Sample records for aerosols play important

  1. Radiative Importance of Aerosol-Cloud Interaction

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    1999-01-01

    even greater consequences. Presently we know that through the use of fossil fuel and land-use changes we have increased the concentration of greenhouse gases in the atmosphere. In parallel, we have seen a modest increase of global temperature in the last century. These two observations have been linked as cause and effect by climate models, but this connection is still experimentally not verified. The spatial and seasonal distribution of aerosol forcing is different from that of greenhouse gases, thus generating a different spatial fingerprint of climate change. This fingerprint was suggested as a method to identify the response of the climate system to anthropogenic forcing of greenhouse gases and aerosol. The aerosol fingerprint may be the only way to firmly establish the presence (or absence) of human impact on climate. Aerosol-cloud interaction through the indirect effect will be an important component of establishing this fingerprint.

  2. Importance of Anthropogenic Aerosols for Climate Prediction: a Study on East Asian Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Bartlett, R. E.; Bollasina, M. A.

    2017-12-01

    Climate prediction is vital to ensure that we are able to adapt to our changing climate. Understandably, the main focus for such prediction is greenhouse gas forcing, as this will be the main anthropogenic driver of long-term global climate change; however, other forcings could still be important. Atmospheric aerosols represent one such forcing, especially in regions with high present-day aerosol loading such as Asia; yet, uncertainty in their future emissions are under-sampled by commonly used climate forcing projections, such as the Representative Concentration Pathways (RCPs). Globally, anthropogenic aerosols exert a net cooling, but their effects show large variation at regional scales. Studies have shown that aerosols impact locally upon temperature, precipitation and hydroclimate, and also upon larger scale atmospheric circulation (for example, the Asian monsoon) with implications for climate remote from aerosol sources. We investigate how future climate could evolve differently given the same greenhouse gas forcing pathway but differing aerosol emissions. Specifically, we use climate modelling experiments (using HadGEM2-ES) of two scenarios based upon RCP2.6 greenhouse gas forcing but with large differences in sulfur dioxide emissions over East Asia. Results show that increased sulfate aerosols (associated with increased sulfur dioxide) lead to large regional cooling through aerosol-radiation and aerosol-cloud interactions. Focussing on dynamical mechanisms, we explore the consequences of this cooling for the Asian summer and winter monsoons. In addition to local temperature and precipitation changes, we find significant changes to large scale atmospheric circulation. Wave-like responses to upper-level atmospheric changes propagate across the northern hemisphere with far-reaching effects on surface climate, for example, cooling over Europe. Within the tropics, we find alterations to zonal circulation (notably, shifts in the Pacific Walker cell) and monsoon

  3. The relative importance of aerosol scattering and absorption in remote sensing

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Kaufman, Y. J.

    1985-01-01

    Previous attempts to explain the effect of aerosols on satellite measurements of surface properties for the visible and near-infrared spectrum have emphasized the amount of aerosols without consideration of their absorption properties. In order to estimate the importance of absorption, the radiances of the sunlight scattered from models of the earth-atmosphere system are computed as functions of the aerosol optical thickness and absorption. The absorption effect is small where the surface reflectance is weak, but is important for strong reflectance. These effects on classification of surface features, measuring vegetation index, and measuring surface reflectance are presented.

  4. The relative importance of aerosol scattering and absorption in remote sensing

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Kaufman, Y. J.

    1983-01-01

    The relative importance of aerosol optical thickness and absorption is illustrated through computing radiances for radiative transfer models. The radiance of sunlight reflected from models of the earth-atmosphere system is computed as a function of the aerosol optical thickness and its albedo of single scattering; it is noted that the albedo varies from 0.6 in urban environment to nearly 1 in areas with low graphitic carbon content. The calculations are applied to the example of satellite measurements of biomass. It is found that when surface classifications are made by means of clustering techniques the presence of gradients in the aerosol optical properties results in the dispersion of points in the plot correlating radiances viewed in two different directions. Finally, though such a remote sensing parameter as contrast is weakly affected by aerosol absorption, it is highly dependent on its optical thickness.

  5. Carbon Isotopic Measurements and Aerosol Optical Determinations during CARES: Indications of the Importance of Background Biogenic Aerosols

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Begum, M.; Sturchio, N. C.; Guilderson, T. P.

    2011-12-01

    High volume size-fractionated aerosol samples were obtained in Cool, CA during the Carbonaceous Aerosol and Radiative Effects Study (CARES) in June of 2010. This site was chosen to study the regional impacts of carbonaceous aerosols originating from the Sacramento area. Samples were collected for 6 to 24 hour time periods on quartz fiber filters by using slotted impactors to allow for collection of sample size cuts above and below one micron. Both total carbon content and carbon isotopic composition, including 13C/12C and 14C, were determined on the samples. In addition, Ångstrom absorption exponents (AAEs) were determined for the region of 300-900 nm on the sub-micron size cut by using state of the art diffuse reflectance UV-visible spectroscopy with integrating sphere technology. The overall carbonaceous aerosol loadings were found to be quite low and relatively constant during the study, suggesting that most of the aerosols at the site were locally formed background aerosols. The 14C data is consistent with a substantial fraction (~80 %) being from modern carbon sources and 13C/12C results indicate that the carbon source was from C-3 plants. This is consistent with a significant fraction of the aerosols in the area arising from secondary formation from biogenic precursor emissions from trees, most likely mono- and sesquiterpenes. These results are compared to past results obtained in Mexico City and discussed in terms of the potential importance of biogenic emissions to UV absorbing aerosols as these are anticipated to increase with climate change. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 and Grant No. DE-FG02-07-ER64329 as part of the Atmospheric Systems Research program.

  6. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  7. Maritime Aerosol Network as a Component of AERONET - a Useful Tool for Evaluation of the Global Sea-Salt Aerosol Distribution

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Kinne, S.; Nelson, N. B.; Stenchikov, G. L.; Broccardo, S. P.; Sowers, D.; Lobecker, E.; Ondrusek, M.; Zielinski, T. P.; Gray, L. M.; Frouin, R.; Radionov, V. F.; Smyth, T. J.; Zibordi, G.; Heller, M. I.; Slabakova, V.; Krüger, K.; Reid, E. A.; Istomina, L.; Vandermeulen, R. A.; O'Neill, N. T.; Levy, G.; Giles, D. M.; Slutsker, I.; Sorokin, M. G.; Eck, T. F.

    2016-02-01

    Sea-salt aerosol plays an important role in radiation balance and chemistry of marine atmosphere. Sea-salt production depends on various factors. There is a significant uncertainty in the parametrization of the sea-salt production and budget. Ship-based aerosol optical depth (AOD) measurements can be used as an important validation tool for various global models and in-situ measurements. The paper presents the current status of the Maritime Aerosol Network (MAN) which is a component of Aerosol Robotic Network. Since 2006 over 300 cruises were completed and data archive of more than 5500 measurement days is accessible at http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html . AOD measurements from ships of opportunity complemented island-based AERONET measurements and provided important reference points for satellite retrieved and modelled AOD climatology over the oceans. The program exemplifies mutually beneficial international, multi-agency effort in atmospheric aerosol optical studies over the oceans.

  8. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations.

    PubMed

    Csavina, Janae; Field, Jason; Taylor, Mark P; Gao, Song; Landázuri, Andrea; Betterton, Eric A; Sáez, A Eduardo

    2012-09-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A Review on the Importance of Metals and Metalloids in Atmospheric Dust and Aerosol from Mining Operations

    PubMed Central

    Csavina, Janae; Field, Jason; Taylor, Mark P.; Gao, Song; Landázuri, Andrea; Betterton, Eric A.; Sáez, A. Eduardo

    2012-01-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. PMID:22766428

  10. Pulmonary aerosol delivery and the importance of growth dynamics.

    PubMed

    Haddrell, Allen E; Lewis, David; Church, Tanya; Vehring, Reinhard; Murnane, Darragh; Reid, Jonathan P

    2017-12-01

    Aerosols are dynamic systems, responding to variations in the surrounding environmental conditions by changing in size, composition and phase. Although, widely used in inhalation therapies, details of the processes occurring on aerosol generation and during inhalation have received little attention. Instead, research has focused on improvements to the formulation of the drug prior to aerosolization and the resulting clinical efficacy of the treatment. Here, we highlight the processes that occur during aerosol generation and inhalation, affecting aerosol disposition when deposited and, potentially, impacting total and regional doses. In particular, we examine the response of aerosol particles to the humid environment of the respiratory tract, considering both the capacity of particles to grow by absorbing moisture and the timescale for condensation to occur. [Formula: see text].

  11. Photochemical Formation of Sulfur-Containing Aerosols

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Vaida, Veronica

    2017-06-01

    In order to understand planetary climate systems, modeling the properties of atmospheric aerosols is vital. Aerosol formation plays an important role in planetary climates and is tied to feedback loops that can either warm or cool a planet. Sulfur compounds are known to play an important role in new particle aerosol formation and have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere; however, several discrepancies arise when comparing observations of the Venusian atmosphere with model predictions. This suggests that there are still problems in our fundamental understanding of sulfur chemistry. This is concerning given recent renewed interest in sulfate injections in the stratosphere for solar radiation management geo-engineering schemes. We investigate the role of sunlight as a potential driver of the formation of sulfur-containing aerosols. I will present recent work investigating the generation of large quantities of aerosol from the irradiation of mixtures of SO_2 with water and organic species, using a solar simulator that mimics the light that is available in the Earth's troposphere and the Venusian middle atmosphere. I will present on recent work done in our lab suggesting the formation of sulfurous acid, H_2SO_3, and describe experimental work that supports this proposed mechanism. Additionally I will present on new work showing the highly reactive nature of electronically excited SO_2 with saturated alkane species. The implications of this photochemically induced sulfur aerosol formation in the atmosphere of Earth and other planetary atmospheres will be discussed.

  12. Importance of Physico-Chemical Properties of Aerosols in the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, S. A.; Girard, E.

    2014-12-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation are poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating very small (radar-unseen) ice crystals whereas TIC-2 are detected by both sensors and are characterized by a low concentration of large precipitating ice crystals. It is hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibit the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a smaller concentration of larger ice crystals. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation have been developed to reflect the various physical and chemical properties of aerosols. These parameterizations are derived from laboratory studies on aerosols of different chemical compositions. The parameterizations are also developed according to two main approaches: stochastic (that nucleation is a probabilistic process, which is time dependent) and singular (that nucleation occurs at fixed conditions of temperature and humidity and time-independent). This research aims to better understand the formation process of TICs using a newly-developed ice nucleation parameterizations. For this purpose, we implement some parameterizations (2 approaches) into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Arctic Cloud (ISDAC) in Alaska. We use both approaches but special attention is focused on the new parameterizations of the singular approach. Simulation

  13. Dust in the Sky: Atmospheric Composition. Modeling of Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Kinne, Stefan; Torres, Omar; Holben, Brent; Duncan, Bryan; Martin, Randall; Logan, Jennifer; Higurashi, Akiko; Nakajima, Teruyuki

    2000-01-01

    Aerosol is any small particle of matter that rests suspended in the atmosphere. Natural sources, such as deserts, create some aerosols; consumption of fossil fuels and industrial activity create other aerosols. All the microscopic aerosol particles add up to a large amount of material floating in the atmosphere. You can see the particles in the haze that floats over polluted cities. Beyond this visible effect, aerosols can actually lower temperatures. They do this by blocking, or scattering, a portion of the sun's energy from reaching the surface. Because of this influence, scientists study the physical properties of atmospheric aerosols. Reliable numerical models for atmospheric aerosols play an important role in research.

  14. Aerosol-Cloud Interactions during Tropical Deep Convection: Evidence for the Importance of Free Tropospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Ackerman, A.; Jensen, E.; Stevens, D.; Wang, D.; Heymsfield, A.; Miloshevich, L.; Twohy, C.; Poellot, M.; VanReken, T.; Fridland, Ann

    2003-01-01

    NASA's 2002 CRYSTAL-FACE field experiment focused on the formation and evolution of tropical cirrus cloud systems in southern Florida. Multiple aircraft extensively sampled cumulonimbus dynamical and microphysical properties, as well as characterizing ambient aerosol populations both inside and outside the full depth of the convective column. On July 18, unique measurements were taken when a powerful updraft was traversed directly by aircraft, providing a window into the primary source region of cumulonimbus anvil crystals. Observations of the updraft, entered at approximately l0 km altitude and -34 C, indicated more than 200 cloud particles per mL at vertical velocities exceeding 20 m/s and the presence of significant condensation nuclei and liquid water within the core. In this work, aerosol and cloud phase observations are integrated by simulating the updraft conditions using a large-eddy resolving model with 3 explicit multiphase microphysics, including treatment of size-resolved aerosol fields, aerosol activation and freezing, and evaporation of cloud particles back to the aerosol phase. Simulations were initialized with observed thermodynamic and aerosol size distributions profiles and convection was driven by surface fluxes assimilated from the ARPS forecast model. Model results are consistent with the conclusions that most crystals are homogeneously frozen droplets and that entrained free tropospheric aerosols may contribute a significant fraction of the crystals. Thus most anvil crystals appear to be formed aloft in updraft cores, well above cloud base. These conclusions are supported by observations of hydrometeor size distribution made while traversing the dore, as well as aerosol and cloud particle size distributions generally observed by aircraft below 4km and crystal properties generally observed by aircraft above 12km.

  15. A Monte-Carlo Analysis of Organic Aerosol Volatility with Aerosol Microphysics

    NASA Astrophysics Data System (ADS)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S. E.

    2016-12-01

    A newly developed box model scheme, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in Earth system models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under which chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, from very clean to very polluted and for a wide range of meteorological conditions, all possible scenarios on Earth across the whole parameter space, including temperature, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model.

  16. Imaging aerosol viscosity

    NASA Astrophysics Data System (ADS)

    Pope, Francis; Athanasiadis, Thanos; Botchway, Stan; Davdison, Nicholas; Fitzgerald, Clare; Gallimore, Peter; Hosny, Neveen; Kalberer, Markus; Kuimova, Marina; Vysniauskas, Aurimas; Ward, Andy

    2017-04-01

    Organic aerosol particles play major roles in atmospheric chemistry, climate, and public health. Aerosol particle viscosity is important since it can determine the ability of chemical species such as oxidants, organics or water to diffuse into the particle bulk. Recent measurements indicate that OA may be present in highly viscous states; however, diffusion rates of small molecules such as water appear not to be limited by these high viscosities. We have developed a technique for measuring viscosity that allows for the imaging of aerosol viscosity in micron sized aerosols through use of fluorescence lifetime imaging of viscosity sensitive dyes which are also known as 'molecular rotors'. These rotors can be introduced into laboratory generated aerosol by adding minute quantities of the rotor to aerosol precursor prior to aerosolization. Real world aerosols can also be studied by doping them in situ with the rotors. The doping is achieved through generation of ultrafine aerosol particles that contain the rotors; the ultrafine aerosol particles deliver the rotors to the aerosol of interest via impaction and coagulation. This work has been conducted both on aerosols deposited on microscope coverslips and on particles that are levitated in their true aerosol phase through the use of a bespoke optical trap developed at the Central Laser Facility. The technique allows for the direct observation of kinetic barriers caused by high viscosity and low diffusivity in aerosol particles. The technique is non-destructive thereby allowing for multiple experiments to be carried out on the same sample. It can dynamically quantify and track viscosity changes during atmospherically relevant processes such oxidation and hygroscopic growth (1). This presentation will focus on the oxidation of aerosol particles composed of unsaturated and saturated organic species. It will discuss how the type of oxidant, oxidation rate and the composition of the oxidized products affect the time

  17. Aerosol Retrieval from Multiangle Multispectral Photopolarimetric Measurements: Importance of Spectral Range and Angular Resolution

    NASA Technical Reports Server (NTRS)

    Wu, L.; Hasekamp, O.; Van Diedenhoven, B.; Cairns, B.

    2015-01-01

    We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.

  18. Assessing the aerosol direct and first indirect effects using ACM/GCM simulation results

    NASA Astrophysics Data System (ADS)

    Huang, H.; Gu, Y.; Xue, Y.; Lu, C. H.

    2016-12-01

    Atmospheric aerosols have been found to play an important role in global climate change but there are still large uncertainty in evaluating its role in the climate system. The aerosols generally affect global and regional climate through the scattering and the absorption of solar radiation (direct effect) and through their influences on cloud particle, number and sizes (first indirect effect). The indirect effect will further affects cloud water content, cloud top albedo and surface precipitations. In this study, we investigate the global climatic effect of aerosols using a coupled NCEP Global Forecast System (GFS) and a land surface model (SSiB2) The OPAC (Optical Properties of Aerosols and Clouds) database is used for aerosol effect. The OPAC data provides the optical properties (i.e., the extinction, scattering and absorption coefficient, single-scattering albedo, asymmetry factor and phase function) of ten types of aerosols under various relative humidity conditions for investigating the global direct and first indirect effects of dust aerosols. For indirect forcings due to liquid water, we follow the approach presented by Jiang et al (2011), in which a parameterization of cloud effective radius was calculated to describe its variance with convective strength and aerosol concentration. Since the oceans also play an important role on aerosol climatic effect, we also design a set of simulations using a coupled atmosphere/ocean model (CFS) to evaluate the sensitivity of aerosol effect with two-way atmosphere-ocean interactions.

  19. Climate response of the South Asian monsoon system to anthropogenic aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong

    2012-07-13

    The equilibrium climate response to the total effects (direct, indirect and semi-direct effects) of aerosols arising from anthropogenic and biomass burning emissions on the South Asian summer monsoon system is studied using a coupled atmosphere-slab ocean model. Our results suggest that anthropogenic and biomass burning aerosols generally induce a reduction in mean summer monsoon precipitation over most parts of the Indian subcontinent, strongest along the western coastline of the Indian peninsula and eastern Nepal region, but modest increases also occur over the north western part of the subcontinent. While most of the noted reduction in precipitation is triggered by increasedmore » emissions of aerosols from anthropogenic activities, modest increases in the north west are mostly associated with decreases in local emissions of aerosols from forest fire and grass fire sources. Anthropogenic aerosols from outside Asia also contribute to the overall reduction in precipitation but the dominant contribution comes from aerosol sources within Asia. Local emissions play a more important role in the total rainfall response to anthropogenic aerosol sources during the early monsoon period, whereas both local as well as remote emissions of aerosols play almost equally important roles during the later part of the monsoon period. While precipitation responses are primarily driven by local aerosol forcing, regional surface temperature changes over the region are strongly influenced by anthropogenic aerosols from sources further away (non-local changes). Changes in local anthropogenic organic and black carbon emissions by as much as a factor of two (preserving their ratio) produce the same basic signatures in the model's summer monsoon temperature and precipitation responses.« less

  20. Comparative Study of Aerosol and Cloud Detected by CALIPSO and OMI

    NASA Technical Reports Server (NTRS)

    Chen, Zhong; Torres, Omar; McCormick, M. Patrick; Smith, William; Ahn, Changwoo

    2012-01-01

    The Ozone Monitoring Instrument (OMI) on the Aura Satellite detects the presence of desert dust and smoke particles (also known as aerosols) in terms of a parameter known as the UV Aerosol Index (UV AI). The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission measures the vertical distribution of aerosols and clouds. Aerosols and clouds play important roles in the atmosphere and climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a very important task. This paper presents a comparative analysis of the CALIPSO Version 2 Vertical Feature Mask (VFM) product with the (OMI) UV Aerosol Index (UV AI) and reflectivity datasets for a full year of 2007. The comparison is done at regional and global scales. Based on CALIPSO arid OMI observations, the vertical and horizontal extent of clouds and aerosols are determined and the effects of aerosol type selection, load, cloud fraction on aerosol identification are discussed. It was found that the spatial-temporal correlation found between CALIPSO and OMI observations, is strongly dependent on aerosol types and cloud contamination. CALIPSO is more sensitivity to cloud and often misidentifies desert dust aerosols as cloud, while some small scale aerosol layers as well as some pollution aerosols are unidentified by OMI UV AI. Large differences in aerosol distribution patterns between CALIPSO and OMI are observed, especially for the smoke and pollution aerosol dominated areas. In addition, the results found a significant correlation between CALIPSO lidar 1064 nm backscatter and the OMI UV AI over the study regions.

