessed as part of results from GoAmazon2014/5 experiment. The aerosol absorption (σa) and scattering (σs) coefficients, as well as single scattering albedo (SSA) are analyzed to aid in characterizing Manaus' urban aerosol at GoAmazon T2 site. There is a distinct diurnal variation for (σa) it was mainly attributed to the severe emission of particulate pollutants and black carbon during the morning and evening traffic rush hours. The decrease of (σa) nearly at noon (12:00-14:00 LT) was a result of strong atmospheric mixing and dilution due to the elevated height of atmospheric planetary boundary layer (PBL). After sunset (18:00 LT), the formation of stable nocturnal PBL even in atmospheric inversion led to a low atmospheric diffusion ability to aerosols and thus relatively high (σa) and (σs) throughout the night. Indeed, it was observed a strong dependence on local wind confirmed by simulated back trajectories in all two seasons. Overall, the wind dependence results provide valuable information about the locations of aerosol pollution sources and suggest that the air pollution in dry season is a regional problem but in the wet season it is mainly affected by local urban emissions. We have also seen an interesting difference in variability of (σs) and (σa) during 8:00-13:00 LT in wet season. A clear decrease was observed for (σa), while a smooth increase during 11:00-13:00 LT was presented for (σs). This is possibly a consequence of secondary aerosol production. (σa) is controlled to a large degree by primary aerosols such as black carbon that are emitted directly from pollution sources like vehicles, while (σs) is related to secondary aerosols such as sulfate and nitrate that contribute the most to light scattering. SSA was relatively low around 7:00-08:00 LT, which reflected that (σa) increased more

  2. Columnar and ground-level aerosol optical properties: sensitivity to the transboundary pollution, daily and weekly patterns, and relationships.

    PubMed

    Perrone, M R; Romano, S; Orza, J A G

    2015-11-01

    Columnar and ground-level aerosol optical properties co-located in space and time and retrieved from sun/sky photometer and nephelometer measurements, respectively, have been analyzed to investigate the impact of local and transboundary pollution, to analyze their relationships, and hence to contribute to the aerosol load characterization over the Central Mediterranean. The aerosol optical depth (AOD) at 440 nm, the Ångström exponent (Å) calculated from the AOD at 440 and 675 nm, and the asymmetry parameter (g col ) at 440 nm represent the investigated columnar aerosol parameters. The scattering coefficient (σ p) at 450 nm, the scattering Ångström exponent (å) calculated from σ p at 450 and 635 nm, and the asymmetry parameter (g) at 450 nm are the corresponding ground-level parameters. It is shown that the columnar and ground-level aerosol properties were significantly and similarly affected by the main airflows identified with backtrajectory cluster analysis. The yearly averaged daily evolution of σ p, å, and g was fairly correlated to the one of the AOD, Å, and g col , respectively. These results indicate that the aerosol particles were on average characterized by similar yearly averaged optical properties up to the ground level. In particular, the yearly means of columnar and ground-level Ångström exponents, 1.3 ± 0.4 and 1.1 ± 0.4, respectively, which are close to one, reveal a coarse-mode aerosol contribution in addition to the fine-mode particle contribution up to the ground level. Hourly means, day-by-day, and seasonal daily patterns of ground-level parameters were, however, very weakly correlated with the corresponding columnar parameters. The large impact of the local meteorology on the daily evolution of the ground-level aerosol properties, which makes the impact of long-range transported particles less apparent, was mainly responsible for these last results. It has also been found that columnar Ångström exponents much smaller

  3. Comparison of aerosol optical properties at the sub-arctic stations ALOMAR-Andenes, Abisko and Sodankylä in late spring and summer 2007

    NASA Astrophysics Data System (ADS)

    Rodríguez, E.; Toledano, C.; Cachorro, V.; de Leeuw, G.; De Frutos, A.; Gausa, M.; Holben, B.

    2012-04-01

    Aerosol concentration and aerosol type, retrieved from observations with CIMEL sun-photometers at three sub-arctic locations at the Scandinavian Peninsula are presented. The observations were made at ALOMAR-Andenes in Norway, Abisko in Sweden and Sodankylä in Finland. This field campaign took place in late spring and summer 2007 as part of the activities of the International Polar Year (IPY) within the POLARCAT project at ALOMAR and Abisko. Aerosol properties were characterized using the relationship between the aerosol optical depth and the Ångström Exponent. The characteristics of the predominant aerosol type and microphysics are largely determined by the location of the site (continental or coastal). During summer the fine mode particles dominate, as indicated by the fine mode volume fraction and the Ångström Exponent. The aerosol concentration was on average very low, except during an event in which long-range transported aerosols (dust and pollution) were detected.

  4. Regional aerosol optical properties and radiative impact of the extreme smoke event in the European Arctic in spring 2006

    NASA Astrophysics Data System (ADS)

    Lund Myhre, C.; Toledano, C.; Myhre, G.; Stebel, K.; Yttri, K. E.; Aaltonen, V.; Johnsrud, M.; Frioud, M.; Cachorro, V.; de Frutos, A.; Lihavainen, H.; Campbell, J. R.; Chaikovsky, A. P.; Shiobara, M.; Welton, E. J.; Tørseth, K.

    2007-11-01

    In spring 2006 a special meteorological situation occurred in the European Arctic region giving record high levels of air pollution. The synoptic situation resulted in extensive transport of pollution predominantly from agricultural fires in Eastern Europe into the Arctic region and record high air-pollution levels were measured at the Zeppelin observatory at Ny-Ålesund (78°54' N, 11°53' E) in the period from 25 April to 12 May. In the present study we investigate the optical properties of the aerosols from this extreme event and we estimate the radiative forcing of this episode. We examine the aerosol optical properties from the source region and into the European Arctic and explore the evolution of the episode and the changes in the optical properties. A number of sites in Eastern Europe, Northern Scandinavia and Svalbard are included in the study. The observations show that the maximum AOD was from 2-3 May at all sites and varies from 0.52 to 0.87, and the corresponding Ångstrøm exponent was relatively large. Lidar measurements from Minsk, ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research at Andenes) and Ny-Ålesund show that the aerosol layer was below 3 km at all sites the height is decreasing from the source region and into the Arctic. For the AERONET sites included (Minsk, Toravere, Hornsund) we have further studied the evolution of the aerosol size. The single scattering albedo at Svalbard is provided for two sites; Ny-Ålesund and Hornsund. Importantly the calculated single scattering albedo based on the aerosol chemical composition and size distribution from Ny-Ålesund and the AERONET measurements at Hornsund are consistent. We have found strong agreement between the satellite daily MODIS AOD and the ground-based AOD observations. This agreement is crucial for accurate radiative forcing calculations. We calculate a strong negative radiative forcing for the most polluted days employing the analysed ground based data, MODIS AOD and a

  5. Combined use of optical and electron microscopic techniques for the measurement of hygroscopic property, chemical composition, and morphology of individual aerosol particles.

    PubMed

    Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un

    2010-10-01

    In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.

  6. Solar irradiance and aerosol optical properties during the CARES field campaign

    NASA Astrophysics Data System (ADS)

    Barnard, J.; Kassianov, E.

    2010-12-01

    Measurements of both broadband and spectral solar irradiances were made during the Carbonaceous Aerosols and Radiative Effects Study (CARES) field campaign at the T0 and T1 sites. The broadband irradiances were measured using a typical Eppley Precision Spectral Pyranometer (PSP), while the spectral irradiances were measured by a Multi-Filter Rotating Shadowband Radiometer (MFRSR) at six wavelengths (415, 500, 615, 673, 870, and 940 nm). The aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (AP), can be inferred from the MFRSR measurements for the first five of these wavelengths. Analyses of these data show three distinct aerosol regimes. The first period, at the beginning of the field campaign, was extremely clean, with AOD values at 500nm as low as 0.03 (with uncertainty of 0.02). Such clear air rivals that at other pristine locations, such as Barrow, Alaska, in late summer. Next, a brief episode of biomass burning took place on June 16, as indicated by increased AOD. Finally, towards the end of the campaign, progressively deteriorating air quality was observed with a concomitant increase in AOD, with values 0.1 (500 nm) and larger. However, at no time during the campaign did the air quality deteriorate to the extent that might be observed in less clean locations such as Mexico City, or more humid places were significant hydroscopic growth occurs. The broadband irradiances also reflect clean conditions, with midday total, hemispherical irradiances often exceeding 1000 W/m^2. We also show some initial results of columnar SSA and AP values derived during the three aerosol regimes. MFRSR data taken near the T1 site during the summer of 2009 also indicate generally clear skies, except during episodes of biomass burning when the AOD approaches 1.0 at 500 nm. Such dirty air was never observed during the CARES campaign.

  7. In-Situ Measurements of Aerosol Optical and Hygroscopic Properties at the Look Rock Site during SOAS 2013

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zimmermann, K.; Bertram, T. H.; Corrigan, A. L.; Guzman, J. M.; Russell, L. M.; Budisulistiorini, S.; Li, X.; Surratt, J. D.; Hicks, W.; Bairai, S. T.; Cappa, C. D.

    2013-12-01

    One of the main goals of the Southern Oxidant and Aerosol Study (SOAS) is to characterize the climate-relevant properties of aerosols over the southeastern United States at the interface of biogenic and anthropogenic emissions. As part of the SOAS campaign, the UCD cavity ringdown/photoacoustic spectrometer was deployed to make in-situ measurements of aerosol light extinction, absorption and sub-saturated hygroscopicity at the Look Rock site (LRK) in the Great Smoky Mountains National Park, TN from June 1 to July 15, 2013. The site is influenced by substantial biogenic emissions with varying impacts from anthropogenic pollutants, allowing for direct examination of the optical and hygroscopic properties of anthropogenic-influenced biogenic secondary organic aerosols (SOA). During the experiment period, the average dry aerosol extinction (Bext), absorption (Babs) coefficients and single scattering albedo (SSA) at 532 nm were 30.3 × 16.5 Mm-1, 1.12 × 0.78 Mm-1 and 0.96 × 0.06. The Babs at 532 nm was well correlated (r2 = 0.79) with the refractory black carbon (rBC) number concentration determined by a single particle soot spectrometer (SP2). The absorption by black carbon (BC), brown carbon (BrC) and the absorption enhancement due to the 'lensing' effect were quantified by comparing the Babs of ambient and thermo-denuded aerosols at 405 nm and 532 nm. The optical sub-saturated hygroscopic growth factor was derived from extinction and particle size distribution measurements at dry and elevated relative humidity. In addition, to explore the extent to which ammonia mediated chemistry leads to BrC formation, as suggested in recent laboratory studies(1,2), we performed an NH3 perturbation experiment in-situ for 1 week during the study, in which ambient aerosols were exposed to approximately 100 ppb NH3 with a residence time of ~ 3hr. The broader implications of these observational data at LRK will be discussed in the context of the concurrent gas and aerosol chemical

  8. Satellite Retrieval of Aerosol Properties

    NASA Astrophysics Data System (ADS)

    de Leeuw, G.; Robles Gonzalez, C.; Kusmierczyk-Michulec, J.; Decae, R.

    SATELLITE RETRIEVAL of AEROSOL PROPERTIES G. de Leeuw, C. Robles Gonzalez, J. Kusmierczyk-Michulec and R. Decae TNO Physics and Electronics Laboratory, The Hague, The Netherlands; deleeuw@fel.tno.nl Methods to retrieve aerosol properties over land and over sea were explored. The dual view offered by the ATSR-2 aboard ERS-2 was used by Veefkind et al., 1998. The retrieved AOD (aerosol optical depth) values compare favourably with collocated sun photometer measurements, with an accuracy of 0.06 +/- 0.05 in AOD. An algorithm developed for GOME on ERS-2 takes advantage of the low surface reflection in the UV (Veefkind et al., 2000). AOD values retrieved from ATSR-2 and GOME data over western Europe are consistent. The results were used to produce a map of mean AOD values over Europe for one month (Robles-Gonzalez et al., 2000). The ATSR-2 is al- gorithm is now extended with other aerosol types with the aim to apply it over the In- dian Ocean. A new algorithm is being developed for the Ozone Monitoring Instrument (OMI) to be launched in 2003 on the NASA EOS-AURA satellite. It is expected that, based on the different scattering and absorption properties of various aerosol types, five major aerosol classes can be distinguished. The experience with the retrieval of aerosol properties by using several wavelength bands is used to develop an algorithm for Sciamachy to retrieve aerosol properties both over land and over the ocean which takes advantage of the wavelengths from the UV to the IR. The variation of the AOD with wavelength is described by the Angstrom parameter. The AOD and the Angstrom parameter together yield information on the aerosol size distribution, integrated over the column. Analysis of sunphotometer data indicates a relation between the Angstrom parameter and the mass ratio of certain aerosols (black carbon, organic carbon and sea salt) to the total particulate matter. This relation has been further explored and was applied to satellite data over land to

  9. Regional trends of aerosol optical depth and their impact on cloud properties over Southern India using MODIS data

    NASA Astrophysics Data System (ADS)

    Gopal, K. Rama; Obul Reddy, K. Raja; Balakrishnaiah, G.; Arafath, S. MD.; Kumar Reddy, N. Siva; Rao, T. Chakradhar; Reddy, T. Lokeswara; Reddy, R. Ramakrishna

    2016-08-01

    Remote sensing of global aerosols has constituted a great scientific interest in a variety of applications related to global warming and climatic change. In the present study we investigate the spatial and temporal variations of aerosol optical properties and its impact on various properties of clouds over Southern India for the last ten years (2005-2014) by using Moderate Resolution Imaging Spectroradiometer (MODIS) data retrieved from the onboard Terra and Aqua satellites. The spatial distributions of annual mean lowest Aerosol Optical Depth (AOD) value is observed in Bangalore (BLR) (0.22±0.04) and the highest AOD value is noted in Visakhapatnam (VSK) (0.39±0.05). Similarly high Fine Mode Fraction (FMF) is noticed over VSK and Thiruvananthapuram (TVM), while lower values are observed in Anantapur (ATP), Hyderabad (HYD), Pune (PUNE) and BLR. From the results, a negative correlation was found between AOD and Cloud Top Temperature (CTT), Cloud Top Pressure (CTP) where as, a positive correlation was observed between AOD and Cloud Fraction (CF), Water Vapor (WV) over the selected regions. Monthly average AOD and FMF are plotted for analysis of the trends of aerosol loading in a long-term scale and both values showed statistically significant enhancing trend over all regions as derived from the MODIS measurements. Further, the annual variation of spatial correlation between MODIS and MISR (Multi - Angle Imaging Spectro Radiometer) AOD has been analyzed and the correlation coefficients are found to be higher in two of the regions VSK and PUNE (>0.8), and considerably lower for TVM (<0.7).

  10. Optical properties of Titan's aerosols: comparison between DISR/Huygens observations and VIMS/Cassini solar occultation observations

    NASA Astrophysics Data System (ADS)

    Marmuse, Florian; Sotin, Christophe; Lawrence, Kenneth J.; Brown, Robert H.; Baines, Kevin; Buratti, Bonnie; Clark, Roger Nelson; Nicholson, Philip D.

    2016-10-01

    Titan, the only satellite with a dense atmosphere, presents a hydrocarbon cycle that includes the formation and sedimentation of organic aerosols. The optical properties of Titan's haze inferred from measurement of the Huygens probe were recently revisited by Doose et al. (Icarus, 2016). The present study uses the solar occultation observations in equatorial regions of Titan that have been acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft to infer similar information in a broader wavelength range. Preliminary studies have proven the interest of those solar occultation data in the seven atmospheric windows to constrain the aerosol number density, but could not directly compare with the Descent Imager and Spectral Radiometer (DISR) data because models predict that the density profile vary with latitude. The present study compares the DISR measurements of aerosol extinction coefficients and the solar occultation data acquired by the VIMS instrument onboard Cassini. These sets of data differ in their acquisition method and time, spectral range, and altitude: the DISR measurements have been taken in 2005, along a vertical line of sight, in the visible spectral range (490-950nm) and under 140km of altitude. The relevant solar occultation data at equator have been acquired in 2009, along a horizontal line of sight, in the IR range (0.9-5.1µm), with sun light scanning all altitudes for a long enough wavelength, namely in the five-micron atmospheric window. These sets of data have been analyzed previously, separately and using different models. Here, we present a cross analysis of these sets of data, that allows us to test the different models describing the density profile of aerosols. In addition to providing wavelength dependence of the extinction coefficient, the comparison allows us to assess the impact of refraction in Titan's atmosphere. It also provides optical depth and scattering properties that are crucial information

  11. Absorbing and scattering aerosols over the source region of biomass burning emissions: Implications in the assessment of optical and radiative properties

    NASA Astrophysics Data System (ADS)

    Singh, Atinderpal; Srivastava, Rohit; Rastogi, Neeraj; Singh, Darshan

    2016-02-01

    The current study focuses on the assessment of model simulated optical and radiative properties of aerosols incorporating the measured chemical composition of aerosol samples collected at Patiala during October, 2011-February, 2012. Monthly average mass concentration of PM2.5, elemental carbon (EC), primary organic carbon (POC), water-soluble (WS) and insoluble (INS) aerosols ranged from 120 to 192, 6.2 to 7.2, 20 to 39, 59 to 111 and 35 to 90 μg m-3, respectively. Mass concentration of different components of aerosols was further used for the assessment of optical properties derived from Optical Properties of Aerosols and Clouds (OPAC) model simulations. Microtops based measured aerosol optical depth (AOD500) ranged from 0.47 to 0.62 showing maximum value during November and December, and minimum during February. Ångström exponent (α380-870) remained high (>0.90) throughout the study period except in February (0.74), suggesting predominance of fine mode particles over the study region. The observed ratio of scattering to absorbing aerosols was incorporated in OPAC model simulations and single scattering albedo (SSA at 500 nm) so obtained ranged between 0.80 and 0.92 with relatively low values during the period of extensive biomass burning. In the present study, SBDART based estimated values of aerosol radiative forcing (ARF) at the surface (SRF) and top of the atmosphere (TOA) ranged from -31 to -66 Wm-2 and -2 to -18 W m-2 respectively. The atmospheric ARF, ranged between + 18 and + 58 Wm-2 resulting in the atmospheric heating rate between 0.5 and 1.6 K day-1. These results signify the role of scattering and absorbing aerosols in affecting the magnitude of aerosol forcing.

  12. In situ measurements of aerosols optical properties and number size distributions in a subarctic coastal region of Norway

    NASA Astrophysics Data System (ADS)

    Mogo, S.; Cachorro, V. E.; Lopez, J. F.; Montilla, E.; Torres, B.; Rodríguez, E.; Bennouna, Y.; de Frutos, A. M.

    2011-12-01

    In situ measurements of aerosol optical properties were made in the summer of 2008 at the ALOMAR station facility (69°16 N, 16°00 E), located at a rural site in the north of the island of Andøya (Vesterålen archipelago), approximately 300 km north of the Arctic Circle. The extended three-month campaign was part of the POLARCAT Project (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) of the International Polar Year (IPY-2007-2008). Its goal was to characterize the aerosols of this sub-Arctic area, which are frequently transported to the Arctic region. The ambient light-scattering coefficient, σs (550 nm), at ALOMAR had a measured hourly mean value of 5.41 Mm-1 (StD = 3.55 Mm-1), and the light-absorption coefficient, σa (550 nm), had a measured hourly mean value of 0.40 Mm-1 (StD = 0.27 Mm-1). The scattering/absorption Ångström exponents, αs,a, are used for a detailed analysis of the variations of the spectral shape of σs,a. Whereas αs demonstrates the presence of two particle sizes corresponding to two types of aerosols, the αa demonstrates only one type of absorbing aerosol particles. Values of αa above 1 were not observed. The single-scattering albedo, ω0, ranged from 0.62 to 0.99 (mean = 0.91, StD = 0.05), and the relationships of this property to the absorption/scattering coefficients and the Ångström exponents are presented. The concentration of the particles was monitored using a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS) and an ultrafine condensation particle counter (UCPC). The shape of the median size distribution of the particles in the submicrometer fraction was bimodal, and the submicrometer, micrometer and total concentrations presented hourly mean values of 1277 cm3 (StD = 1563 cm3), 1 cm3 (StD = 1 cm3) and 2463 cm3 (StD = 4251 cm3), respectively. The modal correlations were investigated, and the concentration of particles

  13. A new description of Titan's aerosol optical properties from the analysis of VIMS Emission Phase Function observations

    NASA Astrophysics Data System (ADS)

    Rodriguez, Sebastien; Maltagliati, Luca; Sotin, Christophe; Rannou, Pascal; Bézard, Bruno; Cornet, Thomas

    2016-10-01

    The Huygens probe gave unprecedented information on the properties of Titan's aerosols (vertical distribution, opacity as a function of wavelength, phase function, single scattering albedo) by in-situ measurements (Tomasko et al. 2008). Being the only existing in-situ atmospheric probing for Titan, this aerosol model currently is the reference for many Titan studies (e.g. by being applied as physical input in radiative transfer models of the atmosphere). Recently a reanalysis of the DISR dataset, corroborated by data from the Downward-Looking Visible Spectrometer (DLVS), was carried out by the same group (Doose et al. 2016), leading to significant changes to the indications given by Tomasko et al. (2008).Here we present the analysis of the Emission Phase Function observation (EPF) performed by VIMS during the Cassini flyby T88 (November 2012). An EPF observes the same spot on the surface (and thus the same atmosphere) with the same emergence angle but with different incidence angles. In this way, our EPF allows, for the first time, to have direct information on the phase function of Titan's aerosols, as well as on other important physical parameters of the aerosols as the behavior of their extinction as a function of wavelength and the single scattering albedo (also as a function of wavelength) for the whole VIMS range (0.8-5.2 μm). The T88 EPF is composed of 25 VIMS datacubes spanning a scattering angle range approximately from 0°to 70°.We used the radiative transfer model described in Hirtzig et al. (2013) as baseline, updated with improved methane (+ related isotopes) spectroscopy. By changing the aerosol description in the model, we found the combination of aerosol optical parameters that fits best a constant aerosol column density over the whole set of the VIMS datacubes. We confirmed that the new results from Doose et al. (2016) do improve the fit for what concerns the vertical profile and the extinction as a function of wavelength. However, a different

  14. A new description of Titan's aerosol optical properties from the analysis of VIMS Emission Phase Function observations

    NASA Astrophysics Data System (ADS)

    Maltagliati, Luca; Rodriguez, Sebastien; Sotin, Christophe; Rannou, Pascal; Bezard, Bruno; Cornet, Thomas

    2016-06-01

    The Huygens probe gave unprecedented information on the properties of Titan's aerosols (vertical distribution, opacity as a function of wavelength, phase function, single scattering albedo) by in-situ measurements (Tomasko et al. 2008). Being the only existing in-situ atmospheric probing for Titan, this aerosol model currently is the reference for many Titan studies (e.g. by being applied as physical input in radiative transfer models of the atmosphere). Recently a reanalysis of the DISR dataset, corroborated by data from the Downward-Looking Visible Spectrometer (DLVS), was carried out by the same group (Doose et al. 2016), leading to significant changes to the indications given by Tomasko et al. (2008). Here we present the analysis of the Emission Phase Function observation (EPF) performed by VIMS during the Cassini flyby T88 (November 2012). An EPF observes the same spot on the surface (and thus the same atmosphere) with the same emergence angle but with different incidence angles. In this way, our EPF allows, for the first time, to have direct information on the phase function of Titan's aerosols, as well as on other important physical parameters of the aerosols as the behavior of their extinction as a function of wavelength and the single scattering albedo (also as a function of wavelength) for the whole VIMS range (0.8-5.2 µm). The T88 EPF is composed of 25 VIMS datacubes spanning a scattering angle range approximately from 0°to 70°. We used the radiative transfer model described in Hirtzig et al. (2013) as baseline, updated with improved methane (+ related isotopes) spectroscopy. By changing the aerosol description in the model, we found the combination of aerosol optical parameters that fits best a constant aerosol column density over the whole set of the VIMS datacubes. We confirmed that the new results from Doose et al. (2016) do improve the fit for what concerns the vertical profile and the extinction as a function of wavelength. However, a different

  15. Optical properties of Southern Hemisphere aerosols: Report of the joint CSIRO/NASA study

    NASA Technical Reports Server (NTRS)

    Gras, John L.; Platt, C. Martin; Huffaker, R. Milton; Jones, William D.; Kavaya, Michael J.; Gras, John L.

