Science.gov

Sample records for aerosols play important

  1. The Importance of Play.

    ERIC Educational Resources Information Center

    Sher, Allen

    Play is the spontaneous or organized recreational activity of children; it is at the heart of the preschool curriculum. Play aids in the development of physical, intellectual, and social skills. Children's play progresses through three developmental stages: solitary, parallel, and social. Preschool teachers should arrange for four kinds of…

  2. Play's Importance in School

    ERIC Educational Resources Information Center

    Sandberg, Anette; Heden, Rebecca

    2011-01-01

    The purpose of this study is to contribute knowledge on and gain an understanding of elementary school teachers' perspectives on the function of play in children's learning processes. The study is qualitative with a hermeneutical approach and has George Herbert Mead as a theoretical frame of reference. Interviews have been carried out with seven…

  3. The Importance of Being Playful.

    ERIC Educational Resources Information Center

    Bodrova, Elena; Leong, Deborah J.

    2003-01-01

    Recent research provides evidence of the strong connections between quality of play in preschool years and children's readiness for school instruction. Mature play, characterized by imaginary situations, multiple roles, clearly defined rules, flexible themes, language development, length of play, helps students' cognitive development. (Contains 12…

  4. The Importance of Play: Why Children Need to Play

    ERIC Educational Resources Information Center

    Bodrova, Elena; Leong, Deborah J.

    2005-01-01

    In this article, the authors discuss the important role of dramatic ("pretend") play in early childhood with increasing emphasis at school on developing academic skills in children at younger and younger ages. Play is especially beneficial to children's learning when it reaches a certain degree of sophistication. In other words, "unproductive"…

  5. How Important Is Organic Aerosol Hygroscopicity to Aerosol Indirect Forcing?

    SciTech Connect

    Liu, Xiaohong; Wang, Jian

    2010-12-07

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation and yield of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR Community Atmospheric Model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (“κ” value) of POA and SOA. Our model simulation indicates that in the present-day condition changing “κ” value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S=0.1% by 40-60% over the POA source regions, while changing “κ” value of SOA by ±50% (from 0.14 to 0.07 and 0.21) changes the CCN within 30%. Changes in the in-cloud droplet number concentrations (CDNC) are within 20% in most locations on the globe with the above changes in “κ” value of POA and SOA. Global annual mean anthropogenic aerosol indirect forcing (AIF) between present-day (PD) and pre-industrial (PI) conditions change by 0.4 W m-2 with the control run of -1.3 W m-2. AIF reduces with the increase hygroscopicity of organic aerosol, indicating the important role of natural organic aerosol in buffering the relative change of CDNC from PI to PD.

  6. Caring About Kids: The Importance of Play.

    ERIC Educational Resources Information Center

    National Inst. of Mental Health (DHHS), Rockville, MD. Div. of Scientific and Public Information.

    In several brief sections, this pamphlet defines play, discusses how play helps a child develop, and how play changes as a child grows older, indicates the role of toys and certain play activities in promoting sex stereotypes, and identifies the role of fantasy and imagination in children's play. A discussion of the role of parents in fostering…

  7. The Importance of Play: Part Three

    ERIC Educational Resources Information Center

    Exceptional Parent, 2009

    2009-01-01

    Several membership companies of the International Playground Equipment Manufacturers Association (IPEMA) are helping differently-abled children to have access to play equipment and opportunities. These IPEMA membership companies, and others, are driven by the principles of Universal Design (UD), a new concept in playground design that helps ensure…

  8. Analysis of atmospheric aerosols by PIXE: the importance of real time and complementary measurements

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Castanho, Andrea D.; Yamasoe, Marcia A.; Martins, José Vanderlei; Longo, Karla M.

    1999-04-01

    Particle-Induced X-ray Emission (PIXE) has been used for more than 30 yr in many urban and background air pollution studies. The technique has certainly contributed to the understanding of source-receptor relationship for aerosol particles as well as to aerosol physics and chemistry. In the last few years, where aerosol issues were strongly linked to global climate change through the relationship between aerosol and atmospheric radiation points to new challenges in atmospheric sciences, where PIXE could play an important role. Also the recognition for the inter-relationship between aerosol and liquid and gas phases in the atmosphere makes important to integrate PIXE aerosol analysis with other complementary measurements. The use of Nephelometers and Aethalometers to measure scattering and absorption of radiation by aerosol particles can be done in parallel with particle filter collection for PIXE analysis. Parallel measurements of trace gases using traditional monitors as well as with new techniques such as Differential Optical Absorption Spectroscopy (DOAS) that can provide concentration of O 3, SO 2, NO 3, NO 2, HCHO, HNO 3, Benzene, Toluene, and Xylene, is also important for both urban and remote aerosol studies. They provide information that allows a much richer interpretation of PIXE data. Recently developed instruments that provide real time aerosol data such as the Tapered Element Oscillating Microbalance (TEOM) PM 10 monitor and automatic real time organic and elemental carbon analyzers provide extremely useful data to complement PIXE aerosol analysis. The concentrations of trace elements measured by PIXE comprise only 10-30% of the aerosol mass, leaving the organic aerosol characterization and measurement with an important role. The aerosol source apportionment provided by PIXE analysis can be extended with other aerosol measurements such as scattering and absorption, estimating for example, the radiative impact of each discriminated aerosol source. The

  9. Play.

    ERIC Educational Resources Information Center

    Rogers, Fred; Sharapan, Hedda

    1993-01-01

    Contends that, in childhood, work and play seem to come together. Says that for young children their play is their work, and the more adults encourage children to play, the more they emphasize important lifelong resource. Examines some uses of children's play, making and building, artwork, dramatic play, monsters and superheroes, gun play, and…

  10. THE IMPORTANCE OF PLAY DURING HOSPITALIZATION OF CHILDREN

    PubMed Central

    Koukourikos, Konstantinos; Tzeha, Laila; Pantelidou, Parthenopi; Tsaloglidou, Areti

    2015-01-01

    Introduction: Play constitutes an essential parameter of the normal psychosomatic development of children, as well as their statutory right. It is also an important means of communication in childhood. Objective: To review, detect and highlight all data cited regarding the role of play during the hospitalization of children. Methodology: Literature review was achieved by searching the databases Scopus, PubMed, Cinhal in English, using the following key words: therapeutic play, play therapy, hospitalized child, therapist. Results: During hospitalization, play either in the form of therapeutic play, or as in the form of play therapy, is proven to be of high therapeutic value for ill children, thus contributing to both their physical and emotional well-being and to their recovery. It helps to investigate issues related to the child’s experiences in the hospital and reduce the intensity of negative feelings accompanying a child’s admission to hospital and hospitalization. Play is widely used in pre-operative preparation and invasive procedures, while its use among children hospitalized for cancer is beneficial. Conclusion: The use of play in hospital may become a tool in the hands of healthcare professionals, in order to provide substantial assistance to hospitalized children, as long as they have appropriate training, patience, and will to apply it during hospitalization. PMID:26889107

  11. On the importance of aerosol nitrate over Europe : data analysis and modelling

    NASA Astrophysics Data System (ADS)

    Schaap, M.

    2003-12-01

    The central theme of this thesis is the nitrate content of aerosols (or particulate matter (PM)). Aerosols play an important role in the climate system by scattering and/or absorbing solar radiation. In the last decades research has been devoted to quantify the radiative forcing of aerosols on climate. However, little is known about the forcing of aerosol nitrate. The large uncertainties around the nitrate forcing are directly related to a lack of reliable measurement data. In this thesis a study devoted to assess the importance of nitrate for the radiation balance over Europe is presented. The first step in this study was to search for data on aerosol nitrate. However, sampling aerosol nitrate is subject to evaporation losses and adsorption of nitric acid. Therefore, an analysis of sampling artefacts is presented first. Main results of this analysis are that quartz filters loose nitrate above 20ºC and that cellulose filters sample both nitrate and nitric acid quantitatively. Using the knowledge of artefacts we constructed a nitrate field over Europe for the winter. High nitrate levels are projected over north western, central and eastern Europe. There the nitrate concentrations exceed 4 µg/m3. Maximum levels are found in the Po valley. In Scandinavia nitrate levels trail off from 2.5 µg/m3 in the south to less than 0.5 µg/m3 in the north. In addition, we developed a chemistry-transport model (CTM) to describe the formation, dispersion and removal of nitrate and other aerosol components in the atmosphere. The model is able to reproduce the general features of the wintertime distribution derived from the observations. In winter nitric acid, the precursor for aerosol nitrate, is formed through heterogeneous reactions on the surface of aerosols. Appreciable ammonium nitrate concentrations in summer are limited to those areas with high ammonia emissions, e.g. the Netherlands. Over large parts of eastern and southern Europe low ammonium nitrate concentrations are

  12. Neutrophils play an important role in protective immunity against Coxiella burnetii infection.

    PubMed

    Elliott, Alexandra; Schoenlaub, Laura; Freches, Danielle; Mitchell, William; Zhang, Guoquan

    2015-08-01

    Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes the zoonotic disease Q fever. Although Q fever is mainly transmitted by aerosol infection, study of the immune responses in the lung following pulmonary C. burnetii infection is lacking. Neutrophils are considered the first immune cell to migrate into the lung and play an important role in host defense against aerosol infection with microbial pathogens. However, the role of neutrophils in the host defense against C. burnetii infection remains unclear. To determine the role of neutrophils in protective immunity against C. burnetii infection, the RB6-8C5 antibody was used to deplete neutrophils in mice before intranasal infection with C. burnetii. The results indicated that neutrophil-depleted mice developed more severe disease than their wild-type counterparts, suggesting that neutrophils play an important role in host defense against C. burnetii pulmonary infection. We also found that neither CXC chemokine receptor 2 (CXCR2) nor interleukin-17 (IL-17) receptor (IL-17R) deficiency changed the severity of disease following intranasal C. burnetii challenge, suggesting that keratinocyte-derived chemokine and IL-17 may not play essential roles in the response to C. burnetii infection. However, significantly higher C. burnetii genome copy numbers were detected in the lungs of IL-1R(-/-) mice at 14 days postinfection. This indicates that IL-1 may be important for the clearance of C. burnetii from the lungs following intranasal infection. Our results also suggest that neutrophils are involved in protecting vaccinated mice from C. burnetii challenge-induced disease. This is the first study to demonstrate an important role for neutrophils in protective immunity against C. burnetii infection.

  13. Affordances for Risky Play in Preschool: The Importance of Features in the Play Environment

    ERIC Educational Resources Information Center

    Sandseter, Ellen Beate Hansen

    2009-01-01

    The purpose of this article is to qualitatively explore the affordances for risky play in two different preschool outdoor environments, an ordinary preschool playground and a nature playground, based on Gibson ("The ecological approach to visual perception," 1979) theory of affordances and Heft's and Kyttea's (Heft in "Children's Environ Qual"…

  14. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    NASA Astrophysics Data System (ADS)

    Han, Zaw; Wu, Yonghua; Moshary, Fred; Gross, Barry; Gilerson, Alex

    2016-06-01

    Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP) with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff), we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  15. Parent participation plays an important part in promoting physical activity

    PubMed Central

    Lindqvist, Anna-Karin; Kostenius, Catrine; Gard, Gunvor; Rutberg, Stina

    2015-01-01

    Although physical activity (PA) is an important and modifiable determinant of health, in Sweden only 15% of boys and 10% of girls aged 15 years old achieve the recommended levels of PA 7 days per week. Adolescents’ PA levels are associated with social influence exerted by parents, friends, and teachers. The purpose of this study was to describe parents’ experiences of being a part of their adolescents’ empowerment-inspired PA intervention. A qualitative interview study was performed at a school in the northern part of Sweden. A total of 10 parents were interviewed, and the collected data were analyzed with qualitative content analysis. Three subthemes were combined into one main theme, demonstrating that parents are one important part of a successful PA intervention. The life of an adolescent has many options and demands that make it difficult to prioritize PA. Although parents felt that they were important in supporting their adolescent, a successful PA intervention must have multiple components. Moreover, the parents noted that the intervention had a positive effect upon not only their adolescents’, but also their own PA. Interventions aimed at promoting PA among adolescents should include measures to stimulate parent participation, have an empowerment approach, and preferably be school-based. PMID:26282870

  16. Vegetation plays an important role in mediating future water resources

    NASA Astrophysics Data System (ADS)

    Ukkola, A. M.; Keenan, T. F.; Kelley, D. I.; Prentice, I. C.

    2016-09-01

    Future environmental change is expected to modify the global hydrological cycle, with consequences for the regional distribution of freshwater supplies. Regional precipitation projections, however, differ largely between models, making future water resource projections highly uncertain. Using two representative concentration pathways and nine climate models, we estimate 21st century water resources across Australia, employing both a process-based dynamic vegetation model and a simple hydrological framework commonly used in water resource studies to separate the effects of climate and vegetation on water resources. We show surprisingly robust, pathway-independent regional patterns of change in water resources despite large uncertainties in precipitation projections. Increasing plant water use efficiency (due to the changing atmospheric CO2) and reduced green vegetation cover (due to the changing climate) relieve pressure on water resources for the highly populated, humid coastal regions of eastern Australia. By contrast, in semi-arid regions across Australia, runoff declines are amplified by CO2-induced greening, which leads to increased vegetation water use. These findings highlight the importance of including vegetation dynamics in future water resource projections.

  17. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    NASA Astrophysics Data System (ADS)

    Gallimore, P. J.; Achakulwisut, P.; Pope, F. D.; Davies, J. F.; Spring, D. R.; Kalberer, M.

    2011-12-01

    Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH) in the range of <5-90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160-200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent observations. This

  18. Importance of Physico-Chemical Properties of Aerosols in the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, S. A.; Girard, E.

    2014-12-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation are poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating very small (radar-unseen) ice crystals whereas TIC-2 are detected by both sensors and are characterized by a low concentration of large precipitating ice crystals. It is hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibit the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a smaller concentration of larger ice crystals. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation have been developed to reflect the various physical and chemical properties of aerosols. These parameterizations are derived from laboratory studies on aerosols of different chemical compositions. The parameterizations are also developed according to two main approaches: stochastic (that nucleation is a probabilistic process, which is time dependent) and singular (that nucleation occurs at fixed conditions of temperature and humidity and time-independent). This research aims to better understand the formation process of TICs using a newly-developed ice nucleation parameterizations. For this purpose, we implement some parameterizations (2 approaches) into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Arctic Cloud (ISDAC) in Alaska. We use both approaches but special attention is focused on the new parameterizations of the singular approach. Simulation

  19. Do primary marine aerosol organics play a role in the biological regulation of climate?

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Bates, T. S.; Coffman, D. J.; Russell, L. M.; Modini, R. L.

    2015-12-01

    Field and laboratory observations reveal a source of primary marine organic aerosol that is emitted to the atmosphere along with inorganic sea salt during the wind-driven production of sea spray aerosol (SSA). Surface seawater processes and properties that control the amount and the composition of organics emitted to the atmosphere are not well understood. Ramifications of the emission of primary marine organic aerosol on clouds and climate have been suggested but not confirmed. An oceanic, biological impact on clouds and climate by primary marine aerosol requires that a) the organic fraction of SSA is controlled by surface ocean biological processes and b) that primary marine aerosol makes up a significant number fraction of CCN in the marine boundary layer. Generation and characterization of freshly emitted SSA in the laboratory and at sea have revealed information about the size, composition, volatility, and hygroscopicity of primary marine aerosol. It has been shown that SSA is an internal mixture of sea salt and organics with the organic fraction increasing with decreasing particle size. In addition, quantification of the enrichment of organic matter in freshly emitted SSA relative to seawater has shown that high enrichments occur in regions of both eutrophic and oligotrophic waters, indicating that enrichment can be decoupled from local biological activity. Measurements of ambient (not generated) marine aerosol number size distributions and size-segregated chemical composition can be used to estimate the number fraction of CCN attributable to primary marine aerosol. An analysis of Eastern Pacific, Northern Atlantic, and Southern Ocean marine aerosol indicates that the primary marine aerosol makes up only a small fraction of the total CCN in the marine atmosphere. This presentation will consider current evidence derived from generation of freshly emitted SSA and measurements of ambient marine aerosol to assess the role of primary marine aerosol organics in the

  20. Aerosol Retrieval from Multiangle Multispectral Photopolarimetric Measurements: Importance of Spectral Range and Angular Resolution

    NASA Technical Reports Server (NTRS)

    Wu, L.; Hasekamp, O.; Van Diedenhoven, B.; Cairns, B.

    2015-01-01

    We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.

  1. Aerosol exposure to Rift Valley fever virus causes earlier and more severe neuropathology in the murine model, which has important implications for therapeutic development.

    PubMed

    Reed, Christopher; Lin, Kenny; Wilhelmsen, Catherine; Friedrich, Brian; Nalca, Aysegul; Keeney, Ashley; Donnelly, Ginger; Shamblin, Joshua; Hensley, Lisa E; Olinger, Gene; Smith, Darci R

    2013-01-01

    Rift Valley fever virus (RVFV) is an important mosquito-borne veterinary and human pathogen that can cause severe disease including acute-onset hepatitis, delayed-onset encephalitis, retinitis and blindness, or a hemorrhagic syndrome. Currently, no licensed vaccine or therapeutics exist to treat this potentially deadly disease. Detailed studies describing the pathogenesis of RVFV following aerosol exposure have not been completed and candidate therapeutics have not been evaluated following an aerosol exposure. These studies are important because while mosquito transmission is the primary means for human infection, it can also be transmitted by aerosol or through mucosal contact. Therefore, we directly compared the pathogenesis of RVFV following aerosol exposure to a subcutaneous (SC) exposure in the murine model by analyzing survival, clinical observations, blood chemistry, hematology, immunohistochemistry, and virus titration of tissues. Additionally, we evaluated the effectiveness of the nucleoside analog ribavirin administered prophylactically to treat mice exposed by aerosol and SC. The route of exposure did not significantly affect the survival, chemistry or hematology results of the mice. Acute hepatitis occurred despite the route of exposure. However, the development of neuropathology occurred much earlier and was more severe in mice exposed by aerosol compared to SC exposed mice. Mice treated with ribavirin and exposed SC were partially protected, whereas treated mice exposed by aerosol were not protected. Early and aggressive viral invasion of brain tissues following aerosol exposure likely played an important role in ribavirin's failure to prevent mortality among these animals. Our results highlight the need for more candidate antivirals to treat RVFV infection, especially in the case of a potential aerosol exposure. Additionally, our study provides an account of the key pathogenetic differences in RVF disease following two potential exposure routes and

  2. The importance of play in adulthood. An interview with Joan M. Erikson. Interview by Daniel Benveniste.

    PubMed

    Erikson, J M

    1998-01-01

    Joan M. Erikson (1902-1997) was an artist, a writer, a mother, and the wife and collaborator of Erik H. Erikson (1902-1994), one of the most important and influential psychoanalysts in the world. The following is an edited dialogue on one of her favorite topics--The Importance of Play in Adulthood. It features her thoughts on the subject and reminiscences of the ways she played throughout her life. She muses on play in relation to humor, fun, the role of the fool, and more. The article was a project undertaken in the spirit of play and it will hopefully evoke further playful musings in the minds of readers.

  3. Play

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    Designing a game with a serious purpose involves considering the worlds of Reality and Meaning yet it is undeniably impossible to create a game without a third world, one that is specifically concerned with what makes a game a game: the play elements. This third world, the world of people like designers and artists, and disciplines as computer science and game design, I call the world of Play and this level is devoted to it. The level starts off with some of the misperceptions people have of play. Unlike some may think, we play all the time, even when we grow old—this was also very noticeable in designing the game Levee Patroller as the team exhibited very playful behavior at many occasions. From there, I go into the aspects that characterize this world. The first concerns the goal of the game. This relates to the objectives people have to achieve within the game. This is constituted by the second aspect: the gameplay. Taking actions and facing challenges is subsequently constituted by a gameworld, which concerns the third aspect. And all of it is not possible without the fourth and final aspect, the type of technology that creates and facilitates the game. The four aspects together make up a “game concept” and from this world such a concept can be judged on the basis of three closely interrelated criteria: engagement, immersion, and fun.

  4. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    NASA Astrophysics Data System (ADS)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  5. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations.

    PubMed

    Csavina, Janae; Field, Jason; Taylor, Mark P; Gao, Song; Landázuri, Andrea; Betterton, Eric A; Sáez, A Eduardo

    2012-09-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport.

  6. A Review on the Importance of Metals and Metalloids in Atmospheric Dust and Aerosol from Mining Operations

    PubMed Central

    Csavina, Janae; Field, Jason; Taylor, Mark P.; Gao, Song; Landázuri, Andrea; Betterton, Eric A.; Sáez, A. Eduardo

    2012-01-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. PMID:22766428

  7. The importance of play in adulthood. An interview with Joan M. Erikson. Interview by Daniel Benveniste.

    PubMed

    Erikson, J M

    1998-01-01

    Joan M. Erikson (1902-1997) was an artist, a writer, a mother, and the wife and collaborator of Erik H. Erikson (1902-1994), one of the most important and influential psychoanalysts in the world. The following is an edited dialogue on one of her favorite topics--The Importance of Play in Adulthood. It features her thoughts on the subject and reminiscences of the ways she played throughout her life. She muses on play in relation to humor, fun, the role of the fool, and more. The article was a project undertaken in the spirit of play and it will hopefully evoke further playful musings in the minds of readers. PMID:9990822

  8. The Aerosol Coarse Mode: Its Importance for Light Scattering Enhancement and Columnar Optical Closure Studies

    NASA Astrophysics Data System (ADS)

    Zieger, P.

    2015-12-01

    Ambient aerosol particles can take up water and thus change their optical properties depending on the hygroscopicity and the relative humidity (RH) of the surrounding air. Knowledge of the hygroscopicity effect is of importance for radiative forcing calculations but is also needed for the comparison or validation of remote sensing or model results with in situ measurements. Specifically, the particle light scattering depends on RH and can be described by the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value. Here, we will present insights from measurements of f(RH) across Europe (Zieger et al., 2013) and will demonstrate why the coarse mode is important when modeling or predicting f(RH) from auxiliary aerosol in-situ measurements. We will show the implications by presenting the results of a recently performed columnar optical closure study (Zieger et al., 2015). This study linked ground-based in-situ measurements (with the help of airborne aerosol size distribution measurements) to columnar aerosol optical properties derived by a co-located AERONET sun photometer. The in situ derived aerosol optical depths (AOD) were clearly correlated with the directly measured values of the AERONET sun photometer but were substantially lower compared to the directly measured values (factor of ˜ 2-3). Differences became greater for longer wavelengths. The disagreement between in situ derived and directly measured AOD was hypothesized to originate from losses of coarse and fine mode particles through dry deposition within the forest's canopy and losses in the in situ sampling lines. In addition, elevated aerosol layers from long-range transport were observed for parts of the campaign which could have explained some of the disagreement. Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Baltensperger, U.: Effects of relative humidity on aerosol light scattering: results from different

  9. Beyond Physical Activity: The Importance of Play and Nature-Based Play Spaces for Children's Health and Development.

    PubMed

    Herrington, Susan; Brussoni, Mariana

    2015-12-01

    The reduction of child obesity continues to be a challenge worldwide. Research indicates that playing outdoors, particularly in natural play spaces, boosts children's physical activity, potentially decreasing childhood obesity. We present evidence that natural play spaces also provide for more diverse forms of play for children of varying ages and competencies. This is crucial because play spaces designed expressly for physical activity may not increase physical activity among less active children. Moreover, when researchers only examine physical activity in play, they overlook the valuable contributions that play makes to other aspects of children's health and development. To enhance research on children and their play environments, we introduce the theory of play affordances. To assist in the creation of more natural play spaces, we describe the Seven Cs, an evidence-based approach for designing children's play spaces that promotes diverse play. We end with some preliminary insights from our current research using the Seven Cs to illustrate the connections between play, nature, and children's healthy development.

  10. Beyond Physical Activity: The Importance of Play and Nature-Based Play Spaces for Children's Health and Development.

    PubMed

    Herrington, Susan; Brussoni, Mariana

    2015-12-01

    The reduction of child obesity continues to be a challenge worldwide. Research indicates that playing outdoors, particularly in natural play spaces, boosts children's physical activity, potentially decreasing childhood obesity. We present evidence that natural play spaces also provide for more diverse forms of play for children of varying ages and competencies. This is crucial because play spaces designed expressly for physical activity may not increase physical activity among less active children. Moreover, when researchers only examine physical activity in play, they overlook the valuable contributions that play makes to other aspects of children's health and development. To enhance research on children and their play environments, we introduce the theory of play affordances. To assist in the creation of more natural play spaces, we describe the Seven Cs, an evidence-based approach for designing children's play spaces that promotes diverse play. We end with some preliminary insights from our current research using the Seven Cs to illustrate the connections between play, nature, and children's healthy development. PMID:26399254

  11. The Spatial and Temporal Heterogeneity of Precipitation and Aerosol-Cloud Radiative Forcing Uncertainty in Climatically Important Regions

    NASA Astrophysics Data System (ADS)

    Regayre, L.; Pringle, K.; Lee, L.; Booth, B.; Browse, J.; Mann, G.; Woodhouse, M. T.; Reddington, C.; Carslaw, K. S.; Rap, A.

    2015-12-01

    Aerosol-cloud radiative forcing and precipitation sensitivities are quantified within climatically important regions, where surface temperatures and moisture availability are thought to influence large-scale climatic effects. The sensitivity of precipitation and the balance of incoming and outgoing radiation to uncertain historical aerosol emission fluxes and aerosol-cloud parametrisations are quantified and their climatic importance considered. The predictability of monsoon onset and intensity, position of the inter-tropical convergence zone, tropical storm frequency and intensity, heat transport to the Arctic and changes in the mode of the El Niño Southern Oscillation are all limited by the parametric uncertainties examined here. Precipitation and aerosol-cloud radiative forcing sensitivities are found to be both spatially and temporally heterogeneous. Statistical analysis highlights aspects of aerosol-climate research and model development that should be prioritised in order to reduce the impact of uncertainty in regional precipitation and aerosol-cloud forcing on near-term climate projections.

  12. The Importance of Free Play in the Early Childhood Classroom: Perspectives from a Teacher

    ERIC Educational Resources Information Center

    Engel, Maria

    2015-01-01

    Teaching is hard. It's the most rewarding, fulfilling job in the world, but it's also frustrating, infuriating, and really, really hard. In this article, the author reflects on the importance of free play in early childhood classrooms. If teachers want to create happy children who love learning, forcing them to sit at desks or tables through early…

  13. Zinc can play chaperone-like and inhibitor roles during import of mitochondrial small Tim proteins.

    PubMed

    Morgan, Bruce; Ang, Swee Kim; Yan, Guanhua; Lu, Hui

    2009-03-13

    Zinc is an essential cofactor required for the function of approximately 8% of the yeast and 10% of the human proteome. All of the "small Tim" proteins of the mitochondrial intermembrane space contain a strictly conserved "twin CX(3)C" zinc finger motif, which can bind zinc ions in the Cys-reduced form. We have shown previously that although disulfide bond formation is essential for the function of these proteins in mitochondria, only reduced proteins can be imported into mitochondria (Lu, H., Allen, S., Wardleworth, L., Savory, P., and Tokatlidis, K. (2004) J. Biol. Chem. 279, 18952-18958 and Morgan, B., and Lu, H. (2008) Biochem. J. 411, 115-122). However, the role of zinc during the import of these proteins is unclear. This study shows that the function of zinc is complex. It can play a thiol stabilizer role preventing oxidative folding of the small Tim proteins and maintaining the proteins in an import-competent form. On the other hand, zinc-bound forms cannot be imported into mitochondria efficiently. Furthermore, our results show that zinc is a powerful inhibitor of Erv1, an essential component of the import pathway used by the small Tim proteins. We propose that zinc plays a chaperone-like role in the cytosol during biogenesis of the small Tim proteins and that the proteins are imported into mitochondria through the apo-forms.

  14. Development of an Aerosol Model of Cryptococcus Reveals Humidity as an Important Factor Affecting the Viability of Cryptococcus during Aerosolization

    PubMed Central

    Springer, Deborah J.; Saini, Divey; Byrnes, Edmond J.; Heitman, Joseph; Frothingham, Richard

    2013-01-01

    Cryptococcus is an emerging global health threat that is annually responsible for over 1,000,000 infections and one third of all AIDS patient deaths. There is an ongoing outbreak of cryptococcosis in the western United States and Canada. Cryptococcosis is a disease resulting from the inhalation of the infectious propagules from the environment. The current and most frequently used animal infection models initiate infection via liquid suspension through intranasal instillation or intravenous injection. These models do not replicate the typically dry nature of aerosol exposure and may hinder our ability to decipher the initial events that lead to clearance or the establishment of infection. We have established a standardized aerosol model of murine infection for the human fungal pathogen Cryptococcus. Aerosolized cells were generated utilizing a Collison nebulizer in a whole-body Madison Chamber at different humidity conditions. The aerosols inside the chamber were sampled using a BioSampler to determine viable aerosol concentration and spray factor (ratio of viable aerosol concentration to total inoculum concentration). We have effectively delivered yeast and yeast-spore mixtures to the lungs of mice and observed the establishment of disease. We observed that growth conditions prior to exposure and humidity within the Madison Chamber during exposure can alter Cryptococcus survival and dose retained in mice. PMID:23894542

  15. The Importance of the Vertical Location of Aerosol Layers on Convective Storms

    NASA Astrophysics Data System (ADS)

    van den Heever, Susan; Grant, Leah

    2014-05-01

    Enhanced aerosol concentrations appear to influence a number of the aspects of convective storms including the strength of the convective updraft, the intensity of the cold pool, and the microphysical and radiative characteristics of the convective anvil. However, in order for such influences to occur, aerosols need to be effectively ingested by the storm system of interest. The vertical location of an aerosol layer impacting a convective storm may influence how effectively aerosol are ingested by the storm system, and hence the degree to which the ingested aerosol subsequently influence storm microphysical and radiative processes. Furthermore, if the aerosol species impacting the storm are effective at absorbing solar radiation, heating within the aerosol layer enhances atmospheric stability, the level of which will be dictated by where the aerosol layer is located. Enhanced static stability may have negative impacts on the initial development of the convection of interest. Convective storms developing within environments of the same aerosol optical depth may therefore respond differently to aerosol indirect forcing by virtue of where the aerosol layer is vertically located. In this talk, the results of various high-resolution, cloud-resolving simulations will be presented, in which the sensitivity to the vertical location of the aerosol source on the convective development, aerosol ingestion efficiency, and subsequent microphysical and radiative properties are investigated. Microphysical budgets and storm trajectories will form an integral part of the analysis.

  16. Homeodomain-interacting protein kinase 2 plays an important role in normal terminal erythroid differentiation.

    PubMed

    Hattangadi, Shilpa M; Burke, Karly A; Lodish, Harvey F

    2010-06-10

    Gene-targeting experiments report that the homeodomain-interacting protein kinases 1 and 2, Hipk1 and Hipk2, are essential but redundant in hematopoietic development because Hipk1/Hipk2 double-deficient animals exhibit severe defects in hematopoiesis and vasculogenesis, whereas the single knockouts do not. These serine-threonine kinases phosphorylate and consequently modify the functions of several important hematopoietic transcription factors and cofactors. Here we show that Hipk2 knockdown alone plays a significant role in terminal fetal liver erythroid differentiation. Hipk1 and Hipk2 are highly induced during primary mouse fetal liver erythropoiesis. Specific knockdown of Hipk2 inhibits terminal erythroid cell proliferation (explained in part by impaired cell-cycle progression as well as increased apoptosis) and terminal enucleation as well as the accumulation of hemoglobin. Hipk2 knockdown also reduces the transcription of many genes involved in proliferation and apoptosis as well as important, erythroid-specific genes involved in hemoglobin biosynthesis, such as alpha-globin and mitoferrin 1, demonstrating that Hipk2 plays an important role in some but not all aspects of normal terminal erythroid differentiation.

  17. The importance of aerosol water for air pollution effects on weather and climate

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Lelieveld, J.

    2007-12-01

    We apply a new concept to study air pollution effects on weather and climate, which is based on thermodynamic principles that explain hydration and osmosis - including the required transformation of laboratory based concepts to atmospheric conditions. Under ambient conditions the equilibrium relative humidity (ERH) determines the saturation molality, solute and solvent activities (and activity coefficients), and the aerosol associated water mass, sine the water content is fixed by ERH for a given aerosol concentration and type. As a consequence, aerosol water drives the gas/liquid/solid aerosol partitioning, ambient aerosol size-distributions and directly links aerosol hygroscopic growth into fog, haze and clouds. Various modeling results indicate that a) our new concept is not limited to dilute binary solutions, b) sensitive aerosol properties such as the pH of binary and mixed inorganic/organic salt solutions up to saturation can be computed accurately, and c) that anthropogenic emissions can be directly linked to visibility reduction, cloud formation and climate forcing, if we explicitly account for the aerosol water mass. Our new concept is more explicit than the traditional CCN concept as it abandons the use of ambiguous terms such as "marine" and "continental" aerosols, and refines lumped categories such as mineral dust, biomass burning, sea salt, organic or sulfate aerosols currently used in atmospheric modeling. Despite, our concept is computationally very efficient as it allows solving the whole gas/liquid/solid aerosol partitioning analytically without numerical iterations. It is therefore especially suited for regional high resolution, or global climate applications.

  18. AtTMEM18 plays important roles in pollen tube and vegetative growth in Arabidopsis

    PubMed Central

    Dou, Xiao‐Ying; Yang, Ke‐Zhen; Ma, Zhao‐Xia; Chen, Li‐Qun; Zhang, Xue‐Qin; Bai, Jin‐Rong

    2016-01-01

    Abstract In flowering plants, pollen tube growth is essential for delivery of male gametes into the female gametophyte or embryo sac for double fertilization. Although many genes have been identified as being involved in the process, the molecular mechanisms of pollen tube growth remains poorly understood. In this study, we identified that the Arabidopsis Transmembrane Protein 18 (AtTMEM18) gene played important roles in pollen tube growth. The AtTMEM18 shares a high similarity with the Transmembrane 18 proteins (TMEM18s) that are conserved in most eukaryotes and may play important roles in obesity in humans. Mutation in the AtTMEM18 by a Ds insertion caused abnormal callose deposition in the pollen grains and had a significant impact on pollen germination and pollen tube growth. AtTMEM18 is expressed in pollen grains, pollen tubes, root tips and other vegetative tissues. The pollen‐rescued assays showed that the mutation in AtTMEM18 also caused defects in roots, stems, leaves and transmitting tracts. AtTMEM18‐GFP was located around the nuclei. Genetic assays demonstrated that the localization of AtTMEM18 around the nuclei in the generative cells of pollen grains was essential for the male fertility. Furthermore, expression of the rice TMEM18‐homologous protein (OsTMEM18) driven by LAT52 promoter could recover the fertility of the Arabidopsis attmem18 mutant. These results suggested that the TMEM18 is important for plant growth in Arabidopsis. PMID:26699939

  19. The Play-Literacy Nexus and the Importance of Evidence-Based Techniques in the Classroom

    ERIC Educational Resources Information Center

    Roskos, Kathleen; Christie, James

    2011-01-01

    A growing body of research has focused on the role of play in young children's literacy development and early-literacy learning. In reviewing this research, the authors define the play-literacy nexus as that space where play, language, and emerging literacy behaviors converge and interact. They describe findings about the play-literacy nexus…

  20. NHE8 plays an important role in mucosal protection via its effect on bacterial adhesion

    PubMed Central

    Liu, Chang; Xu, Hua; Zhang, Bo; Johansson, Malin E. V.; Li, Jing; Hansson, Gunnar C.

    2013-01-01

    The Na+/H+ exchanger NHE8 is expressed on the apical membrane of intestinal epithelial cells and is particularly abundant in the colon. Our previous study showed that Muc2 expression was significantly reduced in NHE8-knockout (NHE8−/−) mice, suggesting that NHE8 plays a role in mucosal protection in the colon. The current study confirms and extends our studies on the role of NHE8 in mucosal protection. The number of bacteria attached on the distal colon was significantly increased in NHE8−/− mice compared with their wild-type littermates. As expected, IL-4 expression was markedly increased in NHE8−/− mice compared with wild-type mice. Immunohistochemistry showed disorganization in the mucin layer of NHE8−/− mice, suggesting a possible direct bacteria-epithelia interaction. Furthermore, NHE8−/− mice were susceptible to dextran sodium sulfate-induced mucosal injury. In wild-type mice, dextran sodium sulfate treatment inhibited colonic NHE8 expression. In Caco-2 cells, the absence of NHE8 expression resulted in higher adhesion rates of Salmonella typhimurium but not Lactobacillus plantarum. Similarly, in vivo, S. typhimurium adhesion rate was increased in NHE8−/− mice compared with wild-type mice. Our study suggests that NHE8 plays important roles in protecting intestinal epithelia from infectious bacterial adherence. PMID:23657568

  1. Arabidopsis PYL8 Plays an Important Role for ABA Signaling and Drought Stress Responses.

    PubMed

    Lim, Chae Woo; Baek, Woonhee; Han, Sang-Wook; Lee, Sung Chul

    2013-12-01

    Plants are frequently exposed to numerous environmental stresses such as dehydration and high salinity, and have developed elaborate mechanisms to counteract the deleterious effects of stress. The phytohormone abscisic acid (ABA) plays a critical role as an integrator of plant responses to water-limited condition to activate ABA signal transduction pathway. Although perception of ABA has been suggested to be important, the function of each ABA receptor remains elusive in dehydration condition. Here, we show that ABA receptor, pyrabactin resistance-like protein 8 (PYL8), functions in dehydration conditions. Transgenic plants overexpressing PYL8 exhibited hypersensitive phenotype to ABA in seed germination, seedling growth and establishment. We found that hypersensitivity to ABA of transgenic plants results in high degrees of stomatal closure in response to ABA leading to low transpiration rates and ultimately more vulnerable to drought than the wild-type plants. In addition, high expression of ABA maker genes also contributes to altered drought tolerance phenotype. Overall, this work emphasizes the importance of ABA signaling by ABA receptor in stomata during defense response to drought stress. PMID:25288979

  2. Promyelocytic Leukemia (PML) Protein Plays Important Roles in Regulating Cell Adhesion, Morphology, Proliferation and Migration

    PubMed Central

    Tang, Mei Kuen; Liang, Yong Jia; Chan, John Yeuk Hon; Wong, Sing Wan; Chen, Elve; Yao, Yao; Gan, Jingyi; Xiao, Lihai; Leung, Hin Cheung; Kung, Hsiang Fu; Wang, Hua; Lee, Kenneth Ka Ho

    2013-01-01

    PML protein plays important roles in regulating cellular homeostasis. It forms PML nuclear bodies (PML-NBs) that act like nuclear relay stations and participate in many cellular functions. In this study, we have examined the proteome of mouse embryonic fibroblasts (MEFs) derived from normal (PML+/+) and PML knockout (PML−/−) mice. The aim was to identify proteins that were differentially expressed when MEFs were incapable of producing PML. Using comparative proteomics, total protein were extracted from PML−/− and PML+/+ MEFs, resolved by two dimensional electrophoresis (2-DE) gels and the differentially expressed proteins identified by LC-ESI-MS/MS. Nine proteins (PML, NDRG1, CACYBP, CFL1, RSU1, TRIO, CTRO, ANXA4 and UBE2M) were determined to be down-regulated in PML−/− MEFs. In contrast, ten proteins (CIAPIN1, FAM50A, SUMO2 HSPB1 NSFL1C, PCBP2, YWHAG, STMN1, TPD52L2 and PDAP1) were found up-regulated. Many of these differentially expressed proteins play crucial roles in cell adhesion, migration, morphology and cytokinesis. The protein profiles explain why PML−/− and PML+/+ MEFs were morphologically different. In addition, we demonstrated PML−/− MEFs were less adhesive, proliferated more extensively and migrated significantly slower than PML+/+ MEFs. NDRG1, a protein that was down-regulated in PML−/− MEFs, was selected for further investigation. We determined that silencing NDRG1expression in PML+/+ MEFs increased cell proliferation and inhibited PML expression. Since NDRG expression was suppressed in PML−/− MEFs, this may explain why these cells proliferate more extensively than PML+/+ MEFs. Furthermore, silencing NDRG1expression also impaired TGF-β1 signaling by inhibiting SMAD3 phosphorylation. PMID:23555679

  3. Modeling Organic Aerosols during MILAGRO: Application of the CHIMERE Model and Importance of Biogenic Secondary Organic Aerosols

    SciTech Connect

    Hodzic, Alma; Jimenez, Jose L.; Madronich, Sasha; Aiken, Allison; Bessagnet, Bertrand; Curci, Gabriele; Fast, Jerome D.; Lamarque, J.-F.; Onasch, Timothy B.; Roux, Gregory; Schauer, James J.; Stone, Elizabeth A.

    2009-09-22

    The meso-scale chemistry-transport model CHIMERE is used to assess our understanding of major sources and formation processes leading to a fairly large amount of organic aerosols [OA, including primary OA (POA) and secondary OA (SOA)] observed in Mexico City during the MILAGRO field project (March 2006). Chemical analyses of submicron aerosols from aerosol mass spectrometers (AMS) indicate that organic particles found in the Mexico City basin have a large fraction of oxygenated organic species (OOA), which have strong correspondence with SOA, and that their production actively continues downwind of the city. The SOA formation is modeled here by the first-generation oxidation of anthropogenic (i.e., aromatics, alkanes) and biogenic (i.e., monoterpenes and isoprene) precursors and their partitioning into both organic and aqueous phases. The near-surface model evaluation shows that predicted OA correlates reasonably well with measurements during the campaign, however it remains a factor of 2 lower than the measured total OA. Fairly good agreement is found between predicted and observed POA within the city suggesting that anthropogenic and biomass burning emissions are reasonably captured. Consistent with previous studies in Mexico City, large discrepancies are encountered for SOA species, with a factor of 5-10 model underestimate. When only anthropogenic SOA precursors were considered, the model was able to reproduce within a factor of two the sharp increase in SOA concentrations during the late morning at both urban and near-urban locations. However, predicted SOA concentrations were unrealistically low when photochemistry was not active, especially overnight. These nighttime discrepancies were not significantly reduced when greatly enhanced partitioning to the aerosol phase was assumed. Model sensitivity results suggest that observed nighttime SOA concentrations are strongly influenced by the regional background (~2µg/m3) from biogenic origin, which is transported

  4. TGF-β signaling plays an important role in resisting γ-irradiation

    SciTech Connect

    An, You Sun; Kim, Mi-Ra; Lee, Seung-Sook; Lee, Yun-Sil; Chung, Eunkyung; Song, Jie-Young; Lee, Jeeyong; Yi, Jae Youn

    2013-02-15

    Transforming growth factor-β1 (TGF-β1) regulates various biological processes, including differentiation, bone remodeling and angiogenesis, and is particularly important as a regulator of homeostasis and cell growth in normal tissue. Interestingly, some studies have reported that TGF-β1 induces apoptosis through induction of specific genes, whereas others suggest that TGF-β1 inhibits apoptosis and facilitates cell survival. Resolving these discrepancies, which may reflect differences in cellular context, is an important research priority. Here, using the parental mink lung epithelial cell line, Mv1Lu, and its derivatives, R1B and DR26, lacking TGF-β receptors, we investigated the involvement of TGF-β signaling in the effects of γ-irradiation. We found that canonical TGF-β signaling played an important role in protecting cells from γ-irradiation. Introduction of functional TGF-β receptors or constitutively active Smads into R1B and DR26 cell lines reduced DNA fragmentation, Caspase-3 cleavage and γ-H2AX foci formation in γ-irradiated cells. Notably, we also found that de novo protein synthesis was required for the radio-resistant effects of TGF-β1. Our data thus indicate that TGF-β1 protected against γ-irradiation, decreasing DNA damage and reducing apoptosis, and thereby enhanced cell survival. - Highlights: ► TGF-β1 pretreatment inhibits γ-irradiation-induced apoptosis. ► TGF-β signaling reduces γ-irradiation-induced γ-H2AX foci formation. ► de novo protein synthesis is necessary for TGF-β1-induced radio-resistance.

  5. C3-OH of Amphotericin B Plays an Important Role in Ion Conductance.

    PubMed

    Davis, Stephen A; Della Ripa, Lisa A; Hu, Lingbowei; Cioffi, Alexander G; Pogorelov, Taras V; Rienstra, Chad M; Burke, Martin D

    2015-12-01

    Amphotericin B (AmB) is the archetype for small molecules that form ion channels in living systems and has recently been shown to replace a missing protein ion transporter and thereby restore physiology in yeast. Molecular modeling studies predict that AmB self-assembles in lipid membranes with the polyol region lining a channel interior that funnels to its narrowest region at the C3-hydroxyl group. This model predicts that modification of this functional group would alter conductance of the AmB ion channel. To test this hypothesis, the C3-hydroxyl group was synthetically deleted, and the resulting derivative, C3deoxyAmB (C3deOAmB), was characterized using multidimensional NMR experiments and single ion channel electrophysiology recordings. C3deOAmB possesses the same macrocycle conformation as AmB and retains the capacity to form transmembrane ion channels, yet the conductance of the C3deOAmB channels is 3-fold lower than that of AmB channels. Thus, the C3-hydroxyl group plays an important role in AmB ion channel conductance, and synthetic modifications at this position may provide an opportunity for further tuning of channel functions. PMID:26580003

  6. The C3-OH of Amphotericin B Plays an Important Role in Ion Conductance

    PubMed Central

    Davis, Stephen A.; Della Ripa, Lisa A.; Hu, Lingbowei; Cioffi, Alexander G.; Pogorelov, Taras V.; Rienstra, Chad M.; Burke, Martin D.

    2015-01-01

    Amphotericin B (AmB) is the archetype for small molecules that form ion channels in living systems, and has recently been shown to replace a missing protein ion transporter and thereby restore physiology in yeast. Molecular modeling studies predict that AmB self-assembles in lipid membranes with the polyol region lining a channel interior that funnels to its narrowest region at the C3-hydroxyl group. This model predicts that modification of this functional group would alter conductance of the AmB ion channel. To test this hypothesis, the C3-hydroxyl group was synthetically deleted and the resulting derivative, C3deoxyAmB (C3deOAmB), was characterized using multidimensional NMR experiments and single ion channel electrophysiology recordings. C3deOAmB possesses the same macrocycle conformation as AmB and retains the capacity to form transmembrane ion channels, yet the conductance of the C3deOAmB channels is threefold lower than that of AmB channels. Thus, the C3-hydroxyl group plays an important role in AmB ion channel conductance, and synthetic modifications at this position may provide an opportunity for further tuning of channel functions. PMID:26580003

  7. Entamoeba mitosomes play an important role in encystation by association with cholesteryl sulfate synthesis.

    PubMed

    Mi-ichi, Fumika; Miyamoto, Tomofumi; Takao, Shouko; Jeelani, Ghulam; Hashimoto, Tetsuo; Hara, Hiromitsu; Nozaki, Tomoyoshi; Yoshida, Hiroki

    2015-06-01

    Hydrogenosomes and mitosomes are mitochondrion-related organelles (MROs) that have highly reduced and divergent functions in anaerobic/microaerophilic eukaryotes. Entamoeba histolytica, a microaerophilic, parasitic amoebozoan species, which causes intestinal and extraintestinal amoebiasis in humans, possesses mitosomes, the existence and biological functions of which have been a longstanding enigma in the evolution of mitochondria. We previously demonstrated that sulfate activation, which is not generally compartmentalized to mitochondria, is a major function of E. histolytica mitosomes. However, because the final metabolites of sulfate activation remain unknown, the overall scheme of this metabolism and the role of mitosomes in Entamoeba have not been elucidated. In this study we purified and identified cholesteryl sulfate (CS) as a final metabolite of sulfate activation. We then identified the gene encoding the cholesteryl sulfotransferase responsible for synthesizing CS. Addition of CS to culture media increased the number of cysts, the dormant form that differentiates from proliferative trophozoites. Conversely, chlorate, a selective inhibitor of the first enzyme in the sulfate-activation pathway, inhibited cyst formation in a dose-dependent manner. These results indicate that CS plays an important role in differentiation, an essential process for the transmission of Entamoeba between hosts. Furthermore, we show that Mastigamoeba balamuthi, an anaerobic, free-living amoebozoan species, which is a close relative of E. histolytica, also has the sulfate-activation pathway in MROs but does not possess the capacity for CS production. Hence, we propose that a unique function of MROs in Entamoeba contributes to its adaptation to its parasitic life cycle.

  8. Daily temperature extremes play an important role in predicting thermal effects.

    PubMed

    Ma, Gang; Hoffmann, Ary A; Ma, Chun-Sen

    2015-07-01

    Organisms in natural environments experience diel temperature fluctuations, including sporadic extreme conditions, rather than constant temperatures. Studies based mainly on model organisms have tended to focus on responses to average temperatures or short-term heat stress, which overlooks the potential impact of daily fluctuations, including stressful daytime periods and milder night-time periods. Here, we focus on daily maximum temperatures, while holding night-time temperatures constant, to specifically investigate the effects of high temperature on demographic parameters and fitness in the English grain aphid Sitobion avenae. We then compared the observed effects of different daily maximum temperatures with predictions from constant temperature-performance expectations. Moderate daily maximum temperatures depressed aphid performance while extreme conditions had dramatic effects, even when mean temperatures were below the critical maximum. Predictions based on daily average temperature underestimated negative effects of temperature on performance by ignoring daily maximum temperature, while predictions based on daytime maximum temperatures overestimated detrimental impacts by ignoring recovery under mild night-time temperatures. Our findings suggest that daily maximum temperature will play an important role in regulating natural population dynamics and should be considered in predictions. These findings have implications for natural population dynamics, particularly when considering the expected increase in extreme temperature events under climate change. PMID:26026043

  9. Heterocystous Cyanobacteria in Microbialites Play an Important Role in N2 Fixation and Carbonate Mineral Precipitation

    NASA Astrophysics Data System (ADS)

    Alcantara-Hernandez, R. J.

    2015-12-01

    Lake Alchichica is a maars type crater-lake located in Central Mexico (pH > 8.9, EC ~13.39 mS cm-1). This limnological system harbors two types of microbialites that can be found around the entire perimeter of the lake (Fig. 1). These structures are representative examples of complex and diverse microbiological assemblages, where microbial activity promotes lithification by trapping, binding and/or precipitating detrital or chemical sediments. Previous studies determined that the microbialites of Lake Alchichica fix N2 to thrive under the N-limiting conditions of the lake, and that these nitrogenase activity peaks are related to heterocystous cyanobacteria that couple photosynthesis to N2 fixation during daylight periods. Heterocystous cyanobacteria (Nostocales) together with Oscillatoriales (non-heterocystous filamentous cyanobacteria) and other cyanobacterial groups have been described as the most abundant cyanobacteria in Alchichica microbialites, and in lithifying mats. Our results suggest that heterocystous cyanobacteria play an important role not only by fixing N2 for biomass construction, but also because their heterocysts host in their external cell membranes main sites for carbonate mineral precipitation including calcium carbonates and siderite. Previous research has shown that the heterocyst is the specialized site for cellular respiration associated to the pH decrease of vegetative/photosynthetic cells, contributing thus to the precipitation of carbonates and the accretion of the organosedimentary structure

  10. Cloud Condensation Nuclei Prediction Error from Application of Kohler Theory: Importance for the Aerosol Indirect Effect

    NASA Technical Reports Server (NTRS)

    Sotiropoulou, Rafaella-Eleni P.; Nenes, Athanasios; Adams, Peter J.; Seinfeld, John H.

    2007-01-01

    In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Koehler theory introduces a 10-20% uncertainty in global average indirect forcing and 2-11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10-20%, and 5-50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Koehler theory (as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.

  11. Analysis of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Prather, Kimberly A.; Hatch, Courtney D.; Grassian, Vicki H.

    2008-07-01

    Aerosols represent an important component of the Earth's atmosphere. Because aerosols are composed of solid and liquid particles of varying chemical complexity, size, and phase, large challenges exist in understanding how they impact climate, health, and the chemistry of the atmosphere. Only through the integration of field, laboratory, and modeling analysis can we begin to unravel the roles atmospheric aerosols play in these global processes. In this article, we provide a brief review of the current state of the science in the analysis of atmospheric aerosols and some important challenges that need to be overcome before they can become fully integrated. It is clear that only when these areas are effectively bridged can we fully understand the impact that atmospheric aerosols have on our environment and the Earth's system at the level of scientific certainty necessary to design and implement sound environmental policies.

  12. Basal transcription factor 3 plays an important role in seed germination and seedling growth of rice.

    PubMed

    Wang, Wenyi; Xu, Mengyun; Wang, Ya; Jamil, Muhammad

    2014-01-01

    BTF3 has been recognized to be involved in plant growth and development. But its function remains mostly unknown during seed germination and seedling stage. Here, we have analyzed OsBTF3-related sequences in Oryza sativa L. subspecies, japonica, which resembles with the conserved domain of a nascent polypeptide associated complex (NAC) with different homologs of OsBTF3 and human BTF3. Inhibition of Osj10gBTF3 has led to considerable morphological changes during seed germination and seedling growth. Germination percentage was not influenced by the application of GA3, ABA, and NaCl but all concentrations caused wild-type (WT) seeds to germinate more rapidly than the RNAi (Osj10gBTF3 (Ri)) transgenic lines. Seedling inhibition was more severe in the Osj10gBTF3 (Ri) seedlings compared with their WT especially when treated with 100 or 200 μM GA3; 50% reduction in shoots was observed in Osj10gBTF3 (Ri) seedlings. The expression of Osj3g1BTF3, Osj3g2BTF3 and Osj10gBTF3 was primarily constitutive and generally modulated by NaCl, ABA, and GA3 stresses in both Osj10gBTF3 (Ri) lines and WT at the early seedling stage, suggesting that Osj3g1BTF3 and Osj10gBTF3 are much similar but different from Osj3g2BTF3 in biological function. These results show that OsBTF3 plays an important role in seed germination and seedling growth gives a new perception demonstrating that more multifaceted regulatory functions are linked with BTF3 in plants.

  13. Galectin-3 Plays an Important Role in Innate Immunity to Gastric Infection by Helicobacter pylori.

    PubMed

    Park, Ah-Mee; Hagiwara, Satoru; Hsu, Daniel K; Liu, Fu-Tong; Yoshie, Osamu

    2016-04-01

    We studied the role of galectin-3 (Gal3) in gastric infection by Helicobacter pylori We first demonstrated that Gal3 was selectively expressed by gastric surface epithelial cells and abundantly secreted into the surface mucus layer. We next inoculated H. pylori Sydney strain 1 into wild-type (WT) and Gal3-deficient mice using a stomach tube. At 2 weeks postinoculation, the bacterial cells were mostly trapped within the surface mucus layer in WT mice. In sharp contrast, they infiltrated deep into the gastric glands in Gal3-deficient mice. Bacterial loads in the gastric tissues were also much higher in Gal3-deficient mice than in WT mice. At 6 months postinoculation,H. pylori had successfully colonized within the gastric glands of both WT and Gal3-deficient mice, although the bacterial loads were still higher in the latter. Furthermore, large lymphoid clusters mostly consisting of B cells were frequently observed in the gastric submucosa of Gal3-deficient mice.In vitro, peritoneal macrophages from Gal3-deficient mice were inefficient in killing engulfed H. pylori Furthermore, recombinant Gal3 not only induced rapid aggregation of H. pylori but also exerted a potent bactericidal effect on H. pylori as revealed by propidium iodide uptake and a morphological shift from spiral to coccoid form. However, a minor fraction of bacterial cells, probably transient phase variants of Gal3-binding sugar moieties, escaped killing by Gal3. Collectively, our data demonstrate that Gal3 plays an important role in innate immunity to infection and colonization of H. pylori. PMID:26857579

  14. Entamoeba mitosomes play an important role in encystation by association with cholesteryl sulfate synthesis

    PubMed Central

    Mi-ichi, Fumika; Miyamoto, Tomofumi; Takao, Shouko; Jeelani, Ghulam; Hashimoto, Tetsuo; Hara, Hiromitsu; Nozaki, Tomoyoshi; Yoshida, Hiroki

    2015-01-01

    Hydrogenosomes and mitosomes are mitochondrion-related organelles (MROs) that have highly reduced and divergent functions in anaerobic/microaerophilic eukaryotes. Entamoeba histolytica, a microaerophilic, parasitic amoebozoan species, which causes intestinal and extraintestinal amoebiasis in humans, possesses mitosomes, the existence and biological functions of which have been a longstanding enigma in the evolution of mitochondria. We previously demonstrated that sulfate activation, which is not generally compartmentalized to mitochondria, is a major function of E. histolytica mitosomes. However, because the final metabolites of sulfate activation remain unknown, the overall scheme of this metabolism and the role of mitosomes in Entamoeba have not been elucidated. In this study we purified and identified cholesteryl sulfate (CS) as a final metabolite of sulfate activation. We then identified the gene encoding the cholesteryl sulfotransferase responsible for synthesizing CS. Addition of CS to culture media increased the number of cysts, the dormant form that differentiates from proliferative trophozoites. Conversely, chlorate, a selective inhibitor of the first enzyme in the sulfate-activation pathway, inhibited cyst formation in a dose-dependent manner. These results indicate that CS plays an important role in differentiation, an essential process for the transmission of Entamoeba between hosts. Furthermore, we show that Mastigamoeba balamuthi, an anaerobic, free-living amoebozoan species, which is a close relative of E. histolytica, also has the sulfate-activation pathway in MROs but does not possess the capacity for CS production. Hence, we propose that a unique function of MROs in Entamoeba contributes to its adaptation to its parasitic life cycle. PMID:25986376

  15. Galectin-3 Plays an Important Role in Innate Immunity to Gastric Infection by Helicobacter pylori

    PubMed Central

    Hagiwara, Satoru; Hsu, Daniel K.; Liu, Fu-Tong

    2016-01-01

    We studied the role of galectin-3 (Gal3) in gastric infection by Helicobacter pylori. We first demonstrated that Gal3 was selectively expressed by gastric surface epithelial cells and abundantly secreted into the surface mucus layer. We next inoculated H. pylori Sydney strain 1 into wild-type (WT) and Gal3-deficient mice using a stomach tube. At 2 weeks postinoculation, the bacterial cells were mostly trapped within the surface mucus layer in WT mice. In sharp contrast, they infiltrated deep into the gastric glands in Gal3-deficient mice. Bacterial loads in the gastric tissues were also much higher in Gal3-deficient mice than in WT mice. At 6 months postinoculation, H. pylori had successfully colonized within the gastric glands of both WT and Gal3-deficient mice, although the bacterial loads were still higher in the latter. Furthermore, large lymphoid clusters mostly consisting of B cells were frequently observed in the gastric submucosa of Gal3-deficient mice. In vitro, peritoneal macrophages from Gal3-deficient mice were inefficient in killing engulfed H. pylori. Furthermore, recombinant Gal3 not only induced rapid aggregation of H. pylori but also exerted a potent bactericidal effect on H. pylori as revealed by propidium iodide uptake and a morphological shift from spiral to coccoid form. However, a minor fraction of bacterial cells, probably transient phase variants of Gal3-binding sugar moieties, escaped killing by Gal3. Collectively, our data demonstrate that Gal3 plays an important role in innate immunity to infection and colonization of H. pylori. PMID:26857579

  16. Importing ozone precursors and aerosols to the North American free troposphere: An analysis of peroxyacetyl nitrate and aerosol observations at Mount Bachelor

    NASA Astrophysics Data System (ADS)

    Fischer, Emily V.

    Exposure to aerosols and ozone poses a health threat to a large portion of the U.S. population. Domestic sources and a global background burden both contribute to ambient concentrations, and East Asia is currently a fast growing air pollution source. This dissertation presents results from two projects, and in each case observations from the Mount Bachelor Observatory (MBO, 43.980 N, 121.69° W; 2.7 km amsl) play a central role in the analysis. The first component of this dissertation presents an analysis of the first multi-year springtime measurements of peroxyacetyl nitrate (PAN) in the free troposphere over the Pacific Northwest. The measurements were made by gas chromatography with electron capture detector during spring 2008, 2009, and 2010. Springtime mean PAN mixing ratios at MBO varied from 100 pptv to 152 pptv. The observed relationship between PAN and 03 in a descending Asian air mass was used to derive an ozone production efficiency of 51-73 mol mol-1. I combined the observed variability in PAN and ozone at MBO with a range of trends to determine the observational requirements for trend detection. If springtime PAN mixing ratios increase at a rate of 4% per year due to rising Asian emissions, we would detect a trend with 13 years of measurements. If the corresponding trend in ozone is 1% per year, the trend in ozone will be detected on approximately the same timescale. The second component of this dissertation addresses the physical evolution of Asian aerosols and their impact on U.S. air quality. I showed that approximately 50% of the interannual variability in springtime average PM2.5 in remote areas of the U.S. Pacific Northwest can be explained by changes in Asian dust emissions. Next I identified 7 plumes of Asian origin within observations of sub --microm aerosol scattering and absorption from MBO. The average sub-microm scattering Angstrom exponent for the plumes was significantly larger than the same parameter observed closer to Asia, suggesting

  17. Interferon-Gamma Receptor Signaling Plays an Important Role in Restraining Murine Ovarian Tumor Progression

    PubMed Central

    Bian, Guanglin; Leigh, Nicholas D.; Du, Wei; Zhang, Lei; Li, Li; Cao, Xuefang

    2016-01-01

    Immune cell-derived cytotoxic pathways have been implicated in antitumor immune responses. The goal of this study is to characterize how these cytotoxic pathways influence ovarian cancer development. We have utilized the TgMISIIR-TAg transgenic mouse model which expresses the transforming SV40 TAg in the ovary, leading to spontaneous development of ovarian tumors that closely mimic human epithelial ovarian cancer. To test how perforin (Prf1), granzyme B (GzmB) and interferon-gamma (IFNg) impact tumor occurrence and progression, we bred the TgMISIIR-TAg transgene into Prf1−/−, GzmB−/−, and IFNgR1−/− mice. The transgenic females developed peritoneal tumors at 9–15 weeks and succumbed at 184 ± 37 days of age with 100% penetrance (n=41). Knockout of these cytotoxic genes does not affect tumor occurrence. However, loss of function in the IFNg signaling pathway significantly expedited tumor progression with all of the IFNg R1−/− TgMISIIR-TAg females succumbing to tumor outgrowth at 167 ± 27 days of age (p=0.0074, n=24). In contrast, loss of function of Prf1 or GzmB did not significantly impact tumor progression and host survival. Since tumor cells in the IFNg R1−/− TgMISIIR-TAg mice are IFNg R1 deficient, we used the implantable MOSEC (mouse ovarian surface epithelial cell) tumor line to validate that IFNg R signaling in host immune cells but not in tumor cells impacts tumor progression. Indeed, when the IFNg -responsive MOSEC cells were inoculated, IFNg R1−/− mice exhibited significantly higher tumor burden compared to WT mice. Furthermore, a MOSEC-splenocyte co-culture system confirmed that IFNg R1−/− immune cells were less effective than WT immune cells in controlling MOSEC tumor growth in vitro. Together, these results indicate that the IFNg R signaling pathway plays an important role in restraining murine ovarian tumor progression.

  18. Nursing autonomy plays an important role in nurses' attitudes toward caring for dying patients.

    PubMed

    Miyashita, Mitsunori; Nakai, Yuko; Sasahara, Tomoyo; Koyama, Yurie; Shimizu, Yoichi; Tsukamoto, Naoko; Kawa, Masako

    2007-01-01

    The aim of this study was to clarify the relationship of nursing autonomy and other factors related to attitudes toward caring for dying patients. A cross-sectional survey of nurses was conducted in November 2003 using a self-administered questionnaire. We collected demographic data from 178 (75%) participants and used the Frommelt Attitude Toward Care of the Dying scale, Form B, Japanese version (FATCOD-Form B-J), the Pankratz Nursing Questionnaire (PNQ), and the Death Attitude Inventory (DAI). FATCOD-Form B-J measures nurse's attitude toward caring for dying patients. It includes two subscales: positive attitude toward caring for the dying patient and perception of patient- and family-centered care. The PNQ measures nursing autonomy of individual nurses and has three subscales: nursing autonomy and advocacy, patients' rights, and rejection of traditional role limitations. The DAI measures attitudes toward death in context of Japanese cultural characteristics. It includes seven subscales: afterlife beliefs, death anxiety, death relief, death avoidance, life purpose, death concern, and supernatural beliefs. We investigated the factors associated with the FATCOD-Form B-J. Support of a mentor regarding end-of-life issues (beta = .19, P = .001), death avoidance domain of the DAI (beta = -.14, P = 0.03), life purpose domain of the DAI (beta = .23, P = .001), and rejection of traditional role limitations domain of the PNQ (beta = .51, P = .001) were selected as significant independent variables by multivariate analysis to evaluate nurses' positive attitudes toward caring for dying patients. Death anxiety domain of the DAI (beta = -.17, P = .02), patients' rights domain of the PNQ (beta =.46, P = .001), and rejection of traditional role limitations domain of the PNQ (beta = .34, P = .001) were selected as significant independent variables by multivariate analysis to evaluate the nurses' perception of patient-and family-centered care. In conclusion, nursing autonomy plays

  19. 78 FR 77771 - Culturally Significant Object Imported for Exhibition Determinations: “Love and Play: A Pair of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Culturally Significant Object Imported for Exhibition Determinations: ``Love and Play: A Pair of Paintings by..., I hereby determine that the object to be included in the exhibition ``Love and Play: A Pair...