  1. Aerosol as a player in the Arctic Amplification - an aerosol-climate model evaluation study

    NASA Astrophysics Data System (ADS)

    Schacht, Jacob; Heinold, Bernd; Tegen, Ina

    2017-04-01

    Climate warming is much more pronounced in the Arctic than in any other region on Earth - a phenomenon referred to as the "Arctic Amplification". This is closely related to a variety of specific feedback mechanisms, which relative importance, however, is not yet sufficiently understood. The local changes in the Arctic climate are far-reaching and affect for example the general atmospheric circulation and global energy transport. Aerosol particles from long-range transport and local sources play an important role in the Arctic system by modulating the energy balance (directly by interaction with solar and thermal infrared radiation and indirectly by changing cloud properties and atmospheric dynamics). The main source regions of anthropogenic aerosol are Europe and East Asia, but also local shipping and oil/gas extraction may contribute significantly. In addition, important sources are widespread, mainly natural boreal forest fires. Most of the European aerosol is transported through the lower atmospheric layers in wintertime. The Asian aerosol is transported through higher altitudes. Because of the usually pristine conditions in the Arctic even small absolute changes in aerosol concentration can have large impacts on the Arctic climate. Using global and Arctic-focused model simulations, we aim at investigating the sources and transport pathways of natural and anthropogenic aerosol to the Arctic region, as well as their impact on radiation and clouds. Here, we present first results from an aerosol-climate model evaluation study. Simulations were performed with the global aerosol-climate model ECHAM6-HAM2, using three different state-of-the-art emission inventories (ACCMIP, ACCMIP + GFAS emissions for wildfires and ECLIPSE). The runs were performed in nudged mode at T63 horizontal resolution (approximately 1.8°) with 47 vertical levels for the 10-year period 2006-2015. Black carbon (BC) and sulphate (SO4) are of particular interest. BC is highly absorbing in the

  2. Regional Responses to Black Carbon Aerosols: The Importance of Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, A.; Scott, A. A.; Pradal, M.-A.; Seviour, W. J. M.; Waugh, D. W.

    2017-12-01

    The impact of modern black carbon aerosols on climate via their changes in radiative balance is studied using a coupled model where sea surface temperatures (SSTs) are allowed to vary and an atmosphere-only version of the same model where SSTs are held fixed. Allowing the ocean to respond is shown to have a profound impact on the pattern of temperature change. Particularly, large impacts are found in the North Pacific (which cools by up to 1 K in the coupled model) and in north central Asia (which warms in the coupled simulation and cools in the fixed SST simulation). Neither set of experiments shows large changes in surface temperatures in the Southeast Asian region where the atmospheric burden of black carbon is highest. These results are related to the stabilization of the atmosphere and changes in oceanic heat transport. Over the North Pacific, atmospheric stabilization results in an increase in stratiform clouds. The resulting shading reduces evaporation, freshening the surface layer of the ocean and reducing the inflow of warm subtropical waters. Over the land, a delicate balance between greater atmospheric absorption, shading of the surface and changes in latent cooling of the surface helps to determine whether warming or cooling is seen. Our results emphasize the importance of coupling in determining the response of the climate system to black carbon and suggest that black carbon may play an important role in modulating climate change over the North Pacific.

  3. Effect of Dust and Anthropogenic Aerosols on Columnar Aerosol Optical Properties over Darjeeling (2200 m asl), Eastern Himalayas, India

    PubMed Central

    Chatterjee, Abhijit; Ghosh, Sanjay K.; Adak, Anandamay; Singh, Ajay K.; Devara, Panuganti C. S.; Raha, Sibaji

    2012-01-01

    Background The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. Methodology/Principal Findings An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca2+) during pre-monsoon (Apr – May) which was higher by 162% than its annual mean whereas during winter (Dec – Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO4 2− and black carbon) were higher (76% for black carbon and 96% for fine mode SO4 2−) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. Conclusion/Significance The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas. PMID:22792264

  4. Effect of dust and anthropogenic aerosols on columnar aerosol optical properties over Darjeeling (2200 m asl), eastern Himalayas, India.

    PubMed

    Chatterjee, Abhijit; Ghosh, Sanjay K; Adak, Anandamay; Singh, Ajay K; Devara, Panuganti C S; Raha, Sibaji

    2012-01-01

    The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca(2+)) during pre-monsoon (Apr-May) which was higher by 162% than its annual mean whereas during winter (Dec-Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO(4)(2-) and black carbon) were higher (76% for black carbon and 96% for fine mode SO(4)(2-)) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas.

  5. The effect of organic aerosol material on aerosol reactivity towards ozone

    NASA Astrophysics Data System (ADS)

    Batenburg, Anneke; Gaston, Cassandra; Thornton, Joel; Virtanen, Annele

    2015-04-01

    After aerosol particles are formed or emitted into the atmosphere, heterogeneous reactions with gaseous oxidants cause them to 'age'. Aging can change aerosol properties, such as the hygroscopicity, which is an important parameter in how the particles scatter radiation and form clouds. Conversely, heterogeneous reactions on aerosol particles play a significant role in the cycles of various atmospheric trace gases. Organic compounds, a large part of the total global aerosol matter, can exist in liquid or amorphous (semi)solid physical phases. Different groups have shown that reactions with ozone (O3) can be limited by bulk diffusion in organic aerosol, particularly in viscous, (semi)solid materials, and that organic coatings alter the surface interactions between gas and aerosol particles. We aim to better understand and quantify how the viscosity and phase of organic aerosol matter affect gas-particle interactions. We have chosen the reaction of O3 with particles composed of a potassium iodide (KI) core and a variable organic coating as a model system. The reaction is studied in an aerosol flow reactor that consists of a laminar flow tube and a movable, axial injector for the injection of O3. The aerosol-containing air is inserted at the tube's top. The interaction length (and therefore time), between the particles and the O3 can be varied by moving the injector. Alternatively, the production of aerosol particles can be modulated. The remaining O3 concentration is monitored from the bottom of the tube and particle concentrations are measured simultaneously, which allows us to calculate the reactive uptake coefficient γ. We performed exploratory experiments with internally mixed KI and polyethylene glycol (PEG) particles at the University of Washington (UW) in a setup with a residence time around 50 s. Aerosol particles were generated in an atomizer from solutions with varying concentrations of KI and PEG and inserted into the flow tube after they were diluted and

  6. Spectrally-resolved measurements of aerosol extinction at ultraviolet and visible wavelengths

    NASA Astrophysics Data System (ADS)

    Flores, M.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2012-12-01

    Aerosols play an important role in the Earth's radiative budget. Aerosol extinction includes both the scattering and absorption of light, and these vary with wavelength, aerosol diameter, and aerosol composition. Historically, aerosol absorption has been measured using filter-based or extraction methods that are prone to artifacts. There have been few investigations of ambient aerosol optical properties at the blue end of the visible spectrum and into the ultraviolet. Brown carbon is particularly important in this spectral region, because it both absorbs and scatters light, and encompasses a large and variable group of organic compounds from biomass burning and secondary organic aerosol. We have developed a laboratory instrument that combines new, high-power LED light sources with high-finesse optical cavities to achieve sensitive measurements of aerosol optical extinction. This instrument contains two broadband channels, with spectral coverage from 360 - 390 nm and 385 - 420 nm. Using this instrument, we report aerosol extinction in the ultraviolet and near-visible spectral region as a function of chemical composition and structure. We have measured the extinction cross-sections between 360 - 420 nm with 0.5 nm resolution using different sizes and concentrations of polystyrene latex spheres, ammonium sulfate, and Suwannee River fulvic acid. Fitting the real and imaginary part of the refractive index allows the absorption and scattering to be determined.

  7. THE IMPORTANCE OF PLAY DURING HOSPITALIZATION OF CHILDREN

    PubMed Central

    Koukourikos, Konstantinos; Tzeha, Laila; Pantelidou, Parthenopi; Tsaloglidou, Areti

    2015-01-01

    Introduction: Play constitutes an essential parameter of the normal psychosomatic development of children, as well as their statutory right. It is also an important means of communication in childhood. Objective: To review, detect and highlight all data cited regarding the role of play during the hospitalization of children. Methodology: Literature review was achieved by searching the databases Scopus, PubMed, Cinhal in English, using the following key words: therapeutic play, play therapy, hospitalized child, therapist. Results: During hospitalization, play either in the form of therapeutic play, or as in the form of play therapy, is proven to be of high therapeutic value for ill children, thus contributing to both their physical and emotional well-being and to their recovery. It helps to investigate issues related to the child’s experiences in the hospital and reduce the intensity of negative feelings accompanying a child’s admission to hospital and hospitalization. Play is widely used in pre-operative preparation and invasive procedures, while its use among children hospitalized for cancer is beneficial. Conclusion: The use of play in hospital may become a tool in the hands of healthcare professionals, in order to provide substantial assistance to hospitalized children, as long as they have appropriate training, patience, and will to apply it during hospitalization. PMID:26889107

  8. The Sectional Stratospheric Sulfate Aerosol module (S3A-v1) within the LMDZ general circulation model: description and evaluation against stratospheric aerosol observations

    NASA Astrophysics Data System (ADS)

    Kleinschmitt, Christoph; Boucher, Olivier; Bekki, Slimane; Lott, François; Platt, Ulrich

    2017-09-01

    Stratospheric aerosols play an important role in the climate system by affecting the Earth's radiative budget as well as atmospheric chemistry, and the capabilities to simulate them interactively within global models are continuously improving. It is important to represent accurately both aerosol microphysical and atmospheric dynamical processes because together they affect the size distribution and the residence time of the aerosol particles in the stratosphere. The newly developed LMDZ-S3A model presented in this article uses a sectional approach for sulfate particles in the stratosphere and includes the relevant microphysical processes. It allows full interaction between aerosol radiative effects (e.g. radiative heating) and atmospheric dynamics, including e.g. an internally generated quasi-biennial oscillation (QBO) in the stratosphere. Sulfur chemistry is semi-prescribed via climatological lifetimes. LMDZ-S3A reasonably reproduces aerosol observations in periods of low (background) and high (volcanic) stratospheric sulfate loading, but tends to overestimate the number of small particles and to underestimate the number of large particles. Thus, it may serve as a tool to study the climate impacts of volcanic eruptions, as well as the deliberate anthropogenic injection of aerosols into the stratosphere, which has been proposed as a method of geoengineering to abate global warming.

  9. The Influence of Chemical Composition and Relative Humidity on the Optical Properties of Aerosols During the Southern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Attwood, A. R.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Hu, W.; Campuzano Jost, P.; Day, D. A.; Palm, B. B.; Simoes de Sa, S.; Jimenez, J. L.

    2013-12-01

    Atmospheric particles are produced from a wide variety of both anthropogenic and natural sources and play an important role in the Earth's radiative budget by direct scattering and absorption of radiation. To address this impact, in situ measurements of aerosol optical, chemical and hygroscopic properties were performed during the Southern Oxidant and Aerosol Study (SOAS), which took place in the summer of 2013. Ground based measurements of sub-micron aerosol in the southeastern United States were made to investigate the influence of chemical composition and hygroscopicity on aerosol optical properties. We report the wavelength dependence of aerosol extinction cross sections measured with a novel broadband cavity enhanced spectrometer covering a wavelength range of 360-420 nm using two light emitting diodes (LED) and a separate cavity ring down (CRDS) channel. The sensitivity of the relative humidity dependence of extinction based on the type of aerosol present is examined and we show that the optical properties and hygroscopicity of aerosols are greatly influenced by the fraction of sulfate and organics within the particles. Additional data analysis from the SOAS campaign will be presented. The results, thus far, illustrate that the variability in aerosol chemical composition can impact visibility and climate forcing in this region.

  10. ARM-Led Improvements Aerosols in Climate and Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghan, Steven J.; Penner, Joyce E.

    2016-07-25

    The DOE ARM program has played a foundational role in efforts to quantify aerosol effects on climate, beginning with the early back-of-the-envelope estimates of direct radiative forcing by anthropogenic sulfate and biomass burning aerosol (Penner et al., 1994). In this chapter we review the role that ARM has played in subsequent detailed estimates based on physically-based representations of aerosols in climate models. The focus is on quantifying the direct and indirect effects of anthropogenic aerosol on the planetary energy balance. Only recently have other DOE programs applied the aerosol modeling capability to simulate the climate response to the radiative forcing.

  11. The Aerosol Coarse Mode Initiative

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Adhikari, N.; Air, D.; Kassianov, E.; Barnard, J.

    2014-12-01

    Many areas of the world show an aerosol volume distribution with a significant coarse mode and sometimes a dominant coarse mode. The large coarse mode is usually due to dust, but sea salt aerosol can also play an important role. However, in many field campaigns, the coarse mode tends to be ignored, because it is difficult to measure. This lack of measurements leads directly to a concomitant "lack of analysis" of this mode. Because, coarse mode aerosols can have significant effects on radiative forcing, both in the shortwave and longwave spectrum, the coarse mode -- and these forcings -- should be accounted for in atmospheric models. Forcings based only on fine mode aerosols have the potential to be misleading. In this paper we describe examples of large coarse modes that occur in areas of large aerosol loading (Mexico City, Barnard et al., 2010) as well as small loadings (Sacramento, CA; Kassianov et al., 2012; and Reno, NV). We then demonstrate that: (1) the coarse mode can contribute significantly to radiative forcing, relative to the fine mode, and (2) neglecting the coarse mode may result in poor comparisons between measurements and models. Next we describe -- in general terms -- the limitations of instrumentation to measure the coarse mode. Finally, we suggest a new initiative aimed at examining coarse mode aerosol generation mechanisms; transport and deposition; chemical composition; visible and thermal IR refractive indices; morphology; microphysical behavior when deposited on snow and ice; and specific instrumentation needs. Barnard, J. C., J. D. Fast, G. Paredes-Miranda, W. P. Arnott, and A. Laskin, 2010: Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign, Atmospheric Chemistry and Physics, 10, 7325-7340. Kassianov, E. I., M. S. Pekour, and J. C. Barnard, 2012: Aerosols in Central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing

  12. Preliminary observations of organic gas-particle partitioning from biomass combustion smoke using an aerosol mass spectrometer

    Treesearch

    T. Lee; S. M. Kreidenweis; J. L. Collett; A. P. Sullivan; C. M. Carrico; J. L. Jimenez; M. Cubison; S. Saarikoski; D. R. Worsnop; T. B. Onasch; E. Fortner; W. C. Malm; E. Lincoln; Cyle Wold; WeiMin Hao

    2010-01-01

    Aerosols play important roles in adverse health effects, indirect and direct forcing of Earth’s climate, and visibility degradation. Biomass burning emissions from wild and prescribed fires can make a significant contribution to ambient aerosol mass in many locations and seasons. In order to better understand the chemical properties of particles produced by combustion...

  13. The Importance of Being Playful.

    ERIC Educational Resources Information Center

    Bodrova, Elena; Leong, Deborah J.

    2003-01-01

    Recent research provides evidence of the strong connections between quality of play in preschool years and children's readiness for school instruction. Mature play, characterized by imaginary situations, multiple roles, clearly defined rules, flexible themes, language development, length of play, helps students' cognitive development. (Contains 12…

  14. Implementing marine organic aerosols into the GEOS-Chem model

    DOE PAGES

    Gantt, B.; Johnson, M. S.; Crippa, M.; ...

    2015-03-17

    Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Modelmore » predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  15. Implementing Marine Organic Aerosols Into the GEOS-Chem Model

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.

    2015-01-01

    Marine-sourced organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large under-prediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.

  16. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.

    1978-01-01

    Stratospht1ic sulfuric acid particles scatter and absorb sunlight and they scatter, absorb and emit terrestrial thermal radiation. These interactions play a role in the earth's radiation balance and therefore affect climate. The stratospheric aerosols are perturbed by volcanic injection of SO2 and ash, by aircraft injection of SO2, by rocket exhaust of Al2O3 and by tropospheric mixing of particles and pollutant SO2 and COS. In order to assess the effects of these perturbations on climate, the effects of the aerosols on the radiation balance must be understood and in order to understand the radiation effects the properties of the aerosols must be known. The discussion covers the aerosols' effect on the radiation balance. It is shown that the aerosol size distribution controls whether the aerosols will tend to warm or cool the earth's surface. Calculations of aerosol properties, including size distribution, for various perturbation sources are carried out on the basis of an aerosol model. Calculations are also presented of the climatic impact of perturbed aerosols due to volcanic eruptions and Space Shuttle flights.

  17. Electrostatics in pharmaceutical aerosols for inhalation.

    PubMed

    Wong, Jennifer; Chan, Hak-Kim; Kwok, Philip Chi Lip

    2013-08-01

    Electrostatics continues to play an important role in pharmaceutical aerosols for inhalation. Despite its ubiquitous nature, the charging process is complex and not well understood. Nonetheless, significant advances in the past few years continue to improve understanding and lead to better control of electrostatics. The purpose of this critical review is to present an overview of the literature, with an emphasis on how electrostatic charge can be useful in improving pulmonary drug delivery.

  18. Evolution of aerosol vertical distribution during particulate pollution events in Shanghai

    NASA Astrophysics Data System (ADS)

    Zhang, Yunwei; Zhang, Qun; Leng, Chunpeng; Zhang, Deqin; Cheng, Tiantao; Tao, Jun; Zhang, Renjian; He, Qianshan

    2015-06-01

    A set of micro pulse lidar (MPL) systems operating at 532 nm was used for ground-based observation of aerosols in Shanghai in 2011. Three typical particulate pollution events (e.g., haze) were examined to determine the evolution of aerosol vertical distribution and the planetary boundary layer (PBL) during these pollution episodes. The aerosol vertical extinction coefficient (VEC) at any given measured altitude was prominently larger during haze periods than that before or after the associated event. Aerosols originating from various source regions exerted forcing to some extent on aerosol loading and vertical layering, leading to different aerosol vertical distribution structures. Aerosol VECs were always maximized near the surface owing to the potential influence of local pollutant emissions. Several peaks in aerosol VECs were found at altitudes above 1 km during the dust- and bioburning-influenced haze events. Aerosol VECs decreased with increasing altitude during the local-polluted haze event, with a single maximum in the surface atmosphere. PM2.5 increased slowly while PBL and visibility decreased gradually in the early stages of haze events; subsequently, PM2.5 accumulated and was exacerbated until serious pollution bursts occurred in the middle and later stages. The results reveal that aerosols from different sources impact aerosol vertical distributions in the atmosphere and that the relationship between PBL and pollutant loadings may play an important role in the formation of pollution.

  19. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  20. Extraction and Characterization of Surfactants from Atmospheric Aerosols.