    1988-01-01

    This study was made in support of the LAWS and GLOBE programs, which aim to design a suitable Doppler lidar system for measuring global winds from a satellite. Observations were taken from 5 deg S to 45 deg S along and off the E and SE Australian coast, thus obtaining representative samples over a large latitude range. Observations were made between 0 and 6 km altitude of aerosol physical and chemical properties in situ from the CSIRO F-27 aircraft; of lidar backscatter coefficients at 10.6 micron wavelength from the F-27 aircraft; of lidar backscatter profiles at 0.694 microns at Sale, SE Australia; and of lidar backscatter profiles at 0.532 microns at Cowley Beach, NE Australia. Both calculations and observations in the free troposphere gave a backscatter coefficient of 1-2 x 10 to the -11/m/sr at 10.6 microns, although the accuracies of the instruments were marginal at this level. Equivalent figures were 2-8 x 10 to the -9/m/sr (aerosol) and 9 x 10 to the -9 to 2 x 10 to the -8/m/sr (lidar) at 0.694 microns wavelength at Sale; and 3.7 x 10 to the -9/m/sr (aerosol) and 10 to the -8 to 10 to the -7/m/sr (lidar) at 0.532 microns wavelength at Cowley Beach. The measured backscatter coefficients at 0.694 and 0.532 microns were consistently higher than the values calculated from aerosol size distributions by factors of typically 2 to 10.

  16. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Arnott, P.; Bucholtz, A.; Colarco, P.; Covert, D.; Eilers, J.; Elleman, R.; Ferrare, R.; Flagan, R.; Jonsson, H.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. One of the objectives of the Aerosol Intensive Operational Period (TOP) conducted by ARM in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma was to examine and hopefully reduce these differences. The IOP involved airborne measurements from two airplanes over the heavily instrumented SGP site. We give an overview of airborne results obtained aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The Twin Otter performed 16 research flights over the SGP site. The aircraft carried instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size. This included such novel techniques as the photoacoustic and cavity ring-down methods for in-situ absorption (675 nm) and extinction (675 and 1550 nm) and a new multiwavelength, filter-based absorption photometer (467, 530, 660 nm). A newly developed instrument measured cloud condensation nucleus concentration (CCN) concentrations at two supersaturation levels. Aerosol optical depth and extinction (354-2139 nm) were measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore, up-and downwelling solar (broadband and spectral) and infrared radiation were measured using seven individual radiometers. Three up-looking radiometers werer mounted on a newly developed stabilized platform, keeping the instruments level up to aircraft pitch and roll angles of approximately 10(exp 0). This resulted in unprecedented continuous vertical profiles

  17. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    PubMed Central

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-01-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in the Colorado Rocky Mountains was strongly correlated with UV absorbance at 254 nm (Abs254, r = 0.88 p < 0.01) and organic carbon (OC, r = 0.95 p < 0.01), accounting for >90% of OC on average. According to source apportionment analysis, biomass burning had the highest contribution (50.3%) to average WSOC concentration; SOA formation and motor vehicle emissions dominated the contribution to WSOC in the summer. The source apportionment and backward trajectory analysis results supported the notion that both wildfire and Colorado Front Range pollution sources contribute to the summertime OC peaks observed in wet deposition at high elevation sites in the Colorado Rocky Mountains. These findings have important implications for water quality in remote, high-elevation, mountain catchments considered to be our pristine reference sites. PMID:27991554

  18. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    NASA Astrophysics Data System (ADS)

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-12-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in the Colorado Rocky Mountains was strongly correlated with UV absorbance at 254 nm (Abs254, r = 0.88 p < 0.01) and organic carbon (OC, r = 0.95 p < 0.01), accounting for >90% of OC on average. According to source apportionment analysis, biomass burning had the highest contribution (50.3%) to average WSOC concentration; SOA formation and motor vehicle emissions dominated the contribution to WSOC in the summer. The source apportionment and backward trajectory analysis results supported the notion that both wildfire and Colorado Front Range pollution sources contribute to the summertime OC peaks observed in wet deposition at high elevation sites in the Colorado Rocky Mountains. These findings have important implications for water quality in remote, high-elevation, mountain catchments considered to be our pristine reference sites.

  19. Retrieval of the Eyjafjallajökull volcanic aerosol optical and microphysical properties from POLDER/PARASOL measurements

    NASA Astrophysics Data System (ADS)

    Waquet, F.; Peers, F.; Goloub, P.; Ducos, F.; Thieuleux, F.; Derimian, Y.; Riedi, J.; Tanré, D.

    2013-04-01

    Total and polarized radiances provided by the Polarization and Directionality of Earth Reflectances (POLDER) satellite sensor are used to retrieve the microphysical and optical properties of the volcanic plume observed during the Eyjafjallajökull volcano eruption in 2010, over cloud-free and cloudy ocean scenes. We selected two plume conditions, fresh aerosols near the sources (three cases) and a downwind volcanic plume observed over the North Sea 30 h after its injection into the atmosphere (aged aerosols). In the near-source conditions, the aerosol properties depend on the distance to the plume. Within the plume, aerosols are mainly non-spherical and in the coarse mode with an effective radius equal to 1.50 (± 0.15) μm and an Ångström Exponent (AE) close to 0.0. Far from the plume, in addition to the coarse mode, there are smaller particles retrieved in the accumulation mode suggesting a mixture of sulfate aerosols and volcanic dust, resulting in an AE around 0.8. The properties of the aerosols also depend on whether the plume is fresh or aged. For the downwind (aged) plume, if non-spherical coarse particles as well as some fine mode particles are still retrieved, the AE is smaller, around ~ 0.4. In addition, the real refractive index (RR) values are larger for the downwind plume (1.42 < RR < 1.58) than for the near-source plume (1.38 < RR < 1.48). The mean Single Scattering Albedo (SSA) retrieved at 0.865 μm was estimated at 0.97 over some parts of the downwind and near-source plumes; despite the low accuracy of our retrievals, the derived SSA values suggest that the ash particles are rather absorbing. To consider the particle shape, a combination of spheroid models is used. Although the employed model enabled accurate modeling of the POLDER signal in case of non-spherical ash, our approach failed to model the signal over the optically thickest parts of the near-source plume. The most probable reason for this is speculated to be the presence of ice

  20. Chemical and optical properties of atmospheric aerosols in Phimai, Thailand by intensive surface measurements and satellite data analysis

    NASA Astrophysics Data System (ADS)

    Tsuruta, H.; Thana, B.; Takamura, T.; Hashimoto, M.; Yabuki, M.; Oikawa, E.; Nakajima, T.

    2013-12-01

    Atmospheric aerosols were measured at the Observatory of Atmospheric Research, in Phimai, Thailand, a key station of SKYNET, during 2006-2008. In the surface measurement, mass concentrations and major chemical components in fine and coarse aerosols were analyzed, and the optical properties such as AOT and SSA were measured by skyradiometer. Analysis of MODIS and CALIPSO satellite data was made for wild fire activities and aerosol distribution, respectively. In this paper, the following topics are summarized. The surface wind pattern in dry season was divided into the three periods as follows; D1 (Oct.-Nov.) with northeasterly monsoon, D3 (middle March-April) with southerly wind, and D2 (Dec.-early March) with a transit stage between D1 and D3. Wet season in southwesterly monsoon was from May to September. The concentration ratio of BC/nss-SO4 showed that the dominant PM2.5 aerosols in D1 were due to long-range transport of air pollutants emitted from urban/industrial area of east Asia. In contrast, most of aerosols in D3 were derived from biomass burning in Indochina, because the activity of biomass burning was highest in the latter D2 and early D3 period, by the analysis of the fire database in MODIS and of BC/nss-SO4. The mass concentration in PM2.5 showed a clear seasonal variation with the maximum in D2. On the contrary, AOT showed the maximum in D3, and which could be attributed to an increase in the vertical thickness of high aerosol concentration in the boundary layer by the CALIOP data analysis. Dust particles in D1 were directly transported from east Asia, and re-suspension of soil dusts was dominant in D2 because the surface soil became dry. In D3, soil dusts were re-suspended with the thermal plume caused by biomass burning. In contrast, high dust particles measured in the wet season was due to long range transport of dust aerosols from western desert area by the CALIOP data analysis.

  1. Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012

    SciTech Connect

    Meskhidze, Nicholas

    2013-10-21

    The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

  2. Summer-winter differences in the relationships among background southeastern U.S. aerosol optical, micro-physical, and chemical properties

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M.; Zhou, Y.

    2015-12-01

    Relationships among aerosol optical, micro-physical, and chemical properties are useful for evaluating regional climate models, developing satellite-based aerosol retrievals, and understanding aerosol sources and processes. Since aerosol loading and optical properties vary primarily on seasonal scales in the southeastern U.S., it is important that such studies be carried out over multiple seasons but few (if any) such multi-season studies have been conducted in the region. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1080m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were also made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. Some of the major findings will be presented. Higher values of lower tropospheric aerosol light scattering coefficient at 550nm (a proxy for aerosol loading) are associated with higher single-scattering albedo (SSA) and lower hemispheric backscatter fraction (b) during both summer and winter. Absorption Angstrom exponent (AAE) is typically well under 1 during summer and near 1.3-1.4 during winter. Lowest summer AAE values coincide with large, highly-reflective particles and higher aerosol light scattering coefficient but summer AAE is only weakly anti-correlated with organic and sulfate mass concentrations. Winter AAE is consistent with a mixture of elemental carbon and light-absorbing organic carbon, possibly influenced by regional residential wood-burning during winter. The hygroscopic dependence of visible light scattering is sensitive to sulfate and organic aerosol mass fractions during both summer and winter

  3. Relation between aerosol particles and their optical properties: a case study for São Paulo-Brazil

    NASA Astrophysics Data System (ADS)

    Miranda, Regina; Andrade, Maria de Fatima

    2013-04-01

    Brazil has a territory of 8.5 million km2 and a population of more than 160 million inhabitants, distributed throughout 26 states. Brazillian capital-cities with millions inhabitants and vehicles have several problems concerning air pollution. São Paulo, capital of São Paulo State, with more than 19 million inhabitants, 7 million vehicles, as well as the major industrial and technological park of the country, has high concentrations of air pollutants, especially in the winter. Air pollution, high building density, and a lack of green areas, combined with the proliferation of asphalt and concrete surfaces, have resulted in a greater number of urban heat island effects, fewer drizzle events, and rainfall events of greater intensity. São Paulo has an extensive air quality monitoring network, which has shown that ozone levels often exceed the NAAQS limit during spring and summer, and that concentrations of inhalable particles exceed the NAAQS limit mainly during the winter, from June to August. Aerosols are produced by a variety of processes, creating differences in their physicochemical properties and hence in their ability to scatter and absorb solar radiation. For most urban areas in Brazil, vehicles are considered the principal source of particles emitted to the atmosphere. Particles have been monitored in the winter of 2012 in São Paulo using a MOUDI (Micro Orifice Uniform Deposit Impactor), in order to have the mass distribution of the aerosol. The concentrations of coarse particles can still be larger than those of fine particles, although the difference between both has become smaller than in the past. The samples collected were analyzed by gravimetry for mass concentration, optical reflectance for Black Carbon concentration and X-ray Fluorescence for elementar characterization. Optical properties were obtained from Aeronet (Aerosol Robotic Network, http://aeronet.gsfc.nasa.gov/) for São Paulo city. It was found that a high fraction of elements was derived

  4. Measurement of Aerosol Optical Properties by Integrating Cavity Ring-Down Spectroscopy and Nephelometry

    DTIC Science & Technology

    2013-01-01

    and agricultural burning. Mineral dust is formed from storms over arid areas such as the Sahara desert. Dust particles can be transported several...CLASSIFICATION OF: We measure scattering coefficient , extinction coefficient , scattering cross-section and single scattering albedo of 102, 203 and 296...We compared experimental optical property measurements with Mie theory predicted values. The scattering coefficient and scattering cross-section

  5. Modeling Optical Properties of Mineral Aerosol Particles by Using Nonsymmetric Hexahedra

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Kahn, Ralph

    2010-01-01

    We explore the use of nonsymmetric geometries to simulate the single-scattering properties of airborne dust particles with complicated morphologies. Specifically, the shapes of irregular dust particles are assumed to be nonsymmetric hexahedra defined by using the Monte Carlo method. A combination of the discrete dipole approximation method and an improved geometric optics method is employed to compute the single-scattering properties of dust particles for size parameters ranging from 0.5 to 3000. The primary optical effect of eliminating the geometric symmetry of regular hexahedra is to smooth the scattering features in the phase function and to decrease the backscatter. The optical properties of the nonsymmetric hexahedra are used to mimic the laboratory measurements. It is demonstrated that a relatively close agreement can be achieved by using only one shape of nonsymmetric hexahedra. The agreement between the theoretical results and their measurement counterparts can be further improved by using a mixture of nonsymmetric hexahedra. It is also shown that the hexahedron model is much more appropriate than the "equivalent sphere" model for simulating the optical properties of dust particles, particularly, in the case of the elements of the phase matrix that associated with the polarization state of scattered light.

  6. Titan's aerosol optical properties with VIMS observations at the limb of Titan

    NASA Astrophysics Data System (ADS)

    Rannou, Pascal; Seignovert, Benoit; Lavvas, Panayotis; Lemouelic, Stéphane; Sotin, Christophe

    2015-11-01

    The study of Titan properties with remote sensing relies on a good knowledge of the atmosphere properties. The in-situ observations made by Huygens combined with recent advances in the definition of methane properties enable to model and interpret observations with a very good accuracy. Thanks to these progresses, we can analyze in this work the observations made at the limb of Titan in order to retrieve information on the haze properties as its vertical profiles but also the spectral behaviour between 0.88 and 5.2 μm.To study the haze layer and more generally the source of opacities in the stratosphere, we use som observation made at the limbe of Titan by the VIMS instrument onboard Cassini. We used a model in spherical geometry and in single scattering, and we accounted for the multiple scattering with a parallel plane model that evaluate the multiple scattering source function at the plane of the limb.Our scope is to retrieve informations about the vertical distribution of the haze, its spectral properties, but also to obtain details about the shape of the methane windows to disantangle the role of the methane and of the aerosols.We started our study at the latitude of 55°N, with a image taken in 2006 with a relatively high spatial resolution (for VIMS). Our preliminary results shows the spectral properties of the aerosols are the same whatever the altitude. This is a consequence of the large scale mixing. From limb profile between 0.9 and 5.2 μm, we can probe the haze layer from about 500 km (at 0.9 μm) to the ground (at 5.2 μm). We find that the vertical profile of the haze layer shows three distinct scale heights with transitions around 250 km and 350 km. We also clearly a transition around 70-90 km that may be due to the top of a condensation layer.

  7. Optical Properties and Mixing State of Aerosols from Residential Wood Burning and Vehicle Emissions in Central and Southern California

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cappa, C. D.; Collier, S.; Zhang, Q.; Williams, L. R.; Lee, A.; Abbatt, J.; Russell, L. M.; Liu, J.; Chen, C. L.; Betha, R.

    2015-12-01

    Light-absorbing materials such as black carbon (BC) and brown carbon (BrC) in atmospheric aerosols play important roles in regulating the earth's radiative budget and climate. However, the representations of BC and BrC in state-of-the-art climate models remain highly uncertain, in part due to the poor understanding of their microphysical and optical properties. Direct observations and characterizations of the mixing state and absorption enhancement of ambient aerosols could provide invaluable constraints for current model representations of aerosol radiative effects. Here, we will discuss results from measurements of aerosol light absorption and absorption enhancement (Eabs), using a thermodenuder-absorption method, made during two recent field studies in central and southern California. The winter study took place in Dec/Jan of 2014/2015 in Fresno, CA. This region is severely impacted by particulate matter from local and regional residential biomass burning. The summer study took place in July 2015 in Fontana, CA, a region ~80 km downwind of Los Angeles and strongly impacted by vehicular emissions, and thus provides a sharp contrast to the Fresno study. Eabs of BC particles due to the "lensing" effect from coatings to BC core and/or the presence of BrC will be quantified and compared between the two studies. Additionally, the chemical composition of bulk and the BC-containing particles are determined via a HR-ToF-AMS and a SP-AMS, respectively. Variations in the composition and mixing state of the ambient particles and how these affect the observed Eabs will be examined. The overall measurements suggest a relatively small role for lensing-induced absorption enhancements for ambient particles in these regions.

  8. Influence of coal based thermal power plants on aerosol optical properties in the Indo-Gangetic basin - article no. L05805

    SciTech Connect

    Prasad, A.K.; Singh, R.P.; Kafatos, M.

    2006-03-07

    The Indo-Gangetic basin is characterized by dense fog, haze and smog during the winter season. Here, we show one to one correspondence during the winter season of aerosol optical properties with the location of thermal power plants which are single small spatial entities compared to the big cities. Our results indicate that power plants are the key point source of air pollutants. The detailed analysis of aerosol parameters deduced from the Multiangle Imaging SpectroRadiometer (MISR) level 3 remote sensing data show the existence of absorbing and non-absorbing aerosols emitted from these plants. Analysis of higher resolution Moderate Resolution Imaging Spectroradiometer (MODIS) level 2 aerosol optical depth over thermal power plants supports the findings.

  9. The CU 2-D-MAX-DOAS instrument - Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Coburn, Sean; Berg, Larry K.; Lantz, Kathy; Michalsky, Joseph; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-08-01

    The multiannual global mean of aerosol optical depth at 550 nm (AOD550) over land is ˜ 0.19, and that over oceans is ˜ 0.13. About 45 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions. We present an inherently calibrated retrieval (i.e., no need for radiance calibration) to simultaneously measure AOD and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity. We employ radiative transfer model simulations to show that for solar azimuth RSP measurements at solar elevation and solar zenith angle (SZA) smaller than 80°, RSP is insensitive to the vertical distribution of aerosols and maximally sensitive to changes in AOD and g under near-molecular scattering conditions. The University of Colorado two-dimensional Multi-AXis Differential Optical Absorption Spectroscopy (CU 2-D-MAX-DOAS) instrument was deployed as part of the Two Column Aerosol Project (TCAP) at Cape Cod, MA, during the summer of 2012 to measure direct sun spectra and RSP from scattered light spectra at solar relative azimuth angles (SRAAs) between 5 and 170°. During two case study days with (1) high aerosol load (17 July, 0.3 < AOD430 < 0.6) and (2) near-molecular scattering conditions (22 July, AOD430 < 0.13) we compare RSP-based retrievals of AOD430 and g with data from a co-located CIMEL sun photometer, Multi-Filter Rotating Shadowband Radiometer (MFRSR), and an airborne High Spectral Resolution Lidar (HSRL-2). The average difference (relative to DOAS) for AOD430 is +0.012 ± 0.023 (CIMEL), -0.012 ± 0.024 (MFRSR), -0.011 ± 0.014 (HSRL-2), and +0.023 ± 0.013 (CIMELAOD - MFRSRAOD) and yields the following expressions for correlations between different instruments

  10. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  11. Analysis of aerosol optical properties over Korea during the 2015 MAPS-Seoul campaign using AERONET and GOCI

    NASA Astrophysics Data System (ADS)

    Kim, J.; Choi, M.; Lee, J.; Lee, S.; Holben, B. N.; Eck, T. F.; KIM, M.

    2015-12-01

    To investigate aerosol characteristics over East Asia, many campaigns using in-situ measurements, ground and satellite based remote sensing, and air quality modeling have been conducted as ACE-Asia in 2001, ABC-EAREX in 2005, and DRAGON-NE Asia in 2012, and planned KORUS-AQ in 2016. Planned KORUS-AQ 2016 campaigns provides excellent opportunity to monitor and analyze air quality including aerosol and trace gases from diverse platform including ground-based, airborne, shipborne and satellite platform. Prior to the upcoming KORUS-AQ campaign, the Megacity Air Pollution Studies (MAPS)-Seoul campaign was held from May 18 to June14, 2015. During the campaign, total 8 AERONET sunphotometers are deployed over Korea. GOCI Yonsei aerosol retrieval (YAER) algorithm was developed, improved and evaluated through the DRAGON-NE Asia campaign. GOCI YAER AOD at 550 nm with spatial resolution of 6 km showed good agreement with AERONET AOD (R > 0.88) during the DRAGON-NE Asia campaign. In this study, aerosol optical properties from AERONET and GOCI are analyzed together during the MAPS-Seoul campaign. Mean AERONET AOD at 550 nm over a megacity site, Seoul and a coastal site Gosan shows the lowest values in 2015 as 0.338 and 0.214, respectively, compared with values during the same period from 2011 to 2014 (0.557-0.645 at Seoul, and 0.447-0.618 at Gosan). GOCI YAER algorithm uses the minimum reflectivity technique from the composited Rayleigh-corrected reflectance during a month thus low AOD increase a possibility to find clear pixels to obtain accurate surface reflectance. To improve surface reflectance quality, multi-year GOCI data are also analyzed. Furthermore higher spatial resolution retrieval in 3 km is tested to detect small-scale aerosol features and point sources in megacities. DRAGON-NE Asia in 2012, MAPS-Seoul in 2015, and planned KORUS-AQ in 2016 field campaigns contribute to the continuous assessment of GOCI YAER algorithm performance for the improvements.

  12. Optical properties of selected components of mineral dust aerosol processed with organic acids and humic material

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer M.; Grassian, V. H.; Young, M. A.; Kleiber, P. D.

    2015-03-01

    Visible light scattering phase function and linear polarization profiles of mineral dust components processed with organic acids and humic material are measured, and results are compared to T-matrix simulations of the scattering properties. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acids. Clear differences in light scattering properties are observed for all three processed samples when compared to the unprocessed dust or organic salt products. Results for quartz processed with humic acid sodium salt (NaHA) indicate the presence of both internally mixed quartz-NaHA particles and externally mixed NaHA aerosol. Simulations of light scattering suggest that the processed quartz particles become more moderate in shape due to the formation of a coating of humic material over the mineral core. Experimental results for calcite reacted with acetic acid are consistent with an external mixture of calcite and the reaction product, calcium acetate. Modeling of the light scattering properties does not require any significant change to the calcite particle shape distribution although morphology changes cannot be ruled out by our data. It is expected that calcite reacted with oxalic acid will produce internally mixed particles of calcite and calcium oxalate due to the low solubility of the product salt. However, simulations of the scattering for the calcite-oxalic acid system result in rather poor fits to the data when compared to the other samples. The poor fit provides a less accurate picture of the impact of processing in the calcite-oxalic acid system.

  13. Changes in column aerosol optical properties during extreme haze-fog episodes in January 2013 over urban Beijing.

    PubMed

    Yu, Xingna; Kumar, K Raghavendra; Lü, Rui; Ma, Jia

    2016-03-01

    Several dense haze-fog (HF) episodes were occurred in the North China Plain (NCP), especially over Beijing in January 2013 characterized by a long duration, a large influential region, and an extremely high PM2.5 values (>500 μg m(-3)). In this study, we present the characteristics of aerosol optical properties and radiative forcing using Cimel sun-sky radiometer measurements during HF and no haze-fog (NHF) episodes occurred over Beijing during 1-31 January, 2013. The respective maximum values of daily mean aerosol optical depth at 440 nm (AOD440) were observed to be 1.21, 1.43, 1.52, and 2.21 occurred on 12, 14 19, and 28 January. It was found that the Ångström exponent (AE) values were almost higher than 1.0 during all the days with its maximum on 26 January (1.53), suggests the dominance of fine-mode particles. The maximum (minimum) aerosol volume size distributions occurred during dense HF (NHF) days with larger particle volumes of fine-mode. The single scattering albedo, asymmetry parameter, and complex refractive index values during HF events suggest the abundance of fine-mode particles from anthropogenic (absorbing) activities mixed with scattering dust particles. The average shortwave direct aerosol radiative forcing (DARF) values at the bottom-of-atmosphere (BOA) during HF and NHF days were estimated to be 112.29 ± 42.18 W m(-2) and -58.61 ± 13.09 W m(-2), while at the top-of-atmosphere (TOA) the forcing values were -45.78 ± 22.17 W m(-2) and -18.64 ± 5.84 W m(-2), with the corresponding heating rate of 1.61 ± 0.48 K day(-1) and 1.12 ± 0.31 K day(-1), respectively. The DARF values retrieved from the AERONET were in good agreement with the SBDART computed both at the TOA (r = 0.95) and the BOA (r = 0.97) over Beijing in January 2013.

  14. Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS)

    NASA Astrophysics Data System (ADS)

    Kim, M.; Kim, J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T. F.; Lim, J. H.; Song, C. K.; Lee, S.; Chung, C.-Y.

    2016-02-01

    An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-northeast (NE) Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD) from a Meteorological Imager (MI) on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS). This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 ± 0.04) in the assumed single scattering albedo (SSA) can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET) inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs) were categorized by SSAs at 675 nm of 0.92 ± 0.035 for spring (March, April, and May). After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 ± 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 ± 0.40 to 2.14 ± 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT) with the new aerosol model, show an

  15. Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption.