  20. Importance of Unimolecular HO2 Elimination in the Heterogeneous OH Reaction of Highly Oxygenated Tartaric Acid Aerosol.

    PubMed

    Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R

    2016-07-28

    Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this study investigates the OH-radical initiated oxidation of aqueous tartaric acid (C4H6O6) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysis in Real Time) coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C4 functionalization product (C4H4O6) and three C3 fragmentation products (C3H4O4, C3H2O4, and C3H2O5). The C4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C4H4O6), the major reaction product. While in general, C-C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OSC), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OSC = 1.5). These results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms. PMID:27397411

  1. On the importance of meteoric dust for the stratospheric aerosol and polar stratospheric cloud formation (Invited)

    NASA Astrophysics Data System (ADS)

    Borrmann, S.

    2013-12-01

    Aerosol particles originating from meteoric ablation at high altitudes appear after some time in the lower mesosphere and upper stratosphere. They can be transported to even lower altitudes by the down-welling in connection with the winter hemisphere polar vortices. At altitudes below 30 km these particles are a component of the stratospheric background aerosol and become involved in microphysical processes including polar stratospheric cloud formation (PSC). PSCs are believed to heterogeneously form on the sulfuric acid background aerosol. However at times of relative volcanic quiescence the number densities of such background aerosol particles decreases and PSC formation may become more dependent on the presence of the meteoric ablation dust. In this presentation at first a short review of laboratory experiments on cloud nucleation on meteoric dust is given, and literature results from atmospheric measurements are discussed. In the second section recent in-situ lower stratospheric measurements (up to 20 km altitude) within the Northern hemispheric polar vortex from the RECONCILE and ESSENCE campaigns (2010 and 2011) are presented. Here in-situ measurements of the non-volatility of submicron aerosol particles are described as well as results from a-posteriori analyses on particles sampled from flight altitudes (using EDX and electron microscopy).

  2. The importance of plume rise on the concentrations and atmospheric impacts of biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Walter, Carolin; Freitas, Saulo R.; Kottmeier, Christoph; Kraut, Isabel; Rieger, Daniel; Vogel, Heike; Vogel, Bernhard

    2016-07-01

    We quantified the effects of the plume rise of biomass burning aerosol and gases for the forest fires that occurred in Saskatchewan, Canada, in July 2010. For this purpose, simulations with different assumptions regarding the plume rise and the vertical distribution of the emissions were conducted. Based on comparisons with observations, applying a one-dimensional plume rise model to predict the injection layer in combination with a parametrization of the vertical distribution of the emissions outperforms approaches in which the plume heights are initially predefined. Approximately 30 % of the fires exceed the height of 2 km with a maximum height of 8.6 km. Using this plume rise model, comparisons with satellite images in the visible spectral range show a very good agreement between the simulated and observed spatial distributions of the biomass burning plume. The simulated aerosol optical depth (AOD) with data of an AERONET station is in good agreement with respect to the absolute values and the timing of the maximum. Comparison of the vertical distribution of the biomass burning aerosol with CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) retrievals also showed the best agreement when the plume rise model was applied. We found that downwelling surface short-wave radiation below the forest fire plume is reduced by up to 50 % and that the 2 m temperature is decreased by up to 6 K. In addition, we simulated a strong change in atmospheric stability within the biomass burning plume.

  3. Physical and Optical/Radiative Characteristics of Aerosol and Cloud Particles in Tropical Cirrus: Importance in Radiation Balance

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Howard, S. D.; Foster, T. C.; Hallett, J.; Arnott, W. P.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    Whether cirrus clouds heat or cool the Earth-atmosphere system depends on the relative importance of the cloud shortwave albedo effect and the cloud thermal greenhouse effect. Both are determined by the distribution of ice condensate with cloud particle size. The microphysics instrument package flown aboard the NASA DC-8 in TOGA/COARE included an ice crystal replicator, a 2D Greyscale Cloud Particle Probe and a Forward Scattering Spectrometer Aerosol Probe. In combination, the electro-optical instruments permitted particle size measurements between 0.5 micrometer and 2.6 millimeter diameter. Ice crystal replicas were used to validate signals from the electrooptical instruments. Both optical and scanning electron microscopy were utilized to analyze aerosol and ice particle replicas between 0.1 micrometer and several 100 micrometer diameter. In first approximation, the combined aerosol-cloud particle spectrum in several clouds followed a power law N alpha D(sup -2.5). Thus, large cloud particles carried most of the condensate mass, while small cloud and aerosol particles determined the surface area. The mechanism of formation of small particles is growth of (hygroscopic, possibly ocean-derived) aerosol particles along the Kohler curves. The concentration of small particles is higher and less variable in space and time, and their tropospheric residence time is longer, than those of large cloud particles because of lower sedimentation velocities. Small particles shift effective cloud particle radii to sizes much smaller than the mean diameter of the cloud particles. This causes an increase in shortwave reflectivity and IR emissivity, and a decrease in transmissivity. Occasionally, the cloud reflectivity increased with altitude (decreasing temperature) stronger than did cloud emissivity, yielding enhanced radiative cooling at higher altitudes. Thus, cirrus produced by deep convection in the tropics may be critical in controlling processes whereby energy from warm

  4. Did large animals play an important role in global biogeochemical cycling in the past?

    NASA Astrophysics Data System (ADS)

    Doughty, C.

    2014-12-01

    In the late Pleistocene (~50-10,000 years ago), ninety-seven genera of large animals (>44kg) (megafauna) went extinct, concentrated in the Americas and Australia. The loss of megafauna had major effects on ecosystem structure, seed dispersal and land surface albedo. However, the impact of this dramatic extinction on ecosystem nutrient biogeochemistry, through the lateral transport of dung and bodies, has never been explored. Here we explore these nutrient impacts using a novel mathematical framework that analyses this lateral transport as a diffusion-like process and demonstrates that large animals play a disproportionately large role in the horizontal transfer of nutrients across landscapes. For example, we estimate that the extinction of the Amazonian megafauna led to a >98% reduction in the lateral transfer flux of the limiting nutrient phosphorus (P) with similar, though less extreme, decreases in all continents outside of Africa. This resulted in strong decreases in phosphorus availability in Eastern Amazonia away from fertile floodplains, a decline which may still be ongoing, and current P limitation in the Amazon basin may be partially a relic of an ecosystem without the functional connectedness it once had. More broadly, the Pleistocene megafaunal extinctions resulted in major and ongoing disruptions to terrestrial biogeochemical cycling at continental scales and increased nutrient heterogeneity globally.

  5. The importance of temporal collocation for the evaluation of aerosol models with observations

    NASA Astrophysics Data System (ADS)

    Schutgens, N. A. J.; Partridge, D. G.; Stier, P.

    2016-01-01

    It is often implicitly assumed that over suitably long periods the mean of observations and models should be comparable, even if they have different temporal sampling. We assess the errors incurred due to ignoring temporal sampling and show that they are of similar magnitude as (but smaller than) actual model errors (20-60 %).Using temporal sampling from remote-sensing data sets, the satellite imager MODIS (MODerate resolution Imaging Spectroradiometer) and the ground-based sun photometer network AERONET (AErosol Robotic NETwork), and three different global aerosol models, we compare annual and monthly averages of full model data to sampled model data. Our results show that sampling errors as large as 100 % in AOT (aerosol optical thickness), 0.4 in AE (Ångström Exponent) and 0.05 in SSA (single scattering albedo) are possible. Even in daily averages, sampling errors can be significant. Moreover these sampling errors are often correlated over long distances giving rise to artificial contrasts between pristine and polluted events and regions. Additionally, we provide evidence that suggests that models will underestimate these errors. To prevent sampling errors, model data should be temporally collocated to the observations before any analysis is made.We also discuss how this work has consequences for in situ measurements (e.g. aircraft campaigns or surface measurements) in model evaluation.Although this study is framed in the context of model evaluation, it has a clear and direct relevance to climatologies derived from observational data sets.

  6. Hsp70 plays an important role in high-fat diet induced gestational hyperglycemia in mice.

    PubMed

    Xing, Baoheng; Wang, Lili; Li, Qin; Cao, Yalei; Dong, Xiujuan; Liang, Jun; Wu, Xiaohua

    2015-12-01

    Gestational diabetes mellitus (GDM) has emerged as an epidemic disease during the last decade, affecting about 2 to 5% pregnant women. Even among women who have gestational hyperglycemia may also be positively related to adverse outcomes as GDM. Since heat shock protein (Hsp) 70 has been reported to be associated with diabetes and insulin resistance and its expression was reported to be negatively regulated by the membrane-permeable Hsp70 inhibitor MAL3-101 while positively regulated by the Hsp70 activator BGP-15, we investigated whether Hsp70 played a role in a gestational hyperglycemia mouse model. Mice were divided into non-pregnant and pregnant groups, and each comprised three subgroups: control, high-fat diet (HFD) + MAL3-101, and HFD + BGP-15. We examined the serum levels of triglycerides, total cholesterol, glucose, and insulin, as well as conducted thermal detection of brown adipose tissue (BAT). The role of Hsp70 in BAT apoptosis was also investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspase-3 staining. Higher serum level of Hsp70 was associated with increased bodyweight gain after pregnancy in mice fed HFD. Circulating Hsp70 was elevated in control pregnant mice compared to control non-pregnant mice. BGP-induced serum Hsp70 expression reduced triglycerides, total cholesterol, glucose, and insulin levels in the serum. Additionally, thermal detection of BAT, TUNEL, and caspase-3 staining revealed relationship correlation between Hsp70 and BAT functions. Hsp70 level is associated with hyperglycemia during pregnancy. Our results support the role of Hsp70 in facilitating BAT activities and protecting BAT cells from apoptosis via caspase-3 pathway.

  7. Rice WRKY45 plays important roles in fungal and bacterial disease resistance.

    PubMed

    Shimono, Masaki; Koga, Hironori; Akagi, Aya; Hayashi, Nagao; Goto, Shingo; Sawada, Miyuki; Kurihara, Takayuki; Matsushita, Akane; Sugano, Shoji; Jiang, Chang-Jie; Kaku, Hisatoshi; Inoue, Haruhiko; Takatsuji, Hiroshi

    2012-01-01

    Plant 'activators', such as benzothiadiazole (BTH), protect plants from various diseases by priming the plant salicylic acid (SA) signalling pathway. We have reported previously that a transcription factor identified in rice, WRKY45 (OsWRKY45), plays a pivotal role in BTH-induced disease resistance by mediating SA signalling. Here, we report further functional characterization of WRKY45. Different plant activators vary in their action points, either downstream (BTH and tiadinil) or upstream (probenazole) of SA. Rice resistance to Magnaporthe grisea, induced by both types of plant activator, was markedly reduced in WRKY45-knockdown (WRKY45-kd) rice, indicating a universal role for WRKY45 in chemical-induced resistance. Fungal invasion into rice cells was blocked at most attempted invasion sites (pre-invasive defence) in WRKY45-overexpressing (WRKY45-ox) rice. Hydrogen peroxide accumulated within the cell wall underneath invading fungus appressoria or between the cell wall and the cytoplasm, implying a possible role for H(2)O(2) in pre-invasive defence. Moreover, a hypersensitive reaction-like reaction was observed in rice cells, in which fungal growth was inhibited after invasion (post-invasive defence). The two levels of defence mechanism appear to correspond to Type I and II nonhost resistances. The leaf blast resistance of WRKY45-ox rice plants was much higher than that of other known blast-resistant varieties. WRKY45-ox plants also showed strong panicle blast resistance. BTH-induced resistance to Xanthomonas oryzae pv. oryzae was compromised in WRKY45-kd rice, whereas WRKY45-ox plants were highly resistant to this pathogen. However, WRKY45-ox plants were susceptible to Rhizoctonia solani. These results indicate the versatility and limitations of the application of this gene.

  8. [Aerosol therapy].

    PubMed

    Wildhaber, J H

    1998-08-15

    Aerosol therapy plays a major role in the diagnosis and treatment of various lung diseases. The aim of inhalation therapy is to deposit a reproducible and adequate dose of a specific drug to the airways, in order to achieve a high, local, clinical effect while avoiding serious systemic side effects. To achieve this goal, it is therefore important to have an efficient inhalation device to deliver different medications. However, the currently available therapeutic inhalation devices (nebuliser, pressurised metered-dose inhaler and dry powder inhaler) are not very efficient in aerosol delivery and have several disadvantages. Inhalation devices can be assessed by in vitro studies, filter studies and radiolabelled deposition studies. Several radiolabelled deposition studies have shown that nebulisers and pressurised metered-dose inhalers are not very efficient in aerosol delivery. In children, before 1997, only 0.5% to 15% of the total nebulised or actuated dose from a nebuliser or pressurised metered-dose inhaler actually reached the lungs. These numbers were somewhat improved in adults, 30% of the total nebulised or actuated dose reaching the airways. Aerosol therapy with dry powder inhalers was the most efficient before 1997, 30% of the total dose being deposited in the lungs of adults and children. In 1997, new developments in pressurised metered-dose inhalers much improved their efficiency in aerosol delivery. Lung deposition can be increased by up to 60% with use of a non-electrostatic holding chamber and/or a pressurised metered-dose inhaler with a hydrofluoroalkane propellant possessing superior aerosol characteristics. Several studies comparing the clinical efficiency of different inhalation devices have shown that the choice of an optimal inhalation device is crucial. In addition to the aerosol characteristics, ventilation parameters and airway morphology have an important bearing on deposition patterns. These parameters may be greatly influenced by the

  9. Gravity Plays an Important Role in Muscle Development and the Differentiation of Contractile Protein Phenotype

    NASA Technical Reports Server (NTRS)

    Adams, Gregory A.; Haddad, Fadia; Baldwin, Kenneth M.

    2003-01-01

    Several muscles in the body exist mainly to work against gravity. Whether gravity is important in the development of these muscles is not known. By examining the basic proteins that compose muscle, questions about the role of gravity in muscle development can be answered. Myosin heavy chains (MHCs) are a family of proteins critically important for muscle contraction. Several types of MHCs exist (e.g., neonatal, slow, fast), and each type is produced by a particular gene. Neonatal MHCs are produced early in life. Slow MHCs are important in antigravity muscles, and fast MHCs are found in fast-twitch power muscles. The gene that is turned on or expressed will determine which MHC is produced. Early in development, antigravity skeletal muscles (muscles that work against gravity) normally produce a combination of the neonatal/embryonic MHCs. The expression of these primitive MHCs is repressed early in development; and the adult slow and fast MHC genes become fully expressed. We tested the hypothesis that weightbearing activity is critical for inducing the normal expression of the slow MHC gene typically expressed in adult antigravity muscles. Also, we hypothesized that thyroid hormone, but not opposition to gravity, is necessary for expressing the adult fast IIb MHC gene essential for high-intensity muscle performance. Groups of normal thyroid and thyroid-deficient neonatal rats were studied after their return from the 16-day Neurolab mission and compared to matched controls. The results suggest: (1) Weightlessness impaired body and limb skeletal muscle growth in both normal and thyroid-deficient animals. Antigravity muscles were impaired more than those used primarily for locomotion andor nonweightbearing activity. (2) Systemic and muscle expression of insulin-like growth factor-I (IGF-I), an important body and tissue growth factor, was depressed in flight animals. (3) Normal slow, type I MHC gene expression was markedly repressed in the normal thyroid flight group. (4

  10. Intracellularly induced cyclophilins play an important role in stress adaptation and virulence of Brucella abortus.

    PubMed

    Roset, Mara S; García Fernández, Lucía; DelVecchio, Vito G; Briones, Gabriel

    2013-02-01

    Brucella is an intracellular bacterial pathogen that causes the worldwide zoonotic disease brucellosis. Brucella virulence relies on its ability to transition to an intracellular lifestyle within host cells. Thus, this pathogen must sense its intracellular localization and then reprogram gene expression for survival within the host cell. A comparative proteomic investigation was performed to identify differentially expressed proteins potentially relevant for Brucella intracellular adaptation. Two proteins identified as cyclophilins (CypA and CypB) were overexpressed in the intracellular environment of the host cell in comparison to laboratory-grown Brucella. To define the potential role of cyclophilins in Brucella virulence, a double-deletion mutant was constructed and its resulting phenotype was characterized. The Brucella abortus ΔcypAB mutant displayed increased sensitivity to environmental stressors, such as oxidative stress, pH, and detergents. In addition, the B. abortus ΔcypAB mutant strain had a reduced growth rate at lower temperature, a phenotype associated with defective expression of cyclophilins in other microorganisms. The B. abortus ΔcypAB mutant also displays reduced virulence in BALB/c mice and defective intracellular survival in HeLa cells. These findings suggest that cyclophilins are important for Brucella virulence and survival in the host cells.

  11. Intracellularly Induced Cyclophilins Play an Important Role in Stress Adaptation and Virulence of Brucella abortus

    PubMed Central

    García Fernández, Lucía; DelVecchio, Vito G.; Briones, Gabriel

    2013-01-01

    Brucella is an intracellular bacterial pathogen that causes the worldwide zoonotic disease brucellosis. Brucella virulence relies on its ability to transition to an intracellular lifestyle within host cells. Thus, this pathogen must sense its intracellular localization and then reprogram gene expression for survival within the host cell. A comparative proteomic investigation was performed to identify differentially expressed proteins potentially relevant for Brucella intracellular adaptation. Two proteins identified as cyclophilins (CypA and CypB) were overexpressed in the intracellular environment of the host cell in comparison to laboratory-grown Brucella. To define the potential role of cyclophilins in Brucella virulence, a double-deletion mutant was constructed and its resulting phenotype was characterized. The Brucella abortus ΔcypAB mutant displayed increased sensitivity to environmental stressors, such as oxidative stress, pH, and detergents. In addition, the B. abortus ΔcypAB mutant strain had a reduced growth rate at lower temperature, a phenotype associated with defective expression of cyclophilins in other microorganisms. The B. abortus ΔcypAB mutant also displays reduced virulence in BALB/c mice and defective intracellular survival in HeLa cells. These findings suggest that cyclophilins are important for Brucella virulence and survival in the host cells. PMID:23230297

  12. PRKX, a Novel cAMP-Dependent Protein Kinase Member, Plays an Important Role in Development.

    PubMed

    Huang, Sizhou; Li, Qian; Alberts, Ian; Li, Xiaohong

    2016-03-01

    The human protein kinase X gene (PRKX) and cAMP-dependent protein kinase (PKA) are both c-AMP-dependent serine/threonine protein kinases within the protein kinase AGC subgroup. Of all the protein kinases in this group, PRKX is the least studied. PRKX has been isolated from patients with chondrodysplasia punctate and is involved in numerous processes, including sexual differentiation and fertilization, normal kidney development and autosomal dominant polycystic kidney disease (ADPKD), blood maturation, neural development, and angiogenesis in vitro. Although the role of PRKX in development and disease has been reported recently, the underlying mechanism of PRKX activity is largely unknown. In addition, based on the expression pattern of PRKX and the extensive role of PKA in disease and development, PRKX might have additional crucial functions that have not been addressed in the literature. In this review, we summarize the characteristics and developmental functions of PRKX that have been reported by recent studies. In particular, we elucidate the structural and functional differences between PRKX and PKA, as well as the possible roles of PRKX in development and related diseases. Finally, we propose future studies that could lead to important discoveries of more PRKX functions and the underlying mechanisms involved. PMID:26252946

  13. Central dopaminergic neurotransmission plays an important role in thermoregulation and performance during endurance exercise.

    PubMed

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-10-01

    Dopamine (DA) has been widely investigated for its potential role in determining exercise performance. It was originally thought that DA's ergogenic effect was by mediating psychological responses. Recently, some studies have also suggested that DA may regulate physiological responses, such as thermoregulation. Hyperthermia has been demonstrated as an important limiting factor during endurance exercise. DA is prominent in the thermoregulatory centre, and changes in DA concentration have been shown to affect core temperature regulation during exercise. Some studies have proposed that DA or DA/noradrenaline (NA) reuptake inhibitors can improve exercise performance, despite hyperthermia during exercise in the heat. DA/NA reuptake inhibitors also increase catecholamine release in the thermoregulatory centre. Intracerebroventricularly injected DA has been shown to improve exercise performance through inhibiting hyperthermia-induced fatigue, even at normal ambient temperatures. Further, caffeine has been reported to increase DA release in the thermoregulatory centre and improves endurance exercise performance despite increased core body temperature. Taken together, DA has been shown to have ergogenic effects and increase heat storage and hyperthermia tolerance. The mechanisms underlying these effects seem to involve limiting/overriding the inhibitory signals from the central nervous system that result in cessation of exercise due to hyperthermia. PMID:26581447

  14. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation

    PubMed Central

    Seper, Andrea; Fengler, Vera H I; Roier, Sandro; Wolinski, Heimo; Kohlwein, Sepp D; Bishop, Anne L; Camilli, Andrew; Reidl, Joachim; Schild, Stefan

    2011-01-01

    Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae. PMID:22032623

  15. Cholesterol-rich lipid rafts play an important role in the Cyprinid herpesvirus 3 replication cycle.

    PubMed

    Brogden, Graham; Adamek, Mikołaj; Proepsting, Marcus J; Ulrich, Reiner; Naim, Hassan Y; Steinhagen, Dieter

    2015-09-30

    The Cyprinus herpesvirus 3 (CyHV-3) is a member of the new Alloherpesviridae virus family in the Herpesvirales order. CyHV-3 has been implicated in a large number of disease outbreaks in carp populations causing up to 100% mortality. The aim of this study was to investigate the requirement of cholesterol-rich lipid rafts in CyHV-3 entry and replication in carp cells. Plasma membrane cholesterol was depleted from common carp brain (CCB) cells with methyl-β-cyclodextrin (MβCD). Treated and non-treated cells were infected with CyHV-3 and virus binding and infection parameters were assessed using RT-qPCR, immunocytochemistry and virus titration. The effect of cholesterol reduction severely stunted virus entry in vitro, however after cholesterol replenishment virus entry and subsequent replication rates were similar to the control infection. Furthermore, cholesterol depletion did not significantly influence virus binding and the subsequent post-entry replication stage, however had an impact on virus egress. Comparative analysis of the lipid compositions of CyHV-3 and CCB membrane fractions revealed strong similarities between the lipid composition of the CyHV-3 and CCB lipid rafts. The results presented here show that cholesterol-rich lipid rafts are important for the CyHV-3 replication cycle especially during entry and egress.

  16. Transposons play an important role in the evolution and diversification of centromeres among closely related species

    PubMed Central

    Gao, Dongying; Jiang, Ning; Wing, Rod A.; Jiang, Jiming; Jackson, Scott A.

    2015-01-01

    Centromeres are important chromosomal regions necessary for eukaryotic cell segregation and replication. Due to high amounts of tandem repeats and transposons, centromeres have been difficult to sequence in most multicellular organisms, thus their sequence structure and evolution are poorly understood. In this study, we analyzed transposons in the centromere 8 (Cen8) from the African cultivated rice (O. glaberrima) and two subspecies of the Asian cultivated rice (O. sativa), indica and japonica. We detected much higher transposon contents (>69%) in centromere regions than in the whole genomes of O. sativa ssp. japonica and O. glaberrima (~35%). We compared the three Cen8s and identified numerous recent insertions of transposons that were frequently organized into multiple-layer nested blocks, similar to nested transposons in maize. Except for the Hopi retrotransposon, all LTR retrotransposons were shared but exhibit different abundances amongst the three Cen8s. Even though a majority of the transposons were located in intergenic regions, some gene-related transposons were found and may be involved in gene diversification. Chromatin immunoprecipitated (ChIP) data analysis revealed that 165 families from both Class I and Class II transposons were found in CENH3-associated chromatin sequences. These results indicate essential roles for transposons in centromeres and that the rapid divergence of the Cen8 sequences between the two cultivated rice species was primarily caused by recent transposon insertions. PMID:25904926

  17. Transposable elements play an important role during cotton genome evolution and fiber cell development.

    PubMed

    Wang, Kun; Huang, Gai; Zhu, Yuxian

    2016-02-01

    Transposable elements (TEs) usually occupy largest fractions of plant genome and are also the most variable part of the structure. Although traditionally it is hallmarked as "junk and selfish DNA", today more and more evidence points out TE's participation in gene regulations including gene mutation, duplication, movement and novel gene creation via genetic and epigenetic mechanisms. The recently sequenced genomes of diploid cottons Gossypium arboreum (AA) and Gossypium raimondii (DD) together with their allotetraploid progeny Gossypium hirsutum (AtAtDtDt) provides a unique opportunity to compare genome variations in the Gossypium genus and to analyze the functions of TEs during its evolution. TEs accounted for 57%, 68.5% and 67.2%, respectively in DD, AA and AtAtDtDt genomes. The 1,694 Mb A-genome was found to harbor more LTR(long terminal repeat)-type retrotransposons that made cardinal contributions to the twofold increase in its genome size after evolution from the 775.2 Mb D-genome. Although the 2,173 Mb AtAtDtDt genome showed similar TE content to the A-genome, the total numbers of LTR-gypsy and LTR-copia type TEs varied significantly between these two genomes. Considering their roles on rewiring gene regulatory networks, we believe that TEs may somehow be involved in cotton fiber cell development. Indeed, the insertion or deletion of different TEs in the upstream region of two important transcription factor genes in At or Dt subgenomes resulted in qualitative differences in target gene expression. We suggest that our findings may open a window for improving cotton agronomic traits by editing TE activities. PMID:26687725

  18. Vegetation cover plays the most important role in soil erosion control.

    PubMed

    Mahmoudzadeh, A

    2007-02-01

    To obtain, characteristics and behaviors of soil erosion phenomena, to control it's harms and reduce it's risks, realistic data from soil erosion rates are necessary. Mean while, measuring soil erosion rates particularly in large scale is a time consuming and expensive task. Moreover, spatial and temporal changes of soil erosion increase this problem. Therefore, to find out a certain way of creating capable methods which easily and quickly be able to estimate soil erosion rate, is quite logical. So, different models are widely used, but, may be the most important consideration with this regard is that, these models should be previously, tested and adopted to defined areas to stop probability of causing some huge and meaningful errors. Therefore, to achieve the above mentioned aim, different methods are used. Anyway, conditions which resulted to create a suitable model, should be considered in a defined area where, model is applied, unless, model application can leads to huge risks. This study is an attempt with this refer, that is, with comparing measured soil loss rates and predicted soil erosion rates from a defined catchment area, created a reasonable relationship between them and achieved the main aim of the study. That is, one of the small upland catchments of Emam kandi of Urmia with 75 ha area which is part of the Urmia lake catchment area and under layned by calcareous parent material, is selected as a study site. Selected catchment has natural pasture and has closured during the recent years. To calculate sediment yield the following processes were done: first, estimating the volume of trapped sediments, then, surveying the catchment area, for calculating sediment yield. Measured sediment yield is 6.19 t ha(-1) year(-1) which leads to soil loss rate of 13.76 t ha(-1) year(-1) by using Sediment Delivery Ratio (SDR). Also, inside the measurement of sediment yields and calculation of soil loss rates, two models of MUSLE and PSIAC were used respectively after

  19. Importance of aerosol composition and mixing state for cloud droplet activation in the high Arctic

    NASA Astrophysics Data System (ADS)

    Leck, C.; Svensson, E.

    2014-08-01

    Concentrations of cloud condensation nuclei (CCN) were measured throughout an expedition by icebreaker around the central Arctic Ocean, including a 3 week ice drift operation at 87° N, from 3 August to 9 September 2008. In agreement with previous observations in the area and season median daily CCN concentrations at 0.2% water vapor supersaturation were typically in the range of 15 to 30 cm-3, but concentrations varied by two to three orders of magnitude over the expedition and were occasionally below 1 cm-3. The CCN concentrations were highest near the ice edge and fell by a factor of three in the first 48 h of transport from the open sea into the pack ice region. For longer transport times they increased again indicating a local source over the pack ice, suggested to be polymer gels, via drops injected into the air by bubbles bursting on open leads. By assuming Köhler theory and simulating the cloud nucleation process using a Lagrangian adiabatic air parcel model that solves the kinetic formulation for condensation of water on size resolved aerosol particles we inferred the properties of the unexplained non-water soluble aerosol fraction that is necessary for reproducing the observed concentrations of CCN. We propose that the portion of the internally/externally mixed water insoluble particles was larger in the corresponding smaller aerosol sizes ranges. These particles were physically and chemically behaving as polymer gels: the interaction of the hydrophilic and hydrophobic entities on the structures of polymer gels during cloud droplet activation would at first only show a partial wetting character and only weak hygroscopic growth. Given time, a high CCN activation efficiency is achieved, which is promoted by the hydrophilicity or surface-active properties of the gels. Thus the result in this study argues for that the behavior of the high Arctic aerosol in CCN-counters operating at water vapor supersaturations > 0.4% (high relative humidities) may not be

  20. The importance of temporal collocation for the evaluation of aerosol models with observations

    NASA Astrophysics Data System (ADS)

    Schutgens, N. A. J.; Partridge, D. G.; Stier, P.

    2015-09-01

    It is often implicitly assumed that over suitably long periods the mean of observations and models should be comparable, even if they have different temporal sampling. We assess the errors incurred due to ignoring temporal sampling and show they are of similar magnitude as (but smaller than) actual model errors (20-60 %). Using temporal sampling from remote sensing datasets (the satellite imager MODIS and the ground-based sun photometer network AERONET) and three different global aerosol models, we compare annual and monthly averages of full model data to sampled model data. Our results show that sampling errors as large as 100 % in AOT (Aerosol Optical Thickness), 0.4 in AE (Ångström Exponent) and 0.05 in SSA (Single Scattering Albedo) are possible. Even in daily averages, sampling errors can be significant. More-over these sampling errors are often correlated over long distances giving rise to artificial contrasts between pristine and polluted events and regions. Additionally, we provide evidence that suggests that models will underestimate these errors. To prevent sampling errors, model data should be temporally collocated to the observations before any analysis is made. We also discuss how this work has consequences for in-situ measurements (e.g. aircraft campaigns or surface measurements) in model evaluation.

  1. Effects of relative humidity on aerosol light scattering and its importance for the comparison of remote sensing with in-situ measurements

    NASA Astrophysics Data System (ADS)

    Zieger, Paul; Clemer, Katrijn; Yilmaz, Selami; Frieß, Udo; Irie, Hitoshi; Henzing, Bas; Fierz-Schmidhauser, Rahel; de Leeuw, Gerrit; Baltensperger, Urs; Weingartner, Ernest

    2010-05-01

    In the field, in-situ measurements of aerosol light scattering are often performed under dry conditions (relative humidity RH < 30-40%) which differ from the ambient ones. Since ambient aerosol particles experience a hygroscopic growth at enhanced RH, their micro physical and optical properties - especially the aerosol light scattering - are strongly dependent on RH. The knowledge of this RH effect is of eminent importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. Here, we will present results from the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI, June-July 2009, Cabauw, The Netherlands). During this campaign different remote sensing and in-situ instruments were used to derive atmospheric parameters mainly NO2 but also aerosol properties. The aerosol in-situ measurements were performed in the basement of the Cabauw tower (inlet height 60 m). The aerosol scattering coefficient was measured dry and at various, predefined RH conditions between 20 and 95% with a recently developed humidified nephelometer (WetNeph) and with a second nephelometer measuring at dry conditions. In addition, the aerosol absorption coefficient was measured by a multi-angle absorption photometer (MAAP). This combination of measurements allows the determination of the aerosol extinction coefficient at ambient RH. Three MAX-DOAS (multi-axis differential optical absorption spectroscopy) instruments retrieved vertical profiles of the aerosol extinction coefficient during CINDI. The retrieved aerosol extinction corresponding to the lowest profile layer can now be directly compared to the in-situ value, which is now re-calculated to ambient RH.

  2. Children's Right to Play: An Examination of the Importance of Play in the Lives of Children Worldwide. Working Papers in Early Childhood Development, No. 57

    ERIC Educational Resources Information Center

    Lester, Stuart; Russell, Wendy

    2010-01-01

    In this working paper, Wendy Russell and Stuart Lester of the UK's University of Gloucestershire discuss why play is fundamental to the health and well-being of children. They argue that both state signatories to the United Nations Convention on the Rights of the Child (Article 31 of which enshrines the right to play) and adults generally should…

  3. Global modeling of tropospheric iodine aerosol

    NASA Astrophysics Data System (ADS)

    Sherwen, Tomás. M.; Evans, Mat J.; Spracklen, Dominick V.; Carpenter, Lucy J.; Chance, Rosie; Baker, Alex R.; Schmidt, Johan A.; Breider, Thomas J.

    2016-09-01

    Natural aerosols play a central role in the Earth system. The conversion of dimethyl sulfide to sulfuric acid is the dominant source of oceanic secondary aerosol. Ocean emitted iodine can also produce aerosol. Using a GEOS-Chem model, we present a simulation of iodine aerosol. The simulation compares well with the limited observational data set. Iodine aerosol concentrations are highest in the tropical marine boundary layer (MBL) averaging 5.2 ng (I) m-3 with monthly maximum concentrations of 90 ng (I) m-3. These masses are small compared to sulfate (0.75% of MBL burden, up to 11% regionally) but are more significant compared to dimethyl sulfide sourced sulfate (3% of the MBL burden, up to 101% regionally). In the preindustrial, iodine aerosol makes up 0.88% of the MBL burden sulfate mass and regionally up to 21%. Iodine aerosol may be an important regional mechanism for ocean-atmosphere interaction.

  4. Dust in the Sky: Atmospheric Composition. Modeling of Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Kinne, Stefan; Torres, Omar; Holben, Brent; Duncan, Bryan; Martin, Randall; Logan, Jennifer; Higurashi, Akiko; Nakajima, Teruyuki

    2000-01-01

    Aerosol is any small particle of matter that rests suspended in the atmosphere. Natural sources, such as deserts, create some aerosols; consumption of fossil fuels and industrial activity create other aerosols. All the microscopic aerosol particles add up to a large amount of material floating in the atmosphere. You can see the particles in the haze that floats over polluted cities. Beyond this visible effect, aerosols can actually lower temperatures. They do this by blocking, or scattering, a portion of the sun's energy from reaching the surface. Because of this influence, scientists study the physical properties of atmospheric aerosols. Reliable numerical models for atmospheric aerosols play an important role in research.

  5. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections

    PubMed Central

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters. PMID:25714877

  6. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections.

    PubMed

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters.

  7. The potential importance of non-local, deep transport on the energetics, momentum, chemistry, and aerosol distributions in the atmospheres of Earth, Mars, and Titan

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.

    2012-01-01

    A review of non-local, deep transport mechanisms in the atmosphere of Earth provides a good foundation for examining whether similar mechanisms are operating in the atmospheres of Mars and Titan. On Earth, deep convective clouds in the tropics constitute the upward branch of the Hadley Cell and provide a conduit through which energy, moisture, momentum, aerosols, and chemical species are moved from the boundary layer to the upper troposphere and lower stratosphere. This transport produces mid-tropospheric minima in quantities such as water vapor and moist static energy and maxima where the clouds detrain. Analogs to this terrestrial transport are found in the strong and deep thermal circulations associated with topography on Mars and with Mars dust storms. Observations of elevated dust layers on Mars further support the notion that non-local deep transport is an important mechanism in the atmosphere of Mars. On Titan, the presence of deep convective clouds almost assures that non-local, deep transport is occurring and these clouds may play a role in global cycling of energy, momentum, and methane. Based on the potential importance of non-local deep transport in Earth's atmosphere and supported by evidence for such transport in the atmospheres of Mars and Titan, greater attention to this mechanism in extraterrestrial atmospheres is warranted.

  8. Vitamin D signaling pathway plays an important role in the development of heart failure after myocardial infarction.

    PubMed

    Bae, Soochan; Singh, Sylvia S; Yu, Hyeon; Lee, Ji Yoo; Cho, Byung Ryul; Kang, Peter M

    2013-04-01

    Accumulating evidence suggests that vitamin D deficiency plays a crucial role in heart failure. However, whether vitamin D signaling itself plays an important role in cardioprotection is poorly understood. In this study, we examined the mechanism of modulating vitamin D signaling on progression to heart failure after myocardial infarction (MI) in mice. Vitamin D signaling was activated by administration of paricalcitol (PC), an activated vitamin D analog. Wild-type (WT) mice underwent sham or MI surgery and then were treated with either vehicle or PC. Compared with vehicle group, PC attenuated development of heart failure after MI associated with decreases in biomarkers, apoptosis, inflammation, and fibrosis. There was also improvement of cardiac function with PC treatment after MI. Furthermore, vitamin D receptor (VDR) mRNA and protein levels were restored by PC treatment. Next, to explore whether defective vitamin D signaling exhibited deleterious responses after MI, WT and VDR knockout (KO) mice underwent sham or MI surgery and were analyzed 4 wk after MI. VDR KO mice displayed a significant decline in survival rate and cardiac function compared with WT mice after MI. VDR KO mice also demonstrated a significant increase in heart failure biomarkers, apoptosis, inflammation, and fibrosis. Vitamin D signaling promotes cardioprotection after MI through anti-inflammatory, antifibrotic and antiapoptotic mechanisms.

  9. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    SciTech Connect

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.

  10. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state.

    PubMed

    Kurutas, Ergul Belge

    2016-01-01

    Remarkable interest has risen in the idea that oxidative/nitrosative stress is mediated in the etiology of numerous human diseases. Oxidative/Nitrosative stress is the result of an disequilibrium in oxidant/antioxidant which reveals from continuous increase of Reactive Oxygen and Reactive Nitrogen Species production. The aim of this review is to emphasize with current information the importance of antioxidants which play the role in cellular responce against oxidative/nitrosative stress, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. Products of lipid peroxidation have commonly been used as biomarkers of oxidative/nitrosative stress damage. Lipid peroxidation generates a variety of relatively stable decomposition end products, mainly α, β-unsaturated reactive aldehydes, such as malondialdehyde, 4-hydroxy-2-nonenal, 2-propenal (acrolein) and isoprostanes, which can be measured in plasma and urine as an indirect index of oxidative/nitrosative stress. Antioxidants are exogenous or endogenous molecules that mitigate any form of oxidative/nitrosative stress or its consequences. They may act from directly scavenging free radicals to increasing antioxidative defences. Antioxidant deficiencies can develop as a result of decreased antioxidant intake, synthesis of endogenous enzymes or increased antioxidant utilization. Antioxidant supplementation has become an increasingly popular practice to maintain optimal body function. However, antoxidants exhibit pro-oxidant activity depending on the specific set of conditions. Of particular importance are their dosage and redox conditions in the cell.

  11. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state.

    PubMed

    Kurutas, Ergul Belge

    2016-01-01

    Remarkable interest has risen in the idea that oxidative/nitrosative stress is mediated in the etiology of numerous human diseases. Oxidative/Nitrosative stress is the result of an disequilibrium in oxidant/antioxidant which reveals from continuous increase of Reactive Oxygen and Reactive Nitrogen Species production. The aim of this review is to emphasize with current information the importance of antioxidants which play the role in cellular responce against oxidative/nitrosative stress, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. Products of lipid peroxidation have commonly been used as biomarkers of oxidative/nitrosative stress damage. Lipid peroxidation generates a variety of relatively stable decomposition end products, mainly α, β-unsaturated reactive aldehydes, such as malondialdehyde, 4-hydroxy-2-nonenal, 2-propenal (acrolein) and isoprostanes, which can be measured in plasma and urine as an indirect index of oxidative/nitrosative stress. Antioxidants are exogenous or endogenous molecules that mitigate any form of oxidative/nitrosative stress or its consequences. They may act from directly scavenging free radicals to increasing antioxidative defences. Antioxidant deficiencies can develop as a result of decreased antioxidant intake, synthesis of endogenous enzymes or increased antioxidant utilization. Antioxidant supplementation has become an increasingly popular practice to maintain optimal body function. However, antoxidants exhibit pro-oxidant activity depending on the specific set of conditions. Of particular importance are their dosage and redox conditions in the cell. PMID:27456681

  12. A Petunia Homeodomain-Leucine Zipper Protein, PhHD-Zip, Plays an Important Role in Flower Senescence

    PubMed Central

    Chang, Xiaoxiao; Donnelly, Linda; Sun, Daoyang; Rao, Jingping; Reid, Michael S.; Jiang, Cai-Zhong

    2014-01-01

    Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence. PMID:24551088

  13. Geographic location, sex and nutritional status play an important role in body image concerns among Brazilian adolescents.

    PubMed

    Laus, Maria Fernanda; Miranda, Valter Paulo Neves; Almeida, Sebastião Sousa; Braga Costa, Telma Maria; Ferreira, Maria Elisa Caputo

    2013-03-01

    This study compared body image concerns among adolescents from different geographic locations in Brazil, and the influence of sex and nutritional status. Seven hundred eighty-eight adolescents completed the Body Shape Questionnaire (BSQ) and had their weight and height measured. There were significant cross-regional differences in BSQ scores. Also, body image concerns were more prevalent among girls and among overweight adolescents. It is suggested that sex and nutritional status may play an important role in body image concerns, which is more common between adolescents from urban areas. Furthermore, our findings contribute to the literature by examining patterns of body image concerns within subgroups of adolescents who have received little research attention on these issues.

  14. Molecular identification of three novel glutaredoxin genes that play important roles in antioxidant defense in Helicoverpa armigera.

    PubMed

    Zhang, Song-Dou; Shen, Zhong-Jian; Liu, Xiao-Ming; Li, Zhen; Zhang, Qing-Wen; Liu, Xiao-Xia

    2016-08-01

    Glutaredoxins (Grxs), also known as thioltransferases, play key roles in maintaining intracellular redox balance and protecting cells from oxidative damage in plants and mammals. We tested whether Grxs play important roles in antioxidant defense in insects using the moth, Helicoverpa armigera. We obtained the full-length cDNA sequences of three novel Grx genes, named HaGrx, HaGrx3, and HaGrx5. Sequence analysis indicated that HaGrx shared a high amino acid identity (58%-78%) and a CPYC motif of conserved redox activity with homologues from other selected insect species. In contrast, HaGrx3 and HaGrx5 both shared a CGF(S/G) motif, a conserved catalytic domain, with other orthologous genes. Quantitative real-time PCR results revealed that HaGrx, HaGrx3, and HaGrx5 exhibited temporally- and spatially-dependent patterns of expression. The mRNA expression of HaGrx, HaGrx3, and HaGrx5 was induced by various temperature stresses and H2O2 treatments. We further investigated the knockdown of HaGrx, HaGrx3, and HaGrx5 in H. armigera larvae and found that most of the selected antioxidant genes were up regulated. However, Tpx was down regulated, and further interpretation of the complementary functions of these antioxidant genes is still required. We also determined the effect of HaGrx, HaGrx3, and HaGrx5 knockdown on antioxidant enzymatic activity and metabolite content. The enzymatic activities of SOD, CAT, and POD, and the metabolite contents of hydrogen peroxide, ascorbate, protein carbonyl, and total GSH increased after RNAi mediated knockdown of HaGrx, HaGrx3, and HaGrx5. These results supported our hypothesis that HaGrx, HaGrx3, and HaGrx5 play important roles in antioxidant defense of Helicoverpa armigera and provided a theoretical basis for further in-depth study of physiological function in the insect glutaredoxin family genes. PMID:27339760

  15. Molecular identification of three novel glutaredoxin genes that play important roles in antioxidant defense in Helicoverpa armigera.

    PubMed

    Zhang, Song-Dou; Shen, Zhong-Jian; Liu, Xiao-Ming; Li, Zhen; Zhang, Qing-Wen; Liu, Xiao-Xia

    2016-08-01

    Glutaredoxins (Grxs), also known as thioltransferases, play key roles in maintaining intracellular redox balance and protecting cells from oxidative damage in plants and mammals. We tested whether Grxs play important roles in antioxidant defense in insects using the moth, Helicoverpa armigera. We obtained the full-length cDNA sequences of three novel Grx genes, named HaGrx, HaGrx3, and HaGrx5. Sequence analysis indicated that HaGrx shared a high amino acid identity (58%-78%) and a CPYC motif of conserved redox activity with homologues from other selected insect species. In contrast, HaGrx3 and HaGrx5 both shared a CGF(S/G) motif, a conserved catalytic domain, with other orthologous genes. Quantitative real-time PCR results revealed that HaGrx, HaGrx3, and HaGrx5 exhibited temporally- and spatially-dependent patterns of expression. The mRNA expression of HaGrx, HaGrx3, and HaGrx5 was induced by various temperature stresses and H2O2 treatments. We further investigated the knockdown of HaGrx, HaGrx3, and HaGrx5 in H. armigera larvae and found that most of the selected antioxidant genes were up regulated. However, Tpx was down regulated, and further interpretation of the complementary functions of these antioxidant genes is still required. We also determined the effect of HaGrx, HaGrx3, and HaGrx5 knockdown on antioxidant enzymatic activity and metabolite content. The enzymatic activities of SOD, CAT, and POD, and the metabolite contents of hydrogen peroxide, ascorbate, protein carbonyl, and total GSH increased after RNAi mediated knockdown of HaGrx, HaGrx3, and HaGrx5. These results supported our hypothesis that HaGrx, HaGrx3, and HaGrx5 play important roles in antioxidant defense of Helicoverpa armigera and provided a theoretical basis for further in-depth study of physiological function in the insect glutaredoxin family genes.

  16. Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach

    SciTech Connect

    Baustian, Kelly J.; Cziczo, Daniel J.; Wise, M. A.; Pratt, Kerri; Kulkarni, Gourihar R.; Hallar, Anna G.; Tolbert, Margaret A.

    2012-03-30

    In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory investigations using Raman spectroscopy and field measurements by single-particle mass spectrometry. Aerosol sampling took place at Storm Peak Laboratory in Steamboat Springs, Colorado (elevation of 3210 m). A cascade impactor was used to collect coarse-mode aerosol particles for laboratory analysis by Raman spectroscopy; the composition, mixing state, and heterogeneous ice nucleation activity of individual particles were examined. For in situ analysis of fine-mode aerosol, ice nucleation on ambient particles was observed using a compact ice nucleation chamber. Ice crystals were separated from unactivated aerosol using a pumped counterflow virtual impactor, and ice nuclei were analyzed using particle analysis by laser mass spectrometry. For both fine and coarse modes, the ice nucleating particle fractions were enriched in minerals and depleted in sulfates and nitrates, compared to the background aerosol sampled. The vast majority of particles in both the ambient and ice active aerosol fractions contained a detectable amount of organic material. Raman spectroscopy showed that organic material is sometimes present in the form of a coating on the surface of inorganic particles. We find that some organic-containing particles serve as efficient ice nuclei while others do not. For coarse-mode aerosol, organic particles were only observed to initiate ice formation when oxygen signatures were also present in their spectra.

  17. Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach

    NASA Astrophysics Data System (ADS)

    Baustian, Kelly J.; Cziczo, Daniel J.; Wise, Matthew E.; Pratt, Kerri A.; Kulkarni, Gourihar; Hallar, A. Gannet; Tolbert, Margaret A.

    2012-03-01

    In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory investigations using Raman spectroscopy and field measurements by single-particle mass spectrometry. Aerosol sampling took place at Storm Peak Laboratory in Steamboat Springs, Colorado (elevation of 3210 m). A cascade impactor was used to collect coarse-mode aerosol particles for laboratory analysis by Raman spectroscopy; the composition, mixing state, and heterogeneous ice nucleation activity of individual particles were examined. For in situ analysis of fine-mode aerosol, ice nucleation on ambient particles was observed using a compact ice nucleation chamber. Ice crystals were separated from unactivated aerosol using a pumped counterflow virtual impactor, and ice nuclei were analyzed using particle analysis by laser mass spectrometry. For both fine and coarse modes, the ice nucleating particle fractions were enriched in minerals and depleted in sulfates and nitrates, compared to the background aerosol sampled. The vast majority of particles in both the ambient and ice active aerosol fractions contained a detectable amount of organic material. Raman spectroscopy showed that organic material is sometimes present in the form of a coating on the surface of inorganic particles. We find that some organic-containing particles serve as efficient ice nuclei while others do not. For coarse-mode aerosol, organic particles were only observed to initiate ice formation when oxygen signatures were also present in their spectra.

  18. How important are atmospheric depressions and mobile cyclones for emitting mineral dust aerosol in North Africa?

    NASA Astrophysics Data System (ADS)

    Fiedler, S.; Schepanski, K.; Knippertz, P.; Heinold, B.; Tegen, I.

    2014-09-01

    This study presents the first quantitative estimate of the mineral dust emission associated with atmospheric depressions and mobile cyclones in North Africa. Atmospheric depressions are automatically tracked at 925 hPa based on ERA-Interim data from the European Centre for Medium-Range Weather Forecasts for 1989-2008. A set of filter criteria is applied to identify mobile cyclones, i.e. migrating and long-lived cyclones. The shorter term cyclone is used as a synonym for mobile cyclones. Dust emission is calculated with a dust emission model driven by 10 m winds and soil moisture from ERA-Interim. Emission peaks during winter and spring with spatial averages of 250-380 g m-2 per month. Comparison of the dust source activation frequency from the model against SEVIRI satellite observation shows a good agreement in the Bodélé Depression but differences in the north and west of North Africa. Depressions are abundant, particularly in summer when the Saharan heat low is situated over West Africa and during spring in the lee of the Atlas Mountains. Up to 90% (55% annually and spatially averaged) of dust emission occurs within 10 degrees of these depressions, with embedded mechanisms such as nocturnal low-level jets playing a role. Cyclones are rarer and occur primarily north of 20° N in spring in agreement with previous studies and over summertime West Africa consistent with near-surface signatures of African Easterly Waves. Dust emission within 10 degrees of cyclones peaks over Libya with up to 25% in spring. Despite the overall small contribution of 4% annually and spatially averaged, cyclones coincide with particularly intense dust emission events exceeding the climatological mean by a factor of four to eight. Soil moisture weakens dust emission during cyclone passage by about 10%.

  19. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots

    PubMed Central

    Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Shao, Yun; Tong, Doudou

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  20. The imbalance between TIMP3 and matrix-degrading enzymes plays an important role in intervertebral disc degeneration.

    PubMed

    Li, Yan; Li, Kang; Han, Xiuguo; Mao, Chuanyuan; Zhang, Kai; Zhao, Tengfei; Zhao, Jie

    2016-01-15

    It is well-known that one of the most important features of intervertebral disc degeneration (IDD) is the extracellular matrix (ECM) degradation. Collagen and aggrecan are major components of ECM; the degradation of ECM in intervertebral discs (IVDs) is closely related to the activities of collagenase and aggrecanase. TIMP-3 is the most efficient inhibitor of aggrecanase in IVD. However, only few studies focus on the potential relationship between TIMP-3 and IDD. In our study, we found TIMP-3 gene expression was decreased after stimulating with LPS in rat nucleus pulposus (NP) cells. Then we used a lentivirus vector to reconstruct rat NP cells which high expressed TIMP-3 gene (LV-TIMP3). The upregulation of MMPs and ADAMTSs induced by LPS was significantly inhibited in LV-TIMP3 cells. After overexpression of TIMP-3, the aggrecan breakdown caused by LPS was also reduced in both monolayer culture and three-dimension culture model. To further study the relation between TIMP-3 and IDD, we collected human NP tissue samples of different degenerative degrees. Real-time PCR and immunohistochemical staining showed that the expression of TIMP-3 was negatively correlated with the degree of intervertebral disc degeneration, while MMP-1 and ADAMTS-4 were markedly increased in degenerative IVD. Taken together, our results suggest that the imbalance between aggrecanase and TIMP-3 may play an important role in the pathogenesis of IDD and therefore be a potential therapeutic target for treating IDD. PMID:26686417

  1. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots

    PubMed Central

    Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Shao, Yun; Tong, Doudou

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat.

  2. RIN1-Ras-ERK pathway plays an important role in carcinogenesis in colon cancer cell line LoVo.

    PubMed

    Inoue, Takeshi; Goi, Takanori; Hirono, Yasuo; Katayama, Kanji; Yamaguchi, Akio

    2011-01-01

    The RIN1 protein has SH2, three domains, and H-Ras binding domains; thus, it is presumed to be an important molecule in an intracellular signaling pathway. We examined the effect of the introduction of a membrane protein-encoding, mutated (S351A)RIN1 gene into a colon cancer. In the LoVo colon cancer cell line, endogenous RIN1 protein was strongly expressed in the cytoplasmic fraction, and the RIN1 protein in the cytoplasmic fraction was strongly bound to the 14-3-3 protein. In the mutated (S351A)RIN1-transfected LoVo cells, the mutated (S351A)RIN1 protein was identified in the cell membrane, and was bound to HRas protein. Also, in vitro the proliferative capacity of the mutated (S351A)RIN1-transfected LoVo cells was significantly inhibited, compared with that of their empty vector-transfected counterparts. In the mutated (S351A)RIN1-transfected LoVo cells, the phosphorylation of ERK1/2 proteins downstream of the H-Ras molecule was inhibited, compared with the counterparts. This study is the first to show that the localization of RIN1 protein plays an important role in the carcinogenesis in colon cancer cells LoVo (i.e., signal transduction in the Ras-ERK pathway).

  3. W-box and G-box elements play important roles in early senescence of rice flag leaf

    PubMed Central

    Liu, Li; Xu, Wei; Hu, Xuesong; Liu, Haoju; Lin, Yongjun

    2016-01-01

    Plant cis-elements play important roles in global regulation of gene expression. Based on microarray data from rice flag leaves during early senescence, we identified W-box and G-box cis-elements as positive regulators of senescence in the important rice variety Minghui 63. Both cis-elements were bound by leaf senescence-specific proteins in vitro and influenced senescence in vivo. Furthermore, combination of the two elements drove enhanced expression during leaf senescence, and copy numbers of the cis-elements significantly affected the levels of expression. The W-box is the cognate cis-element for WRKY proteins, while the G-box is the cognate cis-element for bZIP, bHLH and NAC proteins. Consistent with this, WRKY, bZIP, bHLH and NAC family members were overrepresented among transcription factor genes up-regulated according during senescence. Crosstalk between ABA, CTK, BR, auxin, GA and JA during senescence was uncovered by comparing expression patterns of senescence up-regulated transcription factors. Together, our results indicate that hormone-mediated signaling could converge on leaf senescence at the transcriptional level through W-box and G-box elements. Considering that there are very few documented early senescence-related cis-elements, our results significantly contribute to understanding the regulation of flag leaf senescence and provide prioritized targets for stay-green trait improvement. PMID:26864250

  4. Nutrition metabolism plays an important role in the alternate bearing of the olive tree (Olea europaea L.).

    PubMed

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between "on year" and "off year" leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree.

  5. Nutrition Metabolism Plays an Important Role in the Alternate Bearing of the Olive Tree (Olea europaea L.)

    PubMed Central

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between ”on year” and “off year” leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree. PMID:23555820

  6. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots.

    PubMed

    Ma, Jianhui; Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Jiang, Lina; Shao, Yun; Tong, Doudou; Li, Chunxi

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  7. Ruminal Prevotella spp. May Play an Important Role in the Conversion of Plant Lignans into Human Health Beneficial Antioxidants

    PubMed Central

    Schogor, Ana L. B.; Huws, Sharon A.; Santos, Geraldo T. D.; Scollan, Nigel D.; Hauck, Barbara D.; Winters, Ana L.; Kim, Eun J.; Petit, Hélène V.

    2014-01-01

    Secoisolariciresinol diglucoside (SDG), the most abundant lignan in flaxseed, is metabolized by the ruminal microbiota into enterolignans, which are strong antioxidants. Enterolactone (EL), the main mammalian enterolignan produced in the rumen, is transferred into physiological fluids, with potentially human health benefits with respect to menopausal symptoms, hormone-dependent cancers, cardiovascular diseases, osteoporosis and diabetes. However, no information exists to our knowledge on bacterial taxa that play a role in converting plant lignans into EL in ruminants. In order to investigate this, eight rumen cannulated cows were used in a double 4×4 Latin square design and fed with four treatments: control with no flax meal (FM), or 5%, 10% and 15% FM (on a dry matter basis). Concentration of EL in the rumen increased linearly with increasing FM inclusion. Total rumen bacterial 16S rRNA concentration obtained using Q-PCR did not differ among treatments. PCR-T-RFLP based dendrograms revealed no global clustering based on diet indicating between animal variation. PCR-DGGE showed a clustering by diet effect within four cows that had similar basal ruminal microbiota. DNA extracted from bands present following feeding 15% FM and absent with no FM supplementation were sequenced and it showed that many genera, in particular Prevotella spp., contributed to the metabolism of lignans. A subsequent in vitro study using selected pure cultures of ruminal bacteria incubated with SDG indicated that 11 ruminal bacteria were able to convert SDG into secoisolariciresinol (SECO), with Prevotella spp. being the main converters. These data suggest that Prevotella spp. is one genus playing an important role in the conversion of plant lignans to human health beneficial antioxidants in the rumen. PMID:24709940

  8. Genetic diversity analysis reveals that geographical environment plays a more important role than rice cultivar in Villosiclava virens population selection.

    PubMed

    Wang, Fei; Zhang, Shu; Liu, Mei-Gang; Lin, Xian-Song; Liu, Hui-Jiang; Peng, You-Liang; Lin, Yang; Huang, Jun-Bin; Luo, Chao-Xi

    2014-05-01

    Rice false smut caused by Villosiclava virens is an economically important disease of grains worldwide. The genetic diversity of 153 isolates from six fields located in Wuhan (WH), Yichang Wangjia (YCW), Yichang Yaohe (YCY), Huanggang (HG), Yangxin (YX), and Jingzhou (JZ) in Hubei province of China were phylogenetically analyzed to evaluate the influence of environments and rice cultivars on the V. virens populations. Isolates (43) from Wuhan were from two rice cultivars, Wanxian 98 and Huajing 952, while most of the other isolates from fields YCW, YCY, HG, YX, and JZ originated from different rice cultivars with different genetic backgrounds. Genetic diversity of isolates was analyzed using random amplified polymorphic DNA (RAPD) and single-nucleotide polymorphisms (SNP). The isolates from the same cultivars in Wuhan tended to group together, indicating that the cultivars had an important impact on the fungal population. The 110 isolates from individual fields tended to cluster according to geographical origin. The values of Nei's gene diversity (H) and Shannon's information index (I) showed that the genetic diversity among isolates was higher between than within geographical populations. Furthermore, mean genetic distance between groups (0.006) was higher than mean genetic distance within groups (0.0048) according to MEGA 5.2. The pairwise population fixation index (FST) values also showed significant genetic differentiation between most populations. Higher genetic similarity of isolates from individual fields but different rice cultivars suggested that the geographical factor played a more important role in the selection of V. virens isolates than rice cultivars. This information could be used to improve the management strategy for rice false smut by adjusting the cultivation measures, such as controlling fertilizer, water, and planting density, in the rice field to change the microenvironment.

  9. Aerosols-cloud-climate -interactions in the Norwegian Earth System Model (NorESM). Importance of biogenic particles for cloud properties and anthropogenic indirect effect.

    NASA Astrophysics Data System (ADS)

    Seland, Ø.; Iversen, T.; Kirkevâg, A.

    2012-04-01

    According to the 4th assessment report of IPCC, major sources of uncertainty in anthropogenic climate change projections are inaccurate model description and weak knowledge of aerosols and their interactions with radiation and clouds, as well as the cloud feedback to radiative forcing. One important aspect of the associated uncertainty is the natural atmosphere. Anthropogenic climate change is an increment caused by anthropogenic emissions relative to the properties of the climate system untouched by man. This is crucial for the direct and indirect effects of aerosols, since the amount, size and physical properties of natural background particles strongly influence the same properties of the anthropogenic aerosol components. In many climate models where CDNC is calculated explicitly, CDNC is constrained by prescribing a lower bound below which calculated values are not allowed. This is done in order to keep the aerosol in-direct effect within estimated values. The rationale for using such a lower bound is to keep the aerosol radiative forcing constrained by the forcing of green-house gases and 20th century climate.We hypothesize this lower bound can be removed or made less strict by including aerosols of biogenic origin. We will present results and sensitivity studies from simulations with the NorESM where we have added contributions from organic carbon of natural origin both from vegetation and oceanic sources. By including aerosols of biogenic origin we obtain close to the median indirect radiative forcing reported by IPCC AR4, as well as reproducing the temperature increase in the 20th century. NorESM is based on the Earth system model CCSM4.0 from NCAR, but is using CAM4-Oslo instead of CAM4 as atmosphere model and an updated version of MICOM from the Bergen Climate Model (BCM) instead of the ocean model POP2. The aerosol module includes sea-salt, dust, sulphate, black carbon (BC) and particulate organic matter (OM). Primary aerosol size-distributions are

  10. NAC transcription factors play an important role in ethylene biosynthesis, reception and signaling of tomato fruit ripening.

    PubMed

    Kou, Xiaohong; Liu, Chen; Han, Lihua; Wang, Shuang; Xue, Zhaohui

    2016-06-01

    NAC proteins comprise a large family of transcription factors that play important roles in diverse physiological processes during development. To explore the role of NAC transcription factors in the ripening of fruits, we predicted the secondary and tertiary structure as well as regulative function of the SNAC4 (SlNAC48, Accession number: NM 001279348.2) and SNAC9 (SlNAC19, Accession number: XM 004236996.2) transcription factors in tomato. We found that the tertiary structure of SNAC9 was similar to that of ATNAP, which played an important role in the fruit senescence and was required for ethylene stimulation. Likewise, the bio-function prediction results indicated that SNAC4 and SNAC9 participated in various plant hormone signaling and senescence processes. More information about SNACs was obtained by the application of VIGS (virus-induced gene silencing). The silencing of SNAC4 and SNAC9 dramatically repressed the LeACS2, LeACS4 and LeACO1 expression, which consequently led to the inhibition of the ripening process. The silencing of SNACs down-regulated the mRNA levels of the ethylene perception genes and, at the same time, suppressed the expression of ethylene signaling-related genes except for LeERF2 which was induced by the silencing of SNAC4. The expressions of LeRIN were different in two silenced fruits. In addition, the silencing of SNAC4 reduced its mRNA level, while the silencing of SNAC9 induced its expression. Furthermore, the silencing of LeACS4, LeACO1 and LeERF2 reduced the expression of SNAC4 and SNAC9, while the silencing of NR induced the expression of all of them. In particular, these results indicate that SNAC transcription factors bind to the promoter of the ethylene synthesis genes in vitro. This experimental evidence demonstrates that SNAC4 and SNAC9 could positively regulate the tomato fruit ripening process by functioning upstream of ethylene synthesis genes. These outcomes will be helpful to provide a theoretical foundation for further

  11. Sphingosine kinase 1 dependent protein kinase C-δ activation plays an important role in acute liver failure in mice

    PubMed Central

    Lei, Yan-Chang; Yang, Ling-Ling; Li, Wen; Luo, Pan

    2015-01-01

    AIM: To investigate the role of protein kinase C (PKC)-δ activation in the pathogenesis of acute liver failure (ALF) in a well-characterized mouse model of D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced ALF. METHODS: BALB/c mice were randomly assigned to five groups, and ALF was induced in mice by intraperitoneal injection of D-GaIN (600 mg/kg) and LPS (10 μg/kg). Kaplan-Meier method was used for survival analysis. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels at different time points within one week were determined using a multiparameteric analyzer. Serum levels of high-mobility group box 1 (HMGB1), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 as well as nuclear factor (NF)-κB activity were determined by enzyme-linked immunosorbent assay. Hepatic morphological changes at 36 h after ALF induction were assessed by hematoxylin and eosin staining. Expression of PKC-δ in liver tissue and peripheral blood mononuclear cells (PBMCs) was analyzed by Western blot. RESULTS: The expression and activation of PKC-δ were up-regulated in liver tissue and PBMCs of mice with D-GalN/LPS-induced ALF. Inhibition of PKC-δ activation with rottlerin significantly increased the survival rates and decreased serum ALT/AST levels at 6, 12 and 24 h compared with the control group (P < 0.001). Rottlerin treatment also significantly decreased serum levels of HMGB1 at 6, 12, and 24 h, TNF-α, IL-6 and IL-1 β at 12 h compared with the control group (P < 0.01). The inflammatory cell infiltration and necrosis in liver tissue were also decreased in the rottlerin treatment group. Furthermore, sphingosine kinase 1 (SphK1) dependent PKC-δ activation played an important role in promoting NF-κB activation and inflammatory cytokine production in ALF. CONCLUSION: SphK1 dependent PKC-δ activation plays an important role in promoting NF-κB activation and inflammatory response in ALF, and inhibition of PKC-δ activation might be

  12. The importance of social play network for infant or juvenile wild chimpanzees at Mahale Mountains National Park, Tanzania.