    PubMed

    Nozière, Barbara; Gérard, Violaine; Baduel, Christine; Ferronato, Corinne

    2017-04-21

    Surface-active compounds, or surfactants, present in atmospheric aerosols are expected to play important roles in the formation of liquid water clouds in the Earth's atmosphere, a central process in meteorology, hydrology, and for the climate system. But because specific extraction and characterization of these compounds have been lacking for decades, very little is known on their identity, properties, mode of action and origins, thus preventing the full understanding of cloud formation and its potential links with the Earth's ecosystems. In this paper we present recently developed methods for 1) the targeted extraction of all the surfactants from atmospheric aerosol samples and for the determination of 2) their absolute concentrations in the aerosol phase and 3) their static surface tension curves in water, including their Critical Micelle Concentration (CMC). These methods have been validated with 9 references surfactants, including anionic, cationic and non-ionic ones. Examples of results are presented for surfactants found in fine aerosol particles (diameter <1 μm) collected at a coastal site in Croatia and suggestions for future improvements and other characterizations than those presented are discussed.

  1. Extraction and Characterization of Surfactants from Atmospheric Aerosols

    PubMed Central

    Baduel, Christine; Ferronato, Corinne

    2017-01-01

    Surface-active compounds, or surfactants, present in atmospheric aerosols are expected to play important roles in the formation of liquid water clouds in the Earth's atmosphere, a central process in meteorology, hydrology, and for the climate system. But because specific extraction and characterization of these compounds have been lacking for decades, very little is known on their identity, properties, mode of action and origins, thus preventing the full understanding of cloud formation and its potential links with the Earth's ecosystems. In this paper we present recently developed methods for 1) the targeted extraction of all the surfactants from atmospheric aerosol samples and for the determination of 2) their absolute concentrations in the aerosol phase and 3) their static surface tension curves in water, including their Critical Micelle Concentration (CMC). These methods have been validated with 9 references surfactants, including anionic, cationic and non-ionic ones. Examples of results are presented for surfactants found in fine aerosol particles (diameter <1 μm) collected at a coastal site in Croatia and suggestions for future improvements and other characterizations than those presented are discussed. PMID:28518073

  2. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    3 km). Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed-layer aerosol extinction. Aerosol loading (dry extinction) was found to be the predominant source, accounting for 88 % on average of the measured spatial variability in ambient extinction, with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction. This work shows that extinction is driven to first order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite-modeling assimilation products that are able to capture these components of the aerosol optical depth (AOD)-PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day to day were large and could cause a bias of up to 27 % if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km2). This is complimentary to the results of Chu et al. (2015), who determined that the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region.

  3. Nanotechnology and pharmaceutical inhalation aerosols.

    PubMed

    Patel, A R; Vavia, P R

    2007-02-01

    Pharmaceutical inhalation aerosols have been playing a crucial role in the health and well being of millions of people throughout the world for many years. The technology's continual advancement, the ease of use and the more desirable pulmonary-rather-than-needle delivery for systemic drugs has increased the attraction for the pharmaceutical aerosol in recent years. But administration of drugs by the pulmonary route is technically challenging because oral deposition can be high, and variations in inhalation technique can affect the quantity of drug delivered to the lungs. Recent advances in nanotechnology, particularly drug delivery field have encouraged formulation scientists to expand their reach in solving tricky problems related to drug delivery. Moreover, application of nanotechnology to aerosol science has opened up a new category of pharmaceutical aerosols (collectively known as nanoenabled-aerosols) with added advantages and effectiveness. In this review, some of the latest approaches of nano-enabled aerosol drug delivery system (including nano-suspension, trojan particles, bioadhesive nanoparticles and smart particle aerosols) that can be employed successfully to overcome problems of conventional aerosol systems have been introduced.

  4. Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate

    DOE PAGES

    Rastak, N.; Pajunoja, A.; Acosta Navarro, J. C.; ...

    2017-04-28

    A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH-dependent SOA water-uptake with solubility and phase separation; (2) show that laboratory data on IP- and MT-SOA hygroscopicity are representative of ambient datamore » with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single-parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources.« less

  5. Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate

    NASA Astrophysics Data System (ADS)

    Rastak, N.; Pajunoja, A.; Acosta Navarro, J. C.; Ma, J.; Song, M.; Partridge, D. G.; Kirkevâg, A.; Leong, Y.; Hu, W. W.; Taylor, N. F.; Lambe, A.; Cerully, K.; Bougiatioti, A.; Liu, P.; Krejci, R.; Petäjä, T.; Percival, C.; Davidovits, P.; Worsnop, D. R.; Ekman, A. M. L.; Nenes, A.; Martin, S.; Jimenez, J. L.; Collins, D. R.; Topping, D. O.; Bertram, A. K.; Zuend, A.; Virtanen, A.; Riipinen, I.

    2017-05-01

    A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH-dependent SOA water-uptake with solubility and phase separation; (2) show that laboratory data on IP- and MT-SOA hygroscopicity are representative of ambient data with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single-parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources.

  6. Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate.

    PubMed

    Rastak, N; Pajunoja, A; Acosta Navarro, J C; Ma, J; Song, M; Partridge, D G; Kirkevåg, A; Leong, Y; Hu, W W; Taylor, N F; Lambe, A; Cerully, K; Bougiatioti, A; Liu, P; Krejci, R; Petäjä, T; Percival, C; Davidovits, P; Worsnop, D R; Ekman, A M L; Nenes, A; Martin, S; Jimenez, J L; Collins, D R; Topping, D O; Bertram, A K; Zuend, A; Virtanen, A; Riipinen, I

    2017-05-28

    A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH-dependent SOA water-uptake with solubility and phase separation; (2) show that laboratory data on IP- and MT-SOA hygroscopicity are representative of ambient data with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single-parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources.

  7. Microphysical explanation of the RH‐dependent water affinity of biogenic organic aerosol and its importance for climate

    PubMed Central

    Rastak, N.; Pajunoja, A.; Acosta Navarro, J. C.; Ma, J.; Song, M.; Partridge, D. G.; Kirkevåg, A.; Leong, Y.; Hu, W. W.; Taylor, N. F.; Lambe, A.; Cerully, K.; Bougiatioti, A.; Liu, P.; Krejci, R.; Petäjä, T.; Percival, C.; Davidovits, P.; Worsnop, D. R.; Ekman, A. M. L.; Nenes, A.; Martin, S.; Jimenez, J. L.; Collins, D. R.; Topping, D.O.; Bertram, A. K.; Zuend, A.; Virtanen, A.

    2017-01-01

    Abstract A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH‐dependent SOA water‐uptake with solubility and phase separation; (2) show that laboratory data on IP‐ and MT‐SOA hygroscopicity are representative of ambient data with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single‐parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources. PMID:28781391

  8. Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastak, N.; Pajunoja, A.; Acosta Navarro, J. C.

    A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH-dependent SOA water-uptake with solubility and phase separation; (2) show that laboratory data on IP- and MT-SOA hygroscopicity are representative of ambient datamore » with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single-parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources.« less

  9. Development of an Aerosol Model of Cryptococcus Reveals Humidity as an Important Factor Affecting the Viability of Cryptococcus during Aerosolization

    PubMed Central

    Springer, Deborah J.; Saini, Divey; Byrnes, Edmond J.; Heitman, Joseph; Frothingham, Richard

    2013-01-01

    Cryptococcus is an emerging global health threat that is annually responsible for over 1,000,000 infections and one third of all AIDS patient deaths. There is an ongoing outbreak of cryptococcosis in the western United States and Canada. Cryptococcosis is a disease resulting from the inhalation of the infectious propagules from the environment. The current and most frequently used animal infection models initiate infection via liquid suspension through intranasal instillation or intravenous injection. These models do not replicate the typically dry nature of aerosol exposure and may hinder our ability to decipher the initial events that lead to clearance or the establishment of infection. We have established a standardized aerosol model of murine infection for the human fungal pathogen Cryptococcus. Aerosolized cells were generated utilizing a Collison nebulizer in a whole-body Madison Chamber at different humidity conditions. The aerosols inside the chamber were sampled using a BioSampler to determine viable aerosol concentration and spray factor (ratio of viable aerosol concentration to total inoculum concentration). We have effectively delivered yeast and yeast-spore mixtures to the lungs of mice and observed the establishment of disease. We observed that growth conditions prior to exposure and humidity within the Madison Chamber during exposure can alter Cryptococcus survival and dose retained in mice. PMID:23894542

  10. Marine aerosol formation from biogenic iodine emissions.

    PubMed

    O'Dowd, Colin D; Jimenez, Jose L; Bahreini, Roya; Flagan, Richard C; Seinfeld, John H; Hämeri, Kaarle; Pirjola, Liisa; Kulmala, Markku; Jennings, S Gerard; Hoffmann, Thorsten

    2002-06-06

    The formation of marine aerosols and cloud condensation nuclei--from which marine clouds originate--depends ultimately on the availability of new, nanometre-scale particles in the marine boundary layer. Because marine aerosols and clouds scatter incoming radiation and contribute a cooling effect to the Earth's radiation budget, new particle production is important in climate regulation. It has been suggested that sulphuric acid derived from the oxidation of dimethyl sulphide is responsible for the production of marine aerosols and cloud condensation nuclei. It was accordingly proposed that algae producing dimethyl sulphide play a role in climate regulation, but this has been difficult to prove and, consequently, the processes controlling marine particle formation remains largely undetermined. Here, using smog chamber experiments under coastal atmospheric conditions, we demonstrate that new particles can form from condensable iodine-containing vapours, which are the photolysis products of biogenic iodocarbons emitted from marine algae. Moreover, we illustrate, using aerosol formation models, that concentrations of condensable iodine-containing vapours over the open ocean are sufficient to influence marine particle formation. We suggest therefore that marine iodocarbon emissions have a potentially significant effect on global radiative forcing.

  11. Investigation of Atmospheric Aerosol properties by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Sevalia, Barry; Joseph, Kelli; Gasseller, Morewell

    The effects of aerosols on the atmosphere, climate, and public health are among the central topics in current environmental research. Aerosol particles scatter and absorb solar and terrestrial radiation, they are involved in the formation of clouds and precipitation as cloud condensation and ice nuclei, and they affect the abundance and distribution of atmospheric trace gases by chemical reactions and other multiphase processes. Moreover, airborne particles play an important role in the spreading of biological organisms, reproductive materials, and pathogens and they can cause or enhance respiratory, cardiovascular, infectious, and allergic diseases. In this study we use two distinct methods to characterize atmospheric aerosol particles. With the AFM, we use analytical and interpretative techniques to deduce fundamental physical properties of the aerosol particles such as particle sizes and morphology. The microscopy techniques are then compared and complemented with optical techniques that employ hand held sun photometers to measure aerosol optical thickness (AOT) of the atmosphere. The chemical nature of the aerosols is investigated by exposing the samples to a stream of ozone gas and then reimage them. Using this approach, we are only able to classify particles as organic, gr Maryam Foroozesh, Ph.D. Chair, Division of Mathematical and Physical Sciences Head, Department of Chemistry.

  12. Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach

    NASA Technical Reports Server (NTRS)

    Kuo, K.-S.; Weger, R. C.; Welch, R. M.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.

  13. Aerosol Liquid Water Driven by Anthropogenic inorganic salts: Playing a key role in the winter haze formation over North China Plain

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Liu, Y.; Tan, T.; Wang, Y.; Shang, D.; Xiao, Y.; Li, M.; Zeng, L.; Hu, M.

    2017-12-01

    Aerosol liquid water influences ambient particulate matter mass concentrations and aerosol optical properties, and can serve as a reactor for multiphase reactions that perturb local photochemistry1. Our observations revealed that ambient relative humidity, inorganic fraction (sulfate, ammonium, nitrate), and PM2.5 mass concentration generally simultaneously elevated during haze episodes, resulting in the abundant anthropogenic aerosol water in the atmosphere of Beijing. The enrichment of aerosol liquid water may significantly affect the particle phase, which plays a key role in determining the reactive uptake, gas-particle partitioning, and heterogeneous chemical reactivity2. A newly-built three-arm impactor was used to detect the particle rebound fraction. The observations showed the increased RH and inorganic-rich particulate matter led to an increased aerosol liquid water content, and thus a liquid phase state during haze episode during wintertime. Here, we proposed that the transition to a liquid phase state marked the beginning of the haze episode and kicked off a positive feedback loop, wherein the liquid particles readily uptake pollutants that could react to form inorganics which could then uptake more water. The strict controlling strategy of sulfur emissions in China might lead to a decreased sulfate fraction and increased nitrate fraction in PM1. As a result, due to the lower deliquescence RH of nitrate, the feedback loop proposed could start at an even lower RH in the future. Reference1 Herrmann, H., T. Schaefer, A. Tilgner, S. A. Styler, C. Weller, M. Teich, and T. Otto (2015), Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase, Chemical Reviews, 115(10), 4259-4334.2 M. Kuwata, S. T. Martin (2012), Phase of atmospheric secondary organic material affects its reactivity, Proceedings of the National Academy of Sciences of the United States of America, 109(43):17354-17359

  14. Fast and Slow Responses of the South Asian Monsoon System to Anthropogenic Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong

    2012-09-25

    Using a global climate model with fully predictive aerosol life cycle, we investigate the fast and slow responses of the South Asian monsoon system to anthropogenic aerosol forcing. Our results show that the feedbacks associated with sea surface temperature (SST) change caused by aerosols play a more important role than the aerosol's direct impact on radiation, clouds and land surface (rapid adjustments) in shaping the total equilibrium climate response of the monsoon system to aerosol forcing. Inhomogeneous SST cooling caused by anthropogenic aerosols eventually reduces the meridional tropospheric temperature gradient and the easterly shear of zonal winds over the region,more » slowing down the local Hadley cell circulation, decreasing the northward moisture transport, and causing a reduction in precipitation over South Asia. Although total responses in precipitation are closer to the slow responses in general, the fast component dominates over land areas north of 25°N. Our results also show an east-west asymmetry in the fast responses to anthropogenic aerosols causing increases in precipitation west of 80°E but decreases east of it.« less

  15. Aerosol contribution to the rapid warming of near-term climate under RCP 2.6

    NASA Astrophysics Data System (ADS)

    Chalmers, N.; Highwood, E. J.; Hawkins, E.; Sutton, R.; Wilcox, L. J.

    2012-09-01

    The importance of aerosol emissions for near term climate projections is investigated by analysing simulations with the HadGEM2-ES model under two different emissions scenarios: RCP2.6 and RCP4.5. It is shown that the near term warming projected under RCP2.6 is greater than under RCP4.5, even though the greenhouse gas forcing is lower. Rapid and substantial reductions in sulphate aerosol emissions due to a reduction of coal burning in RCP2.6 lead to a reduction in the negative shortwave forcing due to aerosol direct and indirect effects. Indirect effects play an important role over the northern hemisphere oceans, especially the subtropical northeastern Pacific where an anomaly of 5-10 Wm-2 develops. The pattern of surface temperature change is consistent with the expected response to this surface radiation anomaly, whilst also exhibiting features that reflect redistribution of energy, and feedbacks, within the climate system. These results demonstrate the importance of aerosol emissions as a key source of uncertainty in near term projections of global and regional climate.

  16. Winter monsoon variability and its impact on aerosol concentrations in East Asia.

    PubMed

    Jeong, Jaein I; Park, Rokjin J

    2017-02-01

    We investigate the relationship between winter aerosol concentrations over East Asia and variability in the East Asian winter monsoon (EAWM) using GEOS-Chem 3-D global chemical transport model simulations and ground-based aerosol concentration data. We find that both observed and modeled surface aerosol concentrations have strong relationships with the intensity of the EAWM over northern (30-50°N, 100-140°E) and southern (20-30°N, 100-140°E) East Asia. In strong winter monsoon years, compared to weak winter monsoon years, lower and higher surface PM 2.5 concentrations by up to 25% are shown over northern and southern East Asia, respectively. Analysis of the simulated results indicates that the southward transport of aerosols is a key process controlling changes in aerosol concentrations over East Asia associated with the EAWM. Variability in the EAWM is found to play a major role in interannual variations in aerosol concentrations; consequently, changes in the EAWM will be important for understanding future changes in wintertime air quality over East Asia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach

    NASA Technical Reports Server (NTRS)

    Kuo, K. S.; Weger, R. C.; Welch, R. M.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. The best hope we have for aerosol retrievals over bright backgrounds are observations from multiple angles, such as those provided by the MISR and POLDER instruments. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.

  18. Importance of Unimolecular HO 2 Elimination in the Heterogeneous OH Reaction of Highly Oxygenated Tartaric Acid Aerosol

    DOE PAGES

    Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R.

    2016-07-09

    Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this paper investigates the OH-radical initiated oxidation of aqueous tartaric acid (C 4H 6O 6) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysis in Real Time)more » coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C 4 functionalization product (C 4H 4O 6) and three C 3 fragmentation products (C 3H 4O 4, C 3H 2O 4, and C 3H 2O 5). The C 4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO 2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C 4H 4O 6), the major reaction product. While in general, C–C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OS C), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OS C = 1.5). Finally, these results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms.« less

  19. Effect of aerosol feedback in the Korea Peninsula using WRF-CMAQ two-way coupled model

    NASA Astrophysics Data System (ADS)

    Yoo, J.; Jeon, W.; Lee, H.; Lee, S.

    2017-12-01

    Aerosols influence the climate system by scattering and absorption of the solar radiation by altering the cloud radiative properties. For the reason, consideration of aerosol feedback is important numerical weather prediction and air quality models. The purpose of this study was to investigate the effect of aerosol feedback on PM10 simulation in Korean Peninsula using the Weather Research and Forecasting (WRF) and the community multiscale air quality (CMAQ) two-way coupled model. Simulations were conducted with the aerosol feedback (FB) and without (NFB). The results of the simulated solar radiation in the west part of Korea decreased due to the aerosol feedback effect. The feedback effect was significant in the west part of Korea Peninsula, showing high Particulate Matter (PM) estimates due to dense emissions and its long-range transport from China. The decrease of solar radiation lead to planetary boundary layer (PBL) height reduction, thereby dispersion of air pollutants such as PM is suppressed, and resulted in higher PM concentrations. These results indicate that aerosol feedback effects can play an important role in the simulation of meteorology and air quality over Korea Peninsula.

  20. Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Muhlbauer, A.; Hashino, T.; Xue, L.; Teller, A.; Lohmann, U.; Rasmussen, R. M.; Geresdi, I.; Pan, Z.

    2010-04-01

    . Furthermore, it is found that neither a decrease in cloud droplet coalescence nor a decrease in riming necessarily implies a decrease in precipitation due to compensation effects by other microphysical pathways. The simulations suggest that mixed-phase conditions play an important role in reducing the overall susceptibility of clouds and precipitation with respect to changes in the aerosols number concentrations. As a consequence the indirect aerosol effect on precipitation is suggested to be less pronounced or even inverted in regions with high terrain (e.g., the Alps or Rocky Mountains) or in regions where mixed-phase microphysics climatologically plays an important role for orographic precipitation.

  1. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  2. Aerosol Variations in Boundary Atmospheres: Review and Prospect

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Shi, Guangyu

    Atmospheric aerosols play important roles in climate and atmospheric chemistry: They scatter sunlight, provide condensation nuclei for cloud droplets, and participate in heterogeneous chemical reactions. To enable better understanding of the vertical physical, chemical and optical feathers of the aerosols in East Asia, using some atmospheric and aerosol measurement instruments on board a kind of tethered-balloon system, a series of measurements were operated in some typical areas of East Asia, including Dunhuang, which is located in the source origin district of Asian dust and Beijing, which is the representative of large inland city during the years of 2002-2011. Mineral compositions carried by the airborne particles were analyzed as well as the microbial components, meanwhile the Lidar data were compared to the direct measurements in order to get the correlation between the optical properties of the particles and their physical and chemical variations in the boundary atmosphere. Moreover, the simultaneous observations over the districts of China, Japan and Korea, and even Pakistan supported by an international cooperative project are highly expected, in order to know the changes of the chemical, physical and even optical and radiation properties of the atmospheric aerosols during their long-range transport.