    PubMed

    Gordon, H R; Du, T; Zhang, T

    1997-11-20

    Current atmospheric correction and aerosol retrieval algorithms for ocean color sensors use measurements of the top-of-the-atmosphere reflectance in the near infrared, where the contribution from the ocean is known for case 1 waters, to assess the aerosol optical properties. Such measurements are incapable of distinguishing between weakly and strongly absorbing aerosols, and the atmospheric correction and aerosol retrieval algorithms fail if the incorrect absorption properties of the aerosol are assumed. We present an algorithm that appears promising for the retrieval of in-water biophysical properties and aerosol optical properties in atmospheres containing both weakly and strongly absorbing aerosols. By using the entire spectrum available to most ocean color instruments (412-865 nm), we simultaneously recover the ocean's bio-optical properties and a set of aerosol models that best describes the aerosol optical properties. The algorithm is applied to simulated situations that are likely to occur off the U.S. East Coast in summer when the aerosols could be of the locally generated weakly absorbing Maritime type or of the pollution-generated strongly absorbing urban-type transported over the ocean by the winds. The simulations show that the algorithm behaves well in an atmosphere with either weakly or strongly absorbing aerosol. The algorithm successfully identifies absorbing aerosols and provides close values for the aerosol optical thickness. It also provides excellent retrievals of the ocean bio-optical properties. The algorithm uses a bio-optical model of case 1 waters and a set of aerosol models for its operation. The relevant parameters of both the ocean and atmosphere are systematically varied to find the best (in a rms sense) fit to the measured top-of-the-atmosphere spectral reflectance. Examples are provided that show the algorithm's performance in the presence of errors, e.g., error in the contribution from whitecaps and error in radiometric calibration.

  16. Properties of aerosol processed by ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Adler, G.; Moise, T.; Erlick-Haspel, C.

    2012-12-01

    We suggest that highly porous aerosol (HPA) can form in the upper troposphere/lower stratosphere when ice particles encounter sub-saturation leading to ice sublimation similar to freeze drying. This process can occur at the lower layers of cirrus clouds (few km), at anvils of high convective clouds and thunderstorms, in clouds forming in atmospheric gravitational waves, in contrails and in high convective clouds injecting to the stratosphere. A new experimental system that simulates freeze drying of proxies for atmospheric aerosol at atmospheric pressure was constructed and various proxies for atmospheric soluble aerosol were studied. The properties of resulting HPA were characterized by various methods. It was found that the resulting aerosol have larger sizes (extent depends on substance and mixing), lower density (largevoid fraction), lower optical extinction and higher CCN activity and IN activity. Implication of HPA's unique properties and their atmospheric consequences to aerosol processing in ice clouds and to cloud cycles will be discussed.

  17. Global Analysis of Aerosol Properties Above Clouds

    NASA Technical Reports Server (NTRS)

    Waquet, F.; Peers, F.; Ducos, F.; Goloub, P.; Platnick, S. E.; Riedi, J.; Tanre, D.; Thieuleux, F.

    2013-01-01

    The seasonal and spatial varability of Aerosol Above Cloud (AAC) properties are derived from passive satellite data for the year 2008. A significant amount of aerosols are transported above liquid water clouds on the global scale. For particles in the fine mode (i.e., radius smaller than 0.3 m), including both clear sky and AAC retrievals increases the global mean aerosol optical thickness by 25(+/- 6%). The two main regions with man-made AAC are the tropical Southeast Atlantic, for biomass burning aerosols, and the North Pacific, mainly for pollutants. Man-made AAC are also detected over the Arctic during the spring. Mineral dust particles are detected above clouds within the so-called dust belt region (5-40 N). AAC may cause a warming effect and bias the retrieval of the cloud properties. This study will then help to better quantify the impacts of aerosols on clouds and climate.

  18. In-Situ Measurements of Aerosol Optical Properties using New Cavity Ring-Down and Photoacoustics Instruments and Comparison with more Traditional Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Arnott, P.; Covert, D.; Elleman, R.; Ferrare, R.; Hallar, A. G.; Jonsson, H.; Kirchstetter, T. W.; Luu, A. P.; Ogren, J.

    2004-01-01

    Carbonaceous species (BC and OC) are responsible for most of the absorption associated with aerosol particles. The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult aerosol properties to measure. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-ARC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Aerosol absorption coefficient is also measured by a photoacoustic (PA) instrument (DRI) that was operated on an aircraft for the first time during the DOE Aerosol Intensive Operating Period (IOP). This paper will report on measurements made with this new instrument and other in-situ instruments during two field recent field studies. The first field study was an airborne cam;oaign, the DOE Aerosol Intensive Operating Period flown in May, 2003 over northern Oklahoma. One of the main purposes of the IOP was to assess our ability to measure extinction and absorption coefficient in situ. This paper compares measurements of these aerosol optical properties made by the CRD, PA, nephelometer, and Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model. The second study was conducted in the Caldecott Tunnel, a heavily-used tunnel located north of San Francisco, Ca. The aerosol sampled in this study was

  19. Remote Sensing of Aerosol Properties during CARES

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Flynn, Connor J.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Jobson, Bertram Thomas

    2011-10-01

    One month of MFRSR data collected at two sites in the central California (USA) region during the CARES campaign are processed and the MFRSR-derived AODs at 500 nm wavelength are compared with available AODs provided by AERONET measurements. We find that the MFRSR and AERONET AODs are small ({approx}0.05) and comparable. A reasonable quantitative agreement between column aerosol size distributions (up to 2 um) from the MFRSR and AERONET retrievals is illustrated as well. Analysis of the retrieved (MFRSR and AERONET) and in situ measured aerosol size distributions suggests that the contribution of the coarse mode to aerosol optical properties is substantial for several days. The results of a radiative closure experiment performed for the two sites and one-month period show a favorable agreement between the calculated and measured broadband downwelling irradiances (bias does not exceed about 3 Wm-2), and thus imply that the MFRSR-derived aerosol optical properties are reasonable.

  20. Joint elastic side-scattering LIDAR and Raman LIDAR measurements of aerosol optical properties in south east Colorado

    NASA Astrophysics Data System (ADS)

    Wiencke, L.; Rizi, V.; Will, M.; Allen, C.; Botts, A.; Calhoun, M.; Carande, B.; Claus, J.; Coco, M.; Emmert, L.; Esquibel, S.; Grillo, A. F.; Hamilton, L.; Heid, T. J.; Iarlori, M.; Klages, H.-O.; Kleifges, M.; Knoll, B.; Koop, J.; Mathes, H.-J.; Menshikov, A.; Morgan, S.; Patterson, L.; Petrera, S.; Robinson, S.; Runyan, C.; Sherman, J.; Starbuck, D.; Wakin, M.; Wolf, O.

    2017-03-01

    We describe an experiment, located in south-east Colorado, U.S.A., that measured aerosol optical depth profiles using two LIDAR techniques. Two independent detectors measured scattered light from a vertical UV laser beam. One detector, located at the laser site, measured light via the inelastic Raman backscattering process. This is a common method used in atmospheric science for measuring aerosol optical depth profiles. The other detector, located approximately 40 km distant, viewed the laser beam from the side. This detector featured a 3.5 m2 mirror and measured elastically scattered light in a bistatic LIDAR configuration following the method used at the Pierre Auger cosmic ray observatory. The goal of this experiment was to assess and improve methods to measure atmospheric clarity, specifically aerosol optical depth profiles, for cosmic ray UV fluorescence detectors that use the atmosphere as a giant calorimeter. The experiment collected data from September 2010 to July 2011 under varying conditions of aerosol loading. We describe the instruments and techniques and compare the aerosol optical depth profiles measured by the Raman and bistatic LIDAR detectors.

  1. A comparison of measured and calculated optical properties of atmospheric aerosols at infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Rosen, James M.

    1991-01-01

    Measurements of 10.6-micron lidar backscatter were compared with calculated backscatter based on nearly simultaneous observations of stratospheric and tropospheric aerosol size distributions. It was found that there is better agreement in the troposphere, even though the uncertainties of the calculation are greater for this region due to the variables in both the spatial concentration and the physical makeup of the aerosol. A second comparison study was made to test the consistency of the mean tropospheric extinction values at 1.02 micron (as reported by the SAGE satellite) with the values calculated from an ensemble of 400 measured size distributions thought to be representative of midcontinental tropospheric aerosol. The two methods produce consistent results within the expected degree of uncertainty. The ensemble of 400 'proven' size distributions is then used to calculate a statistical relationship between the 1.02-micron extinction and the 10.6-micron backscatter.

  2. Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model.

    PubMed

    Dai, Tie; Schutgens, Nick A J; Goto, Daisuke; Shi, Guangyu; Nakajima, Teruyuki

    2014-12-01

    A new global aerosol assimilation system adopting a more complex icosahedral grid configuration is developed. Sensitivity tests for the assimilation system are performed utilizing satellite retrieved aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the results over Eastern Asia are analyzed. The assimilated results are validated through independent Aerosol Robotic Network (AERONET) observations. Our results reveal that the ensemble and local patch sizes have little effect on the assimilation performance, whereas the ensemble perturbation method has the largest effect. Assimilation leads to significantly positive effect on the simulated AOD field, improving agreement with all of the 12 AERONET sites over the Eastern Asia based on both the correlation coefficient and the root mean square difference (assimilation efficiency). Meanwhile, better agreement of the Ångström Exponent (AE) field is achieved for 8 of the 12 sites due to the assimilation of AOD only.

  3. A Compact Airborne High Spectral Resolution Lidar for Observations of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris A.; Hair, John W.; Cook, Anthony L.

    2002-01-01

    We are in the process of developing a nadir-viewing, aircraft-based high spectral resolution lidar (HSRL) at NASA Langley Research Center. The system is designed to measure backscatter and extinction of aerosols and tenuous clouds. The primary uses of the instrument will be to validate spaceborne aerosol and cloud observations, carry out regional process studies, and assess the predictions of chemical transport models. In this paper, we provide an overview of the instrument design and present the results of simulations showing the instrument's capability to accurately measure extinction and extinction-to-backscatter ratio.

  4. Effect of Slow Aging Reactions on Optical Properties of Secondary Organic Aerosol Prepared by Oxidation of Selected Monoterpenes

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S. A.; Bones, D. L.; Henricksen, D. K.; Mang, S. A.; Bateman, A. P.; Pan, X.; Nguyen, T. B.; Gonsior, M.; Cooper, W.; Laskin, J.; Laskin, A.

    2009-05-01

    Organic particulate matter (PM) has a major impact on atmospheric chemistry, climate, and human health. Secondary organic aerosol (SOA) accounts for a rather significant fraction of organic PM; this includes SOA produced by oxidation of biogenically emitted monoterpenes. Once such SOA is formed, it is believed to undergo slow aging processes, which may have large effects on the physical and chemical properties of the particles. This presentation focuses on the effect of slow chemical aging on optical properties of SOA formed from the ozone-induced oxidation of limonene, myrcene, and other selected monoterpenes. Several complementary techniques including high resolution electrospray ionization mass spectrometry, FTIR spectroscopy, UV/vis spectroscopy, NMR spectroscopy, 3D-fluorescence spectroscopy, and photodissociation spectroscopy are used to probe the aging-induced changes in physical properties and chemical composition of laboratory generated SOA. Limonene SOA appears to undergo a dramatic change in its absorption spectrum on a time scale of hours; it develops strong visible bands in the 400-500 nm region, and becomes fluorescent. This transformation is catalyzed by ammonium sulfate and certain amino acids. This rather unusual aging process can potentially contribute to the formation of brown carbon in biogenic SOA.

  5. Carbonaceous aerosols in the Western Mediterranean during summertime and their contribution to the aerosol optical properties at ground level: First results of the ChArMEx-ADRIMED 2013 intensive campaign in Corsica

    NASA Astrophysics Data System (ADS)

    Sciare, Jean; Dulac, Francois; Feron, Anais; Crenn, Vincent; Sarda Esteve, Roland; Baisnee, Dominique; Bonnaire, Nicolas; Hamonou, Eric; Mallet, Marc; Lambert, Dominique; Nicolas, Jose B.; Bourrianne, Thierry; Petit, Jean-Eudes; Favez, Olivier; Canonaco, Francesco; Prevot, Andre; Mocnik, Grisa; Drinovec, Luka; Marpillat, Alexandre; Serrie, Wilfrid

    2014-05-01

    As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/), the CORSiCA (http://www.obs-mip.fr/corsica) and the ANR-ADRIMED programs, a large set of real-time measurements of carbonaceous aerosols was deployed in June 2013 at the Cape Corsica atmospheric supersite (http://gaw.empa.ch/gawsis/reports.asp?StationID=2076203042). Submicron organic aerosols (OA) were monitored every 30 min using an Aerosol Chemical Speciation Monitor (ACSM; Aerodyne Res. Inc. MA, USA); Fine (PM2.5) Organic Carbon (OC) and Elemental Carbon (EC) were measured every 2h using an OCEC Sunset Field Instrument (Sunset Lab, OR, USA) and every 12h using a low-vol (Leckel) filter sampler running at 2.3m3/h. Equivalent Black Carbon (BC) was monitored using two Aethalometers (models AE31 and AE33, Magee Scientific, US & Aerosol d.o.o., Slovenia) and a MAAP instrument (Thermo). Quality control of this large dataset was performed through chemical mass closure studies (using co-located SMPS and TEOM-FDMS) and direct comparisons with other real-time instruments running in parallel (Particle-Into-Liquid-Sampler-Ion-Chromatograph for ions, filter sampling, ...). Source apportionment of OA was then performed using the SourceFinder software (SoFi v4.5, http://www.psi.ch/acsm-stations/me-2) allowing the distinction between hydrogen- and oxygen-like organic aerosols (HOA and OOA, respectively) and highlighting the major contribution of secondary OA in the Western Mediterranean during summer. Using this time-resolved chemical information, reconstruction of the optical aerosol properties were performed and compared with integrating nephelometer (Model 3563, TSI, US) and photoacoustic extinctiometer (PAX, DMT, US) measurements performed in parallel. Results of these different closure studies (chemical/physical/optical) are presented and discussed here in details. They highlight the central role of carbonaceous aerosols on the optical properties of aerosols at ground level

  6. Aircraft/Surface Derived Aerosol Optical Properties Near Hawaii for Satellite Validation

    NASA Technical Reports Server (NTRS)

    Porter, John N.; Clarke, Antony; Lienert, Barry

    2001-01-01

    Due to the complexity of atmospheric aerosol, validation efforts are required to test satellite retrievals. Here we give an overview of our aircraft and ship validation measurements near Hawaii. Some examples of the measurements are shown which illustrate some of the variability we have encountered, This effort is ongoing and can provide important background measurements for satellite validation as well as radiation studies.

  7. Optical, physical, and chemical properties of tar balls observed during the Yosemite Aerosol Characterization Study

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; Malm, W. C.; Laskin, A.; Day, D.; Lee, T.; Wang, C.; Carrico, C.; Carrillo, J.; Cowin, J. P.; Collett, J.; Iedema, M. J.

    2005-11-01

    The Yosemite Aerosol Characterization Study of summer 2002 (YACS) occurred during an active fire season in the western United States and provided an opportunity to investigate many unresolved issues related to the radiative effects of biomass burning aerosols. Single particle analysis was performed on field-collected aerosol samples using an array of electron microscopy techniques. Amorphous carbon spheres, or "tar balls," were present in samples collected during episodes of high particle light scattering coefficients that occurred during the peak of a smoke/haze event. The highest concentrations of light-absorbing carbon from a dual-wavelength aethalometer (λ = 370 and 880 nm) occurred during periods when the particles were predominantly tar balls, indicating they do absorb light in the UV and near-IR range of the solar spectrum. Closure experiments of mass concentrations and light scattering coefficients during periods dominated by tar balls did not require any distinct assumptions of organic carbon molecular weight correction factors, density, or refractive index compared to periods dominated by other types of organic carbon aerosols. Measurements of the hygroscopic behavior of tar balls using an environmental SEM indicate that tar balls do not exhibit deliquescence but do uptake some water at high (˜83%) relative humidity. The ability of tar balls to efficiently scatter and absorb light and to absorb water has important implications for their role in regional haze and climate forcing.

  8. [Aerosol Optical Properties in the Northern Suburb of Nanjing During Haze Days in January 2013].

    PubMed

    Wang, Li-peng; Ma, Yan; Zheng, Jun; Cui, Fen-ping; Zhou, Yao-yao

    2016-03-15

    In January 2013 large-scale, continuous and severe haze occurred in Nanjing. Three-wavelength photoacoustic soot spectrometer (PASS-3) was used for real-time, online and situ measurements of aerosol absorption and scattering coefficients in the northern suburb of Nanjing during January 2013. The results indicated that the average aerosol absorption and scattering coefficients were (83.20 ± 35.24) Mm⁻¹ and (670.16 ± 136.44) Mm⁻¹ during haze days, which were 3.85 and 3.45 times higher than those on clean days, respectively. The diurnal variation of absorption and scattering coefficients showed a bimodal distribution. The mean single scattering albedo and scattering Angstrom exponent were (0.89 ± 0.04) and (1.30 ± 0.27) respectively, indicating the predominance of scattering fine particles during haze days in Nanjing. Aerosols could be significantly removed by precipitation. The absorption and scattering coefficients showed negative correlations with surface wind speed, and the single scattering albedo and Angstrom exponent showed positive correlations with wind speed. Aerosol scattering coefficient was highest under southeasterly wind, whereas the absorption coefficient was highest under the southwesterly wind. In the three haze pollution events, Haze 1 and Haze 2 were mainly affected by long-range transportation of pollutants. Haze 1 was mainly affected by aging air mass from north Nanjing, Haze 2 was mainly affected by biomass burning air mass from southwest Nanjing, while Haze 3 was mainly caused by the high sulfate.

  9. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.

  10. Study on optical and microphysical properties of mixed aerosols from lidar during the EMEP 2012 summer campaign at 45oN 26oE

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Nicolae, Doina; Belegante, Livio; Marmureanu, Luminita

    2013-04-01

    Aerosols optical and chemical properties in the upper layers of the atmosphere and near ground are variable, as function of the different mixtures of aerosol components resulting from their origin and transport over polluted areas. Due to a complex dynamics of air masses, the Romanian atmosphere has strong influences from dust and biomass-burning transported from South, West or East Europe. The dominant transport, and consequently the dominant aerosol type, depends on the season. As a result of the transport distance from the source and depending on the chemical and physical characteristics of the particles, tropospheric aerosols detected at Magurele, Romania, show different optical and microphysical properties than at the originating source. The differences are caused by the mixing with local particles, and also by the ageing processes and hygroscopic growth during the transport. This paper presents a statistical analysis of tropospheric aerosol optical properties during the EMEP (European Monitoring and Evaluation Programme) summer campaign (08 June - 17 July 2012), as retrieved from multiwavelength Raman and depolarization lidar data. Three elastic (1064, 532 and 355 nm), two Raman (607 and 387 nm) and one depolarization channel (532 nm parallel / 532 nm cross) are used to independently retrieve the backscatter coefficient, extinction coefficient and linear particle depolarization ratio of aerosols between 0.8 and 10 km altitude. Intensive optical parameters (Angstrom exponent, color ratios and color indexes) and microphysical parameters (effective radius, complex refractive index) from multiwavelength optical data inversion of the layer mean values are obtained. During the campaign, aerosol profiles were measured daily around sunset, following EARLINET standards. An intensive 3-days continuous measurements exercise was also performed. Layers were generally present above 2 km and bellow 6 km altitude, but descent of air masses from the free troposphere to the

  11. Seasonal characteristics of aerosol optical properties at the SKYNET Hefei site (31.90°N, 117.17°E) from 2007 to 2013

    NASA Astrophysics Data System (ADS)

    Wang, Zhenzhu; Liu, Dong; Wang, Zhien; Wang, Yingjian; Khatri, Pradeep; Zhou, Jun; Takamura, Tamio; Shi, Guangyu

    2014-05-01

    Seasonal characteristics of aerosol optical properties in Sky Radiometer Network (SKYNET) Hefei site are studied using a sky radiometer from March 2007 to May 2013. The aerosol optical depth (AOD), Angstrom exponent (AE), volume size distributions, single-scattering albedo (SSA), refractive index, and asymmetry factor (ASY) of aerosols are simultaneously retrieved using the SKYRAD.pack version 4.2 software. During the study period, the AOD varied seasonally, with the maximum value of 1.02 ± 0.42 at 500 nm occurring in the summer, and the highest AOD (1.13 ± 0.42) occurred in June due to stagnant climate conditions and accumulation of polluted aerosols before the East Asian summer monsoon. The variation in AE showed a different pattern, with the minimum (0.97 ± 0.28) and maximum values (1.30 ± 0.22) occurring during the spring and fall seasons, respectively. The relatively low value of AE in spring is related to the emission of Asian dust events. The aerosol volume size distributions can be expressed by the trimodal patterns for each season, consisting of a fine mode with R < 0.6 µm, a coarse mode with R > 2.5 µm, and a middle mode located between them. The real part of the refractive index increased with wavelength (380-870 nm) while the imaginary part of the refractive index decreased for all seasons except for the summer. The seasonal mean values of SSA were 0.97 ± 0.02 (summer), 0.95 ± 0.03 (spring), 0.93 ± 0.04 (autumn), and 0.91 ± 0.04 (winter) at 380 nm indicating more absorbing aerosol in the autumn and winter months. Furthermore, aerosol properties were greatly modified by condensation growth as evidenced by the positive dependencies of AOD, SSA, and ASY on relative humidity.

  12. Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide

    NASA Astrophysics Data System (ADS)

    Bar-Nun, A.; Kleinfeld, I.; Ganor, E.

    1988-07-01

    The shapes and sizes of photochemically produced aerosol particles of polyacetylene, polyethylene, and polyhydrogen cyanide were studied experimentally. All of the single particles were found to be perfectly spherical and semiliquid. However, they aggregate readily, with a sticking coefficient near unity, to form nonspherical particles, which could give rise to the observed polarization from Titan's and Jupiter's upper haze layers. The absorbance of polyacetylene was remeasured and corrected, and it is now much closer to that of polyethylene. The measured real and imaginary indices of refraction of the two materials make them both suitable material for Titan's and Jupiter's upper haze layers. However, the larger abundance and higher rate of polymerization of acetylene would make it the dominant aerosol-forming material in both atmospheres.

  13. Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide

    SciTech Connect

    Bar-Nun, A.; Kleinfeld, I.; Ganor, E.

    1988-07-20

    The shapes and sizes of photochemically produced aerosol particles of polyacetylene, polyethylene, and polyhydrogen cyanide were studied experimentally. All of the single particles were found to be perfectly spherical and semiliquid. However, they aggregate readily, with a sticking coefficient near unity, to form nonspherical particles, which could give rise to the observed polarization from Titan's and Jupiter's upper haze layers. The absorbance of polyacetylene was remeasured and corrected, and it is now much closer to that of polyethylene. The measured real and imaginary indices of refraction of the two materials make them both suitable material for Titan's and Jupiter's upper haze layers. However, the larger abundance and higher rate of polymerization of acetylene would make it the dominant aerosol-forming material in both atmospheres. copyright American Geophysical Union 1988

  14. Some optical properties of smoke aerosol in Indonesia and tropical Australia

    NASA Astrophysics Data System (ADS)

    Gras, J. L.; Jensen, J. B.; Okada, K.; Ikegami, M.; Zaizen, Y.; Makino, Y.

    Aerosol light-scattering coefficient at 530 nm and its hygroscopic growth were determined in biomass-burning smoke in the lower atmosphere over Kalimantan and northern Australia during the 1997 dry-season fires. Both in and away from plumes, light-scattering was considerably greater in the Indonesian region and hygroscopic growth in scattering was also consistently greater. The relative increase in scattering, from 20% to 80% relative humidity, was typically 1.37 in northern Australian and 1.65 in Kalimantan. Limited aerosol light absorption data indicate relatively small absorption in the Indonesian smoke. In part these differences can be explained by different combustion phases, mixed flaming and smoldering in the Australian savanna fires compared with predominantly smoldering in Indonesia, although these and other concurrent measurements suggest that underground peat combustion may have made a significant contribution to the Indonesian smoke.

  15. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.; Russell, P.; Livingston, J.; Schmid, B.; Holben, B.; Remer, L.; Smirnov, A.; Hobbs, P. V.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and Sun photometers during TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment). Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA/GSFC Scanning Raman Lidar (SRL) system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W), are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and rms differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a)=60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements.