    PubMed

    Shimada, Masaki; Sueur, Cédric

    2014-11-01

    Along with social grooming and food sharing, social play is considered to be an affiliative interaction among wild chimpanzees. However, infant, juvenile, and adolescent animals engage in social play more frequently than adult animals, while other affiliative interactions occur more commonly between adults. We studied the social play of well-habituated and individually identified wild chimpanzees of the M group in Mahale Mountains National Park, Tanzania over two research periods in 2010 and 2011 (21 and 17 observation days, respectively). In both periods, most members of the M group, including adolescents and adults, took part in social play at least once. The degree centralities of the play network in infants, juveniles, and adolescents were significantly higher than those seen in adults. There was a significant and positive correlation between the total number of participations in social play and the degree centrality of play networks. Partial play networks and partial association networks consisting of individuals in same-age categories were significantly and positively correlated in infants and juveniles, although they were not correlated in adolescents or adults. These results suggest that infants, juveniles and adolescents who played frequently were more central in the group, whilst the adults who played infrequently were more peripheral. In addition, the overall structure of the social play network was stable over time. The frequency of participation in social play positively contributed to the development of affiliative social relationships within the chimpanzee group during the infant or juvenile period, but did not have the same effect during the adolescent and adult period. The social play network may allow individuals to develop the social techniques necessary to acquire a central position in a society and enable them to develop affiliative relationships during the infant or juvenile period. PMID:24990324

  13. How important are cyclones for emitting mineral dust aerosol in North Africa?

    NASA Astrophysics Data System (ADS)

    Fiedler, S.; Schepanski, K.; Knippertz, P.; Heinold, B.; Tegen, I.

    2013-12-01

    depressions and migrating, long-lived cyclones are important for dust emission in North Africa.

  14. Bacillus subtilis SbcC protein plays an important role in DNA inter-strand cross-link repair

    PubMed Central

    Mascarenhas, Judita; Sanchez, Humberto; Tadesse, Serkalem; Kidane, Dawit; Krisnamurthy, Mahalakshmi; Alonso, Juan C; Graumann, Peter L

    2006-01-01

    Background Several distinct pathways for the repair of damaged DNA exist in all cells. DNA modifications are repaired by base excision or nucleotide excision repair, while DNA double strand breaks (DSBs) can be repaired through direct joining of broken ends (non homologous end joining, NHEJ) or through recombination with the non broken sister chromosome (homologous recombination, HR). Rad50 protein plays an important role in repair of DNA damage in eukaryotic cells, and forms a complex with the Mre11 nuclease. The prokaryotic ortholog of Rad50, SbcC, also forms a complex with a nuclease, SbcD, in Escherichia coli, and has been implicated in the removal of hairpin structures that can arise during DNA replication. Ku protein is a component of the NHEJ pathway in pro- and eukaryotic cells. Results A deletion of the sbcC gene rendered Bacillus subtilis cells sensitive to DNA damage caused by Mitomycin C (MMC) or by gamma irradiation. The deletion of the sbcC gene in a recN mutant background increased the sensitivity of the single recN mutant strain. SbcC was also non-epistatic with AddAB (analog of Escherichia coli RecBCD), but epistatic with RecA. A deletion of the ykoV gene encoding the B. subtilis Ku protein in a sbcC mutant strain did not resulted in an increase in sensitivity towards MMC and gamma irradiation, but exacerbated the phenotype of a recN or a recA mutant strain. In exponentially growing cells, SbcC-GFP was present throughout the cells, or as a central focus in rare cases. Upon induction of DNA damage, SbcC formed 1, rarely 2, foci on the nucleoids. Different to RecN protein, which forms repair centers at any location on the nucleoids, SbcC foci mostly co-localized with the DNA polymerase complex. In contrast to this, AddA-GFP or AddB-GFP did not form detectable foci upon addition of MMC. Conclusion Our experiments show that SbcC plays an important role in the repair of DNA inter-strand cross-links (induced by MMC), most likely through HR, and suggest

  15. Geography Plays a More Important Role than Soil Composition on Structuring Genetic Variation of Pseudometallophyte Commelina communis

    PubMed Central

    Li, Jiaokun; Xu, Hui; Song, Yunpeng; Tang, Lulu; Gong, Yanbing; Yu, Runlan; Shen, Li; Wu, Xueling; Liu, Yuandong; Zeng, Weimin

    2016-01-01

    Pseudometallophytes are excellent models to study microevolution and local adaptation to soil pollution, as they can grow both on metalliferous and contrasting non-metalliferous soils. Although, there has been accumulating evidence for the effects of edaphic conditions and geographical isolation on the genetic structure of pesudometallophytes, it is still a difficult problem in evolutionary biology to assess their relative importance. In this study, we investigated the spatial patterns of genetic variability, population differentiation and genetic groups in pseudometallophyte Commelina communis with 12 microsatellite loci. Eight metallicolous and six non-metallicolous populations of C. communis were sampled from cupriferous sites and surrounding non-contaminated areas in China. Neither significant reduction in genetic diversity nor apparent founder and bottleneck effects were observed in metallicolous populations of C. communis. Based on Bayesian and Neighbor-Joining clustering analyses and a principal coordinates analysis, all sampled populations were found to be mainly separated into three genetic groups, corresponding well to their geographical locations rather than edaphic origins. Moreover, a significant and strong correlation between population genetic divergence and geographical distance were detected by Mantel test (r = 0.33; P < 0.05) and multiple matrix regression with randomization (MMRR; βD = 0.57, P < 0.01). However, the effect of copper concentration on genetic patterns of C. communis was not significant (MMRR; βE = -0.17, P = 0.12). Our study clearly demonstrated that the extreme edaphic conditions in metalliferous areas had limited effects on the genetic variability in C. communis. Geographic distance played a more important role in affecting the genetic structure of C. communis than soil composition did. In C. communis, the geographically disjunctive populations on metalliferous soils had multiple origins and evolved independently from nearby non

  16. Multidrug Resistance-Associated Protein 3 Plays an Important Role in Protection against Acute Toxicity of Diclofenac.

    PubMed

    Scialis, Renato J; Csanaky, Iván L; Goedken, Michael J; Manautou, José E

    2015-07-01

    Diclofenac (DCF) is a nonsteroidal anti-inflammatory drug commonly prescribed to reduce pain in acute and chronic inflammatory diseases. One of the main DCF metabolites is a reactive diclofenac acyl glucuronide (DCF-AG) that covalently binds to biologic targets and may contribute to adverse drug reactions arising from DCF use. Cellular efflux of DCF-AG is partially mediated by multidrug resistance-associated proteins (Mrp). The importance of Mrp2 during DCF-induced toxicity has been established, yet the role of Mrp3 remains largely unexplored. In the present work, Mrp3-null (KO) mice were used to study the toxicokinetics and toxicodynamics of DCF and its metabolites. DCF-AG plasma concentrations were 90% lower in KO mice than in wild-type (WT) mice, indicating that Mrp3 mediates DCF-AG basolateral efflux. In contrast, there were no differences in DCF-AG biliary excretion between WT and KO, suggesting that only DCF-AG basolateral efflux is compromised by Mrp3 deletion. Susceptibility to toxicity was also evaluated after a single high DCF dose. No signs of injury were detected in livers and kidneys; however, ulcers were found in the small intestines. Furthermore, the observed intestinal injuries were consistently more severe in KO compared with WT. DCF covalent adducts were observed in liver and small intestines; however, staining intensity did not correlate with the severity of injuries, implying that tissues respond differently to covalent modification. Overall, the data provide strong evidence that (1) in vivo Mrp3 plays an important role in DCF-AG disposition and (2) compromised Mrp3 function can enhance injury in the gastrointestinal tract after DCF treatment.

  17. Geography Plays a More Important Role than Soil Composition on Structuring Genetic Variation of Pseudometallophyte Commelina communis.

    PubMed

    Li, Jiaokun; Xu, Hui; Song, Yunpeng; Tang, Lulu; Gong, Yanbing; Yu, Runlan; Shen, Li; Wu, Xueling; Liu, Yuandong; Zeng, Weimin

    2016-01-01

    Pseudometallophytes are excellent models to study microevolution and local adaptation to soil pollution, as they can grow both on metalliferous and contrasting non-metalliferous soils. Although, there has been accumulating evidence for the effects of edaphic conditions and geographical isolation on the genetic structure of pesudometallophytes, it is still a difficult problem in evolutionary biology to assess their relative importance. In this study, we investigated the spatial patterns of genetic variability, population differentiation and genetic groups in pseudometallophyte Commelina communis with 12 microsatellite loci. Eight metallicolous and six non-metallicolous populations of C. communis were sampled from cupriferous sites and surrounding non-contaminated areas in China. Neither significant reduction in genetic diversity nor apparent founder and bottleneck effects were observed in metallicolous populations of C. communis. Based on Bayesian and Neighbor-Joining clustering analyses and a principal coordinates analysis, all sampled populations were found to be mainly separated into three genetic groups, corresponding well to their geographical locations rather than edaphic origins. Moreover, a significant and strong correlation between population genetic divergence and geographical distance were detected by Mantel test (r = 0.33; P < 0.05) and multiple matrix regression with randomization (MMRR; βD = 0.57, P < 0.01). However, the effect of copper concentration on genetic patterns of C. communis was not significant (MMRR; βE = -0.17, P = 0.12). Our study clearly demonstrated that the extreme edaphic conditions in metalliferous areas had limited effects on the genetic variability in C. communis. Geographic distance played a more important role in affecting the genetic structure of C. communis than soil composition did. In C. communis, the geographically disjunctive populations on metalliferous soils had multiple origins and evolved independently from nearby non

  18. Suppressor of cytokine signaling 3 plays an important role in porcine circovirus type 2 subclinical infection by downregulating proinflammatory responses.

    PubMed

    Zhu, Xuejiao; Bai, Juan; Liu, Panrao; Wang, Xianwei; Jiang, Ping

    2016-01-01

    Porcine circovirus type 2 (PCV2) causes porcine circovirus-associated diseases and usually evokes a subclinical infection, without any obvious symptoms, in pigs. It remains unclear how PCV2 leads to a subclinical infection. In this study, we found that peripheral blood mononuclear cells (PBMCs) from PCV2-challenged piglets with no significant clinical symptoms exhibited increased expression of suppressor of cytokine signaling (SOCS) 3, but no significant changes in the expression of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α; this differed from piglets that displayed significant clinical symptoms. IL-6- and TNF-α-mediated signalings were inhibited in PBMCs from subclinical piglets. Elevated SOCS3 levels inhibited IL-6- and TNF-α-mediated NF-kappa-B inhibitor alpha degradation in PBMCs and PK-15 cells. SOCS3 production was also increased in PCV2-infected PK-15 porcine kidney cells, and IL-6 and TNF-α production that was induced by PCV2 in PK-15 cells was significantly increased when SOCS3 was silenced by a small interfering RNA. SOCS3 interacted with signal transducer and activator of transcription 3 and TNF-associated receptor-associated factor 2, suggesting mechanisms by which SOCS3 inhibits IL-6 and TNF-α signaling. We conclude that SOCS3 plays an important role in PCV2 subclinical infection by suppressing inflammatory responses in primary immune cells. PMID:27581515

  19. Seascape continuity plays an important role in determining patterns of spatial genetic structure in a coral reef fish.

    PubMed

    D'Aloia, C C; Bogdanowicz, S M; Harrison, R G; Buston, P M

    2014-06-01

    Detecting patterns of spatial genetic structure (SGS) can help identify intrinsic and extrinsic barriers to gene flow within metapopulations. For marine organisms such as coral reef fishes, identifying these barriers is critical to predicting evolutionary dynamics and demarcating evolutionarily significant units for conservation. In this study, we adopted an alternative hypothesis-testing framework to identify the patterns and predictors of SGS in the Caribbean reef fish Elacatinus lori. First, genetic structure was estimated using nuclear microsatellites and mitochondrial cytochrome b sequences. Next, clustering and network analyses were applied to visualize patterns of SGS. Finally, logistic regressions and linear mixed models were used to identify the predictors of SGS. Both sets of markers revealed low global structure: mitochondrial ΦST=0.12, microsatellite FST=0.0056. However, there was high variability among pairwise estimates, ranging from no differentiation between sites on contiguous reef (ΦST=0) to strong differentiation between sites separated by ocean expanses≥20 km (maximum ΦST=0.65). Genetic clustering and statistical analyses provided additional support for the hypothesis that seascape discontinuity, represented by oceanic breaks between patches of reef habitat, is a key predictor of SGS in E. lori. Notably, the estimated patterns and predictors of SGS were consistent between both sets of markers. Combined with previous studies of dispersal in E. lori, these results suggest that the interaction between seascape continuity and the dispersal kernel plays an important role in determining genetic connectivity within metapopulations.

  20. Does arsenic play an important role in the soil microbial community around a typical arsenic mining area?

    PubMed

    Wu, Fan; Wang, Jun-Tao; Yang, Jun; Li, Jing; Zheng, Yuan-Ming

    2016-06-01

    Arsenic (As) can cause serious hazards to human health, especially in mining areas. Soil bacterial communities, which are critical parts of the soil ecosystem, were analyzed directly for soil environmental factors. As a consequence, it is of great significance to understand the ecological risk of arsenic contamination on bacteria, especially at the local scale. In this study, 33 pairs of soil and grain samples were collected from the corn and paddy fields around an arsenic mining area in Shimen County in Hunan Province, China. Significant differences were found between the soil nitrogen, As concentrations, and bacteria activities among these two types of land use. According to the structural equation model (SEM) analysis, compared with other environmental factors, soil As was not the key factor affecting the bacterial community, even when grain As was beyond the threshold of the national food hygiene standards of China. In the corn field, soil pH was the main factor dominating the bacterial richness, composition and grain As. Meanwhile, in the paddy field the soil total nitrogen (TN) and total carbon (TC) were the main factors impacting the bacterial richness, and the bacterial community composition was mainly affected by pH. The interactions between grain As and soil As were weak in the corn field. The bacterial communities played important roles in the food chain risk of As. The local policy of transforming paddy soil to dry land could greatly reduce the health risk of As through the food chain. PMID:27055093

  1. Physiological analyses indicate superoxide dismutase, catalase, and phytochelatins play important roles in Pb tolerance in Eremochloa ophiuroides.

    PubMed

    Li, Xi; Cen, Huameng; Chen, Youxiang; Xu, Siying; Peng, Lingli; Zhu, Hanmingyue; Li, Yiqiao

    2016-01-01

    Phytoremediation is considered to be a promising approach to restore or stabilize soil contaminated by lead (Pb). Turfgrasses, due to their high biomass yields, are considered to be suitable for use in phytoextraction of soil contaminated with heavy metal. It has been demonstrated that centipedegrass (Eremochloa ophiuroides (Munro) Hack., Poaceae) is a good turfgrass for restore of soil contaminated by Pb. However, the enhanced tolerant mechanisms in metallicolous (M) centipedegrass accessions remain unknown. In this study, we made a comparative study of growth performance, Pb accumulation, antioxidant levels, and phytochelatin concentrations in roots and shoots from M and nonmetallicolous (NM) centipedegrass accessions. Results showed that turf quality and growth rate were less repressed in M accessions than in NM accession. Pb stress caused generation of reactive oxygen species in centipedegrass with relatively lower levels in M accessions. Antioxidant activity analysis indicated that superoxide dismutase and catalase played important roles in Pb tolerance in M accessions. M accessions accumulated more Pb in roots and shoots. Greatly increased phytochelatins and less repressed sulfur contents in roots and shoots of M accessions indicated that they correlated with Pb accumulation and tolerance in centipedegrass.

  2. Suppressor of cytokine signaling 3 plays an important role in porcine circovirus type 2 subclinical infection by downregulating proinflammatory responses

    PubMed Central

    Zhu, Xuejiao; Bai, Juan; Liu, Panrao; Wang, Xianwei; Jiang, Ping

    2016-01-01

    Porcine circovirus type 2 (PCV2) causes porcine circovirus-associated diseases and usually evokes a subclinical infection, without any obvious symptoms, in pigs. It remains unclear how PCV2 leads to a subclinical infection. In this study, we found that peripheral blood mononuclear cells (PBMCs) from PCV2-challenged piglets with no significant clinical symptoms exhibited increased expression of suppressor of cytokine signaling (SOCS) 3, but no significant changes in the expression of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α; this differed from piglets that displayed significant clinical symptoms. IL-6- and TNF-α-mediated signalings were inhibited in PBMCs from subclinical piglets. Elevated SOCS3 levels inhibited IL-6- and TNF-α-mediated NF-kappa-B inhibitor alpha degradation in PBMCs and PK-15 cells. SOCS3 production was also increased in PCV2-infected PK-15 porcine kidney cells, and IL-6 and TNF-α production that was induced by PCV2 in PK-15 cells was significantly increased when SOCS3 was silenced by a small interfering RNA. SOCS3 interacted with signal transducer and activator of transcription 3 and TNF-associated receptor-associated factor 2, suggesting mechanisms by which SOCS3 inhibits IL-6 and TNF-α signaling. We conclude that SOCS3 plays an important role in PCV2 subclinical infection by suppressing inflammatory responses in primary immune cells. PMID:27581515

  3. Physiological analyses indicate superoxide dismutase, catalase, and phytochelatins play important roles in Pb tolerance in Eremochloa ophiuroides.

    PubMed

    Li, Xi; Cen, Huameng; Chen, Youxiang; Xu, Siying; Peng, Lingli; Zhu, Hanmingyue; Li, Yiqiao

    2016-01-01

    Phytoremediation is considered to be a promising approach to restore or stabilize soil contaminated by lead (Pb). Turfgrasses, due to their high biomass yields, are considered to be suitable for use in phytoextraction of soil contaminated with heavy metal. It has been demonstrated that centipedegrass (Eremochloa ophiuroides (Munro) Hack., Poaceae) is a good turfgrass for restore of soil contaminated by Pb. However, the enhanced tolerant mechanisms in metallicolous (M) centipedegrass accessions remain unknown. In this study, we made a comparative study of growth performance, Pb accumulation, antioxidant levels, and phytochelatin concentrations in roots and shoots from M and nonmetallicolous (NM) centipedegrass accessions. Results showed that turf quality and growth rate were less repressed in M accessions than in NM accession. Pb stress caused generation of reactive oxygen species in centipedegrass with relatively lower levels in M accessions. Antioxidant activity analysis indicated that superoxide dismutase and catalase played important roles in Pb tolerance in M accessions. M accessions accumulated more Pb in roots and shoots. Greatly increased phytochelatins and less repressed sulfur contents in roots and shoots of M accessions indicated that they correlated with Pb accumulation and tolerance in centipedegrass. PMID:26368658

  4. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells

    PubMed Central

    Wang, Ronghua; Sun, Qian; Wang, Peng; Liu, Man; Xiong, Si; Luo, Jing; Huang, Hai; Du, Qiang; Geller, David A.; Cheng, Bin

    2016-01-01

    Human hepatocellular carcinoma (HCC) is driven and maintained by liver cancer stem cells (LCSCs) that display stem cell properties. These LCSCs are promoted by the intersecting of Notch and Wnt/β-Catenin signaling pathways. In this study, we demonstrate that LCSCs with markers CD90, CD24, CD13, and CD133 possess stem properties of self-renewal and tumorigenicity in NOD/SCID mice. The increased expression of these markers was correlated with advanced disease stage, larger tumors, and worse overall survival in 61 HCC cases. We also found that both Notch and Wnt/β-catenin signaling pathways played important roles in increasing the stem-ness characteristics of LCSCs. Our data suggested that Notch1 was downstream of Wnt/β-catenin. The active form of Notch1 intracellular domain (NICD) expression depended on Wnt/β-catenin pathway activation. Moreover, Notch1 negatively contributed to Wnt/β-catenin signaling modulation. Knock down of Notch1 with lentivirus N1ShRNA up-regulated the active form of β-catenin. Ectopic expression of NICD with LV-Notch1 in LCSCs attenuated β-catenin/TCF dependent luciferase activity significantly. In addition, there was a non-proteasome mediated feedback loop between Notch1 and Wnt/β-catenin signaling in LCSCs. The central role of Notch and the Wnt/β-catenin signaling pathway in LCSCs may provide an attractive therapeutic strategy against HCC. PMID:26735577

  5. The medial prefrontal cortex plays an important role in the excitation of A10 dopaminergic neurons following intravenous muscimol administration.

    PubMed

    Lokwan, S J; Overton, P G; Berry, M S; Clark, D

    2000-01-01

    Intravenous muscimol administration increases the activity of dopaminergic neurons of the A10 cell group, located in the ventral tegmental area. Evidence suggests that this increase in activity is produced by disinhibition following the inhibition of GABAergic ("non-dopaminergic") cells in the ventral tegmental area. We hypothesized that the activation of A10 cells by muscimol is likely to be at least partly caused by the action of excitatory afferents. To verify this, A10 cells were isolated from ipsilateral afferent sources which utilise excitatory amino acids (which play an important role in the activity of these neurons), using hemisections at the level of the subthalamic nucleus (or just anterior to the subthalamic nucleus), electrolytic lesions of the pedunculopontine tegmental nucleus, or a combination of both. Following hemisections, and hemisections combined with lesions of the pedunculopontine tegmental nucleus, muscimol inhibited rather than excited A10 dopaminergic neurons. The pedunculopontine tegmental nucleus itself appeared to make little intrinsic contribution to muscimol-induced excitation, although the results suggested that part of the excitation which originates in the forebrain may be conducted to A10 cells via the pedunculopontine tegmental nucleus. The source of the effective forebrain excitation was investigated using electrolytic lesions of documented sources of excitatory amino acidergic afferents to the ventral tegmental area: the medial prefrontal cortex, certain nuclei of the amygdalar complex and the lateral habenular nucleus. In the medial prefrontal cortex-lesioned group, muscimol again produced inhibition, an effect qualitatively and quantitatively similar to that in the hemisected groups. Habenular lesions blocked muscimol-induced excitation without producing inhibition, whilst amygdalar lesions produced no significant change in the effects of muscimol. The results suggest that under normal circumstances, an active excitation

  6. Experimental determination of the partitioning coefficient and volatility of important BVOC oxidation products using the Aerosol Collection Module (ACM) coupled to a PTR-ToF-MS

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G.; Hohaus, T.; Tillmann, R.; Schmitt, S. H.; Yu, Z.; Schlag, P.; Wegener, R.; Kaminski, M.; Kiendler-Scharr, A.

    2015-12-01

    Atmospheric aerosol can alter the Earth's radiative budget and global climate but can also affect human health. A dominant contributor to the submicrometer particulate matter (PM) is organic aerosol (OA). OA can be either directly emitted through e.g. combustion processes (primary OA) or formed through the oxidation of organic gases (secondary organic aerosol, SOA). A detailed understanding of SOA formation is of importance as it constitutes a major contribution to the total OA. The partitioning between the gas and particle phase as well as the volatility of individual components of SOA is yet poorly understood adding uncertainties and thus complicating climate modelling. In this work, a new experimental methodology was used for compound-specific analysis of organic aerosol. The Aerosol Collection Module (ACM) is a newly developed instrument that deploys an aerodynamic lens to separate the gas and particle phase of an aerosol. The particle phase is directed to a cooled sampling surface. After collection particles are thermally desorbed and transferred to a detector for further analysis. In the present work, the ACM was coupled to a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) to detect and quantify organic compounds partitioning between the gas and particle phase. This experimental approach was used in a set of experiments at the atmosphere simulation chamber SAPHIR to investigate SOA formation. Ozone oxidation with subsequent photochemical aging of β-pinene, limonene and real plant emissions from Pinus sylvestris (Scots pine) were studied. Simultaneous measurement of the gas and particle phase using the ACM-PTR-ToF-MS allows to report partitioning coefficients of important BVOC oxidation products. Additionally, volatility trends and changes of the SOA with photochemical aging are investigated and compared for all systems studied.

  7. Discovering the Importance of Play through Personal Histories and Brain Images: An Interview with Stuart L. Brown

    ERIC Educational Resources Information Center

    American Journal of Play, 2009

    2009-01-01

    Stuart L. Brown is founder of the National Institute for Play, a California-based, not-for-profit organization dedicated to the notion that play can help transform the lives of individuals, families, schools, and organizations. Trained in general and internal medicine, psychiatry, and clinical research, Brown was a physician in the United States…

  8. 239,240Pu and inorganic substances in aerosols from the vicinity of a waste isolation pilot plant: the importance of resuspension.

    PubMed

    Arimoto, R; Kirchner, T; Webb, J; Conley, M; Stewart, B; Schoep, D; Walthall, M

    2002-10-01

    correlated with aluminum (an indicator of mineral dust), further implicating the resuspension of soils as an important determinant of 239,240Pu in aerosols. The 239,240Pu/Al ratios for the aerosols were higher than in soils, and this could be explained by the preferential binding of 239,240Pu to small soil particles that have large surface area to mass ratios and also have higher aluminum contents than larger particles.

  9. The novel zinc cluster regulator Tog1 plays important roles in oleate utilization and oxidative stress response in Saccharomyces cerevisiae

    SciTech Connect

    Thepnok, Piyasuda; Ratanakhanokchai, Khanok; Soontorngun, Nitnipa

    2014-08-08

    Highlights: • TOG1 deletion results in defective growth on non-fermentable carbon sources. • Removal of TOG1 sensitizes cells to oxidative stress. • Tog1 directly binds and activates expression of oleate utilizing genes. • The Δtog1 cells display reduced peroxisomal content in oleate culture. • S. cerevisiae zinc cluster Tog1 is a novel activator of oleate utilization. - Abstract: Many zinc cluster proteins have been shown to play a role in the transcriptional regulation of glucose-repressible genes during glucose exhaustion and diauxic shift. Here, we studied an additional member of this family called Yer184c (herein called Tog1) for transcriptional regulator of oleate. Our results showed that a Δtog1 strain displays impaired growth with several non-fermentable carbons. Tog1 is also implicated in oxidative stress tolerance. Importantly, during the glucose–oleate shift, combined results from quantitative real time-PCR and chromatin immunoprecipitation (ChIP) experiments showed that Tog1 acts as a direct activator of oleate utilizing genes, encoded key enzymes in β-Oxidation and NADPH regeneration (POX1, FOX2, POT1 and IDP2), the glyoxylate shunt (MLS1 and ICL1), and gluconeogenesis (PCK1 and FBP1). A transmission electron microscopy (TEM) analysis of the Δtog1 strain assayed with oleate also revealed a substantial decrease in peroxisome abundance that is vital for fatty acid oxidation. Overall, our results clearly demonstrated that Tog1 is a newly characterized zinc cluster regulator that functions in the complex network of non-fermentable carbon metabolism in Saccharomycescerevisiae.

  10. EprS, an autotransporter serine protease, plays an important role in various pathogenic phenotypes of Pseudomonas aeruginosa.

    PubMed

    Kida, Y; Taira, J; Kuwano, K

    2016-02-01

    Pseudomonas aeruginosa possesses an arsenal of both cell-associated (flagella, pili, alginate, etc.) and extracellular (exotoxin A, proteases, type III secretion effectors, etc.) virulence factors. Among them, secreted proteases that damage host tissues are considered to play an important role in the pathogenesis of P. aeruginosa infections. We previously reported that EprS, an autotransporter protease of P. aeruginosa, induces host inflammatory responses through protease-activated receptors. However, little is known about the role of EprS as a virulence factor of P. aeruginosa. In this study, to investigate whether EprS participates in the pathogenicity of P. aeruginosa, we characterized various pathogenic phenotypes of the wild-type PAO1 strain and its eprS-disrupted mutant. The growth assays demonstrated that the growth of the eprS mutant was somewhat lower than that of the wild-type strain in a minimal medium containing BSA as the sole carbon and nitrogen source. Thus, these results indicate that eprS would have a role in the growth of P. aeruginosa in the presence of limited nutrients, such as a medium containing proteinaceous materials as a sole nutrient source. Furthermore, disruption of eprS resulted in a decreased production of elastase, pigments, autoinducers and surfactants, and a reduction of swimming and swarming motilities. In addition, the eprS mutant exhibited a reduction in the ability to associate with A549 cells and an attenuation of virulence in leucopenic mice as compared with the wild-type strain. Collectively, these results suggest that EprS exerts pleiotropic effects on various pathogenic phenotypes of P. aeruginosa. PMID:26678838

  11. C1 metabolism plays an important role during formaldehyde metabolism and detoxification in petunia under liquid HCHO stress.

    PubMed

    Zhang, Wei; Tang, Lijuan; Sun, Huiqun; Han, Shuang; Wang, Xinjia; Zhou, Shengen; Li, Kunzhi; Chen, Limei

    2014-10-01

    Petunia hybrida is a model ornamental plant grown worldwide. To understand the HCHO-uptake efficiency and metabolic mechanism of petunia, the aseptic petunia plants were treated in HCHO solutions. An analysis of HCHO-uptake showed that petunia plants effectively removed HCHO from 2, 4 and 6 mM HCHO solutions. The (13)C NMR analyses indicated that H(13)CHO was primarily used to synthesize [5-(13)C]methionine (Met) via C1 metabolism in petunia plants treated with 2 mM H(13)CHO. Pretreatment with cyclosporin A (CSA) or l-carnitine (LC), the inhibitors of mitochondrial permeability transition pores, did not affect the synthesis of [5-(13)C]Met in petunia plants under 2 mM H(13)CHO stress, indicating that the Met-generated pathway may function in the cytoplasm. Under 4 or 6 mM liquid H(13)CHO stress, H(13)CHO metabolism in petunia plants produced considerable amount of H(13)COOH and [2-(13)C]glycine (Gly) through C1 metabolism and a small amount of [U-(13)C]Gluc via the Calvin Cycle. Pretreatment with CSA or LC significantly inhibited the production of [2-(13)C]Gly in 6 mM H(13)CHO-treated petunia plants, which suggests that chloroplasts and peroxisomes might be involved in the generation of [2-(13)C]Gly. These results revealed that the C1 metabolism played an important role, whereas the Calvin Cycle had only a small contribution during HCHO metabolism and detoxification in petunia under liquid HCHO stress.

  12. Abscisic Acid Plays an Important Role in the Regulation of Strawberry Fruit Ripening1[W][OA

    PubMed Central

    Jia, Hai-Feng; Chai, Ye-Mao; Li, Chun-Li; Lu, Dong; Luo, Jing-Jing; Qin, Ling; Shen, Yuan-Yue

    2011-01-01

    The plant hormone abscisic acid (ABA) has been suggested to play a role in fruit development, but supporting genetic evidence has been lacking. Here, we report that ABA promotes strawberry (Fragaria ananassa) fruit ripening. Using a newly established Tobacco rattle virus-induced gene silencing technique in strawberry fruit, the expression of a 9-cis-epoxycarotenoid dioxygenase gene (FaNCED1), which is key to ABA biosynthesis, was down-regulated, resulting in a significant decrease in ABA levels and uncolored fruits. Interestingly, a similar uncolored phenotype was observed in the transgenic RNA interference (RNAi) fruits, in which the expression of a putative ABA receptor gene encoding the magnesium chelatase H subunit (FaCHLH/ABAR) was down-regulated by virus-induced gene silencing. More importantly, the uncolored phenotype of the FaNCED1-down-regulated RNAi fruits could be rescued by exogenous ABA, but the ABA treatment could not reverse the uncolored phenotype of the FaCHLH/ABAR-down-regulated RNAi fruits. We observed that down-regulation of the FaCHLH/ABAR gene in the RNAi fruit altered both ABA levels and sugar content as well as a set of ABA- and/or sugar-responsive genes. Additionally, we showed that exogenous sugars, particularly sucrose, can significantly promote ripening while stimulating ABA accumulation. These data provide evidence that ABA is a signal molecule that promotes strawberry ripening and that the putative ABA receptor, FaCHLH/ABAR, is a positive regulator of ripening in response to ABA. PMID:21734113

  13. Autophagy plays an important role in Sunitinib-mediated cell death in H9c2 cardiac muscle cells

    SciTech Connect

    Zhao Yuqin; Xue Tao; Yang Xiaochun; Zhu Hong; Ding Xiaofei; Lou Liming; Lu Wei; Yang Bo; He Qiaojun

    2010-10-01

    Sunitinib, which is a multitargeted tyrosine-kinase inhibitor, exhibits antiangiogenic and antitumor activity, and extends survival of patients with metastatic renal-cell carcinoma (mRCC) and gastrointestinal stromal tumors (GIST). This molecule has also been reported to be associated with cardiotoxicity at a high frequency, but the mechanism is still unknown. In the present study, we observed that Sunitinib showed high anti-proliferative effect on H9c2 cardiac muscle cells measured by PI staining and the MTT assay. But apoptotic markers (PARP cleavage, caspase 3 cleavage and chromatin condensation) were uniformly negative in H9c2 cells after Sunitinib treatment for 48 h, indicating that another cell death pathway may be involved in Sunitinib-induced cardiotoxicity. Here we found Sunitinib dramatically increased autophagic flux in H9c2 cells. Acidic vesicle fluorescence and high expression of LC3-II in H9c2 cells identified autophagy as a Sunitinib-induced process that might be associated with cytotoxicity. Furthermore, knocking down Beclin 1 by RNA-interference to block autophagy in H9c2 cells revealed that the death rate was decreased when treated with Sunitinib in comparison to control cells. These results confirmed that autophagy plays an important role in Sunitinib-mediated H9c2 cells cytotoxicity. Taken together, the data presented here strongly suggest that autophagy is associated with Sunitinib-induced cardiotoxicity, and that inhibition of autophagy constitutes a viable strategy for reducing Sunitinib-induced cardiomyocyte death thereby alleviating Sunitinib cardiotoxicity.

  14. Can Brazil play a more important role in global tuberculosis drug production? An assessment of current capacity and challenges

    PubMed Central

    2013-01-01

    Background Despite the existence of effective treatment, tuberculosis is still a global public health issue. The World Health Organization recommends a six-month four-drug regimen in fixed-dose combination formulation to treat drug sensitive tuberculosis, and long course regimens with several second-line drugs to treat multi-drug resistant tuberculosis. To achieve the projected tuberculosis elimination goal by 2050, it will be essential to ensure a non-interrupted supply of quality-assured tuberculosis drugs. However, quality and affordable tuberculosis drug supply is still a significant challenge for National Tuberculosis Programs. Discussion Quality drug production requires a combination of complex steps. The first challenge is to guarantee the quality of tuberculosis active pharmaceutical ingredients, then ensure an adequate manufacturing process, according to international standards, to guarantee final product´s safety, efficacy and quality. Good practices for storage, transport, distribution and quality control procedures must follow. In contrast to other high-burden countries, Brazil produces tuberculosis drugs through a strong network of public sector drug manufacturers regulated by a World Health Organization-certified national sanitary authority. The installed capacity for production surpasses the 71,000 needed treatments in the country. However, in order to be prepared to act as a global supplier, important bottlenecks are to be overcome. This article presents an in-depth analysis of the current status of production of tuberculosis drugs in Brazil and the bottlenecks and opportunities for the country to sustain national demand and play a role as a potential global supplier. Raw material and drug production, quality control, international certification and pre-qualification, political commitment and regulatory aspects are discussed, as well recommendations for tackling these bottlenecks. This discussion becomes more important as new drugs and regimens to

  15. Selenoproteins and heat shock proteins play important roles in immunosuppression in the bursa of Fabricius of chickens with selenium deficiency.

    PubMed

    Khoso, Pervez Ahmed; Yang, Zijiang; Liu, Chunpeng; Li, Shu

    2015-11-01

    Fabricius, and selenoproteins and Hsps play important roles in immunosuppression in the bursa of Fabricius of chickens with Se deficiency. PMID:26228634

  16. The impact of natural aerosols on Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Vinoj, V.; Wang, H.; Yoon, J.; Rasch, P.

    2011-12-01

    Atmospheric aerosols emitted from a variety of natural and anthropogenic sources impact the earth's radiation and water budget. Most of the studies in the recent past have been focusing on anthropogenic aerosols and their impact. However, natural aerosols like sea-salt and dust form the bulk of the aerosol mass loading in the atmosphere. For example, oceans cover about 70% of the earth's surface area and are a major source of sea-salt aerosols in the atmosphere. Sea-salt emission is the single largest contributor to natural aerosols and accounts for nearly half of the global aerosol optical depth. Dust emission, the counterpart over land, also contributes substantially to natural atmospheric aerosols. In addition to their direct effect on solar radiation, these aerosols also actively participate in cloud formation by acting as cloud condensation and ice nuclei and have indirect effects on clouds. Both sea-salt and dust particles are primarily formed by the action of winds that largely determine seasonal/annual variations in their source strength and atmospheric loading. Over the Indian Ocean region, especially the Arabian Sea is characterized by high winds during the monsoon that generate a large amount of sea-salt aerosols. Also these high winds mobilize large amount of dust aerosols in the northern Arabian Sea depending on wind direction. These natural aerosols together with anthropogenic emissions impact Indian monsoon precipitation. We use satellite observation of precipitation and column aerosol loading along with a global climate model (Community Atmosphere Model version 5, CAM5) to show that the variability of natural aerosols (i.e., sea-salt and dust) play an important role in modulating the Indian monsoon precipitation and the response of the monsoon system to anthropogenic aerosols. The effect of dust and sea-salt on precipitation is found to be opposite to each other. Our study suggests that the observed spatial and temporal trends in precipitation

  17. Importance of including ammonium sulfate ((NH4)2SO4) aerosols for ice cloud parameterization in GCMs

    SciTech Connect

    Bhattacharjee, P. S.; Sud, Yogesh C.; Liu, Xiaohong; Walker, Greg K.; Yang, R.; Wang, Jun

    2010-02-22

    A common deficiency of many cloud-physics parameterizations including the NASA’s microphysics of clouds with aerosol- cloud interactions (hereafter called McRAS-AC) is that they simulate less (larger) than the observed ice cloud particle number (size). A single column model (SCM) of McRAS-AC and Global Circulation Model (GCM) physics together with an adiabatic parcel model (APM) for ice-cloud nucleation (IN) of aerosols were used to systematically examine the influence of ammonium sulfate ((NH4)2SO4) aerosols, not included in the present formulations of McRAS-AC. Specifically, the influence of (NH4)2SO4 aerosols on the optical properties of both liquid and ice clouds were analyzed. First an (NH4)2SO4 parameterization was included in the APM to assess its effect vis-à-vis that of the other aerosols. Subsequently, several evaluation tests were conducted over the ARM-SGP and thirteen other locations (sorted into pristine and polluted conditions) distributed over marine and continental sites with the SCM. The statistics of the simulated cloud climatology were evaluated against the available ground and satellite data. The results showed that inclusion of (NH4)2SO4 in the SCM made a remarkable improvement in the simulated effective radius of ice clouds. However, the corresponding ice-cloud optical thickness increased more than is observed. This can be caused by lack of cloud advection and evaporation. We argue that this deficiency can be mitigated by adjusting the other tunable parameters of McRAS-AC such as precipitation efficiency. Inclusion of ice cloud particle splintering introduced through well- established empirical equations is found to further improve the results. Preliminary tests show that these changes make a substantial improvement in simulating the cloud optical properties in the GCM, particularly by simulating a far more realistic cloud distribution over the ITCZ.

  18. Aerosols and environmental pollution

    NASA Astrophysics Data System (ADS)

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues; ranging from the Earth’s radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  19. Aerosols and environmental pollution.

    PubMed

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth's atmosphere and are central to many environmental issues; ranging from the Earth's radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  20. Sulfur speciation in individual aerosol particles

    NASA Astrophysics Data System (ADS)

    Neubauer, Kenneth R.; Sum, Stephen T.; Johnston, Murray V.; Wexler, Anthony S.

    1996-08-01

    Sulfur aerosols play an important role in acid deposition and the Earth's energy balance. Important species in these aerosols include methanesulfonates, hydroxymethanesulfonates, sulfates, and sulfites. Because the relative amounts of these species indicate different sources and atmospheric processes, it is important to distinguish them in single-aerosol particles. To accomplish this task, we use rapid single-particle mass spectrometry (RSMS), a technique that permits individual particles to be analyzed in an online mode. Each sulfur species produces a characteristic set of ions in the mass spectra. In simulated marine and urban aerosols the relative amounts of methanesulfonic acid (MSA) and sodium hydroxymethanesulfonate (NaHMSA) in a single particle can be determined from peak area ratios in the mass spectra. Improved quantitation is possible by application of the classification and regression tree (CART) algorithm to distinguish the mass spectra of particles having different compositions. Factors that influence speciation include particle size, morphology, and laser fluence.

  1. Cell wall properties play an important role in the emergence of lateral root primordia from the parent root

    PubMed Central

    Malamy, Jocelyn E.

    2014-01-01

    Plants adapt to their unique soil environments by altering the number and placement of lateral roots post-embryonic. Mutants were identified in Arabidopsis thaliana that exhibit increased lateral root formation. Eight mutants were characterized in detail and were found to have increased lateral root formation due to at least three distinct mechanisms. The causal mutation in one of these mutants was found in the XEG113 gene, recently shown to be involved in plant cell wall biosynthesis. Lateral root primordia initiation is unaltered in this mutant. In contrast, synchronization of lateral root initiation demonstrated that mutation of XEG113 increases the rate at which lateral root primordia develop and emerge to form lateral roots. The effect of the XEG113 mutation was specific to the root system and had no apparent effect on shoot growth. Screening of 17 additional cell wall mutants, altering a myriad of cell wall components, revealed that many (but not all) types of cell wall defects promote lateral root formation. These results suggest that proper cell wall biosynthesis is necessary to constrain lateral root primordia emergence. While previous reports have shown that lateral root emergence is accompanied by active remodelling of cell walls overlying the primordia, this study is the first to demonstrate that alteration of the cell wall is sufficient to promote lateral root formation. Therefore, inherent cell wall properties may play a previously unappreciated role in regulation of root system architecture. PMID:24619997

  2. Carbon nanotubes play an important role in the spatial arrangement of calcium deposits in hydrogels for bone regeneration.

    PubMed

    Cancian, Giulia; Tozzi, Gianluca; Hussain, Amirul Ashraf Bin; De Mori, Arianna; Roldo, Marta

    2016-08-01

    Age related bone diseases such as osteoporosis are considered among the main causes of reduced bone mechanical stability and bone fractures. In order to restore both biological and mechanical function of diseased/fractured bones, novel bioactive scaffolds that mimic the bone structure are constantly under development in tissue engineering applications. Among the possible candidates, chitosan-based thermosensitive hydrogel scaffolds represent ideal systems due to their biocompatibility, biodegradability, enhanced antibacterial properties, promotion of osteoblast formation and ease of injection, which makes them suitable for less invasive surgical procedures. As a main drawback, these chitosan systems present poor mechanical performance that could not support load-bearing applications. In order to produce more mechanically-competent biomaterials, the combined addition of hydroxyapatite and carbon nanotubes (CNTs) is proposed in this study. Specifically, the aim of this work is to develop thermosensitive chitosan hydrogels containing stabilised single-walled and multi-walled CNTs, where their effect on the mechanical/physiochemical properties, calcium deposition patterns and ability to provide a platform for the controlled release of protein drugs was investigated. It was found that the addition of CNTs had a significant effect on the sol-gel transition time and significantly increased the resistance to compression for the hydrogels. Moreover, in vitro calcification studies revealed that CNTs played a major role in the spatial arrangements of newly formed calcium deposits in the composite materials studied, suggesting that they may have a role in the way the repair of fragile and/or fractured bones occurs in vivo.

  3. Suppressor of Fused Plays an Important Role in Regulating Mesodermal Differentiation of Murine Embryonic Stem Cells In Vivo.

    PubMed

    Hoelzl, Maria A; Heby-Henricson, Karin; Bilousova, Ganna; Rozell, Björn; Kuiper, Raoul V; Kasper, Maria; Toftgård, Rune; Teglund, Stephan

    2015-11-01

    The hedgehog (Hh) signaling pathway plays fundamental roles during embryonic development and tumorigenesis. Previously, we have shown that ablation of the tumor suppressor and negative regulator, Suppressor of fused (Sufu), within this pathway causes embryonic lethality around E9.5 in the mouse. In this study, we examine how lack of Sufu influences early cell fate determination processes. We established embryonic stem cell (ESC) lines from preimplantation Sufu(-/-) and wild-type mouse embryos and show that these ESCs express the typical pluripotency markers, alkaline phosphatase, SSEA-1, Oct4, Sox2, and Nanog. We demonstrate that these ESCs express all core Hh pathway components and that glioma-associated protein (Gli)1 mRNA levels are increased in Sufu(-/-) ESCs. Upon spontaneous differentiation of Sufu(-/-) ESCs into embryoid bodies (EBs) in vitro, the Hh pathway is strongly upregulated as indicated by an increase in both Gli1 and patched1 (Ptch1) gene expression. Interestingly, developing Sufu(-/-) EBs were smaller than their wild-type counterparts and showed decreased expression of the ectodermal markers, Fgf5 and Sox1. In vivo teratoma formation revealed that Sufu(-/-) ESCs have a limited capacity for differentiation as the resulting tumors lacked the mesodermal derivatives, cartilage and bone. However, Sufu(-/-) ESCs were able to develop into chondrocytes and osteocytes in vitro, which suggests a differential response of ESCs compared with in vivo conditions. Our findings suggest a regulatory function of the Hh signaling pathway in early mesodermal cell fate determination and emphasize the role of Sufu as a key molecule in this process. PMID:26176320

  4. Carbon nanotubes play an important role in the spatial arrangement of calcium deposits in hydrogels for bone regeneration.

    PubMed

    Cancian, Giulia; Tozzi, Gianluca; Hussain, Amirul Ashraf Bin; De Mori, Arianna; Roldo, Marta

    2016-08-01

    Age related bone diseases such as osteoporosis are considered among the main causes of reduced bone mechanical stability and bone fractures. In order to restore both biological and mechanical function of diseased/fractured bones, novel bioactive scaffolds that mimic the bone structure are constantly under development in tissue engineering applications. Among the possible candidates, chitosan-based thermosensitive hydrogel scaffolds represent ideal systems due to their biocompatibility, biodegradability, enhanced antibacterial properties, promotion of osteoblast formation and ease of injection, which makes them suitable for less invasive surgical procedures. As a main drawback, these chitosan systems present poor mechanical performance that could not support load-bearing applications. In order to produce more mechanically-competent biomaterials, the combined addition of hydroxyapatite and carbon nanotubes (CNTs) is proposed in this study. Specifically, the aim of this work is to develop thermosensitive chitosan hydrogels containing stabilised single-walled and multi-walled CNTs, where their effect on the mechanical/physiochemical properties, calcium deposition patterns and ability to provide a platform for the controlled release of protein drugs was investigated. It was found that the addition of CNTs had a significant effect on the sol-gel transition time and significantly increased the resistance to compression for the hydrogels. Moreover, in vitro calcification studies revealed that CNTs played a major role in the spatial arrangements of newly formed calcium deposits in the composite materials studied, suggesting that they may have a role in the way the repair of fragile and/or fractured bones occurs in vivo. PMID:27324780

  5. Longwave radiative forcing by aqueous aerosols

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1995-01-01

    Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

  6. Nod-like receptor protein-3 inflammasome plays an important role during early stages of wound healing.

    PubMed

    Weinheimer-Haus, Eileen M; Mirza, Rita E; Koh, Timothy J

    2015-01-01

    The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin diseases, but its biological role in wound healing remains to be elucidated. Since inflammation is typically thought to impede healing, we hypothesized that loss of NLRP-3 activity would result in a downregulated inflammatory response and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflammation and healing were assessed during the early stage of wound healing. Consistent with our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels of the pro-inflammatory cytokines IL-1β and TNF-α compared to WT mice and had reduced neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization, granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for early events in wound healing. Topical treatment of excisional wounds with recombinant IL-1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent manner. These findings indicate that the NLRP-3 inflammasome contributes to the early inflammatory phase following skin wounding and is important for efficient healing.

  7. Nod-Like Receptor Protein-3 Inflammasome Plays an Important Role during Early Stages of Wound Healing

    PubMed Central

    Weinheimer-Haus, Eileen M.; Mirza, Rita E.; Koh, Timothy J.

    2015-01-01

    The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin diseases, but its biological role in wound healing remains to be elucidated. Since inflammation is typically thought to impede healing, we hypothesized that loss of NLRP-3 activity would result in a downregulated inflammatory response and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflammation and healing were assessed during the early stage of wound healing. Consistent with our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels of the pro-inflammatory cytokines IL-1β and TNF-α compared to WT mice and had reduced neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization, granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for early events in wound healing. Topical treatment of excisional wounds with recombinant IL-1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent manner. These findings indicate that the NLRP-3 inflammasome contributes to the early inflammatory phase following skin wounding and is important for efficient healing. PMID:25793779

  8. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; et al

    2015-07-16

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  9. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; et al

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  10. The mitochondrial protein Mcu1 plays important roles in carbon source utilization, filamentation, and virulence in Candida albicans.

    PubMed

    Guan, Guobo; Wang, Haitao; Liang, Weihong; Cao, Chengjun; Tao, Li; Naseem, Shamoon; Konopka, James B; Wang, Yue; Huang, Guanghua

    2015-08-01

    The fungus Candida albicans is both a pathogen and a commensal in humans. The ability to utilize different carbon sources available in diverse host niches is vital for both commensalism and pathogenicity. N-acetylglucosamine (GlcNAc) is an important signaling molecule as well as a carbon source in C. albicans. Here, we report the discovery of a novel gene MCU1 essential for GlcNAc utilization. Mcu1 is located in mitochondria and associated with multiple energy- and metabolism-related proteins including Por1, Atp1, Pet9, and Mdh1. Consistently, inactivating Por1 impaired GlcNAc utilization as well. Deletion of MCU1 also caused defects in utilizing non-fermentable carbon sources and amino acids. Furthermore, MCU1 is required for filamentation in several inducing conditions and virulence in a mouse systemic infection model. We also deleted TGL99 and GUP1, two genes adjacent to MCU1, and found that the gup1/gup1 mutant exhibited mild defects in the utilization of several carbon sources including GlcNAc, maltose, galactose, amino acids, and ethanol. Our results indicate that MCU1 exists in a cluster of genes involved in the metabolism of carbon sources. Given its importance in metabolism and lack of a homolog in humans, Mcu1 could be a potential target for developing antifungal agents.

  11. Importance of aerosol composition and mixing state for cloud droplet activation over the Arctic pack ice in summer

    NASA Astrophysics Data System (ADS)

    Leck, C.; Svensson, E.

    2015-03-01

    Concentrations of cloud condensation nuclei (CCN) were measured throughout an expedition by icebreaker around the central Arctic Ocean, including a 3 week ice drift operation at 87° N, from 3 August to 9 September 2008. In agreement with previous observations in the area and season, median daily CCN concentrations at 0.2% water vapour supersaturation (SS) were typically in the range of 15 to 30 cm-3, but concentrations varied by 2 to 3 orders of magnitude over the expedition and were occasionally below 1 cm-3. The CCN concentrations were highest near the ice edge and fell by a factor of 3 in the first 48 h of transport from the open sea into the pack ice region. For longer transport times they increased again, indicating a local source over the pack ice, suggested to be polymer gels, via drops injected into the air by bubbles bursting on open leads. We inferred the properties of the unexplained non-water soluble aerosol fraction that was necessary for reproducing the observed concentrations of CCN. This was made possible by assuming Köhler theory and simulating the cloud nucleation process using a Lagrangian adiabatic air parcel model that solves the kinetic formulation for condensation of water on size resolved aerosol particles. We propose that the portion of the internally/externally mixed water insoluble particles was larger in the corresponding smaller aerosol size ranges. These particles were physically and chemically behaving as polymer gels: the interaction of the hydrophilic and hydrophobic entities on the structures of polymer gels during cloud droplet activation would at first only show a partial wetting character and only weak hygroscopic growth. Given time, a high CCN activation efficiency is achieved, which is promoted by the hydrophilicity or surface-active properties of the gels. Thus the result in this study argues that the behaviour of the high Arctic aerosol in CCN-counters operating at water vapour SSs > 0.4% (high relative humidities) may not

  12. 'Serious thigh muscle strains': beware the intramuscular tendon which plays an important role in difficult hamstring and quadriceps muscle strains.

    PubMed

    Brukner, Peter; Connell, David

    2016-02-01

    Why do some hamstring and quadriceps strains take much longer to repair than others? Which injuries are more prone to recurrence? Intramuscular tendon injuries have received little attention as an element in 'muscle strain'. In thigh muscles, such as rectus femoris and biceps femoris, the attached tendon extends for a significant distance within the muscle belly. While the pathology of most muscle injures occurs at a musculotendinous junction, at first glance the athlete appears to report pain within a muscle belly. In addition to the musculotendinous injury being a site of pathology, the intramuscular tendon itself is occasionally injured. These injuries have a variety of appearances on MRIs. There is some evidence that these injuries require a prolonged rehabilitation time and may have higher recurrence rates. Therefore, it is important to recognise the tendon component of a thigh 'muscle strain'.

  13. Valine 1532 of human BRC repeat 4 plays an important role in the interaction between BRCA2 and RAD51.

    PubMed

    Ochiai, Kazuhiko; Yoshikawa, Yasunaga; Yoshimatsu, Kumiko; Oonuma, Toshina; Tomioka, Yukiko; Takeda, Eichi; Arikawa, Jiro; Mominoki, Katsumi; Omi, Toshinori; Hashizume, Kazuyoshi; Morimatsu, Masami

    2011-06-23

    The breast cancer susceptibility protein BRCA2 is essential for recombinational DNA repair. BRCA2 specifically binds to RAD51 via eight BRC repeat motifs and delivers RAD51 to double-stranded DNA breaks. In this study, a mammalian two-hybrid assay and competitive ELISA showed that the interaction between BRC repeat 4 (BRC4) and RAD51 was strengthened by the substitution of a single BRC4 amino acid from valine to isoleucine (V1532I). However, the cancer-associated V1532F mutant exhibited very weak interaction with RAD51. This study used a comparative analysis of BRC4 between animal species to identify V1532 as an important residue that interacts with RAD51.

  14. The importance of the global oils and fats supply and the role that palm oil plays in meeting the demand for oils and fats worldwide.

    PubMed

    Fry, James; Fitton, Claire

    2010-06-01

    This article highlights the importance of the role that palm oil plays in meeting the demand for oils and fats worldwide for food. On top of this food demand, the demand for vegetable oils for biofuels, which now absorb over 10% of world oil and fat supplies, has rapidly increased.

  15. Surface texture and priming play important roles in predator recognition by the red-backed shrike in field experiments.

    PubMed

    Němec, Michal; Syrová, Michaela; Dokoupilová, Lenka; Veselý, Petr; Šmilauer, Petr; Landová, Eva; Lišková, Silvie; Fuchs, Roman

    2015-01-01

    We compared the responses of the nesting red-backed shrikes (Lanius collurio) to three dummies of a common nest predator, the Eurasian jay (Garrulus glandarius), each made from a different material (stuffed, plush, and silicone). The shrikes performed defensive behaviour including attacks on all three dummies. Nevertheless, the number of attacks significantly decreased from the stuffed dummy through the plush dummy and finally to the silicone dummy. Our results show that wild birds use not only colours but also other surface features as important cues for recognition and categorization of other bird species. Moreover, the silicone dummy was attacked only when presented after the stuffed or plush dummy. Thus, we concluded that the shrikes recognized the jay only the stuffed (with feathered surface) and plush (with hairy surface) dummies during the first encounter. Recognition of the silicon dummy (with glossy surface) was facilitated by previous encounters with the more accurate model. This process resembles the effect of perceptual priming, which is widely described in the literature on humans.

  16. Carboxyl-Terminal SSLKG Motif of the Human Cystinosin-LKG Plays an Important Role in Plasma Membrane Sorting

    PubMed Central

    Taranta, Anna; Petrini, Stefania; Venditti, Rossella; Rocchetti, Maria Teresa; Rega, Laura Rita; Corallini, Serena; Gesualdo, Loreto; De Matteis, Maria Antonietta; Emma, Francesco

    2016-01-01

    Cystinosin mediates an ATP-dependent cystine efflux from lysosomes and causes, if mutated, nephropathic cystinosis, a rare inherited lysosomal storage disease. Alternative splicing of the last exon of the cystinosin sequence produces the cystinosin-LKG isoform that is characterized by a different C-terminal region causing changes in the subcellular distribution of the protein. We have constructed RFP-tagged proteins and demonstrated by site-directed mutagenesis that the carboxyl-terminal SSLKG sequence of cystinosin-LKG is an important sorting motif that is required for efficient targeting the protein to the plasma membrane, where it can mediate H+ coupled cystine transport. Deletion of the SSLKG sequence reduced cystinosin-LKG expression in the plasma membrane and cystine transport by approximately 30%, and induced significant accumulation of the protein in the Golgi apparatus and in lysosomes. Cystinosin-LKG, unlike the canonical isoform, also moves to the lysosomes by the indirect pathway, after endocytic retrieval from the plasma membrane, mainly by a clathrin-mediated endocytosis. Nevertheless, silencing of AP-2 triggers the clathrin-independent endocytosis, showing the complex adaptability of cystinosin-LKG trafficking. PMID:27148969

  17. Carboxyl-Terminal SSLKG Motif of the Human Cystinosin-LKG Plays an Important Role in Plasma Membrane Sorting.

    PubMed

    Bellomo, Francesco; Taranta, Anna; Petrini, Stefania; Venditti, Rossella; Rocchetti, Maria Teresa; Rega, Laura Rita; Corallini, Serena; Gesualdo, Loreto; De Matteis, Maria Antonietta; Emma, Francesco

    2016-01-01

    Cystinosin mediates an ATP-dependent cystine efflux from lysosomes and causes, if mutated, nephropathic cystinosis, a rare inherited lysosomal storage disease. Alternative splicing of the last exon of the cystinosin sequence produces the cystinosin-LKG isoform that is characterized by a different C-terminal region causing changes in the subcellular distribution of the protein. We have constructed RFP-tagged proteins and demonstrated by site-directed mutagenesis that the carboxyl-terminal SSLKG sequence of cystinosin-LKG is an important sorting motif that is required for efficient targeting the protein to the plasma membrane, where it can mediate H+ coupled cystine transport. Deletion of the SSLKG sequence reduced cystinosin-LKG expression in the plasma membrane and cystine transport by approximately 30%, and induced significant accumulation of the protein in the Golgi apparatus and in lysosomes. Cystinosin-LKG, unlike the canonical isoform, also moves to the lysosomes by the indirect pathway, after endocytic retrieval from the plasma membrane, mainly by a clathrin-mediated endocytosis. Nevertheless, silencing of AP-2 triggers the clathrin-independent endocytosis, showing the complex adaptability of cystinosin-LKG trafficking. PMID:27148969

  18. Toll-Like Receptor 6 Plays an Important Role in Host Innate Resistance to Brucella abortus Infection in Mice

    PubMed Central

    de Almeida, Leonardo A.; Macedo, Gilson C.; Marinho, Fábio A. V.; Gomes, Marco T. R.; Corsetti, Patrícia P.; Silva, Aristóbolo M.; Cassataro, Juliana; Giambartolomei, Guillermo H.

    2013-01-01

    Brucella abortus is recognized by several Toll-like receptor (TLR)-associated pathways triggering proinflammatory responses that affect both the nature and intensity of the immune response. Previously, we demonstrated that B. abortus-mediated dendritic cell (DC) maturation and control of infection are dependent on the adaptor molecule MyD88. However, the involvement of all TLRs in response to B. abortus infection is not completely understood. Therefore, we decided to evaluate the requirement for TLR6 in host resistance to B. abortus. Here, we demonstrated that TLR6 is an important component for triggering an innate immune response against B. abortus. An in vitro luciferase assay indicated that TLR6 cooperates with TLR2 to sense Brucella and further activates NF-κB signaling. However, in vivo analysis showed that TLR6, not TLR2, is required for the efficient control of B. abortus infection. Additionally, B. abortus-infected dendritic cells require TLR6 to induce tumor necrosis factor alpha (TNF-α) and interleukin-12 (IL-12). Furthermore, our findings demonstrated that the mitogen-activated protein kinase (MAPK) signaling pathway is impaired in TLR2, TLR6, and TLR2/6 knockout (KO) DCs when infected with B. abortus, which may account for the lower proinflammatory cytokine production observed in TLR6 KO mouse dendritic cells. In summary, the results presented here indicate that TLR6 is required to trigger innate immune responses against B. abortus in vivo and is required for the full activation of DCs to induce robust proinflammatory cytokine production. PMID:23460520

  19. RIG-I, MDA5 and TLR3 Synergistically Play an Important Role in Restriction of Dengue Virus Infection

    PubMed Central

    Thien, Peiling; Xu, Shengli; Lam, Kong-Peng; Liu, Ding Xiang

    2011-01-01

    Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus. PMID:21245912

  20. Biomass burning as an important source of reactive oxygen species associated with the atmospheric aerosols in Southeastern United States - Implications for health effects of ambient particulate matter

    NASA Astrophysics Data System (ADS)

    Verma, V.; Weber, R. J. J.; Fang, T.; Xu, L.; Ng, N. L.; Russell, A. G.

    2014-12-01

    We assessed the potential of water-soluble fraction of atmospheric fine aerosols in the southeastern US to generate reactive oxygen species (ROS). ROS-generation potential of particles was quantified by the dithiothreitol (DTT) assay and involved analysis of fine particulate matter (PM) extracted from high-volume quartz filters (23 h integrated daily samples) collected for one year at various sites in different environmental settings in the southeast, including three urban Atlanta sites, and one rural site in Yorkville. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for the DTT activity. Organic aerosol (OA) composition was measured at selected sites using a High-Resolution Time-of-Flight Aerosol Mass Spectrophotometer (HR-ToF-AMS). The various factors of the organic aerosols, i.e. Isoprene OA (Isop-OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA) were also resolved, and their ability to generate ROS investigated by linear regression techniques. Among all OA factors, BBOA was most consistently associated with ROS, with the highest intrinsic DTT activity of 151±20 pmol/min/μg. The water-soluble bioavailable fraction of BBOA-DTT activity is 2-3 times higher than the reported total-DTT activity of diesel exhaust particles. The total contribution of various aerosol sources to the ROS generating potential was also determined by the positive matrix factorization approach. Interestingly, biomass burning appears as the strongest source of ROS generation, with its annual contribution of 35 % to DTT activity; the contribution was higher in winter (47 %), than summer (24 %) and fall (17 %) seasons. The good agreement between the hydrophobic DTT activity with that estimated from the summed OA components, indicates that humic-like substances (HULIS), which are abundantly emitted

  1. Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss.