  3. A Monte-Carlo Analysis of Organic Volatility with Aerosol Microphysics

    NASA Astrophysics Data System (ADS)

    Gao, Chloe; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-04-01

    A newly developed box model, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under varied chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, all possible scenarios on Earth across the whole parameter space, including temperature, humidity, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model GISS ModelE as a module.

  4. Smoke aerosol chemistry and aging of Siberian biomass burning emissions in a large aerosol chamber

    NASA Astrophysics Data System (ADS)

    Kalogridis, A.-C.; Popovicheva, O. B.; Engling, G.; Diapouli, E.; Kawamura, K.; Tachibana, E.; Ono, K.; Kozlov, V. S.; Eleftheriadis, K.

    2018-07-01

    Vegetation open fires constitute a significant source of particulate pollutants on a global scale and play an important role in both atmospheric chemistry and climate change. To better understand the emission and aging characteristics of smoke aerosols, we performed small-scale fire experiments using the Large Aerosol Chamber (LAC, 1800 m3) with a focus on biomass burning from Siberian boreal coniferous forests. A series of burn experiments were conducted with typical Siberian biomass (pine and debris), simulating separately different combustion conditions, namely, flaming, smoldering and mixed phase. Following smoke emission and dispersion in the combustion chamber, we investigated aging of aerosols under dark conditions. Here, we present experimental data on emission factors of total, elemental and organic carbon, as well as individual organic compounds, such as anhydrosugars, phenolic and dicarboxylic acids. We found that total carbon accounts for up to 80% of the fine mode (PM2.5) smoke aerosol. Higher PM2.5 emission factors were observed in the smoldering compared to flaming phase and in pine compared to debris smoldering phase. For low-temperature combustion, organic carbon (OC) contributed to more than 90% of total carbon, whereas elemental carbon (EC) dominated the aerosol composition in flaming burns with a 60-70% contribution to the total carbon mass. For all smoldering burns, levoglucosan (LG), a cellulose decomposition product, was the most abundant organic species (average LG/OC = 0.26 for pine smoldering), followed by its isomer mannosan or dehydroabietic acid (DA), an important constituent of conifer resin (DA/OC = 0.033). A levoglucosan-to-mannosan ratio of about 3 was observed, which is consistent with ratios reported for coniferous biomass and more generally softwood. The rates of aerosol removal for OC and individual organic compounds were investigated during aging in the chamber in terms of mass concentration loss rates over time under dark

  5. Determination of nocturnal aerosol properties from a combination of lunar photometer and lidar observations

    NASA Astrophysics Data System (ADS)

    Li, Donghui; Li, Zhengqiang; Lv, Yang; Zhang, Ying; Li, Kaitao; Xu, Hua

    2015-10-01

    Aerosol plays a key role in the assessment of global climate change and environmental health, while observation is one of important way to deepen the understanding of aerosol properties. In this study, the newly instrument - lunar photometer is used to measure moonlight and nocturnal column aerosol optical depth (AOD, τ) is retrieved. The AOD algorithm is test and verified with sun photometer both in high and low aerosol loading. Ångström exponent (α) and fine/coarse mode AOD (τf, τc) 1 is derived from spectral AOD. The column aerosol properties (τ, α, τf, τc) inferred from the lunar photometer is analyzed based on two month measurement in Beijing. Micro-pulse lidar has advantages in retrieval of aerosol vertical distribution, especially in night. However, the typical solution of lidar equation needs lidar ratio(ratio of aerosol backscatter and extinction coefficient) assumed in advance(Fernald method), or constrained by AOD2. Yet lidar ratio is varied with aerosol type and not easy to fixed, and AOD is used of daylight measurement, which is not authentic when aerosol loading is different from day and night. In this paper, the nocturnal AOD measurement from lunar photometer combined with mie scattering lidar observations to inverse aerosol extinction coefficient(σ) profile in Beijing is discussed.

  6. A thermoluminescent method for aerosol characterization

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.; Rogowski, R. S.

    1976-01-01

    A thermoluminescent method has been used to study the interactions of aerosols with ozone. The preliminary results show that ozone reacts with many compounds found in aerosols, and that the thermoluminescence curves obtained from ozonated aerosols are characteristic of the aerosol. The results suggest several important applications of the thermoluminescent method: development of a detector for identification of effluent sources; a sensitive experimental tool for study of heterogeneous chemistry; evaluation of importance of aerosols in atmospheric chemistry; and study of formation of toxic, electronically excited species in airborne particles.

  7. Aerosol-Monsoon Interaction, maintenance and variability of the Asian Tropopause Aerosol Layer (ATAL)

    NASA Astrophysics Data System (ADS)

    Yuan, C.; Lau, W. K. M.; Li, Z.

    2016-12-01

    In recent years, the discovery of the Asian Tropopause Aerosol Layer (ATAL) from NASA satellite observations has sparked much interests in research on its composition, origin and relationships to the transport processes of atmospheric constituents in the upper troposphere and lower stratosphere (UTLS) and the variability of the Asian Monsoon Anticyclone (AMA). In this paper, based on analysis of MERRA2 reanalysis data, we present results showing that: 1) water vapor, aerosols and chemical gases (BC, OC, dust and CO) originated for the earth surface contribute significantly to the composition of the ATAL during the Asian summer monsoon, 2) one of the major pathways is via the strong large-scale vertical motion, and convective ascent over the Northern Himalayan Foothills during the peak phase of the Indian monsoon, 3) once transported into the UTLS , atmospheric constituents are capped by the Tropopuase inversion Layer (TIL) and advected around within and in the vicinity of the AMA forming the ATAL, 4) the ATAL is modulated by UTLS transport processes which undergo intrinsic monsoon intraseasonal oscillations with 20-30 day quasi-periodicity, coupled to lower tropospheric monsoon dynamics and diabatic heating processes, 5) the pre-monsoon accumulation of absorbing aerosols (BC, OC and dust) over the Indo-Gangetic Plain is more than likely to play an important role in enhancing the UTLS transport of atmospheric constituents from the earth surface to the ATAL.

  8. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.

    2016-01-08

    The Two-Column Aerosol Project (TCAP), which was conducted from June 2012 through June 2013, was a unique field study that was designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere at a number of altitudes, from near the surface to as high as 8 km, within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundredmore » kilometers from the coast. TCAP included the yearlong deployment of the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) that was located at the base of the Cape Cod column, as well as summer and winter aircraft intensive observation periods of the ARM Aerial Facility. One important finding from TCAP is the relatively common occurrence (on four of six nearly cloud-free flights) of elevated aerosol layers in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total aerosol optical depth (AOD) observed in the column. Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning aerosol and nitrate compared to the aerosol found near the surface.« less

  9. The Two-Column Aerosol Project: Phase I-Overview and impact of elevated aerosol layers on aerosol optical depth

    DOE PAGES

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; ...

    2016-01-08

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facilitymore » (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). In addition, these layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. Lastly, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.« less

  10. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; hide

    2015-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere be tween and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2).These layer s contributed up to 60 of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  11. The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  12. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  13. Classifying aerosol type using in situ surface spectral aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Schmeisser, Lauren; Andrews, Elisabeth; Ogren, John A.; Sheridan, Patrick; Jefferson, Anne; Sharma, Sangeeta; Kim, Jeong Eun; Sherman, James P.; Sorribas, Mar; Kalapov, Ivo; Arsov, Todor; Angelov, Christo; Mayol-Bracero, Olga L.; Labuschagne, Casper; Kim, Sang-Woo; Hoffer, András; Lin, Neng-Huei; Chia, Hao-Ping; Bergin, Michael; Sun, Junying; Liu, Peng; Wu, Hao

    2017-10-01

    Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatiotemporal variability in aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA/ESRL Federated Aerosol Monitoring Network to infer aerosol type using previously published aerosol classification schemes.Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type) and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station.The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol), marine polluted (carbonaceous aerosol mixed with sea salt) and continental dust/biomass sites

  14. Relationship between aerosol and lightning over Indo-Gangetic Plain (IGP), India

    NASA Astrophysics Data System (ADS)

    Lal, D. M.; Ghude, Sachin D.; Mahakur, M.; Waghmare, R. T.; Tiwari, S.; Srivastava, Manoj K.; Meena, G. S.; Chate, D. M.

    2017-08-01

    , atmospheric humidity also plays an important role in regulating the effect of aerosol on the microphysical properties of clouds over IGP region.

  15. Optical, microphysical and radiative properties of aerosols over a tropical rural site in Kenya, East Africa: Source identification, modification and aerosol type discrimination

    NASA Astrophysics Data System (ADS)

    Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang

    2018-03-01

    A better understanding of aerosol optical, microphysical and radiative properties is a crucial challenge for climate change studies. In the present study, column-integrated aerosol optical and radiative properties observed at a rural site, Mbita (0.42°S, 34.20 °E, and 1125 m above sea level) located in Kenya, East Africa (EA) are investigated using ground-based Aerosol Robotic Network (AERONET) data retrieved during January, 2007 to December, 2015. The annual mean aerosol optical depth (AOD500 nm), Ångström exponent (AE440-870 nm), fine mode fraction of AOD500 nm (FMF500 nm), and columnar water vapor (CWV, cm) were found to be 0.23 ± 0.08, 1.01 ± 0.16, 0.60 ± 0.07, and 2.72 ± 0.20, respectively. The aerosol optical properties exhibited a unimodal distribution with substantial seasonal heterogeneity in their peak values being low (high) during the local wet (dry) seasons. The observed data showed that Mbita and its environs are significantly influenced by various types of aerosols, with biomass burning and/or urban-industrial (BUI), mixed (MXD), and desert dust (DDT) aerosol types contributing to 37.72%, 32.81%, and 1.40%, respectively during the local dry season (JJA). The aerosol volume size distribution (VSD) exhibited bimodal lognormal structure with a geometric mean radius of 0.15 μm and 3.86-5.06 μm for fine- and coarse-mode aerosols, respectively. Further, analysis of single scattering albedo (SSA), asymmetry parameter (ASY) and refractive index (RI) revealed dominance of fine-mode absorbing aerosols during JJA. The averaged aerosol direct radiative forcing (ARF) retrieved from the AERONET showed a strong cooling effect at the bottom of the atmosphere (BOA) and significant warming within the atmosphere (ATM), representing the important role of aerosols played in this rural site of Kenya. Finally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that aerosols from distinct sources resulted in enhanced loading

  16. Biology of the Coarse Aerosol Mode: Insights Into Urban Aerosol Ecology

    NASA Astrophysics Data System (ADS)

    Dueker, E.; O'Mullan, G. D.; Montero, A.

    2015-12-01

    Microbial aerosols have been understudied, despite implications for climate studies, public health, and biogeochemical cycling. Because viable bacterial aerosols are often associated with coarse aerosol particles, our limited understanding of the coarse aerosol mode further impedes our ability to develop models of viable bacterial aerosol production, transport, and fate in the outdoor environment, particularly in crowded urban centers. To address this knowledge gap, we studied aerosol particle biology and size distributions in a broad range of urban and rural settings. Our previously published findings suggest a link between microbial viability and local production of coarse aerosols from waterways, waste treatment facilities, and terrestrial systems in urban and rural environments. Both in coastal Maine and in New York Harbor, coarse aerosols and viable bacterial aerosols increased with increasing wind speeds above 4 m s-1, a dynamic that was observed over time scales ranging from minutes to hours. At a New York City superfund-designated waterway regularly contaminated with raw sewage, aeration remediation efforts resulted in significant increases of coarse aerosols and bacterial aerosols above that waterway. Our current research indicates that bacterial communities in aerosols at this superfund site have a greater similarity to bacterial communities in the contaminated waterway with wind speeds above 4 m s-1. Size-fractionated sampling of viable microbial aerosols along the urban waterfront has also revealed significant shifts in bacterial aerosols, and specifically bacteria associated with coarse aerosols, when wind direction changes from onshore to offshore. This research highlights the key connections between bacterial aerosol viability and the coarse aerosol fraction, which is important in assessments of production, transport, and fate of bacterial contamination in the urban environment.

  17. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  18. Height Dependency of Aerosol-Cloud Interaction Regimes: Height Dependency of ACI Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua

    This study investigates the height dependency of aerosol-cloud interaction regimes in terms of the joint dependence of the key cloud microphysical properties (e.g. cloud droplet number concentration, cloud droplet relative dispersion, etc.) on aerosol number concentration (N a) and vertical velocity (w). The three distinct regimes with different microphysical features are the aerosol-limited regime, the updraft-limited regime, and the transitional regime. The results reveal two new phenomena in updraft-limited regime: 1) The “condensational broadening” of cloud droplet size distribution in contrast to the well-known “condensational narrowing” in the aerosol-limited regime; 2) Above the level of maximum supersaturation, some cloud dropletsmore » are deactivated into interstitial aerosols in the updraft-limited regime whereas all droplets remain activated in the aerosol-limited regime. Further analysis shows that the particle equilibrium supersaturation plays important role in understanding these unique features. Also examined is the height of warm rain initiation and its dependence on N a and w. The rain initiation height is found to depend primarily on either N a or w or both in different N a-w regimes, thus suggesting a strong regime dependence of the second aerosol indirect effect.« less

  19. Height Dependency of Aerosol-Cloud Interaction Regimes: Height Dependency of ACI Regime

    DOE PAGES

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; ...

    2018-01-10

    This study investigates the height dependency of aerosol-cloud interaction regimes in terms of the joint dependence of the key cloud microphysical properties (e.g. cloud droplet number concentration, cloud droplet relative dispersion, etc.) on aerosol number concentration (N a) and vertical velocity (w). The three distinct regimes with different microphysical features are the aerosol-limited regime, the updraft-limited regime, and the transitional regime. The results reveal two new phenomena in updraft-limited regime: 1) The “condensational broadening” of cloud droplet size distribution in contrast to the well-known “condensational narrowing” in the aerosol-limited regime; 2) Above the level of maximum supersaturation, some cloud dropletsmore » are deactivated into interstitial aerosols in the updraft-limited regime whereas all droplets remain activated in the aerosol-limited regime. Further analysis shows that the particle equilibrium supersaturation plays important role in understanding these unique features. Also examined is the height of warm rain initiation and its dependence on N a and w. The rain initiation height is found to depend primarily on either N a or w or both in different N a-w regimes, thus suggesting a strong regime dependence of the second aerosol indirect effect.« less

  20. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S.

    PubMed

    Creamean, Jessie M; Suski, Kaitlyn J; Rosenfeld, Daniel; Cazorla, Alberto; DeMott, Paul J; Sullivan, Ryan C; White, Allen B; Ralph, F Martin; Minnis, Patrick; Comstock, Jennifer M; Tomlinson, Jason M; Prather, Kimberly A

    2013-03-29

    Winter storms in California's Sierra Nevada increase seasonal snowpack and provide critical water resources and hydropower for the state. Thus, the mechanisms influencing precipitation in this region have been the subject of research for decades. Previous studies suggest Asian dust enhances cloud ice and precipitation, whereas few studies consider biological aerosols as an important global source of ice nuclei (IN). Here, we show that dust and biological aerosols transported from as far as the Sahara were present in glaciated high-altitude clouds coincident with elevated IN concentrations and ice-induced precipitation. This study presents the first direct cloud and precipitation measurements showing that Saharan and Asian dust and biological aerosols probably serve as IN and play an important role in orographic precipitation processes over the western United States.

  1. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  2. Caribbean coral growth influenced by anthropogenic aerosol emissions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Lester; Cox, Peter M.; Economou, Theo; Halloran, Paul R.; Mumby, Peter J.; Booth, Ben B. B.; Carilli, Jessica; Guzman, Hector M.

    2013-05-01

    Coral growth rates are highly dependent on environmental variables such as sea surface temperature and solar irradiance. Multi-decadal variability in coral growth rates has been documented throughout the Caribbean over the past 150-200 years, and linked to variations in Atlantic sea surface temperatures. Multi-decadal variability in sea surface temperatures in the North Atlantic, in turn, has been linked to volcanic and anthropogenic aerosol forcing. Here, we examine the drivers of changes in coral growth rates in the western Caribbean between 1880 and 2000, using previously published coral growth chronologies from two sites in the region, and a numerical model. Changes in coral growth rates over this period coincided with variations in sea surface temperature and incoming short-wave radiation. Our model simulations show that variations in the concentration of anthropogenic aerosols caused variations in sea surface temperature and incoming radiation in the second half of the twentieth century. Before this, variations in volcanic aerosols may have played a more important role. With the exception of extreme mass bleaching events, we suggest that neither climate change from greenhouse-gas emissions nor ocean acidification is necessarily the driver of multi-decadal variations in growth rates at some Caribbean locations. Rather, the cause may be regional climate change due to volcanic and anthropogenic aerosol emissions.

  3. Properties of Arctic Aerosol Particles and Residuals of Warm Clouds: Cloud Activation Efficiency and the Aerosol Indirect Effect

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Imre, D. G.; Leaitch, R.; Ovchinnikov, M.; Liu, P.; Macdonald, A.; Strapp, W.; Ghan, S. J.; Earle, M. E.

    2012-12-01

    Single particle mass spectrometer, SPLAT II, was used to characterize the size, composition, number concentration, density, and shape of individual Arctic spring aerosol. Background particles, particles above and below the cloud, cloud droplet residuals, and interstitial particles were characterized with goal to identify the properties that separate cloud condensation nuclei (CCN) from background aerosol particles. The analysis offers a comparison between warm clouds formed on clean and polluted days, with clean days having maximum particle concentrations (Na) lower than ~250 cm-3, as compared with polluted days, in which maximum concentration was tenfold higher. On clean days, particles were composed of organics, organics mixed with sulfates, biomass burning (BB), sea salt (SS), and few soot and dust particles. On polluted days, BB, organics associated with BB, and their mixtures with sulfate dominated particle compositions. Based on the measured compositions and size distributions of cloud droplet residuals, background aerosols, and interstitial particles, we conclude that these three particle types had virtually the same compositions, which means that cloud activation probabilities were surprisingly nearly composition independent. Moreover, these conclusions hold in cases in which less than 20% or more than 90% of background particles got activated. We concluded that for the warm clouds interrogated in this study particle size played a more important factor on aerosol CCN activity. Comparative analysis of all studied clouds reveals that aerosol activation efficiency strongly depends on the aerosol concentrations, such that at Na <200 cm-3, nearly all particles activate, and at higher concentrations the activation efficiency is lower. For example, when Na was greater than 1500 cm-3, less than ~30% of particles activated. The data suggest that as the number of nucleated droplets increases, condensation on existing droplets effectively competes with particle

  4. Aerosol composition and variability in the Baltimore-Washington, DC region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2015-08-01

    in the free troposphere (above 3 km). Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed layer aerosol. Aerosol loading was found to be the predominant source accounting for 88 % on average of the measured spatial variability in extinction with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction. This work shows that extinction is driven to first-order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite/modelling assimilation products that are able to capture these components of the AOD-PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day-to-day were large and could cause a bias of up to 27 % if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km2). This is complimentary to the results of Chu et al. (2015) that determined the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region.