  16. Production Mechanisms, Number Concentration, Size Distribution. Chemical Composition, and Optical Properties of Sea Spray Aerosols

    NASA Technical Reports Server (NTRS)

    Meskhidze, Nicholas; Petters, Markus; Tsigaridis, Kostas; Bates. Tim; O'Dowd, Colin; Reid, Jeff; Lewis, Ernie R.; Gantt, Brett; Anguelova, Magdalena D.; Bhave, Prakash V.; Bird, James; Callaghan, Adrian H.; Ceburnis, Darius; Chang, Rachel; Clark, Antony; deLeeuw, Gerrit; Deane, Grant; DeMott, Paul J.; Elliot, Scott; Facchini, Maria Cristina; Fairall, Chris W.; Hawkins, Lelia; Hu, Yongxiang; Smirnov, Alexander

    2013-01-01

    Over forty scientists from six countries convened in Raleigh, NC on June 4-6 2012 to review the status and prospects of sea spray aerosol research. Participants were researchers from the oceanography and atmospheric science communities, including academia, private industry, and government agencies. The recommendations from the working groups are summarized in a science prioritization matrix that is meant to prioritize the research agenda and identify areas of investigation by the magnitude of their impact on proposed science questions. Str

  17. Changes in the optical properties of benzo[a]pyrene-coated aerosols upon heterogeneous reactions with NO2 and NO3.

    PubMed

    Lu, Jessica W; Flores, J Michel; Lavi, Avi; Abo-Riziq, Ali; Rudich, Yinon

    2011-04-14

    Chemical reactions can alter the chemical, physical, and optical properties of aerosols. It has been postulated that nitration of aerosols can account for atmospheric absorbance over urban areas. To study this potentially important process, the change in optical properties of laboratory-generated benzo[a]pyrene (BaP)-coated aerosols following exposure to NO(2) and NO(3) was investigated at 355 nm and 532 nm by three aerosol analysis techniques. The extinction coefficient was determined at 355 nm and 532 nm from cavity ring-down aerosol spectroscopy (CRD-AS); the absorption coefficient was measured by photoacoustic spectroscopy (PAS) at 532 nm, while an on-line aerosol mass spectrometer (AMS) supplied real-time quantitative information about the chemical composition of aerosols. In this study, 240 nm polystyrene latex (PSL) spheres were thinly coated with BaP to form 300 or 310 nm aerosols that were exposed to high concentrations of NO(2) and NO(3) and measured with CRD-AS, PAS, and the AMS. The extinction efficiencies (Q(ext)) changed after exposure to NO(2) and NO(3) at both wavelengths. Prior to reaction, Q(ext) for the 355 nm and 532 nm wavelengths were 4.36 ± 0.04 and 2.39 ± 0.05, respectively, and Q(ext) increased to 5.26 ± 0.04 and 2.79 ± 0.05 after exposure. The absorption cross-section at 532 nm, determined with PAS, reached σ(abs) = (0.039 ± 0.001) × 10(-8) cm(2), indicating that absorption increased with formation of nitro-BaP, the main reaction product detected by the AMS. The single-scattering albedo (SSA), a measure of particle scattering efficiency, decreased from 1 to 0.85 ± 0.03, showing that changes in the optical properties of BaP-covered aerosols due to nitration may have implications for regional radiation budget and, hence, climate.

  18. Vertical Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over Northern Indochina during the 7-SEAS/BASELInE field campaign

    NASA Astrophysics Data System (ADS)

    Lin, N. H.; Wang, S. H.; Welton, E. J.; Holben, B. N.; Tsay, S. C.; Giles, D. M.; Stewart, S. A.; Janjai, S.; Anh, N. X.; Hsiao, T. C.; Chen, W. N.; Lin, T. H.; Buntoung, S.; Chantara, S.; Wiriya, W.

    2015-12-01

    In this study, the aerosol optical properties and vertical distributions in major biomass-burning emission area of northern Indochina were investigated using ground-based remote sensing (i.e., four Sun-sky radiometers and one lidar) during the Seven South East Asian Studies/Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment conducted during spring 2014. Despite the high spatial variability of the aerosol optical depth (AOD; which at 500 nm ranged from 0.75 to 1.37 depending on the site), the temporal variation of the daily AOD demonstrated a consistent pattern among the observed sites, suggesting the presence of widespread smoke haze over the region. Smoke particles were characterized as small (Ångström exponent at 440-870 nm of 1.72 and fine mode fraction of 0.96), strongly absorbing (single-scattering albedo at 440 nm of 0.88), mixture of black and brown carbon particles (absorption Ångström exponent at 440-870 nm of 1.5) suspended within the planetary boundary layer (PBL). Smoke plumes driven by the PBL dynamics in the mountainous region reached as high as 5 km above sea level; these plumes subsequently spread out by westerly winds over northern Vietnam, southern China, and the neighboring South China Sea. Moreover, the analysis of diurnal variability of aerosol loading and optical properties as well as vertical profile in relation to PBL development, fire intensity, and aerosol mixing showed that various sites exhibited different variability based on meteorological conditions, fuel type, site elevation, and proximity to biomass-burning sources. These local factors influence the aerosol characteristics in the region and distinguish northern Indochina smoke from other biomass-burning regions in the world.

  19. The Influence of Fog and Airmass History on Aerosol Optical, Physical and Chemical Properties at Pt. Reyes National Seashore

    SciTech Connect

    Berkowitz, Carl M.; Berg, Larry K.; Yu, Xiao-Ying; Alexander, M. L.; Laskin, Alexander; Zaveri, Rahul A.; Jobson, Bertram Thomas; Andrews, Elisabeth; Ogren, John A.

    2011-04-05

    This paper presents an analysis of the aerosol chemical composition, optical properties and size distributions for a range of conditions encountered during a field measurement campaign conducted between July 7-29, 2005 at Point Reyes National Seashore, north of San Francisco, CA. Observations are partitioned into one-hour periods when conditions were ‘clear’ or ‘foggy’ to identify evidence of cloud processing of aerosols. During the first half of the campaign (July 7-18), conditions at the site were largely maritime. However flow during the second half of the campaigns (July 18-29) was influenced by a thermal trough that added a cyclonic twist to the incoming marine air, bringing it from the south with a more extensive over-land trajectory. Neither flow regime was associated with air coming from the San Francisco Bay area to the south. Measurements by an Aerodyne aerosol mass spectrometer (AMS) of the equivalent molar ratio of ammonium to the sum of sulfate, nitrate and chloride made before the onset of the thermal trough on July 18th were associated with acidic or near-neutral particles. Measurements made after July 18th appear to have excess ammonium. The AMS measurements of mass loading were an order of magnitude less than those reported by a nearby IMPROVE station. However, the AMS measures only non-refractory particles between 0.1 µm and 1 µm, which would not include sea salt. In contrast, the IMPROVE station employs filter-based techniques to measure mass for all particles < 2.5 µm. Assuming chlorine is associated with large sea salt particles at Pt. Reyes and removing this value from the IMPROVE data resulted in good agreement in the total mass fraction between these two techniques,, indicating the importance of sea salt mass in particles greater than 1 µm. Model calculations of the equilibrium gas-phase mixing ratio of NH3 suggest very high values which we attribute to agricultural practices within the park. Reported as an incidental finding is

  20. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  1. Effect of aerosol subgrid variability on aerosol optical depth and cloud condensation nuclei: implications for global aerosol modelling

    NASA Astrophysics Data System (ADS)

    Weigum, Natalie; Schutgens, Nick; Stier, Philip

    2016-11-01

    A fundamental limitation of grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid boxes, which can lead to discrepancies in simulated aerosol climate effects between high- and low-resolution models. This study investigates the impact of neglecting subgrid variability in present-day global microphysical aerosol models on aerosol optical depth (AOD) and cloud condensation nuclei (CCN). We introduce a novel technique to isolate the effect of aerosol variability from other sources of model variability by varying the resolution of aerosol and trace gas fields while maintaining a constant resolution in the rest of the model. We compare WRF-Chem (Weather and Research Forecast model) runs in which aerosol and gases are simulated at 80 km and again at 10 km resolutions; in both simulations the other model components, such as meteorology and dynamics, are kept at the 10 km baseline resolution. We find that AOD is underestimated by 13 % and CCN is overestimated by 27 % when aerosol and gases are simulated at 80 km resolution compared to 10 km. The processes most affected by neglecting aerosol subgrid variability are gas-phase chemistry and aerosol uptake of water through aerosol-gas equilibrium reactions. The inherent non-linearities in these processes result in large changes in aerosol properties when aerosol and gaseous species are artificially mixed over large spatial scales. These changes in aerosol and gas concentrations are exaggerated by convective transport, which transports these altered concentrations to altitudes where their effect is more pronounced. These results demonstrate that aerosol variability can have a large impact on simulating aerosol climate effects, even when meteorology and dynamics are held constant. Future aerosol model development should focus on accounting for the effect of subgrid variability on these

  2. Chemical, microphysical and optical properties of the aerosols during foggy and nonfoggy day over a typical location in Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Kaul, D. S.; Tripathi, S. N.; Gupta, T.

    2012-04-01

    An extensive experimental measurement was carried out from January 16, 2010 to February 20, 2010 at Kanpur to study the chemical, microphysical and optical properties of the aerosols. A Micro-Pulse Lidar Network (MPLNET), a part of National Aeronautic Space Administration (NASA), was used for identification of fog duration. PM1 samples and fogwater were collected to examine the organic and inorganic species of aerosol and fogwater. Organic Carbon (OC), Elemental Carbon (EC) and water soluble organic carbon analysis were carried out by an EC-OC analyzer and a TOC analyzer, respectively. Trace gases and solar flux measurement were carried out by gas analyzers and a pyranometer (a part of NASA Aeronet), respectively, to identify the photo-chemical activity. Meteorological data were measured by atmospheric weather station. The microphysical properties such as aerosol size distribution were measured using a scanning mobility particle sizer (SMPS). Optical properties were measured by a photo-acoustic soot spectrometer (PASS). Organic and inorganic species are processed by fog droplets such as production of secondary organic aerosol through aqueous mechanism (Kaul et al., 2011) and scavenging of various water soluble species. The concentrations of almost all the ionic species and organic carbon were higher in aerosols during foggy day. Presence of numerous ionic species and organic carbon in the fogwater indicates their wet scavenging and removal from the atmosphere by the fog droplets. Most of the aerosol is composed of inorganic component, ~80% during foggy day and ~85.5 % during clear day. Biomass burning contribution to PM1 mass concentration was considerably higher during clear days and lower during foggy days; lower concentration during foggy day could be due to wet scavenging of biomass generated aerosols. The study average higher number concentration of aerosol during foggy day during late evening and overnight was due to lower boundary layer height and subsequent

  3. Aerosol Optical Properties in the Iranian Region Obtained by Ground-Based Solar Radiation Measurements in the Summer Of 1991.

    NASA Astrophysics Data System (ADS)

    Nakajima, Teruyuki; Hayasaka, Tadahiro; Higurashi, Akiko; Hashida, Gen; Moharram-Nejad, Naser; Najafi, Yahya; Valavi, Hamzeh

    1996-08-01

    Solar radiation measurements were made using sun photometers and pyranometers during 31 May-7 June 1991 at several places in Iran and during 12 June-17 September 1991 at a fixed place, Bushehr, Iran. In the first period the aerosol optical thickness had values about 0.4 at the wavelength of 0.5 m in the coastal area and about 0.2 in the plateau area. The Ångström's exponent, which is the slope of optical thickness spectrum, had values around 1 for large city areas and less than 0.5 for inland arid areas. Chemical analyses of sampled air indicate an effect of fossil fuel burning from local sources. Such optical and chemical characteristics of atmospheres suggest that soil-derived coarse particles contributed considerably to the atmospheric turbidity in arid areas, whereas an active generation of aerosols was dominant near large cities.Significant rises in atmospheric turbidity were observed in the earlier part of the second period at Bushehr about once a week with a duration of about one day, which may have been caused by smoke from oil-well fires in Kuwait. The aerosol optical thickness in these events had values of about 1.5, which is equivalent to a columnar aerosol volume of 4.4 × 104 cm3 cm2. The absorption index ranged from 0.005 to 0.02 with several peaks reaching 0.1 in the second period. These peaks can be attributed to prevailing smoke particles. In spite of the large variety of optical thicknesses and absorption indices, there existed stable power-law size distributions with an exponent about 3.7.

  4. Sunphotometry of the 2006-2007 aerosol optical/radiative properties at the Himalayan Nepal Climate Observatory - Pyramid (5079 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Gobbi, G. P.; Angelini, F.; Bonasoni, P.; Verza, G. P.; Marinoni, A.; Barnaba, F.

    2010-01-01

    In spite of being located at the heart of the highest mountain range in the world, the Himalayan Nepal Climate Observatory (5079 m a.s.l.) at the Ev-K2-CNR Pyramid is shown to be affected by the advection of pollution aerosols from the populated regions of southern Nepal and the Indo-Gangetic plains. Such an impact is observed along most of the period April 2006-March 2007 addressed here, with a minimum in the monsoon season. Backtrajectory-analysis indicates long-range transport episodes occurring in this period to originate mainly in the West Asian deserts. At this high altitude site, the measured aerosol optical depth is observed to be: 1) about one order of magnitude lower than the one measured at Gandhi College (60 m a.s.l.), in the Indo-Gangetic basin, and 2) maximum during the monsoon period, due to the presence of elevated (cirrus-like) particle layers. Assessment of the aerosol radiative forcing results to be hampered by the persistent presence of these high altitude particle layers, which impede a continuous measurement of both the aerosol optical depth and its radiative properties from sky radiance inversions. Even though the retrieved absorption coefficients of pollution aerosols was rather large (single scattering albedo of the order of 0.6-0.9 were observed in the month of April 2006), the corresponding low optical depths (~0.03 at 500 nm) are expected to limit the relevant radiative forcings. Still, the high specific forcing of this aerosol and its capability of altering snow surface albedo provide good reason for continuous monitoring.

  5. Absorbing aerosols at high relative humidity: closure between hygroscopic growth and optical properties

    NASA Astrophysics Data System (ADS)

    Flores, J. M.; Bar-Or, R. Z.; Bluvshtein, N.; Abo-Riziq, A.; Kostinski, A.; Borrmann, S.; Koren, I.; Rudich, Y.

    2012-01-01

    The extinction coefficient and growth factor of humidified aerosols, at 80% and 90% RH, and at 532 nm and 355 nm wavelengths were measured for size-selected particles for ammonium sulfate, IHSS Pahokee peat (a lightly absorbing humic-like substance proxy), nigrosine (a black dye to model highly absorbing substances), and a mixture of AS and nigrosine. The ratio of the humidified extinction coefficients to the dry (fRHext(%RH, Dry)) was explored. The measured fRHext(%RH, Dry) was compared to theoretical calculations based on Mie theory, using the measured growth factors and assuming homogeneous mixing. The expected complex refractive indices (RIs) using the volume weighted mixing rule were compared to the RIs derived from the extinction measurements. Moreover, the differences between assuming a core-shell structure or a homogeneous mixing of the substances is examined. The laboratory results were used as a basis to model the change in the total extinction, the single scattering albedo (ω), and the asymmetry parameter (g) in the twilight zone of clouds at 355 nm and 532 nm. We found slightly linear to no dependency of fRH(%RH, Dry) with size for absorbing substances in contrast to the decreasing exponential behavior with size for purely scattering substances. However, no discernable difference could be made between the two wavelengths used. Less than 5% differences were found between the real parts of the complex refractive indices derived and those calculated using the volume weighted mixing rule, and the imaginary parts had up to a 20% difference. Moreover, for substances with growth factor less than 1.15 there was, in average, less than 5% difference between the extinction efficiencies calculated using a core-shell model and assuming homogeneous mixing for size parameters less than 2.5. For x>2.5 the differences were greater causing and overestimation of the extinction efficiency (Qext) values if homogenous mixing was assume instead of a core-shell structure. The

  6. Cluster analysis of the impact of air back-trajectories on aerosol optical properties at Hornsund, Spitsbergen

    NASA Astrophysics Data System (ADS)

    Rozwadowska, A.; Zieliński, T.; Petelski, T.; Sobolewski, P.

    2010-02-01

    In this paper, spectra of aerosol optical thickness from the AERONET (AErosol RObotic NETwork) station at Hornsund in the southern part of Spitsbergen were employed to study the impact of air mass history on aerosol optical thickness for wavelength λ=500 nm - AOT(500) - and the Ångström exponent. Backward trajectories computed, using the NOAA HYSPLIT model, were used to trace air history. It was found that in spring, the changes in AOT values over the Hornsund station were strongly influenced by air mass trajectories 8 days or longer in duration, arriving both in the free troposphere and at an altitude of 1 km above sea level. Nevertheless, free tropospheric advection was dominant. AOT variability in summer was best explained by the local direction and speed of advection (1-day trajectories) and was dominated by the effectiveness of cleansing processes. During the ASTAR 2007 campaign, the aerosols near Hornsund displayed low AOT values ranging from 0.06 to 0.09, which is lower than the mean AOT(500) for spring seasons from 2005 to 2007 (0.110±0.007; mean ± standard deviation of mean). 9 April 2007 with AOT(500)=0.147 was exceptional. The back-trajectories belonged to clusters with low and average cluster mean AOT. Apart from the maximum AOT of 9 April 2007, the observed AOT values were close to or lower than the means for the clusters to which they belonged.

  7. Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of α-pinene

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomoki; Matsumi, Yutaka; Sato, Kei; Imamura, Takashi; Yamazaki, Akihiro; Uchiyama, Akihiro

    2010-12-01

    It has recently been suggested that some organic aerosols can absorb solar radiation, especially at the shorter visible and UV wavelengths. Although quantitative characterization of the optical properties of secondary organic aerosols (SOAs) is required in order to confirm the effect of SOAs on the atmospheric radiation balance, the light absorption of SOAs has not yet been thoroughly investigated. In this study, we conducted laboratory experiments to measure the optical properties of SOAs generated during the photooxidation of toluene in the presence of NOx and the ozonolysis of α-pinene. Extinction and scattering coefficients of the SOAs were measured by a cavity ring-down aerosol extinction spectrometer and an integrating nephelometer, respectively. Refractive indices of the SOAs were determined so that the measured particle size dependence of the extinction and scattering efficiencies could be reproduced by calculations using Mie scattering theory. As a result, significant light absorption was found at 355 nm for the toluene SOAs. In contrast, no significant absorption was found either at 355 or 532 nm for the α-pinene SOAs. Using the obtained refractive index, mass absorption cross-section values of the toluene SOAs were calculated to be 0.3-3 m2 g-1 at 355 nm. The results indicate that light absorption by the SOAs formed from the photooxidation of aromatic hydrocarbons have a potential to influence the total aerosol light absorption, especially at UV wavelengths.

  8. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  9. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  10. Climatological analysis of aerosol optical properties over East Africa observed from space-borne sensors during 2001-2015

    NASA Astrophysics Data System (ADS)

    Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang; Bao, Yansong

    2017-03-01

    The present study is aimed at analyzing spatial and temporal characteristics of aerosols retrieved from MODerate resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) sensors over East Africa (EA). Data spanning for a period of 15 years during 2001-2015 was used to investigate aerosol optical depth (AOD550), Ångstrom exponent (AE470-660) and absorption aerosol Index (AAI) over EA and selected locations within EA. Validation results of MODIS-Terra versus the Aerosol Robotic NETwork (AERONET) AOD550 revealed that the former underestimated aerosol loading over the studied regions due to uncertainties in surface reflectance. The annual mean AOD550, AAI, and AE470-660 were found to be 0.20 ± 0.01, 0.81 ± 0.03, and 1.39 ± 0.01, respectively with peak values observed during the local dry seasons. The spatial seasonal distributions of mean AOD550 suggested high (low) values during the local dry (wet) periods. The high AOD values found along the borders of southwest of Uganda were attributed to smoke particles; while higher (lower) values of AE470-660 (AAI) dominated most parts of the study domain. Low AOD (0.1-0.2) centers were located in high-altitude regions with relatively high vegetation cover over western and central parts of Kenya, and central and northern parts of Tanzania. Furthermore, latitudinal and longitudinal gradients in AOD550 showed a "southern low and northern high" and a "western low and eastern high" profile, respectively during JJA, as other seasons showed heterogeneous variations. Trend analysis revealed a general increase in AOD and AAI and a decrease in AE; while impact factors significantly affected AOD distribution over EA. HYSPLIT back trajectory analyses revealed diverse transport pathways originated from the Arabian Deserts, central Africa, and southwest of Indian Ocean along with locally produced aerosols during different seasons.

  11. Titan's aerosol optical properties with VIMS observations at the limb of Titan.

    NASA Astrophysics Data System (ADS)

    Rannou, P.; Seignovert, B.; Lavvas, P.; Lemouélic, S.; Sotin, C.; Brown, R. H.

    2015-10-01

    The study of Titan properties with remote sensing relies on a good knowledge of the atmosphere properties. The in-situ observations made by Huygens combined with recent advances in the definition of methane properties enable to model and interpret observations with a very good accuracy. Thanks to these progresses, we can analyze in this work the observations made at the limb of Titan in order to retrieve information on the haze properties as its vertical profiles but also the spectral behaviour between 0.88 and 5.2 μm.

  12. High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar Aerosol Optical Property Retrieval Intercomparison During the 2012 7-SEAS Field Campaign at Singapore

    NASA Technical Reports Server (NTRS)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boon Ning; Salinas, Santo V.

    2014-01-01

    From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.

  13. High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar aerosol optical property retrieval intercomparison during the 2012 7-SEAS field campaign at Singapore

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boom Ning; Salinas, Santo V.

    2014-10-01

    From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.

  14. A novel approach for the characterisation of transport and optical properties of aerosol particles near sources - Part II: Microphysics-chemistry-transport model development and application

    NASA Astrophysics Data System (ADS)

    Valdebenito B, Álvaro M.; Pal, Sandip; Behrendt, Andreas; Wulfmeyer, Volker; Lammel, Gerhard

    2011-06-01

    A new high-resolution microphysics-chemistry-transport model (LES-AOP) was developed and applied for the investigation of aerosol transformation and transport in the vicinity of a livestock facility in northern Germany (PLUS1 field campaign). The model is an extension of a Large-Eddy Simulation (LES) model. The PLUS1 field campaign included the first deployment of the new eye-safe scanning aerosol lidar system of the University of Hohenheim. In a combined approach, model and lidar results were used to characterise a faint aerosol source. The farm plume structure was investigated and the absolute value of its particle backscatter coefficient was determined. Aerosol optical properties were predicted on spatial and temporal resolutions below 100 m and 1 min, upon initialisation by measured meteorological and size-resolved particulate matter mass concentration and composition data. Faint aerosol plumes corresponding to a particle backscatter coefficient down to 10 -6 sr -1 m -1 were measured and realistically simulated. Budget-related quantities such as the emission flux and change of the particulate matter mass, were estimated from model results and ground measurements.

  15. Comparison of Bulk Carbon Concentrations and Optical Properties of Carbonaceous Aerosols in the North Slope Alaska from Summer 2012 and Summer 2015

    NASA Astrophysics Data System (ADS)

    Sheesley, R. J.; Barrett, T. E.; Moffett, C.; Gunsch, M.; Pratt, K.

    2015-12-01

    With recent drilling permits being issued for exploratory drilling in the Chukchi Sea, there is a need for characterization of carbonaceous aerosols in the Arctic both prior to and during the exploratory drilling phase. A month-long field sampling campaign will be conducted in Barrow, AK, at the confluence of the Chukchi and Beaufort seas, from August to September 2015. Total suspended particulate (TSP) aerosol samples will be collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Samples will be analyzed for organic carbon (OC), elemental carbon (EC) on a Sunset carbon analyzer utilizing the NIOSH 5040 method. Samples will also be analyzed for water soluble organic carbon (WSOC) using a water extraction method and subsequent analysis on a Shimadzu Total Carbon Analyzer. Optical properties of the aqueous extracts will also be measured using an Agilent ultraviolet-visible (UV-Vis) spectrometer. OC, EC and WSOC concentrations will then be compared to aerosol samples collected at the same location in summer 2012, prior to the onset of exploratory drilling in the Chukchi Sea. Back trajectory (BT) analysis will be performed for each sampling campaign to help assess the impact of source region on the carbonaceous aerosol budget and to identify any changes in source region between the two campaigns. A comparison of samples from the same location and season both prior to and post drilling will allow for a more accurate characterization and tracking of the potential impacts of new aerosol emission sources in the region.

  16. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. II. Comparison of extinction, reflectance, polarization, and counting measurements

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenaël; Robert, Claude; Chartier, Michel; Pirre, Michel; Brogniez, Colette; Herman, Maurice; Verwaerde, Christian; Balois, Jean-Yves; Ovarlez, Joëlle; Ovarlez, Henri; Crespin, Jacques; Deshler, Terry

    2002-12-01

    The physical properties of stratospheric aerosols can be retrieved from optical measurements involving extinction, radiance, polarization, and counting. We present here the results of measurements from the balloonborne instruments AMON, SALOMON, and RADIBAL, and from the French Laboratoire de Météorologie Dynamique and the University of Wyoming balloonborne particle counters. A cross comparison of the measurements was made for observations of background aerosols conducted during the polar winters of February 1997 and January-February 2000 for various altitudes from 13 to 19 km. On the one hand, the effective radius and the total amount of background aerosols derived from the various sets of data are similar and are in agreement with pre-Pinatubo values. On the other hand, strong discrepancies occur in the shapes of the bimodal size distributions obtained from analysis of the raw measurements of the various instruments. It seems then that the log-normal assumption cannot fully reproduce the size distribution of background aerosols. The effect of the presence of particular aerosols on the measurements is discussed, and a new strategy for observations is proposed.