    PubMed

    Liu, Xin; Dong, Xiufen; Liu, Zihan; Shi, Zihang; Jiang, Yun; Qi, Mingfang; Xu, Tao; Li, Tianlai

    2016-10-01

    -regulated ABI5 in tomato leaves demonstrated that ARF10 is the direct factor for inducing the water loss in 35S:mSlARF10-6. Here, we show that although SlARF10 increased the ABA synthesis/signal response by regulating stomatal aperture to mitigate water loss, SlARF10 also influenced stomatal development and AQP expression to affect water transport, and both act cooperatively to control the loss of leaf water in tomato. Therefore, this study uncovers a previously unrecognized leaf water loss regulatory factor and a network for coordinating auxin and ABA signalling in this important process. In an evolutionary context, miR160 regulates ARF10 to maintain the water balance in the leaf, thus ensuring normal plant development and environmental adaptation. PMID:27542006

  2. Pretend play.

    PubMed

    Weisberg, Deena Skolnick

    2015-01-01

    Pretend play is a form of playful behavior that involves nonliteral action. Although on the surface this activity appears to be merely for fun, recent research has discovered that children's pretend play has connections to important cognitive and social skills, such as symbolic thinking, theory of mind, and counterfactual reasoning. The current article first defines pretend play and then reviews the arguments and evidence for these three connections. Pretend play has a nonliteral correspondence to reality, hence pretending may provide children with practice with navigating symbolic relationships, which may strengthen their language skills. Pretend play and theory of mind reasoning share a focus on others' mental states in order to correctly interpret their behavior, hence pretending and theory of mind may be mutually supportive in development. Pretend play and counterfactual reasoning both involve representing nonreal states of affairs, hence pretending may facilitate children's counterfactual abilities. These connections make pretend play an important phenomenon in cognitive science: Studying children's pretend play can provide insight into these other abilities and their developmental trajectories, and thereby into human cognitive architecture and its development.

  3. Pretend play.

    PubMed

    Weisberg, Deena Skolnick

    2015-01-01

    Pretend play is a form of playful behavior that involves nonliteral action. Although on the surface this activity appears to be merely for fun, recent research has discovered that children's pretend play has connections to important cognitive and social skills, such as symbolic thinking, theory of mind, and counterfactual reasoning. The current article first defines pretend play and then reviews the arguments and evidence for these three connections. Pretend play has a nonliteral correspondence to reality, hence pretending may provide children with practice with navigating symbolic relationships, which may strengthen their language skills. Pretend play and theory of mind reasoning share a focus on others' mental states in order to correctly interpret their behavior, hence pretending and theory of mind may be mutually supportive in development. Pretend play and counterfactual reasoning both involve representing nonreal states of affairs, hence pretending may facilitate children's counterfactual abilities. These connections make pretend play an important phenomenon in cognitive science: Studying children's pretend play can provide insight into these other abilities and their developmental trajectories, and thereby into human cognitive architecture and its development. PMID:26263228

  4. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  5. The importance of play in promoting healthy child development and maintaining strong parent-child bond: focus on children in poverty.

    PubMed

    Milteer, Regina M; Ginsburg, Kenneth R

    2012-01-01

    Play is essential to the social, emotional, cognitive, and physical well-being of children beginning in early childhood. It is a natural tool for children to develop resiliency as they learn to cooperate, overcome challenges, and negotiate with others. Play also allows children to be creative. It provides time for parents to be fully engaged with their children, to bond with their children, and to see the world from the perspective of their child. However, children who live in poverty often face socioeconomic obstacles that impede their rights to have playtime, thus affecting their healthy social-emotional development. For children who are underresourced to reach their highest potential, it is essential that parents, educators, and pediatricians recognize the importance of lifelong benefits that children gain from play. PMID:22201149

  6. Effects of aerosol on evaporation, freezing and precipitation in a multiple cloud system

    NASA Astrophysics Data System (ADS)

    Lee, Seoung Soo; Kim, Byung-Gon; Yum, Seong Soo; Seo, Kyong-Hwan; Jung, Chang-Hoon; Um, Jun Shik; Li, Zhanqing; Hong, JinKyu; Chang, Ki-Ho; Jeong, Jin-Yim

    2016-04-01

    Aerosol effects on clouds and precipitation account for a large portion of uncertainties in the prediction of the future course of global hydrologic circulations and climate. As a process of a better understanding of interactions between aerosol, clouds and precipitation, simulations are performed for a mixed-phase convective multiple-cloud system over the tropics. Studies on single-cloud systems have shown that aerosol-induced increases in freezing, associated increases in parcel buoyancy and thus the intensity of clouds (or updrafts) are a main mechanism which controls aerosol-cloud-precipitation interactions in convective clouds. However, in the multiple-cloud system that plays much more important roles in global hydrologic circulations and thus climate than single-cloud systems, aerosol effects on condensation play the most important role in aerosol-induced changes in the intensity of clouds and the effects on freezing play a negligible role in those changes. Aerosol-induced enhancement in evaporation intensifies gust fronts and increases the number of subsequently developing clouds, which leads to the substantial increases in condensation and associated intensity of convection. Although aerosol-induced enhancement in freezing takes part in the increases in condensation by inducing stronger convergence around cloud bottom, the increases in condensation are ~one order of magnitude larger than those in freezing. It is found that while aerosol-induced increases in freezing create intermittent extremely heavy precipitation, aerosol-induced increases in evaporation enhance light and medium precipitation in the multiple-cloud system here. This increase in light and medium precipitation makes it possible that cumulative precipitation increases with increasing aerosol concentration, although the increase is small. It is interesting that the altitude of the maximum of the time- and domain-averaged hydrometeor mass densities is quite robust to increases in aerosol

  7. Humidity Dependent Extinction of Clay Aerosols

    NASA Astrophysics Data System (ADS)

    Greenslade, M. E.; Attwood, A. R.

    2010-12-01

    Aerosols play an important role in the Earth’s radiative balance by directly scattering and absorbing radiation. The magnitude of aerosol forcing can be altered by changes in relative humidity which cause aerosol size, shape and refractive index to vary. To quantify these effects, a custom cavity ring down instrument operated at 532 nm with two sample channels measures aerosols extinction under dry conditions and at elevated humidity. The optical growth, fRH(ext), is determined as a ratio of the extinction cross section at high relative humidity to that under dry conditions. Three key clay components of mineral dust and mixtures of clay components with ammonium sulfate are investigated using this method. Experimentally obtained optical growth is compared with physical growth factors from the literature and our work determined using several different techniques. Further, Mie theory calculations based on published optical constants are compared with experimental results. Differences between theory and experiment will be discussed.

  8. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1995-09-01

    Ambient aerosols frequently contain large portions of hygroscopic inorganic salts such as chlorides, nitrates, and sulfates in either pure or mixed forms. Such inorganic salt aerosols exhibit the properties of deliquescence and efflorescence in air. The phase transformation from a solid particle to a saline droplet usually occurs spontaneously when the relative humidity of the atmosphere reaches a level specific to the chemical composition of the aerosol particle. Conversely, when the relative humidity decreases and becomes low enough, the saline droplet will evaporate and suddenly crystallize, expelling all its water content. The phase transformation and growth of aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climate changes. In this chapter, an exposition of the underlying thermodynamic principles is given, and recent advances in experimental methods utilizing single-particle levitation are discussed. In addition, pertinent and available thermodynamic data, which are needed for predicting the deliquescence properties of single and multi-component aerosols, are compiled. This chapter is useful to research scientists who are either interested in pursuing further studies of aerosol thermodynamics, or required to model the dynamic behavior of hygroscopic aerosols in a humid environment.

  9. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions. PMID:24601011

  10. Class I Arfs (Arf1 and Arf3) and Arf6 are localized to the Flemming body and play important roles in cytokinesis.

    PubMed

    Hanai, Ayako; Ohgi, Minako; Yagi, Chikako; Ueda, Tomoko; Shin, Hye-Won; Nakayama, Kazuhisa

    2016-02-01

    Small GTPases play important roles in various aspects of cell division as well as membrane trafficking. We and others previously showed that ADP-ribosylation factor 6 (Arf6) is locally activated around the ingressing cleavage furrow and recruited to the Flemming body in late cytokinesis phases, and involved in faithful completion of cytokinesis. However, knockout of the Arf6 gene or Arf6 depletion by siRNAs did not drastically influence cytokinesis. We here show that, in addition to Arf6, Class I Arfs (Arf1 and Arf3) are localized to the Flemming body, and that double knockdown of Arf1 and Arf3 moderately increases the proportion of multinucleate cells and simultaneous knockdown of Arf1, Arf3 and Arf6 leads to severe cytokinesis defects. These observations indicate that Arf1 and Arf3 as well as Arf6 play important roles in cytokinesis. We further show that EFA6 (exchange factor for Arf6) activates not only Arf6 but also Arf1 in the cell. Taken together with our previous data, these Arf GTPases are likely to be locally activated by EFA6 and in turn targeted to the Flemming body to complete cytokinesis. PMID:26330566

  11. Simulating Aerosol-cloud-radiation Feedbacks over East Asia Using Wrf-chem

    NASA Astrophysics Data System (ADS)

    Wang, J.; Allen, D. J.; Pickering, K. E.; Li, Z.; Dickerson, R. R.

    2011-12-01

    Aerosols play an important role in climate change through their impact on the radiative balance of the atmosphere. Recently much effort has been put into studying the radiative forcing of aerosols in East Asia. In this study, we apply the regional chemistry and transport model, WRF-Chem, to study aerosol radiative forcing over eastern Asia. Version 3.3 of the model is used with the CBMZ chemical mechanism and the MOSAIC aerosol treatment. The time period of interest is Feb 21, 2005 to April 12, 2005, since there were extensive measurements of radiation, trace gases, and aerosol properties available from EAST-AIRE (East Asian Study of Tropospheric Aerosols: An International Regional Experiment ) campaign during that period. We conduct model simulations with and without aerosol forcing and compare the results to measurements. We investigate the aerosol radiative forcing as well as aerosol direct and indirect effects by analyzing the differences between short wave flux, temperature, and cloud fraction from these two runs. We evaluate our model simulated incoming short wave radiation at the surface with in situ measurements from EAST-AIRE site Xianghe (70 km southeast of Beijing, China). We find that shortwave radiation decreases when aerosols are added lessening the high-bias between model-calculated and observed short wave radiation. We further compare the model simulated cloud fraction from two runs with MODIS Level 2 retrievals, demonstrating aerosol indirect effects in cloud formations.

  12. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean

    PubMed Central

    Xu, Zhaolong; Ali, Zulfiqar; Xu, Ling; He, Xiaolan; Huang, Yihong; Yi, Jinxin; Shao, Hongbo; Ma, Hongxiang; Zhang, Dayong

    2016-01-01

    Plant basic-leucine zipper (bZIP) transcription factors play important roles in many biological processes and are involved in the regulation of salt stress tolerance. Previously, our lab generated digital gene expression profiling (DGEP) data to identify differentially expressed genes in a salt-tolerant genotype of Glycine soja (STGoGS) and a salt-sensitive genotype of Glycine max (SSGoGM). This DGEP data revealed that the expression (log2 ratio) of GmbZIP110 was up-regulated 2.76-fold and 3.38-fold in SSGoGM and STGoGS, respectively. In the present study, the salt inducible gene GmbZIP110 was cloned and characterized through phylogenetic analysis, subcellular localization and in silico transcript abundance analysis in different tissues. The functional role of this gene in salt tolerance was studied through transactivation analysis, DNA binding ability, expression in soybean composite seedlings and transgenic Arabidopsis, and the effect of GmbZIP110 on the expression of stress-related genes in transgenic Arabidopsis was investigated. We found that GmbZIP110 could bind to the ACGT motif, impact the expression of many stress-related genes and the accumulation of proline, Na+ and K+, and enhanced the salt tolerance of composite seedlings and transgenic Arabidopsis. Integrating all these results, we propose that GmbZIP110 plays a critical role in the response to salinity stress in soybean and has high potential usefulness in crop improvement. PMID:26837841

  13. Eos is redundant for T regulatory cell function, but plays an important role in IL-2 and Th17 production by CD4+ T conventional cells

    PubMed Central

    Rieder, Sadiye Amcaoglu; Metidji, Amina; Glass, Deborah Dacek; Thornton, Angela M.; Ikeda, Tohru; Morgan, Bruce A.; Shevach, Ethan M.

    2015-01-01

    Eos is a transcription factor that belongs to the Ikaros family of transcription factors. Eos has been reported to be a T regulatory cell (Treg) signature gene, to play a critical role in Treg suppressor functions, and to maintain Treg stability. We have utilized mice with a global deficiency of Eos to re-examine the role of Eos expression in both Treg and T conventional (Tconv) cells. Treg from Eos deficient (Eos−/−) mice developed normally, displayed a normal Treg phenotype, and exhibited normal suppressor function in vitro. Eos−/− Treg were as effective as Treg from wild type (WT) mice in suppression of inflammation in a model of inflammatory bowel disease. Bone marrow (BM) from Eos−/− mice was as effective as BM from WT mice in controlling T cell activation when used to reconstitute immunodeficient mice in the presence of Scurfy fetal liver cells. Surprisingly, Eos was expressed in activated Tconv cells and was required for IL-2 production, CD25 expression and proliferation in vitro by CD4+ Tconv cells. Eos−/− mice developed more severe Experimental Autoimmune Encephalomyelitis than WT mice, displayed increased numbers of effector T cells in the periphery and CNS, and amplified IL-17 production. In conclusion, our studies are not consistent with a role for Eos in Treg development and function, but demonstrate that Eos plays an important role in the activation and differentiation of Tconv cells. PMID:26062998

  14. DJ-1 plays an important role in caffeic acid-mediated protection of the gastrointestinal mucosa against ketoprofen-induced oxidative damage.

    PubMed

    Cheng, Yu-Ting; Ho, Cheng-Ying; Jhang, Jhih-Jia; Lu, Chi-Cheng; Yen, Gow-Chin

    2014-10-01

    Ketoprofen is widely used to alleviate pain and inflammation in clinical medicine; however, this drug may cause oxidative stress and lead to gastrointestinal (GI) ulcers. We previously reported that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in protecting cells against reactive oxygen species, and it facilitates the prevention of ketoprofen-induced GI mucosal ulcers. Recent reports suggested that Nrf2 becomes unstable in the absence of DJ-1/PARK7, attenuating the activity of Nrf2-regulated downstream antioxidant enzymes. Thus, increasing Nrf2 translocation by DJ-1 may represent a novel means for GI protection. In vitro, caffeic acid increases the nuclear/cytosolic Nrf2 ratio and the mRNA expression of the downstream antioxidant enzymes, ϒ-glutamyl cysteine synthetase, glutathione peroxidase, glutathione reductase, and heme oxygenase-1, by activating the JNK/p38 pathway in Int-407 cells. Moreover, knockdown of DJ-1 also reversed caffeic acid-induced nuclear Nrf2 protein expression in a JNK/p38-dependent manner. Our results also indicated that treatment of Sprague-Dawley rats with caffeic acid prior to the administration of ketoprofen inhibited oxidative damage and reversed the inhibitory effects of ketoprofen on the antioxidant system and DJ-1 protein expression in the GI mucosa. Our observations suggest that DJ-1 plays an important role in caffeic acid-mediated protection against ketoprofen-induced oxidative damage in the GI mucosa.

  15. Does asymmetric charge transfer play an important role as an ionization mode in low power-low pressure glow discharge mass spectrometry?

    NASA Astrophysics Data System (ADS)

    Mushtaq, S.; Steers, E. B. M.; Churchill, G.; Barnhart, D.; Hoffmann, V.; Pickering, J. C.; Putyera, K.

    2016-04-01

    We report results of comprehensive studies using the Nu Instruments Astrum high-resolution glow discharge mass spectrometer (GD-MS) and optical emission spectrometry (OES) to investigate the relative importance of discharge mechanisms, such as Penning ionization (PI) and asymmetric charge transfer (ACT), at low-power/low-pressure discharge conditions. Comparison of the ratios of the ion signals of each constituent element to that of the plasma gas shows that for oxygen, the ratio in krypton is more than ten times higher than in argon (oxygen ground state ions are produced by Kr-ACT). For many elements, the ratios are very similar but that for tungsten is higher with krypton, while for iron, the reverse holds. These effects are linked to the arrangement of ionic energy levels of the elements concerned and the resulting relative importance of ACT and PI. The GD-MS and GD-OES results have shown that the ACT process can play an important role as the ionization mode in low-power/low-pressure discharges. However, OES results have shown that the magnitude of change in spectral intensities of elements studied are dependent on the discharge conditions.

  16. Membrane cholesterol plays an important role in enteropathogen adhesion and the activation of innate immunity via flagellin-TLR5 signaling.

    PubMed

    Zhou, Mingxu; Duan, Qiangde; Li, Yinchau; Yang, Yang; Hardwidge, Philip R; Zhu, Guoqiang

    2015-08-01

    Lipid rafts are cholesterol- and sphingolipid-rich ordered microdomains distributed in the plasma membrane that participates in mammalian signal transduction pathways. To determine the role of lipid rafts in mediating interactions between enteropathogens and intestinal epithelial cells, membrane cholesterol was depleted from Caco-2 and IPEC-J2 cells using methyl-β-cyclodextrin. Cholesterol depletion significantly reduced Escherichia coli and Salmonella enteritidis adhesion and invasion into intestinal epithelial cells. Complementation with exogenous cholesterol restored bacterial adhesion to basal levels. We also evaluated the role of lipid rafts in the activation of Toll-like receptor 5 signaling by bacterial flagellin. Depleting membrane cholesterol reduced the ability of purified recombinant E. coli flagellin to activate TLR5 signaling in intestinal cells. These data suggest that both membrane cholesterol and lipid rafts play important roles in enteropathogen adhesion and contribute to the activation of innate immunity via flagellin-TLR5 signaling.

  17. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  18. Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea

    PubMed Central

    Jordi, Antoni; Basterretxea, Gotzon; Tovar-Sánchez, Antonio; Alastuey, Andrés; Querol, Xavier

    2012-01-01

    Aerosol deposition plays an important role in climate and biogeochemical cycles by supplying nutrients to the open ocean, in turn stimulating ocean productivity and carbon sequestration. Aerosol particles also contain elements such as copper (Cu) that are essential in trace amounts for phytoplankton physiology but that can be toxic at high concentrations. Although the toxicity of Cu associated with aerosols has been demonstrated in bioassay experiments, extrapolation of these laboratory results to natural conditions is not straightforward. This study provides observational evidence of the negative effect of aerosols containing high Cu concentrations on marine phytoplankton over a vast region of the western Mediterranean Sea. Direct aerosol measurements were combined with satellite observations, resulting in the detection of significant declines in phytoplankton biomass after atmospheric aerosol events characterized by high Cu concentrations. The declines were more evident during summer, when nanoflagellates predominate in the phytoplankton population and stratification and oligotrophic conditions prevail in the study region. Together with previous findings concerning atmospheric Cu deposition, these results demonstrate that the toxicity of Cu-rich aerosols can involve large areas of the world’s oceans. Moreover, they highlight the present vulnerability of oceanic ecosystems to Cu-rich aerosols of anthropogenic origins. Because anthropogenic emissions are increasing, large-scale negative effects on marine ecosystems can be anticipated. PMID:23236141

  19. The impact of atmospheric mineral aerosol deposition on the albedo of snow & sea ice: are snow and sea ice optical properties more important than mineral aerosol optical properties?

    NASA Astrophysics Data System (ADS)

    Lamare, M. L.; Lee-Taylor, J.; King, M. D.

    2016-01-01

    Knowledge of the albedo of polar regions is crucial for understanding a range of climatic processes that have an impact on a global scale. Light-absorbing impurities in atmospheric aerosols deposited on snow and sea ice by aeolian transport absorb solar radiation, reducing albedo. Here, the effects of five mineral aerosol deposits reducing the albedo of polar snow and sea ice are considered. Calculations employing a coupled atmospheric and snow/sea ice radiative-transfer model (TUV-snow) show that the effects of mineral aerosol deposits are strongly dependent on the snow or sea ice type rather than the differences between the aerosol optical characteristics. The change in albedo between five different mineral aerosol deposits with refractive indices varying by a factor of 2 reaches a maximum of 0.0788, whereas the difference between cold polar snow and melting sea ice is 0.8893 for the same mineral loading. Surprisingly, the thickness of a surface layer of snow or sea ice loaded with the same mass ratio of mineral dust has little effect on albedo. On the contrary, the surface albedo of two snowpacks of equal depth, containing the same mineral aerosol mass ratio, is similar, whether the loading is uniformly distributed or concentrated in multiple layers, regardless of their position or spacing. The impact of mineral aerosol deposits is much larger on melting sea ice than on other types of snow and sea ice. Therefore, the higher input of shortwave radiation during the summer melt cycle associated with melting sea ice accelerates the melt process.

  20. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization

    PubMed Central

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  1. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation.

    PubMed

    Lv, Fenni; Wang, Haihai; Wang, Xinyu; Han, Libo; Ma, Yinping; Wang, Sen; Feng, Zhidi; Niu, Xiaowei; Cai, Caiping; Kong, Zhaosheng; Zhang, Tianzhen; Guo, Wangzhen

    2015-04-01

    Fibre cell initiation and elongation is critical for cotton fibre development. However, little is known about the regulation of initiation and elongation during fibre cell development. Here, the regulatory role of a novel protein GhCFE1A was uncovered. GhCFE1A is preferentially expressed at initiation and rapid elongation stages during fibre development; in addition, much higher expression of GhCFE1A was detected at the fibre initiation stage in fibreless cotton mutants than in the fibre-bearing TM-1 wild-type. Importantly, overexpression of GhCFE1A in cotton not only delayed fibre cell elongation but also significantly reduced the density of lint and fuzz fibre initials and stem trichomes. Yeast two-hybrid assay showed that GhCFE1A interacted with several actin proteins, and the interaction was further confirmed by co-sedimentation assay. Interestingly, a subcellular localization assay showed that GhCFE1A resided on the cortical endoplasmic reticulum (ER) network and co-localized with actin cables. Moreover, the density of F-actin filaments was shown to be reduced in GhCFE1A-overexpressing fibres at the rapid elongation stage compared with the wild-type control. Taken together, the results demonstrate that GhCFE1A probably functions as a dynamic linker between the actin cytoskeleton and the ER network, and plays an important role in fibre cell initiation and elongation during cotton fibre development.

  2. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    PubMed

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-21

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.

  3. Outdoor Play and Play Equipment.

    ERIC Educational Resources Information Center

    Naylor, Heather

    1985-01-01

    Discusses aspects of the play environment and its effect on children's play behavior. Indoor and outdoor play spaces are considered along with factors affecting the use of outdoor environments for play. Children's preferences for different outdoor play environments and for various play structures are explored. Guides for choosing play equipment…

  4. [Determination of the retrieval arithmetic of aerosol size distribution measured by DOAS].

    PubMed

    Si, Fu-qi; Xie, Pin-hua; Liu, Jian-guo; Zhang, Yu-jun; Liu, Wen-qing; Hiroaki, Kuze; Nobuo, Takeuchi

    2008-10-01

    Atmospheric aerosol is not only an important factor for the change in global climate, but also a polluting matter. Moreover, aerosol plays a main role in chemical reaction of polluting gases. Determination of aerosol has become an important re- search in the study of atmospheric environment. Differential optical absorption spectroscopy (DOAS) is a very useful technique that allows quantitative measurement of atmospheric trace gas concentrations based on their fingerprint absorption. It also can be used to retrieve aerosol extinction coefficient. In the present work, the method of determination of aerosol size distribution measured by flash DOAS is described, and the arithmetic based on Monte-Carlo is the emphasis. By comparison with the concentration of PM10, visibility and Angstrom wavelength exponent, a good correlation can be found. Application of DOAS in aerosol field not only provides a novel method for aerosol detection, but also extends the field of application of DOAS technology. Especially, aerosol DOAS plays an important role in the study of atmospheric chemistry.

  5. [Determination of the retrieval arithmetic of aerosol size distribution measured by DOAS].

    PubMed

    Si, Fu-qi; Xie, Pin-hua; Liu, Jian-guo; Zhang, Yu-jun; Liu, Wen-qing; Hiroaki, Kuze; Nobuo, Takeuchi

    2008-10-01

    Atmospheric aerosol is not only an important factor for the change in global climate, but also a polluting matter. Moreover, aerosol plays a main role in chemical reaction of polluting gases. Determination of aerosol has become an important re- search in the study of atmospheric environment. Differential optical absorption spectroscopy (DOAS) is a very useful technique that allows quantitative measurement of atmospheric trace gas concentrations based on their fingerprint absorption. It also can be used to retrieve aerosol extinction coefficient. In the present work, the method of determination of aerosol size distribution measured by flash DOAS is described, and the arithmetic based on Monte-Carlo is the emphasis. By comparison with the concentration of PM10, visibility and Angstrom wavelength exponent, a good correlation can be found. Application of DOAS in aerosol field not only provides a novel method for aerosol detection, but also extends the field of application of DOAS technology. Especially, aerosol DOAS plays an important role in the study of atmospheric chemistry. PMID:19123420

  6. A Putative Mitochondrial Iron Transporter MrsA in Aspergillus fumigatus Plays Important Roles in Azole-, Oxidative Stress Responses and Virulence.

    PubMed

    Long, Nanbiao; Xu, Xiaoling; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-01-01

    Iron is an essential nutrient and enzyme co-factor required for a wide range of cellular processes, especially for the function of mitochondria. For the opportunistic fungal pathogen Aspergillus fumigatus, the ability to obtain iron is required for growth and virulence during the infection process. However, knowledge of how mitochondria are involved in iron regulation is still limited. Here, we show that a mitochondrial iron transporter, MrsA, a homolog of yeast Mrs4p, is critical for adaptation to iron-limited or iron-excess conditions in A. fumigatus. Deletion of mrsA leads to disruption of iron homeostasis with a decreased sreA expression, resulted in activated reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA). Furthermore, deletion of mrsA induces hypersusceptibility to azole and oxidative stresses. An assay for cellular ROS content in ΔmrsA combined with rescue from the mrsA-defective phenotype by the antioxidant reagent L-ascorbic acid indicates that the increased sensitivity of ΔmrsA to the azole itraconazole and to oxidative stress is mainly the result of abnormal ROS accumulation. Moreover, site-directed mutation experiments verified that three conserved histidine residues related to iron transport in MrsA are required for responses to oxidative and azole stresses. Importantly, ΔmrsA causes significant attenuation of virulence in an immunocompromised murine model of aspergillosis. Collectively, our results show that the putative mitochondrial iron transporter MrsA plays important roles in azole- and oxidative-stress responses and virulence by regulating the balance of cellular iron in A. fumigatus. PMID:27433157

  7. A Putative Mitochondrial Iron Transporter MrsA in Aspergillus fumigatus Plays Important Roles in Azole-, Oxidative Stress Responses and Virulence

    PubMed Central

    Long, Nanbiao; Xu, Xiaoling; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-01-01

    Iron is an essential nutrient and enzyme co-factor required for a wide range of cellular processes, especially for the function of mitochondria. For the opportunistic fungal pathogen Aspergillus fumigatus, the ability to obtain iron is required for growth and virulence during the infection process. However, knowledge of how mitochondria are involved in iron regulation is still limited. Here, we show that a mitochondrial iron transporter, MrsA, a homolog of yeast Mrs4p, is critical for adaptation to iron-limited or iron-excess conditions in A. fumigatus. Deletion of mrsA leads to disruption of iron homeostasis with a decreased sreA expression, resulted in activated reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA). Furthermore, deletion of mrsA induces hypersusceptibility to azole and oxidative stresses. An assay for cellular ROS content in ΔmrsA combined with rescue from the mrsA-defective phenotype by the antioxidant reagent L-ascorbic acid indicates that the increased sensitivity of ΔmrsA to the azole itraconazole and to oxidative stress is mainly the result of abnormal ROS accumulation. Moreover, site-directed mutation experiments verified that three conserved histidine residues related to iron transport in MrsA are required for responses to oxidative and azole stresses. Importantly, ΔmrsA causes significant attenuation of virulence in an immunocompromised murine model of aspergillosis. Collectively, our results show that the putative mitochondrial iron transporter MrsA plays important roles in azole- and oxidative-stress responses and virulence by regulating the balance of cellular iron in A. fumigatus. PMID:27433157

  8. Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells

    PubMed Central

    Lee, Jane Ying-Chieh; Kuo, Ching-Wen; Tsai, Shing-Ling; Cheng, Siao Muk; Chen, Shang-Hung; Chan, Hsiu-Han; Lin, Chun-Hui; Lin, Kun-Yuan; Li, Chien-Feng; Kanwar, Jagat R.; Leung, Euphemia Y.; Cheung, Carlos Chun Ho; Huang, Wei-Jan; Wang, Yi-Ching; Cheung, Chun Hei Antonio

    2016-01-01

    SAHA is a class I HDAC/HDAC6 co-inhibitor and an autophagy inducer currently undergoing clinical investigations in breast cancer patients. However, the molecular mechanism of action of SAHA in breast cancer cells remains unclear. In this study, we found that SAHA is equally effective in targeting cells of different breast cancer subtypes and tamoxifen sensitivity. Importantly, we found that down-regulation of survivin plays an important role in SAHA-induced autophagy and cell viability reduction in human breast cancer cells. SAHA decreased survivin and XIAP gene transcription, induced survivin protein acetylation and early nuclear translocation in MCF7 and MDA-MB-231 breast cancer cells. It also reduced survivin and XIAP protein stability in part through modulating the expression and activation of the 26S proteasome and heat-shock protein 90. Interestingly, targeting HDAC3 and HDAC6, but not other HDAC isoforms, by siRNA/pharmacological inhibitors mimicked the effects of SAHA in modulating the acetylation, expression, and nuclear translocation of survivin and induced autophagy in MCF7 and MDA-MB-231 cancer cells. Targeting HDAC3 also mimicked the effect of SAHA in up-regulating the expression and activity of proteasome, which might lead to the reduced protein stability of survivin in breast cancer cells. In conclusion, this study provides new insights into SAHA's molecular mechanism of actions in breast cancer cells. Our findings emphasize the complexity of the regulatory roles in different HDAC isoforms and potentially assist in predicting the mechanism of novel HDAC inhibitors in targeted or combinational therapies in the future. PMID:27065869

  9. Cysteine 397 plays important roles in the folding of the neuron-restricted silencer factor/RE1-silencing transcription factor.

    PubMed

    Zhang, Yan; Hu, Wei; Shen, Jie; Tong, Xiaotian; Yang, Zhongzheng; Shen, Zhangzhou; Lan, Wenxian; Wu, Houming; Cao, Chunyang

    2011-10-22

    The neuron-restrictive silencer factor/RE1-silencing transcription factor (NRSF/REST) is regarded as not only a key transcriptional repressor but also an activator in neuron gene expression by specifically interacting with neuron-restrictive silencer element (NRSE/RE1) dsDNA and small NRSE/RE1 dsRNA, respectively. But its exact mechanism remains unclear. One major problem is that it is hard to obtain its functional multiple zinc finger (ZnF) domains in a large quantity for further structural studies. To address this issue, in this study, we for the first time attained soluble NRSF/REST functional domains named as ZnF5-8, ZnF4-8, ZnF3-8 and ZnF2-8 containing four, five, six and seven ZnF motifs in tandem, respectively, by using Circular Dichroism (CD) spectrum and two-dimensional (2D) nucleic magnetic resonance (NMR) (1)H-(1)H NOESY spectrum to monitor the folding of each single ZnF peptide. The data indicated that the residue cysteine 397 (Cys397) plays important roles in the global folding of NRSF/REST multiple ZnFs domain. PMID:21951847

  10. SARI, a novel target gene of glucocorticoid receptor, plays an important role in dexamethasone-mediated killing of B lymphoma cells.

    PubMed

    Huang, Yinghui; Zhou, Jie; Huang, Yan; He, Jintao; Wang, Yuting; Yang, Chaohui; Liu, Dongbo; Zhang, Li; He, Fengtian

    2016-04-01

    Dexamethasone (Dex) has been commonly used in lymphoma and leukemia treatment, but the detailed mechanisms are not fully understood. Suppressor of AP-1 regulated by interferon (SARI) has tumor-selective growth inhibitory effect. However, it's unclear whether SARI is involved in the Dex-mediated lymphoma growth suppression. In this study, we found that Dex-treated B lymphoma tissues had a higher level of SARI. Dex repressed the growth of B lymphoma cells and upregulated SARI expression by activating glucocorticoid receptor (GR) in vitro and in vivo. Silencing of SARI attenuated the Dex-mediated growth suppression of B lymphoma cells and inhibition of AP-1 activity. Reporter assays revealed that activation of GR enhanced the transcriptional activity of SARI promoter. EMSA and ChIP assays showed that GR directly bound to the ER9 element in SARI promoter region. These results for the first time demonstrated that SARI is a novel target gene of GR, and the upregulation of SARI plays an important role in Dex's killing effect on B lymphoma cells, suggesting that SARI may serve as a novel target and a potential indicator of Dex sensitivity in B lymphoma treatment. PMID:26808579

  11. cDNA-AFLP analysis reveals heat shock proteins play important roles in mediating cold, heat, and drought tolerance in Ammopiptanthus mongolicus.

    PubMed

    Guo, Huiming; Li, Zhaochun; Zhou, Meiliang; Cheng, Hongmei

    2014-03-01

    Ammopiptanthus mongolicus (Maxim.ex kom.) Cheng F. is the only evergreen broadleaf shrub endemic to the desert of central Asian and it can survive at drought, salt, and alkali stress. It is believed that A. mongolicus is an important germplasm containing abiotic-tolerance genes. In order to identify drought-, cold-, and heat-responsive genes and to gain a better understanding of stress responses in A. mongolicus, genome-wide investigation of drought-, cold-, and heat-responsive genes was performed in A. mongolicus using cDNA-amplified fragment length polymorphism. Selective amplification with 240 primer combinations generated 5,000 differentially expressed transcript derived fragments (TDFs). Of these, 201 TDFs with differential expression patterns were excised from gels, reamplified by PCR, and sequenced. The gene expression patterns of 11 regulated genes were further investigated by semiquantitative reverse transcriptase polymerase chain reaction analysis. Sequencing and similarity analysis revealed that TDFs present homologies chiefly with proteins involved in various abiotic and biotic stress and developmental responses. The information presented in this study reveals that heat shock proteins play an active role in mediating drought, cold, and heat tolerance in A. mongolicus. PMID:24241624

  12. Does weather play an important role in the early nesting activity of colonial waterbirds? A case study in putrajaya wetlands, malaysia.

    PubMed

    Ismail, Ahmad; Rahman, Faid

    2013-08-01

    Environmental factors can play important roles in influencing waterbird communities. In particular, weather may have various biological and ecological impacts on the breeding activities of waterbirds, though most studies have investigated the effect of weather on the late stages of waterbird breeding (e.g., hatching rate, chick mortality). Conversely, the present study attempts to highlight the influence of weather on the early nesting activities of waterbirds by evaluating a recently established mixed-species colony in Putrajaya Wetlands, Malaysia. The results show that only rainfall and temperature have a significant influence on the species' nesting activities. Rainfall activity is significantly correlated with the Grey Heron's rate of establishment (rainfall: rs = 0.558, p = 0.03, n = 72) whereas both temperature and rainfall are associated with Painted Stork's nesting density (temperature: rs = 0.573, p = 0.013; rainfall: rs = -0.662, p = 0.03, n = 48). There is a possibility that variations in the rainfall and temperature provide a cue for the birds to initiate their nesting. Regardless, this paper addresses concerns on the limitations faced in the study and suggests long-term studies for confirmation.

  13. A complex of Cox4 and mitochondrial Hsp70 plays an important role in the assembly of the cytochrome c oxidase

    PubMed Central

    Böttinger, Lena; Guiard, Bernard; Oeljeklaus, Silke; Kulawiak, Bogusz; Zufall, Nicole; Wiedemann, Nils; Warscheid, Bettina; van der Laan, Martin; Becker, Thomas

    2013-01-01

    The formation of the mature cytochrome c oxidase (complex IV) involves the association of nuclear- and mitochondria-encoded subunits. The assembly of nuclear-encoded subunits like cytochrome c oxidase subunit 4 (Cox4) into the mature complex is poorly understood. Cox4 is crucial for the stability of complex IV. To find specific biogenesis factors, we analyze interaction partners of Cox4 by affinity purification and mass spectroscopy. Surprisingly, we identify a complex of Cox4, the mitochondrial Hsp70 (mtHsp70), and its nucleotide-exchange factor mitochondrial GrpE (Mge1). We generate a yeast mutant of mtHsp70 specifically impaired in the formation of this novel mtHsp70-Mge1-Cox4 complex. Strikingly, the assembly of Cox4 is strongly decreased in these mutant mitochondria. Because Cox4 is a key factor for the biogenesis of complex IV, we conclude that the mtHsp70-Mge1-Cox4 complex plays an important role in the formation of cytochrome c oxidase. Cox4 arrests at this chaperone complex in the absence of mature complex IV. Thus the mtHsp70-Cox4 complex likely serves as a novel delivery system to channel Cox4 into the assembly line when needed. PMID:23864706

  14. Activated Kupffer cells play an important role in intra-hepatic Th1-associated necro-inflammation in Concanavalin A-induced hepatic injury in mice.

    PubMed

    Morita, Atsuhiro; Itoh, Yoshito; Toyama, Tetsuya; Fujii, Hideki; Nishioji, Kenichi; Kirishima, Toshihiko; Makiyama, Akiko; Yamauchi, Norihito; Okanoue, Takeshi

    2003-10-01

    BACKGROUND/AIMS: To examine whether or not activated Kupffer cells play an important role in intra-hepatic Th1-associated necro-inflammation in Concanavalin A (Con A)-induced hepatic injury in mice. METHODS: Con A was administered to Balb/c mice pretreated with or without gadolinium chloride (GdCl(3)). Kupffer cell activation was evaluated by their ability to produce superoxide anions in situ under liver perfusion with nitro blue tetrazolium (NBT). Hepatic concentration of cytokines was measured by ELISA and the mRNA expression of CXC chemokine receptor 3 (CXCR3) was evaluated by RT-PCR. Immunohistochemical detection of CD4 positive lymphocytes in the liver was also performed. RESULTS: GdCl(3)-pretreatment significantly (P<0.01) reduced the serum levels of alanine aminotransferase (ALT) in Con A-treated mice. Formazan deposition in Kupffer cells, the hepatic concentration of tumor necrosis factor-alpha and interferon-gamma, the mRNA expression of CXCR3 and the CD4 positive lymphocytes in the liver were decreased in GdCl(3)-pretreated mice as compared with those without GdCl(3)-pretreatment (P<0.05, respectively). CONCLUSIONS: Activated Kupffer cells, which produce superoxide anions, are involved in Con A-induced hepatic necro-inflammation in mice possibly through the activation of Th1-associated immune response mediated by CD4 and/or CXCR3 positive cells recruited into the liver.

  15. Arabidopsis NIP3;1 Plays an Important Role in Arsenic Uptake and Root-to-Shoot Translocation under Arsenite Stress Conditions.

    PubMed

    Xu, Wenzhong; Dai, Wentao; Yan, Huili; Li, Sheng; Shen, Hongling; Chen, Yanshan; Xu, Hua; Sun, Yangyang; He, Zhenyan; Ma, Mi

    2015-05-01

    In Arabidopsis, the nodulin 26-like intrinsic protein (NIP) subfamily of aquaporin proteins consists of nine members, five of which (NIP1;1, NIP1;2, NIP5;1, NIP6;1, and NIP7;1) were previously identified to be permeable to arsenite. However, the roles of NIPs in the root-to-shoot translocation of arsenite in plants remain poorly understood. In this study, using reverse genetic strategies, Arabidopsis NIP3;1 was identified to play an important role in both the arsenic uptake and root-to-shoot distribution under arsenite stress conditions. The nip3;1 loss-of-function mutants displayed obvious improvements in arsenite tolerance for aboveground growth and accumulated less arsenic in shoots than those of the wild-type plants, whereas the nip3;1 nip1;1 double mutant showed strong arsenite tolerance and improved growth of both roots and shoots under arsenite stress conditions. A promoter-β-glucuronidase analysis revealed that NIP3;1 was expressed almost exclusively in roots (with the exception of the root tips), and heterologous expression in the yeast Saccharomyces cerevisiae demonstrated that NIP3;1 was able to mediate arsenite transport. Taken together, our results suggest that NIP3;1 is involved in arsenite uptake and root-to-shoot translocation in Arabidopsis, probably as a passive and bidirectional arsenite transporter.

  16. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus

    PubMed Central

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  17. Mast cells and histamine play an important role in edema and leukocyte recruitment induced by Potamotrygon motoro stingray venom in mice.

    PubMed

    Kimura, Louise F; Prezotto-Neto, José Pedro; Távora, Bianca C L F; Faquim-Mauro, Eliana L; Pereira, Nicole A; Antoniazzi, Marta M; Jared, Simone G S; Teixeira, Catarina F P; Santoro, Marcelo L; Barbaro, Katia C

    2015-09-01

    This work aimed to investigate mechanisms underlying the inflammatory response caused by Potamotrygon motoro stingray venom (PmV) in mouse paws. Pre-treatment of animals with a mast cell degranulation inhibitor (cromolyn) diminished edema (62% of inhibition) and leukocyte influx into the site of PmV injection. Promethazine (histamine type 1 receptor antagonist) or thioperamide (histamine type 3 and 4 receptor antagonist) also decreased edema (up to 30%) and leukocyte numbers, mainly neutrophils (40-50 %). Cimetidine (histamine type 2 receptor antagonist) had no effect on PmV-induced inflammation. In the RBL-2H3 lineage of mast cells, PmV caused proper cell activation, in a dose-dependent manner, with release of PGD2 and PGE2. In addition, the role of COXs products on PmV inflammatory response was evaluated. Indomethacin (COX-1/COX-2 inhibitor) or etoricoxib (COX-2 inhibitor) partially diminished edema (around 20%) in PmV-injected mice. Indomethacin, but not etoricoxib, modulated neutrophil influx into the site of venom injection. In conclusion, mast cell degranulation and histamine, besides COXs products, play an important role in PmV-induced reaction. Since PmV mechanism of action remains unknown, hindering accurate treatment, clinical studies can be performed to validate the prescription of antihistaminic drugs, besides NSAIDs, to patients injured by freshwater stingrays. PMID:26100666

  18. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus.

    PubMed

    Lu, Linghong; Qiu, Wenmin; Gao, Wenwen; Tyerman, Stephen D; Shou, Huixia; Wang, Chuang

    2016-10-01

    Under phosphate (Pi ) starvation, plants increase the secretion of purple acid phosphatases (PAPs) into the rhizosphere to scavenge organic phosphorus (P) for plant use. To date, only a few members of the PAP family have been characterized in crops. In this study, we identified a novel secreted PAP in rice, OsPAP10c, and investigated its role in the utilization of external organic P. OsPAP10c belongs to a monocotyledon-specific subclass of Ia group PAPs and is specifically expressed in the epidermis/exodermis cell layers of roots. Both the transcript and protein levels of OsPAP10c are strongly induced by Pi starvation. OsPAP10c overexpression increased acid phosphatase (APase) activity by more than 10-fold in the culture media and almost fivefold in both roots and leaves under Pi -sufficient and Pi -deficient conditions. This increase in APase activity further improved the plant utilization efficiency of external organic P. Moreover, several APase isoforms corresponding to OsPAP10c were identified using in-gel activity assays. Under field conditions with three different Pi supply levels, OsPAP10c-overexpressing plants had significantly higher tiller numbers and shorter plant heights. This study indicates that OsPAP10c encodes a novel secreted APase that plays an important role in the utilization of external organic P in rice. PMID:27411391

  19. cDNA-AFLP analysis reveals heat shock proteins play important roles in mediating cold, heat, and drought tolerance in Ammopiptanthus mongolicus.

    PubMed

    Guo, Huiming; Li, Zhaochun; Zhou, Meiliang; Cheng, Hongmei

    2014-03-01

    Ammopiptanthus mongolicus (Maxim.ex kom.) Cheng F. is the only evergreen broadleaf shrub endemic to the desert of central Asian and it can survive at drought, salt, and alkali stress. It is believed that A. mongolicus is an important germplasm containing abiotic-tolerance genes. In order to identify drought-, cold-, and heat-responsive genes and to gain a better understanding of stress responses in A. mongolicus, genome-wide investigation of drought-, cold-, and heat-responsive genes was performed in A. mongolicus using cDNA-amplified fragment length polymorphism. Selective amplification with 240 primer combinations generated 5,000 differentially expressed transcript derived fragments (TDFs). Of these, 201 TDFs with differential expression patterns were excised from gels, reamplified by PCR, and sequenced. The gene expression patterns of 11 regulated genes were further investigated by semiquantitative reverse transcriptase polymerase chain reaction analysis. Sequencing and similarity analysis revealed that TDFs present homologies chiefly with proteins involved in various abiotic and biotic stress and developmental responses. The information presented in this study reveals that heat shock proteins play an active role in mediating drought, cold, and heat tolerance in A. mongolicus.

  20. Pili play an important role in enhancing the bacterial clearance from the middle ear in a mouse model of acute otitis media with Moraxella catarrhalis.

    PubMed

    Kawano, Toshiaki; Hirano, Takashi; Kodama, Satoru; Mitsui, Marcelo Takahiro; Ahmed, Kamruddin; Nishizono, Akira; Suzuki, Masashi

    2013-03-01

    Moraxella catarrhalis is a Gram-negative aerobic diplococcus that is currently the third most frequent cause of bacterial acute otitis media (AOM) in children. In this study, we developed an experimental murine AOM model by inoculating M. catarrhalis in the middle ear bulla and studied the local response to this inoculation, and modulation of its course by the pili of M. catarrhalis. The pili-positive and pili-negative M. catarrhalis showed differences in bacterial clearance and infiltration of inflammatory cells in the middle ear. Pili-negative M. catarrhalis induced a more delayed and prolonged immune response in the middle ear than that of pili-positive M. catarrhalis. TLR2, -4, -5 and -9 mRNA expression was upregulated in neutrophils that infiltrated the middle ear cavity during AOM caused by both pili-positive and pili-negative bacteria. TLR5 mRNA expression and TLR5 protein in the neutrophils were induced more robustly by pili-positive M. catarrhalis. This immune response is likely to be related to neutrophil function such as toll-like 5-dependent phagocytosis. Our results show that mice may provide a useful AOM model for studying the role of M. catarrhalis. Furthermore, we show that pili play an important role in enhancing M. catarrhalis clearance from the middle ear that is probably mediated through neutrophil-dependent TLR5 signaling.

  1. Central beta-adrenergic receptors play an important role in the enhancing effect of voluntary exercise on learning and memory in rat.

    PubMed

    Ebrahimi, Shima; Rashidy-Pour, Ali; Vafaei, Abbas A; Akhavan, Maziar M

    2010-03-17

    The beneficial effects of physical activity and exercise on brain functions such as improvement in learning and memory are well documented. The aim of this study was to examine the role of the beta-adrenergic system in voluntary exercise-induced enhancement of learning and memory in rat. In order to block the beta-adrenergic receptors, the animals were received propranolol (a beta-blocker), or nadolol (a peripherally acting beta-blocker) before each night of five consecutive nights of exercise. Then their learning and memory were tested on the water maze task using a two-trials-per-day for 5 consecutive days. A probe trial was performed 2 days after the last training day. Our results showed that propranolol, but not nadolol reversed the exercise-induced improvement in learning and memory in rat. Our findings indicate that central beta-adrenergic receptors play an important role in mediating the beneficial effects of voluntary exercise on learning and memory.

  2. H2O2 plays an important role in the lifestyle of Colletotrichum gloeosporioides during interaction with cowpea [Vigna unguiculata (L.) Walp].

    PubMed

    Eloy, Ygor R G; Vasconcelos, Ilka M; Barreto, Ana L H; Freire-Filho, Francisco R; Oliveira, Jose T A

    2015-08-01

    Plant-fungus interactions usually generate H(2)O(2) in the infected plant tissue. H(2)O(2) has a direct antimicrobial effect and is involved in the cross-linking of cell walls, signaling, induction of gene expression, hypersensitive cell death and induced systemic acquired resistance. This has raised the hypothesis that H(2)O(2) manipulation by pharmacological compounds could alter the lifestyle of Colletotrichum gloeosporioides during interaction with the BR-3-Tracuateua cowpea genotype. The primary leaves of cowpea were excised, infiltrated with salicylic acid (SA), glucose oxidase + glucose (GO/G), catalase (CAT) or diphenyliodonium chloride (DPI), followed by spore inoculation on the adaxial leaf surface. SA or GO/G-treated plantlets showed increased H(2)O(2) accumulation and lipid peroxidation. The fungus used a subcuticular, intramural necrotrophic strategy, and developed secondary hyphae associated with the quick spread and rapid killing of host cells. However, CAT or DPI-treated leaves exhibited decreased H(2)O(2) concentration and lipid peroxidation and the fungus developed intracellular hemibiotrophic infection with vesicles, in addition to primary and secondary hyphal formation. These results suggest that H(2)O(2) plays an important role in the cowpea (C. gloeosporioides) pathosystem given that it affected fungal lifestyle during interaction. PMID:26228563

  3. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus.

    PubMed

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  4. H2O2 plays an important role in the lifestyle of Colletotrichum gloeosporioides during interaction with cowpea [Vigna unguiculata (L.) Walp].

    PubMed

    Eloy, Ygor R G; Vasconcelos, Ilka M; Barreto, Ana L H; Freire-Filho, Francisco R; Oliveira, Jose T A

    2015-08-01

    Plant-fungus interactions usually generate H(2)O(2) in the infected plant tissue. H(2)O(2) has a direct antimicrobial effect and is involved in the cross-linking of cell walls, signaling, induction of gene expression, hypersensitive cell death and induced systemic acquired resistance. This has raised the hypothesis that H(2)O(2) manipulation by pharmacological compounds could alter the lifestyle of Colletotrichum gloeosporioides during interaction with the BR-3-Tracuateua cowpea genotype. The primary leaves of cowpea were excised, infiltrated with salicylic acid (SA), glucose oxidase + glucose (GO/G), catalase (CAT) or diphenyliodonium chloride (DPI), followed by spore inoculation on the adaxial leaf surface. SA or GO/G-treated plantlets showed increased H(2)O(2) accumulation and lipid peroxidation. The fungus used a subcuticular, intramural necrotrophic strategy, and developed secondary hyphae associated with the quick spread and rapid killing of host cells. However, CAT or DPI-treated leaves exhibited decreased H(2)O(2) concentration and lipid peroxidation and the fungus developed intracellular hemibiotrophic infection with vesicles, in addition to primary and secondary hyphal formation. These results suggest that H(2)O(2) plays an important role in the cowpea (C. gloeosporioides) pathosystem given that it affected fungal lifestyle during interaction.

  5. RUNX3 plays an important role in As2O3‑induced apoptosis and allows cells to overcome MSC‑mediated drug resistance.

    PubMed

    Pan, Guo-Zheng; Zhai, Feng-Xian; Lu, Yin; Fang, Zhi-Gang; Fan, Rui-Fang; Liu, Xiang-Fu; Lin, Dong-Jun

    2016-10-01

    The interaction between bone marrow stromal cells and leukemia cells is critical for the persistence and progression of leukemia, and this interaction may account for residual disease. However, the link between leukemia cells and their environment is still poorly understood. In our study, runt‑related transcription factor 3 (RUNX3) was identified as a novel target gene affected by As2O3 and involved in mesenchymal stem cell (MSC)‑mediated protection of leukemia cells from As2O3‑induced apoptosis. We observed induction of RUNX3 expression and the translocation of RUNX3 into the nucleus after As2O3 treatment in leukemia cells. In K562 chronic myeloid leukemia cells, downregulation of endogenous RUNX3 compromised As2O3‑induced growth inhibition, cell cycle arrest, and apoptosis. In the presence of MSC, As2O3‑induced expression of RUNX3 was reduced significantly and this reduction was modulated by CXCL12/CXCR4 signaling. Furthermore, overexpression of RUNX3 restored, at least in part, the sensitivity of leukemic cells to As2O3. We conclude that RUNX3 plays an important role in As2O3‑induced cellular responses and allows cells to overcome MSC‑mediated drug resistance. Therefore, RUNX3 is a promising target for therapeutic approaches to overcome MSC‑mediated drug resistance. PMID:27498627

  6. Mast cells and histamine play an important role in edema and leukocyte recruitment induced by Potamotrygon motoro stingray venom in mice.

    PubMed

    Kimura, Louise F; Prezotto-Neto, José Pedro; Távora, Bianca C L F; Faquim-Mauro, Eliana L; Pereira, Nicole A; Antoniazzi, Marta M; Jared, Simone G S; Teixeira, Catarina F P; Santoro, Marcelo L; Barbaro, Katia C

    2015-09-01

    This work aimed to investigate mechanisms underlying the inflammatory response caused by Potamotrygon motoro stingray venom (PmV) in mouse paws. Pre-treatment of animals with a mast cell degranulation inhibitor (cromolyn) diminished edema (62% of inhibition) and leukocyte influx into the site of PmV injection. Promethazine (histamine type 1 receptor antagonist) or thioperamide (histamine type 3 and 4 receptor antagonist) also decreased edema (up to 30%) and leukocyte numbers, mainly neutrophils (40-50 %). Cimetidine (histamine type 2 receptor antagonist) had no effect on PmV-induced inflammation. In the RBL-2H3 lineage of mast cells, PmV caused proper cell activation, in a dose-dependent manner, with release of PGD2 and PGE2. In addition, the role of COXs products on PmV inflammatory response was evaluated. Indomethacin (COX-1/COX-2 inhibitor) or etoricoxib (COX-2 inhibitor) partially diminished edema (around 20%) in PmV-injected mice. Indomethacin, but not etoricoxib, modulated neutrophil influx into the site of venom injection. In conclusion, mast cell degranulation and histamine, besides COXs products, play an important role in PmV-induced reaction. Since PmV mechanism of action remains unknown, hindering accurate treatment, clinical studies can be performed to validate the prescription of antihistaminic drugs, besides NSAIDs, to patients injured by freshwater stingrays.

  7. The Dynamics of Aerosols: Recent Developments In Regional and Global Modelling

    NASA Astrophysics Data System (ADS)

    Vignati, E.

    An efficient and accurate representation of aerosol size distributions and microphysi- cal processes is required to make physically consistent calculations of the direct and indirect radiative effects of aerosols and their impact on climate. Various modelling approaches have been developed to simulate the dynamical evolu- tion of natural and anthropogenic aerosol populations. Among the components of the particulate phase, sulphate, sea salt, black carbon, organic carbon and dust all play an important role. However their contributions vary from region to region. Modal models, in which the aerosol size distribution is represented by a number of modes, present a computational attractive approach for aerosol dynamic modelling in regional and global models. They can describe external as well as internal mixtures of aerosol particles and the full aerosol dynamics. The accuracy of modal models is however dependent on both the suitability of the lognormal approximation to the size distribution and the extent to which processes can be expressed in terms of distribution parameters. Simultaneously, recent developments have been made to treat many aerosol species in global models using discrete size bins. The detailed description allows a more ac- curate calculation of the aerosol water content, an important parameter required for calculations of aerosol optical properties. However, such a fine size resolution is usu- ally time consuming when used in large scale models, therefore sometimes not all the processes modifying aerosol properties are included. Modest requirements for storage and computations is one of the advantages of moment methods. These techniques have the capability of simultaneously represent the aerosol dynamic processes and transport in large scale models. An overview of recent developments of aerosol modelling in global and regional mod- els will be presented outlining the advantages and disadvantages of the various tech- niques for such large scales.

  8. Playful Gaming.

    ERIC Educational Resources Information Center

    Makedon, Alexander

    A philosophical analysis of play and games is undertaken in this paper. Playful gaming, which is shown to be a synthesis of play and games, is utilized as a category for undertaking the examination of play and games. The significance of playful gaming to education is demonstrated through analyses of Plato's, Dewey's, Sartre's, and Marcuse's…

  9. Aerosol properties over south india during different seasons

    NASA Astrophysics Data System (ADS)

    Sivaprasad, P.; Babu, C. A.; Jayakrishnan, P. R.

    Aerosols play an important role in the radiation balance and cloud properties, thereby affect the entire climatology of the earth-atmosphere system. Besides natural sources like dust, seasalt and natural sulphates, anthropogenic activities also inject aerosols like soot and industrial sulphates. Of these sea-salt and sulphates scatter the solar radiation. Soot is an absorbing aerosol while soil dust and organic matters are partly absorbing aerosols. Wind and rainfall are major factors affecting the transportation and deposition of the aerosols. India is a country blessed with plenty of monsoon rains. Winter (December to February), summer (March to May), monsoon (June to September) and post monsoon (October to November) are the four seasons over the region. Aerosol properties vary according to the season. Natural aerosols blown from the deserts have a major role in the aerosol optical depth over India. Of this, dust from Arabian desert that is carried by the winds are most important. The aerosol optical depth of south India is entirely different from that of north India. Maximum aerosol concentration is found over Gangetic plane in most of the seasons, whereas entire south India shows less aerosol optical depth. In the present study the aerosol properties of south India is analysed in general. Particular analysis is carried out for the four regions in the east and west coasts around Chennai, Kolkotha, Mumbai and Cochin. Chennai and Kolkotha are situated in the east coast whereas Cochin and Mumbai are in the west coast. These are industrial cities in India. Chennai region does not get monsoon rainfall since it is situated in the leeward side of Western ghats. But in the post monsoon season Chennai gets good amount of rainfall. Other three regions get good amount of rainfall during monsoon season. The study uses Terra MODIS, TOMS, NCEP/NCAR and TRMM data. Aerosol properties are analysed using Terra MODIS and Nimbus TOMS data. The variations of the aerosol optical

  10. RRP41L, a putative core subunit of the exosome, plays an important role in seed germination and early seedling growth in Arabidopsis.

    PubMed

    Yang, Min; Zhang, Bangyue; Jia, Jianheng; Yan, Chunxia; Habaike, Ayijiang; Han, Yuzhen

    2013-01-01

    In prokaryotic and eukaryotic cells, the 3'-5'-exonucleolytic decay and processing of RNAs are essential for RNA metabolism. However, the understanding of the mechanism of 3'-5'-exonucleolytic decay in plants is very limited. Here, we report the characterization of an Arabidopsis (Arabidopsis thaliana) transfer DNA insertional mutant that shows severe growth defects in early seedling growth, including delayed germination and cotyledon expansion, thinner yellow/pale-green leaves, and a slower growth rate. High-efficiency thermal asymmetric interlaced polymerase chain reaction analysis showed that the insertional locus was in the sixth exon of AT4G27490, encoding a predicted 3'-5'-exonuclease, that contained a conserved RNase phosphorolytic domain with high similarity to RRP41, designated RRP41L. Interestingly, we detected highly accumulated messenger RNAs (mRNAs) that encode seed storage protein and abscisic acid (ABA) biosynthesis and signaling pathway-related protein during the early growth stage in rrp41l mutants. The mRNA decay kinetics analysis for seed storage proteins, 9-cis-epoxycarotenoid dioxygenases, and ABA INSENSITIVEs revealed that RRP41L catalyzed the decay of these mRNAs in the cytoplasm. Consistent with these results, the rrp41l mutant was more sensitive to ABA in germination and root growth than wild-type plants, whereas overexpression lines of RRP41L were more resistant to ABA in germination and root growth than wild-type plants. RRP41L was localized to both the cytoplasm and nucleus, and RRP41L was preferentially expressed in seedlings. Altogether, our results showed that RRP41L plays an important role in seed germination and early seedling growth by mediating specific cytoplasmic mRNA decay in Arabidopsis.

  11. N-methyl-D-aspartate receptor-mediated glutamate transmission in nucleus accumbens plays a more important role than that in dorsal striatum in cognitive flexibility

    PubMed Central

    Ding, Xuekun; Qiao, Yanhua; Piao, Chengji; Zheng, Xigeng; Liu, Zhengkui; Liang, Jing

    2014-01-01

    Cognitive flexibility is a critical ability for adapting to an ever-changing environment in humans and animals. Deficits in cognitive flexibility are observed in most schizophrenia patients. Previous studies reported that the medial prefrontal cortex-to-ventral striatum and orbital frontal cortex-to-dorsal striatum circuits play important roles in extra- and intra-dimensional strategy switching, respectively. However, the precise function of striatal subregions in flexible behaviors is still unclear. N-methyl-D-aspartate receptors (NMDARs) are major glutamate receptors in the striatum that receive glutamatergic projections from the frontal cortex. The membrane insertion of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs) depends on NMDAR activation and is required in learning and memory processes. In the present study, we measured set-shifting and reversal learning performance in operant chambers in rats and assessed the effects of blocking NMDARs and Ca2+-permeable AMPARs in striatal subregions on behavioral flexibility. The blockade of NMDARs in the nucleus accumbens (NAc) core by AP5 impaired set-shifting ability by causing a failure to modify prior learning. The suppression of NMDAR-mediated transmission in the NAc shell induced a deficit in set-shifting by disrupting the learning and maintenance of novel strategies. During reversal learning, infusions of AP5 into the NAc shell and core impaired the ability to learn and maintain new strategies. However, behavioral flexibility was not significantly affected by blocking NMDARs in the dorsal striatum. We also found that the blockade of Ca2+-permeable AMPARs by NASPM in any subregion of the striatum did not affect strategy switching. These findings suggest that NMDAR-mediated glutamate transmission in the NAc contributes more to cognitive execution compared with the dorsal striatum. PMID:25249952

  12. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    PubMed Central

    2011-01-01

    Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants. PMID:21718548

  13. Miniature Inverted–Repeat Transposable Elements (MITEs) Have Been Accumulated through Amplification Bursts and Play Important Roles in Gene Expression and Species Diversity in Oryza sativa

    PubMed Central

    Lu, Chen; Chen, Jiongjiong; Zhang, Yu; Hu, Qun; Su, Wenqing; Kuang, Hanhui

    2012-01-01

    Miniature inverted–repeat transposable elements (MITEs) are predicted to play important roles on genome evolution. We developed a BLASTN-based approach for de novo identification of MITEs and systematically analyzed MITEs in rice genome. The genome of rice cultivar Nipponbare (Oryza sativa ssp. japonica) harbors 178,533 MITE-related sequences classified into 338 families. Pairwise nucleotide diversity and phylogenetic tree analysis indicated that individual MITE families were resulted from one or multiple rounds of amplification bursts. The timing of amplification burst varied considerably between different MITE families or subfamilies. MITEs are associated with 23,623 (58.2%) genes in rice genome. At least 7,887 MITEs are transcribed and more than 3,463 were transcribed with rice genes. The MITE sequences transcribed with rice coding genes form 1,130 pairs of potential natural sense/antisense transcripts. MITEs generate 23.5% (183,837 of 781,885) of all small RNAs identified from rice. Some MITE families generated small RNAs mainly from the terminals, while other families generated small RNAs predominantly from the central region. More than half (51.8%) of the MITE-derived small RNAs were generated exclusively by MITEs located away from genes. Genome-wide analysis showed that genes associated with MITEs have significantly lower expression than genes away from MITEs. Approximately 14.8% of loci with full-length MITEs have presence/absence polymorphism between rice cultivars 93-11 (O. sativa ssp. indica) and Nipponbare. Considering that different sets of genes may be regulated by MITE-derived small RNAs in different genotypes, MITEs provide considerable diversity for O. sativa. PMID:22096216

  14. ScMT2-1-3, a Metallothionein Gene of Sugarcane, Plays an Important Role in the Regulation of Heavy Metal Tolerance/Accumulation

    PubMed Central

    Guo, Jinlong; Xu, Liping; Su, Yachun; Wang, Hengbo; Gao, Shiwu; Xu, Jingsheng; Que, Youxiong

    2013-01-01

    Plant metallothioneins (MTs), which are cysteine-rich, low-molecular-weight, and metal-binding proteins, play important roles in detoxification, metal ion homeostasis, and metal transport adjustment. In this study, a novel metallothionein gene, designated as ScMT2-1-3 (GenBank Accession number JQ627644), was identified from sugarcane. ScMT2-1-3 was 700 bp long, including a 240 bp open reading frame (ORF) encoding 79 amino acid residues. A His-tagged ScMT2-1-3 protein was successfully expressed in Escherichia coli system which had increased the host cell's tolerance to Cd2+, Cu2+, PEG, and NaCl. The expression of ScMT2-1-3 was upregulated under Cu2+ stress but downregulated under Cd2+ stress. Real-time qPCR demonstrated that the expression levels of ScMT2-1-3 in bud and root were over 14 times higher than those in stem and leaf, respectively. Thus, both the E. coli assay and sugarcane plantlets assay suggested that ScMT2-1-3 is significantly involved in the copper detoxification and storage in the cell, but its functional mechanism in cadmium detoxification and storage in sugarcane cells needs more testification though its expressed protein could obviously increase the host E. coli cell's tolerance to Cd2+. ScMT2-1-3 constitutes thus a new interesting candidate for elucidating the molecular mechanisms of MTs-implied plant heavy metal tolerance/accumulation and for developing sugarcane phytoremediator varieties. PMID:23781509

  15. Nucleotides of the tRNA D-stem that play an important role in nuclear-tRNA export in Saccharomyces cerevisiae.

    PubMed

    Cleary, J D; Mangroo, D

    2000-04-01

    Nuclear export of tRNA in Saccharomyces cerevisiae involves Los1p and Arc1p. Los1p facilitates tRNA translocation across the nuclear pore complex whereas Arc1p plays a role in delivering some species of tRNA exiting the nucleus to their cognate aminoacyl-tRNA synthetases. Here, we show that mutations of C11 and G24 of the D-stem of the yeast tyrosine amber-suppressor tRNA have different effects on nuclear export of the tRNA. Changing G24 had no effect on export of the tRNA to the cytoplasm. In contrast, mutating C11 resulted in nuclear retention of the tRNA. Nuclear retention of the tRNA mutants was not due to lack of processing, since only the mature forms of the tRNA mutants were found. The fact that mutations of G24 did not affect export of the tRNA also indicates that the effect of mutating C11 is not due to gross alteration of the tertiary structure resulting from disruption of the C11/G24 base pair. Expression of Los1p and the mammalian tRNA export receptor exportin-t rescued nuclear export of the tRNA with changes at position 11. The export-defective mutations of the tRNA mutants were suppressed by introducing the complementary nucleotides at position 24. Taken together, these findings suggest that C11 is important for binding of the tRNA to the export receptor, and that this binding is influenced by the conformation of the base. Finally, the export-defective tRNA mutants described can be used as reporters to identify eukaryotic proteins involved in the nuclear-tRNA export process, and characterize the molecular interactions between known receptors and the tRNA substrate.