  5. CCN activity of thermodenuded aerosol particles downwind of the Sacramento area urban plume

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Cziczo, D. J.; Nelson, D.; Zhang, Q.; Setyan, A.; Song, C.; Shrivastava, M.; Shilling, J. E.

    2010-12-01

    This study focuses on the characterization of cloud condensation nuclei (CCN) properties of aerosol particles measured during the Carbonaceous Aerosols and Radiative Effects Study (CARES) near Sacramento, CA in June 2010. Supersaturation-dependant CCN activity (0.07 - 0.5% supersaturation) was measured with DMT CCN counters at two locations; one near the city center (T0) and the other in Cool, CA, a small town located ~40 kilometers downwind of the urban plume in the Sierra Nevada foothills (T1). The T1 CCN counter was operated behind a thermodenuder to study volatility-dependant CCN activity of the urban aerosol plume as it was transported into the biogenically influenced foothills. Preliminary analysis indicated that activated fraction was inversely proportional to the thermodenuder temperature, suggesting that the more-volatile fraction of the aerosol might have played an important role in the CCN activity of the aerosol. The relationship between the chemical composition and CCN activity of the aerosol will be discussed. The physical and chemical transformations of particles aged in the foothills as well as the diurnal profiles of CCN both at T0 and T1 will also be discussed for the transport event of 15 June 2010.

  6. Caring About Kids: The Importance of Play.

    ERIC Educational Resources Information Center

    National Inst. of Mental Health (DHHS), Rockville, MD. Div. of Scientific and Public Information.

    In several brief sections, this pamphlet defines play, discusses how play helps a child develop, and how play changes as a child grows older, indicates the role of toys and certain play activities in promoting sex stereotypes, and identifies the role of fantasy and imagination in children's play. A discussion of the role of parents in fostering…

  7. Can Condensing Organic Aerosols Lead to Less Cloud Particles?

    NASA Astrophysics Data System (ADS)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S.

    2017-12-01

    We examined the impact of condensing organic aerosols on activated cloud number concentration in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. Preliminary results show that by including the condensation of organic aerosols, the new model (MATRIX-VBS) has less activated particles compared to the original model (MATRIX), which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly evaluated via a suite of Monte-Carlo simulations. The Monte-Carlo simulations also provide information on which climate-relevant parameters play a critical role in the aerosol evolution in the atmosphere. This study also helps simplifying the newly developed box model which will soon be implemented in the global model GISS ModelE as a module.

  8. Play's Importance in School

    ERIC Educational Resources Information Center

    Sandberg, Anette; Heden, Rebecca

    2011-01-01

    The purpose of this study is to contribute knowledge on and gain an understanding of elementary school teachers' perspectives on the function of play in children's learning processes. The study is qualitative with a hermeneutical approach and has George Herbert Mead as a theoretical frame of reference. Interviews have been carried out with seven…

  9. A perspective on SOA generated in aerosol water from glyoxal and methylglyoxal and its impacts on climate-relevant aerosol properties

    NASA Astrophysics Data System (ADS)

    Sareen, N.; McNeill, V. F.

    2011-12-01

    In recent years, glyoxal and methylglyoxal have emerged to be potentially important SOA precursors with significant implications for climate-related aerosol properties. Here we will discuss how the chemistry of these and similar organic compounds in aerosol water can affect the aerosol optical and cloud formation properties. Aqueous-phase SOA production from glyoxal and methylglyoxal is a potential source of strongly light-absorbing organics, or "brown carbon". We characterized the kinetics of brown carbon formation from these precursors in mixtures of ammonium sulfate and water using UV-Vis spectrophotometry. This mechanism has been incorporated into a photochemical box model with coupled gas phase-aqueous aerosol chemistry. Methylglyoxal and related compounds also may impact an aerosol's ability to act as a cloud condensation nucleus. We recently showed via pendant drop tensiometry and aerosol chamber studies that uptake of methylglyoxal from the gas phase driven by aqueous-phase oligomerization chemistry is a potentially significant, previously unidentified source of surface-active organic material in aerosols. Results from pendant drop tensiometry showed significantly depressed surface tension in methylglyoxal-ammonium sulfate solutions. We further found that ammonium sulfate particles exposed to gas-phase methylglyoxal in a 3.5 m3 aerosol reaction chamber activate into cloud droplets at sizes up to 15% lower at a given supersaturation than do pure ammonium sulfate particles. The observed enhancement exceeds that predicted based on Henry's Law and our measurements of surface tension depression in bulk solutions, suggesting that surface adsorption of methylglyoxal plays a role in determining CCN activity. Methylglyoxal and similar gas-phase surfactants may be an important and overlooked source of enhanced CCN activity in the atmosphere. To characterize the SOA products formed in these solutions, an Aerosol Chemical Ionization Mass Spectrometer (CIMS) was used

  10. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    air by increasing microbial aerosol settling rates and enhancing viability of aerosolized marine microbes. Using methods developed for the non-urban site, the role of local environment and winds in mediating water-air connections was further investigated in the urban environment. The local environment, including water surfaces, was an important source of microbial aerosols at urban sites. Large portions of the urban waterfront microbial aerosol communities were aquatic and, at a highly polluted Superfund waterfront, were closely related to bacteria previously described in environments contaminated with hydrocarbons, heavy metals, sewage and other industrial waste. Culturable urban aerosols and surface waters contained bacterial genera known to include human pathogens and asthma agents. High onshore winds strengthened this water-air connection by playing both a transport and production role. The microbial connection between water and air quality outlined by this dissertation highlights the need for information on the mechanisms that deliver surface water materials to terrestrial systems on a much larger scale. Moving from point measurements to landscape-level analyses will allow for the quantitative assessment of implications for this microbial water-air-land transfer in both urban and non-urban arenas.

  11. Primary aerosol and secondary inorganic aerosol budget over the Mediterranean Basin during 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Guth, Jonathan; Marécal, Virginie; Josse, Béatrice; Arteta, Joaquim; Hamer, Paul

    2018-04-01

    In the frame of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx), we analyse the budget of primary aerosols and secondary inorganic aerosols over the Mediterranean Basin during the years 2012 and 2013. To do this, we use two year-long numerical simulations with the chemistry-transport model MOCAGE validated against satellite- and ground-based measurements. The budget is presented on an annual and a monthly basis on a domain covering 29 to 47° N latitude and 10° W to 38° E longitude. The years 2012 and 2013 show similar seasonal variations. The desert dust is the main contributor to the annual aerosol burden in the Mediterranean region with a peak in spring, and sea salt being the second most important contributor. The secondary inorganic aerosols, taken as a whole, contribute a similar level to sea salt. The results show that all of the considered aerosol types, except for sea salt aerosols, experience net export out of our Mediterranean Basin model domain, and thus this area should be considered as a source region for aerosols globally. Our study showed that 11 % of the desert dust, 22.8 to 39.5 % of the carbonaceous aerosols, 35 % of the sulfate and 9 % of the ammonium emitted or produced into the study domain are exported. The main sources of variability for aerosols between 2012 and 2013 are weather-related variations, acting on emissions processes, and the episodic import of aerosols from North American fires. In order to assess the importance of the anthropogenic emissions of the marine and the coastal areas which are central for the economy of the Mediterranean Basin, we made a sensitivity test simulation. This simulation is similar to the reference simulation but with the removal of the international shipping emissions and the anthropogenic emissions over a 50 km wide band inland along the coast. We showed that around 30 % of the emissions of carbonaceous aerosols and 35 to 60 % of the exported carbonaceous aerosols originates from the marine and

  12. Elemental sulfur aerosol-forming mechanism

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Francisco, Joseph S.

    2017-01-01

    Elemental sulfur aerosols are ubiquitous in the atmospheres of Venus, ancient Earth, and Mars. There is now an evolving body of evidence suggesting that these aerosols have also played a role in the evolution of early life on Earth. However, the exact details of their formation mechanism remain an open question. The present theoretical calculations suggest a chemical mechanism that takes advantage of the interaction between sulfur oxides, SOn (n = 1, 2, 3) and hydrogen sulfide (nH2S), resulting in the efficient formation of a Sn+1 particle. Interestingly, the SOn + nH2S → Sn+1 + nH2O reactions occur via low-energy pathways under water or sulfuric acid catalysis. Once the Sn+1 particles are formed, they may further nucleate to form larger polysulfur aerosols, thus providing a chemical framework for understanding the formation mechanism of S0 aerosols in different environments.

  13. Speciation of iron in ambient aerosol and cloudwater

    NASA Astrophysics Data System (ADS)

    Siefert, Ronald Lyn

    1997-03-01

    Atmospheric iron (Fe) is thought to play an important role in cloudwater chemistry (e.g., S(IV) oxidation, oxidant production, etc.), and is also an important source of Fe to certain regions of the world's oceans where Fe is believed to be a rate-limiting nutrient for primary productivity. This thesis focuses on understanding the chemistry, speciation and abundance of Fe in cloudwater and aerosol in the troposphere, through observations of Fe speciation in the cloudwater and aerosol samples collected over the continental United States and the Arabian Sea. Different chemical species of atmospheric Fe were measured in aerosol and cloudwater samples to help assess the role of Fe in cloudwater chemistry. Chapter 2 presents a set of experiments which used ambient aerosol samples suspended in aqueous solution and then irradiated with uv-light to simulate cloudwater conditions. These experiments found Fe to be a critical component for the production of H2O2. Chapter 3 discusses the development and application of a novel photochemical extraction method for the determination of photochemically-available Fe in ambient aerosol samples. Photochemically-available Fe ranged from <4 ng m-3 to 308 ng m-3, and accounted for 2.8% to 100% of the total Fe in aerosol samples collected in California and New York. Calculations based on the results of these experiments predicted that redox reactions of Fe in cloudwater could be an important in situ source of oxidants (ċOH, HO2ċ/O2/cdot/sb- ). Chapter 4 presents results of several field studies which measured the redox states of Fe and other transition metals (Mn, Cu and Cr) in cloudwater. These measurements were then used in thermodynamic models which predicted Fe(III) to be either as Fe(III)-hydroxy species or Fe(III)-oxalate species. However, an unidentified strong chelating ligand with Fe(III) was also suggested by the thermodynamic model results. Chapter 5 presents results of a field study conducted on the Arabian Sea. Total

  14. Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm.

    PubMed

    Michaud, Jennifer M; Thompson, Luke R; Kaul, Drishti; Espinoza, Josh L; Richter, R Alexander; Xu, Zhenjiang Zech; Lee, Christopher; Pham, Kevin M; Beall, Charlotte M; Malfatti, Francesca; Azam, Farooq; Knight, Rob; Burkart, Michael D; Dupont, Christopher L; Prather, Kimberly A

    2018-05-22

    Ocean-derived, airborne microbes play important roles in Earth's climate system and human health, yet little is known about factors controlling their transfer from the ocean to the atmosphere. Here, we study microbiomes of isolated sea spray aerosol (SSA) collected in a unique ocean-atmosphere facility and demonstrate taxon-specific aerosolization of bacteria and viruses. These trends are conserved within taxonomic orders and classes, and temporal variation in aerosolization is similarly shared by related taxa. We observe enhanced transfer into SSA of Actinobacteria, certain Gammaproteobacteria, and lipid-enveloped viruses; conversely, Flavobacteriia, some Alphaproteobacteria, and Caudovirales are generally under-represented in SSA. Viruses do not transfer to SSA as efficiently as bacteria. The enrichment of mycolic acid-coated Corynebacteriales and lipid-enveloped viruses (inferred from genomic comparisons) suggests that hydrophobic properties increase transport to the sea surface and SSA. Our results identify taxa relevant to atmospheric processes and a framework to further elucidate aerosolization mechanisms influencing microbial and viral transport pathways.

  15. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Liu, X.; Ma, P.-L.; Wang, H.; Tilmes, S.; Singh, B.; Easter, R. C.; Ghan, S. J.; Rasch, P. J.

    2016-02-01

    Atmospheric carbonaceous aerosols play an important role in the climate system by influencing the Earth's radiation budgets and modifying the cloud properties. Despite the importance, their representations in large-scale atmospheric models are still crude, which can influence model simulated burden, lifetime, physical, chemical and optical properties, and the climate forcing of carbonaceous aerosols. In this study, we improve the current three-mode version of the Modal Aerosol Module (MAM3) in the Community Atmosphere Model version 5 (CAM5) by introducing an additional primary carbon mode to explicitly account for the microphysical ageing of primary carbonaceous aerosols in the atmosphere. Compared to MAM3, the four-mode version of MAM (MAM4) significantly increases the column burdens of primary particulate organic matter (POM) and black carbon (BC) by up to 40 % in many remote regions, where in-cloud scavenging plays an important role in determining the aerosol concentrations. Differences in the column burdens for other types of aerosol (e.g., sulfate, secondary organic aerosols, mineral dust, sea salt) are less than 1 %. Evaluating the MAM4 simulation against in situ surface and aircraft observations, we find that MAM4 significantly improves the simulation of seasonal variation of near-surface BC concentrations in the polar regions, by increasing the BC concentrations in all seasons and particularly in cold seasons. However, it exacerbates the overestimation of modeled BC concentrations in the upper troposphere in the Pacific regions. The comparisons suggest that, to address the remaining model POM and BC biases, future improvements are required related to (1) in-cloud scavenging and vertical transport in convective clouds and (2) emissions of anthropogenic and biomass burning aerosols.

  16. Aerosol-cloud interactions in a multi-scale modeling framework

    NASA Astrophysics Data System (ADS)

    Lin, G.; Ghan, S. J.

    2017-12-01

    Atmospheric aerosols play an important role in changing the Earth's climate through scattering/absorbing solar and terrestrial radiation and interacting with clouds. However, quantification of the aerosol effects remains one of the most uncertain aspects of current and future climate projection. Much of the uncertainty results from the multi-scale nature of aerosol-cloud interactions, which is very challenging to represent in traditional global climate models (GCMs). In contrast, the multi-scale modeling framework (MMF) provides a viable solution, which explicitly resolves the cloud/precipitation in the cloud resolved model (CRM) embedded in the GCM grid column. In the MMF version of community atmospheric model version 5 (CAM5), aerosol processes are treated with a parameterization, called the Explicit Clouds Parameterized Pollutants (ECPP). It uses the cloud/precipitation statistics derived from the CRM to treat the cloud processing of aerosols on the GCM grid. However, this treatment treats clouds on the CRM grid but aerosols on the GCM grid, which is inconsistent with the reality that cloud-aerosol interactions occur on the cloud scale. To overcome the limitation, here, we propose a new aerosol treatment in the MMF: Explicit Clouds Explicit Aerosols (ECEP), in which we resolve both clouds and aerosols explicitly on the CRM grid. We first applied the MMF with ECPP to the Accelerated Climate Modeling for Energy (ACME) model to have an MMF version of ACME. Further, we also developed an alternative version of ACME-MMF with ECEP. Based on these two models, we have conducted two simulations: one with the ECPP and the other with ECEP. Preliminary results showed that the ECEP simulations tend to predict higher aerosol concentrations than ECPP simulations, because of the more efficient vertical transport from the surface to the higher atmosphere but the less efficient wet removal. We also found that the cloud droplet number concentrations are also different between the

  17. Seasonality of Forcing by Carbonaceous Aerosols

    NASA Astrophysics Data System (ADS)

    Habib, G.; Bond, T.; Rasch, P. J.; Coleman, D.

    2006-12-01

    Aerosols can influence the energy balance of Earth-Atmosphere system with profound effect on regional climate. Atmospheric processes, such as convection, scavenging, wet and dry deposition, govern the lifetime and location of aerosol; emissions affect its quantity and location. Both affect climate forcing. Here we investigate the effect of seasonality in emissions and atmospheric processes on radiative forcing by carbonaceous aerosols, focusing on aerosol from fossil fuel and biofuel. Because aerosol lifetime is seasonal, ignoring the seasonality of sources such as residential biofuel may introduce a bias in aerosol burden and therefore in predicted climate forcing. We present a global emission inventory of carbonaceous aerosols with seasonality, and simulate atmospheric concentrations using the Community Atmosphere Model (CAM). We discuss where and when the seasonality of emissions and atmospheric processes has strong effects on atmospheric burden, lifetime, climate forcing and aerosol optical depth (AOD). Previous work has shown that aerosol forcing is higher in summer than in winter, and has identified the importance of aerosol above cloud in determining black carbon forcing. We show that predicted cloud height is a very important factor in determining normalized radiative forcing (forcing per mass), especially in summer. This can affect the average summer radiative forcing by nearly 50%. Removal by cloud droplets is the dominant atmospheric cleansing mechanism for carbonaceous aerosols. We demonstrate the modeled seasonality of removal processes and compare the importance of scavenging by warm and cold clouds. Both types of clouds contribute significantly to aerosol removal. We estimate uncertainty in direct radiative forcing due to scavenging by tagging the aerosol which has experienced cloud interactions. Finally, seasonal variations offer an opportunity to assess modeled processes when a single process dominates variability. We identify regions where aerosol

  18. Environmental Temperature Effect on the Far-Infrared Absorption Features of Aromatic-Based Titan's Aerosol Analogs

    NASA Technical Reports Server (NTRS)

    Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.

    2016-01-01

    Benzene detection has been reported in Titans atmosphere both in the stratosphere at ppb levels by remote sensing and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer. This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titans atmospheric chemistry, especially in the formation of aerosols. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. It has been shown recently that aerosol analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500/cm, a first step towards reproducing the aerosol spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared. In this work we investigate the influence of environmental temperature on the absorption spectra of such aerosol samples, simulating the temperature range to which aerosols, once formed, are exposed during their transport through Titans stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these aerosol analogs in the far-infrared, which is consistent with the CIRS observations.

  19. Vertical distribution of Martian aerosols from SPICAM/Mars-Express limb observations

    NASA Astrophysics Data System (ADS)

    Fedorova, A.; Korablev, O.; Bertaux, J.-L.; Rodin, A.; Perrier, S.; Moroz, V. I.

    Limb spectroscopic observations provide invaluable information about vertical distribution of main atmospheric components in the Martian atmosphere, in particular vertical distribution and structure of aerosols, which play an important role in the heat balance of the planet. Only limited set of successful limb spectroscopic observations have been carried out on Mars so far, including those by MGS/TES spectrometer and Thermoscan and Auguste experiments of Phobos mission. Currently SPICAM instrument onboard Mars-Express spacecraft has accomplished several sequences of limb observations. First analysis of limb sounding data received by SPICAM IR and UV channels, which imply the presence of fine, deep, optically thin aerosol fraction extended over broad range of altitudes, is presented.

  20. Tibetan Plateau glacier and hydrological change under stratospheric aerosol injection

    NASA Astrophysics Data System (ADS)

    Ji, D.

    2017-12-01

    As an important inland freshwater resource, mountain glaciers are highly related to human life, they provide water for many large rivers and play a very important role in regional water cycles. The response of mountain glaciers to future climate change is a topic of concern especially to the many people who rely on glacier-fed rivers for purposes such as irrigation. Geoengineering by stratospheric aerosol injection is a method of offsetting the global temperature rise from greenhouse gases. How the geoengineering by stratospheric aerosol injection affects the mass balance of mountain glaciers and adjacent river discharge is little understood. In this study, we use regional climate model WRF and catchment-based river model CaMa-Flood to study the impacts of stratospheric aerosol injection to Tibetan Plateau glacier mass balance and adjacent river discharge. To facilitate mountain glacier mass balance study, we improve the description of mountain glacier in the land surface scheme of WRF. The improvements include: (1) a fine mesh nested in WRF horizontal grid to match the highly non-uniform spatial distribution of the mountain glaciers, (2) revising the radiation flux at the glacier surface considering the surrounding terrain. We use the projections of five Earth system models for CMIP5 rcp45 and GeoMIP G4 scenarios to drive the WRF and CaMa-Flood models. The G4 scenario, which uses stratospheric aerosols to reduce the incoming shortwave while applying the rcp4.5 greenhouse gas forcing, starts stratospheric sulfate aerosol injection at a rate of 5 Tg per year over the period 2020-2069. The ensemble projections suggest relatively slower glacier mass loss rates and reduced river discharge at Tibetan Plateau and adjacent regions under geoengineering scenario by stratospheric aerosol injection.