  17. Optical Absorption Characteristics of Aerosols.

    DTIC Science & Technology

    1985-09-11

    properties of the powder as well as the thickness of the layer. For a layer that is thick enough so that no light is transmitted, the Kubelka -- Munk theory...which is a two stream radiative transfer model, relates the reflectance to the ratio of the absorption to the scattering. The Kubelka - Munk theory has...of the aerosol material is known. Under the assumptions of the Kubelka - Munk . theory, the imaginary component of the refractive index is deter- mined

  18. Setup and first airborne application of an aerosol optical properties package for the In-service Aircraft Global Observing System IAGOS.

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Freedman, Andrew; Herber, Andreas; Mattis, Ina; Berg, Marcel; De Faira, Julia; Petzold, Andreas

    2016-04-01

    The atmospheric aerosol influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the aerosol microphysical and optical properties is needed to reduce the reported uncertainty of the aerosol climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The prototype of the IAGOS Aerosol Package (IAGOS-P2E) consists of two modified CAPS (Cavity Attenuated Phase Shift) instruments from Aerodyne Research, Inc. and one optical particle counter (Model Grimm Sky OPC 1.129). The CAPS PMex monitor provides a measurement of the optical extinction (the sum of scattering and absorption) of an ambient sample of particles. There is a choice of 5 different wavelengths - blue (450 nm), green (530 nm), red (630 nm), far red (660 nm) and near infrared (780 nm) - which match the spectral bands of most other particle optical properties measurement equipment. In our prototype setup we used the instrument operating at 630nm wavelength (red). The second CAPS instrument we have chosen is the CAPS NO2 monitor. This instrument provides a direct absorption measurement of nitrogen dioxide in the blue region of the electromagnetic spectrum (450 nm). Unlike standard chemiluminescence-based monitors, the instrument requires no conversion of NO2 to another species and thus is not sensitive to other nitro-containing species. In the final IAGOS Setup, up to 4 CAPS might be used to get additional aerosol properties using the

  19. Observations and regional modeling of aerosol optical properties, speciation and size distribution over Northern Africa and western Europe

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Siour, Guillaume; Mailler, Sylvain; Couvidat, Florian; Bessagnet, Bertrand

    2016-10-01

    The aerosol speciation and size distribution is modeled during the summer 2013 and over a large area encompassing Africa, Mediterranean and western Europe. The modeled aerosol is compared to available measurements such as the AERONET aerosol optical depth (AOD) and aerosol size distribution (ASD) and the EMEP network for surface concentrations of particulate matter PM2.5, PM10 and inorganic species (nitrate, sulfate and ammonium). The main goal of this study is to quantify the model ability to realistically model the speciation and size distribution of the aerosol. Results first showed that the long-range transport pathways are well reproduced and mainly constituted by mineral dust: spatial correlation is ≈ 0.9 for AOD and Ångström exponent, when temporal correlations show that the day-to-day variability is more difficult to reproduce. Over Europe, PM2.5 and PM10 have a mean temporal correlation of ≈ 0.4 but the lowest spatial correlation ( ≈ 0.25 and 0.62, respectively), showing that the fine particles are not well localized or transported. Being short-lived species, the uncertainties on meteorology and emissions induce these lowest scores. However, time series of PM2.5 with the speciation show a good agreement between model and measurements and are useful for discriminating the aerosol composition. Using a classification from the south (Africa) to the north (northern Europe), it is shown that mineral dust relative mass contribution decreases from 50 to 10 % when nitrate increases from 0 to 20 % and all other species, sulfate, sea salt, ammonium, elemental carbon, primary organic matter, are constant. The secondary organic aerosol contribution is between 10 and 20 % with a maximum at the latitude of the Mediterranean Sea (Spanish stations). For inorganic species, it is shown that nitrate, sulfate and ammonium have a mean temporal correlation of 0.25, 0.37 and 0.17, respectively. The spatial correlation is better (0.25, 0.5 and 0.87), showing that the mean

  20. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis.

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Govindaraju, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). In this presentation we show comparisons of model produced AI with the corresponding OMI measurements during several months of 2007 characterized by a good sampling of dust and biomass burning events. In parallel, model produced Absorption Aerosol Optical Depth (AAOD) were compared to OMI AAOD for the same period, identifying regions where the model representation of absorbing aerosols were deficient. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain misplacement of plume height by the model.

  1. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  2. The influence of fog and airmass history on aerosol optical, physical and chemical properties at Pt. Reyes National Seashore

    NASA Astrophysics Data System (ADS)

    Berkowitz, Carl M.; Berg, Larry K.; Yu, Xiao-Ying; Alexander, M. Lizabeth; Laskin, Alexander; Zaveri, Rahul A.; Jobson, B. Thomas; Andrews, Elisabeth; Ogren, John A.

    2011-05-01

    This paper presents an analysis of the aerosol chemical composition, optical properties and size distributions for a range of conditions encountered during a field measurement campaign conducted between July 7-29, 2005 at Point Reyes National Seashore, north of San Francisco, CA. The fractional mass loading derived from hourly measurements of an Aerodyne Mass Spectrometer (AMS) during this period are compared with filter-pack measurements from the Pt. Reyes IMPROVE station with good agreement found between the two if it assumed that chloride is primarily from large sea-salt particles (not measured by the AMS). During the first half of the campaign (July 7-17), conditions at the site were largely maritime while flow during the second half of the campaigns (July 18-29) was influenced by a thermal trough that added a cyclonic twist to the incoming marine air, bringing it from the south with a more extensive over-land trajectory. Neither flow regime was associated with air coming from the San Francisco Bay area to the south. The AMS measurements are partitioned into clear and foggy conditions which are then used to calculate the equivalent molar ratio of ammonium to the sum of sulfate, nitrate and chloride. Ratios calculated from measurements made before the onset of the thermal trough on July 18th were associated with acidic or near-neutral particles. Measurements made after July 18th yield ratios that appear to have excess ammonium. Model calculations of the equilibrium gas-phase mixing ratio of NH 3 suggest very high values which we attribute to agricultural practices within the park. Reported as an incidental finding is evidence for the cloud droplet activation of large particles (D P > 0.2 μm) with a corresponding reduction in the single scattering albedo of the non-activated particles, followed by a return in the particle size spectrum to the pre-fog conditions immediately afterwards.

  3. Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi'an, China

    NASA Astrophysics Data System (ADS)

    Di, Huige; Hua, Hangbo; Cui, Yan; Hua, Dengxin; He, Tingyao; Wang, Yufeng; Yan, Qing

    2017-02-01

    In this study, a multi-wavelength polarization lidar was developed at the Lidar Center for Atmosphere Remote Sensing, in Xi'an, China to study the vertical distribution of the optical and microphysical properties of smog aerosols. To better understand smog, two events with different haze conditions observed in January 2015 were analyzed in detail. Using these data, we performed a vertical characterization of smog evolution using the lidar range-squared-corrected signal and the aerosol depolarization ratio. Using inversion with regularization, we retrieved the vertical distribution of aerosol microphysical properties, including volume size distribution, volume concentration, number concentration and effective radius. We also used the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model to analyze aerosol sources during the two episodes. Our results show that the most polluted area in the lower troposphere during smog episodes is located below a height of 1 km above the ground level; under more severe smog conditions, it can be below 0.5 km. In the case of severe smog, we found a large number of spherical and fine particles concentrated in the very low troposphere, even below 0.5 km. Surprisingly, a dust layer with a slight depolarization ratio was observed above the smog layer.

  4. Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass Aerosol Extinction Differential Optical Absorption Spectrometer (AE-DOAS)

    NASA Astrophysics Data System (ADS)

    Chartier, R. T.; Greenslade, M. E.

    2012-04-01

    Atmospheric aerosols directly affect climate by scattering and absorbing radiation. The magnitude of the impact is dependent upon the wavelength of light, but is often estimated near 550 nm. When light scattering and absorption by aerosols is approximated, the wavelength dependence of the refractive index for specific components is lost. As a result, climate models would have inherent uncertainties for aerosol contributions to radiative forcing when considering the entire solar spectrum. An aerosol extinction differential optical absorption spectrometer has been developed to directly measure aerosol extinction at mid-ultraviolet to near infrared wavelengths. The instrument consists of a spectrometer coupled to a closed White-type multi-pass gas cell with an adjustable path length of up to approximately 20 m. Laboratory measurements of various gases are compared with known absorption cross sections. Additionally, the extinction of monodisperse samples of polystyrene latex spheres are measured and compared to Mie theory generated with refractive index values from the literature to validate the new instrument. The polystyrene experiments also emphasize the ability of the new instrument to retrieve the wavelength dependent refractive index, especially in the ultraviolet wavelength regions where variability is expected. The spectrometer will be a significant advancement for determining wavelength dependent complex refractive indices in future laboratory studies as well as provide the ability to monitor ambient aerosol light extinction.

  5. Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass aerosol extinction differential optical absorption spectrometer (AE-DOAS)

    NASA Astrophysics Data System (ADS)

    Chartier, R. T.; Greenslade, M. E.

    2011-10-01

    Atmospheric aerosols directly affect climate by scattering and absorbing radiation. The magnitude of the impact is dependent upon the wavelength of light, but is often estimated near 550 nm. When light scattering and absorption by aerosols is approximated, the wavelength dependence of the refractive index for specific components is lost. As a result, climate models would have inherent uncertainties for aerosol contributions to radiative forcing when considering the entire solar spectrum. An aerosol extinction differential optical absorption spectrometer has been developed to directly measure aerosol extinction at mid-ultraviolet to near infrared wavelengths. The instrument consists of a spectrometer coupled to a closed White-type multi-pass gas cell with an adjustable path length of up to approximately 20 m. Laboratory measurements of various gases are compared with known absorption cross sections. Additionally, the extinction of monodisperse samples of polystyrene latex spheres are measured and compared to Mie theory generated with refractive index values from the literature to validate the new instrument. The polystyrene experiments also emphasize the ability of the new instrument to retrieve the wavelength dependent refractive index, especially in the ultraviolet wavelength regions where variability is expected. The spectrometer will be a significant advancement for determining wavelength dependent complex refractive indices in future laboratory studies as well as provide the ability to monitor ambient aerosol light extinction.

  6. Comparision of aerosol optical properties observed over two AERONET sites of Nepal during pre-to post monsoon season of 2009

    NASA Astrophysics Data System (ADS)

    Devkota, B. D.; Aryal, R. P.

    2010-12-01

    Aerosol optical properties (AOP) deduced from CIMEL sun photometer measurements at two AERONET sites EVK2-CNR (located at elevation 5050m,in the foot hill of Mount Everest) and Kathmandu_univ (located at elevation 1510 m, near Kathmandu city) during pre-monsoon to post-monsoon season of 2009 are compared. We present time series of key climate significant AOP such as aerosol optical depth (AOD), absorption angstrom exponent, single scattering albedo, absorption AOD, lidar ratio over these two sites. The lidar ratio (LR), single scattering albedo (SSA), absorption AOD due to the total aerosol particles (diameter (d)<10microns) were derived at 500nm using the volume size distribution and refractive index from AERONET inversion products. The variation of absorption AOD at two sites show the same nature with the lowest at monsoon period and highest at pre-monsoon season. This absorption value is higher over kathmandu_univ site than over the EVK2-CNR site by the factor of ~2 in all seasons. The retrieved absorption angstrom exponent over the EVK2-CNR site is near 1(the theoretical value for black carbon) and with low SSA value 0.55(+-0.089) during pre-monsoon period indicating presence of black carbon. We will also discuss the seasonal variability of these properties based on regional and long-range air mass sources at two sites.

  7. Perovskite LaFeO3 nanoparticles synthesized by the reverse microemulsion nanoreactors in the presence of aerosol-OT: Morphology, crystal structure, and their optical properties

    NASA Astrophysics Data System (ADS)

    Abazari, Reza; Sanati, Soheila

    2013-12-01

    Orthorhombic structure of lanthanum ferrite nanoparticles (LaFeO3 NPs) with perovskite type phase has been synthesized with water-in-oil (W/O) microemulsion consisted of water/dioctyl sulfosuccinate sodium (aerosol-OT)/isooctane at room temperature. It has been shown that aerosol-OT reverse microemulsion solution is appropriate for synthesizing perovskite LaFeO3 NPs in the absence of any co-surfactants. Field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-ray (EDAX), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), and Fourier transform infrared spectroscopy (FT-IR) have been adopted for characterization of surface morphology, size, phase composition, structure, and optical properties of the considered NPs. Furthermore, the optical properties of LaFeO3 NPs have been further analyzed via photoluminescence (PL) spectroscopy. As shown by the physicochemical characterizations, our prepared NPs via aerosol-OT reverse microemulsion solution are spherical and nearly uniform (with a size of about 24.65 nm). Besides, they include an orthorhombic phase while no impurities are observed. Single phase lanthanum ferrite NPs have successfully been prepared at 500 °C. Moreover, UV-Vis spectrum indicates that the LaFeO3 NPs synthesized through this technique can be considered as a type of photo-catalytic materials.

  8. An evaluation of uncertainty in the aerosol optical properties as represented by satellites and an ensemble of chemistry-climate coupled models over Europe

    NASA Astrophysics Data System (ADS)

    Palacios-Peña, Laura; Baró, Rocío; Jiménez-Guerrero, Pedro

    2016-04-01

    The changes in Earth's climate are produced by forcing agents such as greenhouse gases, clouds and atmospheric aerosols. The latter modify the Earth's radiative budget due to their optical, microphysical and chemical properties, and are considered to be the most uncertain forcing agent. There are two main approaches to the study of aerosols: (1) ground-based and remote sensing observations and (2) atmospheric modelling. With the aim of characterizing the uncertainties associated with these approaches, and estimating the radiative forcing caused by aerosols, the main objective of this work is to assess the representation of aerosol optical properties by different remote sensing sensors and online-coupled chemistry-climate models and to determine whether the inclusion of aerosol radiative feedbacks in this type of models improves the modelling outputs over Europe. Two case studies have been selected under the framework of the EuMetChem COST Action ES1004, when important aerosol episodes during 2010 over Europe took place: a Russian wildfires episode and a Saharan desert dust outbreak covering most of Europe. Model data comes from an ensemble of regional air quality-climate simulations performed by the working group 2 of EuMetChem, that investigates the importance of different processes and feedbacks in on-line coupled chemistry-climate models. These simulations are run for three different configurations for each model, differing in the inclusion (or not) of aerosol-radiation and aerosol-cloud interactions. The remote sensing data comes from three different sensors, MODIS (Moderate Resolution Imaging Spectroradiometer), OMI (Ozone Monitoring Instrument) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor). The evaluation has been performed by using classical statistical metrics, comparing modelled and remotely sensed data versus a ground-based instrument network (AERONET). The evaluated variables are aerosol optical depth (AOD) and the Angström exponent (AE) at

  9. Effect of Aerosol Size and Hygroscopicity on Aerosol Optical Depth in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Brock, Charles; Wagner, Nick; Gordon, Timothy

    2016-04-01

    Aerosol optical depth (AOD) is affected by the size, optical characteristics, and hygroscopicity of particles, confounding attempts to link remote sensing observations of AOD to measured or modeled aerosol mass concentrations. In situ airborne observations of aerosol optical, chemical, microphysical and hygroscopic properties were made in the southeastern United States in the daytime in summer 2013. We use these observations to constrain a simple model that is used to test the sensitivity of AOD to the various measured parameters. As expected, the AOD was found to be most sensitive to aerosol mass concentration and to aerosol water content, which is controlled by aerosol hygroscopicity and the ambient relative humidity. However, AOD was also fairly sensitive to the mean particle diameter and the width of the size distribution. These parameters are often prescribed in global models that use simplified modal parameterizations to describe the aerosol, suggesting that the values chosen could substantially bias the calculated relationship between aerosol mass and optical extinction, AOD, and radiative forcing.

  10. Long term characterization of aerosol optical properties: Implications for radiative forcing over the desert region of Jodhpur, India

    NASA Astrophysics Data System (ADS)

    Bhaskar, V. Vizaya; Safai, P. D.; Raju, M. P.

    2015-08-01

    AOT data for eight years period (2004-2012) using the MICROTOPS II Sun photometer has been used to study the wavelength dependent optical characteristics of aerosols over Jodhpur, situated in the desert region in NW India. The daily mean AOT at 500 nm for the present study period was 0.66 ± 0.14 with an average Angstrom exponent as 0.71 ± 0.20. Linear regression analysis of monthly AOT and Angstrom Exponent indicated an increasing trend of both. Seasonal variations of daily AOT and α as well as spectral dependence of seasonal mean AOT are presented. Diurnal variation of AOT and α in different season is studied. Impact of dust storm events on the aerosol characteristics over Jodhpur during the study period is studied. AOT values derived from MICROTOPS II were cross checked with Sun Sky Radiometer (Model POM-01, Prede Inc.) data for the period from May 2011 to April 2012 and were found to be in good agreement. Short wave aerosol radiative forcing (ARF) was computed for one year period of May 2011 to April 2012. Spectral variation of AOT, SSA and ASP showed more AOT and ASP during pre monsoon period when SSA was comparatively low; indicating towards more prevalence of coarse size absorbing dust in this period. The ARF at SUF and TOA was negative during all the seasons indicating dominance of scattering type aerosols mainly dust particles whereas that at ATM was positive in all the seasons indicating heating of the atmosphere, especially more during pre monsoon (+40.5 W/m2) than during rest of the year (+19.5 W/m2). A high degree of correlation between ARF at the SUF with AOT (R2 = 0.94) indicated that ARF is a strong function of AOT. The radiative forcing efficiency inferred to scattering nature of aerosols at SUF (-4.2 W/m2/AOD) and TOA (-63.2 W/m2/AOD) indicating cooling at surface and top of the atmosphere whereas, there was warming of the atmosphere in between (+59 W/m2/AOD). The atmospheric heating rates varied from 0.49 K/day in post monsoon to 1.13 K/day in

  11. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  12. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  13. Toward Creating A Global Retrospective Climatology of Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Curran, Robert J.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2000-01-01

    Tropospheric aerosols are thought to cause a significant direct and indirect climate forcing, but the magnitude of this forcing remains highly uncertain because of poor knowledge of global aerosol characteristics and their temporal changes. The standard long-term global product, the one-channel Advanced Very-High-Resolution Radiometer (AVHRR) aerosol optical thickness over the ocean, relies on a single predefined aerosol model and can be inaccurate in many cases. Furthermore, it provides no information on aerosol column number density, thus making it impossible to estimate the indirect aerosol effect on climate. Total Ozone Mapping Spectrometer (TOMS) data can be used to detect absorbing aerosols over land, but are insensitive to aerosols located below one kilometer. It is thus clear that innovative approaches must be employed in order to extract a more quantitative and accurate aerosol climatology from available satellite and other measurements, thus enabling more reliable estimates of the direct and indirect aerosol forcings. The Global Aerosol Climatology Project (GACP) was established in 1998 as part of the Global Energy and Water Cycle Experiment (GEWEX). Its main objective is to analyze satellite radiance measurements and field observations to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations. The overall goal is to develop advanced global aerosol climatologies for the period of satellite data and to make the aerosol climatologies broadly available through the GACP web site.

  14. Column Aerosol Optical Properties and Aerosol Radiative Forcing During a Serious Haze-Fog Month over North China Plain in 2013 Based on Ground-Based Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Che, H.; Xia, X.; Zhu, J.; Li, Z.; Dubovik, O.; Holben, Brent N.; Goloub, P.; Chen, H.; Estelles, V.; Cuevas-Agullo, E.

    2014-01-01

    In January 2013, North China Plain experienced several serious haze events. Cimel sunphotometer measurements at seven sites over rural, suburban and urban regions of North China Plain from 1 to 30 January 2013 were used to further our understanding of spatial-temporal variation of aerosol optical parameters and aerosol radiative forcing (ARF). It was found that Aerosol Optical Depth at 500 nm (AOD500nm) during non-pollution periods at all stations was lower than 0.30 and increased significantly to greater than 1.00 as pollution events developed. The Angstrom exponent (Alpha) was larger than 0.80 for all stations most of the time. AOD500nm averages increased from north to south during both polluted and non-polluted periods on the three urban sites in Beijing. The fine mode AOD during pollution periods is about a factor of 2.5 times larger than that during the non-pollution period at urban sites but a factor of 5.0 at suburban and rural sites. The fine mode fraction of AOD675nm was higher than 80% for all sites during January 2013. The absorption AOD675nm at rural sites was only about 0.01 during pollution periods, while 0.03-0.07 and 0.01-0.03 during pollution and non-pollution periods at other sites, respectively. Single scattering albedo varied between 0.87 and 0.95 during January 2013 over North China Plain. The size distribution showed an obvious tri-peak pattern during the most serious period. The fine mode effective radius in the pollution period was about 0.01-0.08 microns larger than during nonpollution periods, while the coarse mode radius in pollution periods was about 0.06-0.38 microns less than that during nonpollution periods. The total, fine and coarse mode particle volumes varied by about 0.06-0.34 cu microns, 0.03-0.23 cu microns, and 0.03-0.10 cu microns, respectively, throughout January 2013. During the most intense period (1-16 January), ARF at the surface exceeded -50W/sq m, -180W/sq m, and -200W/sq m at rural, suburban, and urban sites

  15. [PM2.5 pollution and aerosol optical properties in fog and haze days during autumn and winter in Beijing area].

    PubMed

    Zhao, Xiu-Juan; Pu, Wei-Wei; Meng, Wei; Ma, Zhi-Qiang; Dong, Fan; He, Di

    2013-02-01

    A study on the PM2.5 pollution and aerosol optical properties in haze-fog days was carried out from Sep. 1st to Dec. 7th, 2011 in Beijing area by using PM2.5 concentration, aerosol scattering coefficient (sigma sca) and absorption coefficient (sigma abs) measured under urban and rural environment. The effect of weather condition on the PM25 pollution and aerosol optical properties was discussed as well. The results showed that the PM2.5 concentration, sigma sca and sigma abs, were evidently higher in haze-fog days than those in non-haze-fog days. The average PM2.5 concentrations in haze-fog days with values of 97.6 microg m-3 and 64.4 microg.m-3 were as 3.3 and 4.8 times as those in non-haze-fog days at urban and rural stations, respectively. The higher PM2.5 concentration in urban area resulted in the more frequent fog and haze phenomena than that in rural area. The PM25 concentration, sigma sca, and sigma abs were significantly higher in urban area than that in rural area in mist days, while relatively close in mist-haze days. This difference suggested that the effect of regional transport of pollution was relatively evident in mist-haze days but weak in mist day. In fog days the sigma sca showed no evident difference between urban and rural area, and was the highest in all types of fog and haze weather. The scattering property of aerosol was the strongest in fog days. The different weather conditions resulted in various characteristics of spatial distribution of PM2.5 concentration, sigma sca and sigma abs, as well as the strength of PM2,5 pollution and aerosol extinction. The pollutants transported by the strong southwest wind above the boundary layer and subsided in the boundary layer companying with the local accumulation of pollutants due to the weak diffusion resulted in the most serious haze-fog episode with the strongest PM2.5 pollution and aerosol extinction.

  16. Characterization of aerosols in the Norwegian subarctic region (ALOMAR station): Optical properties, size distributions and nucleation events

    NASA Astrophysics Data System (ADS)

    Mogo, S.; Cachorro, V. E.; de Frutos, A. M.; Lopez, J. F.; Torres, B.; Bennouna, Y.

    2013-05-01

    During the 2008 summer, a field campaign was carried out at the Arctic Lidar Observatory for Middle Atmosphere Research, ALOMAR, on Ando/ya island close to the town of Andenes (69° 16'N, 16° 00'E, 380 m a.s.l.), approximately 300 km north of the Arctic Circle. The campaign was part of the contribution of the Atmospheric Optics Group of the Valladolid University (GOA-UVa) to the International Polar Year, in the framework of the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models of Climate, Chemistry, Aerosols, and Transport) project. This GOA-UVa's field campaign has been developed to obtain experimental data for local aerosols, its optical characteristics (absorption / scattering coefficients and single scattering albedo), its size distributions and derived parameters. For this purpose, different instruments were simultaneously installed in the station facilities. These are the first measurements with this variety of information reported in the station and can be extrapolated over a wide area around.

  17. Determination of Marine Aerosol Properties Using a Bistatic Nephelometer

    DTIC Science & Technology

    2016-06-07

    light scattered by aerosols. The information derived from these measurements will enable accurate prediction of the aerosol optical properties and...consequently their effect on light propagation in the MABL. OBJECTIVES The objective of this work is to develop and deploy a new light scattering...instrument to remotely characterize atmospheric aerosols. The bi-static nephelometer (an instrument with separately pointed light source and detector that

  18. Optical properties of urban aerosols, aircraft emissions, and heavy-duty diesel trucks using aerosol light extinction measurements by an Aerodyne Cavity Attenuated Phase Shift Particle Extinction Monitor (CAPS PMex)

    NASA Astrophysics Data System (ADS)

    Freedman, A.; Massoli, P.; Wood, E. C.; Allan, J. D.; Fortner, E.; Yu, Z.; Herndon, S. C.; Miake-Lye, R. C.; Onasch, T. B.