  16. Neurons in the amygdala play an important role in the neuronal network mediating a clonic form of audiogenic seizures both before and after audiogenic kindling.

    PubMed

    Raisinghani, Manish; Faingold, Carl L

    2005-01-25

    Previous studies showed that neuronal network nuclei for behaviorally different forms of audiogenic seizure (AGS) exhibit similarities and important differences. The amygdala is involved differentially in tonic AGS as compared to clonic AGS networks. The role of the lateral amygdala (LAMG) undergoes major changes after AGS repetition (AGS kindling) in tonic forms of AGS. The present study examined the role of LAMG in a clonic form of AGS [genetically epilepsy-prone rats (GEPR-3s)] before and after AGS kindling using bilateral microinjection and chronic neuronal recordings. AGS kindling in GEPR-3s results in facial and forelimb (F&F) clonus, and this behavior could be blocked following bilateral microinjection of a NMDA antagonist (2-amino-7-phosphonoheptanoate) without affecting generalized clonus. Higher AP7 doses blocked both generalized clonus and F&F clonus. LAMG neurons in GEPR-3s exhibited only onset type neuronal responses both before and after AGS kindling, unlike LAMG neurons in normal rats and a tonic form of AGS. A significantly greater LAMG neuronal firing rate occurred after AGS kindling at high acoustic intensities. The latency of LAMG neuronal firing increased significantly after AGS kindling. Burst firing occurred during wild running and generalized clonic behaviors before and after AGS kindling. Burst firing also occurred during F&F clonus after AGS kindling. These findings indicate that LAMG neurons play a critical role in the neuronal network for generalized clonus as well as F&F clonus in GEPR-3s, both before and after AGS kindling, which contrasts markedly with the role of LAMG in tonic AGS.

  17. Aerosols of Mongolian arid area

    NASA Astrophysics Data System (ADS)

    Golobokova, L.; Marinayte, I.; Zhamsueva, G.

    2012-04-01

    Sampling was performed in July-August 2005-2010 at Station Sain Shand (44°54'N, 110°07'E) in the Gobi desert (1000 m a.s.l.), West Mongolia. Aerosol samples were collected with a high volume sampler PM 10 (Andersen Instruments Inc., USA) onto Whatman-41 filters. The substance was extracted from the filters by de-ionized water. The solution was screened through an acetate-cellulose filter with 0.2 micron pore size. Ions of ammonium, sodium, potassium, magnesium, and calcium, as well as sulphate ions, nitrate ions, hydrocarbonate, chloride ions were determined in the filtrate by means of an atomic adsorption spectrometer Carl Zeiss Jena (Germany), a high performance liquid chromatographer «Milichrome A-02» (Russia), and an ionic chromatographer ICS-3000 (Dionex, USA). The PAH fraction was separated from aerosol samples using hexane extraction at room temperature under UV environment. The extract was concentrated to 0.1-0.2 ml and analysed by a mass-spectrometer "Agilent, GC 6890, MSD 5973 Network". Analysis of concentrations of aerosols components, their correlation ratios, and meteorological modeling show that the main factor affecting chemical composition of aerosols is a flow of contaminants transferred by air masses to the sampling area mainly from the south and south-east, as well as wind conditions of the area, dust storms in particular. Sulphate, nitrate, and ammonium are major ions in aerosol particles at Station Sain Shand. Dust-borne aerosol is known to be a sorbent for both mineral and organic admixtures. Polycyclic aromatic hydrocarbons (PAH) being among superecotoxicants play an important role among resistant organic substances. PAH concentrations were determined in the samples collected in 2010. All aerosol samples contained dominant PAHs with 5-6 benzene rings ( (benze(k)fluoranthen, benze(b)flouranthen, benze(a)pyren, benze(?)pyren, perylene, benze(g,h,i)perylene, and indene(1,2,3-c,d)pyrene). Their total quantity varied between 42 and 90

  18. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  19. Inactivation of akt and NF-kappaB play important roles during indole-3-carbinol-induced apoptosis in breast cancer cells.

    PubMed

    Rahman, K M Wahidur; Li, Yiwei; Sarkar, Fazlul H

    2004-01-01

    Despite significant advances in treatment, breast cancer is still the second leading cause of cancer-related deaths in women in the United States. Therefore, significant efforts are being given to develop novel strategies for the prevention of breast cancer in recent years. Our laboratory and others have been studying the effects of a potential chemopreventive agent, indole-3-carbinol (I3C), in breast cancer cells. We have previously shown that I3C induces apoptosis in breast cancer cells and found that the induction of apoptotic processes was partly mediated by dysregulation of anti- and pro-apoptotic molecules. However, the precise molecular mechanism(s) by which I3C induces apoptosis in breast cancer cells has not been fully elucidated. For the present study, we focused our investigation on important cell signaling molecules such as Akt and NF-kappaB during I3C-induced apoptosis in breast cancer cells. We found that I3C induces apoptotic processes in MCF10A-derived cell lines with premalignant (DCIS.com) and malignant (MCF10CA1a) phenotypes but not in nontumorigenic parental MCF10A cells. Immunoprecipitation, kinase assays, and Western blot analysis showed that I3C specifically inhibits Akt kinase activity and abrogates the EGF-induced activation of Akt in breast cancer cells. NF-kappaB DNA-binding analysis and transfection studies with Akt cDNA and NF-kappaB-Luc reporter constructs revealed that Akt gene transfection directly activates NF-kappaB, and this activation was completely abrogated by I3C treatment. In addition, I3C also abrogated the EGF-induced activation of NF-kappaB, which was mediated via the Akt signaling pathway. From these results, we conclude that there is a direct cross-talk between Akt and NF-kappaB pathways and that the inactivation of Akt and NF-kappaB activity plays important roles in mediating I3C-induced apoptosis in breast cancer cells. These results also suggest that I3C may be a potential chemopreventive agent by virtue of its

  20. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  1. Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCNhack concentration prediction

    NASA Astrophysics Data System (ADS)

    Almeida, G. P.; Brito, J.; Morales, C. A.; Andrade, M. F.; Artaxo, P.

    2014-07-01

    Measurements of cloud condensation nuclei (CCN), aerosol size distribution and non-refractory chemical composition were performed from 16 to 31 October 2012 in the São Paulo Metropolitan Area (SPMA), Brazil. CCN measurements were performed at 0.23, 0.45, 0.68, 0.90 and 1.13% water supersaturation and were subsequently compared with the Köhler theory, considering the chemical composition. Real-time chemical composition has been obtained by deploying, for the first time in the SPMA, an aerosol chemical ionization monitor (ACSM). CCN closure analyses were performed considering internal mixtures. Average aerosol composition during the studied period yielded (arithmetic mean~± standard deviation) 4.81 ± 3.05, 3.26 ± 2.10, 0.30 ± 0.27, 0.52 ± 0.32, 0.37 ± 0.21 and 0.04 ± 0.04 μg m-3 for organics, BC, NH4, SO4, NO3 and Cl, respectively. Particle number concentration was 12 813 ± 5350 cm-3, with a dominant nucleation mode. CCN concentrations were on average 1090 ± 328 and 3570 ± 1695 cm-3 at SS = 0.23% and SS = 1.13%, respectively. Results show an increase in aerosol hygroscopicity in the afternoon as a result of aerosol photochemical processing, leading to an enhancement of both organic and inorganic secondary aerosols in the atmosphere, as well as an increase in aerosol average diameter. Considering the bulk composition alone, observed CCN concentrations were substantially overpredicted when compared with the Köhler theory (44.1 ± 47.9% at 0.23% supersaturation and 91.4 ± 40.3% at 1.13% supersaturation). Overall, the impact of composition on the calculated CCN concentration (NCCN) decreases with decreasing supersaturation, partially because using bulk composition introduces less bias for large diameters and lower critical supersaturations, defined as the supersaturation at which the cloud droplet activation will take place. Results suggest that the consideration of only inorganic fraction improves the calculated NCCN. Introducing a size-dependent chemical

  2. Implementing marine organic aerosols into the GEOS-Chem model

    DOE PAGES

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2014-09-09

    Marine organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in goodmore » agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  3. Implementing marine organic aerosols into the GEOS-Chem model

    DOE PAGES

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2015-03-17

    Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Modelmore » predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  4. Implementing marine organic aerosols into the GEOS-Chem model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2015-03-01

    Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.

  5. Implementing marine organic aerosols into the GEOS-Chem model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2014-09-01

    Marine organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.

  6. Chemical characterizations of soluble aerosols in southern China.

    PubMed

    Wu, Dui; Tie, Xuexi; Deng, Xuejiao

    2006-07-01

    Soluble aerosols are measured at Guangdong and Hainan Provinces of southern China. The measured chemical composition of aerosols includes F-, Cl-, NO3-, SO4=, Na+, NH4+, K+, Ca2+, and Mg2+. The locations of measurements include a mega city (Guangzhou), a medium city along the coastline (Haiko), a small city along the coastline (Shanya), and a remote island site in the South China Sea (Yongxing island). The results reveal that aerosols in this region are complex and heterogeneous. Sulfate aerosol (SO4=) has the highest concentrations in Guangzhou (approximately 41% of total soluble aerosol mass), suggesting that anthropogenic activities (e.g., coal burning) play important roles in controlling aerosol concentrations in Guangzhou. By contrast, the concentrations of chlorine (Cl-) and sodium (Na+) are higher in Yongxing than in Guangzhou, indicating that the sea salt is the dominant aerosol in this marine environment site. In the medium (Haiko) and small (Shanya) city sites, the effects of anthropogenic and marine activities on aerosols fall in between the values in the mega city and the remote island site. The measured ratio of Cl-/Na+ shows that the ratio is less than 1.16 in all observation sites. The ratio in the Guangzhou city, the Haiko city, the Shanya city, and the Yongxing island is 0.52, 0.91, 0.24, and 0.53, respectively, indicating that significantly heterogeneous chemical reactions occur on sea salt particles. Unlike those in Europe and North America, there are high concentrations of calcium (Ca+) in all observation sites. The percentage of calcium mass to the measured total soluble aerosols mass is 21, 32, 34, and 30 at Guangzhou, Haiko, Sanya, and Yongxing, respectively. The calculations show that calcium plays an important role in neutralizing aerosols. The calculated "cation/anion" (summation operator[ion+]/summation operator[ion-]) ratio is 2.5, 2.5, 3.2, and 2.1, at Guangzhou, Haiko, Shanya, and Yongxing, respectively. The high "cation/anion" ratios

  7. Language Play.

    ERIC Educational Resources Information Center

    Schwartz, Judy I.

    This paper discusses kinds and characteristics of language play, explores the relationship of such play to wider domains of language and play, and speculates on the possible contributions of language play for language mastery and cognitive development. Jump rope chants and ritual insults ("Off my case, potato face") and other expressive language…

  8. Aerosol interactions between the surface and the atmosphere: Urban fluxes, forest canopy vertical exchange, and wintertime urban patterns

    NASA Astrophysics Data System (ADS)

    Grivicke, Rasa

    Atmospheric aerosols play a major role in regional atmospheric chemistry and air quality, while on a global scale, aerosol processes continue to represent the largest source of uncertainty related to climate change. An important aspect of understanding the role of aerosols in these areas is to document the vertical exchange of aerosols with the surface in both urban and rural landscapes since the vertical exchange represents important sources and sinks of aerosols on regional and global scales. In this dissertation, investigation of aerosol dynamics is described for three separate field studies. First, urban eddy covariance flux measurements were made from a building rooftop in Mexico City using a quadrupole aerosol mass spectrometer (Q-AMS) to determine the fluxes of aerosol species to/from the urban landscape. Second, conditional sampling of fine particles in updrafts and downdrafts was performed above a pine forest in Colorado using a thermal desorption chemical ionization mass spectrometer (TD-CIMS) to investigate the relative strengths of sources and sinks for speciated aerosol in a forest environment. Third, the aerosol and gas phase pollutant patterns, measured in Boise, ID during wintertime inversion conditions, were analyzed with respect to the daily evolution of the planetary boundary layer depth and surface meteorological conditions. This dissertation describes the methods used for each of the three studies and summarizes the analysis of the results.

  9. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    3 km). Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed-layer aerosol extinction. Aerosol loading (dry extinction) was found to be the predominant source, accounting for 88 % on average of the measured spatial variability in ambient extinction, with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction. This work shows that extinction is driven to first order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite-modeling assimilation products that are able to capture these components of the aerosol optical depth (AOD)-PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day to day were large and could cause a bias of up to 27 % if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km2). This is complimentary to the results of Chu et al. (2015), who determined that the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region.

  10. Play Therapy

    PubMed Central

    Kool, Ritesh

    2010-01-01

    Play therapy represents a unique form of treatment that is not only geared toward young children, but is translated into a language children can comprehend and utilize—the language of play. For the referring provider or practitioner, questions may remain regarding the nature, course, and efficacy of play therapy. This article reviews the theoretical underpinnings of play therapy, some practical considerations, and finally a summary of the current state of research in regard to play therapy. The authors present the practicing psychiatrist with a road map for referring a patient to play therapy or initiating it in appropriate cases. PMID:21103141

  11. Enhancing Playful Teachers' Perception of the Importance of ICT Use in the Classroom: The Role of Risk Taking as a Mediator

    ERIC Educational Resources Information Center

    Goodwin, A. Lin; Low, Ee Ling; Ng, Pak Tee; Yeung, Alexander S.; Cai, Li

    2015-01-01

    In today's world, teaching and learning processes inevitably involve the application of information and communication technology (ICT). It seems reasonable to expect personal attributes such as cognitive playfulness to be associated with consistent application of ICT. Using survey responses from Singapore students in a teacher education programme…

  12. Alteration of a single amino acid in the basic domain of Marek's disease virus Meq oncoprotein plays an important role in T-cell transformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus encoded oncoprotein, Meq, has been shown to play a major role in transformation of T-lymphocytes. We have earlier shown that replacement of the meq gene in the very virulent strain Md5 with that of vaccine strain CVI988/Rispens resulted in virus attenuation in chickens. To dete...

  13. Mass spectrometry investigation of Titan aerosols analogs formed with traces of aromatic compounds

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa; Sebree, Joshua; Li, Xiang; Pinnick, Veronica; Getty, Stephanie; Brinckerhoff, Will

    2016-06-01

    The detection of benzene at ppm levels in Titan's atmosphere [1] by Cassini's Ion and Neutral Mass Spectrometer (INMS) supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's aerosols formation. In laboratory studies it has been shown that these aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation [2] and be used to dope the production of aerosol analogs [3]. In this work we investigate the effect on the aerosol composition and growth pattern of the chemical nature of the aromatic reactant used to produce aerosol. Analysis are performed using Laser Desorption-Time of Flight mass spectrometry (LD-TOF) and Fourier Transform Infrared Spectroscopy (FTIR) Infrared analysis of our samples shows that inclusion of aromatic compounds as trace precursors allows to better fit laboratory data to Titan aerosol spectra observed by Cassini [3,4]. The improvement is especially visible on the far infrared (˜200 cm‑1) bands observed by CIRS [5]. LDMS results show that the aerosol growth patterns depend both on the number of rings and on the nitrogen content of the trace precursor used. We also perform MS/MS analysis on some prominent peaks of aerosol mass spectra. This MS/MS approach allows us to identify some of the key compounds in the aerosol growth processes.

  14. Mass spectrometry investigation of Titan aerosols analogs formed with traces of aromatic compounds

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa; Sebree, Joshua; Li, Xiang; Pinnick, Veronica; Getty, Stephanie; Brinckerhoff, Will

    2016-06-01

    The detection of benzene at ppm levels in Titan's atmosphere [1] by Cassini's Ion and Neutral Mass Spectrometer (INMS) supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's aerosols formation. In laboratory studies it has been shown that these aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation [2] and be used to dope the production of aerosol analogs [3]. In this work we investigate the effect on the aerosol composition and growth pattern of the chemical nature of the aromatic reactant used to produce aerosol. Analysis are performed using Laser Desorption-Time of Flight mass spectrometry (LD-TOF) and Fourier Transform Infrared Spectroscopy (FTIR) Infrared analysis of our samples shows that inclusion of aromatic compounds as trace precursors allows to better fit laboratory data to Titan aerosol spectra observed by Cassini [3,4]. The improvement is especially visible on the far infrared (˜200 cm-1) bands observed by CIRS [5]. LDMS results show that the aerosol growth patterns depend both on the number of rings and on the nitrogen content of the trace precursor used. We also perform MS/MS analysis on some prominent peaks of aerosol mass spectra. This MS/MS approach allows us to identify some of the key compounds in the aerosol growth processes.

  15. Optical Properties of Polymers Relevant to Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Marrero-Ortiz, W.; Gomez-Hernandez, M. E.; Xu, W.; Guo, S.; Zhang, R.

    2014-12-01

    Atmospheric aerosols play a critical role in climate directly by scattering and absorbing solar radiation and indirectly by modifying the cloud formation. Currently, the direct and indirect effects of aerosols represent the largest uncertainty in climate predictions models. Some aerosols are directly emitted, but the majority are formed in the atmosphere by the oxidation of gaseous precursors. However, the formation of aerosols at the molecular level is not fully characterized. Certain category of secondary organic aerosols (SOA), which represent a significant fraction of the total aerosol burden, can be light-absorbing, also known as brown carbon. However, the overall contribution of SOA to the brown carbon and the related climate forcing is poorly understood. Such incomplete understanding is due in part to the chemical complexity of SOA and the lack of knowledge regarding SOA formation, transformation, and optical properties. Based on previous laboratory experiments, field measurements, and modeling studies, it has been suggested that the polymers and oligomers play an important role in the SOA formation. Atmospheric polymers could be produced by the hydration or heterogeneous reactions of epoxides and small α-dicarbonyls. Their aqueous chemistry products have been shown to give light-absorbing and high molecular weight oligomeric species, which increase the SOA mass production and alter the direct and indirect effect of aerosols. In this paper, the aerosol chemistry of small α-dicarbonyl compounds with amines is investigated and the associated optical properties are measured using spectroscopic techniques. The differences between primary, secondary and tertiary amines with glyoxal and methylglyoxal are evaluated in terms of SOA browning efficiency. Atmospheric implications of our present work for understanding the formation of light-absorbing SOA will be presented, particularly in terms of the product distribution of light-absorbing SOA formed by aqueous phase

  16. City Play.

    ERIC Educational Resources Information Center

    Dargan, Amanda; Zeitlin, Steve

    2000-01-01

    Today, fewer city blocks preserve the confidence of lifestyle and urban geography that sustain traditional games and outdoor play. Large groups of children choosing sides and organizing Red Rover games are no longer commonplace. Teachers must encourage free play; urban planners must build cities that are safe play havens. (MLH)

  17. Complex organic matter in Titan's atmospheric aerosols from in situ pyrolysis and analysis.

    PubMed

    Israël, G; Szopa, C; Raulin, F; Cabane, M; Niemann, H B; Atreya, S K; Bauer, S J; Brun, J-F; Chassefière, E; Coll, P; Condé, E; Coscia, D; Hauchecorne, A; Millian, P; Nguyen, M-J; Owen, T; Riedler, W; Samuelson, R E; Siguier, J-M; Steller, M; Sternberg, R; Vidal-Madjar, C

    2005-12-01

    Aerosols in Titan's atmosphere play an important role in determining its thermal structure. They also serve as sinks for organic vapours and can act as condensation nuclei for the formation of clouds, where the condensation efficiency will depend on the chemical composition of the aerosols. So far, however, no direct information has been available on the chemical composition of these particles. Here we report an in situ chemical analysis of Titan's aerosols by pyrolysis at 600 degrees C. Ammonia (NH3) and hydrogen cyanide (HCN) have been identified as the main pyrolysis products. This clearly shows that the aerosol particles include a solid organic refractory core. NH3 and HCN are gaseous chemical fingerprints of the complex organics that constitute this core, and their presence demonstrates that carbon and nitrogen are in the aerosols.

  18. Condensational growth and trace species scavenging in stratospheric sulfuric acid/water aerosol droplets

    NASA Technical Reports Server (NTRS)

    Tompson, Robert V., Jr.

    1991-01-01

    Stratospheric aerosols play a significant role in the environment. The composition of aerosols is believed to be a liquid solution of sulfuric acid and water with numerous trace species. Of these trace species, ozone in particular was recognized as being very important in its role of shielding the environment from harmful ultraviolet radiation. Also among the trace species are HCl and ClONO2, the so called chlorine reservoir species and various oxides of nitrogen. The quantity of stratospheric aerosol and its particle size distribution determines, to a large degree, the chemistry present in the stratosphere. Aerosols experience 3 types of growth: nucleation, condensation, and coagulation. The application of condensation investigations to the specific problem of stratospheric aerosols is discussed.

  19. Sensitivity of precipitation extremes to radiative forcing of greenhouse gases and aerosols

    NASA Astrophysics Data System (ADS)

    Lin, Lei; Wang, Zhili; Xu, Yangyang; Fu, Qiang

    2016-09-01

    Greenhouse gases (GHGs) and aerosols are the two most important anthropogenic forcing agents in the 21st century. The expected declines of anthropogenic aerosols in the 21st century from present-day levels would cause an additional warming of the Earth's climate system, which would aggravate the climate extremes caused by GHG warming. We examine the increased rate of precipitation extremes with global mean surface warming in the 21st century caused by anthropogenic GHGs and aerosols, using an Earth system model ensemble simulation. Similar to mean precipitation, the increased rate of precipitation extremes caused by aerosol forcing is significantly larger than that caused by GHG forcing. The aerosol forcing in the coming decades can play a critical role in inducing change in precipitation extremes if a lower GHG emission pathway is adopted. Our results have implications for policy-making on climate adaptation to extreme precipitation events.

  20. Complex organic matter in Titan's atmospheric aerosols from in situ pyrolysis and analysis.

    PubMed

    Israël, G; Szopa, C; Raulin, F; Cabane, M; Niemann, H B; Atreya, S K; Bauer, S J; Brun, J-F; Chassefière, E; Coll, P; Condé, E; Coscia, D; Hauchecorne, A; Millian, P; Nguyen, M-J; Owen, T; Riedler, W; Samuelson, R E; Siguier, J-M; Steller, M; Sternberg, R; Vidal-Madjar, C

    2005-12-01

    Aerosols in Titan's atmosphere play an important role in determining its thermal structure. They also serve as sinks for organic vapours and can act as condensation nuclei for the formation of clouds, where the condensation efficiency will depend on the chemical composition of the aerosols. So far, however, no direct information has been available on the chemical composition of these particles. Here we report an in situ chemical analysis of Titan's aerosols by pyrolysis at 600 degrees C. Ammonia (NH3) and hydrogen cyanide (HCN) have been identified as the main pyrolysis products. This clearly shows that the aerosol particles include a solid organic refractory core. NH3 and HCN are gaseous chemical fingerprints of the complex organics that constitute this core, and their presence demonstrates that carbon and nitrogen are in the aerosols. PMID:16319825

  1. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-10-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

  2. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    PubMed Central

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-01-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks. PMID:27733773

  3. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution

    PubMed Central

    Vernier, J-P; Fairlie, T D; Natarajan, M; Wienhold, F G; Bian, J; Martinsson, B G; Crumeyrolle, S; Thomason, L W; Bedka, K M

    2015-01-01

    Satellite observations have shown that the Asian Summer Monsoon strongly influences the upper troposphere and lower stratosphere (UTLS) aerosol morphology through its role in the formation of the Asian Tropopause Aerosol Layer (ATAL). Stratospheric Aerosol and Gas Experiment II solar occultation and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations show that summertime UTLS Aerosol Optical Depth (AOD) between 13 and 18 km over Asia has increased by three times since the late 1990s. Here we present the first in situ balloon measurements of aerosol backscatter in the UTLS from Western China, which confirm high aerosol levels observed by CALIPSO since 2006. Aircraft in situ measurements suggest that aerosols at lower altitudes of the ATAL are largely composed of carbonaceous and sulfate materials (carbon/sulfur elemental ratio ranging from 2 to 10). Back trajectory analysis from Cloud-Aerosol Lidar with Orthogonal Polarization observations indicates that deep convection over the Indian subcontinent supplies the ATAL through the transport of pollution into the UTLS. Time series of deep convection occurrence, carbon monoxide, aerosol, temperature, and relative humidity suggest that secondary aerosol formation and growth in a cold, moist convective environment could play an important role in the formation of ATAL. Finally, radiative calculations show that the ATAL layer has exerted a short-term regional forcing at the top of the atmosphere of −0.1 W/m2 in the past 18 years. Key Points Increase of summertime upper tropospheric aerosol levels over Asia since the 1990s Upper tropospheric enhancement also observed by in situ backscatter measurements Significant regional radiative forcing of −0.1 W/m2 PMID:26691186

  4. Accuracy Remote-Sensing of Aerosol Spatial Distribution in the Lower Troposphere by Twin Scanning Lidars

    NASA Astrophysics Data System (ADS)

    Gao, F.; Hua, D.; Li, Y.; Li, W.; Wang, L.

    2015-12-01

    Aerosols in the lower troposphere play an important role in the absorption and scattering of atmospheric radiation, the forming of precipitation and the circulation of chemistry. Due to the influence of solar heating at the surface, the aerosol distribution is inhomogeneous and variation with time. Lidar is proven to be a powerful tool in the application of remote sensing of atmospheric properties (Klett 1981). However, the existing of overlap function in lidar equation limits the fine detection of aerosol optical properties in the lower troposphere by vertical measurement, either by Raman lidar (Whiteman 2003) or by high spectral resolution lidar (Imaki 2005). Although the multi-angle method can succeed the aerosol measurement from the ground, the homogeneous atmospheric is needed (Pahlow 2004). Aiming to detect the inhomogeneous aerosols in the lower troposphere and to retrieve the aerosol extinction and backscatter coefficients in the lidar equation, a novel method for accuracy remote-sensing of aerosol properties based on twin scanning lidars has been proposed. In order to realize the fine detection of the aerosol spatial distribution from the ground to the height of interest of atmosphere, the scanning lidar is utilized as the remote sensing tool combined with the cross scanning by the twin systems, which makes the exact solutions of those two unknown parameters retrievable. Figure shows the detection method for aerosol spatial distribution using twin scanning lidars. As two lidar equations are provided simultaneously, the aerosol extinction and backscatter coefficients are retrievable. Moreover, by selecting the transmitting laser wavelength, the presented method can realize the fine detection of aerosol at any spectrum, even the theoretical and technical analysis of the aerosol characteristics by applying multi-spectra.

  5. Looking into Children's Play Communities

    ERIC Educational Resources Information Center

    Mabry, Mark; Fucigna, Carolee

    2009-01-01

    Play, particularly children's sociodramatic play, is the cornerstone of early childhood classrooms in the United States. Early childhood educators learn and expound mantras of "the value of play," "play-based programs," "children learning through play," and "play as child's work." They strive to promote the importance of making a place for play in…

  6. Characterizing the Spatial and Temporal Distribution of Aerosol Optical Thickness Over the Atlantic Basin Utilizing GOES-8 Multispectral Data

    NASA Technical Reports Server (NTRS)

    Fox, Robert; Prins, Elaine Mae; Feltz, Joleen M.

    2001-01-01

    In recent years, modeling and analysis efforts have suggested that the direct and indirect radiative effects of both anthropogenic and natural aerosols play a major role in the radiative balance of the earth and are an important factor in climate change calculations. The direct effects of aerosols on radiation and indirect effects on cloud properties are not well understood at this time. In order to improve the characterization of aerosols within climate models it is important to accurately parameterize aerosol forcing mechanisms at the local, regional, and global scales. This includes gaining information on the spatial and temporal distribution of aerosols, transport regimes and mechanisms, aerosol optical thickness, and size distributions. Although there is an expanding global network of ground measurements of aerosol optical thickness and size distribution at specific locations, satellite data must be utilized to characterize the spatial and temporal extent of aerosols and transport regimes on regional and global scales. This study was part of a collaborative effort to characterize aerosol radiative forcing over the Atlantic basin associated with the following three major aerosol components in this region: urban/sulfate, Saharan dust, and biomass burning. In-situ ground measurements obtained by a network of sun photometers during the Smoke Clouds and Radiation Experiment in Brazil (SCAR-B) and the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) were utilized to develop, calibrate, and validate a Geostationary Operational Environmental Satellite (GOES)-8 aerosol optical thickness (AOT) product. Regional implementation of the GOES-8 AOT product was used to augment point source measurements to gain a better understanding of the spatial and temporal distributions of Atlantic basin aerosols during SCAR-B and TARFOX.

  7. Accuracy Assessment of Aqua-MODIS Aerosol Optical Depth Over Coastal Regions: Importance of Quality Flag and Sea Surface Wind Speed

    NASA Technical Reports Server (NTRS)

    Anderson, J. C.; Wang, J.; Zeng, J.; Petrenko, M.; Leptoukh, G. G.; Ichoku, C.

    2012-01-01

    Coastal regions around the globe are a major source for anthropogenic aerosols in the atmosphere, but the underlying surface characteristics are not favorable for the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithms designed for retrieval of aerosols over dark land or open-ocean surfaces. Using data collected from 62 coastal stations worldwide from the Aerosol Robotic Network (AERONET) from approximately 2002-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard Aqua satellite. It is found that coastal AODs (at 550 nm) characterized respectively by the MODIS Dark Land (hereafter Land) surface algorithm, the Open-Ocean (hereafter Ocean) algorithm, and AERONET all exhibit a log-normal distribution. After filtering by quality flags, the MODIS AODs respectively retrieved from the Land and Ocean algorithms are highly correlated with AERONET (with R(sup 2) is approximately equal to 0.8), but only the Land algorithm AODs fall within the expected error envelope greater than 66% of the time. Furthermore, the MODIS AODs from the Land algorithm, Ocean algorithm, and combined Land and Ocean product show statistically significant discrepancies from their respective counterparts from AERONET in terms of mean, probability density function, and cumulative density function, which suggest a need for future improvement in retrieval algorithms. Without filtering with quality flag, the MODIS Land and Ocean AOD dataset can be degraded by 30-50% in terms of mean bias. Overall, the MODIS Ocean algorithm overestimates the AERONET coastal AOD by 0.021 for AOD less than 0.25 and underestimates it by 0.029 for AOD greater than 0.25. This dichotomy is shown to be related to the ocean surface wind speed and cloud contamination effects on the satellite aerosol retrieval. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) reveals that wind speeds over the global coastal region 25 (with a mean and median

  8. Climate response of the South Asian monsoon system to anthropogenic aerosols

    SciTech Connect

    Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong; Yoon, Jin-Ho

    2012-07-13

    The equilibrium climate response to the total effects (direct, indirect and semi-direct effects) of aerosols arising from anthropogenic and biomass burning emissions on the South Asian summer monsoon system is studied using a coupled atmosphere-slab ocean model. Our results suggest that anthropogenic and biomass burning aerosols generally induce a reduction in mean summer monsoon precipitation over most parts of the Indian subcontinent, strongest along the western coastline of the Indian peninsula and eastern Nepal region, but modest increases also occur over the north western part of the subcontinent. While most of the noted reduction in precipitation is triggered by increased emissions of aerosols from anthropogenic activities, modest increases in the north west are mostly associated with decreases in local emissions of aerosols from forest fire and grass fire sources. Anthropogenic aerosols from outside Asia also contribute to the overall reduction in precipitation but the dominant contribution comes from aerosol sources within Asia. Local emissions play a more important role in the total rainfall response to anthropogenic aerosol sources during the early monsoon period, whereas both local as well as remote emissions of aerosols play almost equally important roles during the later part of the monsoon period. While precipitation responses are primarily driven by local aerosol forcing, regional surface temperature changes over the region are strongly influenced by anthropogenic aerosols from sources further away (non-local changes). Changes in local anthropogenic organic and black carbon emissions by as much as a factor of two (preserving their ratio) produce the same basic signatures in the model's summer monsoon temperature and precipitation responses.

  9. A Vacuolar β-Glucosidase Homolog That Possesses Glucose-Conjugated Abscisic Acid Hydrolyzing Activity Plays an Important Role in Osmotic Stress Responses in Arabidopsis[W

    PubMed Central

    Xu, Zheng-Yi; Lee, Kwang Hee; Dong, Ting; Jeong, Jae Cheol; Jin, Jing Bo; Kanno, Yuri; Kim, Dae Heon; Kim, Soo Youn; Seo, Mitsunori; Bressan, Ray A.; Yun, Dae-Jin; Hwang, Inhwan

    2012-01-01

    The phytohormone abscisic acid (ABA) plays a critical role in various physiological processes, including adaptation to abiotic stresses. In Arabidopsis thaliana, ABA levels are increased both through de novo biosynthesis and via β-glucosidase homolog1 (BG1)-mediated hydrolysis of Glc-conjugated ABA (ABA-GE). However, it is not known how many different β-glucosidase proteins produce ABA from ABA-GE and how the multiple ABA production pathways are coordinated to increase ABA levels. Here, we report that a previously undiscovered β-glucosidase homolog, BG2, produced ABA by hydrolyzing ABA-GE and plays a role in osmotic stress response. BG2 localized to the vacuole as a high molecular weight complex and accumulated to high levels under dehydration stress. BG2 hydrolyzed ABA-GE to ABA in vitro. In addition, BG2 increased ABA levels in protoplasts upon application of exogenous ABA-GE. Overexpression of BG2 rescued the bg1 mutant phenotype, as observed for the overexpression of NCED3 in bg1 mutants. Multiple Arabidopsis bg2 alleles with a T-DNA insertion in BG2 were more sensitive to dehydration and NaCl stress, whereas BG2 overexpression resulted in enhanced resistance to dehydration and NaCl stress. Based on these observations, we propose that, in addition to the de novo biosynthesis, ABA is produced in multiple organelles by organelle-specific β-glucosidases in response to abiotic stresses. PMID:22582100

  10. War, Conflict and Play. Debating Play

    ERIC Educational Resources Information Center

    Hyder, Tina

    2004-01-01

    Young refugees from many parts of the world are increasingly present in UK early years settings. This book explores the crucial importance of play for young refugee children's development. It considers the implications of war and conflict on young children and notes how opportunities for play are denied. It provides a framework for early years…

  11. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.

    1978-01-01

    Stratospht1ic sulfuric acid particles scatter and absorb sunlight and they scatter, absorb and emit terrestrial thermal radiation. These interactions play a role in the earth's radiation balance and therefore affect climate. The stratospheric aerosols are perturbed by volcanic injection of SO2 and ash, by aircraft injection of SO2, by rocket exhaust of Al2O3 and by tropospheric mixing of particles and pollutant SO2 and COS. In order to assess the effects of these perturbations on climate, the effects of the aerosols on the radiation balance must be understood and in order to understand the radiation effects the properties of the aerosols must be known. The discussion covers the aerosols' effect on the radiation balance. It is shown that the aerosol size distribution controls whether the aerosols will tend to warm or cool the earth's surface. Calculations of aerosol properties, including size distribution, for various perturbation sources are carried out on the basis of an aerosol model. Calculations are also presented of the climatic impact of perturbed aerosols due to volcanic eruptions and Space Shuttle flights.

  12. Speciation of Fe in ambient aerosol and cloudwater

    SciTech Connect

    Siefert, L.

    1996-08-15

    Atmospheric iron (Fe) is thought to play an important role in cloudwater chemistry (e.g., S(IV) oxidation, oxidant production, etc.), and is also an important source of Fe to certain regions of the worlds oceans where Fe is believed to be a rate-limiting nutrient for primary productivity. This thesis focuses on understanding the chemistry, speciation and abundance of Fe in cloudwater and aerosol in the troposphere, through observations of Fe speciation in the cloudwater and aerosol samples collected over the continental United States and the Arabian Sea. Different chemical species of atmospheric Fe were measured in aerosol and cloudwater samples to help assess the role of Fe in cloudwater chemistry.

  13. Playing Shakespeare.

    ERIC Educational Resources Information Center

    Bashian, Kathleen Ryniker

    1993-01-01

    Describes a yearlong project at 12 Catholic middle schools in the Diocese of Arlington, Virginia, to incorporate the plays of William Shakespeare into the curriculum. Teachers attended university lectures and directed students in performances of the plays. Concludes that Shakespeare can be understood and enjoyed by middle school students. (BCY)

  14. Why Play?

    ERIC Educational Resources Information Center

    Weininger, O.

    This paper draws together briefly theories and knowledge from research in morphology and cognitive psychology, as well as some hypothetical information from traditional psychiatry, to show the ramifications of play in children's development. Play is defined as any of a wide variety of behaviors through which an individual attempts to discover what…

  15. Shadow Play

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Hilson, Margilee P.

    2012-01-01

    A bunny rabbit playfully hops across the wall. Then hands realign and fingers shift to make a hawk soar toward the ceiling. Most children have enjoyed the delightful experience of playing with shadow puppets. The authors build on this natural curiosity to help students link shadows to complex astronomical concepts such as seasons. The…

  16. Soluble metals in the atmosphere and their biological implications. A study to identify important aerosol components by statistical analysis of PIXE data.

    PubMed

    Winchester, J W

    1990-01-01

    Multivariate statistical analysis has been applied to time series measurements of aerosol elemental composition from PIXE analysis of filter samples, and principal components have been resolved that represent distinct particle types in an external mixture in the atmosphere. In this study, it is argued that a combination of chemical and statistical analyses of the data may be more powerful in determining chemical species in atmospheric aerosols than studied that employ mainly direct chemical analysis of chemical species in unresolved mixtures of aerosol particle samples. Sulfur is generally associated with mineral dust elements. It is reasoned that the association may represent sulfuric acid coatings on particles that can lead to mineral dissolution and solubilization of significant amounts of aluminum, iron, and other metals. Upon wet or dry deposition to the surface, the fluxes of these metals in biologically-available form may be sufficient to affect primary productivity in the world ocean and cause ecological damage in lakes. As a consequence, the fluxes of biogenic trace gases to the atmosphere may be changed, possibly leading to changes in the tropospheric concentration of ozone. The inputs to lakes of soluble aluminum, which is toxic to fish, may be partly by deposition directly from the atmosphere, thus not limited to leaching of soils by acid deposition. Human inhalation of soluble aluminum and other solubilized mineral metals may account, in part, for the observed geographic pattern of deaths attributed to chronic obstructive pulmonary disease (COPD) that show high rates in cities of the Western US and the southeast region, but low in most of the midwest and northeast.

  17. Estimating the importance of multi-phase processing on secondary organic aerosol based on a functional-group resolving volatility basis set approach

    NASA Astrophysics Data System (ADS)

    Knote, C. J.; Hodzic, A.; Aumont, B.; Madronich, S.

    2014-12-01

    Traditional understanding views secondary organic aerosol (SOA) formation in the atmosphere as continuous gas-phase oxidation of precursors such as isoprene, aromatics or alkanes. Recent research found that these oxidation products are also highly water soluble. It is further understood that the liquid-phase of cloud droplets as well as deliquesced particles could mediate SOA formation through chemistry in the aqueous-phase. While the effect of multi-phase processing has been studied in detailed for specific compounds like glyoxal or methylglyoxal, an integrated approach that considers the large number of individual compounds has been missing due to the complexity involved. In our work we explore the effects of multi-phase processing on secondary organic aerosol from an explicit modeling perspective.Volatility and solubility determine in which phase a given molecule will be found under given atmospheric conditions. Volatility has already been used to simplify the description of SOA formation in the gas-phase in what became known as the Volatility Basis Set approach (VBS). Compounds contributing to SOA formation are grouped by volatility and then treated as a whole. A number of studies extended the VBS by adding a second dimension like oxygen to carbon ratio or the mean oxidation state. In our work we use functional groups as second dimension.Using explicit oxidation chemistry modeling (GECKO-A) we derive SOA yields as well as their composition in terms of functional groups for commonly used precursors. We then investigate the effect of simply partitioning functional-group specific organic mass into cloud droplets and deliquesced aerosol based on their estimated solubility. Finally we apply simple chemistry in the aqueous-phase and relate changes in functional groups to changes in volatility and subsequent changes in partitioning between gas- and aerosol-phase.In our presentation we will explore the sensitivites of the multi-phase system in a box model setting with

  18. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  19. Secondary Ion Mass Spectrometry of Environmental Aerosols

    SciTech Connect

    Gaspar, Daniel J.; Cliff, John B.

    2010-08-01

    Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

  20. Marine aerosol formation from biogenic iodine emissions.

    PubMed

    O'Dowd, Colin D; Jimenez, Jose L; Bahreini, Roya; Flagan, Richard C; Seinfeld, John H; Hämeri, Kaarle; Pirjola, Liisa; Kulmala, Markku; Jennings, S Gerard; Hoffmann, Thorsten

    2002-06-01

    The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing.

  1. Marine aerosol formation from biogenic iodine emissions.

    PubMed

    O'Dowd, Colin D; Jimenez, Jose L; Bahreini, Roya; Flagan, Richard C; Seinfeld, John H; Hämeri, Kaarle; Pirjola, Liisa; Kulmala, Markku; Jennings, S Gerard; Hoffmann, Thorsten

    2002-06-01

    The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing. PMID:12050661

  2. Play Is the Way

    ERIC Educational Resources Information Center

    Gross, Steve; Sanderson, Rebecca Cornelli

    2012-01-01

    Historically, play has been viewed as a frivolous break from important endeavors like working and learning when, in fact, a child's ability to fully and freely engage in play is essential to their learning, productivity, and overall development. A natural drive to play is universal across all young mammals. Children from every society on earth…

  3. The Pedagogy of Play

    ERIC Educational Resources Information Center

    Giesbrecht, Sheila

    2012-01-01

    Play is important. Environmental educators Sobel and Louv write about the relationship between children and outside play and suggest that early transcendental experiences within nature allow children to develop empathetic orientations towards the natural world. Children who play out-of-doors develop an appreciation for the environment and…

  4. Receptor for advanced glycation end products plays a more important role in cellular survival than in neurite outgrowth during retinoic acid-induced differentiation of neuroblastoma cells.

    PubMed

    Sajithlal, Gangadharan; Huttunen, Henri; Rauvala, Heikki; Munch, Gerald

    2002-03-01

    The receptor for advanced glycation end products (RAGE), a member of the immunoglobulin superfamily, is known to interact with amphoterin. This interaction has been proposed to play a role in neurite outgrowth and process elongation during neurodifferentiation. However, there is as yet no direct evidence of the relevance of this pathway to neurodifferentiation under physiological conditions. In this study we have investigated a possible role of RAGE and amphoterin in the retinoic acid-induced differentiation of neuroblastoma cells. The functional inactivation of RAGE by dominant negative and antisense strategies showed that RAGE is not required for process outgrowth or differentiation, although overexpression of RAGE accelerates the elongation of neuritic processes. Using the antisense strategy, amphoterin was shown to be essential for process outgrowth and differentiation, suggesting that amphoterin may interact with other molecules to exert its effect in this context. Interestingly, the survival of the neuroblastoma cells treated with retinoic acid was partly dependent on the expression of RAGE, and inhibition of RAGE function partially blocked the increase in anti-apoptotic protein Bcl-2 following retinoic acid treatment. Based on these results we propose that a combination therapy using RAGE blockers and retinoic acid may prove as a useful approach for chemotherapy for the treatment of neuroblastoma.

  5. Glycolysis plays an important role in energy transfer from the base to the distal end of the flagellum in mouse sperm.

    PubMed

    Takei, Gen L; Miyashiro, Daisuke; Mukai, Chinatsu; Okuno, Makoto

    2014-06-01

    Many studies have been conducted to elucidate the relationship between energy metabolic pathways (glycolysis and respiration) and flagellar motility in mammalian sperm, but the contribution of glycolysis to sperm motility has not yet been fully elucidated. In the present study, we performed detailed analysis of mouse sperm flagellar motility for further understanding of the contribution of glycolysis to mammalian sperm motility. Mouse sperm maintained vigorous motility in the presence of substrates either for glycolysis or for respiration. By contrast, inhibition of glycolysis by alpha-chlorohydrine caused a significant decrease in the bend angle of the flagellar bending wave, sliding velocity of outer doublet microtubules and ATP content even in the presence of respiratory substrates (pyruvate or β-hydroxybutyrate). The decrease of flagellar bend angle and sliding velocity are prominent in the distal part of the flagellum, indicating that glycolysis inhibition caused the decrease in ATP concentration threrein. These results suggest that glycolysis potentially acts as a spatial ATP buffering system, transferring energy (ATP) synthesized by respiration at the mitochondria located in the basal part of the flagellum to the distal part. In order to validate that glycolytic enzymes can transfer high energy phosphoryls, we calculated intraflagellar concentration profiles of adenine nucleotides along the flagellum by computer simulation analysis. The result demonstrated the involvement of glycolysis for maintaining the ATP concentration at the tip of the flagellum. It is likely that glycolysis plays a key role in energy homeostasis in mouse sperm not only through ATP production but also through energy transfer.

  6. Aerosol composition and variability in the Baltimore-Washington, DC region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2015-08-01

    in the free troposphere (above 3 km). Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed layer aerosol. Aerosol loading was found to be the predominant source accounting for 88 % on average of the measured spatial variability in extinction with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction. This work shows that extinction is driven to first-order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite/modelling assimilation products that are able to capture these components of the AOD-PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day-to-day were large and could cause a bias of up to 27 % if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km2). This is complimentary to the results of Chu et al. (2015) that determined the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region.

  7. Campylobacter jejuni serine protease HtrA plays an important role in heat tolerance, oxygen resistance, host cell adhesion, invasion, and transmigration

    PubMed Central

    Lind, Judith; Backert, Steffen; Tegtmeyer, Nicole

    2015-01-01

    Campylobacter jejuni is an important pathogen of foodborne illness. Transmigration across the intestinal epithelial barrier and invasion are considered as primary reasons for tissue damage triggered by C. jejuni. Using knockout mutants, it was shown that the serine protease HtrA may be important for stress tolerance and physiology of C. jejuni. HtrA is also secreted in the extra­cellular environment, where it can cleave junctional host cell proteins such as E-cadherin. Aim of the present study was to establish a genetic complementation system in two C. jejuni strains in order to introduce the wild-type htrA gene in trans, test known htrA phenotypes, and provide the basis to perform further mutagenesis. We confirm that reexpression of the htrA wild-type gene in ΔhtrA mutants restored the following phenotypes: 1) C. jejuni growth at high temperature (44 °C), 2) growth under high oxygen stress conditions, 3) expression of proteolytically active HtrA oligomers, 4) secretion of HtrA into the supernatant, 5) cell attachment and invasion, and 6) transmigration across polarized epithelial cells. These results establish a genetic complementation system for htrA in C. jejuni, exclude polar effects in the ΔhtrA mutants, confirm important HtrA properties, and permit the discovery and dissection of new functions. PMID:25883795

  8. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  9. Play & Play Grounds. A Report.

    ERIC Educational Resources Information Center

    Stone, Jeannette Galambos

    Using camera and tape recorder, a photographer and an early childhood specialist explored as a team the universe of children's outdoor play, seeking worthy and innovative ideas and stressing urban playground problems and solutions. The resulting photographs and text focus on (1) the characteristics of play, (2) the nature of playgrounds, and (3)…

  10. Do the mutations of C1GALT1C1 gene play important roles in the genetic susceptibility to Chinese IgA nephropathy?

    PubMed Central

    Li, Gui-Sen; Nie, Guang-Jun; Zhang, Hong; LV, Ji-Cheng; Shen, Yan; Wang, Hai-Yan

    2009-01-01

    Background The deficiency of β1,3 galactose in hinge region of IgA1 molecule played a pivotal role in pathogenesis of IgA nephropathy (IgAN). Cosmc, encoded by C1GALT1C1 gene, was indispensable to β1,3 galactosylation of IgA1. We designed a serial study to investigate the relationship between the mutations of C1GALT1C1 gene and the genetic susceptibility to IgAN. Methods Nine hundred and thirty-eight subjects, including 661 patients with IgAN and 277 healthy controls were enrolled in the study. Firstly, single nucleotide polymorphisms (SNPs) in the promoter region of C1GALT1C1 gene were screened. Then the c.-347-190G>A was analyzed by PCR-restriction fragment length polymorphism (PCR-RFLP) for further case-control association analysis. Secondly the somatic mutations of DNAs from peripheral blood B lymphocytes were detected in 15 patients and 7 normal controls. Results No significant association was observed between the different alleles or genotypes of c.-347-190G>A and IgAN. The patients with different genotypes of C1GALT1C1 gene did not significantly associate with clinical manifestations, including hematuria, proteinuria, and serum creatinine of patients with IgAN. There was no somatic mutation detected in total 202 clones of 22 individuals. Conclusion The c.-347-190G>A polymorphism and the somatic mutation of encoding region of C1GALT1C1 gene were not significantly related to the genetic susceptibility to IgAN in Northern Chinese population. PMID:19778426

  11. Shadow Play

    ERIC Educational Resources Information Center

    Ward, Alan

    1974-01-01

    Discusses the use of shadows to explain such scientific phenomena as umbra and penumbra, eclipses, day and night, seasons, and length of day. Indicates that shadow plays can serve to help the students in understanding more about light. (CC)

  12. Play: early and eternal.

    PubMed Central

    Mears, C E; Harlow, H F

    1975-01-01

    A systematic 12-week investigation of development of play behavior was conducted with eight socially reared rhesus monkey infants. A new, basic and primary play form termed self-motion play or peragration was identified and examined. This behavior follows a human model which includes a wide range of pleasurable activities involving motion of the body through space, e.g., rocking, swinging, running, leaping, and water or snow skiing. It can be argued that self-motion play is the initial primate play form and because of its persistence constitutes a reinforcing agent for maintaining many complex patterns and even pastimes. Monkey self-motion play in the present study was divided into five separate patterns in order to compare the relative importance of social and individual peragration play, the role of apparatus and the overall developmental relationships between the different individual and social self-motion play patterns. The data showed that from 90 to 180 days of age self-motion play was independent of other forms of play, that individual self-motion play appeared earlier and with significantly greater increases in frequency than did social self-motion play, and that apparatus was a necessary component for significant increases in social self-motion play. Other findings were that self-motion play existed independent of locomotion and, though initiated by exploration, was separate from it. Therapeutic implications of self-motion play were discussed. Images PMID:1057178

  13. Reconciling Organic Aerosol Volatility, Hygroscopicity, and Oxidation State During the Colorado DISCOVER-AQ Deployment

    NASA Astrophysics Data System (ADS)

    Hite, J. R.; Moore, R.; Martin, R.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.; Nenes, A.

    2014-12-01

    The organic fraction of submicron aerosol can profoundly impact radiative forcing on climate directly, through enhancement of extinction, or indirectly through modulation of cloud formation. Semi-volatile constituents of organic ambient aerosol are of particular interest as their partitioning between the vapor and aerosol phases is not well constrained by current atmospheric models and appears to play an important role in the formation of cloud condensation nuclei (CCN) as suggested by recent research. An experimental setup consisting of a DMT CCN counter and SMPS downstream of a custom-built thermodenuder assembly was deployed during the summer 2014 DISCOVER-AQ field campaign to retrieve simultaneous, size-resolved volatility and hygroscopicity - through the use of scanning mobility CCN analysis (SMCA). Housed in the NASA Langley mobile laboratory, a suite of complimentary measurements were made available onboard including submicron aerosol composition and oxidation state provided by an HR-ToF-AMS, and aerosol optical properties provided by a range of other instruments including an SP2. Air masses sampled from locations across the Central Colorado region include influences from regional aerosol nucleation/growth events, long-range transport of Canadian biomass burning aerosols, cattle feedlot emissions and influences of the Denver urban plume - amidst a backdrop of widespread oil and gas exploration. The analysis focuses on the reconciliation of the retrieved aerosol volatility distributions and corresponding hygroscopicity and oxidation state observations, including the use of AMS factor analysis.

  14. Simulating Aerosol-cloud-radiation Feedbacks Over East Asia Using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Wang, J.; Allen, D. J.; Pickering, K. E.; Li, Z.

    2013-12-01

    Aerosols play an important role in climate change through their impact on the radiative balance and hydrological cycle of the atmosphere. Recently much effort has been put into studying the radiative forcing of aerosols in East Asia. In this study, we apply the regional chemistry and transport model, WRF-Chem, to study aerosol radiative forcing over eastern Asia. Four model simulations have been conducted to ascertain the direct and indirect (cloud albedo and cloud lifetime) effects of aerosols on radiation and precipitation. The time period of interest is from Feb 22, 2005 to March 31, 2005 when there were extensive measurements of radiation, trace gases, and aerosol properties available from EAST-AIRE (East Asian Study of Tropospheric Aerosols: An International Regional Experiment ). Measurements from EAST-AIRE site Xianghe, MODIS, CERES, and AERONET are used to assess the performance of the base simulation. The base run shows good agreement with observations, although the model underestimates the aerosol loading in East Asia, especially over highly polluted regions. We compare the base run with the sensitivity runs and investigate the difference in short wave radiation at the surface and the top of atmosphere, cloud properties (cloud fraction, cloud condensation nuclei, effective radius, and liquid water path), and precipitation patterns. Preliminary results indicate that short wave radiation at the surface is reduced by 28 W m-2 at Xianghe site due to the aerosol direct effect.

  15. The Stable Level of Glutamine synthetase 2 Plays an Important Role in Rice Growth and in Carbon-Nitrogen Metabolic Balance.

    PubMed

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2015-01-01

    Glutamine synthetase 2 (GS2) is a key enzyme involved in the ammonium metabolism in plant leaves. In our previous study, we obtained GS2-cosuppressed plants, which displayed a normal growth phenotype at the seedling stage, while at the tillering stage they showed a chlorosis phenotype. In this study, to investigate the chlorosis mechanism, we systematically analyzed the plant growth, carbon-nitrogen metabolism and gene expressions between the GS2-cosuppressed rice and wild-type plants. The results revealed that the GS2-cosuppressed plants exhibited a poor plant growth phenotype and a poor nitrogen transport ability, which led to nitrogen accumulation and a decline in the carbon/nitrogen ratio in the stems. Interestingly, there was a higher concentration of soluble proteins and a lower concentration of carbohydrates in the GS2-cosuppressed plants at the seedling stage, while a contrasting result was displayed at the tillering stage. The analysis of the metabolic profile showed a significant increase of sugars and organic acids. Additionally, gene expression patterns were different in root and leaf of GS2-cosuppressed plants between the seedling and tillering stage. These results indicated the important role of a stable level of GS2 transcription during normal rice development and the importance of the carbon-nitrogen metabolic balance in rice growth. PMID:26053400

  16. The Stable Level of Glutamine synthetase 2 Plays an Important Role in Rice Growth and in Carbon-Nitrogen Metabolic Balance.

    PubMed

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2015-06-04

    Glutamine synthetase 2 (GS2) is a key enzyme involved in the ammonium metabolism in plant leaves. In our previous study, we obtained GS2-cosuppressed plants, which displayed a normal growth phenotype at the seedling stage, while at the tillering stage they showed a chlorosis phenotype. In this study, to investigate the chlorosis mechanism, we systematically analyzed the plant growth, carbon-nitrogen metabolism and gene expressions between the GS2-cosuppressed rice and wild-type plants. The results revealed that the GS2-cosuppressed plants exhibited a poor plant growth phenotype and a poor nitrogen transport ability, which led to nitrogen accumulation and a decline in the carbon/nitrogen ratio in the stems. Interestingly, there was a higher concentration of soluble proteins and a lower concentration of carbohydrates in the GS2-cosuppressed plants at the seedling stage, while a contrasting result was displayed at the tillering stage. The analysis of the metabolic profile showed a significant increase of sugars and organic acids. Additionally, gene expression patterns were different in root and leaf of GS2-cosuppressed plants between the seedling and tillering stage. These results indicated the important role of a stable level of GS2 transcription during normal rice development and the importance of the carbon-nitrogen metabolic balance in rice growth.

  17. TGF-β-Smad2 dependent activation of CDC 25A plays an important role in cell proliferation through NFAT activation in metastatic breast cancer cells.

    PubMed

    Sengupta, Suman; Jana, Samir; Bhattacharyya, Arindam

    2014-02-01

    In late stages of cancer, TGF-β promotes the metastasis process by enhancing the invasiveness of cancer cells and inducing the epithelial-to-mesenchymal transition (EMT), a process that is concomitantly associated with breast cancer metastasis. Metastasis comprises of multiple steps with the regulation of complex network of signaling. Metastasis is associated with both the EMT and cell proliferation, but yet it has not been clearly distinguished how the balance between the cell proliferation and EMT is maintained together. Recently, it has been accounted that a transcription factor, NFAT has an important role for switching tumor suppressive to progressive effect of TGF-β and NFAT has a role in TGF-β mediated EMT by regulating N-cadherin. CDC 25A phosphatase, an important cell cycle regulator is overexpressed in breast cancer. Our results demonstrate that TGF-β regulating the CDC 25A in a Smad2 dependent way, translocates NFAT to nucleus and NFAT in co-operation with Smad2 promotes the tumor progression by upregulating the CDK2, CDK4, and cyclin E. This result signifies that TGF-β by regulating NFAT in different ways maintains the balance between EMT and cell proliferation mechanism concurrently during the late stage of breast cancer.

  18. IGF-1 Signaling Plays an Important Role in the Formation of Three-Dimensional Laminated Neural Retina and Other Ocular Structures From Human Embryonic Stem Cells.

    PubMed

    Mellough, Carla B; Collin, Joseph; Khazim, Mahmoud; White, Kathryn; Sernagor, Evelyne; Steel, David H W; Lako, Majlinda

    2015-08-01

    We and others have previously demonstrated that retinal cells can be derived from human embryonic stem cells (hESCs) and induced pluripotent stem cells under defined culture conditions. While both cell types can give rise to retinal derivatives in the absence of inductive cues, this requires extended culture periods and gives lower overall yield. Further understanding of this innate differentiation ability, the identification of key factors that drive the differentiation process, and the development of clinically compatible culture conditions to reproducibly generate functional neural retina is an important goal for clinical cell based therapies. We now report that insulin-like growth factor 1 (IGF-1) can orchestrate the formation of three-dimensional ocular-like structures from hESCs which, in addition to retinal pigmented epithelium and neural retina, also contain primitive lens and corneal-like structures. Inhibition of IGF-1 receptor signaling significantly reduces the formation of optic vesicle and optic cups, while exogenous IGF-1 treatment enhances the formation of correctly laminated retinal tissue composed of multiple retinal phenotypes that is reminiscent of the developing vertebrate retina. Most importantly, hESC-derived photoreceptors exhibit advanced maturation features such as the presence of primitive rod- and cone-like photoreceptor inner and outer segments and phototransduction-related functional responses as early as 6.5 weeks of differentiation, making these derivatives promising candidates for cell replacement studies and in vitro disease modeling.

  19. IGF-1 Signaling Plays an Important Role in the Formation of Three-Dimensional Laminated Neural Retina and Other Ocular Structures From Human Embryonic Stem Cells.

    PubMed

    Mellough, Carla B; Collin, Joseph; Khazim, Mahmoud; White, Kathryn; Sernagor, Evelyne; Steel, David H W; Lako, Majlinda

    2015-08-01

    We and others have previously demonstrated that retinal cells can be derived from human embryonic stem cells (hESCs) and induced pluripotent stem cells under defined culture conditions. While both cell types can give rise to retinal derivatives in the absence of inductive cues, this requires extended culture periods and gives lower overall yield. Further understanding of this innate differentiation ability, the identification of key factors that drive the differentiation process, and the development of clinically compatible culture conditions to reproducibly generate functional neural retina is an important goal for clinical cell based therapies. We now report that insulin-like growth factor 1 (IGF-1) can orchestrate the formation of three-dimensional ocular-like structures from hESCs which, in addition to retinal pigmented epithelium and neural retina, also contain primitive lens and corneal-like structures. Inhibition of IGF-1 receptor signaling significantly reduces the formation of optic vesicle and optic cups, while exogenous IGF-1 treatment enhances the formation of correctly laminated retinal tissue composed of multiple retinal phenotypes that is reminiscent of the developing vertebrate retina. Most importantly, hESC-derived photoreceptors exhibit advanced maturation features such as the presence of primitive rod- and cone-like photoreceptor inner and outer segments and phototransduction-related functional responses as early as 6.5 weeks of differentiation, making these derivatives promising candidates for cell replacement studies and in vitro disease modeling. PMID:25827910

  20. The Stable Level of Glutamine synthetase 2 Plays an Important Role in Rice Growth and in Carbon-Nitrogen Metabolic Balance

    PubMed Central

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2015-01-01

    Glutamine synthetase 2 (GS2) is a key enzyme involved in the ammonium metabolism in plant leaves. In our previous study, we obtained GS2-cosuppressed plants, which displayed a normal growth phenotype at the seedling stage, while at the tillering stage they showed a chlorosis phenotype. In this study, to investigate the chlorosis mechanism, we systematically analyzed the plant growth, carbon-nitrogen metabolism and gene expressions between the GS2-cosuppressed rice and wild-type plants. The results revealed that the GS2-cosuppressed plants exhibited a poor plant growth phenotype and a poor nitrogen transport ability, which led to nitrogen accumulation and a decline in the carbon/nitrogen ratio in the stems. Interestingly, there was a higher concentration of soluble proteins and a lower concentration of carbohydrates in the GS2-cosuppressed plants at the seedling stage, while a contrasting result was displayed at the tillering stage. The analysis of the metabolic profile showed a significant increase of sugars and organic acids. Additionally, gene expression patterns were different in root and leaf of GS2-cosuppressed plants between the seedling and tillering stage. These results indicated the important role of a stable level of GS2 transcription during normal rice development and the importance of the carbon-nitrogen metabolic balance in rice growth. PMID:26053400

  1. Proteomics of Fusarium oxysporum race 1 and race 4 reveals enzymes involved in carbohydrate metabolism and ion transport that might play important roles in banana Fusarium wilt.

    PubMed

    Sun, Yong; Yi, Xiaoping; Peng, Ming; Zeng, Huicai; Wang, Dan; Li, Bo; Tong, Zheng; Chang, Lili; Jin, Xiang; Wang, Xuchu

    2014-01-01

    Banana Fusarium wilt is a soil-spread fungal disease caused by Fusarium oxysporum. In China, the main virulence fungi in banana are F. oxysporum race 1 (F1, weak virulence) and race 4 (F4, strong virulence). To date, no proteomic analyses have compared the two races, but the difference in virulence between F1 and F4 might result from their differentially expressed proteins. Here we report the first comparative proteomics of F1 and F4 cultured under various conditions, and finally identify 99 protein species, which represent 59 unique proteins. These proteins are mainly involved in carbohydrate metabolism, post-translational modification, energy production, and inorganic ion transport. Bioinformatics analysis indicated that among the 46 proteins identified from F4 were several enzymes that might be important for virulence. Reverse transcription PCR analysis of the genes for 15 of the 56 proteins revealed that their transcriptional patterns were similar to their protein expression patterns. Taken together, these data suggest that proteins involved in carbohydrate metabolism and ion transport may be important in the pathogenesis of banana Fusarium wilt. Some enzymes such as catalase-peroxidase, galactosidase and chitinase might contribute to the strong virulence of F4. Overexpression or knockout of the genes for the F4-specific proteins will help us to further understand the molecular mechanism of Fusarium-induced banana wilt.