  1. Amplification of ENSO Effects on Indian Summer Monsoon by Absorbing Aerosols

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, William K. M.; Kim, Kyu-Myong; Sang, Jeong; Kim, Yeon-Hee; Lee, Woo-Seop

    2015-01-01

    In this study, we present observational evidence, based on satellite aerosol measurements and MERRA reanalysis data for the period 1979-2011, indicating that absorbing aerosols can have strong influence on seasonal-to-interannual variability of the Indian summer monsoon rainfall, including amplification of ENSO effects. We find a significant correlation between ENSO (El Nino Southern Oscillation) and aerosol loading in April-May, with La Nina (El Nino) conditions favoring increased (decreased) aerosol accumulation over northern India, with maximum aerosol optical depth (AOD) over the Arabian Sea and Northwestern India, indicative of strong concentration of dust aerosols transported from West Asia and Middle East deserts. Composite analyses based on a normalized aerosol index (NAI) show that high concentration of aerosol over northern India in April-May is associated with increased moisture transport, enhanced dynamically induced warming of the upper troposphere over the Tibetan Plateau, and enhanced rainfall over northern India and the Himalayan foothills during May-June, followed by a subsequent suppressed monsoon rainfall over all India,consistent with the Elevated Heat Pump (EHP) hypothesis (Lau et al. 2006). Further analyses from sub-sampling of ENSO years, with normal (less than 1 sigma), and abnormal (greater than 1 sigma)) NAI over northern India respectively show that the EHP may lead to an amplification of the Indian summer monsoon response to ENSO forcing, particularly with respect to the increased rainfall over the Himalayan foothills, and the warming of the upper troposphere over the Tibetan Plateau. Our results suggest that absorbing aerosol, particular desert dusts can strongly modulate ENSO influence, and possibly play important roles as a feedback agent in climate change in Asian monsoon regions.

  2. Oxalate metal complexes in aerosol particles: implications for the hygroscopicity of oxalate-containing particles

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Takahashi, Y.

    2011-05-01

    Atmospheric aerosols have both a direct and an indirect cooling effect that influences the radiative balance at the Earth's surface. It has been estimated that the degree of cooling is large enough to weaken the warming effect of carbon dioxide. Among the cooling factors, secondary organic aerosols (SOA) play an important role in the solar radiation balance in the troposphere as SOA can act as cloud condensation nuclei (CCN) and extend the lifespan of clouds because of their high hygroscopic and water soluble nature. Oxalic acid is an important component of SOA, and is produced via several formation pathways in the atmosphere. However, it is not certain whether oxalic acid exists as free oxalic acid or as metal oxalate complexes in aerosols, although there is a marked difference in their solubility in water and their hygroscopicity. We employed X-ray absorption fine structure spectroscopy to characterize the calcium (Ca) and zinc (Zn) in aerosols collected at Tsukuba in Japan. Size-fractionated aerosol samples were collected for this purpose using an impactor aerosol sampler. It was shown that 10-60% and 20-100% of the total Ca and Zn in the finer particles (<2.1 μm) were present as Ca and Zn oxalate complexes, respectively. Oxalic acid is hygroscopic and can thus increase the CCN activity of aerosol particles, while complexes with various polyvalent metal ions such as Ca and Zn are not hygroscopic, which cannot contribute to the increase of the CCN activity of aerosols. Based on the concentrations of noncomplexed and metal-complexed oxalate species, we found that most of the oxalic acid is present as metal oxalate complexes in the aerosols, suggesting that oxalic acid does not always increase the hygroscopicity of aerosols in the atmosphere. Similar results are expected for other dicarboxylic acids, such as malonic and succinic acids. Thus, it is advisable that the cooling effect of organic aerosols should be estimated by including the information on metal

  3. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  4. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  5. Cloud Condensation Nuclei Prediction Error from Application of Kohler Theory: Importance for the Aerosol Indirect Effect

    NASA Technical Reports Server (NTRS)

    Sotiropoulou, Rafaella-Eleni P.; Nenes, Athanasios; Adams, Peter J.; Seinfeld, John H.

    2007-01-01

    In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Koehler theory introduces a 10-20% uncertainty in global average indirect forcing and 2-11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10-20%, and 5-50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Koehler theory (as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.

  6. Importance of the mixing state for ice nucleating capabilities of individual aerosol particles

    NASA Astrophysics Data System (ADS)

    Ebert, Martin; Worringen, Annette; Benker, Nathalie; Weinbruch, Stephan

    2010-05-01

    The effects of aerosol particles on heterogeneous ice formation are currently insufficiently understood. Modelling studies have shown that the type and quantity of atmospheric aerosol particles acting as ice nuclei (IN) can influence ice cloud microphysical and radiative properties as well as their precipitation efficiency. Therefore, the physicochemical identification of IN and a quantitative description of the ice nucleation processes are crucial for a better understanding of formation, life cycles, and the optical properties of clouds as well as for numerical precipitation forecast. During the CLACE 5 campaign in 2006 at the high alpine research station Jungfraujoch (3580 m asl), Switzerland, the physicochemical parameters of IN within mixed-phase clouds were studied. By the use of special Ice-Counterflow Virtual Impactor, residual particles of small ice nuclei (IN) and the interstitial aerosol fraction were sampled seperately within mixed-phase clouds. The size, morphology, elemental composition and mixing state of more than 7000 particles of selected IN- and interstitial-samples were analyzed by scanning electron microscopy (SEM) combined with energy-dispersive X-ray analysis (EDX). For selected particles, the mineralogical phase composition was determined by transmission electron microscopy. In order to receive detailed information about the mixing state (coatings, agglomerates, heterogeneous inclusions) of the IN- and interstitial-samples, the complete individual particle analysis was performed operator controlled. Four different particle types were identified to act as IN. 1) Carbonaceous particles, which were identified to be a complex mixture of soot (main component), sulfate and nitrate. 2) Complex mixtures of two or more diverse particle groups. In almost 75% of these particles silicates or metal oxides are the main-component. 3) Aluminium oxide particles, which were internally mixed with calcium and sulphate rich material and 4) Pb bearing particles

  7. Aerosol and CCN over the Southern Ocean: Sources, Sinks and Processes

    NASA Astrophysics Data System (ADS)

    Clarke, A. D.; Freitag, S.; Howell, S. G.; Snider, J. R.; Kazil, J.; Feingold, G.; McNaughton, C. S.; Brekhovskikh, V.; Kapustin, V.; Campos, T. L.; Shank, L.

    2013-12-01

    Aerosol able to activate as cloud condensation nuclei (CCN) in marine stratus play an important role in cloud properties and processes. The 2008 VOCALS experiment (http://www.eol.ucar.edu/projects/vocals/) explored the aerosol cloud system over the South East Pacific (SEP). There, marine boundary layer (MBL) air from the Southern Ocean is directed north parallel to the South American coast and exposed to continental emissions. During this transport the initial clean MBL aerosol is modified in response to production, processing, entrainment, mixing, and removal. Here we discuss how the aerosol, the CCN and the clouds over the SEP are coupled by these processes. VOCALS data along 20S indicated cleanest air offshore and west of about 78W. However, some of the cleanest air (lowest CO concentrations) over the SEP were present in pockets of open cells (POC's). This suggests POC's are favored in places where remnants of Southern Ocean MBL air experienced the least mixing with higher CO sources during transport, either coastal or via entrainment of free troposphere air. Entrainment from the free troposphere (FT) was found to be an important source of marine boundary layer (MBL) aerosol in both near-shore and off-shore regions while direct advection of continental aerosol tended to influence aerosol and CCN closer to the coast. Entrainment from the FT included diverse sources from South America as well as long range transport from the western Pacific. Entrainment of FT aerosol can resupply the MBL with CCN and this process appears greatly enhanced when patchy 'rivers' of pollution lie directly above the inversion. This process was evident both offshore and near the coast. Production of CCN from sea spray aerosol (SSA) were found to increase with wind speed but atmospheric concentrations did not generally increase in the higher wind offshore regions because these regions had greater drizzle removal that compensated for increased production. Generally SSA larger than 60 nm

  8. Characteristics and Composition of Atmospheric Aerosols in Phimai, Central Thailand During BASE-ASIA

    NASA Technical Reports Server (NTRS)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; hide

    2012-01-01

    Popular summary: Atmospheric aerosols play an important role in the Earth's climate system, and can also have adverse effects on air quality and human health. The environmental impacts of aerosols, on the other hand, are highly regional, since their temporal/spatial distribution is inhomogeneous and highly depends on the regional emission sources. To better understand the effects of aerosols, intensive field experiments are necessary to characterize the chemical and physical properties on a region-by-region basis. From late February to early May in 2006, NASA/GSFC's SMARTLabs facility was deployed at a rural site in central Thailand, Southeast Asia, to conduct a field experiment dubbed BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment). The group was joined by scientists from the University of Hawaii and other regional institutes. Comprehensive measurements were made during the experiment, including aerosol chemical composition, optical and microphysical properties, as well as surface energetics and local . meteorology. This study analyzes part of the data from the BASE-ASIA experiment. It was found that, even for the relatively remote rural site, the aerosol loading was still substantial. Besides agricultural burning in the area, industrial pollution near the Bangkok metropolitan area, about 200 km southeast of the site, and even long-range transport from China, also contribute to the area's aerosol loading. The results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow. Abstract: Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.l83 N, 102.565 E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 +/- 64 Mm(exp -1); absorption: 15

  9. pH of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic Aerosol.

    PubMed

    Shi, Guoliang; Xu, Jiao; Peng, Xing; Xiao, Zhimei; Chen, Kui; Tian, Yingze; Guan, Xinbei; Feng, Yinchang; Yu, Haofei; Nenes, Athanasios; Russell, Armistead G

    2017-04-18

    Acidity (pH) plays a key role in the physical and chemical behavior of PM 2.5 . However, understanding of how specific PM sources impact aerosol pH is rarely considered. Performing source apportionment of PM 2.5 allows a unique link of sources pH of aerosol from the polluted city. Hourly water-soluble (WS) ions of PM 2.5 were measured online from December 25th, 2014 to June 19th, 2015 in a northern city in China. Five sources were resolved including secondary nitrate (41%), secondary sulfate (26%), coal combustion (14%), mineral dust (11%), and vehicle exhaust (9%). The influence of source contributions to pH was estimated by ISORROPIA-II. The lowest aerosol pH levels were found at low WS-ion levels and then increased with increasing total ion levels, until high ion levels occur, at which point the aerosol becomes more acidic as both sulfate and nitrate increase. Ammonium levels increased nearly linearly with sulfate and nitrate until approximately 20 μg m -3 , supporting that the ammonium in the aerosol was more limited by thermodynamics than source limitations, and aerosol pH responded more to the contributions of sources such as dust than levels of sulfate. Commonly used pH indicator ratios were not indicative of the pH estimated using the thermodynamic model.

  10. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model

    DOE PAGES

    Liu, X.; Ma, P. -L.; Wang, H.; ...

    2016-02-08

    Atmospheric carbonaceous aerosols play an important role in the climate system by influencing the Earth's radiation budgets and modifying the cloud properties. Despite the importance, their representations in large-scale atmospheric models are still crude, which can influence model simulated burden, lifetime, physical, chemical and optical properties, and the climate forcing of carbonaceous aerosols. In this study, we improve the current three-mode version of the Modal Aerosol Module (MAM3) in the Community Atmosphere Model version 5 (CAM5) by introducing an additional primary carbon mode to explicitly account for the microphysical ageing of primary carbonaceous aerosols in the atmosphere. Compared to MAM3,more » the four-mode version of MAM (MAM4) significantly increases the column burdens of primary particulate organic matter (POM) and black carbon (BC) by up to 40 % in many remote regions, where in-cloud scavenging plays an important role in determining the aerosol concentrations. Differences in the column burdens for other types of aerosol (e.g., sulfate, secondary organic aerosols, mineral dust, sea salt) are less than 1 %. Evaluating the MAM4 simulation against in situ surface and aircraft observations, we find that MAM4 significantly improves the simulation of seasonal variation of near-surface BC concentrations in the polar regions, by increasing the BC concentrations in all seasons and particularly in cold seasons. However, it exacerbates the overestimation of modeled BC concentrations in the upper troposphere in the Pacific regions. As a result, the comparisons suggest that, to address the remaining model POM and BC biases, future improvements are required related to (1) in-cloud scavenging and vertical transport in convective clouds and (2) emissions of anthropogenic and biomass burning aerosols.« less

  11. Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980

    NASA Astrophysics Data System (ADS)

    Breider, Thomas J.; Mickley, Loretta J.; Jacob, Daniel J.; Ge, Cui; Wang, Jun; Payer Sulprizio, Melissa; Croft, Betty; Ridley, David A.; McConnell, Joseph R.; Sharma, Sangeeta; Husain, Liaquat; Dutkiewicz, Vincent A.; Eleftheriadis, Konstantinos; Skov, Henrik; Hopke, Phillip K.

    2017-03-01

    Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near-term climate-forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2-3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005-2010 Arctic shortwave radiative forcing (RF) of -0.19 ± 0.05 W m-2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (-1.17 ± 0.10 W m-2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from -0.67 ± 0.06 W m-2 to -0.19 ± 0.05 W m-2, yielding a net TOA RF of +0.48 ± 0.06 W m-2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980-2010 trends in aerosol-radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol-cloud interactions or BC deposition on snow.

  12. Characterizing the Spatial and Temporal Distribution of Aerosol Optical Thickness Over the Atlantic Basin Utilizing GOES-8 Multispectral Data

    NASA Technical Reports Server (NTRS)

    Fox, Robert; Prins, Elaine Mae; Feltz, Joleen M.

    2001-01-01

    In recent years, modeling and analysis efforts have suggested that the direct and indirect radiative effects of both anthropogenic and natural aerosols play a major role in the radiative balance of the earth and are an important factor in climate change calculations. The direct effects of aerosols on radiation and indirect effects on cloud properties are not well understood at this time. In order to improve the characterization of aerosols within climate models it is important to accurately parameterize aerosol forcing mechanisms at the local, regional, and global scales. This includes gaining information on the spatial and temporal distribution of aerosols, transport regimes and mechanisms, aerosol optical thickness, and size distributions. Although there is an expanding global network of ground measurements of aerosol optical thickness and size distribution at specific locations, satellite data must be utilized to characterize the spatial and temporal extent of aerosols and transport regimes on regional and global scales. This study was part of a collaborative effort to characterize aerosol radiative forcing over the Atlantic basin associated with the following three major aerosol components in this region: urban/sulfate, Saharan dust, and biomass burning. In-situ ground measurements obtained by a network of sun photometers during the Smoke Clouds and Radiation Experiment in Brazil (SCAR-B) and the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) were utilized to develop, calibrate, and validate a Geostationary Operational Environmental Satellite (GOES)-8 aerosol optical thickness (AOT) product. Regional implementation of the GOES-8 AOT product was used to augment point source measurements to gain a better understanding of the spatial and temporal distributions of Atlantic basin aerosols during SCAR-B and TARFOX.

  13. Physico-chemical properties of aerosols in Sao Paulo, Brazil and mechanisms of secondary organic aerosol formation.

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Luiza Godoy, Maria; Godoy, Jose Marcus

    2013-04-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an increasingly important role. Sao Paulo is a megacity with a population of about 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in Sao Paulo is bellow WMO standards for aerosol particles and ozone. Many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission characteristics, we are running a source apportionment study in Sao Paulo focused on the mechanisms of organic aerosol formation. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles). This study comprises four sampling sites with continuous measurements for one year, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, O3, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to measure in real time VOCs and aerosol composition, respectively. Trace elements were measured using XRF and OC/EC analysis was determined with a Sunset OC/EC instrument. A TSI Nephelometer with 3 wavelengths measure light scattering and a MAAP measure black carbon. Results show aerosol number concentrations ranging between 10,000 and 35,000 cm-3, mostly concentrated in the nucleation and Aitken modes, with a peak in size at 80

  14. Studying Diurnal Variations of Aerosols with NASA MERRA-2 Reanalysis Data

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Ostrenga, Dana M.; Zeng, Jian; Vollmer, Bruce E.

    2018-01-01

    Aerosols play an important role in atmospheric dynamics, climate variations, and Earth's energy cycle by altering the radiation balance in the atmosphere through interaction with clouds, providing fertilizer for forests and canopy, and as a supply of iron to the ocean over long time periods. Studies suggest that much of the feedback between dust aerosols and dynamics is associated with diurnal and synoptic scale variability. However, the lack of sub-daily resolution of aerosols from satellite observations makes it difficult to study the diurnal characteristics, especially over tropical and subtropical regions. Investigation of this topic utilizes over 37 years of simulated global aerosol products from NASA atmospheric reanalysis, in the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) data set, available from NASA Goddard Earth Science Data and Information Services Center (GES DISC). MERRA-2 covers the period 1980-present, and is continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using data from MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated using the MERRA-2 aerosol model, which interacts directly with radiation parameterization, and is radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). Hourly, monthly, and monthly diurnal data are available at spatial resolution of 0.5o x 0.625o (latitude x longitude). By using MERRA-2 hourly and monthly diurnal products, different aerosol diurnal variabilities are observed over North America, Africa, Asia, and Australia, that may be due to different meteorological conditions and aerosol sources. The presentation will also provide an overview of MERRA-2 data services at GES DISC, such as how to find and download data, and how to quickly visualize and analyze data online with Giovanni.

  15. Lidar characterizations of atmospheric aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Burton, S. P.

    2017-12-01

    Knowledge of the vertical profile, composition, concentration, and size distribution of aerosols is required to quantify the impacts of aerosols on human health, global and regional climate, clouds and precipitation. In particular, radiative forcing due to anthropogenic aerosols is the most uncertain part of anthropogenic radiative forcing, with aerosol-cloud interactions (ACI) as the largest source of uncertainty in current estimates of global radiative forcing. Improving aerosol transport model predictions of the vertical profile of aerosol optical and microphysical characteristics is crucial for improving assessments of aerosol radiative forcing. Understanding how aerosols and clouds interact is essential for investigating the aerosol indirect effect and ACI. Through its ability to provide vertical profiles of aerosol and cloud distributions as well as important information regarding the optical and physical properties of aerosols and clouds, lidar is a crucial tool for addressing these science questions. This presentation describes how surface, airborne, and satellite lidar measurements have been used to address these questions, and in particular how High Spectral Resolution Lidar (HSRL) measurements provide profiles of aerosol properties (backscatter, extinction, depolarization, concentration, size) important for characterizing radiative forcing. By providing a direct measurement of aerosol extinction, HSRL provides more accurate aerosol measurement profiles and more accurate constraints for models than standard retrievals from elastic backscatter lidar, which loses accuracy and precision at lower altitudes due to attenuation from overlying layers. Information regarding particle size and abundance from advanced lidar retrievals provides better proxies for cloud-condensation-nuclei (CCN), which are required for assessing aerosol-cloud interactions. When combined with data from other sensors, advanced lidar measurements can provide information on aerosol and

  16. The effect of aerosol optical depth on rainfall with reference to meteorology over metro cities in India.

    PubMed

    Gunaseelan, Indira; Bhaskar, B Vijay; Muthuchelian, K

    2014-01-01

    Rainfall is a key link in the global water cycle and a proxy for changing climate; therefore, proper assessment of the urban environment's impact on rainfall will be increasingly important in ongoing climate diagnostics and prediction. Aerosol optical depth (AOD) measurements on the monsoon seasons of the years 2008 to 2010 were made over four metro regional hotspots in India. The highest average of AOD was in the months of June and July for the four cities during 3 years and lowest was in September. Comparing the four regions, Kolkata was in the peak of aerosol contamination and Chennai was in least. Pearson correlation was made between AOD with climatic parameters. Some changes in the parameters were found during drought year. Temperature, cloud parameters, and humidity play an important role for the drought conditions. The role of aerosols, meteorological parameters, and their impacts towards the precipitation during the monsoon was studied.