    2010-12-01

    We present results of optical property characterization of ambient particulate during several field deployments where measurements of aerosol light extinction (σep) are obtained using an Aerodyne Cavity Attenuated Phase Shift Particle Extinction Monitor (CAPS PMex). The CAPS PMex is able to provide extinction measurements with 3-σ detection limit of 3 Mm-1 for 1s integration time. The CAPS PMex (630 nm) is integrated in the Aerodyne Research, Inc. (ARI) mobile laboratory where a co-located Multi Angle Absorption Photometer (MAAP) provides particle light absorption coefficient at 632 nm. The combination of the CAPS with the MAAP data allows estimating the single scattering albedo (ω) of the ambient aerosol particles. The ARI mobile laboratory was deployed in winter 2010 at the Chicago O’Hare International Airport to measure gas phase and particulate emissions from different aircraft engines, and during summer 2010 in Oakland, CA, to characterize vehicular gaseous and particulate emissions (mainly exhaust from heavy-duty diesel trucks) from the Caldecott Tunnel. We provide estimates of black carbon emission factors from individual aircraft engines and diesel trucks, in addition to characterizing the optical properties of these ambient samples studying fleet-average emissions for both light-duty passenger vehicles and heavy-duty diesel trucks. Two CAPS PMex instruments (measuring σep at 630 and 532 nm) were also deployed during the CalNex 2010 study (May 14 - June 16) at the CalTech ground site in Pasadena, CA. During the same time, a photo-acoustic spectrometer (PAS, DMT) and an aethalometer instrument (Magee Sci.) measured particle light absorption of submicron aerosol particles from the same sample line as the CAPS PMex monitors. We combine these data to provide multi-wavelength ω trends for the one-month campaign. Our results show the high potential of the CAPS as light weight, compact instrument to perform precise and accurate σep measurements of

  19. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  20. Investigation on the monthly variation of cirrus optical properties over the Indian subcontinent using cloud-aerosol lidar and infrared pathfinder satellite observation (Calipso)

    NASA Astrophysics Data System (ADS)

    Dhaman, Reji K.; Satyanarayana, Malladi; Jayeshlal, G. S.; Mahadevan Pillai, V. P.; Krishnakumar, V.

    2016-05-01

    Cirrus clouds have been identified as one of the atmospheric component which influence the radiative processes in the atmosphere and plays a key role in the Earth Radiation Budget. CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) is a joint NASA-CNES satellite mission designed to provide insight in understanding of the role of aerosols and clouds in the climate system. This paper reports the study on the variation of cirrus cloud optical properties of over the Indian sub - continent for a period of two years from January 2009 to December 2010, using cloud-aerosol lidar and infrared pathfinder satellite observations (Calipso). Indian Ocean and Indian continent is one of the regions where cirrus occurrence is maximum particularly during the monsoon periods. It is found that during the south-west monsoon periods there is a large cirrus cloud distribution over the southern Indian land masses. Also it is observed that the north-east monsoon periods had optical thick clouds hugging the coast line. The summer had large cloud formation in the Arabian Sea. It is also found that the land masses near to the sea had large cirrus presence. These cirrus clouds were of high altitude and optical depth. The dependence of cirrus cloud properties on cirrus cloud mid-cloud temperature and geometrical thickness are generally similar to the results derived from the ground-based lidar. However, the difference in macrophysical parameter variability shows the limits of space-borne-lidar and dissimilarities in regional climate variability and the nature and source of cloud nuclei in different geographical regions.

  1. Aerosol optical properties at the Lulin Atmospheric Background Station in Taiwan and the influences of long-range transport of air pollutants

    NASA Astrophysics Data System (ADS)

    Hsiao, Ta-Chih; Chen, Wei-Nai; Ye, Wei-Cheng; Lin, Neng-Huei; Tsay, Si-Chee; Lin, Tang-Huang; Lee, Chung-Te; Chuang, Ming-Tung; Pantina, Peter; Wang, Sheng-Hsiang

    2017-02-01

    The Lulin Atmospheric Background Station (LABS, 23.47°N 120.87°E, 2862 m ASL) in Central Taiwan was constructed in 2006 and is the only high-altitude background station in the western Pacific region for studying the influence of continental outflow. In this study, extensive optical properties of aerosols, including the aerosol light scattering coefficient (σs) and light absorption coefficient (σa), were collected from 2013 to 2014. The intensive optical properties, including mass scattering efficiency (αs), mass absorption efficiency (αa), single scattering albedo (ω), scattering Ångstrӧm exponent (Å), and backscattering fraction (b), were determined and investigated, and the distinct seasonal cycle was observed. The value of αs began to increase in January and reached a maximum in April; the mean in spring was 5.89 m2 g-1 with a standard deviation (SD) of 4.54 m2 g-1 and a 4.48 m2 g-1 interquartile range (IQR: 2.95-7.43 m2 g-1). The trend was similar in αa, with a maximum in March and a monthly mean of 0.84 m2 g-1. The peak values of ω (Mean = 0.92, SD = 0.03, IQR: 0.90-0.93) and Å (Mean = 2.22, SD = 0.61, IQR: 2.12-2.47) occurred in autumn. These annual patterns of optical properties were associated with different long-range transport patterns of air pollutants such as biomass burning (BB) aerosol in spring and potential anthropogenic emissions in autumn. The optical measurements performed at LABS during spring in 2013 were compared with those simultaneously performed at the Doi Ang Kang Meteorology Station, Chiang Mai Province, Thailand (DAK, 19.93°N, 99.05°E, 1536 m a.s.l.), which is located in the Southeast Asia BB source region. Furthermore, the relationships among αs, αa, and b were used to characterize the potential aerosol types transported to LABS during different seasons, and the data were inspected according to the HYSPLIT 5-day backward trajectories, which differentiate between different regions of air mass origin.

  2. In situ measurements of aerosol optical properties and number size distributions in a coastal region of Norway during the summer of 2008

    NASA Astrophysics Data System (ADS)

    Mogo, S.; Cachorro, V. E.; Lopez, J. F.; Montilla, E.; Torres, B.; Rodríguez, E.; Bennouna, Y.; de Frutos, A. M.

    2012-07-01

    In situ measurements of aerosol optical properties and particle size distributions were made in the summer of 2008 at the ALOMAR station facility (69°16' N, 16°00' E), located in a rural site in the north of the island of Andøya (Vesterålen archipelago), approximately 300 km north of the Arctic Circle. The extended three-month campaign was part of the POLARCAT Project (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) of the International Polar Year (IPY-2007-2008). Our goal was to characterize the aerosols of this sub-Arctic area, which are frequently transported to the Arctic region. Data from 13 June to 26 August 2008 were available and the statistical data for all instruments were calculated based on the hourly averages. The overall data coverage was approximately 72%. The hourly mean values of the light-scattering coefficient, σs, and the light-absorption coefficient, σa, at 550 nm were 5.41 Mm-1 (StD = 3.55 Mm-1) and 0.40 Mm-1 (StD = 0.27 Mm-1), respectively. The scattering/absorption Ångström exponents, αs,a, were used in a detailed analysis of the variations of the spectral shape of σs,a. While αs indicates the presence of two particle sizes corresponding to two types of aerosols, αa indicates only one type of absorbing aerosol particle. αa values greater than 1 were not observed. The single-scattering albedo, ω0, ranged from 0.62 to 0.99 (mean = 0.91, StD = 0.05), and the relationships between this parameter and the absorption/scattering coefficients and the Ångström exponents are presented. Any absorption value may lead to the lowest values of ω0, whereas only the lowest scattering values were observed in the lowest range of ω0. For a given absorption value, lower ω0 were observed for smaller αs. The submicrometer, micrometer and total concentrations of the particles presented hourly mean values of 1277 cm-3 (StD = 1563 cm-3), 1 cm-3 (StD = 1 cm-3) and 2463 cm-3

  3. Multiwavelength multistatic optical scattering for aerosol characterization

    NASA Astrophysics Data System (ADS)

    Brown, Andrea M.

    The main focus of this research is the development of a technique to remotely characterize aerosol properties, such as particle size distribution, concentration, and refractive index as a function of wavelength, through the analysis of optical scattering measurements. The proposed technique is an extension of the multistatic polarization ratio technique that has been developed by prior students at the Penn State Lidar Lab to include multiple wavelengths. This approach uses the ratio of polarized components of the scattering phase functions at multiple wavelengths across the visible region of the electromagnetic spectrum to extract the microphysical and optical properties of aerosols. The scattering intensities at each wavelength are vertically separated across the face of the imager using a transmission diffraction grating, so that scattering intensities for multiple wavelengths at many angles are available for analysis in a single image. The ratio of the scattering phase function intensities collected using parallel and perpendicular polarized light are formed for each wavelength and analysis of the ratio is used to determine the microphysical properties of the aerosols. One contribution of the present work is the development of an inversion technique based on a genetic algorithm that retrieves lognormal size distributions from scattering measurements by minimizing the squared error between measured polarization ratios and polarization ratios calculated using the Mie solution to Maxwell's equations. The opportunities and limitations of using the polarization ratio are explored, and a genetic algorithm is developed to retrieve single mode and trimodal lognormal size distributions from multiwavelength, angular scattering data. The algorithm is designed to evaluate particles in the diameter size range of 2 nm to 60 im, and uses 1,000 linear spaced diameters within this range to compute the modeled polarization ratio. The algorithm returns geometric mean radii and

  4. A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe

    NASA Astrophysics Data System (ADS)

    Zanatta, M.; Gysel, M.; Bukowiecki, N.; Müller, T.; Weingartner, E.; Areskoug, H.; Fiebig, M.; Yttri, K. E.; Mihalopoulos, N.; Kouvarakis, G.; Beddows, D.; Harrison, R. M.; Cavalli, F.; Putaud, J. P.; Spindler, G.; Wiedensohler, A.; Alastuey, A.; Pandolfi, M.; Sellegri, K.; Swietlicki, E.; Jaffrezo, J. L.; Baltensperger, U.; Laj, P.

    2016-11-01

    A reliable assessment of the optical properties of atmospheric black carbon is of crucial importance for an accurate estimation of radiative forcing. In this study we investigated the spatio-temporal variability of the mass absorption cross-section (MAC) of atmospheric black carbon, defined as light absorption coefficient (σap) divided by elemental carbon mass concentration (mEC). σap and mEC have been monitored at supersites of the ACTRIS network for a minimum period of one year. The 9 rural background sites considered in this study cover southern Scandinavia, central Europe and the Mediterranean. σap was determined using filter based absorption photometers and mEC using a thermal-optical technique. Homogeneity of the data-set was ensured by harmonization of all involved methods and instruments during extensive intercomparison exercises at the European Center for Aerosol Calibration (ECAC). Annual mean values of σap at a wavelength of 637 nm vary between 0.66 and 1.3 Mm-1 in southern Scandinavia, 3.7-11 Mm-1 in Central Europe and the British Isles, and 2.3-2.8 Mm-1 in the Mediterranean. Annual mean values of mEC vary between 0.084 and 0.23 μg m-3 in southern Scandinavia, 0.28-1.1 in Central Europe and the British Isles, and 0.22-0.26 in the Mediterranean. Both σap and mEC in southern Scandinavia and Central Europe have a distinct seasonality with maxima during the cold season and minima during summer, whereas at the Mediterranean sites an opposite trend was observed. Annual mean MAC values were quite similar across all sites and the seasonal variability was small at most sites. Consequently, a MAC value of 10.0 m2 g-1 (geometric standard deviation = 1.33) at a wavelength of 637 nm can be considered to be representative of the mixed boundary layer at European background sites, where BC is expected to be internally mixed to a large extent. The observed spatial variability is rather small compared to the variability of values in previous literature, indicating

  5. A European aerosol phenomenology -5: climatology of black carbon optical properties at 9 regional background sites across Europe

    NASA Astrophysics Data System (ADS)

    Zanatta, Marco; Cavalli, Fabrizia; Gysel, Martin; Weingartner, Ernest; Bukowiecki, Nicolas; Putaud, Jean Philippe; Müller, Thomas; Baltensperger, Urs; Laj, Paolo

    2016-04-01

    A reliable assessment of the optical properties of atmospheric black carbon is of crucial importance for an accurate estimation of radiative forcing. In this study we investigate the spatio-temporal variability of the mass absorption cross-section (MAC) of atmospheric black carbon, defined as light absorption coefficient (σap) divided by elemental carbon mass concentration (mEC). σap and mEC have been monitored at supersites of the ACTRIS network for a minimum period of one year. The 9 rural background sites considered in this study cover southern Scandinavia, central Europe and the Mediterranean. σap was determined using filter based absorption photometers and mEC using a thermo-optical technique. Homogeneity of the data set was ensured by harmonization of the instruments deployed at all sites during extensive intercomparison exercises at the European Center for Aerosol Calibration. Annual mean values of σap at a wavelength of 637 nm vary between 0.75 - 1.6 Mm-1 in southern Scandinavia, 4.1 - 11 Mm-1 in central Europen and 2.3-2.8 Mm-1 in the Mediterranean region. Annual mean values of mEC vary between 0.75 and 1.6 μg m-3 in southern Scandinavia, 0.28-1.1 in Central Europe and British Isles, and 0.22-0.26 in the Mediterranean. Both σap and mEC in southern Scandinavia and central Europe have a distinct seasonality with maxima during the cold season and minima during summer, whereas at the Mediterranean sites an opposite trend was observed. Annual mean MAC values were quite similar across all sites and the seasonal variability was small at most sites such that a MAC value of 10± 2.5 m2 g-1 (mean ± SD of station means) at a wavelength of 637 nm can be considered to be representative of the mixed boundary layer at European background sites. This is rather small spatial variability compared to the variability of values in previous literature, indicating that the harmonization efforts resulted in substantially increased precision of the reported MAC. However

  6. The optical manipulation and characterisation of aerosol particles

    NASA Astrophysics Data System (ADS)

    Reid, Jonathan P.

    2008-08-01

    Aerosols play a crucial role in many areas of science, ranging from atmospheric chemistry and physics, to pharmaceutical aerosols and drug delivery to the lungs, to combustion science and spray drying. The development of new methods for characterising the properties and dynamics of aerosol particles is of crucial importance if the complex role that particles play is to be more fully understood. Optical tweezers provide a valuable new tool to address fundamental questions in aerosol science. Single or multiple particles 1-15 μm in diameter can be manipulated for indefinite timescales. Linear and non-linear Raman and fluorescence spectroscopies can be used to probe particle composition, phase, component mixing state, and size. In particular, size can be determined with nanometre accuracy, allowing accurate measurements of the thermodynamic properties of aerosols, the kinetics of particle transformation and of light absorption. Further, the simultaneous manipulation of multiple particles in parallel optical traps provides a method for performing comparative measurements on particles of different composition. We will present some latest work in which optical tweezers are used to characterise aerosol dynamics, demonstrating that optical tweezers can find application in studies of hygroscopicity, the mixing state of different chemical components, including the phase separation of immiscible phases, and the kinetics of chemical transformation.

  7. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  8. Vertical Structure and Optical Properties of Titans Aerosols from Radiance Measurements Made Inside and Outside the Atmosphere

    NASA Technical Reports Server (NTRS)

    Doose, Lyn R.; Karkoschka, Erich; Tomasko, Martin G.; Anderson, Carrie M.

    2017-01-01

    Prompted by the detection of stratospheric cloud layers by Cassini's Composite Infrared Spectrometer (CIRS; see Anderson, C.M., Samuelson, R.E. [2011]. Icarus 212, 762-778), we have re-examined the observations made by the Descent Imager/Spectral Radiometer (DISR) in the atmosphere of Titan together with two constraints from measurements made outside the atmosphere. No evidence of thin layers (<1 km) in the DISR image data sets is seen beyond the three previously reported layers at 21 km, 11 km, and 7 km by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M.G. [2009]. Icarus 199, 442-448). On the other hand, there is evidence of a thicker layer centered at about 55 km. A rise in radiance gradients in the Downward-Looking Visible Spectrometer (DLVS) data below 55 km indicates an increase in the volume extinction coefficient near this altitude. To fit the geometric albedo measured from outside the atmosphere the decrease in the single scattering albedo of Titan's aerosols at high altitudes, noted in earlier studies of DISR data, must continue to much higher altitudes. The altitude of Titan's limb as a function of wavelength requires that the scale height of the aerosols decrease with altitude from the 65 km value seen in the DISR observations below 140 km to the 45 km value at higher altitudes. We compared the variation of radiance with nadir angle observed in the DISR images to improve our aerosol model. Our new aerosol model fits the altitude and wavelength variations of the observations at small and intermediate nadir angles but not for large nadir angles, indicating an effect that is not reproduced by our radiative transfer model. The volume extinction profiles are modeled by continuous functions except near the enhancement level near 55 km altitude. The wavelength dependence of the extinction optical depth is similar to earlier results at wavelengths from 500 to 700 nm, but is smaller at shorter wavelengths and larger toward longer wavelengths. A Hapke

  9. An update on polar aerosol optical properties using POLAR-AOD and other measurements performed during the International Polar Year

    NASA Astrophysics Data System (ADS)

    Tomasi, Claudio; Lupi, Angelo; Mazzola, Mauro; Stone, Robert S.; Dutton, Ellsworth G.; Herber, Andreas; Radionov, Vladimir F.; Holben, Brent N.; Sorokin, Mikhail G.; Sakerin, Sergey M.; Terpugova, Svetlana A.; Sobolewski, Piotr S.; Lanconelli, Christian; Petkov, Boyan H.; Busetto, Maurizio; Vitale, Vito

    2012-06-01

    An updated set of time series of derived aerosol optical depth (AOD) and Ångström's exponent α from a number of Arctic and Antarctic stations was analyzed to determine the long-term variations of these two parameters. The Arctic measurements were performed at Ny-Ålesund (1991-2010), Barrow (1977-2010) and some Siberian sites (1981-1991). The data were integrated with Level 2.0 AERONET sun-photometer measurements recorded at Hornsund, Svalbard, and Barrow for recent years, and at Tiksi for the summer 2010. The Antarctic data-set comprises sun-photometer measurements performed at Mirny (1982-2009), Neumayer (1991-2004), and Terra Nova Bay (1987-2005), and at South Pole (1977-2010). Analyses of daily mean AOD were made in the Arctic by (i) adjusting values to eliminate volcanic effects due to the El Chichón, Pinatubo, Kasatochi and Sarychev eruptions, and (ii) selecting the summer background aerosol data from those affected by forest fire smoke. Nearly null values of the long-term variation of summer background AOD were obtained at Ny-Ålesund (1991-2010) and at Barrow (1977-2010). No evidence of important variations in AOD was found when comparing the monthly mean values of AOD measured at Tiksi in summer 2010 with those derived from multi-filter actinometer measurements performed in the late 1980s at some Siberian sites. The long-term variations of seasonal mean AOD for Arctic Haze (AH) conditions and AH episode seasonal frequency were also evaluated, finding that these parameters underwent large fluctuations over the 35-year period at Ny-Ålesund and Barrow, without presenting well-defined long-term variations. A characterization of chemical composition, complex refractive index and single scattering albedo of ground-level aerosol polydispersions in summer and winter-spring is also presented, based on results mainly found in the literature. The long-term variation in Antarctic AOD was estimated to be stable, within ±0.10% per year, at the three coastal sites

  10. Sunphotometer network for monitoring aerosol properties in the Brazilian Amazon

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Eck, T. F.; Setzer, A.; Pereira, Alfredo; Vermote, E.; Reagan, J. A.; Kaufman, Y. A.; Tanre, D.; Slutsker, I.

    1993-01-01

    Satellite platforms have provided a methodology for regional and global remote sensing of aerosols. New systems will significantly improve that capability during the EOS era; however, the voluminous 20 year record of satellite data has produced only regional snapshots of aerosol loading and have not yielded a data base of the optical properties of those aerosols which are fundamental to our understanding of their influence on climate change. The prospect of fully understanding the properties of the aerosols with respect to climate change is small without validation and augmentation by ancillary ground based observations. Sun photometry was demonstrated to be an effective tool for ground based measurements of aerosol optical properties from fire emissions. Newer technology has expanded routine sun photometer measurements to spectral observations of solar aureole and almucantar allowing retrievals of size distribution, scattering phase function, and refractive index. A series of such observations were made in Brazil's Amazon basin from a network of six simultaneously recording instruments deployed in Sep. 1992. The instruments were located in areas removed from local aerosol sources such that sites are representative of regional aerosol conditions. The overall network was designed to cover the counter clockwise tropospheric circulation of the Amazon Basin. Spectral measurements of sun, aureole and sky data for retrieval of aerosol optical thickness, particle size distribution, and scattering phase function as well as measurements of precipitable water were made during noncloudy conditions.

  11. Detection of Saharan dust and biomass burning events using near-real-time intensive aerosol optical properties in the north-western Mediterranean

    NASA Astrophysics Data System (ADS)

    Ealo, Marina; Alastuey, Andrés; Ripoll, Anna; Pérez, Noemí; Cruz Minguillón, María; Querol, Xavier; Pandolfi, Marco

    2016-10-01

    The study of Saharan dust events (SDEs) and biomass burning (BB) emissions are both topics of great scientific interest since they are frequent and important polluting scenarios affecting air quality and climate. The main aim of this work is evaluating the feasibility of using near-real-time in situ aerosol optical measurements for the detection of these atmospheric events in the western Mediterranean Basin (WMB). With this aim, intensive aerosol optical properties (SAE: scattering Ångström exponent, AAE: absorption Ångström exponent, SSAAE: single scattering albedo Ångström exponent and g: asymmetry parameter) were derived from multi-wavelength aerosol light scattering, hemispheric backscattering and absorption measurements performed at regional (Montseny; MSY, 720 m a.s.l.) and continental (Montsec; MSA, 1570 m a.s.l.) background sites in the WMB. A sensitivity study aiming at calibrating the measured intensive optical properties for SDEs and BB detection is presented and discussed. The detection of SDEs by means of the SSAAE parameter and Ångström matrix (made up by SAE and AAE) depended on the altitude of the measurement station and on SDE intensity. At MSA (mountain-top site) SSAAE detected around 85 % of SDEs compared with 50 % at the MSY station, where pollution episodes dominated by fine anthropogenic particles frequently masked the effect of mineral dust on optical properties during less intense SDEs. Furthermore, an interesting feature of SSAAE was its capability to detect the presence of mineral dust after the end of SDEs. Thus, resuspension processes driven by summer regional atmospheric circulations and dry conditions after SDEs favoured the accumulation of mineral dust at regional level having important consequences for air quality. On average, SAE, AAE and g ranged between -0.7 and 1, 1.3 and 2.5 and 0.5 and 0.75 respectively during SDEs. Based on the aethalometer model, BB contribution to equivalent black carbon (BC) accounted for 36 and 40

  12. Particle-resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume

    SciTech Connect

    Zaveri, Rahul A.; Barnard, James C.; Easter, Richard C.; Riemer, Nicole; West, Matthew

    2010-09-11

    The recently developed particle-resolved aerosol box model PartMC-MOSAIC was used to simulate the evolution of aerosol mixing state and the associated optical and cloud condensation nuclei (CCN) activation properties in an idealized urban plume. The model explicitly resolved the size and composition of individual particles from a number of sources and tracked their evolution due to condensation/evaporation, coagulation, emission, and dilution. The ensemble black carbon (BC) specific absorption cross section increased by 40% over the course of two days as a result of BC aging by condensation and coagulation. Three- and four-fold enhancements in CCN/CN ratios were predicted to occur within 6 hours for 0.2% and 0.5% supersaturations (S), respectively. The particle-resolved results were used to evaluate the errors in the optical and CCN activation properties that would be predicted by a conventional sectional framework that assumes monodisperse, internally-mixed particles within each bin. This assumption artificially increased the ensemble BC specific absorption by 14-30% and decreased the single scattering albedo by 0.03-0.07 while the bin resolution had a negligible effect. In contrast, the errors in CCN/CN ratios were sensitive to the bin resolution, and they depended on the chosen supersaturation. For S = 0.2%, the CCN/CN ratio predicted using 100 internally-mixed bins was up to 25% higher than the particle-resolved results, while it was up to 125% higher using 10 internally-mixed bins. Errors introduced in the predicted optical and CCN properties by neglecting coagulation were also quantified.