  2. ‘Serious thigh muscle strains’: beware the intramuscular tendon which plays an important role in difficult hamstring and quadriceps muscle strains

    PubMed Central

    Brukner, Peter; Connell, David

    2016-01-01

    Why do some hamstring and quadriceps strains take much longer to repair than others? Which injuries are more prone to recurrence? Intramuscular tendon injuries have received little attention as an element in ‘muscle strain’. In thigh muscles, such as rectus femoris and biceps femoris, the attached tendon extends for a significant distance within the muscle belly. While the pathology of most muscle injures occurs at a musculotendinous junction, at first glance the athlete appears to report pain within a muscle belly. In addition to the musculotendinous injury being a site of pathology, the intramuscular tendon itself is occasionally injured. These injuries have a variety of appearances on MRIs. There is some evidence that these injuries require a prolonged rehabilitation time and may have higher recurrence rates. Therefore, it is important to recognise the tendon component of a thigh ‘muscle strain’. PMID:26519522

  3. The Role of Non-CO2 Greenhouse Gases and Aerosols in Climate Mitigation

    SciTech Connect

    Smith, Steven J.; Bond, Tami C.; Wigley, Tom M.; de la Chesnaye, Francisco; Pitcher, Hugh M.

    2003-11-17

    Forcing agents other than carbon dioxide, such as methane, nitrous oxide, halocarbons, and perhaps aerosol particles, may play a major role in mitigating climate change. Of these agents, methane is the most important greenhouse gas and has substantial mitigation potential. The role of black and organic carbon aerosols has attracted increasing interest and we explicitly include these carbonaceous aerosols in our calculations. This paper analyzes the potential role of different forcing agents in reducing future climate forcing in a multi-gas, integrated assessment model in which mitigation options compete and interact. Our framework includes all of the important atmospheric forcing agents: carbon dioxide, methane, nitrous oxide, halocarbons, sulfur dioxide, and carbonaceous aerosols along with an array of potential mitigation options. Through an integrated analysis of all available options we present a realistic portrait of the potential role of these forcing agents in limiting future climate change.

  4. Functional uncoupling of inhibitory interneurons plays an important role in short-term sensitization of Aplysia gill and siphon withdrawal reflex.

    PubMed

    Trudeau, L E; Castellucci, V F

    1993-05-01

    Attempts to explain learning-associated potentiation of synaptic transmission in model systems such as withdrawal reflexes in the mollusk Aplysia or the hippocampus of vertebrates have focused on the mechanisms by which transmitter release is increased in the principal elements of the circuit. Increased transmission in neuronal networks such as the gill and siphon withdrawal reflex (GSWR) of Aplysia may, however, also be caused by a decrease of transmitter release by inhibitory interneurons. The importance and function of cholinergic inhibitory transmission in the GSWR network were investigated. Central application of the nicotinic cholinergic antagonist d-tubocurarine (d-TC) considerably potentiated gill contractions, evoked either by nerve stimulation or by tactile stimulation of the siphon. Compound EPSPs evoked in motoneurons upon siphon nerve stimulation were also significantly prolonged following application of d-TC, but were unaffected by hexamethonium, a blocker of excitatory ACh receptors in Aplysia. Recordings from excitatory interneurons showed that they received excitation followed by powerful inhibitory input upon stimulation of the siphon nerve. Application of d-TC completely blocked this rapid inhibition, thus prolonging the compound EPSPs evoked in the interneurons. These effects were obtained at a concentration of d-TC (100 microM) that almost totally blocked fast inhibitory cholinergic transmission, but was without effect on monosynaptic connections between sensory neurons and motoneurons of the reflex. Facilitation of (1) compound EPSCs in motoneurons and (2) evoked excitatory interneuronal firing was reduced in preparations already disinhibited by pretreatment with d-TC. Facilitation of sensory-motor synapses, however, was not reduced in the presence of d-TC, indicating that facilitatory interneurons are still activated under cholinergic blockade. These data show that transmission through the GSWR neuronal network is gated by a feedback

  5. The mitochondrial protein import component, TRANSLOCASE OF THE INNER MEMBRANE17-1, plays a role in defining the timing of germination in Arabidopsis.

    PubMed

    Wang, Yan; Law, Simon R; Ivanova, Aneta; van Aken, Olivier; Kubiszewski-Jakubiak, Szymon; Uggalla, Vindya; van der Merwe, Margaretha; Duncan, Owen; Narsai, Reena; Whelan, James; Murcha, Monika W

    2014-11-01

    In Arabidopsis (Arabidopsis thaliana), small gene families encode multiple isoforms for many of the components of the mitochondrial protein import apparatus. There are three isoforms of the TRANSLOCASE OF THE INNER MEMBRANE17 (Tim17). Transcriptome analysis indicates that AtTim17-1 is only detectable in dry seed. In this study, two independent transfer DNA insertional mutant lines of tim17-1 exhibited a germination-specific phenotype, showing a significant increase in the rate of germination. Microarray analyses revealed that Attim17-1 displayed alterations in the temporal sequence of transcriptomic events during germination, peaking earlier compared with the wild type. Promoter analysis of AtTim17-1 further identified an abscisic acid (ABA)-responsive element, which binds ABA-responsive transcription factors, acting to repress the expression of AtTim17-1. Attim17-1 dry seeds contained significantly increased levels of ABA and gibberellin, 2- and 5-fold, respectively. These results support the model that mitochondrial biogenesis is regulated in a tight temporal sequence of events during germination and that altering mitochondrial biogenesis feeds back to alter the germination rate, as evidenced by the altered levels of the master regulatory hormones that define germination.

  6. Mig-14 plays an important role in influencing gene expression of Salmonella enterica serovar Typhi, which contributes to cell invasion under hyperosmotic conditions.

    PubMed

    Sheng, Xiumei; Zhang, Hong; Xia, Qiufeng; Xu, Shungao; Xu, Huaxi; Huang, Xinxiang

    2013-11-01

    mig-14 is a horizontally acquired host-induced virulence gene in Salmonella enterica serovar Typhi. The molecular function of mig-14 is still unknown; sequence analysis showed that mig-14 shared homology with the helix-loop-helix motif of the AraC family of transcriptional regulatory proteins. In our previous microarray-based studies, mig-14 was upregulated at the early stage of high osmotic stress, indicating a potential role under this condition. Therefore, we compared growth and the global transcriptional difference between wild-type and mig-14 mutant strains to identify the role of Mig-14. The results showed that growth of mig-14 mutant strain was clearly slower than that of the wild-type strain, and 148 genes showed significant differences in expression between these two strains under upshift high osmotic treatment for 30 min. In total, 77 genes and 71 genes in the mig-14 mutant strain were upregulated and downregulated, respectively. Genes involved in invasion, virulence, flagellation, motility and chemotaxis of Salmonella were downregulated. Thus, cell invasion abilities of these two strains were further analyzed. The results confirmed that activities of mig-14 were important for cell invasion.

  7. Neurotensin co-expressed in orexin-producing neurons in the lateral hypothalamus plays an important role in regulation of sleep/wakefulness states.

    PubMed

    Furutani, Naoki; Hondo, Mari; Kageyama, Haruaki; Tsujino, Natsuko; Mieda, Michihiro; Yanagisawa, Masashi; Shioda, Seiji; Sakurai, Takeshi

    2013-01-01

    Both orexin and neurotensin are expressed in the lateral hypothalamic area (LHA) and have been implicated in the regulation of feeding, motor activity and the reward system. A double label immunofluorescence and in situ hybridization studies showed that neurotensin colocalizes with orexin in neurons of the LHA. Pharmacological studies suggested that neurotensin excites orexin-producing neurons (orexin neurons) through activation of neurotensin receptor-2 (NTSR-2) and non-selective cation channels. In situ hybridization study showed that most orexin neurons express neurotensin receptor-2 mRNA but not neurotensin receptor-1 (Ntsr-1) mRNA. Immunohistochemical studies showed that neurotensin-immunoreactive fibers make appositions to orexin neurons. A neurotensin receptor antagonist decreased Fos expression in orexin neurons and wakefulness time in wild type mice when administered intraperitoneally. However, the antagonist did not evoke any effect on these parameters in orexin neuron-ablated mice. These observations suggest the importance of neurotensin in maintaining activity of orexin neurons. The evidence presented here expands our understanding of the regulatory mechanism of orexin neurons.

  8. An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells.

    PubMed Central

    Nugroho, T T; Mendenhall, M D

    1994-01-01

    The gene encoding a 40-kDa protein, previously studied as a substrate and inhibitor of the yeast cyclin-dependent protein kinase, Cdc28, has been cloned. The DNA sequence reveals that p40 is a highly charged protein of 32,187 Da with no significant homology to other proteins. Overexpression of the gene encoding p40, SIC1, produces cells with an elongated but morphology similar to that of cells with depleted levels of the CLB gene products, suggesting that p40 acts as an inhibitor of Cdc28-Clb complexes in vivo. A SIC1 deletion is viable and has highly increased frequencies of broken and lost chromosomes. The deletion strain segregates out many dead cells that are primarily arrested at the G2 checkpoint in an asymmetric fashion. Only daughters and young mothers display the lethal defect, while experienced mothers appear to grow normally. These results suggest that negative regulation of Cdc28 protein kinase activity by p40 is important for faithful segregation of chromosomes to daughter cells. Images PMID:8164683

  9. Regional Urban Aerosol Retrieval With MODIS: High-Resolution Algorithm Application and Extension of Look-up Tables

    NASA Astrophysics Data System (ADS)

    Jerg, M. P.; Oo, M. M.; Gross, B. M.; Moshary, F.; Ahmed, S. A.

    2008-12-01

    Aerosols play an important role for the global climate by modulating the Earth's energy budget. Air quality and related health issues for humans are also tightly linked with concentration, composition, and size of aerosol particles. Satellite remote sensing with the MODIS sensor on NASA's Aqua and Terra platforms is one means to investigate aerosols globally. However, due to the global scope of the operational mission only globally based aerosol models can be employed in the look-up table approach of the retrieval algorithm. The relatively coarse resolution of 10x10km also largely prevents the detection of small scale structures in the aerosol optical depth (AOD) on a regional level. Consequently, the operational MODIS aerosol algorithm over land has been specifically adapted to the New York City area. First, the operational look-up table was extended based on local aerosol climatology obtained using five years of AERONET measurements at the City College of New York site. These models were then used to create appropriate LUT using the 6S radiative transfer model. Second, regional surface reflectance ratio parameterizations which better characterize the urban surface properties were implemented in the algorithm. These two modifications ultimately allow the retrieval algorithm to be applied at the actual sensor resolution of 500x500m. This presentation focuses on estimating the errors that are inherent in the operational processing compared to a regionally refined processing scheme. In particular, we remove artificial hot spots in the aerosol retrieval and are able to extract realistic high resolution aerosol structure.

  10. The Domain I-Domain III Linker Plays an Important Role in the Fusogenic Conformational Change of the Alphavirus Membrane Fusion Protein▿

    PubMed Central

    Zheng, Yan; Sánchez-San Martín, Claudia; Qin, Zhao-ling; Kielian, Margaret

    2011-01-01

    The alphavirus Semliki Forest virus (SFV) infects cells through a low-pH-dependent membrane fusion reaction mediated by the virus fusion protein E1. Acidic pH initiates a series of E1 conformational changes that culminate in membrane fusion and include dissociation of the E1/E2 heterodimer, insertion of the E1 fusion loop into the target membrane, and refolding of E1 to a stable trimeric hairpin conformation. A highly conserved histidine (H3) on the E1 protein was previously shown to promote low-pH-dependent E1 refolding. An SFV mutant with an alanine substitution at this position (H3A) has a lower pH threshold and reduced efficiency of virus fusion and E1 trimer formation than wild-type SFV. Here we addressed the mechanism by which H3 promotes E1 refolding and membrane fusion. We identified E1 mutations that rescue the H3A defect. These revertants implicated a network of interactions that connect the domain I-domain III (DI-DIII) linker region with the E1 core trimer, including H3. In support of the importance of these interactions, mutation of residues in the network resulted in more acidic pH thresholds and reduced efficiencies of membrane fusion. In vitro studies of truncated E1 proteins demonstrated that the DI-DIII linker was required for production of a stable E1 core trimer on target membranes. Together, our results suggest a critical and previously unidentified role for the DI-DIII linker region during the low-pH-dependent refolding of E1 that drives membrane fusion. PMID:21543498

  11. TaLHY, a 1R-MYB Transcription Factor, Plays an Important Role in Disease Resistance against Stripe Rust Fungus and Ear Heading in Wheat.

    PubMed

    Zhang, Zijin; Chen, Jieming; Su, Yongying; Liu, Hanmei; Chen, Yanger; Luo, Peigao; Du, Xiaogang; Wang, Dan; Zhang, Huaiyu

    2015-01-01

    LHY (late elongated hypocotyl) is an important gene that regulates and controls biological rhythms in plants. Additionally, LHY is highly expressed in the SSH (suppression subtractive hybridization) cDNA library-induced stripe rust pathogen (CYR32) in our previous research. To identify the function of the LHY gene in disease resistance against stripe rust, we used RACE-PCR technology to clone TaLHY in the wheat variety Chuannong19. The cDNA of TaLHY is 3085 bp long with an open reading frame of 1947 bp. TaLHY is speculated to encode a 70.3 kDa protein of 648 amino acids , which has one typical plant MYB-DNA binding domain; additionally, phylogenetic tree shows that TaLHY has the highest homology with LHY of Brachypodium distachyon(BdLHY-like). Quantitative fluorescence PCR indicates that TaLHY has higher expression in the leaf, ear and stem of wheat but lower expression in the root. Infestation of CYR32 can result in up-regulated expression of TaLHY, peaking at 72 h. Using VIGS (virus-induced gene silencing) technology to disease-resistant wheat in the fourth leaf stage, plants with silenced TaLHY cannot complete their heading stage. Through the compatible interaction with the stripe rust physiological race CYR32, Chuannong 19 loses its immune capability toward the stripe rust pathogen, indicating that TaLHY may regulate and participate in the heading of wheat, as well as the defense responses against stripe rust infection.

  12. A novel formaldehyde metabolic pathway plays an important role during formaldehyde metabolism and detoxification in tobacco leaves under liquid formaldehyde stress.

    PubMed

    Wang, Ru; Zeng, Zhidong; Liu, Ting; Liu, Ang; Zhao, Yan; Li, Kunzhi; Chen, Limei

    2016-08-01

    Tobacco and Arabidopsis are two model plants often used in botany research. Our previous study indicated that the formaldehyde (HCHO) uptake and assimilation capacities of tobacco leaves were weaker than those of Arabidopsis leaves. After treatment with a 2, 4 or 6 mM HCHO solution for 24 h, detached tobacco leaves absorbed approximately 40% of the HCHO from the treatment solution. (13)C-NMR analysis detected a novel HCHO metabolic pathway in 2 mM H(13)CHO-treated tobacco leaves. [4-(13)C]Asn, [3-(13)C]Gln and [U-(13)C]oxalic acid (OA) were produced from this pathway after H(13)COOH generation during H(13)CHO metabolism in tobacco leaves. Pretreatments of cyclosporin A (CSA) and dark almost completely inhibited the generation of [4-(13)C]Asn, [3-(13)C]Gln and [U-(13)C]OA from this pathway but did not suppressed the production of H(13)COOH in 2 mM H(13)CHO-treated tobacco leaves. The evidence suggests that this novel pathway has an important role during the metabolic detoxification of HCHO in tobacco leaves. The analysis of the chlorophyll and Rubisco contents indicated that CSA and dark pretreatments did not severely affect the survival of leaf cells but significantly inhibited the HCHO uptake by tobacco leaves. Based on the effects of CSA and dark pretreatments on HCHO uptake and metabolism, it is estimated that the contribution of this novel metabolic pathway to HCHO uptake is approximately 60%. The data obtained from the (13)C-NMR analysis revealed the mechanism underlying the weaker HCHO uptake and assimilation of tobacco leaves compared to Arabidopsis leaves.

  13. A novel formaldehyde metabolic pathway plays an important role during formaldehyde metabolism and detoxification in tobacco leaves under liquid formaldehyde stress.

    PubMed

    Wang, Ru; Zeng, Zhidong; Liu, Ting; Liu, Ang; Zhao, Yan; Li, Kunzhi; Chen, Limei

    2016-08-01

    Tobacco and Arabidopsis are two model plants often used in botany research. Our previous study indicated that the formaldehyde (HCHO) uptake and assimilation capacities of tobacco leaves were weaker than those of Arabidopsis leaves. After treatment with a 2, 4 or 6 mM HCHO solution for 24 h, detached tobacco leaves absorbed approximately 40% of the HCHO from the treatment solution. (13)C-NMR analysis detected a novel HCHO metabolic pathway in 2 mM H(13)CHO-treated tobacco leaves. [4-(13)C]Asn, [3-(13)C]Gln and [U-(13)C]oxalic acid (OA) were produced from this pathway after H(13)COOH generation during H(13)CHO metabolism in tobacco leaves. Pretreatments of cyclosporin A (CSA) and dark almost completely inhibited the generation of [4-(13)C]Asn, [3-(13)C]Gln and [U-(13)C]OA from this pathway but did not suppressed the production of H(13)COOH in 2 mM H(13)CHO-treated tobacco leaves. The evidence suggests that this novel pathway has an important role during the metabolic detoxification of HCHO in tobacco leaves. The analysis of the chlorophyll and Rubisco contents indicated that CSA and dark pretreatments did not severely affect the survival of leaf cells but significantly inhibited the HCHO uptake by tobacco leaves. Based on the effects of CSA and dark pretreatments on HCHO uptake and metabolism, it is estimated that the contribution of this novel metabolic pathway to HCHO uptake is approximately 60%. The data obtained from the (13)C-NMR analysis revealed the mechanism underlying the weaker HCHO uptake and assimilation of tobacco leaves compared to Arabidopsis leaves. PMID:27116371

  14. Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis.

    PubMed

    Chen, Yih-Fung; Chiu, Wen-Tai; Chen, Ying-Ting; Lin, Pey-Yun; Huang, Huey-Jy; Chou, Cheng-Yang; Chang, Hsien-Chang; Tang, Ming-Jer; Shen, Meng-Ru

    2011-09-13

    Store-operated Ca(2+) entry (SOCE) is the principal Ca(2+) entry mechanism in nonexcitable cells. Stromal-interaction molecule 1 (STIM1) is an endoplasmic reticulum Ca(2+) sensor that triggers SOCE activation. However, the role of STIM1 in regulating cancer progression remains controversial and its clinical relevance is unclear. Here we show that STIM1-dependent signaling is important for cervical cancer cell proliferation, migration, and angiogenesis. STIM1 overexpression in tumor tissue is noted in 71% cases of early-stage cervical cancer. In tumor tissues, the level of STIM1 expression is significantly associated with the risk of metastasis and survival. EGF-stimulated cancer cell migration requires STIM1 expression and EGF increases the interaction between STIM1 and Orai1 in juxta-membrane areas, and thus induces Ca(2+) influx. STIM1 involves the activation of Ca(2+)-regulated protease calpain, as well as Ca(2+)-regulated cytoplasmic kinase Pyk2, which regulate the focal-adhesion dynamics of migratory cervical cancer cells. Because of an increase of p21 protein levels and a decrease of Cdc25C protein levels, STIM1-silencing in cervical cancer cells significantly inhibits cell proliferation by arresting the cell cycle at the S and G2/M phases. STIM1 also regulates the production of VEGF in cervical cancer cells. Interference with STIM1 expression or blockade of SOCE activity inhibits tumor angiogenesis and growth in animal models, confirming the crucial role of STIM1-mediated Ca(2+) influx in aggravating tumor development in vivo. These results make STIM1-dependent signaling an attractive target for therapeutic intervention. PMID:21876174

  15. Janus kinases and focal adhesion kinases play in the 4.1 band: a superfamily of band 4.1 domains important for cell structure and signal transduction.

    PubMed Central

    Girault, J. A.; Labesse, G.; Mornon, J. P.; Callebaut, I.

    1998-01-01

    The band 4.1 domain was first identified in the red blood cell protein band 4.1, and subsequently in ezrin, radixin, and moesin (ERM proteins) and other proteins, including tumor suppressor merlin/schwannomin, talin, unconventional myosins VIIa and X, and protein tyrosine phosphatases. Recently, the presence of a structurally related domain has been demonstrated in the N-terminal region of two groups of tyrosine kinases: the focal adhesion kinases (FAK) and the Janus kinases (JAK). Additional proteins containing the 4.1/JEF (JAK, ERM, FAK) domain include plant kinesin-like calmodulin-binding proteins (KCBP) and a number of uncharacterized open reading frames identified by systematic DNA sequencing. Phylogenetic analysis of amino acid sequences suggests that band 4.1/JEF domains can be grouped in several families that have probably diverged early during evolution. Hydrophobic cluster analysis indicates that the band 4.1/JEF domains might consist of a duplicated module of approximately 140 residues and a central hinge region. A conserved property of the domain is its capacity to bind to the membrane-proximal region of the C-terminal cytoplasmic tail of proteins with a single transmembrane segment. Many proteins with band 4.1/JEF domains undergo regulated intra- or intermolecular homotypic interactions. Additional properties common to band 4.1/JEF domains of several proteins are binding of phosphoinositides and regulation by GTPases of the Rho family. Many proteins with band 4. 1/JEF domains are associated with the actin-based cytoskeleton and are enriched at points of contact with other cells or the extracellular matrix, from which they can exert control over cell growth. Thus, proteins with band 4.1/JEF domain are at the crossroads between cytoskeletal organization and signal transduction in multicellular organisms. Their importance is underlined by the variety of diseases that can result from their mutations. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:9990861

  16. Domain III of Bacillus thuringiensis Cry1Ie Toxin Plays an Important Role in Binding to Peritrophic Membrane of Asian Corn Borer

    PubMed Central

    Feng, Dongmei; Chen, Zhen; Wang, Zhiwen; Zhang, Chunlu; He, Kanglai; Guo, Shuyuan

    2015-01-01

    The insecticidal IE648 toxin is a truncated Cry1Ie protein with increased toxicity against Asian corn borer (ACB). Cry toxins are pore-forming toxins that disrupt insect midgut cells to kill the larvae. However, the peritrophic membrane (PM) is an important barrier that Cry toxins must cross before binding to midgut cells. Previously, it was shown that Cry toxins are able to bind and accumulate in the PM of several lepidopteran insects. Binding of IE648 toxin to PM of ACB was previously reported and the goal of the current work was the identification of the binding region between Cry1Ie and the PM of ACB. Homologous competition binding assays showed that this interaction was specific. Heterologous competition binding assays performed with different fragments corresponding to domain I, domain II and domain III allowed us to identify that domain III participates in the interaction of IE648 with the PM. Specifically, peptide D3-L8 (corresponding to Cry1Ie toxin residues 607 to 616), located in an exposed loop region of domain III is probably involved in this interaction. Ligand blot assays show that IE648 interact with chitin and PM proteins with sizes of 30, 32 and 80 kDa. The fact that domain III interacts with proteins of similar molecular masses supports that this region of the toxin might be involved in PM interaction. These data provide for the first time the identification of domain III as a putative binding region between PM and 3D-Cry toxin. PMID:26295704

  17. TaLHY, a 1R-MYB Transcription Factor, Plays an Important Role in Disease Resistance against Stripe Rust Fungus and Ear Heading in Wheat.

    PubMed

    Zhang, Zijin; Chen, Jieming; Su, Yongying; Liu, Hanmei; Chen, Yanger; Luo, Peigao; Du, Xiaogang; Wang, Dan; Zhang, Huaiyu

    2015-01-01

    LHY (late elongated hypocotyl) is an important gene that regulates and controls biological rhythms in plants. Additionally, LHY is highly expressed in the SSH (suppression subtractive hybridization) cDNA library-induced stripe rust pathogen (CYR32) in our previous research. To identify the function of the LHY gene in disease resistance against stripe rust, we used RACE-PCR technology to clone TaLHY in the wheat variety Chuannong19. The cDNA of TaLHY is 3085 bp long with an open reading frame of 1947 bp. TaLHY is speculated to encode a 70.3 kDa protein of 648 amino acids , which has one typical plant MYB-DNA binding domain; additionally, phylogenetic tree shows that TaLHY has the highest homology with LHY of Brachypodium distachyon(BdLHY-like). Quantitative fluorescence PCR indicates that TaLHY has higher expression in the leaf, ear and stem of wheat but lower expression in the root. Infestation of CYR32 can result in up-regulated expression of TaLHY, peaking at 72 h. Using VIGS (virus-induced gene silencing) technology to disease-resistant wheat in the fourth leaf stage, plants with silenced TaLHY cannot complete their heading stage. Through the compatible interaction with the stripe rust physiological race CYR32, Chuannong 19 loses its immune capability toward the stripe rust pathogen, indicating that TaLHY may regulate and participate in the heading of wheat, as well as the defense responses against stripe rust infection. PMID:26010918

  18. Cooperative effects of hepatitis B virus and TNF may play important roles in the activation of metabolic pathways through the activation of NF-κB

    PubMed Central

    Wu, Shuang; Kanda, Tatsuo; Nakamoto, Shingo; Jiang, Xia; Nakamura, Masato; Sasaki, Reina; Haga, Yuki; Shirasawa, Hiroshi; Yokosuka, Osamu

    2016-01-01

    Elevated levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β are often observed in the sera of hepatitis B virus (HBV)-infected patients. It is well known that these cytokines activate nuclear factor-κB (NF-κB)-signaling, and are associated with endoplasmic reticulum (ER) stress. We investigated whether HBV or HBV X protein (HBx) enhanced the activation of NF-κB in the presence of TNF and/or IL-1β, and their effects on the expression of metabolic pathway-associated genes. We examined whether HBV or HBx enhanced cytokine-induced activation of NF-κB in hepatocytes, using a reporter assay, in the presence or absence of TNF and/or IL-1β. The expression of insulin-like growth factor binding protein 1 (IGFBP1), one of the NF-κB target genes was also examined. The expression of metabolic pathway-associated genes in HepG2 and HepG2.2.15 cells in the presence or absence of TNF was evaluated by RT-qPCR. Human hepatocytes expressed TNF receptors and IL-1 receptors. NF-κB was activated by cooperation between HBx and TNF in human hepatocytes. We observed IGFBP1 expression in HBV infection and that a number of metabolic pathway-associated genes were upregulated in HepG2.2.15 cells, compared with HepG2 cells with or without TNF treatment. We observed the cooperative effects of HBV and TNF which enhanced the activation of NF-κB as well as upregulated the expression of metabolic pathway-associated genes in hepatocytes. These effects may be important in the development of HBV-associated metabolic syndrome. PMID:27315566

  19. Combined transcriptome and metabolite profiling reveals that IiPLR1 plays an important role in lariciresinol accumulation in Isatis indigotica.

    PubMed

    Xiao, Ying; Ji, Qian; Gao, Shouhong; Tan, Hexin; Chen, Ruibing; Li, Qing; Chen, Junfeng; Yang, Yingbo; Zhang, Lei; Wang, Zhengtao; Chen, Wansheng; Hu, Zhibi

    2015-10-01

    A lignan, lariciresinol, is an important efficacious compound for the antiviral effect of Isatis indigotica, a widely used herb for the treatment of colds, fever, and influenza. Although some rate-limiting steps of the lariciresinol biosynthetic pathway are well known, the specific roles of gene family members in I. indigotica in regulating lariciresinol production are poorly understood. In the present study, a correlation analysis between the RNA sequencing (RNA-Seq) expression profile and lignan content by using I. indigotica hairy roots treated with methyl jamonate (0.5 μM) at different time points as a source implicated that I. indigotica pinoresinol/lariciresinol reductase 1 (IiPLR1), but not IiPLR2 or IiPLR3, contributed greatly to lariciresinol accumulation. Gene silencing by RNA interference (RNAi) demonstrated that IiPLR1 indeed influenced lariciresinol biosynthesis, whereas suppression of IiPLR2 or IiPLR3 did not change lariciresinol abundance significantly. IiPLR1 was thus further characterized; IiPLR1 was constitutively expressed in roots, stems, leaves, and flowers of I. indigotica, with the highest expression in roots, and it responds to different stress treatments to various degrees. Recombinant IiPLR1 reduces both (±)-pinoresinol and (±)-lariciresinol efficiently, with comparative K cat/K m values. Furthermore, overexpression of IiPLR1 significantly enhanced lariciresinol accumulation in I. indigotica hairy roots, and the best line (ovx-2) produced 353.9 μg g(-1) lariciresinol, which was ~6.3-fold more than the wild type. This study sheds light on how to increase desired metabolites effectively by more accurate or appropriate genetic engineering strategies, and also provides an effective approach for the large-scale commercial production of pharmaceutically valuable lariciresinol by using hairy root culture systems as bioreactors.

  20. Domain III of Bacillus thuringiensis Cry1Ie Toxin Plays an Important Role in Binding to Peritrophic Membrane of Asian Corn Borer.

    PubMed

    Feng, Dongmei; Chen, Zhen; Wang, Zhiwen; Zhang, Chunlu; He, Kanglai; Guo, Shuyuan

    2015-01-01

    The insecticidal IE648 toxin is a truncated Cry1Ie protein with increased toxicity against Asian corn borer (ACB). Cry toxins are pore-forming toxins that disrupt insect midgut cells to kill the larvae. However, the peritrophic membrane (PM) is an important barrier that Cry toxins must cross before binding to midgut cells. Previously, it was shown that Cry toxins are able to bind and accumulate in the PM of several lepidopteran insects. Binding of IE648 toxin to PM of ACB was previously reported and the goal of the current work was the identification of the binding region between Cry1Ie and the PM of ACB. Homologous competition binding assays showed that this interaction was specific. Heterologous competition binding assays performed with different fragments corresponding to domain I, domain II and domain III allowed us to identify that domain III participates in the interaction of IE648 with the PM. Specifically, peptide D3-L8 (corresponding to Cry1Ie toxin residues 607 to 616), located in an exposed loop region of domain III is probably involved in this interaction. Ligand blot assays show that IE648 interact with chitin and PM proteins with sizes of 30, 32 and 80 kDa. The fact that domain III interacts with proteins of similar molecular masses supports that this region of the toxin might be involved in PM interaction. These data provide for the first time the identification of domain III as a putative binding region between PM and 3D-Cry toxin. PMID:26295704

  1. Combined transcriptome and metabolite profiling reveals that IiPLR1 plays an important role in lariciresinol accumulation in Isatis indigotica.

    PubMed

    Xiao, Ying; Ji, Qian; Gao, Shouhong; Tan, Hexin; Chen, Ruibing; Li, Qing; Chen, Junfeng; Yang, Yingbo; Zhang, Lei; Wang, Zhengtao; Chen, Wansheng; Hu, Zhibi

    2015-10-01

    A lignan, lariciresinol, is an important efficacious compound for the antiviral effect of Isatis indigotica, a widely used herb for the treatment of colds, fever, and influenza. Although some rate-limiting steps of the lariciresinol biosynthetic pathway are well known, the specific roles of gene family members in I. indigotica in regulating lariciresinol production are poorly understood. In the present study, a correlation analysis between the RNA sequencing (RNA-Seq) expression profile and lignan content by using I. indigotica hairy roots treated with methyl jamonate (0.5 μM) at different time points as a source implicated that I. indigotica pinoresinol/lariciresinol reductase 1 (IiPLR1), but not IiPLR2 or IiPLR3, contributed greatly to lariciresinol accumulation. Gene silencing by RNA interference (RNAi) demonstrated that IiPLR1 indeed influenced lariciresinol biosynthesis, whereas suppression of IiPLR2 or IiPLR3 did not change lariciresinol abundance significantly. IiPLR1 was thus further characterized; IiPLR1 was constitutively expressed in roots, stems, leaves, and flowers of I. indigotica, with the highest expression in roots, and it responds to different stress treatments to various degrees. Recombinant IiPLR1 reduces both (±)-pinoresinol and (±)-lariciresinol efficiently, with comparative K cat/K m values. Furthermore, overexpression of IiPLR1 significantly enhanced lariciresinol accumulation in I. indigotica hairy roots, and the best line (ovx-2) produced 353.9 μg g(-1) lariciresinol, which was ~6.3-fold more than the wild type. This study sheds light on how to increase desired metabolites effectively by more accurate or appropriate genetic engineering strategies, and also provides an effective approach for the large-scale commercial production of pharmaceutically valuable lariciresinol by using hairy root culture systems as bioreactors. PMID:26163698

  2. Sweet Play

    ERIC Educational Resources Information Center

    Leung, Shuk-kwan S.; Lo, Jane-Jane

    2010-01-01

    This article features Sweet play math, a "math by the month" activity that involves decorating and making sugar cubes. Teachers may want to substitute straws, paper squares, alphabet blocks, or such commercially made manipulatives as Unifix[R] cubes for the real sweets. Given no allergy concerns, teachers and students alike would enjoy some sweet…

  3. Game playing.

    PubMed

    Rosin, Christopher D

    2014-03-01

    Game playing has been a core domain of artificial intelligence research since the beginnings of the field. Game playing provides clearly defined arenas within which computational approaches can be readily compared to human expertise through head-to-head competition and other benchmarks. Game playing research has identified several simple core algorithms that provide successful foundations, with development focused on the challenges of defeating human experts in specific games. Key developments include minimax search in chess, machine learning from self-play in backgammon, and Monte Carlo tree search in Go. These approaches have generalized successfully to additional games. While computers have surpassed human expertise in a wide variety of games, open challenges remain and research focuses on identifying and developing new successful algorithmic foundations. WIREs Cogn Sci 2014, 5:193-205. doi: 10.1002/wcs.1278 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:26304308

  4. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  5. Residence times of fine tropospheric aerosols as determined by {sup 210}Pb progeny.

    SciTech Connect

    Marley, N. A.; Gaffney, J. S.; Drayton, P. J.; Cunningham, M. M.; Mielcarek, C.; Ravelo, R.; Wagner, C.

    1999-10-05

    Fine tropospheric aerosols can play important roles in the radiative balance of the atmosphere. The fine aerosols can act directly to cool the atmosphere by scattering incoming solar radiation, as well as indirectly by serving as cloud condensation nuclei. Fine aerosols, particularly carbonaceous soots, can also warm the atmosphere by absorbing incoming solar radiation. In addition, aerosols smaller than 2.5 {micro}m have recently been implicated in the health effects of air pollution. Aerosol-active radioisotopes are ideal tracers for the study of atmospheric transport processes. The source terms of these radioisotopes are relatively well known, and they are removed from the atmosphere only by radioactive decay or by wet or dry deposition of the host aerosol. The progeny of the primordial radionuclide {sup 238}U are of particular importance to atmospheric studies. Uranium-238 is common throughout Earth's crust and decays to the inert gas {sup 222}Rn, which escapes into the atmosphere. Radon-222 decays by the series of alpha and beta emissions shown in Figure 1 to the long-lived {sup 210}Pb. Once formed, {sup 210}Pb becomes attached to aerosol particles with average attachment times of 40 s to 3 min.

  6. A thermoluminescent method for aerosol characterization

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.; Rogowski, R. S.

    1976-01-01

    A thermoluminescent method has been used to study the interactions of aerosols with ozone. The preliminary results show that ozone reacts with many compounds found in aerosols, and that the thermoluminescence curves obtained from ozonated aerosols are characteristic of the aerosol. The results suggest several important applications of the thermoluminescent method: development of a detector for identification of effluent sources; a sensitive experimental tool for study of heterogeneous chemistry; evaluation of importance of aerosols in atmospheric chemistry; and study of formation of toxic, electronically excited species in airborne particles.

  7. Heterogeneous Uptake of HO2 Radicals onto Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    George, I. J.; Matthews, P. S.; Brooks, B.; Goddard, A.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2011-12-01

    The hydroxyl (OH) and hydroperoxyl (HO2) radicals, together known as HOx, play a vital role in atmospheric chemistry by controlling the oxidative capacity of the troposphere. The atmospheric lifetime and concentrations of many trace reactive species, such as volatile organic compounds (VOCs), are determined by HOx radical levels. Therefore, the ability to accurately predict atmospheric HOx concentrations from a detailed knowledge of their sources and sinks is a very useful diagnostic tool to assess our current understanding of atmospheric chemistry. Several recent field studies have observed significantly lower concentrations of HO2 radicals than predicted using box models, where HO2 loss onto aerosols was suggested as a possible missing sink [1, 2]. However, the mechanism on HO2 uptake onto aerosols and its impact on ambient HOx levels are currently not well understood. To improve our understanding of this process, we have conducted laboratory experiments to measure HO2 uptake coefficients onto submicron aerosol particles. The FAGE (Fluorescence Assay by Gas Expansion) technique, a highly sensitive laser induced fluorescence based detection method, was used to monitor HO2 uptake kinetics onto aerosol particles in an aerosol flow tube. The application of the FAGE technique allowed for kinetic experiments to be performed under low HO2 concentrations, i.e. [HO2] < 109 molecules cm-3. HO2 radicals were produced by the photolysis of water vapour in the presence of O2 and aerosol particles were produced either by atomizing dilute salt solutions or by homogeneous nucleation. HO2 uptake coefficients (γ) have been measured for single-component solid and aqueous inorganic salt and organic aerosol particles with a wide range of hygroscopicities. HO2 uptake coefficients on solid particles were below the detection limit (γ < 0.001), whereas on aqueous aerosols uptake coefficients were somewhat larger (γ = 0.001 - 0.008). HO2 uptake coefficients were highest on aerosols

  8. Aerosolized Antibiotics.

    PubMed

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  9. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  10. Tropospheric aerosol profile information from high-resolution oxygen A-band measurements from space

    NASA Astrophysics Data System (ADS)

    Geddes, A.; Bösch, H.

    2015-02-01

    Aerosols are an important factor in the Earth climatic system and they play a key role in air quality and public health. Observations of the oxygen A-band at 760 nm can provide information on the vertical distribution of aerosols from passive satellite sensors that can be of great interest for operational monitoring applications with high spatial coverage if the aerosol information is obtained with sufficient precision, accuracy and vertical resolution. To address this issue, retrieval simulations of the aerosol vertical profile retrieval from O2 A-band observations by GOSAT, the upcoming Orbiting Carbon Observatory-2 (OCO-2) and Sentinel 5-P missions, and the proposed CarbonSat mission have been carried out. Precise retrievals of aerosol optical depth (AOD) within the boundary layer were found to favour low-resolution, high signal-to-noise instruments such as Sentinel-5 P, whereas higher-resolution instruments such as OCO-2 showed greater performance at higher altitudes and in information content above the boundary layer. Retrieval of the AOD in the 0-2 km range with precision appears difficult from all studied instruments and the retrieval errors typically exceed a value of 0.05 for AODs up to 0.3. Constraining the surface albedo is a promising and effective way of improving the retrieval of aerosol, but the accuracy of the required prior knowledge is very high. Due to the limited information content of the aerosol profile retrieval, the use of a parameterised aerosol distribution is assessed, and we show that the AOD and height of an aerosol layer can be retrieved well if the aerosol layer is uplifted to the free troposphere; however, errors are often large for aerosol layers in the boundary layer. Additional errors are introduced by incorrect assumptions on surface pressure and aerosol mixture, which can both bias retrieved AOD and height by up to 45%. In addition, assumptions of the boundary layer temperature are found to yield an additional error of up to 8

  11. The Importance of Play: Part Two

    ERIC Educational Resources Information Center

    Exceptional Parent, 2008

    2008-01-01

    The International Playground Equipment Manufacturers Association (IPEMA) is a non-profit membership association of playground equipment and surfacing companies. IPEMA's primary mission is to provide playground equipment and surfacing with independently tested safety certification to meet American Society for Testing and Materials (ASTM) standards…

  12. The Importance of Playing Devil's Advocate.

    ERIC Educational Resources Information Center

    Schwenk, Charles; Cosier, Richard

    1990-01-01

    A "devil's advocacy" approach is proposed for the management of higher education conflict and ultimate improvement in the quality of decisions. Research supporting the value of active questioning of a preferred plan or strategy is summarized and its application is described. (DB)

  13. From Cradle to Grave: Research on Atmospheric Aerosols (Vilhelm Bjerknes Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Baltensperger, Urs

    2014-05-01

    Atmospheric aerosol particles are liquid or solid particles suspended in the atmosphere. Generally, the sizes of aerosol particles are in the range 0.001 - 100 μm. Atmospheric aerosols are of interest mainly because of their effects on health and climate. Concerning health, many epidemiological studies have shown a link between increased mortality/morbidity and increased PM10 or PM2.5 (particulate matter with an aerodynamic diameter smaller than 10 and 2.5 μm, respectively). Concerning climate, aerosol particles scatter and absorb light (known as the direct effect on climate), and modify cloud properties (with a variety of effects known as indirect effects). These effects are influenced by the chemical and physical properties of the aerosol particles, which makes these properties important to be measured. Atmospheric aerosol particles are produced by a large variety of sources, and are either emitted as primary particles (i.e., they are directly emitted as particles into the atmosphere) or formed by secondary processes (i.e., by transformation of emitted precursor gases). While the formation pathways of secondary inorganic aerosols such as nitrate and sulfate in general are reasonably well understood, the formation of secondary organic aerosol (SOA) is still an area of active research. A wide variety of gaseous precursors contribute to SOA, and their aerosol yields depend on a wide variety of conditions. In addition, it is still largely unknown to which extent and under which conditions oxidized organic molecules can contribute to nucleation, i.e., the formation of new particles. Elimination of aerosol particles from the atmosphere mostly occurs by wet deposition, where the ice phase plays an important role. Even though cloud glaciation augments precipitation formation and affects cloud radiative properties little is still known about mixed-phase cloud formation via heterogeneous nucleation. To elucidate some of the involved mechanisms in situ research in such

  14. Sulfur speciation of single aerosol particles

    SciTech Connect

    Neubauer, K.R.; Sum, S.T.; Johnston, M.V.; Wexler, A.S.

    1995-12-31

    Sulfur enters the atmosphere as gaseous species emitted from both natural and anthropogenic sources. These species can undergo a variety of oxidation reactions that ultimately yield hexavalent sulfur aerosols. Since the final products play an important role in acid rain production and the earth`s energy balance, it is important to distinguish tetravalent and hexavalent sulfur aerosols, as well as differentiate those arising from natural and anthropogenic sources. To attain these goals the authors chose to examine five target compounds that are present in the atmosphere: sodium sulfate, ammonium sulfate, ammonium sulfite, methanesulfonic acid (MSA), and the sodium salt of hydroxymethanesulfonic acid (NaHMSA). Sodium sulfate is observed in oceanic aerosols, while both ammonium salts are observed over land. MSA is found only in the marine environment and originates solely from natural emissions, while HMSA is formed in urban hazes and primarily arises from anthropogenic sources. Thus, MSA and HMSA serve as tracers for distinguishing natural and anthropogenic sulfur emissions. To differentiate these compounds, the authors used Rapid Single-Particle Mass Spectrometry (RSMS), a method that allows single particles to be analyzed on-line and in real time. With RSMS, particles are drawn directly into the source region of a reflectron time-of-flight mass spectrometer where they are detected by light scattering of a continuous laser beam and then ablated by an excimer laser pulse. With this sequence of events, each mass spectrum results from a single laser pulse ablating a single particle.

  15. Characteristics of Carbonaceous and Ionic Species and Direct Aerosol Forcing of the Aerosols over Gosan, Jeju, Korea

    NASA Astrophysics Data System (ADS)

    Kim, N.; Kim, Y.; Kang, C.

    2010-12-01

    Carbonaceous aerosols, consisting of elemental carbon (EC) are emitted into the atmosphere through incomplete combustion of biomass and fossil fuel. It directly warms the air by absorbing solar radiation. Another major pollutant emitted by fossil fuel combustion is SO2, which result in the formation of particulate sulfate (SO42-) compounds, contribute substantially to cool the air by scattering solar radiation. Therefore, carbonaceous and sulfate aerosols play an important role in regulating the amount of solar radiation absorbed by the earth atmosphere. (Charlson et al. 1992; Jacobson, 2004; Khan et al., 2010) Carbonaceous and sulfate aerosols are both temporally and spatially variable. Northeast Asia is characterized by high energy consumption. China, Japan, and South Korea have consumed 16.8%, 4.7%, and 2.1% of the world total primary energy, respectively in 2007 (BP, 2008). Consequently, there are resultant huge emissions of anthropogenic air pollutants. Therefore, the effect on climate forcing by carbonaceous and sulfate aerosols are even more important in this region. In this study, PM2.5 intensive measurement data for 18 separate periods at Gosan, Jeju, Korea from 1994 to 2006 were analyzed. Gosan is one of the cleanest areas in Korea and an excellent location to study the ambient aerosols in Northeast Asia (Kim et al., 2009). The characteristics of carbonaceous aerosols and anthropogenic ions such as SO42-, NO3-, NH4+ were analyzed. Also, direct aerosol forcing due to EC and SO42- were calculated. The net aerosol forcing were about -0.5 W m-2 to -0.1 W m-2 at Gosan. References BP, www.bp.com/statisticalreview, 2008. Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A.Jr., Hansen, J.E., and Hofmann, D.J. (1992) Climate Forcing by Anthropogenic Aerosols, Science, 255, 423-430. Jacobson, M.Z. (2004) Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to snow and sea ice albedo and emissivity, Journal of

  16. Characterizing interactions between aerosols and cloud droplets in marine boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Andersen, Hendrik; Cermak, Jan

    2016-04-01

    This contribution presents a method to characterize the nonlinearities of interactions between aerosols and cloud droplets in marine boundary layer clouds based on global MODIS observations. Clouds play a crucial role in the climate system as their radiative properties and precipitation patterns significantly impact the Earth's energy balance. Cloud properties are determined by environmental conditions, as cloud formation requires the availability of water vapour ("precipitable water") and condensation nuclei in sufficiently saturated conditions. The ways in which aerosols as condensation nuclei in particular influence the optical, micro- and macrophysical properties of clouds are one of the largest remaining uncertainties in climate-change research. In particular, cloud droplet size is believed to be impacted, and thereby cloud reflectivity, lifetime, and precipitation susceptibility. However, the connection between aerosols and cloud droplets is nonlinear, due to various factors and processes. The impact of aerosols on cloud properties is thought to be strongest with low aerosol loadings, whereas it saturates with high aerosol loadings. To gain understanding of the processes that govern low cloud water properties in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. In this study, global Terra MODIS L3 data sets are used to characterize the nonlinearities of the interactions between aerosols and cloud droplets in marine boundary layer clouds. MODIS observations are binned in classes of aerosol loading to identify at what loading aerosol impact on cloud droplets is the strongest and at which loading it saturates. Results are connected to ERA-Interim and MACC data sets to identify connections of detected patterns to meteorology and aerosol species.

  17. Play as Experience

    ERIC Educational Resources Information Center

    Henricks, Thomas S.

    2015-01-01

    The author investigates what he believes one of the more important aspects of play--the experience it generates in its participants. He considers the quality of this experience in relation to five ways of viewing play--as action, interaction, activity, disposition, and within a context. He treats broadly the different forms of affect, including…

  18. Intergenerational Learning through Play.

    ERIC Educational Resources Information Center

    Davis, Lindsay; Larkin, Elizabeth; Graves, Stephen B.

    2002-01-01

    Argues that shared play experiences are a good way to build mutually beneficial relationships among older and younger generations. Outlines why intergenerational play is important, focusing on its cognitive, social, physical, and emotional benefits for both older adults and young children. Describes toys, materials, and games conducive to positive…

  19. African oil plays

    SciTech Connect

    Clifford, A.J. )

    1989-09-01

    The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

  20. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    air by increasing microbial aerosol settling rates and enhancing viability of aerosolized marine microbes. Using methods developed for the non-urban site, the role of local environment and winds in mediating water-air connections was further investigated in the urban environment. The local environment, including water surfaces, was an important source of microbial aerosols at urban sites. Large portions of the urban waterfront microbial aerosol communities were aquatic and, at a highly polluted Superfund waterfront, were closely related to bacteria previously described in environments contaminated with hydrocarbons, heavy metals, sewage and other industrial waste. Culturable urban aerosols and surface waters contained bacterial genera known to include human pathogens and asthma agents. High onshore winds strengthened this water-air connection by playing both a transport and production role. The microbial connection between water and air quality outlined by this dissertation highlights the need for information on the mechanisms that deliver surface water materials to terrestrial systems on a much larger scale. Moving from point measurements to landscape-level analyses will allow for the quantitative assessment of implications for this microbial water-air-land transfer in both urban and non-urban arenas.

  1. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    PubMed

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-01

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment.

  2. Retrieval of stratospheric aerosol distributions from SCIAMACHY limb measurements: methodology, sensitivity studies and first results

    NASA Astrophysics Data System (ADS)

    Ernst, Florian; von Savigny, Christian; Rozanov, Alexei; Rozanov, Vladimir; Bovensmann, Heinrich; Burrows, John P.

    Stratospheric aerosols play an important role for the global radiation budget and may signif-icantly affect the retrieval of trace gases from satellite observations. SAGE I -III provided a 25-year record of stratospheric aerosols by means of solar occultation technique. Since the demise of SAGE II and III in 2005/2006, the long-term stratospheric aerosol satellite record is jeopardized. The main goal of this work is to demonstrate that aerosol extinction profiles can be retrieved from SCIAMACHY limb scatter measurements to sustain the time series. Since the eruption of Pinatubo in 1991 was the last large source of volcanic aerosols in the strato-sphere, we have now the opportunity to retrieve background aerosol profiles. The radiative transfer model and retrieval package SCIATRAN is used to derive aerosol extinction profiles from SCIAMACHY limb data. The algorithm is based on a color-index ratio using limb radi-ance profiles at 470 nm and 750 nm wavelength. The algorithm, sensitivity studies and first results are presented here.

  3. Microphysical Effects Determine Macrophysical Response for Aerosol Impacts on Deep Convective Clouds

    SciTech Connect

    Fan, Jiwen; Leung, Lai-Yung R.; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation and energy and hydrological cycle of our climate system. Anthropogenic and natural aerosol particles can influence DCCs through changes in cloud properties, precipitation regimes, and radiation balance. Modeling studies have reported both invigoration and suppression of DCCs by aerosols, but none has fully quantified aerosol impacts on convection life cycle and radiative forcing. By conducting multiple month-long cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macro- and micro-physical properties of summer convective clouds in the tropics and mid-latitudes, this study provides the first comprehensive look at how aerosols affect cloud cover, cloud top height (CTH), and radiative forcing. Observations validate these simulation results. We find that microphysical aerosol effects contribute predominantly to increased cloud cover and CTH by inducing larger amount of smaller but longer lasting ice particles in the stratiform/anvils of DCCs with dynamical aerosol effects contributing at most ~ 1/4 of the total increase of cloud cover. The overall effect is a radiative warming in the atmosphere (3 to 5 W m-2) with strong surface cooling (-5 to -8 W m-2). Herein we clearly identified mechanisms more important than and additional to the invigoration effects hypothesized previously that explain the consistent signatures of increased cloud tops area and height by aerosols in DCCs revealed by observations.

  4. Fast and Slow Responses of the South Asian Monsoon System to Anthropogenic Aerosols

    SciTech Connect

    Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong; Yoon, Jin-Ho

    2012-09-25

    Using a global climate model with fully predictive aerosol life cycle, we investigate the fast and slow responses of the South Asian monsoon system to anthropogenic aerosol forcing. Our results show that the feedbacks associated with sea surface temperature (SST) change caused by aerosols play a more important role than the aerosol's direct impact on radiation, clouds and land surface (rapid adjustments) in shaping the total equilibrium climate response of the monsoon system to aerosol forcing. Inhomogeneous SST cooling caused by anthropogenic aerosols eventually reduces the meridional tropospheric temperature gradient and the easterly shear of zonal winds over the region, slowing down the local Hadley cell circulation, decreasing the northward moisture transport, and causing a reduction in precipitation over South Asia. Although total responses in precipitation are closer to the slow responses in general, the fast component dominates over land areas north of 25°N. Our results also show an east-west asymmetry in the fast responses to anthropogenic aerosols causing increases in precipitation west of 80°E but decreases east of it.

  5. A new approach for retrieving the UV-vis optical properties of ambient aerosols

    NASA Astrophysics Data System (ADS)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Rudich, Yinon

    2016-08-01

    Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol-radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.

  6. Increasing trend of Aerosol Optical Depth and Its Effect on Rainfall over

    NASA Astrophysics Data System (ADS)

    Mehdi, Waseem; Singh, Ramesh; Prasad, Anup

    Since last two decades, the aerosol optical depth has increased due to urbanization and industrialization. The nature of the aerosols over the Indo-Gangetic plains is found to be very dynamic and its transport depends on the meteorological conditions. The aerosol optical parameters vary during summer and winter seasons. The Indo-Gangetic plains is affected by the intense dusts during pre-monsoon/summer season and the anthropogenic activities control the nature of aerosols during winter season. The meteorological conditions and nature of the boundary layer play an important role in the climatic change during winter season, as a result million of people get affected due to the intense formation of haze, fog and smog in the Indo-Gangetic plains. Detailed analysis of TOMS, MODIS, MISR, AIRS and TRIMM have been carried out to study the aerosol parameters and rainfall. The increasing trend of aerosol optical depth from western part to the eastern parts of the Indo-Gangetic plains is found using multi sensor data at most of the locations during summer and winter seasons. The rainfall derived from TRIMM and GPCP data show increasing and also decreasing trend. The observed rainfall trend will be discussed in terms of the nature of the aerosol parameters which are found to be different due to the source of pollutants.

  7. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    PubMed

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-01

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment. PMID:26368414

  8. Simulations of aerosols and their effects on photolysis and ozone formation in Mexico City

    NASA Astrophysics Data System (ADS)

    Li, G.; Zavala, M.; Lei, W.; Karydis, V. A.; Tsimpidi, A. P.; Pandis, S.; Molina, L. T.

    2009-04-01

    Atmospheric aerosols, formed from natural and anthropogenic sources, are believed to be associated with adverse human effects at high levels in polluted urban areas. They also play a key role in climate through direct and indirect effects. Therefore, accurate simulations of aerosol composition and distribution in the atmospheric models are important in evaluating their impact on environment and climate. In the present study, a flexible gas phase chemical module with SAPRC mechanism and the CMAQ/models3 aerosol module developed by EPA have been implemented into the WRF-CHEM model. Additionally, to further improve the aerosol, especially the secondary organic aerosol (SOA) simulations, an advanced SOA module [Tsimpidi et al., 2009] has been incorporated into the WRF-CHEM model. The new SOA module is based on the volatility basis-set approach in which both primary and secondary organic components are assumed to be semivolatile and photochemically reactive [Lane et al., 2008]. Gas phase species and aerosol simulation results are compared with the available measurements obtained during the MILAGRO 2006 campaign. When the advanced SOA mechanism is employed, the SOA simulations are significantly improved. Furthermore, the aerosol impacts on the photochemistry in Mexico City have been evaluated using the FTUV [Tie et al., 2005]. Aerosol optical properties are calculated using the Mie theory and compared with available observations in Mexico City [Paredes-Miranda et al., 2008]. Aerosols, principally black carbon, reduce the photolysis frequencies of J[O3(1D)] and J[NO2] in the planetary boundary layer and hence decrease the ground-level ozone concentration. Our study demonstrates that the impact of aerosols on photochemistry is significant in polluted urban atmosphere. References: Lane, T. E., N. M. Donahue, and S. N. Pandis (2008), Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model, PMCAMx, Atmos. Environ

  9. Messy Play

    ERIC Educational Resources Information Center

    Feeney, Stephanie; Freeman, Nancy

    2011-01-01

    This article considers the story of 3-year-old Mia and her mother's request that teachers keep Mia away from messy projects. It offers an opportunity to apply the Code, with a special emphasis on its 2011 reaffirmation and update. This revision has sharpened the focus on the importance of nurturing two-way communication between teachers/caregivers…

  10. Aerosol-cloud-precipitation interactions in warm clouds in the PNNL-MMF multi-scale aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Wang, M.; Ghan, S.; Liu, X.; Ovchinnikov, M.; Chand, D.; Qian, Y.; Easter, R. C.; Morrison, H.; Marchand, R.

    2011-12-01

    Aerosol-cloud-precipitation interactions in warm clouds are examined in the multi-scale aerosol-climate model PNNL-MMF, which is an extension of a multi-scale modeling framework (MMF) model. The extended model treats aerosol-cloud-precipitation interactions using a two-moment cloud microphysics scheme in the cloud-resolving model component of the MMF at much finer spatial and temporal scales than in conventional global climate models. The dependence of the probability of precipitation (POP) on liquid water path (LWP) and aerosol loading in the MMF model is in reasonable agreement with the satellite observations. In contrast, the dependence of POP on aerosol loading in a global model with a conventional cloud parameterization (Community Atmosphere Model Version 5, or CAM5) is much stronger than in the MMF and in the satellite observations. The stronger dependence of POP on aerosol loading in CAM5 is consistent with the much larger role played by autoconversion in rain production in CAM5 (48%) than that in the MMF model (3.2%). The better agreement in the dependence of POP on aerosol loading between the MMF model and the satellite observations suggests that the smaller indirect forcing in the MMF is more realistic. Rain susceptibility is further examined to explore how surface rain rate may depend on cloud droplet number concentration (CDNC) and aerosol loading. It is found that the rain susceptibility strongly depends on the relative contribution of autoconversion and accretion in rain production. In tropical marine clouds, surface rain rate is positively correlated with cloud-top droplet effective radius, consistent with satellite observations. However, surface rain rate and column-mean CDNC are not strongly correlated, as the relative contribution of autoconversion is small in these clouds. In mid-latitude marine clouds, autoconversion plays a more important role in rain production in the MMF model, especially at the intermediate LWPs (200-400 g m-2), which

  11. The Influence of the 2006 Indonesian Biomass Burning Aerosols on Tropical Dynamics Studied with the GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Ott, Lesley; Duncan, Bryan; Pawson, Steven; Colarco, Peter; Chin, Mian; Randles, Cynthia; Diehl, Thomas; Nielsen, Eric

    2009-01-01

    The direct and semi-direct effects of aerosols produced by Indonesian biomass burning (BB) during August November 2006 on tropical dynamics have been examined using NASA's Goddard Earth Observing System, Version 5 (GEOS-5) atmospheric general circulation model (AGCM). The AGCM includes CO, which is transported by resolved and sub-grid processes and subject to a linearized chemical loss rate. Simulations were driven by two sets of aerosol forcing fields calculated offline, one that included Indonesian BB aerosol emissions and one that did not. In order to separate the influence of the aerosols from internal model variability, the means of two ten-member ensembles were compared. Diabatic heating from BB aerosols increased temperatures over Indonesia between 150 and 400 hPa. The higher temperatures resulted in strong increases in upward grid-scale vertical motion, which increased water vapor and CO over Indonesia. In October, the largest increases in water vapor were found in the mid-troposphere (25%) while the largest increases in CO occurred just below the tropopause (80 ppbv or 50%). Diabatic heating from the Indonesian BB aerosols caused CO to increase by 9% throughout the tropical tropopause layer in November and 5% in the lower stratosphere in December. The results demonstrate that aerosol heating plays an important role in the transport of BB pollution and troposphere-to-stratosphere transport. Changes in vertical motion and cloudiness induced by aerosol heating can also alter the transport and phase of water vapor in the upper troposphere/lower stratosphere.

  12. Influence of aerosol vertical distribution on radiative budget and climate

    NASA Astrophysics Data System (ADS)

    Nabat, Pierre; Michou, Martine; Saint-Martin, David; Watson, Laura

    2016-04-01

    Aerosols interact with shortwave and longwave radiation with ensuing consequences on radiative budget and climate. Aerosols are represented in climate models either using an interactive aerosol scheme including prognostic aerosol variables, or using climatologies, such as monthly aerosol optical depth (AOD) fields. In the first case, aerosol vertical distribution can vary rapidly, at a daily or even hourly scale, following the aerosol evolution calculated by the interactive scheme. On the contrary, in the second case, a fixed aerosol vertical distribution is generally imposed by climatological profiles. The objective of this work is to study the impact of aerosol vertical distribution on aerosol radiative forcing, with ensuing effects on climate. Simulations have thus been carried out using CNRM-CM, which is a global climate model including an interactive aerosol scheme representing the five main aerosol species (desert dust, sea-salt, sulfate, black carbon and organic matter). Several multi-annual simulations covering the past recent years are compared, including either the prognostic aerosol variables, or monthly AOD fields with different aerosol vertical distributions. In the second case, AOD fields directly come from the first simulation, so that all simulations have the same integrated aerosol loads. The results show that modifying the aerosol vertical distribution has a significant impact on radiative budget, with consequences on global climate. These differences, highlighting the importance of aerosol vertical distribution in climate models, probably come from the modification of atmospheric circulation induced by changes in the heights of the different aerosols. Besides, nonlinear effects in the superposition of aerosol and clouds reinforce the impact of aerosol vertical distribution, since aerosol radiative forcing depends highly upon the presence of clouds, and upon the relative vertical position of aerosols and clouds.

  13. Atmospheric electricity and aerosol-cloud interactions in earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Manninen, Hanna E.; Tammet, Hannes; Mäkelä, Antti; Haapalainen, Jussi; Mirme, Sander; Nieminen, Tuomo; Franchin, Alessandro; Petäjä, Tuukka; Kulmala, Markku; Hõrrak, Urmas

    2013-05-01

    Firstly, atmospheric ions play an important role in the fair weather electricity in Earth's atmosphere. Small ions, or charged molecular clusters, carry electric currents in the atmosphere. These small ions are continuously present, and their lifetime in lower atmosphere is about one minute. It's essential to find out a connection between the production rate of cluster ions, ion-ion recombination, and ion-aerosol attachment, and their ambient concentrations, in order to understand electrical properties of air. Secondly, atmospheric ions are important for Earth's climate, due to their potential role in secondary aerosol formation, which can lead to increased number of cloud condensation nuclei (CCN), which in turn can change the cloud properties. Our aim is to quantify the connections between these two important roles of air ions based on field observations.

  14. On COBACC (COntinental Biosphere-Aerosol-Cloud-Climate) feedback

    NASA Astrophysics Data System (ADS)

    Kulmala, Markku

    2016-04-01

    Anthropogenic emissions of GHGs have increased substantially during the past century. Elevated concentrations of CO2 and methane are the most important forcing agents causing global warming. However, it is not straightforward to attribute or predict the climate change in detail, as the internal variability of climate is only partially understood, aerosol forcings are still highly uncertain, and there are many feedback mechanisms that are difficult to quantify. It has been recognized for decades that the biosphere plays an important role in climate. For example, Kulmala et al. (2004) suggested a negative climate feedback mechanism whereby higher temperatures and CO2-levels boost continental biomass production, leading to increased biogenic secondary organic aerosol (BSOA) and cloud condensation nuclei (CCN) concentrations, tending to cause cooling. This COBACC (COntinental Biosphere-Aerosol-Cloud-Climate) feedback is similar to the so-called CLAW-hypothesis by Charlson et al. (1987) which connects the ocean biochemistry and climate via a negative feedback loop involving CCN production due to sulphur emissions from plankton. The first quantification of the COBACC feedback loop (Kulmala et al. 2014) was based on continuous comprehensive observations at SMEAR II (Station for Measuring Forest Ecosystem-Atmosphere Relations) station in Hyytiälä, Finland, and showed that a 10 ppm increase in atmospheric CO2 concentration leads to a significant (several percent) increase in both carbon sink and aerosol source. These effects operate through changes in gross primary production, volatile organic compound (VOC) emissions and secondary aerosol formation associated with atmospheric oxidation of VOCs. Here we will describe the present knowledge from processes level understanding to whole COBACC feedback including some hints on biogenic and anthropogenic contributions to global aerosol number load. References: Charlson, R. J. et al. Nature 326, 655 1987 Kulmala, M. et al. Atmos

  15. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  16. Characteristics and Composition of Atmospheric Aerosols in Phimai, Central Thailand During BASE-ASIA

    NASA Technical Reports Server (NTRS)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; Bell, Shaun W.