  17. Physical and Optical/Radiative Characteristics of Aerosol and Cloud Particles in Tropical Cirrus: Importance in Radiation Balance

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Howard, S. D.; Foster, T. C.; Hallett, J.; Arnott, W. P.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    Whether cirrus clouds heat or cool the Earth-atmosphere system depends on the relative importance of the cloud shortwave albedo effect and the cloud thermal greenhouse effect. Both are determined by the distribution of ice condensate with cloud particle size. The microphysics instrument package flown aboard the NASA DC-8 in TOGA/COARE included an ice crystal replicator, a 2D Greyscale Cloud Particle Probe and a Forward Scattering Spectrometer Aerosol Probe. In combination, the electro-optical instruments permitted particle size measurements between 0.5 micrometer and 2.6 millimeter diameter. Ice crystal replicas were used to validate signals from the electrooptical instruments. Both optical and scanning electron microscopy were utilized to analyze aerosol and ice particle replicas between 0.1 micrometer and several 100 micrometer diameter. In first approximation, the combined aerosol-cloud particle spectrum in several clouds followed a power law N alpha D(sup -2.5). Thus, large cloud particles carried most of the condensate mass, while small cloud and aerosol particles determined the surface area. The mechanism of formation of small particles is growth of (hygroscopic, possibly ocean-derived) aerosol particles along the Kohler curves. The concentration of small particles is higher and less variable in space and time, and their tropospheric residence time is longer, than those of large cloud particles because of lower sedimentation velocities. Small particles shift effective cloud particle radii to sizes much smaller than the mean diameter of the cloud particles. This causes an increase in shortwave reflectivity and IR emissivity, and a decrease in transmissivity. Occasionally, the cloud reflectivity increased with altitude (decreasing temperature) stronger than did cloud emissivity, yielding enhanced radiative cooling at higher altitudes. Thus, cirrus produced by deep convection in the tropics may be critical in controlling processes whereby energy from warm

  18. A Sulfate Aerosol Trigger for the Sturtian Neoproterozoic Snowball Event

    NASA Astrophysics Data System (ADS)

    Wordsworth, R. D.; Macdonald, F. A.

    2017-12-01

    Despite the dominance of the carbon cycle in determining the evolution of Earth's climate in general, certain events defy easy explanation via atmospheric CO2 changes alone. Here we discuss the particular role that transient planetary albedo changes via sulfate aerosol formation can play in major climate transitions. Specifically, we propose that SO2 outgassing associated with the eruption of the Franklin Large Igneous Province (LIP) led to the first Neoproterozoic Snowball event, the Sturtian, 716 Ma. We summarize U/Pb zircon and baddeleyite dating indicating the synchronicity of the Franklin eruptions and the onset of the Sturtian, and paleomagnetic data indicating that the Franklin erupted close to the equator. We then discuss in detail the modeling we have performed of eruption rate, the plume height achieved during basaltic fissure volcanism, the chemistry and microphysics of sulfate aerosol formation, and the dependence of aerosol longwave and shortwave radiative effects on atmospheric loading, particle size and surface albedo. We discuss the critical importance of the latitude of eruption, the tropopause height, and ocean dynamics in determining the strength and sign of aerosol radiative forcing. We finish by comparing the Franklin event with other LIP emplacement events in Earth history and make suggestions for future modeling.

  19. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign.

    PubMed

    Jung, Jinsang; Lee, Hanlim; Kim, Young J; Liu, Xingang; Zhang, Yuanhang; Gu, Jianwei; Fan, Shaojia

    2009-08-01

    Optical and chemical aerosol measurements were obtained from 2 to 31 July 2006 at an urban site in the metropolitan area of Guangzhou (China) as part of the Program of Regional Integrated Experiment of Air Quality over Pearl River Delta (PRIDE-PRD2006) to investigate aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing. During the PRIDE-PRD2006 campaign, the average contributions of ammonium sulfate, organic mass by carbon (OMC), elemental carbon (EC), and sea salt (SS) to total PM(2.5) mass were measured to be 36.5%, 5.7%, 27.1%, 7.8%, and 3.7%, respectively. Compared with the clean marine period, (NH(4))(2)SO(4), NH(4)NO(3), and OMC were all greatly enhanced (by up to 430%) during local haze periods via the accumulation of a secondary aerosol component. The OMC dominance increased when high levels of biomass burning influenced the measurement site while (NH(4))(2)SO(4) and OMC did when both biomass burning and industrial emissions influenced it. The effect of aerosol water content on the total light-extinction coefficient was estimated to be 34.2%, of which 25.8% was due to aerosol water in (NH(4))(2)SO(4), 5.1% that in NH(4)NO(3), and 3.3% that in SS. The average mass-scattering efficiency (MSE) of PM(10) particles was determined to be 2.2+/-0.6 and 4.6+/-1.7m(2)g(-1) under dry (RH<40%) and ambient conditions, respectively. The average single-scattering albedo (SSA) was 0.80+/-0.08 and 0.90+/-0.04 under dry and ambient conditions, respectively. Not only are the extinction and scattering coefficients greatly enhanced by aerosol water content, but MSE and SSA are also highly sensitive. It can be concluded that sulfate and carbonaceous aerosol, as well as aerosol water content, play important roles in the processes that determine visibility impairment and radiative forcing in the ambient atmosphere of the Guangzhou urban area.

  20. Nonequilibrium atmospheric secondary organic aerosol formation and growth

    PubMed Central

    Perraud, Véronique; Bruns, Emily A.; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Alexander, M. Lizabeth; Zelenyuk, Alla; Imre, Dan; Chang, Wayne L.; Dabdub, Donald; Pankow, James F.; Finlayson-Pitts, Barbara J.

    2012-01-01

    Airborne particles play critical roles in air quality, health effects, visibility, and climate. Secondary organic aerosols (SOA) formed from oxidation of organic gases such as α-pinene account for a significant portion of total airborne particle mass. Current atmospheric models typically incorporate the assumption that SOA mass is a liquid into which semivolatile organic compounds undergo instantaneous equilibrium partitioning to grow the particles into the size range important for light scattering and cloud condensation nuclei activity. We report studies of particles from the oxidation of α-pinene by ozone and NO3 radicals at room temperature. SOA is primarily formed from low-volatility ozonolysis products, with a small contribution from higher volatility organic nitrates from the NO3 reaction. Contrary to expectations, the particulate nitrate concentration is not consistent with equilibrium partitioning between the gas phase and a liquid particle. Rather the fraction of organic nitrates in the particles is only explained by irreversible, kinetically determined uptake of the nitrates on existing particles, with an uptake coefficient that is 1.6% of that for the ozonolysis products. If the nonequilibrium particle formation and growth observed in this atmospherically important system is a general phenomenon in the atmosphere, aerosol models may need to be reformulated. The reformulation of aerosol models could impact the predicted evolution of SOA in the atmosphere both outdoors and indoors, its role in heterogeneous chemistry, its projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies. PMID:22308444

  1. Special issue: Chemical characterization of secondary organic aerosol - Dedication to Professor Magda Claeys

    NASA Astrophysics Data System (ADS)

    Surratt, Jason D.; Szmigielski, Rafal; Faye McNeill, V.

    2016-04-01

    Atmospheric aerosols are suspensions of liquid and solid particles that have diameters ranging from a few nanometers to several micrometers (μm). Atmospheric fine particulate matter (PM2.5, aerosols with aerodynamic diameters of 2.5 μm or less) are especially important since they can adversely affect air quality and human health as well as play a critical role in Earth's climate system. In terms of aerosol climate effects, PM2.5 can directly affect climate by scattering or absorbing incoming solar radiation or indirectly by acting as nuclei on which cloud droplets and ice particles form. As a result, a better understanding of processes that determine the formation and sinks of PM2.5 is needed for developing effective policies that improve air quality and public health as well as to accurately predict the response of the climate system due to changes in anthropogenic emissions.

  2. Six-channel multi-wavelength polarization Raman lidar for aerosol and water vapor profiling.

    PubMed

    Wang, Zhaofei; Mao, Jiandong; Li, Juan; Zhao, Hu; Zhou, Chunyan; Sheng, Hongjiang

    2017-07-10

    Aerosols and water vapor are important atmospheric components, and have significant effects on both atmospheric energy conversion and climate formation. They play the important roles in balancing the radiation budget between the atmosphere and Earth, while water vapor also directly affects rainfall and other weather processes. To further research atmospheric aerosol optical properties and water vapor content, an all-time six-channel multi-wavelength polarization Raman lidar has been developed at Beifang University of Nationalities. In addition to 1064, 532, and 355 nm Mie scattering channels, the lidar has a polarization channel for 532 nm return signals, a 660 nm water vapor channel, and a 607 nm nitrogen detection channel. Experiments verified the lidar's feasibility and return signals from six channels were detected. Using inversion algorithms, extinction coefficient profiles at 1064, 532 and 355 nm, Ångström exponent profiles, depolarization ratio profiles, and water vapor mixing ratio profiles were all obtained. The polarization characteristics and water vapor content of cirrus clouds, the polarization characteristics of dusty weather, and the water vapor profiles over different days were also analyzed. Results show that the lidar has the full-time detection capability for atmospheric aerosol optical properties and water vapor profiles, and real-time measurements of aerosols and water vapor over the Yinchuan area were realized, providing important information for studying the environmental quality and climate change in this area.

  3. Atmo-metabolomics: a new measurement approach for investigating aerosol composition and ecosystem functioning.

    NASA Astrophysics Data System (ADS)

    Rivas-Ubach, A.; Liu, Y.; Sardans, J.; Tfaily, M. M.; Kim, Y. M.; Bourrianne, E.; Paša-Tolić, L.; Penuelas, J.; Guenther, A. B.

    2016-12-01

    Aerosols play crucial roles in the processes controlling the composition of the atmosphere and the functioning of ecosystems. Gaining a deeper understanding of the chemical composition of aerosols is one of the major challenges for atmospheric and climate scientists and is beginning to be recognized as important for ecological research. Better comprehension of aerosol chemistry can potentially provide valuable information on atmospheric processes such as oxidation of organics and the production of cloud condensation nuclei as well as provide an approximation of the general status of an ecosystem through the measurement of certain stress biomarkers. In this study, we describe an efficient aerosol sampling method, the metabolite extraction and the analytical procedures for the chemical characterization of aerosols, namely, the atmo-metabolome. We used mass spectrometry (MS) coupled to liquid chromatography (LC-MS), gas chromatography (GC-MS) and Fourier transform ion cyclotron resonance (FT-ICR-MS) to characterize the atmo-metabolome of two marked seasons; spring and summer. Our sampling and extraction methods demonstrated to be suitable for aerosol chemical characterization with any of the analytical platforms used in this study. The atmo-metabolome between spring and summer showed overall statistically differences. We identified several metabolites that can be attributed to pollen and other plant-related aerosols. Spring aerosols exhibit higher concentrations of metabolites linked to higher plant activity while summer samples had higher concentrations of metabolites that may reflect certain oxidative stresses in primary producers. Moreover, the elemental composition of aerosols showed clear different between seasons. Summer aerosols were generally higher in molecular weight and with higher O/C ratios, indicating higher oxidation levels and condensation of compounds relative to spring. Our method represents an advanced approach for characterizing the composition of

  4. Modeling the global distribution of the oxygen isotopic composition of sulfate aerosols: Importance of transition metal catalyzed S(IV) oxidation chemistry

    NASA Astrophysics Data System (ADS)

    Alexander, B.; Park, R. J.

    2006-12-01

    The oxygen isotopic composition of sulfate aerosols (Δ17O ~ δ&&17O 0.5*δ18O) reflects the relative importance of different photochemical oxidation pathways in the atmosphere. Simulated isotopic variability in a global chemical transport model (GEOS-Chem) shows good agreement with observations in oceanic [Alexander et al., 2005] and some continental sites. However, a large discrepancy exists between modeled and measured isotopic composition in the high northern latitudes, reflecting an incomplete understanding of the sulfur budget in this region. Recent oxygen isotope measurements of sulfate aerosols collected at Alert, Canada suggest that transition metal catalyzed oxidation of SO2 by O2 in the aqueous-phase is significant during winter [Mc Cabe et al.,2006]. Global chemistry models ignore this oxidation pathway because it is believed to be important only regionally, and because of the large uncertainties in atmospheric metal concentrations and oxidation states. We have incorporated Fe(III) and Mn(II) catalyzed oxidation of S(IV) (S(IV) = SO2·H2O + HSO3- + SO32-) by O2 into the GEOS-Chem model using the McCabe et al. [2006] isotope measurements as a constraint. We will examine the importance of this oxidation pathway for the sulfur budget in the Arctic, and on the global scale. Preliminary results suggest that, during winter, up to 75% of aerosol sulfate at Alert forms via the metal catalysis pathway. The addition of this chemical pathway decreases the SO2 burden in the Arctic (north of 60°N) by 40% due to an increase in the oxidation rate. The comparison of large-scale sulfate aerosol models study (COSAM) showed that on average, models over-predict SO2 mixing ratios by factors of 2 or more [Barrie et al., 2001]. This "missing" S(IV) oxidation pathway can partially explain this discrepancy.

  5. Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements

    NASA Astrophysics Data System (ADS)

    Malinina, Elizaveta; Rozanov, Alexei; Rozanov, Vladimir; Liebing, Patricia; Bovensmann, Heinrich; Burrows, John P.

    2018-04-01

    aerosols in the Earth's atmosphere is of a great importance in the scientific community. While tropospheric aerosol influences the radiative balance of the troposphere and affects human health, stratospheric aerosol plays an important role in atmospheric chemistry and climate change. In particular, information about the amount and distribution of stratospheric aerosols is required to initialize climate models, as well as validate aerosol microphysics models and investigate geoengineering. In addition, good knowledge of stratospheric aerosol loading is needed to increase the retrieval accuracy of key trace gases (e.g. ozone or water vapour) when interpreting remote sensing measurements of the scattered solar light. The most commonly used characteristics to describe stratospheric aerosols are the aerosol extinction coefficient and Ångström coefficient. However, the use of particle size distribution parameters along with the aerosol number density is a more optimal approach. In this paper we present a new retrieval algorithm to obtain the particle size distribution of stratospheric aerosol from space-borne observations of the scattered solar light in the limb-viewing geometry. While the mode radius and width of the aerosol particle size distribution are retrieved, the aerosol particle number density profile remains unchanged. The latter is justified by a lower sensitivity of the limb-scattering measurements to changes in this parameter. To our knowledge this is the first data set providing two parameters of the particle size distribution of stratospheric aerosol from space-borne measurements of scattered solar light. Typically, the mode radius and w can be retrieved with an uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N-20° S) for 10 years (2002-2012) of SCIAMACHY observations in limb-viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size

  6. Longterm and spatial variability of Aerosol optical properties measured by sky radiometer in Japan sites

    NASA Astrophysics Data System (ADS)

    Aoki, K.

    2016-12-01

    Aerosols and cloud play an important role in the climate change. We started the long-term monitoring of aerosol and cloud optical properties since 1990's by using sky radiometer (POM-01, 02; Prede Co. Ltd., Japan). We provide the information, in this presentation, on the aerosol optical properties with respect to their temporal and spatial variability in Japan site (ex. Sapporo, Toyama, Kasuga and etc). The global distributions of aerosols have been derived from earth observation satellite and have been simulated in numerical models, which assume optical parameters. However, these distributions are difficult to derive because of variability in time and space. Therefore, Aerosol optical properties were investigated using the measurements from ground-based and ship-borne sky radiometer. The sky radiometer is an automatic instrument that takes observations only in daytime under the clear sky conditions. Observation of diffuse solar intensity interval was made every ten or five minutes by once. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability in Japan area. In this study, we present the temporal and spatial variability of Aerosol optical properties at several Japan sites, applied to validation of satellite and numerical models. This project is validation satellite of GCOM-C, JAXA. The GCOM-C satellite scheduled to be launched in early 2017.

  7. Assessment of optical properties variation and discrimination of aerosol and cloud with a multiple-wavelength elastic-Raman lidar in New York City

    NASA Astrophysics Data System (ADS)

    Arapi, A.; Wu, Y.; Moshary, F.; Blake, R.; Liou-Mark, J.

    2017-12-01

    Aerosol and cloud play important roles on the Earth's energy budget, which is an important component of climate research. The radiative effects of aerosol-cloud interaction are still highly uncertain and the accuracy of their representation in climate models depends on the accuracy of their measurements. This study evaluates the potential to determine the existence of hydrated aerosols near clouds based on a ground-based multiple-wavelength elastic-Raman lidar at 1064-532-355nm and satellite measurement in New York City area (NYC), east coast of US. The main goal of this study is to examine the variations of color-ratio (spectral or wavelength dependence of backscatter) and relative backscatter to identify patterns between aerosol and cloud. In this presentation, we show the time-height distribution and variation of lidar-measured relative backscatter and color-ratio for some case studies. Then, we employ an aerosol-cloud discrimination algorithm to separate aerosols and clouds according to the color-ratio differences. We demonstrate the significant variation of aerosol optical properties near the low-level clouds in summer, which indicates the potential interaction or transient zone between aerosols and clouds. Finally, we show the preliminary evaluation of the aerosol and cloud product from the satellite retrievals when the ground-lidar observes the transported smoke plumes in NYC area.