  13. Spatial heterogeneity of aerosol optical and radiative properties obtained from multiple satellite retrievals over the Sub-Himalayan region of North-East India

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Bhuyan, Pradip; Biswas, Jhuma; Dahutia, Papori

    North East India, nestled between the southeastern Tibetan Plateau on the north, the Indo Myanmar range of hills to the east, plains of Bangladesh to the south and the Indo-Gangetic plains (IGP) to the west has a unique topography and population inhabitation pattern. In recent decades, along with other parts of south Asia NE India has undergone rapid industrial and economic development. Lifestyle changes have increasingly added to the anthropogenic burden on the atmosphere in the plains while biomass burning due to shifting cultivation in the hills is a major source of particulate and gaseous pollution. Studies have suggested that during the Asian summer monsoon, boundary layer pollution from India, Southeast Asia and south China are lifted to the upper tropospheric region by convection followed by westward transport over the Middle East and the Mediterranean. The spatio-temporal variation of aerosol optical (viz. AOD, AAI, AAOD, AE, FMF, columnar mass concentration (CMC)) and radiative properties are studied using data from multiple satellite sensors: MODIS, OMI, TOMS, CERES at various locations within the NE India (22-30°N, 86-98°E) for the period 2000-2012. Significant spatio-temporal variation of aerosol optical and radiative properties is observed within the region. For example, Guwahati, the metropolitan city, shows maximum value of AOD, followed by Dhubri the location situated at the western corridor of north-east India. Minimum AOD is observed at the high altitude locations Thimphu and Tawang. Temporally AOD is overriding in March, April, May (MAM) at almost all the observation locations. The minimum AOD over the region in October-November (ON) is associated with the topography and local meteorology. AAI >0.5 at all the locations indicates presence of significant amount of absorbing aerosols. The peak AAI and AAOD in MAM at all the location is associated with the peak biomass burning activity and long range transportation from other locations of India and

  14. Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity

    NASA Astrophysics Data System (ADS)

    Maghrabi, A.; Alharbi, B.; Tapper, N.

    2011-04-01

    On 10th March 2009 a widespread and severe dust storm event that lasted several hours struck Riyadh, and represented one of the most intense dust storms experienced in Saudi Arabia in the last two decades. This short-lived storm caused widespread and heavy dust deposition, zero visibility and total airport shutdown, as well as extensive damage to buildings, vehicles, power poles and trees across the city of Riyadh. Changes in Meteorological parameters, aerosol optical depth (AOD), Angstrom exponent α, infrared (IR) sky temperature and atmospheric emissivity were investigated before, during, and after the storm. The analysis showed significant changes in all of the above parameters due to this event. Shortly after the storm arrived, air pressure rapidly increased by 4 hPa, temperature decreased by 6 °C, relative humidly increased from 10% to 30%, the wind direction became northerly and the wind speed increased to a maximum of 30 m s -1. AOD at 550 nm increased from 0.396 to 1.71. The Angstrom exponent α rapidly decreased from 0.192 to -0.078. The mean AOD at 550 nm on the day of the storm was 0.953 higher than during the previous clear day, while α was -0.049 in comparison with 0.323 during the previous day. Theoretical simulations using SMART software showed remarkable changes in both spectral and broadband solar radiation components. The global and direct radiation components decreased by 42% and 68%, respectively, and the diffuse components increased by 44% in comparison with the previous clear day. IR sky temperatures and sky emissivity increased by 24 °C and 0.3, respectively, 2 h after the arrival of the storm. The effect of aerosol loading by the storm on IR atmospheric emission was investigated using MODTRAN software. It was found that the effect of aerosols caused an increase of the atmospheric emission in the atmospheric window (8-14 μm) such that the window emissions resembled those of a blackbody and the atmospheric window was almost closed.

  15. Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory

    NASA Astrophysics Data System (ADS)

    Laing, James R.; Jaffe, Daniel A.; Hee, Jonathan R.

    2016-12-01

    The summer of 2015 was an extreme forest fire year in the Pacific Northwest. Our sample site at the Mt. Bachelor Observatory (MBO, 2.7 km a.s.l.) in central Oregon observed biomass burning (BB) events more than 50 % of the time during August. In this paper we characterize the aerosol physical and optical properties of 19 aged BB events during August 2015. Six of the 19 events were influenced by Siberian fires originating near Lake Baikal that were transported to MBO over 4-10 days. The remainder of the events resulted from wildfires in Northern California and Southwestern Oregon with transport times to MBO ranging from 3 to 35 h. Fine particulate matter (PM1), carbon monoxide (CO), aerosol light scattering coefficients (σscat), aerosol light absorption coefficients (σabs), and aerosol number size distributions were measured throughout the campaign. We found that the Siberian events had a significantly higher Δσabs/ΔCO enhancement ratio, higher mass absorption efficiency (MAE; Δσabs/ΔPM1), lower single scattering albedo (ω), and lower absorption Ångström exponent (AAE) when compared with the regional events. We suggest that the observed Siberian events represent that portion of the plume that has hotter flaming fire conditions and thus enabled strong pyroconvective lofting and long-range transport to MBO. The Siberian events observed at MBO therefore represent a selected portion of the original plume that would then have preferentially higher black carbon emissions and thus an enhancement in absorption. The lower AAE values in the Siberian events compared to regional events indicate a lack of brown carbon (BrC) production by the Siberian fires or a loss of BrC during transport. We found that mass scattering efficiencies (MSE) for the BB events ranged from 2.50 to 4.76 m2 g-1. We measured aerosol size distributions with a scanning mobility particle sizer (SMPS). Number size distributions ranged from unimodal to bimodal and had geometric mean diameters (Dpm

  16. The Retrieval of Aerosol Optical Thickness Using the MERIS Instrument

    NASA Astrophysics Data System (ADS)

    Mei, L.; Rozanov, V. V.; Vountas, M.; Burrows, J. P.; Levy, R. C.; Lotz, W.

    2015-12-01

    Retrieval of aerosol properties for satellite instruments without shortwave-IR spectral information, multi-viewing, polarization and/or high-temporal observation ability is a challenging problem for spaceborne aerosol remote sensing. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Thickness (AOT) retrieval algorithm (XBAER: eXtensible Bremen AErosol Retrieval) is presented. XBAER utilizes the global surface spectral library database for the determination of surface properties while the MODIS collection 6 aerosol type treatment is adapted for the aerosol type selection. In order to take the surface Bidirectional Reflectance Distribution Function (BRDF) effect into account for the MERIS reduce resolution (1km) retrieval, a modified Ross-Li mode is used. The AOT is determined in the algorithm using lookup tables including polarization created using Radiative Transfer Model SCIATRAN3.4, by minimizing the difference between atmospheric corrected surface reflectance with given AOT and the surface reflectance calculated from the spectral library. The global comparison with operational MODIS C6 product, Multi-angle Imaging SpectroRadiometer (MISR) product, Advanced Along-Track Scanning Radiometer (AATSR) aerosol product and the validation using AErosol RObotic NETwork (AERONET) show promising results. The current XBAER algorithm is only valid for aerosol remote sensing over land and a similar method will be extended to ocean later.

  17. CALIPSO Observations of Aerosol Properties Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Varnai, Tamas; Yang, Weidong

    2010-01-01

    Clouds are surrounded by a transition zone of rapidly changing aerosol properties. Characterizing this zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects as well as for improving satellite measurements of aerosol properties. We present a statistical analysis of a global dataset of CALIPSO (Cloud-Aerosol Lidar and infrared Pathfinder Satellite Observation) Lidar observations over oceans. The results show that the transition zone extends as far as 15 km away from clouds and it is ubiquitous over all oceans. The use of only high confidence level cloud-aerosol discrimination (CAD) data confirms the findings. However, the results underline the need for caution to avoid biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  18. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  19. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. III. Presence of aerosols in the middle stratosphere.

    PubMed

    Renard, Jean-Baptiste; Ovarlez, Joëlle; Berthet, Gwenaël; Fussen, Didier; Vanhellemont, Filip; Brogniez, Colette; Hadamcik, Edith; Chartier, Michel; Ovarlez, Henri

    2005-07-01

    The aerosol extinction measurements in the ultraviolet and visible wavelengths by the balloonborne spectrometer Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NOx (SALOMON) show that aerosols are present in the middle stratosphere, above 25-km altitude. These observations are confirmed by the extinction measurements performed by a solar occultation radiometer. The balloonborne Laboratoire de Météorologie Dynamique (LMD) counter instrument also confirms the presence of aerosol around 30-km altitude, with an unrealistic excess of micronic particles assuming that only liquid sulfate aerosols are present. An unexpected spectral structure around 640-nm observed by SALOMON is also detectable in extinction measurements by the satellite instrument Stratospheric Aerosols and Gas Experiment III. This set of measurements could indicate that solid aerosols were detected at these altitude ranges. The amount of soot detected up to now in the lower stratosphere is too low to explain these measurements. Thus, the presence of interplanetary dust grains and micrometeorites may need to be invoked. Moreover, it seems that these grains fill the stratosphere in stratified layers.

  20. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. III. Presence of aerosols in the middle stratosphere

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Ovarlez, Joëlle; Berthet, Gwenaël; Fussen, Didier; Vanhellemont, Filip; Brogniez, Colette; Hadamcik, Edith; Chartier, Michel; Ovarlez, Henri

    2005-07-01

    The aerosol extinction measurements in the ultraviolet and visible wavelengths by the balloonborne spectrometer Spectroscopie d'Absorption Lunaire pour l'Observation des Minoritaires Ozone et NO_x (SALOMON) show that aerosols are present in the middle stratosphere, above 25-km altitude. These observations are confirmed by the extinction measurements performed by a solar occultation radiometer. The balloonborne Laboratoire de Météorologie Dynamique (LMD) counter instrument also confirms the presence of aerosol around 30-km altitude, with an unrealistic excess of micronic particles assuming that only liquid sulfate aerosols are present. An unexpected spectral structure around 640-nm observed by SALOMON is also detectable in extinction measurements by the satellite instrument Stratospheric Aerosols and Gas Experiment III. This set of measurements could indicate that solid aerosols were detected at these altitude ranges. The amount of soot detected up to now in the lower stratosphere is too low to explain these measurements. Thus, the presence of interplanetary dust grains and micrometeorites may need to be invoked. Moreover, it seems that these grains fill the stratosphere in stratified layers.

  1. Optical characterization of continental and biomass-burning aerosols over Bozeman, Montana: A case study of the aerosol direct effect

    NASA Astrophysics Data System (ADS)

    Nehrir, Amin R.; Repasky, Kevin S.; Reagan, John A.; Carlsten, John L.

    2011-11-01

    Atmospheric aerosol optical properties were observed from 21 to 27 September 2009 over Bozeman, Montana, during a transitional period in which background polluted rural continental aerosols and well-aged biomass-burning aerosols were the dominant aerosol types of extremely fresh biomass-burning aerosols resulting from forest fires burning in the northwestern United States and Canada. Aerosol optical properties and relative humidity profiles were retrieved using an eye-safe micropulse water vapor differential absorption lidar (DIAL) (MP-DIAL), a single-channel backscatter lidar, a CIMEL solar radiometer as part of the Aerosol Robotic Network (AERONET), a ground-based integrating nephelometer, and aerosol products from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua. Aerosol optical depths (AODs) measured during the case study ranged between 0.03 and 0.17 (0.015 and 0.075) at 532 nm (830 nm) as episodic combinations of fresh and aged biomass-burning aerosols dominated the optical depth of the pristinely clean background air. Here, a pristinely clean background refers to very low AOD conditions, not that the aerosol scattering and absorption properties are necessarily representative of a clean aerosol type. Diurnal variability in the aerosol extinction to backscatter ratio (Sa) of the background atmosphere derived from the two lidars, which ranged between 55 and 95 sr (50 and 90 sr) at 532 nm (830 nm), showed good agreement with retrievals from AERONET sun and sky measurements over the same time period but were consistently higher than some aerosol models had predicted. Sa measured during the episodic smoke events ranged on average from 60 to 80 sr (50 to 70 sr) at 532 nm (830 nm) while the very fresh biomass-burning aerosols were shown to exhibit significantly lower Sa ranging between 20 and 40 sr. The shortwave direct radiative forcing that was due to the intrusion of biomass-burning aerosols was calculated to be on average -10 W/m2 and was

  2. Photoacoustic Optical Properties at UV, VIS, and near IR Wavelengths for Laboratory Generated and Winter Time Ambient Urban Aerosols

    NASA Technical Reports Server (NTRS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.; Chow, J. C.

    2012-01-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In

  3. Workplace aerosol mass concentration measurement using optical particle counters.

    PubMed

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  4. Chemical Properties of Combustion Aerosols: An Overview

    EPA Science Inventory

    A wide variety of pyrogenic and anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is remarkably complex. ...

  5. Aerosol properties derived from spectral actinic flux measurements

    NASA Astrophysics Data System (ADS)

    Stark, H.; Schmidt, K. S.; Pilewskie, P.; Cozic, J.; Wollny, A. G.; Brock, C. A.; Baynard, T.; Lack, D.; Parrish, D. D.; Fehsenfeld, F. C.

    2008-12-01

    Measurement of aerosol properties is very important for understanding climate change. Aerosol optical properties influence solar radiation throughout the troposphere. According to the Working Group I report of the intergovernmental panel for climate change [IPCC, 2007], aerosols have a direct radiative forcing of - 0.5±0.4 W/m2 with a medium to low level of scientific understanding. This relatively large uncertainty indicates the need for more frequent and precise measurements of aerosol properties. We will show how actinic flux measurements can be used to derive important optical aerosol parameters such as aerosol optical thickness and depth, surface albedo, angstrom exponent, radiative forcing by clouds and aerosols, aerosol extinction, and others. The instrument used for this study is a combination of two spectroradiometers measuring actinic flux in the ultraviolet and visible radiation range from 280 to 690 nm with a resolution of 1 nm. Actinic flux is measured as the radiation incident on a spherical surface with sensitivity independent of direction. In contrast, irradiance is measured as the radiation incident on a plane surface, which depends on the cosine of the incident angle. Our goal is to assess the capabilities of using spectral actinic flux measurements to derive various aerosol properties. Here we will compare 1) actinic flux measurements to irradiance measurements from the spectral solar flux radiometer (SSFR), 2) derived aerosol size distributions with measurements from a white light optical particle counter (WLOPC) and ultra high sensitivity aerosol size spectrometer (UHSAS), and 3) derived aerosol optical extinction with measurements from a cavity ringdown aerosol extinction spectrometer (CRD-AES). These comparisons will utilize data from three recent field campaigns over New England and the Atlantic Ocean (ICARTT 2004), Texas and the Gulf of Mexico during (TexAQS/GoMACCS 2006), and Alaska and the Arctic Ocean (ARCPAC 2008) when the instruments

  6. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  7. Climatology of aerosol optical properties and black carbon mass absorption cross section at a remote high-altitude site in the western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Pandolfi, M.; Ripoll, A.; Querol, X.; Alastuey, A.

    2014-06-01

    Aerosol light scattering (σsp), backscattering (σbsp) and absorption (σap) were measured at Montsec (MSC; 42°3' N, 0°44' E, 1570 m a.s.l.), a remote high-altitude site in the western Mediterranean Basin. Mean (±SD) σsp, σbsp and σap were 18.9 ± 20.8, 2.6 ± 2.8 and 1.5 ± 1.4 Mm-1, respectively at 635 nm during the period under study (June 2011-June 2013). Mean values of single-scattering albedo (SSA, 635 nm), the scattering Ångström exponent (SAE, 450-635 nm), backscatter-to-scatter ratio (B / S, 635 nm), asymmetry parameter (g, 635 nm), black carbon mass absorption cross section (MAC, 637 nm) and PM2.5 mass scattering cross section (MSCS, 635 nm) were 0.92 ± 0.03, 1.56 ± 0.88, 0.16 ± 0.09, 0.53 ± 0.16, 10.9 ± 3.5 m2 g-1 and 2.5 ± 1.3 m2 g-1, respectively. The scattering measurements performed at MSC were in the medium/upper range of values reported by Andrews et al. (2011) for other mountaintop sites in Europe due to the frequent regional recirculation scenarios (SREG) and Saharan dust episodes (NAF) occurring mostly in spring/summer and causing the presence of polluted layers at the MSC altitude. However, the development of upslope winds and the possible presence of planetary boundary layer air at MSC altitude in summer may also have contributed to the high scattering observed. Under these summer conditions no clear diurnal cycles were observed for the measured extensive aerosol optical properties (σsp, σbsp and σap). Conversely, low σsp and σap at MSC were measured during Atlantic advections (AA) and winter regional anticyclonic episodes (WREG) typically observed during the cold season in the western Mediterranean. Therefore, a season-dependent decrease in the magnitude of aerosol extensive properties was observed when MSC was in the free troposphere, with the highest free-troposphere vs. all-data difference observed in winter and the lowest in spring/summer. The location of MSC station allowed for a reliable characterization of aerosols

  8. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; Zibordi, G.

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  9. Aerosol activation properties and CCN closure during TCAP

    NASA Astrophysics Data System (ADS)

    Mei, F.; Tomlinson, J. M.; Shilling, J. E.; Wilson, J. M.; Zelenyuk, A.; Chand, D.; Comstock, J. M.; Hubbe, J.; Berg, L. K.; Schmid, B.

    2013-12-01

    The indirect effects of atmospheric aerosols currently remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2007). This large uncertainty is partially due to our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturation. In addition, there is a large uncertainty in the aerosol optical depth (AOD) simulated by climate models near the North American coast and a wide variety in the types of clouds are observed over this region. The goal of the US Department of Energy Two Column Aerosol Project (TCAP) is to understand the processes responsible for producing and maintaining aerosol distributions and associated radiative and cloud forcing off the coast of North America. During the TCAP study, aerosol total number concentration, cloud condensation nuclei (CCN) spectra and aerosol chemical composition were in-situ measured from the DOE Gulfstream 1 (G-1) research aircraft during two Intensive Operations Periods (IOPs), one conducted in July 2012 and the other in February 2013. An overall aerosol size distribution was achieved by merging the observations from several instruments, including Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), Passive Cavity Aerosol Spectrometer Probe (PCASP-200, DMT), and Cloud Aerosol Spectrometer (CAS, DMT). Aerosol chemical composition was characterized using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Inc.) and single particle mass spectrometer, mini-SPLAT. Based on the aerosol size distribution, CCN number concentration (characterized by a DMT dual column CCN counter with a range from 0.1% to 0.4%), and chemical composition, a CCN closure was obtained. The sensitivity of CCN closure to organic hygroscopicity was investigated. The differences in aerosol/CCN properties between two columns, and between two phases, will be discussed.

  10. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  11. Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region

    NASA Astrophysics Data System (ADS)

    Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.

    2016-05-01

    In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.

  12. Composition and physical properties of the Asian Tropopause Aerosol Layer and the North American Tropospheric Aerosol Layer

    PubMed Central

    Yu, Pengfei; Toon, Owen B; Neely, Ryan R; Martinsson, Bengt G; Brenninkmeijer, Carl A M

    2015-01-01

    Recent studies revealed layers of enhanced aerosol scattering in the upper troposphere and lower stratosphere over Asia (Asian Tropopause Aerosol Layer (ATAL)) and North America (North American Tropospheric Aerosol Layer (NATAL)). We use a sectional aerosol model (Community Aerosol and Radiation Model for Atmospheres (CARMA)) coupled with the Community Earth System Model version 1 (CESM1) to explore the composition and optical properties of these aerosol layers. The observed aerosol extinction enhancement is reproduced by CESM1/CARMA. Both model and observations indicate a strong gradient of the sulfur-to-carbon ratio from Europe to the Asia on constant pressure surfaces. We found that the ATAL is mostly composed of sulfates, surface-emitted organics, and secondary organics; the NATAL is mostly composed of sulfates and secondary organics. The model also suggests that emission increases in Asia between 2000 and 2010 led to an increase of aerosol optical depth of the ATAL by 0.002 on average which is consistent with observations. Key Points The Asian Tropopause Aerosol Layer is composed of sulfate, primary organics, and secondary organics The North American Tropospheric Aerosol Layer is mostly composed of sulfate and secondary organics Aerosol Optical Depth of Asian Tropopause Aerosol Layer increases by 0.002 from 2000 to 2010 PMID:26709320

  13. The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  14. The Two-Column Aerosol Project: Phase I-Overview and impact of elevated aerosol layers on aerosol optical depth

    DOE PAGES

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; ...

    2016-01-08

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facilitymore » (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). In addition, these layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. Lastly, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.« less

  15. The Two-Column Aerosol Project: Phase I-Overview and impact of elevated aerosol layers on aerosol optical depth

    SciTech Connect

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek III, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-08

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). In addition, these layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. Lastly, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  16. Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic optical data.

    PubMed

    Kolgotin, Alexei; Müller, Detlef; Chemyakin, Eduard; Romanov, Anton

    2016-12-01

    We developed a mathematical scheme that allows us to improve retrieval products obtained from the inversion of multiwavelength Raman/HSRL lidar data, commonly dubbed "3 backscatter+2 extinction" (3β+2α) lidar. This scheme works independently of the automated inversion method that is currently being developed in the framework of the Aerosol-Cloud-Ecosystem (ACE) mission and which is successfully applied since 2012 [Atmos. Meas. Tech.7, 3487 (2014)10.5194/amt-7-3487-2014; "Comparison of aerosol optical and microphysical retrievals from HSRL-2 and in-situ measurements during DISCOVER-AQ 2013 (California and Texas)," in International Laser Radar Conference, July 2015, paper PS-C1-14] to data collected with the first airborne multiwavelength 3β+2α high spectral resolution lidar (HSRL) developed at NASA Langley Research Center. The mathematical scheme uses gradient correlation relationships we presented in part 1 of our study [Appl. Opt.55, 9839 (2016)APOPAI0003-693510.1364/AO.55.009839] in which we investigated lidar data products and particle microphysical parameters from one and the same set of optical lidar profiles. For an accurate assessment of regression coefficients that are used in the correlation relationships we specially designed the proximate analysis method that allows us to search for a first-estimate solution space of particle microphysical parameters on the basis of a look-up table. The scheme works for any shape of particle size distribution. Simulation studies demonstrate a significant stabilization of the various solution spaces of the investigated aerosol microphysical data products if we apply this gradient correlation method in our traditional regularization technique. Surface-area concentration can be estimated with an uncertainty that is not worse than the measurement error of the underlying extinction coefficients. The retrieval uncertainty of the effective radius is as large as ±0.07  μm for fine mode particles and approximately

  17. Optical properties of urban aerosol from airborne and ground-based in situ measurements performed during the Etude et Simulation de la Qualité de l'air en Ile de France (ESQUIF) program

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Randriamiarisoa, Hariliva; Sanak, Joseph; Couvert, Pierre; Flamant, Cyrille

    2005-01-01

    Urban aerosol microphysical and optical properties were investigated over the Paris area coupling, for the first time, with dedicated airborne in situ instruments (nephelometer and particle sizers) and active remote sensor (lidar) as well as ground-based in situ instrumentation. The experiment, covering two representative pollution events, was conducted in the framework of the Etude et Simulation de la Qualité de l'air en Ile de France (ESQUIF) program. Pollution plumes were observed under local northerly and southerly synoptic wind conditions on 19 and 31 July 2000, respectively. The 19 July (31 July) event was characterized by north-northwesterly (westerly) advection of polluted (clean) air masses originating from Great Britain (the Atlantic Ocean). The aerosol number size distribution appeared to be composed mainly of two modes in the planetary boundary layer (accumulation and nucleation) and three modes in the surface layer (accumulation, nucleation, and coarse). The characteristics of the size distribution (modal radii and geometric dispersion) were remarkably similar on both days and very coherent with the aerosol optical parameters retrieved from lidar and nephelometer measurements. The city of Paris mainly produces aerosols in the nucleation mode (modal radius of ˜0.03 μm) that have little influence on the aerosol optical properties in the visible spectral range. The latter are largely dominated by the scattering properties of aerosols in the accumulation mode (modal radius of ˜0.12 μm). When the incoming air mass is already polluted (clear), the aerosol in the accumulation mode is shown to be essentially hydrophobic (hydrophilic) in the outgoing air mass.

  18. Aerosol physical properties and their impact on climate change processes

    NASA Astrophysics Data System (ADS)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Makuch, Przemyslaw; Pakszys, Paulina; Markuszewski, Piotr; Piskozub, Jacek; Drozdowska, Violetta; Gutowska, Dorota; Rozwadowska, Anna

    2013-04-01

    Characterizing aerosols involves the specification of not only their spatial and temporal distributions but their multi-component composition, particle size distribution and physical properties as well. Due to their light attenuation and scattering properties, aerosols influence radiance measured by satellite for ocean color remote sensing. Studies of marine aerosol production and transport are important for many earth sciences such as cloud physics, atmospheric optics, environmental pollution studies, and interaction between ocean and atmosphere. It was one of the reasons for the growth in the number of research programs dealing with marine aerosols. Sea salt aerosols are among the most abundant components of the atmospheric aerosol, and thus it exerts a strong influence on radiation, cloud formation, meteorology and chemistry of the marine atmosphere. An accurate understanding and description of these mechanisms is crucial to modeling climate and climate change. This work provides information on combined aerosol studies made with lidars and sun photometers onboard the ship and in different coastal areas. We concentrate on aerosol optical thickness and its variations with aerosol advections into the study area. We pay special attention to the problem of proper data collection and analyses techniques. We showed that in order to detect the dynamics of potential aerosol composition changes it is necessary to use data from different stations where measurements are made using the same techniques. The combination of such information with air mass back-trajectories and data collected at stations located on the route of air masses provides comprehensive picture of aerosol variations in the study area both vertically and horizontally. Acknowledgements: The support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01

  19. Toward Investigating Optically Trapped Organic Aerosols with CARS Microspectroscopy

    NASA Astrophysics Data System (ADS)

    Voss, L. F.