    2012-01-01

    Popular summary: Atmospheric aerosols play an important role in the Earth's climate system, and can also have adverse effects on air quality and human health. The environmental impacts of aerosols, on the other hand, are highly regional, since their temporal/spatial distribution is inhomogeneous and highly depends on the regional emission sources. To better understand the effects of aerosols, intensive field experiments are necessary to characterize the chemical and physical properties on a region-by-region basis. From late February to early May in 2006, NASA/GSFC's SMARTLabs facility was deployed at a rural site in central Thailand, Southeast Asia, to conduct a field experiment dubbed BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment). The group was joined by scientists from the University of Hawaii and other regional institutes. Comprehensive measurements were made during the experiment, including aerosol chemical composition, optical and microphysical properties, as well as surface energetics and local . meteorology. This study analyzes part of the data from the BASE-ASIA experiment. It was found that, even for the relatively remote rural site, the aerosol loading was still substantial. Besides agricultural burning in the area, industrial pollution near the Bangkok metropolitan area, about 200 km southeast of the site, and even long-range transport from China, also contribute to the area's aerosol loading. The results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow. Abstract: Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.l83 N, 102.565 E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 +/- 64 Mm(exp -1); absorption: 15

  17. Biology of the Coarse Aerosol Mode: Insights Into Urban Aerosol Ecology

    NASA Astrophysics Data System (ADS)

    Dueker, E.; O'Mullan, G. D.; Montero, A.

    2015-12-01

    Microbial aerosols have been understudied, despite implications for climate studies, public health, and biogeochemical cycling. Because viable bacterial aerosols are often associated with coarse aerosol particles, our limited understanding of the coarse aerosol mode further impedes our ability to develop models of viable bacterial aerosol production, transport, and fate in the outdoor environment, particularly in crowded urban centers. To address this knowledge gap, we studied aerosol particle biology and size distributions in a broad range of urban and rural settings. Our previously published findings suggest a link between microbial viability and local production of coarse aerosols from waterways, waste treatment facilities, and terrestrial systems in urban and rural environments. Both in coastal Maine and in New York Harbor, coarse aerosols and viable bacterial aerosols increased with increasing wind speeds above 4 m s-1, a dynamic that was observed over time scales ranging from minutes to hours. At a New York City superfund-designated waterway regularly contaminated with raw sewage, aeration remediation efforts resulted in significant increases of coarse aerosols and bacterial aerosols above that waterway. Our current research indicates that bacterial communities in aerosols at this superfund site have a greater similarity to bacterial communities in the contaminated waterway with wind speeds above 4 m s-1. Size-fractionated sampling of viable microbial aerosols along the urban waterfront has also revealed significant shifts in bacterial aerosols, and specifically bacteria associated with coarse aerosols, when wind direction changes from onshore to offshore. This research highlights the key connections between bacterial aerosol viability and the coarse aerosol fraction, which is important in assessments of production, transport, and fate of bacterial contamination in the urban environment.

  18. Play and Positive Group Dynamics

    ERIC Educational Resources Information Center

    Thompson, Pam; White, Samantha

    2010-01-01

    Play is an important part of a child's life and essential to learning and development (Vygotsky, 1978). It is vital that students participate in play and that play be conducted in a restorative manner. Play allows a variety of group dynamics to emerge. Irvin Yalom (1995) identifies 11 curative factors of the group experience. These factors include…

  19. Aerosol transmission of foot-and-mouth disease virus Asia-1 under experimental conditions.

    PubMed

    Colenutt, C; Gonzales, J L; Paton, D J; Gloster, J; Nelson, N; Sanders, C

    2016-06-30

    Foot-and-mouth disease virus (FMDV) control measures rely on understanding of virus transmission mechanisms. Direct contact between naïve and infected animals or spread by contaminated fomites is prevented by quarantines and rigorous decontamination procedures during outbreaks. Transmission of FMDV by aerosol may not be prevented by these control measures and this route of transmission may allow infection of animals at distance from the infection source. Understanding the potential for aerosol spread of specific FMDV strains is important for informing control strategies in an outbreak. Here, the potential for transmission of an FMDV Asia 1 strain between pigs and cattle by indirect aerosol exposure was evaluated in an experimental setting. Four naïve calves were exposed to aerosols emitted from three infected pigs in an adjacent room for a 10h period. Direct contact between pigs and cattle and fomite transfer between rooms was prevented. Viral titres in aerosols emitted by the infected pigs were measured to estimate the dose that calves were exposed to. One of the calves developed clinical signs of FMD, whilst there was serological evidence for spread to cattle by aerosol transmission in the remaining three calves. This highlights the possibility that this FMDV Asia 1 strain could be spread by aerosol transmission given appropriate environmental conditions should an outbreak occur in pigs. Our estimates suggest the exposure dose required for aerosol transmission was higher than has been previously quantified for other serotypes, implying that aerosols are less likely to play a significant role in transmission and spread of this FMDV strain. PMID:27259825

  20. Distinct Patterns of Climate Response to Anthropogenic Aerosol Versus Greenhouse Gas Forcing

    NASA Astrophysics Data System (ADS)

    WANG, H.; Xie, S. P.; Liu, Q.

    2015-12-01

    Patterns of climate response to anthropogenic aerosols and well-mixed greenhouse gas (GHG) changes are investigated using eight models from Phase 5 of the Coupled Model Intercomparison Project. In the 20th century, the principal climate response patterns show both similarities and differences between aerosol and GHG runs. This paper focuses on distinct patterns of climate response to aerosol and GHG changes, while a recent companion study discussed the similarities. The GHG induced radiative forcing gives rise to amplified warming in the tropical upper troposphere and intensified mid-latitude jets in both hemispheres. However, for the anthropogenic aerosols, they are concentrated in the Northern Hemisphere and the temperature change shows a deep cooling structure in the troposphere around 40°N. Consistent with thermal wind balance, the cooling anchors a westerly acceleration to its south in aerosol runs. The response to aerosol induced inter-hemispheric asymmetry is also interpreted in terms of an anomalous Hadley circulation across the equator. Careful comparison indicates that the aerosol forcing dominates the Northern Hemisphere response in atmospheric circulation and precipitation, including a southward shift of the Inter Tropical Convergence Zone, the drying trend over the East Asia monsoon region, the southward shift of the East Asia westerly jet and the North Pacific cooling. The GHG forcing dominates the tropical Pacific rainfall increase mediated by the sea surface temperature pattern. Several climate response pattern indices are evaluated for the relative importance of aerosol and GHG forcing. The aerosol induced inter-hemisphere thermal contrast plays a key role in inducing climate response patterns that are quite different from the results in GHG runs.

  1. Transient Climate Impacts for Scenarios of Aerosol Emissions from Asia: A Story of Coal versus Gas

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Cheng, H.; Wang, C.

    2014-12-01

    Projections of anthropogenic aerosol emissions are uncertain. In Asia, it is possible that emissions may increase if business continues as usual, with economic growth driving an increase in coal burning. But it is also possible that emissions may decrease rapidly due to the widespread adoption of cleaner technology or a shift towards non-coal fuels, such as natural gas. In this study, the transient climate impacts of three aerosol emissions scenarios are investigated: an RCP4.5 (Representative Concentration Pathway 4.5) control; a scenario with reduced Asian anthropogenic aerosol emissions; and a scenario with enhanced Asian anthropogenic aerosol emissions. A coupled atmosphere-ocean configuration of CESM (Community Earth System Model), including CAM5 (Community Atmosphere Model version 5), is used. Enhanced Asian aerosol emissions are found to delay global mean warming by one decade at the end of the century. Aerosol-induced suppression of the East Asian and South Asian summer monsoon precipitation occurs. The enhanced Asian aerosol emissions also remotely impact precipitation in other parts of the world: over the Sahel, West African monsoon precipitation is suppressed; and over Australia, austral summer monsoon precipitation is enhanced. These remote impacts on precipitation are associated with a southward shift of the ITCZ. The aerosol-induced sea surface temperature (SST) response appears to play an important role in the precipitation changes over South Asia and Australia, but not over East Asia. These results indicate that energy production in Asia, through the consequent aerosol emissions and associated radiative effects, might significantly influence future climate both locally and globally.

  2. Amplification of ENSO effects on Indian summer monsoon by absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Kim, Maeng-Ki; Lau, William K. M.; Kim, Kyu-Myong; Sang, Jeong; Kim, Yeon-Hee; Lee, Woo-Seop

    2016-04-01

    In this study, we present observational evidence, based on satellite aerosol measurements and MERRA reanalysis data for the period 1979-2011, indicating that absorbing aerosols can have strong influence on seasonal-to-interannual variability of the Indian summer monsoon rainfall, including amplification of ENSO effects. We find a significant correlation between ENSO (El Nino Southern Oscillation) and aerosol loading in April-May, with La Nina (El Nino) conditions favoring increased (decreased) aerosol accumulation over northern India, with maximum aerosol optical depth over the Arabian Sea and Northwestern India, indicative of strong concentration of dust aerosols transported from West Asia and Middle East deserts. Composite analyses based on a normalized aerosol index (NAI) show that high concentration of aerosol over northern India in April-May is associated with increased moisture transport, enhanced dynamically induced warming of the upper troposphere over the Tibetan Plateau, and enhanced rainfall over northern India and the Himalayan foothills during May-June, followed by a subsequent suppressed monsoon rainfall over all India, consistent with the elevated heat pump (EHP) hypothesis (Lau et al. in Clim Dyn 26:855-864, 2006. doi: 10.1007/s00382-006-0114-z). Further analyses from sub-sampling of ENSO years, with normal (<1-σ), and abnormal (>1-σ) NAI over northern India respectively show that the EHP may lead to an amplification of the Indian summer monsoon response to ENSO forcing, particularly with respect to the increased rainfall over the Himalayan foothills, and the warming of the upper troposphere over the Tibetan Plateau. Our results suggest that absorbing aerosol, particular desert dusts can strongly modulate ENSO influence, and possibly play important roles as a feedback agent in climate change in Asian monsoon regions.

  3. Can satellite-derived aerosol optical depth quantify the surface aerosol radiative forcing?

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Ceamanos, Xavier; Roujean, Jean-Louis; Carrer, Dominique; Xue, Yong

    2014-12-01

    Aerosols play an important role in the climate of the Earth through aerosol radiative forcing (ARF). Nowadays, aerosol particles are detected, quantified and monitored by remote sensing techniques using low Earth orbit (LEO) and geostationary (GEO) satellites. In the present article, the use of satellite-derived AOD (aerosol optical depth) products is investigated in order to quantify on a daily basis the ARF at the surface level (SARF). By daily basis we mean that an average SARF value is computed every day based upon the available AOD satellite measurements for each station. In the first part of the study, the performance of four state-of-art different AOD products (MODIS-DT, MODIS-DB, MISR, and SEVIRI) is assessed through comparison against ground-based AOD measurements from 24 AERONET stations located in Europe and Africa during a 6-month period. While all AOD products are found to be comparable in terms of measured value (RMSE of 0.1 for low and average AOD values), a higher number of AOD estimates is made available by GEO satellites due to their enhanced frequency of scan. Experiments show a general lower agreement of AOD estimates over the African sites (RMSE of 0.2), which show the highest aerosol concentrations along with the occurrence of dust aerosols, coarse particles, and bright surfaces. In the second part of this study, the lessons learned about the confidence in aerosol burden derived from satellites are used to estimate SARF under clear sky conditions. While the use of AOD products issued from GEO observations like SEVIRI brings improvement in the SARF estimates with regard to LEO-based AOD products, the resulting absolute bias (13 W/m2 in average when AERONET AOD is used as reference) is judged to be still high in comparison with the average values of SARF found in this study (from - 25 W/m2 to - 43 W/m2) and also in the literature (from - 10 W/m2 to - 47 W/m2).

  4. Pretend Play and Creative Processes

    ERIC Educational Resources Information Center

    Russ, Sandra W.; Wallace, Claire E.

    2013-01-01

    The authors contend that many cognitive abilities and affective processes important in creativity also occur in pretend play and that pretend play in childhood affects the development of creativity in adulthood. They discuss a variety of theories and observations that attempt to explain the importance of pretend play to creativity. They argue that…

  5. Uptake of HO2 Radicals Onto Dust Aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, P. S.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2013-12-01

    OH and HO2 radicals play an important role in the troposphere by controlling its oxidative capacity and therefore the concentration of many trace species. Several field studies have observed significantly lower concentrations of HO2 radicals than predicted using box models (1,2). HO2 loss onto aerosols has been suggested as a possible sink. Mineral dust has an estimated annual flux of 2000 Tg year-1 (3). However, there has only been one study of HO2 uptake onto Arizona Test Dust (ATD) surfaces (4) and there are currently no published studies for dust aerosols. Therefore, the aim of this study was to measure the HO2 uptake coefficient onto ATD aerosols over a range of humidities and for different HO2 concentrations, as well as investigating the uptake as a function of the exposure time to the aerosol, for which a dependence had been observed for aqueous salt aerosols (5). Uptake coefficients were measured for ATD aerosols at atmospheric pressure and at 291 K using a Fluorescence Assay by Gas Expansion (FAGE) detector combined with a flow tube. HO2 was formed from the photolysis of water vapour and was injected into the flow tube using a moveable injector, which was placed in six different positions along the flow tube. The non stable aerosol output was produced by stirring ATD in a bottle producing a dust cloud which was entrained into a flow. The aerosol number concentration was measured using a Condensation Particle Counter (CPC) and was converted into a surface area using the average radius of one aerosol. The uptake coefficient was then able to be calculated by assuming first order kinetics. The HO2 uptake coefficient was measured at a relative humidity of between 6 and 75% and at initial HO2 concentrations of ~ 0.3 - 1 × 10^9 molecule cm-3. Average uptake coefficients of 0.018 × 0.006 and 0.031 × 0.008 were measured for the higher and lower HO2 concentrations respectively, and the impact investigated using a constrained box model. A time dependence was also

  6. Connecting Aerosol Size Distributions at Three Arctic Stations

    NASA Astrophysics Data System (ADS)

    Freud, E.; Krejci, R.; Tunved, P.; Barrie, L. A.

    2015-12-01

    Aerosols play an important role in Earth's energy balance mainly through interactions with solar radiation and cloud processes. There is a distinct annual cycle of arctic aerosols, with greatest mass concentrations in the spring and lowest in summer due to effective wet removal processes - allowing for new particles formation events to take place. Little is known about the spatial extent of these events as no previous studies have directly compared and linked aerosol measurements from different arctic stations during the same times. Although the arctic stations are hardly affected by local pollution, it is normally assumed that their aerosol measurements are indicative of a rather large area. It is, however, not clear if that assumption holds all the time, and how large may that area be. In this study, three different datasets of aerosol size distributions from Mt. Zeppelin in Svalbard, Station Nord in northern Greenland and Alert in the Canadian arctic, are analyzed for the measurement period of 2012-2013. All stations are 500 to 1000 km from each other, and the travel time from one station to the other is typically between 2 to 5 days. The meteorological parameters along the calculated trajectories are analyzed in order to estimate their role in the modification of the aerosol size distribution while the air is traveling from one field station to another. In addition, the exposure of the sampled air to open waters vs. frozen sea is assessed, due to the different fluxes of heat, moisture, gases and particles, that are expected to affect the aerosol size distribution. The results show that the general characteristics of the aerosol size distributions and their annual variation are not very different in all three stations, with Alert and Station Nord being more similar. This is more pronounced when looking into the cases for which the trajectory calculations indicated that the air traveled from one of the latter stations to the other. The probable causes for the

  7. Assessing aerosol indirect effect through ice clouds in CAM5

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Liu, Xiaohong; Yoon, Jin-Ho; Wang, Minghuai; Comstock, Jennifer M.; Barahona, Donifan; Kooperman, Gabriel

    2013-05-01

    Ice clouds play an important role in regulating the Earth's radiative budget and influencing the hydrological cycle. Aerosols can act as solution droplets or ice nuclei for ice crystal formation, thus affecting the physical properties of ice clouds. Because the related dynamical and microphysical processes happen at very small spatial and temporal scales, it is a great challenge to accurately represent them in global climate models. Consequently, the aerosol indirect effect through ice clouds (ice AIE) estimated by global climate models is associated with large uncertainties. In order to better understand these processes and improve ice cloud parameterization in the Community Atmospheric Model, version 5 (CAM5), we analyze in-situ measurements from various research campaigns, and use the derived statistical information to evaluate and constrain the model [1]. We also make use of new model capabilities (prescribed aerosols and nudging) to estimate the aerosol indirect effect through ice clouds, and quantify the uncertainties associated with ice nucleation processes. In this study, a new approach is applied to separate the impact of aerosols on warm and cold clouds by using the prescribed-aerosol capability in CAM5 [2]. This capability allows a single simulation to simultaneously include up to three aerosol fields: online calculated, as well as prescribed pre-industrial (PI) and present-day conditions (PD). In a set of sensitivity simulations, we use the same aerosol fields to drive droplet activation in warm clouds, and different (PD and PI) conditions for different components of the ice nucleation parameterization in pure ice clouds, so as to investigate various ice nucleation mechanisms in an isolated manner. We also applied nudging in our simulations, which helps to increase the signal-to-noise ratio in much shorter simulation period [3] and isolate the impact of aerosols on ice clouds from other factors, such as temperature and relative humidity change. The

  8. Regional signatures in the organic composition of marine aerosol particles

    NASA Astrophysics Data System (ADS)

    Frossard, Amanda A.; Russell, Lynn M.; Keene, William C.; Kieber, David J.; Quinn, Patricia K.; Bates, Timothy S.

    2013-05-01

    Marine aerosol particles play an important role in the earth's radiative balance, yet the sources and composition of the organic fraction remain largely unconstrained. Recent measurements have been made in order to characterize the sources, composition, and concentration of aerosol particles in the marine boundary layer. The organic composition of submicron particles derived from multiple seawater regions have been measured using Fourier Transform Infrared (FTIR) spectroscopy. Cluster analysis of FTIR organic spectra suggest different spectral signatures based on collection location, seawater composition, and ambient conditions. Measurements including non-refractory aerosol composition from a high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS), seawater composition, and wind speed were used to interpret the cluster results, depending on the availability from each campaign. FTIR spectra of ambient particles are compared to FTIR spectra of primary marine particles generated from model ocean systems to infer the ambient particle production mechanisms and aging processes. Recent measurements used in the comparison include ambient and generated marine aerosol particles measured off the coast of California during CalNex in May and June 2010. Remote ambient marine aerosol particles were collected 100 miles off the coast of Monterey in the eastern Pacific during the EPEACE experiment in July 2011. Ambient and generated marine particles were measured in two different seawater types during WACS 2012 including colder, more productive water off the coast of the northeastern United States and warmer, oligotrophic water in the Sargasso Sea. These particles are also compared with those measured in the southeastern Pacific during VOCALS and the north Atlantic during ICEALOT.

  9. Physico-chemical properties of aerosols in Sao Paulo, Brazil and mechanisms of secondary organic aerosol formation.

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Luiza Godoy, Maria; Godoy, Jose Marcus

    2013-04-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an increasingly important role. Sao Paulo is a megacity with a population of about 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in Sao Paulo is bellow WMO standards for aerosol particles and ozone. Many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission characteristics, we are running a source apportionment study in Sao Paulo focused on the mechanisms of organic aerosol formation. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles). This study comprises four sampling sites with continuous measurements for one year, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, O3, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to measure in real time VOCs and aerosol composition, respectively. Trace elements were measured using XRF and OC/EC analysis was determined with a Sunset OC/EC instrument. A TSI Nephelometer with 3 wavelengths measure light scattering and a MAAP measure black carbon. Results show aerosol number concentrations ranging between 10,000 and 35,000 cm-3, mostly concentrated in the nucleation and Aitken modes, with a peak in size at 80

  10. Water adsorption around oxalic acid aggregates: a molecular dynamics simulation of water nucleation on organic aerosols.

    PubMed

    Darvas, Maria; Picaud, Sylvain; Jedlovszky, Pál

    2011-11-28

    The phase behaviour of binary oxalic acid-water mixtures has been investigated by means of computer simulation techniques. Such mixtures play an important role in atmospheric processes, since the hydrogen bonding ability of oxalic acid molecules allows them to form aerosol particles. Water can in turn be readily adsorbed on the surface of such aerosol particles, which results in the formation of small ice grains. These grains are thus considered to be acting as cloud condensation nuclei, giving rise to the formation of ice clouds.

  11. Aerosol extinction measurements with CO2-lidar

    NASA Technical Reports Server (NTRS)

    Hagard, Arne; Persson, Rolf

    1992-01-01

    With the aim to develop a model for infrared extinction due to aerosols in slant paths in the lower atmosphere we perform measurements with a CO2-lidar. Earlier measurements with a transmissometer along horizontal paths have been used to develop relations between aerosol extinction and meteorological parameters. With the lidar measurements we hope to develop corresponding relations for altitude profiles of the aerosol extinction in the infrared. An important application is prediction of detection range for infrared imaging systems.

  12. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Baldwin, B.; Pollack, J. B.; Summers, A.; Toon, O. B.; Sagan, C.; Van Camp, W.

    1976-01-01

    Generated primarily by volcanic explosions, a layer of submicron silicate particles and particles made of concentrated sulfuric acids solution is present in the stratosphere. Flights through the stratosphere may be a future source of stratospheric aerosols, since the effluent from supersonic transports contains sulfurous gases (which will be converted to H2SO4) while the exhaust from Space Shuttles contains tiny aluminum oxide particles. Global heat balance calculations have shown that the stratospheric aerosols have made important contributions to some climatic changes. In the present paper, accurate radiative transfer calculations of the globally-averaged surface temperature (T) are carried out to estimate the sensitivity of the climate to changes in the number of stratospheric aerosols. The results obtained for a specified model atmosphere, including a vertical profile of the aerosols, indicate that the climate is unlikely to be affected by supersonic transports and Space Shuttles, during the next decades.

  13. Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western US

    SciTech Connect

    Creamean, Jessie; Suski, Kaitlyn; Rosenfeld, Daniel; Cazorla, Alberto; DeMott, Paul J.; Sullivan, Ryan C.; White, Allen B.; Ralph, F. M.; Minnis, Patrick; Comstock, Jennifer M.; Tomlinson, Jason M.; Prather, Kimberly

    2013-03-29

    Winter storms in California’s Sierra Nevada increase seasonal snowpack and provide critical water resources for the state. Thus, the mechanisms influencing precipitation in this region have been the subject of research for decades. Previous studies suggest Asian dust enhances cloud ice and precipitation (1), while few studies consider biological aerosols as an important global source of ice nuclei (IN). Here, we show that dust and biological aerosols transported from as far as the Sahara were present in glaciated high-altitude clouds coincident with elevated IN concentrations and ice-induced precipitation. This study presents the first direct cloud and precipitation measurements showing that Saharan and Asian dust and biological aerosols likely serve as IN and play an important role in orographic precipitation processes over the western United States.

  14. The composition and variability of atmospheric aerosol over Southeast Asia during 2008

    NASA Astrophysics Data System (ADS)

    Trivitayanurak, W.; Palmer, P. I.; Barkley, M. P.; Robinson, N. H.; Coe, H.; Oram, D. E.

    2012-01-01

    We use a nested version of the GEOS-Chem global 3-D chemistry transport model to better understand the composition and variation of aerosol over Borneo and the broader Southeast Asian region in conjunction with aircraft and satellite observations. Our focus on Southeast Asia reflects the importance of this region as a source of reactive organic gases and aerosols from natural forests, biomass burning, and food and fuel crops. We particularly focus on July 2008 when the UK BAe-146 research aircraft was deployed over northern Malaysian Borneo as part of the ACES/OP3 measurement campaign. During July 2008 we find using the model that Borneo (defined as Borneo Island and the surrounding Indonesian islands) was a net exporter of primary organic aerosol (42 kT) and black carbon aerosol (11 kT). We find only 13% of volatile organic compound oxidation products partition to secondary organic aerosol (SOA), with Borneo being a net exporter of SOA (15 kT). SOA represents approximately 19% of the total organic aerosol over the region. Sulphate is mainly from aqueous-phase oxidation (68%), with smaller contributions from gas-phase oxidation (15%) and advection into the regions (14%). We find that there is a large source of sea salt, as expected, but this largely deposits within the region; we find that dust aerosol plays only a relatively small role in the aerosol burden. In contrast to coincident surface measurements over Northern Borneo that find a pristine environment with evidence for substantial biogenic SOA formation we find that the free troposphere is influenced by biomass burning aerosol transported from the northwest of the Island and further afield. We find several transport events during July 2008 over Borneo associated with elevated aerosol concentrations, none of which coincide with the aircraft flights. We use MODIS aerosol optical depths (AOD) data and the model to put the July campaign into a longer temporal perspective. We find that Borneo is where the model

  15. Ultrahigh resolution mass spectrometric characterization of organic aerosol from European and Chinese cities

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Huang, Ru-Jin; Hoffmann, Thorsten

    2016-04-01

    Organic aerosol constitutes a substantial fraction (20-90%) of submicrometer aerosol mass, playing an important role in air quality and human health. Over the past few years, ultra-high resolution mass spectrometry (UHRMS) has been applied to elucidate the chemical composition of ambient aerosols. However, most of the UHRMS studies used direct infusion without prior separation by liquid chromatography, which may cause the loss of individual compound information and interference problems. In the present study, urban ambient aerosol with particle diameter < 2.5 μm was collected in Mainz, Germany and Beijing, China, respectively. Two pretreatment procedures were applied to extract the organic compounds from the filter samples: One method uses a mixture of acetonitrile and water, the other uses pure water and prepared for the extraction of humic-like substances. The extracts were analyzed by ultra-high-performance liquid chromatography coupled with an Orbitrap mass spectrometer in both negative and the positive modes. The effects of pretreatment procedures on the characterization of organic aerosol and the city-wise difference in chemical composition of organic aerosol will be discussed in detail.

  16. A seasonal time history of the size resolved composition of fine aerosol in Manchester UK

    NASA Astrophysics Data System (ADS)

    Choularton, Thomas; Martin, Claire; Allan, James; Coe, Hugh; Bower, Keith; Gallagher, Martin

    2010-05-01

    Numerous studies have been conducted in urban centres now using sophisticated instruments that measure aerosol properties needed to determine their effects on human health, air quality and climate change) showing that a significant fraction of urban aerosols (mainly from automotive sources) are composed of organic compounds with implications for human health. In this project we have produced the first seasonal aerosol composition and emission database for the City of Manchester in the UK Several recent projects have been conducted by SEAES looking at fundamental properties of urban atmospheric aerosol to understand their influence on climate. This work is now expanding through collaboration with the School of Geography & Centre for Occupational & Environmental Health to investigate urban aerosol emission impacts on human health In this paper we present a compendium of data from field campaigns in Manchester city centre over the past decade. The data are from six different campaigns, between 2001 - 2007, each campaign was between 2 weeks and 2 months long predominantly from January and June periods . The data analysis includes air parcel trajectory examination and comparisons with external data, including PM10, CO and NOx data from AURN fixed monitoring sites Six Manchester fine aerosol datasets from the past decade have been quality controlled and analysed regarding averages of the size distributions of Organic, NO3, NH4 and SO4 mass loadings. It was found that: Organic material is the largest single component of the aerosol with primary aliphatic material dominating the smallest sizes, but with oxygenated secondary organic material being important in the accumulation mode. In the accumulation mode the organic material seems to be internally mixed with sulphate and nitrate. The accumulation mode particles were effective as cloud condensation nuclei. Seasonal effects surrounding atmospheric stability and photochemistry were found to play an important role in the

  17. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  18. Aerosol Variations in Boundary Atmospheres: Review and Prospect

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Shi, Guangyu

    Atmospheric aerosols play important roles in climate and atmospheric chemistry: They scatter sunlight, provide condensation nuclei for cloud droplets, and participate in heterogeneous chemical reactions. To enable better understanding of the vertical physical, chemical and optical feathers of the aerosols in East Asia, using some atmospheric and aerosol measurement instruments on board a kind of tethered-balloon system, a series of measurements were operated in some typical areas of East Asia, including Dunhuang, which is located in the source origin district of Asian dust and Beijing, which is the representative of large inland city during the years of 2002-2011. Mineral compositions carried by the airborne particles were analyzed as well as the microbial components, meanwhile the Lidar data were compared to the direct measurements in order to get the correlation between the optical properties of the particles and their physical and chemical variations in the boundary atmosphere. Moreover, the simultaneous observations over the districts of China, Japan and Korea, and even Pakistan supported by an international cooperative project are highly expected, in order to know the changes of the chemical, physical and even optical and radiation properties of the atmospheric aerosols during their long-range transport.

  19. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    SciTech Connect

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K.  Niranjan; Reddy, Kishore; Kotamarthi, V. R.; Newsom, Rob K.; Ouarda, Taha B. M. J.

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis of vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.

  20. Assessment of the aerosol distribution over Indian subcontinent in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Sanap, S. D.; Ayantika, D. C.; Pandithurai, G.; Niranjan, K.

    2014-04-01

    This paper examines the aerosol distribution over Indian subcontinent as represented in 21 models from Coupled Model Inter-comparison Project Phase 5 (CMIP5) simulations, wherein model simulated aerosol optical depth (AOD) is compared with Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite observations. The objective of the study is to provide an assessment of the capability of various global models, participating in CMIP5 project, in capturing the realistic spatial and temporal distribution of aerosol species over the Indian subcontinent. Results from our analysis show that majority of the CMIP5 models (excepting HADGEM2-ES, HADGEM2-CC) seriously underestimates the spatio-temporal variability of aerosol species over the Indian subcontinent, in particular over Indo-Gangetic Plains (IGP). Since IGP region is dominated by anthropogenic activities, high population density, and wind driven transport of dust and other aerosol species, MODIS observations reveal high AOD values over this region. Though the representation of black carbon (BC) loading in many models is fairly good, the dust loading is observed to be significantly low in majority of the models. The presence of pronounced dust activity over northern India and dust being one of the major constituent of aerosol species, the biases in dust loading has a great impact on the AOD of that region. We found that considerable biases in simulating the 850 hPa wind field (which plays important role in transport of dust from adjacent deserts) would be the possible reason for poor representation of dust AOD and in turn total AOD over Indian region in CMIP5 models. In addition, aerosol radiative forcing (ARF) underestimated/overestimated in most of the models. However, spatial distribution of ARF in multi-model ensemble mean is comparable reasonably well with observations with bias in magnitudes. This analysis emphasizes the fundamental need to improve the representation of aerosol species in current state of

  1. Nitrogen speciation in various types of aerosol in spring over the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Luo, L.; Yao, X. H.; Gao, H. W.; Hsu, S. C.; Li, J. W.; Kao, S.-J.

    2015-09-01

    (1090 ± 671 μmol N m-2 d-1) was 5 times higher than dust aerosols (190 ± 41.6 μmol N m-2 d-1) and around 20 times higher than background aerosols (56.8 ± 59.1 μmol N m-2 d-1). Apparently, spring sea fog on the ECSs played an important role in removing atmospheric reactive nitrogen from the Chinese mainland and depositing it into the ECSs, thus effectively preventing its seaward export to the NWPO.

  2. Nitrogen speciation in various types of aerosols in spring over the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Luo, L.; Yao, X. H.; Gao, H. W.; Hsu, S. C.; Li, J. W.; Kao, S. J.

    2016-01-01

    -static condition. Mean dry deposition of total dissolved nitrogen (TDN) for sea-fog-modified aerosols (1090 ± 671 µmol N m-2 d-1) was 5 times higher than that for dust aerosols (190 ± 41.6 µmol N m-2 d-1) and around 20 times higher than that for background aerosols (56.8 ± 59.1 µmol N m-2 d-1). Apparently, spring sea fog on the ECSs played an important role in removing atmospheric reactive nitrogen from the Chinese mainland and depositing it into the ECSs, thus effectively preventing its seaward export to the NWPO.

  3. Source apportionment of ambient aerosol applying PMF on AMS mobile and stationary data

    NASA Astrophysics Data System (ADS)

    Mohr, C.; Weimer, S.; Richter, R.; Decarlo, P. F.; Chirico, R.; Heringa, M. F.; Prévôt, A. S. H.; Baltensperger, U.

    2009-04-01

    Ambient aerosols are divided into the categories "primary" and "secondary", referring to particles directly emitted into the air, or formed out of precursor species such as volatile organic compounds, respectively. Main sources for primary urban aerosol and precursor species are traffic emissions, but also wood burning for domestic heating purposes especially in winter time (Alfarra et al., 2007). The quantification of various types of aerosol components is important for source identification which in turn is the basis of all mitigation activities. Positive Matrix Factorization (PMF) is a statistical based source apportionment tool that uses constrained, weighted least squares estimation to determine source profiles and strengths. PMF has been applied recently for the first time on highly time resolved organic mass spectra (Lanz et al., 2007) measured by an Aerodyne aerosol mass spectrometer (AMS) (Canagaratna et al., 2007). For the data presented here, two AMS were deployed together with additional instrumentation in the metropolitan area of Zurich in winter 2007/2008. The high-resolution time-of-flight AMS was stationed at an urban background site in the center, 30 meters from and shielded against direct traffic emissions. The quadrupole-based AMS was deployed in a mobile van allowing for on-road submicron aerosol composition measurements, and investigations into the spatial variability of aerosol concentration and composition. Results indicate that traffic emissions are the main contributor to submicron aerosol concentrations measured on-road. Hydrocarbon-like organic aerosol (HOA), a marker for traffic emissions (Lanz et al. 2007), dominates the primary aerosol mass, together with black carbon (BC). BC was monitored with the MAAP (multi angle absorption photometer). Another significant contributor to primary organic aerosol mass in downtown Zurich is domestic wood burning for heating purposes. Traffic and wood burning emissions make up roughly 50% of the total

  4. The Games Children Play

    ERIC Educational Resources Information Center

    Padak, Nancy; Rasinski, Timothy

    2008-01-01

    The games that children play are not just for fun-they often lead to important skill development. Likewise, word games are fun opportunities for parents and children to spend time together and for children to learn a lot about sounds and words. In this Family Involvement column, the authors describe 12 easy-to-implement word games that parents and…

  5. Assessing new remote sensing aerosol detection algorithms

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-02-01

    Atmospheric aerosols affect the weather and climate by changing cloud formation and the energy balance and, depending on their type and concentration, can negatively affect air quality. Important atmospheric aerosols include dust, ash, volcanic sulfate aerosols, sea salt, biogenic particles, urban/industrial pollution, and smoke. For more than a decade, the twin Moderate Resolution Imaging Spectroradiometers (MODIS) aboard NASA's Aqua and Terra satellites have provided regular global assessments of aerosol loading, and now, following its 2011 launch, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite is ready to contribute to that assessment.

  6. Separating Cloud Forming Nuclei from Interstitial Aerosol

    SciTech Connect

    Kulkarni, Gourihar R.

    2012-09-12

    It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

  7. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  8. Climate forcing by anthropogenic aerosols.

    PubMed

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  9. Climate Forcing by Anthropogenic Aerosols

    NASA Astrophysics Data System (ADS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  10. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  11. Trend analysis of the Aerosol Optical Thickness and Ångström Exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2011-08-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. Aerosol Optical Thickness (AOT) and Ångström Exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) spectral observations. Additionally, temporal trends of Coarse- and Fine-mode dominant AOTs (CAOT and FAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström Exponent Difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation and (2) Number of Observations (NO) per month. Temporal increase of FAOTs prevails over regions dominated by emerging economy or slash-burn agriculture in East Asia and South Africa. On the other hand, insignificant or negative trends for FAOTs are detected over Western Europe and North America. Over desert regions, both increase and decrease of CAOTs are observed depending on meteorological conditions.

  12. Multi-year investigations of aerosols from an island station, Port Blair, in the Bay of Bengal: climatology and source impacts

    NASA Astrophysics Data System (ADS)

    Naseema Beegum, S.; Krishna Moorthy, K.; Gogoi, Mukunda M.; Babu, S. Suresh; Pandey, S. K.

    2012-08-01

    Long-term measurements of spectral aerosol optical depth (AOD) using multi-wavelength solar radiometer (MWR) for a period of seven years (from 2002 to 2008) from the island location, Port Blair (11.63° N, 92.7° E, PBR) in the Bay of Bengal (BoB), along with the concurrent measurements of the size distribution of near-surface aerosols, have been analyzed to delineate the climatological features of aerosols over eastern BoB. In order to identity the contribution of different aerosol types from distinct sources, concentration weighted trajectory (CWT) analysis has been employed. Climatologically, AODs increase from January to reach peak value of ~0.4 (at 500 nm) in March, followed by a weak decrease towards May. Over this general pattern, significant modulations of intra-seasonal time scales, caused by the changes in the relative strength of distinctively different sources, are noticed. The derivative (α') of the Angstrom wavelength exponent α in the wavelength domain, along with CWT analysis, are used to delineate the different important aerosol types that influence this remote island. Corresponding changes in the aerosol size distributions are inferred from the numerical inversion of the spectral AODs as well from (surface) measurements. The analyses revealed that advection plays a major role in modifying the aerosol properties over the remote island location, the potential sources contributing to the accumulation mode (coarse mode) aerosols over eastern BoB being the East Asia and South China regions (Indian mainland and the oceanic regions).

  13. Investigation of warm-cloud microphysics using a multi-component cloud model: Interactive effects of the aerosol spectrum. Master's thesis

    SciTech Connect

    Zahn, S.G.

    1993-12-01

    Clouds, especially low, warm, boundary-layer clouds, play an important role in regulating the earth's climate due to their significant contribution to the global albedo. The radiative effects of individual clouds are controlled largely by cloud microstructure, which is itself sensitive to the concentration and spectral distribution of the atmospheric aerosol. Increases in aerosol particle concentrations from anthropogenic activity could result in increased cloud albedo and global cloudiness, increasing the amount of reflected solar radiation. However, the effects of increased aerosol particle concentrations could be offset by the presence of giant or ultragiant aerosol particles. A one-dimensional, multi-component microphysical cloud model has been used to demonstrate the effects of aerosol particle spectral variations on the microstructure of warm clouds. Simulations performed with this model demonstrate that the introduction of increased concentrations of giant aerosol particles has a destabilizing effect on the cloud microstructure. Also, it is shown that warm-cloud microphysical processes modify the aerosol particle spectrum, favoring the generation of the largest sized particles via the collision-coalescence process. These simulations provide further evidence that the effect of aerosol particles on cloud microstructure must be addressed when considering global climate forecasts.

  14. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect

    SCHWARTZ, S.E.

    2005-09-01

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  15. Genesis of elevated aerosol loading over the Indian region

    NASA Astrophysics Data System (ADS)

    Prijith, S. S.; Rao, P. V. N.; Mohan, Mannil

    2016-05-01

    Elevated aerosols assume importance as the diabatic heating due to aerosol absorption is more intense at higher altitudes where the atmosphere becomes thinner. Indian region, especially its central and northern latitudes, experiences significant loading of elevated aerosols during pre-monsoon and summer months. Genesis of elevated aerosol loading over Indian region is investigated in the present study, using multi-year satellite observations from Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and Moderate Resolution Imaging Spectroradiometer (MODIS) along with reanalysis winds from MERRA. Central India is observed to have prominent aerosols loading at higher altitudes during pre-monsoon season, whereas it is during summer months over north-west India. Further analysis reveals that the elevated aerosols over Indian region in pre-monsoon and summer months are significantly contributed by transported mineral dust from the arid continental regions at west. In addition to the mineral dust advection, aerosols at higher altitudes over Indian region are enriched by strong convection and associated vertical transport of surface level aerosols. Vertical transport of aerosols observed over Indian region during pre-monsoon and summer months is aided by intense convergence at the surface level and divergence at the upper level. Moreover, aerosol source/sink strength estimated using aerosol flux continuity equation show significant aerosol production over central India during pre-monsoon. Strong vertical transport prevails during pre-monsoon uplifts the locally produced aerosols, with considerable anthropogenic fraction, to higher altitudes where their impacts would be more intense.

  16. Time Resolved Measurements of Primary Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2009-04-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the Amazonian Aerosol Characterization Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. This presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 µm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as "viable aerosols" or "fluorescent bioparticles" (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. Data from the UVAPS were averaged over 5 minute time intervals. The presence of bioparticles in the observed size range has been

  17. Identification of absorbing organic (brown carbon) aerosols through Sun Photometry: results from AEROCAN / AERONET stations in high Arctic and urban Locations

    NASA Astrophysics Data System (ADS)

    Kerr, G. H.; Chaubey, J. P.; O'Neill, N. T.; Hayes, P.; Atkinson, D. B.

    2014-12-01

    Light absorbing organic aerosols or brown carbon (BrC) aerosols are prominent species influencing the absorbing aerosol optical depth (AAOD) of the total aerosol optical depth (AOD) in the UV wavelength region. They, along with dust, play an important role in modifying the spectral AAOD and the spectral AOD in the UV region: this property can be used to discriminate BrC aerosols from both weakly absorbing aerosols such as sulfates as well as strongly absorbing aerosols such as black carbon (BC). In this study we use available AERONET inversions (level 1.5) retrieved for the measuring period from 2009 to 2013, for the Arctic region (Eureka, Barrow and Hornsund), Urban/ Industrial regions (Kanpur, Beijing), and the forest regions (Alta Foresta and Mongu), to identify BrC aerosols. Using Dubovik's inversion algorithm results, we analyzed parameters that were sensitive to BrC presence, notably AAOD, AAODBrC estimated using the approach of Arola et al. [2011], the fine-mode-aerosol absorption derivative (αf, abs) and the fine-mode-aerosol absorption 2nd derivative (αf, abs'), all computed at a near UV wavelength (440 nm). Temporal trends of these parameters were investigated for all test stations and compared to available volume sampling surface data as a means of validating / evaluating the sensitivity of ostensible sunphotometer indicators of BrC aerosols to the presence of BrC as measured using independent indicators. Reference: Arola, A., Schuster, G., Myhre, G., Kazadzis, S., Dey, S., and Tripathi, S. N.: Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215-225, doi:10.5194/acp-11-215-2011, 2011

  18. Organic Aerosol Volatility Parameterizations and Their Impact on Atmospheric Composition and Climate

    NASA Technical Reports Server (NTRS)

    Tsigaridis, Kostas; Bauer, Susanne E.

    2015-01-01

    Despite their importance and ubiquity in the atmosphere, organic aerosols are still very poorly parameterized in global models. This can be explained by two reasons: first, a very large number of unconstrained parameters are involved in accurate parameterizations, and second, a detailed description of semi-volatile organics is computationally very expensive. Even organic aerosol properties that are known to play a major role in the atmosphere, namely volatility and aging, are poorly resolved in global models, if at all. Studies with different models and different parameterizations have not been conclusive on whether the additional complexity improves model simulations, but the added diversity of the different host models used adds an unnecessary degree of variability in the evaluation of results that obscures solid conclusions. Aerosol microphysics do not significantly alter the mean OA vertical profile or comparison with surface measurements. This might not be the case for semi-volatile OA with microphysics.

  19. Characteristics of solid aerosols produced by optical catapulting studied by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Fortes, F. J.; Laserna, J. J.

    2010-08-01

    Optical catapulting (OC) constitutes an effective method to transport small amounts of different materials in the form of a solid aerosol. In this report, laser-induced breakdown spectroscopy (LIBS) is used for the analysis of those aerosols produced by OC. For this purpose, materials were catapulted using a Q-switch Nd:YAG laser. A second Q-switch Nd:YAG laser was used for LIBS analysis of the ejected particles. Data processing of aerosols was conducted using conditional data analysis. Also, the standard deviation method was used for the qualitative identification of the ejected particles. Two modes of interaction in OC (OC with focused or defocused pulses) have been evaluated and discussed. LIBS demonstrates that the distribution (spreading) of the ejected particles along the propagation axis increased as a function of the interpulse delay time. The mass density and the thickness of the target also play an important role in OC-LIBS.

  20. Special issue: Chemical characterization of secondary organic aerosol - Dedication to Professor Magda Claeys

    NASA Astrophysics Data System (ADS)

    Surratt, Jason D.; Szmigielski, Rafal; Faye McNeill, V.

    2016-04-01

    Atmospheric aerosols are suspensions of liquid and solid particles that have diameters ranging from a few nanometers to several micrometers (μm). Atmospheric fine particulate matter (PM2.5, aerosols with aerodynamic diameters of 2.5 μm or less) are especially important since they can adversely affect air quality and human health as well as play a critical role in Earth's climate system. In terms of aerosol climate effects, PM2.5 can directly affect climate by scattering or absorbing incoming solar radiation or indirectly by acting as nuclei on which cloud droplets and ice particles form. As a result, a better understanding of processes that determine the formation and sinks of PM2.5 is needed for developing effective policies that improve air quality and public health as well as to accurately predict the response of the climate system due to changes in anthropogenic emissions.

  1. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  2. Prebiotic chemistry on Titan ? The nature of Titan's aerosols and their potential evolution at the satellite surface

    NASA Astrophysics Data System (ADS)

    Coll, P. J.; Poch, O.; Ramirez, S. I.; Buch, A.; Brassé, C.; Raulin, F.

    2010-12-01

    How may Titan's aerosols interact with Titan's surface after settling down in the atmosphere ? Could they play the role of bio-precursors ? A laboratory study based on the chemical transformation that Titan’s aerosol analogues suffer when placed under putative surface conditions of the satellite was performed. In order to understand the role that aqueous ammonia may play on the chemical transformation of atmospheric aerosols once they reach the surface, we synthesized laboratory analogues of Titan’s aerosols from a N2:CH4 (98:2) mixture irradiated at low temperatures under a continuous flow regime by a cold plasma discharge of 180 W. The analogues were recovered, partitioned in several 10.0 mg samples and placed inside different ammonia concentrations during 10 weeks at temperatures as low as those reported for Titan’s surface. After a derivatization process performed to the aerosols’ refractory phase with MTBSTFA in DMF, the products were identified and quantified using a GC-MS system. We found derived residues related to amino acids as well as urea. Our results have important astrobiological implications to Titan’s environment particularly if the existence of the suggested subsurface water-ammonia mixture and its deposition on the satellite’s surface is validated. This paper will also deal with more general discussions : we will especially emphasize what we learn about Titan’s aerosol nature from Space Exploration (especially ACP experiment onboard Huygens probe) and more globally on aerosol fate in Titan’s environment, and what we learn about Titan’s aerosol nature from laboratory studies (characterization of aerosol analogues, aka tholins) Illustration of the chemical evolution of Titan’s tholins in NH4OH neutralizing solution : depending of the group nature (-R) of some tholins components the name of the resulting amino-acid obtained after NH4OH hydrolysis is listed at the bottom of the figure.

  3. Aerosol hygroscopicity and its impact on atmospheric visibility and radiative forcing in Guangzhou during the 2006 PRIDE-PRD campaign

    NASA Astrophysics Data System (ADS)

    Liu, Xingang; Zhang, Yuanhang; Cheng, Yafang; Hu, Min; Han, Tingting

    2012-12-01

    The objective of this study is to quantify the relation of aerosol chemical compositions and optical properties, and to assess the impact of relative humidity (RH) on atmospheric visibility and aerosol direct radiative forcing (ADRF). Mass concentration and size distribution of aerosol chemical compositions as well as aerosol optical properties were concurrently measured at Guangzhou urban site during the PRD (Pearl River Delta) campaign from 1 to 31 July, 2006. Gaseous pollutant NO2 and meteorological parameter were simultaneously monitored. Compared with its dry condition, atmospheric ambient extinction coefficient σext(RH) averagely increased about 51% and atmospheric visibility deceased about 35%, among which RH played an important role on the optical properties of water soluble inorganic salts. (NH4)2SO4 is the most important component responsible for visibility degradation at Guangzhou. In addition, the asymmetry factor g increased from 0.64 to 0.74 with the up-scatter fraction β decreasing from 0.24 to 0.19 when RH increasing from 40% to 90%. At 80% RH, the ADRF increased about 280% compared to that at dry condition and it averagely increased about 100% during the campaign under ambient conditions. It can be inferred that aerosol water content is a key factor and could not be ignored in assessing the role of aerosols in visibility impairment and radiative forcing, especially in the regions with high RH.

  4. Winter monsoon variation of lower tropospheric aerosol layers at a tropical coastal station, Trivandrum (8°33' N, 77°E), India

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Veerabuthiran, S.; Ramakrishna Rao, D.; Presennakumar, B.; Mohankumar, S. V.; Muraleedharan Nair, S.; Sreeja, R.

    Tropospheric aerosols play an important role in cloud physics and radiative transfer process. They show a high degree of variability in their characteristics both in space and time. The features of the background aerosol at any location or region depend to a large extent on the local source regions and various meteorological parameters at the time of measurement. Apart from the natural sources in and around the observatory station, anthropogenic additions of aerosols also affect the radiation budget and chemical composition. Besides this, it is realized in recent years that aerosols generated at one place could be transported over long distances by the wind systems and produce consequent effects at locations much farther away from the source. Such transported aerosols may settle as stratified layers in the atmosphere typically in the altitude of 1 to 4 km. These aerosol layers will have important effect in the local climate and atmospheric environment because of their role in radiative transfer process and cloud physics. Lidar observations had been conducted to study the long-range transport of aerosol and their effect at tropical station, Trivandrum during the northern winter period of 2002-2004. The presence of aerosol layers was observed on many days below 4 km during the above period. The high extinction coefficient is observed in the layer region and typically it is found to be 3.4 x 10-4 m-1. The aerosol optical depth is calculated by integrating the extinction values in the aerosol layer region and it is found to be between 0.25 and 0.35. The plausible reasons for the formation of these layers were explained using the wind circulation pattern and air back trajectories.

  5. Effect of Aerosol and Ocean Representation on Simulated Climate Responses

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Knutti, Reto; Wild, Martin

    2016-04-01

    It is still debated to what extent anthropogenic aerosols shaped 20th century surface temperatures, especially sea surface temperatures (SSTs), through alteration of surface solar radiation (SSR). SSTs, in turn, are crucial in the context of atmospheric circulation and ocean heat uptake. Uncertainty considering anthropogenic aerosol forcing thus translates into uncertainty regarding ocean heat uptake and, ultimately, climate responses towards anthropogenic influences. We use the global climate model ECHAM to analyse the 20th century climate response towards either anthropogenic aerosols or well-mixed greenhouse gases or both with different representations of ocean and aerosols: atmosphere-only with prescribed SSTs and interactive aerosols; mixed-layer ocean and interactive or prescribed aerosols; fully coupled with prescribed aerosols. For interactive aerosols we use the Hamburg Aerosol Module (HAM). Our results suggest that up to 15% of global ocean surfaces undergo an SSR reduction of at least -4W/m² in the year 2000, due to anthropogenic aerosols. The area affected depends on how aerosols are represented and whether clear sky or all sky SSR is considered. In MLO equilibria with interactive aerosols, anthropogenic aerosols clearly shape surface temperature response patterns. This is to a lesser degree the case for the transient fully coupled case. Additivity of global mean temperature responses towards single forcings - an assumption often made in the literature - is not fulfilled for the MLO experiments, but for the fully coupled experiments. While some of these differences can be attributed to the differing ocean representation, it is implied that differing aerosol representation may play an even more relevant role. Thus, our results corroborate not only the relevance of anthropogenic aerosols for surface temperature responses, but also highlight the relevance of choice of aerosol representation.

  6. The European aerosol budget in 2006

    NASA Astrophysics Data System (ADS)

    Aan de Brugh, J. M. J.; Schaap, M.; Vignati, E.; Dentener, F.; Kahnert, M.; Sofiev, M.; Huijnen, V.; Krol, M. C.

    2011-02-01

    This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension). We model that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95%) and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%). We model transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we underestimate the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match), while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional) aerosol budgets, as presented in the current study.

  7. The European aerosol budget in 2006

    NASA Astrophysics Data System (ADS)

    Aan de Brugh, J. M. J.; Schaap, M.; Vignati, E.; Dentener, F.; Kahnert, M.; Sofiev, M.; Huijnen, V.; Krol, M. C.

    2010-09-01

    This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension). We observe that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95%) and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%). We observe transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we observe an underestimation of the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match), while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional) aerosol budgets, as presented in the current study.

  8. Detailed Aerosol Characterization using Polarimetric Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, Otto; di Noia, Antonio; Stap, Arjen; Rietjens, Jeroen; Smit, Martijn; van Harten, Gerard; Snik, Frans

    2016-04-01

    Anthropogenic aerosols are believed to cause the second most important anthropogenic forcing of climate change after greenhouse gases. In contrast to the climate effect of greenhouse gases, which is understood relatively well, the negative forcing (cooling effect) caused by aerosols represents the largest reported uncertainty in the most recent assessment of the International Panel on Climate Change (IPCC). To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. There is growing consensus in the aerosol remote sensing community that multi-angle measurements of intensity and polarization are essential to unambiguously determine all relevant aerosol properties. This presentations adresses the different aspects of polarimetric remote sensing of atmospheric aerosols, including retrieval algorithm development, validation, and data needs for climate and air quality applications. During past years, at SRON-Netherlands Instite for Space Research retrieval algorithms have been developed that make full use of the capabilities of polarimetric measurements. We will show results of detailed aerosol properties from ground-based- (groundSPEX), airborne- (NASA Research Scanning Polarimeter), and satellite (POLDER) measurements. Also we will discuss observational needs for future instrumentation in order to improve our understanding of the role of aerosols in climate change and air quality.

  9. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  10. Aerosol Size, CCN, and Black Carbon Properties at a Coastal Site in the Eastern U.S.

    NASA Astrophysics Data System (ADS)

    Royalty, T. M.; Petters, M. D.; Grieshop, A. P.; Meskhidze, N.; Reed, R. E.; Phillips, B.; Dawson, K. W.

    2015-12-01

    Atmospheric aerosols play an important role in regulating the global radiative budget through direct and indirect effects. To date, the role of sea spray aerosols in modulating climate remains poorly understood. Here we present results from measurements performed at the United States Army Corps of Engineers' Field Research Facility in Duck, North Carolina, USA. Aerosol mobility size distributions (10-600 nm), refractory black carbon (rBC) and scattering particle size distributions (200-620 nm), and size resolved cloud condensation nuclei distributions (.07% - .6% supersaturation) were collected at the end of a 560m pier. Aerosol characteristics associated with northerly, high wind speed (15+ m s-1) flow originating from an oceanic trajectory are contrasted with aerosol properties observed during a weak to moderate westerly flow originating from a continental trajectory. Both marine and continental air masses had aerosol with bi-modal number size distributions with modes centered at 30nm and 140nm. In the marine air-mass, the CCN concentration at supersaturation of 0.4%, total aerosol number, surface, and volume concentration were low. rBC number concentration (D > 200 nm) associated with the marine air-mass was an order of magnitude less than continental number concentration and indicative of relatively unpolluted air. These measurements are consistent with measurements from other coastal sites under marine influence. The relative proportion of Aitken mode size particles increased from 1:2 to 2:1 while aerosol surface area was < 25 μm2 cm-3, suggesting that conditions upwind were potentially conducive to new particle formation. Overall, these results will contribute a better understanding to composition and size variation of marine aerosols.

  11. Investigation on seasonal variations of aerosol properties and its influence on radiative effect over an urban location in central India

    NASA Astrophysics Data System (ADS)

    Jose, Subin; Gharai, Biswadip; Niranjan, K.; Rao, P. V. N.

    2016-05-01

    Aerosol plays an important role in modulating solar radiation, which are of great concern in perspective of regional climate change. The study analysed the physical and optical properties of aerosols over an urban area and estimated radiative effect using three years in-situ data from sunphotometer, aethalometer and nephelometer as input to radiative transfer model. Aerosols properties indicate the dominance of fine mode aerosols over the study area. However presence of coarse mode aerosols is also found during pre-monsoon [March-April-May]. Daily mean aerosol optical depth showed a minimum during winter [Dec-Jan-Feb] (0.45-0.52) and a maximum during pre-monsoon (0.6-0.7), while single scattering albedo (ω) attains its maximum (0.78 ± 0.05) in winter and minimum (0.67 ± 0.06) during pre-monsoon and asymmetry factor varied in the range between 0.48 ± 0.02 to 0.53 ± 0.04. Episodic events of dust storm and biomass burning are identified by analyzing intrinsic aerosol optical properties like scattering Ångström exponent (SAE) and absorption Ångström exponent (AAE) during the study periods and it has been observed that during dust storm events ω is lower (˜0.77) than that of during biomass burning (˜0.81). The aerosol direct radiative effect at top of the atmosphere during winter is -11.72 ± 3.5 Wm-2, while during pre-monsoon; it is -5.5 ± 2.5 Wm-2, which can be due to observed lower values of ω during pre-monsoon. A large positive enhancement of atmospheric effect of ˜50.53 Wm-2 is observed during pre-monsoon compared to winter. Due to high aerosol loading in pre-monsoon, a twofold negative surface forcing is also observed in comparison to winter.

  12. Radiative impact of aerosols generated from biomass burning

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1995-01-01

    Atmospheric aerosol particles play a vital role in the Earth's radiative energy budget. They exert a net cooling influence on climate by directly reflecting the solar radiation to space and by modifying the shortwave reflective properties of clouds. Each year, increasing amounts of aerosol particles are released into the atmosphere due to biomass burning, dust storms, forest fires, and volcanic activity. These particles significantly perturb the radiative balance on local, regional, and global scales. While the detection of aerosols over water is a well established procedure, the detection of aerosols over land is often difficult due to the poor contrast between the aerosols and the underlying terrain. In this study, we use textural measures in order to detect aerosols generated from biomass burning over South America, using AVHRR data. The regional radiative effects are then examined using ERBE data. Preliminary results show that the net radiative forcing of aerosols is about -36 W/sq m.

  13. Direct observations of atmospheric aerosol nucleation.

    PubMed

    Kulmala, Markku; Kontkanen, Jenni; Junninen, Heikki; Lehtipalo, Katrianne; Manninen, Hanna E; Nieminen, Tuomo; Petäjä, Tuukka; Sipilä, Mikko; Schobesberger, Siegfried; Rantala, Pekka; Franchin, Alessandro; Jokinen, Tuija; Järvinen, Emma; Äijälä, Mikko; Kangasluoma, Juha; Hakala, Jani; Aalto, Pasi P; Paasonen, Pauli; Mikkilä, Jyri; Vanhanen, Joonas; Aalto, Juho; Hakola, Hannele; Makkonen, Ulla; Ruuskanen, Taina; Mauldin, Roy L; Duplissy, Jonathan; Vehkamäki, Hanna; Bäck, Jaana; Kortelainen, Aki; Riipinen, Ilona; Kurtén, Theo; Johnston, Murray V; Smith, James N; Ehn, Mikael; Mentel, Thomas F; Lehtinen, Kari E J; Laaksonen, Ari; Kerminen, Veli-Matti; Worsnop, Douglas R

    2013-02-22

    Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub-2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation--more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.

  14. Global Retrieval of Aerosol Properties from Sources to Sinks By MODIS

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina

    2005-01-01

    Mineral dust and smoke aerosols play an important role in both climate forcing and oceanic productivity throughout the entire year. Due to the relatively short lifetime (a few hours to about a week), the distributions of these airborne particles vary extensively in both space and time. Consequently, satellite observations are needed over both source and sink regions for continuous temporal and spatial sampling of dust and smoke properties. However, despite their importance, the high spatial resolution satellite measurements of these aerosols near their sources have been lacking, In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as MODIS and SeaWiFS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over land, including desert and semi-desert regions. The comparisons show reasonable agreements between these two. Our results show that the dust plumes lifted from the deserts near India/Pakistan border, and over Afghanistan, and the Arabian Peninsula are often observed by MODIS to be transported along the Indo-Gangetic Basin and mixed with the fine mode pollution particles generated by anthropogenic activities in this region, particularly during the pre-monsoon season (April-May). These new satellite products will allow scientists to determine

  15. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Jing, Bo; Tong, Shengrui; Liu, Qifan; Li, Kun; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2016-03-01

    Water-soluble organic compounds (WSOCs) are important components of organics in the atmospheric fine particulate matter. Although WSOCs play an important role in the hygroscopicity of aerosols, knowledge on the water uptake behavior of internally mixed WSOC aerosols remains limited. Here, the hygroscopic properties of single components such as levoglucosan, oxalic acid, malonic acid, succinic acid, phthalic acid, and multicomponent WSOC aerosols mainly involving oxalic acid are investigated with the hygroscopicity tandem differential mobility analyzer (HTDMA). The coexisting hygroscopic species including levoglucosan, malonic acid, and phthalic acid have a strong influence on the hygroscopic growth and phase behavior of oxalic acid, even suppressing its crystallization completely during the drying process. The phase behaviors of oxalic acid/levoglucosan mixed particles are confirmed by infrared spectra. The discrepancies between measured growth factors and predictions from Extended Aerosol Inorganics Model (E-AIM) with the Universal Quasi-Chemical Functional Group Activity Coefficient (UNIFAC) method and Zdanovskii-Stokes-Robinson (ZSR) approach increase at medium and high relative humidity (RH) assuming oxalic acid in a crystalline solid state. For the internal mixture of oxalic acid with levoglucosan or succinic acid, there is enhanced water uptake at high RH compared to the model predictions based on reasonable oxalic acid phase assumption. Organic mixture has more complex effects on the hygroscopicity of ammonium sulfate than single species. Although hygroscopic species such as levoglucosan account for a small fraction in the multicomponent aerosols, they may still strongly influence the hygroscopic behavior of ammonium sulfate by changing the phase state of oxalic acid which plays the role of "intermediate" species. Considering the abundance of oxalic acid in the atmospheric aerosols, its mixtures with hygroscopic species may significantly promote water uptake

  16. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Jing, B.; Tong, S. R.; Liu, Q. F.; Li, K.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2015-08-01

    Water soluble organic compounds (WSOCs) are important components of organics in the atmospheric fine particulate matter. Although WSOCs play an important role in the hygroscopicity of aerosols, water uptake behavior of internally mixed WSOC aerosols remains limited characterization. Here, the hygroscopic properties of single component such as levoglucosan, oxalic acid, malonic acid, succinic acid and phthalic acid and multicomponent WSOC aerosols mainly involving oxalic acid are investigated with the hygroscopicity tandem differential mobility analyzer (HTDMA). The coexisting hygroscopic species including levoglucosan, malonic acid and phthalic acid have strong influence on the hygroscopic growth and phase behavior of oxalic acid, even suppress its crystallization completely. The interactions between oxalic acid and levoglucosan are confirmed by infrared spectra. The discrepancies between measured growth factors and predictions from Extended Aerosol Inorganics Model (E-AIM) with UNIFAC method and Zdanovskii-Stokes-Robinson (ZSR) approach increase at medium and high relative humidity (RH) assuming oxalic acid in a solid state. For the internal mixture of oxalic acid with levoglucosan or succinic acid, there is enhanced water uptake at high RH due to positive chemical interactions between solutes. Organic mixture has more complex effect on the hygroscopicity of ammonium sulfate than single species. Although hygroscopic species such as levoglucosan accounts for a small fraction in the multicomponent aerosols, they may still strongly influence the hygroscopic behavior of ammonium sulfate by changing phase state of oxalic acid which plays the role of "intermediate" species. Considering the abundance of oxalic acid in the atmospheric aerosols, its mixtures with hygroscopic species may significantly promote water uptake under high RH conditions and thus affect the cloud condensation nuclei (CCN) activity, optical properties and chemical reactivity of atmospheric particles.

  17. Assessment of the Aerosol Distribution Over Indian Subcontinent in CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Sanap, S. D.; Pandithurai, G.