    2009-12-01

    The Intergovernmental Panel on Climate Change notes the huge uncertainty in the effect that atmospheric aerosols play in determining overall global temperature, specifically in their ability to nucleate clouds. To better understand aerosol chemistry, the novel coupling of gradient force optical trapping with broad bandwidth coherent anti-Stokes Raman scattering (CARS) spectroscopy is being developed to study single particles suspended in air. Building on successful designs employed separately for the techniques, this hybrid technology will be used to explain how the oxidation of organic compounds changes the chemical and physical properties of aerosols. By trapping the particles, an individual aerosol can be studied for up to several days. Using a broad bandwidth pulse for one of the incident beams will result in a Raman vibrational spectrum from every laser pulse. Combined with signal enhancement due to resonance and coherence of nonlinear CARS spectroscopy, this technique will allow for acquisition of data on the millisecond time scale, facilitating the study of dynamic processes. This will provide insights on how aerosols react with and absorb species from the gas phase. These experiments will increase understanding of aerosol oxidation and growth mechanisms and the effects that aerosols have on our atmosphere and climate. Progress in efforts developing this novel technique to study model systems is presented.

  20. Using Retrieved Aerosol Spectral Properties to Characterize Aerosol Composition and Mixing

    NASA Astrophysics Data System (ADS)

    Li, J.

    2015-12-01

    The spectral dependence of aerosol properties, such as aerosol absorption optical depth (AAOD) and single scattering albedo (SSA), can be used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, spectral AAOD and SSA measured in reality may differ from these extreme cases, due to the complicated composition and mixing states. In this study, we use spectral SSA and AAOD retrieved from AERONET measurements, assisted by CALIPSO aerosol type product and Mie calculations, to characterize aerosol mixtures over representative regions. Moreover, in addition to the monotonically increasing or decreasing AAOD and SSA spectra, we find the spectral dependence of these two parameters are frequently peaked (at 675 nm or 870 nm) over several places including East Asia, India, West Africa and South America. We thus suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Further analysis indicates that moderate mixing of black carbon with dust or organic carbon is mainly responsible for producing the SSA curvature. An optimization scheme was developed to match the observed AAOD and SSA spectra with Mie calculations assuming different aerosol composition and mixing states. Results suggest that while external mixing can explain most of the observed AAOD and SSA spectral dependence, internal mixing or core-shell mode is also likely under many circumstances, such as East Asia during winter and post-monsoon and winter seasons over India. This method offers the potential to quantitatively infer aerosol composition from these spectral measurements of aerosol optical properties.

  1. Organic Aerosols from SÃO Paulo and its Relationship with Aerosol Absorption and Scattering Properties

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Brito, J. F.; Rizzo, L. V.

    2012-12-01

    The megacity of São Paulo with its 19 million people and 7 million cars is a challenge from the point of view of air pollution. High levels of organic aerosols, PM10, black carbon and ozone and the peculiar situation of the large scale use of ethanol fuel makes it a special case. Little is known about the impact of ethanol on air quality and human health and the increase of ethanol as vehicle fuel is rising worldwide An experiment was designed to physico-chemical properties of aerosols in São Paulo, as well as their optical properties. Aerosol size distribution in the size range of 1nm to 10 micrometers is being measured with a Helsinki University SMPS (Scanning Mobility Particle Sizer), an NAIS (Neutral ion Spectrometer) and a GRIMM OPC (Optical Particle Counter). Optical properties are being measured with a TSI Nephelometer and a Thermo MAAP (Multi Angle Absorption Photometer). A CIMEL sunphotometer from the AERONET network measure the aerosol optical depth. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. The ACSM was operated for 3 months continuosly during teh wintertime of 2012. The measured total particle concentration typically varies between 10,000 and 30,000 cm-3 being the lowest late in the night and highest around noon and frequently exceeding 50,000 cm-3. Clear diurnal patterns in aerosol optical properties were observed. Scattering and absorption coefficients typically range between 20 and 100 Mm-1 at 450 nm, and between 10 to 40 Mm-1 at 637 nm, respectively, both of them peaking at 7:00 local time, the morning rush hour. The corresponding single scattering albedo varies between 0.50 and 0.85, indicating a significant contribution of primary absorbing particles to the aerosol population. During the first month a total of seven new particle formation events were observed with growth rates ranging from 9 to 25

  2. Modeling the Optical Properties of Biomass Burning Aerosols: Young Smoke Aerosols From Savanna Fires and Comparisons to Observations from SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Matichuk, R. I.; Smith, J. A.; Toon, O. B.; Colarso, P. R.

    2006-01-01

    Annually, farmers in southern Africa manage their land resources and prepare their fields for cultivation by burning crop residual debris, with a peak in the burning season occurring during August and September. The emissions from these fires in southern Africa are among the greatest from fires worldwide, and the gases and aerosol particles produced adversely affect air quality large distances from their source regions, and can even be tracked in satellite imagery as they cross the Atlantic and Pacific Ocean basins. During August and September 2000 an international group of researchers participating in the Southern African Regional Science Initiate field experiment (SAFARI 2000) made extensive ground-based, airborne, and satellite measurements of these gases and aerosols in order to quantify their amounts and effects on Earth's atmosphere. In this study we interpreted the measurements of smoke aerosol particles made during SAFARI 2000 in order to better represent these particles in a numerical model simulating their transport and fate. Typically, smoke aerosols emitted from fires are concentrated by mass in particles about 0.3 micrometers in diameter (1,000,000 micrometers = 1 meter, about 3 feet); for comparison, the thickness of a human hair is about 50 micrometers, almost 200 times as great. Because of the size of these particles, at the surface they can be easily inhaled into the lungs, and in high concentrations have deleterious health effects on humans. Additionally, these particles reflect and absorb sunlight, impacting both visibility and the balance of sunlight reaching -Earth's surface, and ultimately play a role in modulating Earth's climate. Because of these important effects, it is important that numerical models used to estimate Earth's climate response to changes in atmospheric composition accurately represent the quantity and evolution of smoke particles. In our model, called the Community Aerosol and Radiation Model for Atmospheres (CARMA) we used

  3. Optical Characterization of Tropospheric Aerosols.

    DTIC Science & Technology

    1987-09-01

    Transmission of Light Through Fog," Phys. Rev. Vol. 38, p 159 (1931). 27. Kerker, M., Matijevic , E., Espenscheid, W. F., Farone, W. A., and Kitani, S...Espensheid, W. F., Matijevic , E., and Kerker, M., "Aerosol Studies by Light Scattering. III. Preparation and Particle Size Analysis of Sodium Chloride

  4. Satellite remote sensing of aerosol and cloud properties over Eurasia

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; Kolmonen, Pekka; Saponaro, Giulia; Virtanen, Timo; Rodriguez, Edith; Sundström, Anu-Maija; Atlaskina, Ksenia; de Leeuw, Gerrit

    2015-04-01

    surface properties, the surface reflectance can be independently retrieved using the AOD for atmospheric correction. For the retrieval of cloud properties, the SACURA algorithm has been implemented in the ADV/ASV aerosol retrieval suite. Cloud properties retrieved from AATSR data are cloud fraction, cloud optical thickness, cloud top height, cloud droplet effective radius, liquid water path. Aerosol and cloud properties are applied for different studies over the Eurasia area. Using the simultaneous retrieval of aerosol and cloud properties allows for study of the transition from the aerosol regime to the cloud regime, such as changes in effective radius or AOD (aerosol optical depth) to COT (cloud optical thickness). The column- integrated aerosol extinction, aerosol optical depth or AOD, which is primarily reported from satellite observations, can be used as a proxy for cloud condensation nuclei (CCN) and hence contains information on the ability of aerosol particles to form clouds. Hence, connecting this information with direct observations of cloud properties provides information on aerosol-cloud interactions.

  5. Aerosol properties over south india during different seasons

    NASA Astrophysics Data System (ADS)

    Sivaprasad, P.; Babu, C. A.; Jayakrishnan, P. R.

    Aerosols play an important role in the radiation balance and cloud properties, thereby affect the entire climatology of the earth-atmosphere system. Besides natural sources like dust, seasalt and natural sulphates, anthropogenic activities also inject aerosols like soot and industrial sulphates. Of these sea-salt and sulphates scatter the solar radiation. Soot is an absorbing aerosol while soil dust and organic matters are partly absorbing aerosols. Wind and rainfall are major factors affecting the transportation and deposition of the aerosols. India is a country blessed with plenty of monsoon rains. Winter (December to February), summer (March to May), monsoon (June to September) and post monsoon (October to November) are the four seasons over the region. Aerosol properties vary according to the season. Natural aerosols blown from the deserts have a major role in the aerosol optical depth over India. Of this, dust from Arabian desert that is carried by the winds are most important. The aerosol optical depth of south India is entirely different from that of north India. Maximum aerosol concentration is found over Gangetic plane in most of the seasons, whereas entire south India shows less aerosol optical depth. In the present study the aerosol properties of south India is analysed in general. Particular analysis is carried out for the four regions in the east and west coasts around Chennai, Kolkotha, Mumbai and Cochin. Chennai and Kolkotha are situated in the east coast whereas Cochin and Mumbai are in the west coast. These are industrial cities in India. Chennai region does not get monsoon rainfall since it is situated in the leeward side of Western ghats. But in the post monsoon season Chennai gets good amount of rainfall. Other three regions get good amount of rainfall during monsoon season. The study uses Terra MODIS, TOMS, NCEP/NCAR and TRMM data. Aerosol properties are analysed using Terra MODIS and Nimbus TOMS data. The variations of the aerosol optical

  6. Relating hygroscopicity and optical properties to chemical composition and structure of secondary organic aerosol particles generated from the ozonolysis of α-pinene

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Pangui, E.; Zapf, P.; Katrib, Y.; Giorio, C.; Tapparo, A.; Monod, A.; Temime-Roussel, B.; Decorse, P.; Mangeney, C.; Doussin, J. F.

    2015-03-01

    Secondary organic aerosol (SOA) were generated from the ozonolysis of α-pinene in the CESAM (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) simulation chamber. The SOA formation and aging were studied by following their optical, hygroscopic and chemical properties. The optical properties were investigated by determining the particle complex refractive index (CRI). The hygroscopicity was quantified by measuring the effect of relative humidity (RH) on the particle size (size growth factor, GF) and on the scattering coefficient (scattering growth factor, f(RH)). The oxygen to carbon atomic ratios (O : C) of the particle surface and bulk were used as a sensitive parameter to correlate the changes in hygroscopic and optical properties of the SOA composition during their formation and aging in CESAM. The real CRI at 525 nm wavelength decreased from 1.43-1.60 (±0.02) to 1.32-1.38 (±0.02) during the SOA formation. The decrease in the real CRI correlated to the O : C decrease from 0.68 (±0.20) to 0.55 (±0.16). In contrast, the GF remained roughly constant over the reaction time, with values of 1.02-1.07 (±0.02) at 90% (±4.2%) RH. Simultaneous measurements of O : C of the particle surface revealed that the SOA was not composed of a homogeneous mixture, but contained less oxidised species at the surface which may limit water absorption. In addition, an apparent change in both mobility diameter and scattering coefficient with increasing RH from 0 to 30% was observed for SOA after 14 h of reaction. We postulate that this change could be due to a change in the viscosity of the SOA from a predominantly glassy state to a predominantly liquid state.

  7. Remote sensing measurements of biomass burning aerosol optical properties during the 2015 Indonesian burning season from AERONET and MODIS satellite data

    NASA Astrophysics Data System (ADS)

    2016-04-01

    The strong El Nino event in 2015 resulted in below normal rainfall leading to very dry conditions throughout Indonesia from August though October 2015. These conditions in turn allowed for exceptionally large numbers of biomass burning fires with very high emissions of aerosols. Over the island of Borneo, three AERONET sites (Palangkaraya, Pontianak, and Kuching) measured monthly mean fine mode aerosol optical depth (AOD) at 500 nm from the spectral deconvolution algorithm in September and October ranging from 1.6 to 3.7, with daily average AOD as high as 6.1. In fact, the AOD was sometimes too high to obtain any significant signal in the mid-visible wavelengths, therefore a previously developed new algorithm in the AERONET Version 3 database was invoked to retain the measurements in as many of the red and near-infrared wavelengths (675, 870, 1020, and 1640 nm) as possible to analyze the AOD in those wavelengths. These AOD at longer wavelengths are then utilized to provide some estimate the AOD in the mid-visible. Additionally, satellite retrievals of AOD at 550 nm from MODIS sensor data and the Dark Target, Beep Blue, and MAIAC algorithms were also analyzed and compared to AERONET measured AOD. Not surprisingly, the AOD was often too high for the satellite algorithms to also measure accurate AOD on many days in the densest smoke regions. The AERONET sky radiance inversion algorithm was utilized to analyze retrievals of the aerosol optical properties of complex refractive indices and size distributions. Since the AOD was often extremely high there was sometimes insufficient direct sun signal for the larger solar zenith angles (> 50 degrees) required for almucantar retrievals. However, the new hybrid sky radiance scan can attain sufficient scattering angle range even at small solar zenith angles when 440 nm direct beam irradiance can be accurately measured, thereby allowing for many more retrievals and also at higher AOD levels during this event. Due to extreme

  8. Ship-based Aerosol Optical Depth Measurements Near Antarctica

    NASA Astrophysics Data System (ADS)

    Sakerin, S. M.; Smirnov, A.; Kabanov, D. M.; Turchinovich, Y. S.; Holben, B. N.; Radionov, V. F.; Slutsker, I.

    2006-12-01

    Aerosol optical properties over the oceans were studied in November 2005 January 2006 onboard the R/V Akademik Fedorov within the framework of the 51st Russian Antarctic Expedition. Measurements were made with the handheld sunphotometer Microtops II. The sunphotometer was calibrated against the AERONET reference CIMEL radiometer. The direct sun measurements were acquired in five spectral channels at 340, 440, 675, 870 and 936 nm. Aerosol optical depth was retrieved by applying the AERONET processing algorithm (Version 2). The paper presents results of measurements along the Atlantic transect and in the Antarctic region, where the main data volume was obtained (spanning 20 days). During the measurement period near Antarctica aerosol optical depth was low (daily averages varied within 0.02-0.04 at a wavelength 440 nm). Average spectral dependence of aerosol optical depth showed usual monotonic behavior, decreasing from 0.037 at 440 nm to 0.022 at 870 nm. Daily averaged Angstrom parameter was 0.84. Spatial and temporal variations in the Antarctic region were less or about 0.02 which is comparable with the measurement uncertainty. For a few days Microtops was collocated with the stationary sunphotometer ABAS-3 from the coastal Antarctic station Myrnyi and took simultaneous measurements. Presented results are compared with the long-term observations in Antarctica.

  9. Field Studies of Broadband Aerosol Optical Extinction in the Ultraviolet Spectral Region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A.; Brock, C. A.; Brown, S. S.

    2013-12-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. In the case of brown carbon, its wavelength-dependent absorption in the ultraviolet spectral region has been suggested as an important component of aerosol radiative forcing. We describe a new field instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We deployed this instrument during the Fire Lab at Missoula Experiment during Fall 2012 to measure biomass burning aerosol, and again during the Southern Oxidant and Aerosol Study in summer 2013 to measure organic aerosol in the Southeastern U.S. In both field experiments, we determined aerosol optical extinction as a function of wavelength and can interpret this together with size distribution and composition measurements to characterize the aerosol optical properties and radiative forcing.

  10. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil.

    PubMed

    de Miranda, Regina Maura; Lopes, Fabio; do Rosário, Nilton Évora; Yamasoe, Marcia Akemi; Landulfo, Eduardo; de Fatima Andrade, Maria

    2016-12-01

    The air quality in the Metropolitan Area of São Paulo (MASP) is primarily determined by the local pollution source contribution, mainly the vehicular fleet, but there is a concern about the role of remote sources to the fine mode particles (PM2.5) concentration and composition. One of the most important remote sources of atmospheric aerosol is the biomass burning emissions from São Paulo state's inland and from the central and north portions of Brazil. This study presents a synergy of different measurements of atmospheric aerosol chemistry and optical properties in the MASP in order to show how they can be used as a tool to identify particles from local and remote sources. For the clear identification of the local and remote source contribution, aerosol properties measurements at surface level were combined with vertical profiles information. Over 15 days in the austral winter of 2012, particulate matter (PM) was collected using a cascade impactor and a Partisol sampler in São Paulo City. Mass concentrations were determined by gravimetry, black carbon concentrations by reflectance, and trace element concentrations by X-ray fluorescence. Aerosol optical properties were studied using a multifilter rotating shadowband radiometer (MFRSR), a Lidar system and satellite data. Optical properties, concentrations, size distributions, and elemental composition of atmospheric particles were strongly related and varied according to meteorological conditions. During the sampling period, PM mean mass concentrations were 17.4 ± 10.1 and 15.3 ± 6.9 μg/m(3) for the fine and coarse fractions, respectively. The mean aerosol optical depths at 415 nm and Ångström exponent (AE) over the whole period were 0.29 ± 0.14 and 1.35 ± 0.11, respectively. Lidar ratios reached values of 75 sr. The analyses of the impacts of an event of biomass burning smoke transport to the São Paulo city revealed significant changing on local aerosol concentrations and optical parameters

  11. Aerosol Optical Depth over Africa retrieved from AATSR

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; de Leeuw, Gerrit; Kolmonen, Pekka; Sundström, Anu-Maija; Rodriques, Edith

    2010-05-01

    Aerosols produced over the African continent have important consequences for climate. In particular, large amounts of desert dust are produced over the Sahara and transported across the North Atlantic where desert dust deposition influences the eco system by iron fertilization, and further North over Europe with outbreaks as far as Scandinavia. Biomass burning occurs in most of the African continent south of the Sahara and causes a net positive radiating forcing resulting in local warming of the atmosphere layers. These effects have been studied during large field campaigns. Satellites can systematically provide information on aerosols over a large area such as Africa and beyond. To this end, we retrieved the Aerosol Optical Depth (AOD) at three wavelengths (555nm, 670nm, and 1600nm) over Africa from the reflectance measured at the top of the atmosphere by the AATSR (Advances Along Track Scanning Radiometer) flying on ENVISAT, for one year (1 May 2008 to 30 April 2009) to obtain information on the seasonal and spatial behaviour of the AOD, episodes of high AOD events and connect the retrieved AOD with the ground-based aerosol measurements. The AOD retrieval algorithm, which is applied to cloud-free pixels over land, is based on the comparison of the measured and modeled reflectance at the top of the atmosphere (TOA). The algorithm uses look-up-tables (LUTs) to compute the modeled TOA reflectance. For AOD retrieval, an aerosol in the atmosphere is assumed to be an external mixture of fine and coarse mode particles. The two aerosol types are mixed such that the spectral behavior of the reflectance due to aerosol best fits the measurements. Comparison with AERONET (Aerosol Roboric NETwork), which is a network of ground-based sun photometers which measure atmospheric aerosol properties, shows good agreement but with some overestimation of the AATSR retrieved AOD. Different aerosol models have been used to improve the comparison. The lack of AERONET stations in Africa

  12. The CU 2-D-MAX-DOAS instrument – Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties

    DOE PAGES

    Ortega, Ivan; Coburn, Sean; Berg, Larry K.; ...

    2016-08-23

    The multiannual global mean of aerosol optical depth at 550 nm (AOD550) over land is ∼ 0.19, and that over oceans is ∼ 0.13. About 45 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions. We present an inherently calibrated retrieval (i.e., no need for radiance calibration) to simultaneously measure AOD and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity. We employ radiative transfer model simulations tomore » show that for solar azimuth RSP measurements at solar elevation and solar zenith angle (SZA) smaller than 80°, RSP is insensitive to the vertical distribution of aerosols and maximally sensitive to changes in AOD and g under near-molecular scattering conditions. The University of Colorado two-dimensional Multi-AXis Differential Optical Absorption Spectroscopy (CU 2-D-MAX-DOAS) instrument was deployed as part of the Two Column Aerosol Project (TCAP) at Cape Cod, MA, during the summer of 2012 to measure direct sun spectra and RSP from scattered light spectra at solar relative azimuth angles (SRAAs) between 5 and 170°. During two case study days with (1) high aerosol load (17 July, 0.3  <  AOD430 < 0.6) and (2) near-molecular scattering conditions (22 July, AOD430 < 0.13) we compare RSP-based retrievals of AOD430 and g with data from a co-located CIMEL sun photometer, Multi-Filter Rotating Shadowband Radiometer (MFRSR), and an airborne High Spectral Resolution Lidar (HSRL-2). The average difference (relative to DOAS) for AOD430 is +0.012 ± 0.023 (CIMEL), −0.012 ± 0.024 (MFRSR), −0.011 ± 0.014 (HSRL-2), and +0.023 ± 0.013 (CIMELAOD − MFRSRAOD) and yields the following expressions for correlations between different instruments

  13. Coupling aerosol optics to the chemical transport model MATCH (v5.5.0) and aerosol dynamics module SALSA (v1)

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    Modelling aerosol optical properties is a notoriously difficult task due to the particles' complex morphologies and compositions. Yet aerosols and their optical properties are important for Earth system modelling and remote sensing applications. Operational optics models often make drastic and non realistic approximations regarding morphological properties, which can introduce errors. In this study a new aerosol optics model is implemented, in which more realistic morphologies and mixing states are assumed, especially for black carbon aerosols. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel "core-grey shell" model. Simulated results of radiative fluxes, backscattering coefficients and the Ångström exponent from the new optics model are compared with results from another model simulating particles as externally mixed homogeneous spheres. To gauge the impact on the optical properties from the new optics model, the known and important effects from using aerosol dynamics serves as a reference. The results show that using a more detailed description of particle morphology and mixing states influences the optical properties to the same degree as aerosol dynamics. This is an important finding suggesting that over-simplified optics models coupled to a chemical transport model can introduce considerable errors; this can strongly effect simulations of radiative fluxes in Earth-system models, and it can compromise the use of remote sensing observations of aerosols in model evaluations and chemical data assimilation.

  14. Optical modeling of aerosol extinction for remote sensing in the marine environment

    NASA Astrophysics Data System (ADS)

    Kaloshin, G. A.

    2013-05-01

    A microphysical model is presented for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01-100 μm particles in different geographic sites. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of the ASDF and its dependence on meteorological parameters, altitudes above sea level (H), fetch (X), wind speed (U) and relative humidity (RH) are investigated. The spectral profiles of the aerosol extinction coefficients calculated by MaexPro (Marine Aerosol Extinction Profiles) are in good agreement with observational data and the numerical results obtained from the Navy Aerosol Model (NAM) and the Advanced Navy Aerosol Model (ANAM). Moreover, MaexPro was found to be an accurate and reliable tool for investigation of the optical properties of atmospheric aerosols.

  15. A comparison between aerosol properties and air pollutants

    NASA Astrophysics Data System (ADS)

    Mukai, S.; Sano, I.; Nishimori, A.; Sato, M.

    A comparison between aerosol properties and air pollutants over urban cities in Japan S. Mukai, I. Sano, A. Nishimori and M. Sato Kinki University For understanding urban aerosols, sun/sky photometry and polarimetry with PSR-1000 (Opto. Research) have been undertaken over Higashi-Osaka since 1996. Multi-spectral photometers CE-318 (Cimel Electronique) and POM-100P (Prede Co.) are set up later for an AERONET site and a SKYNET site, respectively. Radiometers provide us with the optical thickness of aerosols and Ångström exponent. Another aerosol properties, e.g., size distribution, refractive index, etc., are retrieved based on the inversion method. Higashi-Osaka, which means east side of Osaka, is an industrial city located between Osaka bay and Mt.Ikoma. Anthropogenic aerosols produced by industrial activity and oceanic aerosols flying from Osaka bay are mixed together and trapped just around our site due to reflection from Mt.Ikoma. Therefore our city is famous for heavy air pollution, and aerosols here have a complicated feature mixing with the anthropogenic compound and natural one externally and/or internally. On the other hand, suspended particles matter (SPM) concentrations at ground level are compiled for these 10 years in this city. Strictly speaking, it is difficult to relate SPM data directly to the