    2014-12-01

    This paper examines the aerosol distribution over Indian subcontinent as represented in 21 models from Coupled Model Inter-comparison Project Phase 5 (CMIP5) simulations, wherein model simulated aerosol optical depth (AOD) is compared with Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite observations. The objective of the study is to provide an assessment of the capability of various global models, participating in CMIP5 project, in capturing the realistic spatial and temporal distribution of aerosol species over the Indian subcontinent. Results from our analysis show that majority of the CMIP5 models seriously underestimates the spatio-temporal variability of aerosol species over the Indian subcontinent, in particular over Indo-Gangetic Plains(IGP). Though the representation of black carbon (BC) loading in many models is fairly good, the dust loading is observed to be significantly low in majority of the models. The presence of pronounced dust activity over northern India and dust being one of the major constituent of aerosol species, the biases in dust loading has a great impact on the AOD of that region. We found that considerable biases in simulating the 850 hPa wind field (which plays important role in transport of dust from adjacent deserts) would be the possible reason for poor representation of dust AOD and in turn total AOD over Indian region in CMIP5 models. In addition, aerosol radiative forcing (ARF) underestimated/overestimated in most of the models. However, spatial distribution of ARF in multi-model ensemble mean is comparable reasonably well with observations with bias in magnitudes. This analysis emphasizes the fundamental need to improve the representation of aerosol species in current state of the art climate models. As reported in Intergovernmental Panel on Climate Change (IPCC) fourth assessment report (AR4), the level of scientific understanding (LOSU) of climatic impact of aerosols is medium-low. For better understanding of

  18. The Mars Imager for Cloud and Aerosol (MICA) instrument concept

    NASA Astrophysics Data System (ADS)

    Hipkin, V.; Drummond, J.; Hackett, J.; Besla, G.

    2004-05-01

    Cloud and dust play an important role in the Mars polar atmosphere. Of particular interest is the evolution of cap-edge dust storms observed during the Mars Global Surveyor mission, and the development of the polar hood and aphelion cloud band. This poster describes the Mars Imager for Cloud and Aerosol (MICA), a four-band visible camera designed to characterize Mars cloud and dust by imaging the limb at sunrise and sunset. MICA will be capable of producing profiles of Mars aerosol optical properties from 0-75km altitude with a vertical resolution better than 600m. The MICA design uses multiple bands and a new occulting disk technique to provide enhanced dust characterization capabilities. The full dynamic range of the camera is optimized for atmospheric scattered light. A pinhole in the occulting disk attenuates direct sunlight, reducing its intensity to levels produced by the atmospheric scattering. The resulting composite image contains both a detailed image of the sun and a sensitive wide-angle image of the distribution of thin cloud and aerosol layers. Absolute calibration is possible through viewing the sun at high angles above the atmosphere. The calibrated solar image produces particle extinction measurements directly, while the wide-angle part of the image can be used to fit the scattering phase function in the case of horizontally homoge-neous layers. These measurements will provide new constraints on Mars aerosol particle size distribution and optical properties. The addition of a flip mirror gives MICA the capability also to observe the surface. MICA was conceived as part of the MARVEL Scout proposal. It is intended that it will follow on from Mars Express and MRO cloud and aerosol vertical profile mapping, providing new information, higher vertical resolution and adding to the Mars cloud and dust climatology.

  19. Are anthropogenic aerosols affecting rainfall?

    NASA Astrophysics Data System (ADS)

    Junkermann, Wolfgang; Hacker, Jorg

    2013-04-01

    Modification of cloud microphysics by anthropogenic aerosols is well known since several decades. Whether the underlying processes leads to changes in precipitation is by far less confirmed. Several different factors affect the production of rain in a way that a causality between increasing aerosol load in the atmosphere and a change of annual rainfall is very difficult to confirm. What would be expected as an effect of additional cloud condensation nuclei is a shift in the spatial and temporal rainfall distribution towards a lower number of days with low rain intensity and more frequent or more vigorous single events. In fact such a shift has been observed in several locations worldwide and has been suggested to be caused by increasing aerosol load, however, without further specification of the nature and number of the aerosols involved. Measurements of aerosols which might be important for cloud properties are extremely sparse and no long term monitoring data sets are available up to now. The problem of missing long term aerosol data that could be compared to available long term meteorological data sets can possibly be resolved in certain areas where well characterized large anthropogenic aerosol sources were installed in otherwise pristine areas without significant changes in land use over several decades. We investigated aerosol sources and current aerosol number, size and spatial distributions with airborne measurements in the planetary boundary layer over two regions in Australia that are reported to suffer from extensive drought despite the fact that local to regional scale water vapor in the atmosphere is slowly and constantly increasing. Such an increase of the total water in the planetary boundary layer would imply also an increase in annual precipitation as observed in many other locations elsewhere. The observed decline of rainfall in these areas thus requires a local to regional scale physical process modifying cloud properties in a way that rain

  20. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  1. Vapor scavenging by atmospheric aerosol particles

    SciTech Connect

    Andrews, E.

    1996-05-01

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  2. AERONET - Aerosol Climatology From Megalopolis Aerosol Source Regions

    NASA Astrophysics Data System (ADS)

    Holben, B. N.; Eck, T. F.; Dubovik, O.; Smirnov, A.; Slutsker, I.; Artaxo, P.; Leyva, A.; Lu, D.; Sano, I.; Singh, R. P.; Quel, E.; Tanre, D.; Zibordi, G.

    2002-05-01

    AERONET is a globally distributed network of ~170 identical sun and sky scanning spectral radiometers expanded by federation with collaborating investigators that contribute to the AERONET public domain data-base. We will detail the current distribution and plans for expanded collaboration. Recent products available through the project database are important for assessment of human health as well as climate forcing issues. We will illustrate a summary of aerosol optical properties measured in Indian, East Asian, North American, South American and European megalopolis source regions. We will present monthly mean fine and coarse particle aerosol optical depth, particle size distributions and single scattering albedos. Each region represents a population in excess of 10 million inhabitants within a 200 km radius of the observation site that dictate the anthropogenic aerosol sources contributing to significantly diverse aerosol properties as a function of economic development and seasonally dependent meteorological processes. The diversity of the measured optical properties of urban aerosols illustrates the need for long-term regional monitoring that contribute to comparative assessments for health and climate change investigations.

  3. Thermophoretically Dominated Aerosol Coagulation

    NASA Astrophysics Data System (ADS)

    Rosner, Daniel E.; Arias-Zugasti, Manuel

    2011-01-01

    A theory of aerosol coagulation due to size-dependent thermophoresis is presented. This previously overlooked effect is important when local temperature gradients are large, the sol population is composed of particles of much greater thermal conductivity than the carrier gas, with mean diameters much greater than the prevailing gas mean free path, and an adequate “spread” in sizes (as in metallurgical mists or fumes). We illustrate this via a population-balance analysis of the evolution of an initially log-normal distribution when this mechanism dominates ordinary Brownian diffusion.

  4. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Liu, X.; Ma, P.-L.; Wang, H.; Tilmes, S.; Singh, B.; Easter, R. C.; Ghan, S. J.; Rasch, P. J.

    2016-02-01

    Atmospheric carbonaceous aerosols play an important role in the climate system by influencing the Earth's radiation budgets and modifying the cloud properties. Despite the importance, their representations in large-scale atmospheric models are still crude, which can influence model simulated burden, lifetime, physical, chemical and optical properties, and the climate forcing of carbonaceous aerosols. In this study, we improve the current three-mode version of the Modal Aerosol Module (MAM3) in the Community Atmosphere Model version 5 (CAM5) by introducing an additional primary carbon mode to explicitly account for the microphysical ageing of primary carbonaceous aerosols in the atmosphere. Compared to MAM3, the four-mode version of MAM (MAM4) significantly increases the column burdens of primary particulate organic matter (POM) and black carbon (BC) by up to 40 % in many remote regions, where in-cloud scavenging plays an important role in determining the aerosol concentrations. Differences in the column burdens for other types of aerosol (e.g., sulfate, secondary organic aerosols, mineral dust, sea salt) are less than 1 %. Evaluating the MAM4 simulation against in situ surface and aircraft observations, we find that MAM4 significantly improves the simulation of seasonal variation of near-surface BC concentrations in the polar regions, by increasing the BC concentrations in all seasons and particularly in cold seasons. However, it exacerbates the overestimation of modeled BC concentrations in the upper troposphere in the Pacific regions. The comparisons suggest that, to address the remaining model POM and BC biases, future improvements are required related to (1) in-cloud scavenging and vertical transport in convective clouds and (2) emissions of anthropogenic and biomass burning aerosols.

  5. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model

    DOE PAGES

    Liu, X.; Ma, P. -L.; Wang, H.; Tilmes, S.; Singh, B.; Easter, R. C.; Ghan, S. J.; Rasch, P. J.

    2016-02-08

    Atmospheric carbonaceous aerosols play an important role in the climate system by influencing the Earth's radiation budgets and modifying the cloud properties. Despite the importance, their representations in large-scale atmospheric models are still crude, which can influence model simulated burden, lifetime, physical, chemical and optical properties, and the climate forcing of carbonaceous aerosols. In this study, we improve the current three-mode version of the Modal Aerosol Module (MAM3) in the Community Atmosphere Model version 5 (CAM5) by introducing an additional primary carbon mode to explicitly account for the microphysical ageing of primary carbonaceous aerosols in the atmosphere. Compared to MAM3,more » the four-mode version of MAM (MAM4) significantly increases the column burdens of primary particulate organic matter (POM) and black carbon (BC) by up to 40 % in many remote regions, where in-cloud scavenging plays an important role in determining the aerosol concentrations. Differences in the column burdens for other types of aerosol (e.g., sulfate, secondary organic aerosols, mineral dust, sea salt) are less than 1 %. Evaluating the MAM4 simulation against in situ surface and aircraft observations, we find that MAM4 significantly improves the simulation of seasonal variation of near-surface BC concentrations in the polar regions, by increasing the BC concentrations in all seasons and particularly in cold seasons. However, it exacerbates the overestimation of modeled BC concentrations in the upper troposphere in the Pacific regions. As a result, the comparisons suggest that, to address the remaining model POM and BC biases, future improvements are required related to (1) in-cloud scavenging and vertical transport in convective clouds and (2) emissions of anthropogenic and biomass burning aerosols.« less

  6. Aerosol Enhancements in the Upper Troposphere Over The Amazon Forest: Do Amazonian Clouds Produce Aerosols?

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Afchine, A.; Albrecht, R. I.; Artaxo, P.; Borrmann, S.; Cecchini, M. A.; Costa, A.; Dollner, M.; Fütterer, D.; Järvinen, E.; Klimach, T.; Konemann, T.; Kraemer, M.; Krüger, M. L.; Machado, L.; Mertes, S.; Pöhlker, C.; Poeschl, U.; Sauer, D. N.; Schnaiter, M.; Schneider, J.; Schulz, C.; Spanu, A.; Walser, A.; Weinzierl, B.; Wendisch, M.

    2015-12-01

    The German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) on the German research aircraft HALO took place over the Amazon Basin in September/October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with trace gases, aerosol particles, and atmospheric radiation. The aircraft was equipped with about 30 remote sensing and in-situ instruments for meteorological, trace gas, aerosol, cloud, precipitation, and solar radiation measurements. Fourteen research flights were conducted during this campaign. Observations during ACRIDICON-CHUVA showed high aerosol concentrations in the upper troposphere (UT) over the Amazon Basin, with concentrations after normalization to standard conditions often exceeding those in the boundary layer (BL). This behavior was consistent between several aerosol metrics, including condensation nuclei (CN), cloud condensation nuclei (CCN), and chemical species mass concentrations. These UT aerosols were different in their composition and size distribution from the aerosol in the BL, making convective transport of particles unlikely as a source. The regions in the immediate outflow of deep convective clouds were found to be depleted in aerosol particles, whereas enhanced aerosol number and mass concentrations were found in UT regions that had experienced outflow from deep convection in the preceding 24-48 hours. This suggests that aerosol production takes place in the UT based on volatile and condensable material brought up by deep convection. Subsequently, downward mixing and transport of upper tropospheric aerosol may be a source of particles to the BL, where they increase in size by the condensation of biogenic volatile organic carbon (BVOC) oxidation products. This may be an important source of aerosol particles in the Amazonian BL, where aerosol nucleation and new

  7. Radiative Effects of Aerosol in the Marine Environment: Tales from the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Barnard, J.; Chand, D.; Chapman, E. G.; Comstock, J. M.; Ferrare, R. A.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Johnson, R.; Kassianov, E.; Kluzek, C.; Laskin, A.; Lee, Y.; Mei, F.; Michalsky, J. J.; Redemann, J.; Rogers, R. R.; Russell, P. B.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Springston, S. R.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2013-12-01

    There is still uncertainty associated with the direct radiative forcing by atmospheric aerosol and its representation in atmospheric models. This is particularly true in marine environments near the coast where the aerosol loading is a function of both naturally occurring and anthropogenic aerosol. These regions are also subject to variable synoptic and thermally driven flows (land-sea breezes) that transport aerosol between the continental and marine environments. The situation is made more complicated due to seasonal changes in aerosol emissions. Given these differences in emissions, we expect significant differences in the aerosol intensive and extensive properties between summer and winter and data is needed to evaluate models over the wide range of conditions. To address this issue, the recently completed Two Column Aerosol Project (TCAP) was designed to measure the key aerosol parameters in two atmospheric columns, one located over Cape Cod, Massachusetts and another approximately 200 km from the coast over the Atlantic Ocean. Measurements included aerosol size distribution, chemical composition, optical properties and vertical distribution. Several aspects make TCAP unique, including the year-long deployment of a suite of surface-based instruments by the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility and two aircraft intensive operations periods supported by the ARM Airborne Facility, one conducted in July 2012 and a second in February 2013. The presentation will include a discussion of the impact of the aerosol optical properties and their uncertainty on simulations of the radiation budget within the TCAP domain in the context of both single column and regional scale models. Data from TCAP will be used to highlight a number of important factors, including diurnal variation in aerosol optical depth measured at the surface site, systematic changes in aerosol optical properties (including scattering, absorption, and

  8. The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule

    PubMed Central

    Mégroz, Marianne; Kleifeld, Oded; Wright, Amy; Powell, David; Harrison, Paul; Adler, Ben; Harper, Marina

    2016-01-01

    The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molecules and their mRNA targets. Here, we show that a P. multocida hfq mutant produces significantly less hyaluronic acid capsule during all growth phases and displays reduced in vivo fitness. Transcriptional and proteomic analyses of the hfq mutant during mid-exponential-phase growth revealed altered transcript levels for 128 genes and altered protein levels for 78 proteins. Further proteomic analyses of the hfq mutant during the early exponential growth phase identified 106 proteins that were produced at altered levels. Both the transcript and protein levels for genes/proteins involved in capsule biosynthesis were reduced in the hfq mutant, as were the levels of the filamentous hemagglutinin protein PfhB2 and its secretion partner LspB2. In contrast, there were increased expression levels of three LPS biosynthesis genes, encoding proteins involved in phosphocholine and phosphoethanolamine addition to LPS, suggesting that these genes are negatively regulated by Hfq-dependent mechanisms. Taken together, these data provide the first evidence that Hfq plays a crucial role in regulating the global expression of P. multocida genes, including the regulation of key P. multocida virulence factors, capsule, LPS, and filamentous hemagglutinin. PMID:26883595

  9. Phosphoryl Moieties of Lipid A from Neisseria meningitidis and N. gonorrhoeae Lipooligosaccharides Play an Important Role in Activation of both MyD88- and TRIF-Dependent TLR4/MD-2 Signaling Pathways1

    PubMed Central

    Liu, Mingfeng; John, Constance M.; Jarvis, Gary A.

    2010-01-01

    We have previously shown that the lipooligosaccharide (LOS) from Neisseria meningitidis and N. gonorrhoeae engages the TLR4/MD-2 complex. In this study, we report that LOS from different meningococcal and gonococcal strains have different potencies to activate NF-κB through TLR4/MD-2, and that the relative activation can be correlated with ion abundances in MALDI-TOF mass spectrometry that are indicative of the number of phosphoryl substituents on the lipid A (LA) component of the LOS. The LOS from three of the strains, meningococcal strain 89I and gonococcal strains 1291 and GC56, representing high, intermediate and low potency on NF-κB activation, respectively, differently activated cytokine expression through the TLR4/MD-2 pathway in monocytes. In addition to induction of typical inflammatory cytokines such as TNF-α, IL-1β, and IL-6, MIP-1α and MIP-1β also were significantly higher in cells treated with 89I LOS which had the most phosphoryl substitutions on the LA compared to 1291 and GC56. We found that LOS activated both the MyD88- and TRIF-dependent pathways through NF-κB and IFN regulatory factor 3 (IRF-3) transcription factors, respectively. Moreover, LOS induced the expression of costimulatory molecule CD80 on the surface of monocytes via upregulation of IRF-1. These results suggest that phosphoryl moieties of LA from N. meningitidis and N. gonorrhoeae LOS play an important role in activation of both the MyD88- and TRIF-dependent pathways. Our findings are consistent with the concept that bacteria modulate pathogen-associated molecular patterns by expression of phosphoryl moieties on the LA to optimize interactions with the host. PMID:21037101

  10. The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule.

    PubMed

    Mégroz, Marianne; Kleifeld, Oded; Wright, Amy; Powell, David; Harrison, Paul; Adler, Ben; Harper, Marina; Boyce, John D

    2016-05-01

    The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molecules and their mRNA targets. Here, we show that a P. multocida hfq mutant produces significantly less hyaluronic acid capsule during all growth phases and displays reduced in vivo fitness. Transcriptional and proteomic analyses of the hfq mutant during mid-exponential-phase growth revealed altered transcript levels for 128 genes and altered protein levels for 78 proteins. Further proteomic analyses of the hfq mutant during the early exponential growth phase identified 106 proteins that were produced at altered levels. Both the transcript and protein levels for genes/proteins involved in capsule biosynthesis were reduced in the hfq mutant, as were the levels of the filamentous hemagglutinin protein PfhB2 and its secretion partner LspB2. In contrast, there were increased expression levels of three LPS biosynthesis genes, encoding proteins involved in phosphocholine and phosphoethanolamine addition to LPS, suggesting that these genes are negatively regulated by Hfq-dependent mechanisms. Taken together, these data provide the first evidence that Hfq plays a crucial role in regulating the global expression of P. multocida genes, including the regulation of key P. multocida virulence factors, capsule, LPS, and filamentous hemagglutinin. PMID:26883595

  11. The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule.

    PubMed

    Mégroz, Marianne; Kleifeld, Oded; Wright, Amy; Powell, David; Harrison, Paul; Adler, Ben; Harper, Marina; Boyce, John D

    2016-05-01

    The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molecules and their mRNA targets. Here, we show that a P. multocida hfq mutant produces significantly less hyaluronic acid capsule during all growth phases and displays reduced in vivo fitness. Transcriptional and proteomic analyses of the hfq mutant during mid-exponential-phase growth revealed altered transcript levels for 128 genes and altered protein levels for 78 proteins. Further proteomic analyses of the hfq mutant during the early exponential growth phase identified 106 proteins that were produced at altered levels. Both the transcript and protein levels for genes/proteins involved in capsule biosynthesis were reduced in the hfq mutant, as were the levels of the filamentous hemagglutinin protein PfhB2 and its secretion partner LspB2. In contrast, there were increased expression levels of three LPS biosynthesis genes, encoding proteins involved in phosphocholine and phosphoethanolamine addition to LPS, suggesting that these genes are negatively regulated by Hfq-dependent mechanisms. Taken together, these data provide the first evidence that Hfq plays a crucial role in regulating the global expression of P. multocida genes, including the regulation of key P. multocida virulence factors, capsule, LPS, and filamentous hemagglutinin.

  12. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S.

    PubMed

    Creamean, Jessie M; Suski, Kaitlyn J; Rosenfeld, Daniel; Cazorla, Alberto; DeMott, Paul J; Sullivan, Ryan C; White, Allen B; Ralph, F Martin; Minnis, Patrick; Comstock, Jennifer M; Tomlinson, Jason M; Prather, Kimberly A

    2013-03-29

    Winter storms in California's Sierra Nevada increase seasonal snowpack and provide critical water resources and hydropower for the state. Thus, the mechanisms influencing precipitation in this region have been the subject of research for decades. Previous studies suggest Asian dust enhances cloud ice and precipitation, whereas few studies consider biological aerosols as an important global source of ice nuclei (IN). Here, we show that dust and biological aerosols transported from as far as the Sahara were present in glaciated high-altitude clouds coincident with elevated IN concentrations and ice-induced precipitation. This study presents the first direct cloud and precipitation measurements showing that Saharan and Asian dust and biological aerosols probably serve as IN and play an important role in orographic precipitation processes over the western United States.

  13. The effect of aerosol optical depth on rainfall with reference to meteorology over metro cities in India.

    PubMed

    Gunaseelan, Indira; Bhaskar, B Vijay; Muthuchelian, K

    2014-01-01

    Rainfall is a key link in the global water cycle and a proxy for changing climate; therefore, proper assessment of the urban environment's impact on rainfall will be increasingly important in ongoing climate diagnostics and prediction. Aerosol optical depth (AOD) measurements on the monsoon seasons of the years 2008 to 2010 were made over four metro regional hotspots in India. The highest average of AOD was in the months of June and July for the four cities during 3 years and lowest was in September. Comparing the four regions, Kolkata was in the peak of aerosol contamination and Chennai was in least. Pearson correlation was made between AOD with climatic parameters. Some changes in the parameters were found during drought year. Temperature, cloud parameters, and humidity play an important role for the drought conditions. The role of aerosols, meteorological parameters, and their impacts towards the precipitation during the monsoon was studied.

  14. Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect.

    PubMed

    Mishra, Amit Kumar; Koren, Ilan; Rudich, Yinon

    2015-10-01

    This study presents a theoretical investigation of the effect of the aerosol vertical distribution on the aerosol radiative effect (ARE). Four aerosol composition models (dust, polluted dust, pollution and pure scattering aerosols) with varying aerosol vertical profiles are incorporated into a radiative transfer model. The simulations show interesting spectral dependence of the ARE on the aerosol layer height. ARE increases with the aerosol layer height in the ultraviolet (UV: 0.25-0.42 μm) and thermal-infrared (TH-IR: 4.0-20.0 μm) regions, whereas it decreases in the visible-near infrared (VIS-NIR: 0.42-4.0 μm) region. Changes in the ARE with aerosol layer height are associated with different dominant processes for each spectral region. The combination of molecular (Rayleigh) scattering and aerosol absorption is the key process in the UV region, whereas aerosol (Mie) scattering and atmospheric gaseous absorption are key players in the VIS-NIR region. The longwave emission fluxes are controlled by the environmental temperature at the aerosol layer level. ARE shows maximum sensitivity to the aerosol layer height in the TH-IR region, followed by the UV and VIS-NIR regions. These changes are significant even in relatively low aerosol loading cases (aerosol optical depth ∼0.2-0.3). Dust aerosols are the most sensitive to altitude followed by polluted dust and pollution in all three different wavelength regions. Differences in the sensitivity of the aerosol type are explained by the relative strength of their spectral absorption/scattering properties. The role of surface reflectivity on the overall altitude dependency is shown to be important in the VIS-NIR and UV regions, whereas it is insensitive in the TH-IR region. Our results indicate that the vertical distribution of water vapor with respect to the aerosol layer is an important factor in the ARE estimations. Therefore, improved estimations of the water vapor profiles are needed for the further reduction in

  15. Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect.

    PubMed

    Mishra, Amit Kumar; Koren, Ilan; Rudich, Yinon

    2015-10-01

    This study presents a theoretical investigation of the effect of the aerosol vertical distribution on the aerosol radiative effect (ARE). Four aerosol composition models (dust, polluted dust, pollution and pure scattering aerosols) with varying aerosol vertical profiles are incorporated into a radiative transfer model. The simulations show interesting spectral dependence of the ARE on the aerosol layer height. ARE increases with the aerosol layer height in the ultraviolet (UV: 0.25-0.42 μm) and thermal-infrared (TH-IR: 4.0-20.0 μm) regions, whereas it decreases in the visible-near infrared (VIS-NIR: 0.42-4.0 μm) region. Changes in the ARE with aerosol layer height are associated with different dominant processes for each spectral region. The combination of molecular (Rayleigh) scattering and aerosol absorption is the key process in the UV region, whereas aerosol (Mie) scattering and atmospheric gaseous absorption are key players in the VIS-NIR region. The longwave emission fluxes are controlled by the environmental temperature at the aerosol layer level. ARE shows maximum sensitivity to the aerosol layer height in the TH-IR region, followed by the UV and VIS-NIR regions. These changes are significant even in relatively low aerosol loading cases (aerosol optical depth ∼0.2-0.3). Dust aerosols are the most sensitive to altitude followed by polluted dust and pollution in all three different wavelength regions. Differences in the sensitivity of the aerosol type are explained by the relative strength of their spectral absorption/scattering properties. The role of surface reflectivity on the overall altitude dependency is shown to be important in the VIS-NIR and UV regions, whereas it is insensitive in the TH-IR region. Our results indicate that the vertical distribution of water vapor with respect to the aerosol layer is an important factor in the ARE estimations. Therefore, improved estimations of the water vapor profiles are needed for the further reduction in

  16. Influence of continental advection on aerosol characteristics over Bay of Bengal (BoB) in winter: results from W-ICARB cruise experiment

    NASA Astrophysics Data System (ADS)

    Kharol, S. K.; Badarinath, K. V. S.; Kaskaoutis, D. G.; Sharma, A. R.; Gharai, B.

    2011-08-01

    The transport of aerosols and pollutants from continental India to the adjoining oceanic areas is a major topic of concern and several experimental campaigns have been conducted over the region focusing on aerosol characteristics and their climate implications. The present study analyzes the spectral aerosol optical depth (AOD) variations over Bay of Bengal (BoB) during Winter-Integrated Campaign for Aerosols, gases and Radiation Budget (W-ICARB) from 27 December 2008 to 30 January 2009 and investigates the influence of the adjoining landmass to the marine aerosol field. High AOD500 values (>0.7) occurred over northern BoB due to outflow of aerosols and pollutants from the densely populated Indo-Gangetic Plains (IGP); low AOD500 (0.1-0.2) was observed in central and southern BoB, far away from the mainland. The Angstrom exponent "α" was observed to be high (>1.2) near coastal waters, indicating relative abundance of accumulation-mode continental aerosols. On the other hand, over southern BoB its values dropped below ~0.7. National Center for Environmental Prediction (NCEP) reanalysis data on winds at 850 and 700 hPa, along with air-mass trajectories calculated using Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, suggested transport of continental aerosols from central and northern India over the BoB. On the other hand, when the ship was crossing the eastern BoB, the aerosol loading was strongly affected by air-masses originating from Southeast Asia, causing an increase in AOD and α. Biomass-burning episodes over the region played an important role in the observed aerosol properties. Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) AOD550 and cruise measured AOD550 showed good agreement (R2 = 0.86 and 0.77, respectively) over BoB, exhibiting similar AOD and α spatio-temporal variation.

  17. Sensitivity of the climate response to regional aerosol emissions

    NASA Astrophysics Data System (ADS)

    Kasoar, Matthew; Voulgarakis, Apostolos; Shindell, Drew; Lamarque, Jean-Francois; Shawki, Dilshad

    2015-04-01

    Short-lived emissions like aerosols and their precursors have inhomogeneous distributions in the atmosphere. As a result, aerosol radiative forcing of the climate is highly uneven, and depends on both the location of emission as well as circulation patterns. Unlike well-mixed greenhouse gases such as CO2, the climate response to aerosol forcing may therefore be very dependent on the source region, and so understanding how the sensitivity of the climate varies with emission and forcing location has implications for the design of policy regarding short-lived climate forcers, as well as for understanding the coupling between radiative forcing and climate response. Using the UK Met Office's HadGEM3 composition-climate model, we have performed a series of experiments to investigate the climate response to aerosol species from different key anthropogenic emission regions, in particular East Asia, South Asia, the USA, and the whole northern mid-latitude band. Recent results from these simulations will be presented, focusing in particular on the patterns of climate forcing due to Asian anthropogenic emissions, and the resulting responses in surface temperature and precipitation. Large-scale circulation changes, driven by regional temperature gradients, are found to play an important role in explaining the observed climate responses, which can be substantial even in in parts of the world far from the location of the forcing. The correct magnitude of aerosol forcing remains, however, one of the greatest uncertainties in our current understanding of anthropogenic influences on climate. Aerosol radiative forcing varies considerably between different composition-climate models, and to explore the implications of this for climate responses we use the GISS Model-E2 and NCAR CESM1 models in addition to HadGEM3. These reveal a remarkable variation in the simulated climate response as a result of differences in the radiative forcing from identical perturbations to regional sulphate

  18. A perspective on SOA generated in aerosol water from glyoxal and methylglyoxal and its impacts on climate-relevant aerosol properties

    NASA Astrophysics Data System (ADS)

    Sareen, N.; McNeill, V. F.

    2011-12-01

    In recent years, glyoxal and methylglyoxal have emerged to be potentially important SOA precursors with significant implications for climate-related aerosol properties. Here we will discuss how the chemistry of these and similar organic compounds in aerosol water can affect the aerosol optical and cloud formation properties. Aqueous-phase SOA production from glyoxal and methylglyoxal is a potential source of strongly light-absorbing organics, or "brown carbon". We characterized the kinetics of brown carbon formation from these precursors in mixtures of ammonium sulfate and water using UV-Vis spectrophotometry. This mechanism has been incorporated into a photochemical box model with coupled gas phase-aqueous aerosol chemistry. Methylglyoxal and related compounds also may impact an aerosol's ability to act as a cloud condensation nucleus. We recently showed via pendant drop tensiometry and aerosol chamber studies that uptake of methylglyoxal from the gas phase driven by aqueous-phase oligomerization chemistry is a potentially significant, previously unidentified source of surface-active organic material in aerosols. Results from pendant drop tensiometry showed significantly depressed surface tension in methylglyoxal-ammonium sulfate solutions. We further found that ammonium sulfate particles exposed to gas-phase methylglyoxal in a 3.5 m3 aerosol reaction chamber activate into cloud droplets at sizes up to 15% lower at a given supersaturation than do pure ammonium sulfate particles. The observed enhancement exceeds that predicted based on Henry's Law and our measurements of surface tension depression in bulk solutions, suggesting that surface adsorption of methylglyoxal plays a role in determining CCN activity. Methylglyoxal and similar gas-phase surfactants may be an important and overlooked source of enhanced CCN activity in the atmosphere. To characterize the SOA products formed in these solutions, an Aerosol Chemical Ionization Mass Spectrometer (CIMS) was used

  19. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  20. Spatially Refined Aerosol Direct Radiative Focusing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  1. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  2. On numerical simulation of the global distribution of sulfate aerosol produced by a large volcanic eruption

    SciTech Connect

    Pudykiewicz, J.A.; Dastoor, A.P.

    1994-12-31

    Volcanic eruptions play an important role in the global sulfur cycle of the Earth`s atmosphere and can significantly perturb the global atmospheric chemistry. The large amount of sulfate aerosol produced by the oxidation of SO{sub 2} injected into the atmosphere during volcanic eruptions also has a relatively big influence on the radiative equilibrium of the Earth`s climatic system. The submicron particles of the sulfate aerosol reflect solar radiation more effectively than they trap radiation in the infrared range. The effect of this is observed as cooling of the Earth`s surface. The modification of the global radiation budget following volcanic eruption can subsequently cause significant fluctuations of atmospheric variables on a subclimatic scale. The resulting perturbation of weather patterns has been observed and well documented since the eruptions of Mt. Krakatau and Mt. Tambora. The impact of the sulfate aerosol from volcanic eruptions on the radiative equilibrium of the Earth`s atmosphere was also confirmed by the studies done with Global Circulation Models designed to simulate climate. The objective of the present paper is to present a simple and effective method to estimate the global distribution of the sulfate aerosol produced as a consequence of volcanic eruptions. In this study we will present results of the simulation of global distribution of sulfate aerosol from the eruption of Mt Pinatubo.

  3. Estimation and Bias Correction of Aerosol Abundance using Data-driven Machine Learning and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Malakar, Nabin K.; Lary, D. L.; Moore, A.; Gencaga, D.; Roscoe, B.; Albayrak, Arif; Petrenko, Maksym; Wei, Jennifer

    2012-01-01

    Air quality information is increasingly becoming a public health concern, since some of the aerosol particles pose harmful effects to peoples health. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. The comparison between the AOD measured from the ground-based Aerosol Robotic Network (AERONET) system and the satellite MODIS instruments at 550 nm shows that there is a bias between the two data products. We performed a comprehensive analysis exploring possible factors which may be contributing to the inter-instrumental bias between MODIS and AERONET. The analysis used several measured variables, including the MODIS AOD, as input in order to train a neural network in regression mode to predict the AERONET AOD values. This not only allowed us to obtain an estimate, but also allowed us to infer the optimal sets of variables that played an important role in the prediction. In addition, we applied machine learning to infer the global abundance of ground level PM2.5 from the AOD data and other ancillary satellite and meteorology products. This research is part of our goal to provide air quality information, which can also be useful for global epidemiology studies.

  4. Aerosol Transport Over Equatorial Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  5. Play Therapy: A Review

    ERIC Educational Resources Information Center

    Porter, Maggie L.; Hernandez-Reif, Maria; Jessee, Peggy

    2009-01-01

    This article discusses the current issues in play therapy and its implications for play therapists. A brief history of play therapy is provided along with the current play therapy approaches and techniques. This article also touches on current issues or problems that play therapists may face, such as interpreting children's play, implementing…

  6. Contribution of Brown Carbon to Total Aerosol Absorption in Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Tripathi, S. N.; Moosakutty, S. P.; Bergin, M.; Vreeland, H. P.

    2015-12-01

    Carbonaceous aerosols play an important role in earth's radiative balance by absorbing and scattering light. We report physical and optical properties of carbonaceous aerosols from Indo-Gangetic Plain (IGP) for 60 days during 2014-15 winter season. Mass concentration and size distribution of black carbon (BC) and organic carbon (OC) were measured in real time using Single Particle Soot Photometer (SP2) and High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) respectively. Optical properties of aerosols at atmospheric and denuded (heated at 300 ˚C) conditions were also measured using 3 wavelength Photo Acoustic Soot Spectrometer (PASS 3). Analysis shows large scale carbonaceous aerosol loading during winter season in IGP. Multiple biomass burning events combined with trash burning contributed to this high loading along with very low boundary layer height. An inter-comparison shows that Aethalometer over estimates BC by a factor of 3 when compared with that of SP 2 measurement. Enhancement in absorption (Eabs) defined as the ratio of atmospheric absorption to denuded absorption shows presence of absorbing organics known as brown carbon (BrC). Optical closure performed between denuded aerosol absorption measured by PASS 3 and Mie theory derived absorption using SP 2 BC size distribution showed a difference of only 30 % at 781 nm. This difference might be due to the non-spherical shape and presence of residual coating on BC. Refractive index of BrC at 405 and 532 nm were derived using optical closure method for the entire sampling period. Overall results indicates that the impact of BrC on optical absorption is significant in areas dominated by biomass burning such as IGP and such effects needs to be considered in global aerosol modelling studies.

  7. Exploring Climatology and Long-Term Variations of Aerosols from NASA Reanalysis MERRA-2 with Giovanni

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Ostrenga, Dana; Vollmer, Bruce; Li, Zhanqing

    2016-01-01

    Dust plays important roles in energy cycle and climate variations. The dust deposition is the major source of iron in the open ocean, which is an essential micronutrient for phytoplankton growth and therefore may influence the ocean uptake of atmospheric CO2. Mineral dust can also act as fertilizer for forests over long time periods. Over 35 years of simulated global aerosol products from NASA atmospheric reanalysis, second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) are available from NASA Goddard Earth Science Data and Information Services Center (GES DISC). The MERRA-2 covers the period 1980-present, continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated by using MERRA-2 aerosol model, which interact directly with the radiation parameterization, and radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). Dust deposition data along with other major aerosol compositions (e.g. black carbon, sea salt, and sulfate, etc.) are simulated as dry and wet deposition, respectively. The hourly and monthly data are available at spatial resolution of 0.5ox0.625o (latitude x longitude). Quick data exploration of climatology and interannual variations of MERRA-2 aerosol can be done through the online visualization and analysis tool, Giovanni. This presentation, using dust deposition as an example, demonstrates a number of MERRA-2 data services at GES DISC. Global distributions of dust depositions, and their seasonal and inter-annual variations are investigated from MERRA-2 monthly aerosol products.

  8. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption in Xianghe, SE of Beijing, China

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2005-12-01

    China's rapid industrialization over the last few decades has affected air quality in many regions of China, and even the regional climate. As a part of the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals since January 2005 at Xianghe, about 70 km southeast of Beijing. Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations during the winter months (January-March) ranged from 9 to 459 μg/m3 in the coarse mode with an average concentration of 122 μg/m3, and from 11 to 203 μg/m3 in the fine mode with an average concentration of 45 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Absorption efficiency measurements at 550 nm show very high values compared to measurements performed in the United States during the CLAMS experiment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in refractive indices from the several collected species and particle size effects. The absorption properties from aerosols measured in China show large absorption efficiencies, compared to aerosols measured in the US, possibly linked to different technology practices used in these countries. For organic plus black carbon aerosols, where the refractive index seems to be relatively constant, the absorption efficiency spectral dependence for fine mode aerosols falls between 1/λ and 1/λ2. The coarse mode absorption shows much less spectral dependence.

  9. Organic Mass to Organic Carbon ratio in Atmospheric Aerosols: Observations and Global Simulations

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Kanakidou, M.; Daskalakis, N.

    2012-12-01

    Organic compounds play an important role in atmospheric chemistry and affect Earth's climate through their impact on oxidants and aerosol formation (e.g. O3 and organic aerosols (OA)). Due to the complexity of the mixture of organics in the atmosphere, the organic-mass-to-organic-carbon ratio (OM/OC) is often used to characterize the organic component in atmospheric aerosols. This ratio varies dependant on the aerosol origin and the chemical processing in the atmosphere. Atmospheric observations have shown that as OA and its precursor gases age in the atmosphere, it leads to the formation of more oxidized (O:C atomic ratio 0.6 to 0.8), less volatile and less hydrophobic compounds (particle growth factor at 95% relative humidity of 0.16 to 0.20) that have more similar properties than fresh aerosols. While reported OM:OC ratios observed over USA range between 1.29 and 1.95, indicating significant contribution of local pollution sources to the OC in that region, high O/C ratio associated with a high OM/OC ratio of 2.2 has been also observed for the summertime East Mediterranean aged aerosol. In global models, the OM/OC ratio is either calculated for specific compounds or estimated for compound groups. In the present study, we review OM/OC observations and compare them with simulations from a variety of models that contributed to the AEROCOM exercise. We evaluate the chemical processing level of atmospheric aerosols simulated by the models. A total of 32 global chemistry transport models are considered in this study with variable complexity of the representation of OM/OC ratio in the OA. The analysis provides an integrated view of the OM/OC ratio in the global atmosphere and of the accuracy of its representation in the global models. Implications for atmospheric chemistry and climate simulations are discussed.

  10. Heterogeneous Chemistry: Understanding Aerosol/Oxidant Interactions

    SciTech Connect

    Joyce E. Penner

    2005-03-14

    -surface NO{sub x} concentrations by a factor of 2-5. These results suggest the importance of using the more accurate hybrid dynamical method in the estimates of both aerosol forcing and tropospheric ozone chemistry.

  11. Play and the Peer Culture: Play Styles and Object Use.

    ERIC Educational Resources Information Center

    Elgas, Peggy M.; And Others

    1988-01-01

    Findings suggested that: (1) peer culture is not a unitary whole but rather a differentiated social system comprised of various groups and different types of players; (2) objects play an important role in peer culture as entry vehicles and social markers; and (3) play periods are social arenas in which the dynamics of the peer culture are enacted.…

  12. Understanding Young Children's Learning through Play: Building Playful Pedagogies

    ERIC Educational Resources Information Center

    Broadhead, Pat; Burt, Andy

    2011-01-01

    This timely and accessible text introduces, theorises and practically applies two important concepts which now underpin early years practice: those of "playful learning" and "playful pedagogies". Pat Broadhead and Andy Burt draw upon filmed material, conversations with children, reflection, observation, and parental and staff interviews, in their…

  13. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  14. Implications of MODIS impression of aerosol loading over urban and rural settlements in Nigeria: Possible links to energy consumption patterns in the country

    NASA Astrophysics Data System (ADS)

    Dom Onyeuwaoma, Nnaemeka

    2016-07-01

    A study of aerosol loading patterns in some selected cities in Nigeria was carried out using MODIS, TOMS/OMI AND AIRS satellite imageries for a period of 10 years. The results showed that an aerosol optical depth (AOD) loading obtained ranged from 0.02-0.9, UV aerosol index (AI) and carbon monoxide (CO) results ranged from 1.32- 2.43 and 2.22-2.6 molecule/cm2, respectively. The CO data was used to infer the presence of carbonecous aerosols from biomass, fossil combustion and industrial activities. This result indicates that areas with higher AOD and AI do not correspond in high CO loading. From the HYSPLIT and HAT analysis conducted it showed that advection plays important role in the dispersion of aerosols. This implies that aerosols can reside in a place remote from where they are generated. Also, the high concentration of CO aerosol in the southern cities suggests a high rate of industrial pollution as a result of fossil fuel burning, vehicular emissions, high population density and gas flaring. Therefore, emphasis should be on the need to switch to renewable energy options as an alternative to fossil fuel. Furthermore, plans for mitigations should not be limited to industrialized cities only but extended to other cities which might be bearing the real brunt of industrial emissions as shown in this work.

  15. Probing the impact of different aerosol sources on cloud microphysics and precipitation through in-situ measurements of chemical mixing state

    NASA Astrophysics Data System (ADS)

    Prather, K. A.; Suski, K.; Cazorla, A.; Cahill, J. F.; Creamean, J.; Collins, D. B.; Heymsfield, A.; Roberts, G. C.; DeMott, P. J.; Sullivan, R. C.; Rosenfeld, D.; Comstock, J. M.; Tomlinson, J. M.

    2011-12-01

    Aerosol particles play a crucial role in affecting cloud processes by serving as cloud nuclei. However, our understanding of which particles actually form cloud and ice nuclei limits our ability to treat aerosols properly in climate models. In recent years, it has become possible to measure the chemical composition of individual cloud nuclei within the clouds using on-line mass spectrometry. In-situ high time resolution chemistry can now be compared with cloud physics measurements to directly probe the impact of aerosol chemistry on cloud microphysics. This presentation will describe results from two recent field campaigns, CalWater in northern California and ICE-T in the western Caribbean region. Ground-based and aircraft measurements will be presented of aerosol mixing state, cloud microphysics, and meteorology. Results from single particle mass spectrometry will show the sources of the cloud seeds, including dust, biomass burning, sea spray, and biological particles. Details will be provided on how we are now able to probe the sources and cycling of atmospheric aerosols by measuring individual aerosols, cloud nuclei, and precipitation chemistry. The important role of dust, both Asian and African, and bioparticles in forming ice nuclei will be discussed. Finally, a summary will be provided discussing how these new in-situ measurements are being used to advance our understanding of complex atmospheric processes, and improve our understanding of aerosol impacts on climate.

  16. A System to Create Stable Nanoparticle Aerosols from Nanopowders.

    PubMed

    Ding, Yaobo; Riediker, Michael

    2016-01-01

    Nanoparticle aerosols released from nanopowders in workplaces are associated with human exposure and health risks. We developed a novel system, requiring minimal amounts of test materials (min. 200 mg), for studying powder aerosolization behavior and aerosol properties. The aerosolization procedure follows the concept of the fluidized-bed process, but occurs in the modified volume of a V-shaped aerosol generator. The airborne particle number concentration is adjustable by controlling the air flow rate. The system supplied stable aerosol generation rates and particle size distributions over long periods (0.5-2 hr and possibly longer), which are important, for example, to study aerosol behavior, but also for toxicological studies. Strict adherence to the operating procedures during the aerosolization experiments ensures the generation of reproducible test results. The critical steps in the standard protocol are the preparation of the material and setup, and the aerosolization operations themselves. The system can be used for experiments requiring stable aerosol concentrations and may also be an alternative method for testing dustiness. The controlled aerosolization made possible with this setup occurs using energy inputs (may be characterized by aerosolization air velocity) that are within the ranges commonly found in occupational environments where nanomaterial powders are handled. This setup and its operating protocol are thus helpful for human exposure and risk assessment. PMID:27501179

  17. Characteristics and composition of atmospheric aerosols in Phimai, central Thailand during BASE-ASIA

    NASA Astrophysics Data System (ADS)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; Bell, Shaun W.

    2013-10-01

    Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.183°N, 102.565°E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 ± 64 Mm-1; absorption: 15 ± 8 Mm-1; PM10 concentration: 33 ± 17 μg m-3), and dominated by submicron particles. Major aerosol compounds included carbonaceous (OC: 9.5 ± 3.6 μg m-3; EC: 2.0 ± 2.3 μg m-3) and secondary species (SO42-: 6.4 ± 3.7 μg m-3, NH4+: 2.2 ± 1.3 μg m-3). While the site was seldom under the direct influence of large forest fires to its north, agricultural fires were ubiquitous during the experiment, as suggested by the substantial concentration of K+ (0.56 ± 0.33 μg m-3). Besides biomass burning, aerosols in Phimai during the experiment were also strongly influenced by industrial and vehicular emissions from the Bangkok metropolitan region and long-range transport from southern China. High humidity played an important role in determining the aerosol composition and properties in the region. Sulfate was primarily formed via aqueous phase reactions, and hygroscopic growth could enhance the aerosol light scattering by up to 60%, at the typical morning RH level of 85%. The aerosol single scattering albedo demonstrated distinct diurnal variation, ranging from 0.86 ± 0.04 in the evening to 0.92 ± 0.02 in the morning. This experiment marks the first time such comprehensive characterization of aerosols was made for rural central Thailand. Our results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow.

  18. Influence of aqueous chemistry on the chemical composition of fog water and interstitial aerosol in Fresno

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin; Ge, Xinlei; Collier, Sonya; Xu, Jianzhong; Sun, Yele; Wang, Youliang; Herckes, Pierre; Zhang, Qi

    2015-04-01

    A measurement study was conducted in the Central Valley (Fresno) of California in January 2010, during which radiation fog events were frequently observed. Fog plays important roles in atmospheric chemistry by scavenging aerosol particles and trace gases and serving as a medium for various aqueous-phase reactions. Understanding the effects of fog on the microphysical and chemical processing of aerosol particles requires detailed information on their chemical composition. In this study, we characterized the chemical composition of fog water and interstitial aerosol particles to study the effects of fog processing on aerosol properties. Fog water samples were collected during the 2010 Fresno campaigns with a Caltech Active Strand Cloud water Collector (CASCC) while interstitial submicron aerosols were characterized in real time with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a scanning Mobility Particle Sizer (SMPS). The fog water samples were later analyzed using the HR-ToF-AMS, ion chromatography, and a total carbon analyzer. The chemical composition and characteristics of interstitial particles during the fog events were compared to those of dissolved inorganic and organic matter in fog waters. Compared to interstitial aerosols, fog water is composed of a higher fraction of ammonium nitrate and oxygenated organics, due to aqueous formation of secondary aerosol species as well as enhanced gas-to-particle partitioning of water soluble species under water rich conditions. Sulfate is formed most efficiently in fog water although its contribution to total dissolved mass is relatively low. The HR-ToF-AMS mass spectra of organic matter in fog water (FOM) are very similar to that of oxygenated organic aerosols (OOA) derived from positive matrix factorization (PMF) of the HR-ToF-AMS spectra of ambient aerosol (r2 = 0.96), but FOM appears to contain a large fraction of acidic functional groups than OOA. FOM is also enriched of

  19. Desert dust in rural western US; the influence of dust storms, large particles, and land-use change on aerosol loads

    NASA Astrophysics Data System (ADS)

    Parks, D.; MacDonald, A. E.; Rosen, R. D.; Edmonds, H. N.; Key, E.; Swanberg, N.; Wiseman, W. J.; Sandgathe, S. A.; Neff, J. C.; Fernandez, D.; Munson, S.; Reynolds, R. L.

    2011-12-01

    Atmospheric aerosols are common in urban settings as well as dryland rural environments and are important to both climate and biogeochemical cycling. Most urban and far traveled aerosols are less than 10 micrometers in diameter with many particles in the less than 2.5 or 1 micrometer-size classes. Small aerosols, including many generated by industrial activity, are the focus of federal environmental law and have a major impact on human health. In rural areas of the western US, however, these small industrially derived particles appear to make up a small part of the overall aerosol load. Rather, dust in the rural West is dominated by mineral aerosols including a large amount of particles that range in size from 10 to 40 microns. These particles can travel for hundreds of kilometers, particularly during periods when dust storms are common. In the dusty spring and summer periods in and around Canyonlands and Mesa Verde National Parks, large particles (particles greater than 10 micrometers in diameter) appear to contribute between 50 and 90% to the overall particle load several meters above the ground. During large dust storms, concentrations of total suspended particulates increase by a factor of 8 to 10 while particles less than 10 micrometers in diameter are minimally affected. The presence of large particles in the atmosphere of the rural West is notable for several reasons. First, the majority of the existing aerosol monitoring networks focus on the small particle-size classes of less than 2.5 and 10 microns. Because many aerosol-collection instruments are designed with specific particle-size cutoff criteria, these instruments and the networks that depend on them are effectively blind to the larger particles that can dominate aerosol loads in the West. Second, for large portions of the year including the spring and summer months when dust storms are common, large particles likely play a major role in visibility restrictions across the protected airsheds of the

  20. Implementation of the Missing Aerosol Physics into LLNL IMPACT

    SciTech Connect

    Chuang, C

    2005-02-09

    In recent assessments of climate forcing, the Intergovernmental Panel on Climate Change lists aerosol as one o f the most important anthropogenic agents that influence climate. Atmospheric aerosols directly affect the radiative fluxes at the surface and top of the Earth's atmosphere by scattering and/or absorbing radiation. Further, aerosols indirectly change cloud microphysical properties (such as cloud drop effective radius) that also affect the radiative fluxes. However, the estimate of the magnitude of aerosol climatic effect varies widely, and aerosol/cloud interactions remain one of the most uncertain aspects of climate models today. The Atmospheric Sciences Division has formulated a plan to enhance and expand our modeling expertise in aerosol/cloud/climate interactions. Under previous LDRD support, we successfully developed a computationally efficient version of IMPACT to simulate aerosol climatology. This new version contains a compact chemical mechanism for the prediction of sulfate and also predicts the distributions of organic carbon (OC), black carbon (BC), dust, and sea salt. Furthermore, we implemented a radiation package into IMPACT to calculate the radiative forcing and heating/cooling rates by aerosols. This accomplishment built the foundation of our currently funded projects under the NASA Global Modeling and Analysis Program as well as the DOE Atmospheric Radiation Program. Despite the fact that our research is being recognized as an important effort to quantify the effects of anthropogenic aerosols on climate, the major shortcoming of our previous simulations on aerosol climatic effects is the over simplification of spatial and temporal variations of aerosol size distributions that are shaped by complicated nucleation, growth, transport and removal processes. Virtually all properties of atmospheric aerosols and clouds depend strongly on aerosol size distribution. Moreover, molecular processing on aerosol surfaces alters the hygroscopic

  1. Direct evidence of atmospheric secondary organic aerosol formation in forest atmosphere through heteromolecular nucleation.

    PubMed

    Kavouras, Ilias G; Stephanou, Euripides G

    2002-12-01

    Atmospheric aerosols play a central role in climate and atmospheric chemistry. Organic matter frequently composes aerosol major fraction over continental areas. Reactions of natural volatile organic compounds, with atmospheric oxidants, are a key formation pathway of fine particles. The gas and particle atmospheric concentration of organic compounds directly emitted from conifer leaf epicuticular wax and of those formed through the photooxidation of alpha- and beta-pinene were simultaneously collected and measured in a conifer forest by using elaborated sampling and GC/ MS techniques. The saturation concentrations of acidic and carbonyl photooxidation products were estimated, by taking into consideration primary gas- and particle-phase organic species. Primary organic aerosol components represented an important fraction of the atmospheric gas-phase organic content Consequently, saturation concentrations of photooxidation products have been lowered facilitating new particle formation between molecules of photooxidation products and semi-volatile organic compounds. From the measured concentrations of the above-mentioned compounds, saturation concentrations (Csat,i) of alpha- and beta-pinene photooxidation products were calculated for nonideal conditions using a previously developed absorptive model. The results of these calculations indicated that primarily emitted organic species and ambient temperature play a crucial role in secondary organic aerosol formation. PMID:12523424

  2. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  3. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  4. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  5. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  6. Engaging Families through Artful Play

    ERIC Educational Resources Information Center

    Brown, Robert

    2015-01-01

    This paper explores how aligned arts and play experiences can extend child and family engagement in a public outdoor space. The importance of outdoor play for children is strongly advocated and in response local governments provide playgrounds and recreational open spaces. To extend further the experiences afforded in such spaces some local…

  7. A Place for Block Play.

    ERIC Educational Resources Information Center

    Moore, Gary T.

    1997-01-01

    Discusses the importance of block play--including its contributions to perceptual, fine motor, and cognitive development--and components of a good preschool block play area. Recommends unit blocks complemented by stacking blocks, toys, beads, cubes, and Brio wooden toys. Makes recommendations for space, size, locations and connections to other…

  8. Outdoor Play: Combating Sedentary Lifestyles

    ERIC Educational Resources Information Center

    Thigpen, Betsy

    2007-01-01

    Increasingly sedentary lifestyles are contributing to overweight and other health concerns as children spend less and less time outside engaged in active play. Outdoor play provides important opportunities to explore the natural world, interact with peers, engage in vigorous physical activity, and learn about our environment. However, outdoor…

  9. Neuroscience, Play, and Child Development.

    ERIC Educational Resources Information Center

    Frost, Joe L.

    This paper presents a brief overview of the array of neuroscience research as it applies to play and child development. The paper discusses research showing the importance of play for brain growth and child development, and recommends that families, schools and other social and corporate institutions rearrange their attitudes and priorities about…

  10. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol

    PubMed Central

    2015-01-01

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle–particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle–particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate. PMID:27162963

  11. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    PubMed

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.

  12. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    PubMed

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate. PMID:27162963

  13. Secondary organic aerosol: a comparison between foggy and nonfoggy days.

    PubMed

    Kaul, D S; Gupta, Tarun; Tripathi, S N; Tare, V; Collett, J L

    2011-09-01

    Carbonaceous species, meteorological parameters, trace gases, and fogwater chemistry were measured during winter in the Indian city of Kanpur to study secondary organic aerosol (SOA) during foggy and clear (nonfoggy) days. Enhanced SOA production was observed during fog episodes. It is hypothesized that aqueous phase chemistry in fog drops is responsible for increasing SOA production. SOA concentrations on foggy days exceeded those on clear days at all times of day; peak foggy day SOA concentrations were observed in the evening vs peak clear day SOA concentrations which occurred in the afternoon. Changes in biomass burning emissions on foggy days were examined because of their potential to confound estimates of SOA production based on analysis of organic to elemental carbon (OC/EC) ratios. No evidence of biomass burning influence on SOA during foggy days was found. Enhanced oxidation of SO(2) to sulfate during foggy days was observed, possibly causing the regional aerosol to become more acidic. No evidence was found in this study, either, for effects of temperature or relative humidity on SOA production. In addition to SOA production, fogs can also play an important role in cleaning the atmosphere of carbonaceous aerosols. Preferential scavenging of water-soluble organic carbon (WSOC) by fog droplets was observed. OC was found to be enriched in smaller droplets, limiting the rate of OC deposition by droplet sedimentation. Lower EC concentrations were observed on foggy days, despite greater stagnation and lower mixing heights, suggesting fog scavenging and removal of EC was active as well. PMID:21790145

  14. Studies of Ice Nucleating Aerosol Particles in Arctic Cloud Systems

    NASA Technical Reports Server (NTRS)

    Rogers, David C.; DeMott, Paul J.; Kreidenweis, Sonia M.

    2001-01-01

    The focus of this research is to improve the understanding of ice nucleating aerosol particles (IN) and the role they play in ice formation in Arctic clouds. IN are important for global climate issues in a variety of ways. The primary effect is their role in determining the phase (liquid or solid) of cloud particles. The microscale impact is on cloud particle size, growth rate, shape, fall speed, concentration, radiative properties, and scavenging of gases and aerosols. On a larger scale, ice formation affects the development of precipitation (rate, amount, type, and distribution), latent heat release (rate and altitude), ambient humidity, the persistence of clouds, and cloud albedo. The overall goals of our FIRE 3 research are to characterize the concentrations and variability of Arctic IN during the winter-spring transition, to compare IN measurements with ice concentrations in Arctic clouds, and to examine selected IN samples for particle morphology and chemical there are distinguishable chemical signatures. The results can be combined with other measurements of aerosols, gaseous species, and cloud characteristics in order to understand the processes that determine the phase and concentration of cloud particles.

  15. Secondary organic aerosol: a comparison between foggy and nonfoggy days.

    PubMed

    Kaul, D S; Gupta, Tarun; Tripathi, S N; Tare, V; Collett, J L

    2011-09-01

    Carbonaceous species, meteorological parameters, trace gases, and fogwater chemistry were measured during winter in the Indian city of Kanpur to study secondary organic aerosol (SOA) during foggy and clear (nonfoggy) days. Enhanced SOA production was observed during fog episodes. It is hypothesized that aqueous phase chemistry in fog drops is responsible for increasing SOA production. SOA concentrations on foggy days exceeded those on clear days at all times of day; peak foggy day SOA concentrations were observed in the evening vs peak clear day SOA concentrations which occurred in the afternoon. Changes in biomass burning emissions on foggy days were examined because of their potential to confound estimates of SOA production based on analysis of organic to elemental carbon (OC/EC) ratios. No evidence of biomass burning influence on SOA during foggy days was found. Enhanced oxidation of SO(2) to sulfate during foggy days was observed, possibly causing the regional aerosol to become more acidic. No evidence was found in this study, either, for effects of temperature or relative humidity on SOA production. In addition to SOA production, fogs can also play an important role in cleaning the atmosphere of carbonaceous aerosols. Preferential scavenging of water-soluble organic carbon (WSOC) by fog droplets was observed. OC was found to be enriched in smaller droplets, limiting the rate of OC deposition by droplet sedimentation. Lower EC concentrations were observed on foggy days, despite greater stagnation and lower mixing heights, suggesting fog scavenging and removal of EC was active as well.

  16. They Too Should Play.

    ERIC Educational Resources Information Center

    Hirst, Cyntha C.; Shelley, Eva Y.

    1989-01-01

    Children with mental retardation and multiple handicaps can effectively participate in play activities and games, but the experience must be structured for them. Techniques for organizing play activities involving handicapped and nonhandicapped children are offered. Examples of singles play, rotation play, and associative play are described. (JDD)

  17. Children's Play and Television.

    ERIC Educational Resources Information Center

    Powell, Mark

    2001-01-01

    Discusses adverse effects of FCC deregulation of children's television programming on children's play behavior. Discusses the difference between play and imitation, the role of high quality dramatic play in healthy child development, the popularity of war play, and use of toys to increase dramatic play. Considers ways to help children gain control…

  18. The Denial of Play.

    ERIC Educational Resources Information Center

    Sutton-Smith, Brian

    Well meaning parents and teachers often use children's play for the purposes of literacy and socialization. Yet, these attempts may deny play to children by subordinating play to some other concept. Evidence shows that even when parents play with their very young children they generally play games like shopping, cooking, and eating; whereas when…

  19. Extensive aerosol optical properties and aerosol mass related measurements during TRAMP/TexAQS 2006 - Implications for PM compliance and planning

    NASA Astrophysics Data System (ADS)

    Wright, Monica E.; Atkinson, Dean B.; Ziemba, Luke; Griffin, Robert; Hiranuma, Naruki; Brooks, Sarah; Lefer, Barry; Flynn, James; Perna, Ryan; Rappenglück, Bernhard; Luke, Winston; Kelley, Paul

    2010-10-01

    Extensive aerosol optical properties, particle size distributions, and Aerodyne quadrupole aerosol mass spectrometer measurements collected during TRAMP/TexAQS 2006 were examined in light of collocated meteorological and chemical measurements. Much of the evident variability in the observed aerosol-related air quality is due to changing synoptic meteorological situations that direct emissions from various sources to the TRAMP site near the center of the Houston-Galveston-Brazoria (HGB) metropolitan area. In this study, five distinct long-term periods have been identified. During each of these periods, observed aerosol properties have implications that are of interest to environmental quality management agencies. During three of the periods, long range transport (LRT), both intra-continental and intercontinental, appears to have played an important role in producing the observed aerosol. During late August 2006, southerly winds brought super-micron Saharan dust and sea salt to the HGB area, adding mass to fine particulate matter (PM 2.5) measurements, but apparently not affecting secondary particle growth or gas-phase air pollution. A second type of LRT was associated with northerly winds in early September 2006 and with increased ozone and sub-micron particulate matter in the HGB area. Later in the study, LRT of emissions from wildfires appeared to increase the abundance of absorbing aerosols (and carbon monoxide and other chemical tracers) in the HGB area. However, the greatest impacts on Houston PM 2.5 air quality are caused by periods with low-wind-speed sea breeze circulation or winds that directly transport pollutants from major industrial areas, i.e., the Houston Ship Channel, into the city center.

  20. Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol

    NASA Astrophysics Data System (ADS)

    Gyawali, Madhu S.

    Atmospheric aerosols considerably influence the climate, reduce visibility, and cause problems in human health. Aerosol light absorption and scattering are the important factors in the radiation transfer models. However, these properties are associated with large uncertainties in climate modeling. In addition, atmospheric aerosols widely vary in composition and size; their optical properties are highly wavelength dependent. This work presents the spectral dependence of aerosol light absorption and scattering throughout the ultraviolet to near-infrared regions. Data were collected in Reno, NV from 2008 to 2010. Also presented in this study are the aerosol optical and physical properties during carbonaceous aerosols and radiative effects study (CARES) conducted in Sacramento area during 2010. Measurements were made using photoacoustic instruments (PA), including a novel UV 355 nm PA of our design and manufacture. Comparative analyses are presented for three main categories: (1) aerosols produced by wildfires and traffic emissions, (2) laboratory-generated and wintertime ambient urban aerosols, and (3) urban plume and biogenic emissions. In these categories, key questions regarding the light absorption by secondary organic aerosols (SOA), so-called brown carbon (BrC), and black carbon (BC) will be discussed. An effort is made to model the emission and aging of urban and biomass burning aerosol by applying shell-core calculations. Multispectral PA measurements of aerosols light absorption and scattering coefficients were used to calculate the Angstrom exponent of absorption (AEA) and single scattering albedo (SSA). The AEA and SSA values were analyzed to differentiate the aerosol sources. The California wildfire aerosols exhibited strong wavelength dependence of aerosol light absorption with AEA as lambda -1 for 405 and 870 nm, in contrast to the relatively weak wavelength dependence of traffic emissions aerosols for which AEA varied approximately as lambda-1. By using

  1. The Role of Anthropogenic Aerosol in Atmospheric Circulation Changes

    NASA Astrophysics Data System (ADS)

    Wilcox, L.; Polvani, L. M.; Highwood, E.

    2015-12-01

    Changes in atmospheric circulation patterns play a dominant role in determining the impacts of a changing climate at the continental scale. Using CMIP5 single forcing experiments from an ensemble of models that provided anthropogenic aerosol only simulations to the archive, we quantify the influence of anthropogenic aerosol on several aspects of the atmospheric circulation, including tropical width, jet position, and jet strength. We show that there is a robust circulation response to anthropogenic aerosol in the mid twentieth century, induced by the large increases in emissions at that time. Although most anthropogenic aerosol is found in the Northern Hemisphere, a response is found in both the Northern and Southern hemispheres. We investigate the extent to which diversity in the temperature and circulation responses to aerosol are related to diversity in aerosol loading and radiative forcing.

  2. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; Ault, A.; Bondy, A.; Takahama, S.; Modini, R. L.; Baumann, K.; Edgerton, E.; Knote, C.; et al

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3more » and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  3. African Dust Aerosols as Atmospheric Ice Nuclei

    NASA Technical Reports Server (NTRS)

    DeMott, Paul J.; Brooks, Sarah D.; Prenni, Anthony J.; Kreidenweis, Sonia M.; Sassen, Kenneth; Poellot, Michael; Rogers, David C.; Baumgardner, Darrel

    2003-01-01

    Measurements of the ice nucleating ability of aerosol particles in air masses over Florida having sources from North Africa support the potential importance of dust aerosols for indirectly affecting cloud properties and climate. The concentrations of ice nuclei within dust layers at particle sizes below 1 pn exceeded 1/cu cm; the highest ever reported with our device at temperatures warmer than homogeneous freezing conditions. These measurements add to previous direct and indirect evidence of the ice nucleation efficiency of desert dust aerosols, but also confirm their contribution to ice nuclei populations at great distances from source regions.