  8. Assessment of aerosol indirect effects over Indian subcontinent using long term MODIS aerosol and cloud data

    NASA Astrophysics Data System (ADS)

    Das, Saurabh; Maitra, Animesh; Saha, Upal; De, Arijit

    Aerosols have direct consequences on climate research and in climate change study due to its role in radiative forcing. The modulation of cloud properties due to the presence of aerosol is another important factor in understanding of the climate change scenario. However, the relationship between these two is mostly indirect as the meteorological conditions have a strong impact on the relationship. Cloud effective radius and decreases in precipitation efficiency are interlinked with the increase of aerosols. The net effect is that the cloud liquid water path and cloud lifetime increase with AOD. Though these facts are included in the global climate models (GCM), the quantitative estimation of aerosol indirect efficiency (AIE) varied widely. Some recent studies indicate an increasing trend of the aerosol optical depth over the Indian landmass. The anthropogenic activities are linked with this increase in aerosols. In general, aerosol increase can affect the cloud radius and leads to formation of non-precipitating cloud. However, the chemical composition of aerosols may also be an important factor. It is therefore necessary to have better understanding of the relationship for predicting the future climate which may be affected by such human activities. In this paper, the relation of aerosol optical depth (AOD) with cloud effective radius (CER) has been investigated over the Indian subcontinent using the long term MODIS observations. MODIS can able to provide reliable AOD information over the land surface. It also able to provide information of the cloud effective radius of the same observation point. A grid-wise correlation analysis can thus be performed to estimate the relation between AOD and CER. Result indicates both positive and negative AIE of AOD on CER. To identify the possible reason for such variability in the AIE, the role of anthropogenic aerosols and water vapor is investigated. The study on the efficiency of aerosol indirect effect indicates that a large

  9. Aerosol transmission of foot-and-mouth disease virus Asia-1 under experimental conditions.

    PubMed

    Colenutt, C; Gonzales, J L; Paton, D J; Gloster, J; Nelson, N; Sanders, C

    2016-06-30

    Foot-and-mouth disease virus (FMDV) control measures rely on understanding of virus transmission mechanisms. Direct contact between naïve and infected animals or spread by contaminated fomites is prevented by quarantines and rigorous decontamination procedures during outbreaks. Transmission of FMDV by aerosol may not be prevented by these control measures and this route of transmission may allow infection of animals at distance from the infection source. Understanding the potential for aerosol spread of specific FMDV strains is important for informing control strategies in an outbreak. Here, the potential for transmission of an FMDV Asia 1 strain between pigs and cattle by indirect aerosol exposure was evaluated in an experimental setting. Four naïve calves were exposed to aerosols emitted from three infected pigs in an adjacent room for a 10h period. Direct contact between pigs and cattle and fomite transfer between rooms was prevented. Viral titres in aerosols emitted by the infected pigs were measured to estimate the dose that calves were exposed to. One of the calves developed clinical signs of FMD, whilst there was serological evidence for spread to cattle by aerosol transmission in the remaining three calves. This highlights the possibility that this FMDV Asia 1 strain could be spread by aerosol transmission given appropriate environmental conditions should an outbreak occur in pigs. Our estimates suggest the exposure dose required for aerosol transmission was higher than has been previously quantified for other serotypes, implying that aerosols are less likely to play a significant role in transmission and spread of this FMDV strain. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Muhlbauer, A.; Hashino, T.; Xue, L.; Teller, A.; Lohmann, U.; Rasmussen, R. M.; Geresdi, I.; Pan, Z.

    2010-09-01

    . Furthermore, it is found that neither a decrease in cloud droplet coalescence nor a decrease in riming necessarily implies a decrease in precipitation due to compensation effects by other microphysical pathways. The simulations suggest that mixed-phase conditions play an important role in buffering the effect of aerosol perturbations on cloud microphysics and reducing the overall susceptibility of clouds and precipitation to changes in the aerosol number concentrations. As a consequence the aerosol effect on precipitation is suggested to be less pronounced or even inverted in regions with high terrain (e.g., the Alps or Rocky Mountains) or in regions where mixed-phase microphysics is important for the climatology of orographic precipitation.

  11. The Effect of Aerosols on Pluto's C2 Hydrocarbon Chemistry

    NASA Astrophysics Data System (ADS)

    Luspay-Kuti, Adrienn; Mandt, Kathleen; Jessup, Kandis-Lea; Hue, Vincent; Kammer, Joshua; Filwett, Rachael; Hamel, Mark

    2017-10-01

    On July 14, 2015 the New Horizons spacecraft flew through the Pluto system, providing critical details about Pluto’s atmosphere. The vertical profiles of N2 and CH4, C2H2, C2H4, and C2H6 derived from New Horizons Alice transmission data allow the more accurate modeling of Pluto’s atmosphere than in the pre-New Horizons era, and help better understand the physical and photochemical processes in Pluto’s atmosphere. All the measured C2 hydrocarbon densities showed an unexpected inversion between ~100 and 400 km, which suggests that processes other than chemistry play an important role in shaping their vertical profiles. We present here a state-of-the-art Pluto Ion-Neutral-Photochemistry (Pluto INP) model that includes the condensation onto and incorporation into aerosol particles, and evaluate the dominant production and loss processes of C2 hydrocarbons with a special emphasis on the role of aerosol interaction. We found that in order to reproduce the C2 profiles measured by New Horizons, they must stick to and be permanently removed by aerosols - a process different from condensation. We determined through empirical fits to the New Horizons data that the sticking efficiency of C2 hydrocarbons and the stickiness of the aerosol particles are inversely related to the available aerosol surface area, which has been inferred from observation to increase as altitude decreases. This counterintuitive relationship between sticking efficiency and available aerosol surfaces indicates that similarly to Titan, Pluto’s aerosols must harden and become less sticky as they age. Such hardening with ageing is both necessary and sufficient to explain the vertical profiles of C2 hydrocarbons in Pluto’s atmosphere.

  12. Aerosol climatology: on the discrimination of aerosol types over four AERONET sites

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Kambezidis, H. D.; Hatzianastassiou, N.; Kosmopoulos, P. G.; Badarinath, K. V. S.

    2007-05-01

    Aerosols have a significant regional and global effect on climate, which is about equal in magnitude but opposite in sign to that of greenhouse gases. Nevertheless, the aerosol climatic effect changes strongly with space and time because of the large variability of aerosol physical and optical properties, which is due to the variety of their sources, which are natural, and anthropogenic, and their dependence on the prevailing meteorological and atmospheric conditions. Characterization of aerosol properties is of major importance for the assessment of their role for climate. In the present study, 3-year AErosol RObotic NETwork (AERONET) data from ground-based sunphotometer measurements are used to establish climatologies of aerosol optical depth (AOD) and Ångström exponent α in several key locations of the world, characteristic of different atmospheric environments. Using daily mean values of AOD at 500 nm (AOD500) and Ångström exponent at the pair of wavelengths 440 and 870 nm (α 440-870), a discrimination of the different aerosol types occurring in each location is achieved. For this discrimination, appropriate thresholds for AOD500 and α 440-870 are applied. The discrimination of aerosol types in each location is made on an annual and seasonal basis. It is shown that a single aerosol type in a given location can exist only under specific conditions (e.g. intense forest fires or dust outbreaks), while the presence of well-mixed aerosols is the accustomed situation. Background clean aerosol conditions (AOD500<0.06) are mostly found over remote oceanic surfaces occurring on average in ~56.7% of total cases, while this situation is quite rare over land (occurrence of 3.8-13.7%). Our analysis indicates that these percentages change significantly from season to season. The spectral dependence of AOD exhibits large differences between the examined locations, while it exhibits a strong annual cycle.

  13. Trend analysis of the aerosol optical depth from fusion of MISR and MODIS retrievals over China

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Gu, Xingfa; Yu, Tao; Cheng, Tianhai; Chen, Hao

    2014-03-01

    Atmospheric aerosol plays an important role in the climate change though direct and indirect processes. In order to evaluate the effects of aerosols on climate, it is necessary to have a research on their spatial and temporal distributions. Satellite aerosol remote sensing is a developing technology that may provide good temporal sampling and superior spatial coverage to study aerosols. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) have provided aerosol observations since 2000, with large coverage and high accuracy. However, due to the complex surface, cloud contamination, and aerosol models used in the retrieving process, the uncertainties still exist in current satellite aerosol products. There are several observed differences in comparing the MISR and MODIS AOD data with the AERONET AOD. Combing multiple sensors could reduce uncertainties and improve observational accuracy. The validation results reveal that a better agreement between fusion AOD and AERONET AOD. The results confirm that the fusion AOD values are more accurate than single sensor. We have researched the trend analysis of the aerosol properties over China based on nine-year (2002-2010) fusion data. Compared with trend analysis in Jingjintang and Yangtze River Delta, the accuracy has increased by 5% and 3%, respectively. It is obvious that the increasing trend of the AOD occurred in Yangtze River Delta, where human activities may be the main source of the increasing AOD.

  14. Environmental temperature effect on the far-infrared absorption features of aromatic-based Titan's aerosol analogs

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.

    2017-01-01

    Benzene detection has been reported in Titan's atmosphere both in the stratosphere at ppb levels by remote sensing (Coustenis et al., 2007; Vinatier et al., 2007) and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer (Waite et al., 2007). This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's atmospheric chemistry, especially in the formation of aerosols. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. It has been shown recently that aerosol analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500 cm-1, a first step towards reproducing the aerosol spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared (Anderson and Samuelson 2011, and references therein). In this work we investigate the influence of environmental temperature on the absorption spectra of such aerosol samples, simulating the temperature range to which aerosols, once formed, are exposed during their transport through Titan's stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these aerosol analogs in the far-infrared, which is consistent with the CIRS observations.

  15. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, William K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2006-01-01

    precipitation seesaw between eastern and western Siberia. The results of this study raise the possibility that global aerosol forcing during boreal spring may play an important role in spawning atmospheric teleconnections that affect regional and global climates.

  16. Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from Biogenic Precursor Hydrocarbons

    EPA Science Inventory

    Secondary organic aerosol (SOA) formation and dynamics may be important factors for the role of aerosols in adverse health effects, visibility and climate change. Formation of SOA occurs when a parent volatile organic compound is oxidized to create products that form in a conden...

  17. Marine Stratocumulus Properties from the FPDR - PDI as a Function of Aerosol during ORACLES

    NASA Astrophysics Data System (ADS)

    Small Griswold, J. D.; Heikkila, A.

    2016-12-01

    Aerosol-cloud interactions in the southeastern Atlantic (SEA) region were investigated during year 1 of the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field project in Aug-Sept 2016. This region is of interest due to seasonally persistent marine stratocumulus cloud decks that are an important component of the climate system due to their radiative and hydrologic impacts. The SEA deck is unique due to the interactions between these clouds and transported biomass burning aerosol during the July-October fire season. These biomass burning aerosol play multiple roles in modifying the cloud deck through interactions with radiation as absorbing aerosol and through modifications to cloud microphysical properties as cloud condensation nuclei. This work uses in situcloud data obtained with a Flight Probe Dual Range - Phase Doppler Interferometer (FPDR - PDI), standard aerosol instrumentation on board the NASA P-3, and reanalysis data to investigate Aerosol-Cloud Interactions (ACI). The FPDR - PDI provides unique cloud microphysical observations of individual cloud drop arrivals allowing for the computation of a variety of microphysical cloud properties including individual drop size, cloud drop number concentration, cloud drop size distributions, liquid water content, and cloud thickness. The FPDR - PDI measurement technique also provides droplet spacing and drop velocity information which is used to investigate turbulence and entrainment mixing processes. We use aerosol information such as average background aerosol amount (low, mid, high) and location relative to cloud (above or mixing) to sort FPDR - PDI cloud properties. To control for meteorological co-variances we further sort the data within aerosol categories by lower tropospheric stability, vertical velocity, and surface wind direction. We then determine general marine stratocumulus cloud characteristics under each of the various aerosol categories to investigate ACI in the SEA.

  18. Enhanced PM2.5 pollution in China due to aerosol-cloud interactions.

    PubMed

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Li, Qinbin; Jiang, Jonathan H; Su, Hui; He, Cenlin; Tseng, Hsien-Liang R; Wang, Shuxiao; Liu, Run; Qi, Ling; Lee, Wei-Liang; Hao, Jiming

    2017-06-30

    Aerosol-cloud interactions (aerosol indirect effects) play an important role in regional meteorological variations, which could further induce feedback on regional air quality. While the impact of aerosol-cloud interactions on meteorology and climate has been extensively studied, their feedback on air quality remains unclear. Using a fully coupled meteorology-chemistry model, we find that increased aerosol loading due to anthropogenic activities in China substantially increases column cloud droplet number concentration and liquid water path (LWP), which further leads to a reduction in the downward shortwave radiation at surface, surface air temperature and planetary boundary layer (PBL) height. The shallower PBL and accelerated cloud chemistry due to larger LWP in turn enhance the concentrations of particulate matter with diameter less than 2.5 μm (PM 2.5 ) by up to 33.2 μg m -3 (25.1%) and 11.0 μg m -3 (12.5%) in January and July, respectively. Such a positive feedback amplifies the changes in PM 2.5 concentrations, indicating an additional air quality benefit under effective pollution control policies but a penalty for a region with a deterioration in PM 2.5 pollution. Additionally, we show that the cloud processing of aerosols, including wet scavenging and cloud chemistry, could also have substantial effects on PM 2.5 concentrations.

  19. Global CALIPSO Observations of Aerosol Changes Near Clouds

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2011-01-01

    Several recent studies have found that clouds are surrounded by a transition zone of rapidly changing aerosol optical properties and particle size. Characterizing this transition zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects, and also for improving satellite retrievals of aerosol properties. This letter presents a statistical analysis of a monthlong global data set of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations over oceans. The results show that the transition zone is ubiquitous over all oceans and extends up to 15 km away from clouds. They also show that near-cloud enhancements in backscatter and particle size are strongest at low altitudes, slightly below the top of the nearest clouds. Also, the enhancements are similar near illuminated and shadowy cloud sides, which confirms that the asymmetry of Moderate Resolution Imaging Spectroradiometer reflectances found in an earlier study comes from 3-D radiative processes and not from differences in aerosol properties. Finally, the effects of CALIPSO aerosol detection and cloud identification uncertainties are discussed. The findings underline the importance of accounting for the transition zone to avoid potential biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  20. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen

    Anthropogenic emissions and land-use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding pre-industrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features 1) influence estimates of aerosol radiative forcing and 2) can confound estimates of the historical response of climate to increases in greenhouse gases (e.g. the ‘climate sensitivity’). Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through a combinationmore » of laboratory and field measurements, yet current climate models typically do not comprehensively include all important SOA-relevant processes. Therefore, major gaps exist at present between current measurement-based knowledge on the one hand and model implementation of organic aerosols on the other. The critical review herein summarizes some of the important developments in understanding SOA formation that could potentially have large impacts on our understanding of aerosol radiative forcing and climate. We highlight the importance of some recently discovered processes and properties that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including: formation of extremely low-volatility organics in the gas-phase; isoprene epoxydiols (IEPOX) multi-phase chemistry; particle-phase oligomerization; and physical properties such as viscosity. In addition, this review also highlights some of the important processes that involve interactions between natural biogenic emissions and anthropogenic emissions, such as the role of sulfate and oxides of nitrogen (NOx) on SOA formation from biogenic volatile organic compounds. Studies that relate the observed evolution of organic

  1. Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution.

    PubMed

    Vernier, J-P; Fairlie, T D; Natarajan, M; Wienhold, F G; Bian, J; Martinsson, B G; Crumeyrolle, S; Thomason, L W; Bedka, K M

    2015-02-27

    Satellite observations have shown that the Asian Summer Monsoon strongly influences the upper troposphere and lower stratosphere (UTLS) aerosol morphology through its role in the formation of the Asian Tropopause Aerosol Layer (ATAL). Stratospheric Aerosol and Gas Experiment II solar occultation and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations show that summertime UTLS Aerosol Optical Depth (AOD) between 13 and 18 km over Asia has increased by three times since the late 1990s. Here we present the first in situ balloon measurements of aerosol backscatter in the UTLS from Western China, which confirm high aerosol levels observed by CALIPSO since 2006. Aircraft in situ measurements suggest that aerosols at lower altitudes of the ATAL are largely composed of carbonaceous and sulfate materials (carbon/sulfur elemental ratio ranging from 2 to 10). Back trajectory analysis from Cloud-Aerosol Lidar with Orthogonal Polarization observations indicates that deep convection over the Indian subcontinent supplies the ATAL through the transport of pollution into the UTLS. Time series of deep convection occurrence, carbon monoxide, aerosol, temperature, and relative humidity suggest that secondary aerosol formation and growth in a cold, moist convective environment could play an important role in the formation of ATAL. Finally, radiative calculations show that the ATAL layer has exerted a short-term regional forcing at the top of the atmosphere of -0.1 W/m 2 in the past 18 years. Increase of summertime upper tropospheric aerosol levels over Asia since the 1990s Upper tropospheric enhancement also observed by in situ backscatter measurements Significant regional radiative forcing of -0.1 W/m 2 .

  2. Connecting Aerosol Size Distributions at Three Arctic Stations

    NASA Astrophysics Data System (ADS)

    Freud, E.; Krejci, R.; Tunved, P.; Barrie, L. A.

    2015-12-01

    Aerosols play an important role in Earth's energy balance mainly through interactions with solar radiation and cloud processes. There is a distinct annual cycle of arctic aerosols, with greatest mass concentrations in the spring and lowest in summer due to effective wet removal processes - allowing for new particles formation events to take place. Little is known about the spatial extent of these events as no previous studies have directly compared and linked aerosol measurements from different arctic stations during the same times. Although the arctic stations are hardly affected by local pollution, it is normally assumed that their aerosol measurements are indicative of a rather large area. It is, however, not clear if that assumption holds all the time, and how large may that area be. In this study, three different datasets of aerosol size distributions from Mt. Zeppelin in Svalbard, Station Nord in northern Greenland and Alert in the Canadian arctic, are analyzed for the measurement period of 2012-2013. All stations are 500 to 1000 km from each other, and the travel time from one station to the other is typically between 2 to 5 days. The meteorological parameters along the calculated trajectories are analyzed in order to estimate their role in the modification of the aerosol size distribution while the air is traveling from one field station to another. In addition, the exposure of the sampled air to open waters vs. frozen sea is assessed, due to the different fluxes of heat, moisture, gases and particles, that are expected to affect the aerosol size distribution. The results show that the general characteristics of the aerosol size distributions and their annual variation are not very different in all three stations, with Alert and Station Nord being more similar. This is more pronounced when looking into the cases for which the trajectory calculations indicated that the air traveled from one of the latter stations to the other. The probable causes for the

  3. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K.  Niranjan

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis ofmore » vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.« less

  4. MOTHER-CHILD AND FATHER-CHILD PLAY INTERACTION: THE IMPORTANCE OF PARENTAL PLAYFULNESS AS A MODERATOR OF THE LINKS BETWEEN PARENTAL BEHAVIOR AND CHILD NEGATIVITY.

    PubMed

    Menashe-Grinberg, Atara; Atzaba-Poria, Naama

    2017-11-01

    Based on the premise that father-child play is an important context for children's development and that fathers "specialize" in play, similarities and differences in the role of playfulness in the father-child and mother-child relationship were examined. Participants in this study included 111 families (children's age: 1-3 years). Father-child and mother-child play interactions were videotaped and coded for parental playfulness, sensitivity, structuring, and nonintrusiveness as well as child negativity. Results indicated that mothers and fathers did not differ in playfulness and that mothers and fathers who were higher in playfulness had children with lower levels of negativity. However, playfulness differently moderated the links between parents' and children's behaviors for mothers and fathers. A double-risk pattern was found for mothers, such that the links between child negativity and maternal sensitivity, structuring, and nonintrusiveness were significant only for the subgroup of mothers with low levels of playfulness. When mothers had high levels of playfulness, these effects were negligible. For fathers, a double-buffer pattern was revealed, indicating that the links between child negativity and paternal sensitivity and structuring were significant only for fathers with high levels of playfulness. When fathers had low levels of playfulness, these effects were negligible. These findings demonstrate the important role that parental playfulness has on parent-child interaction as well as the need to examine moderation patterns separately for fathers and mothers. © 2017 Michigan Association for Infant Mental Health.

  5. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  6. Direct and semidirect aerosol effects of southern African biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

    2011-06-01

    southern Sahel. The changes are consistent with the low-level aerosol-forced cooling pattern. The results highlight the importance of semidirect radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

  7. Study on the surfactants present in atmospheric aerosols collected in the Okinawa Japan

    NASA Astrophysics Data System (ADS)

    Kamegawa, A.; Kasaba, T.; Shimabukuro, W.; Arakaki, T.

    2017-12-01

    The main constituent of atmospheric aerosols is organic substances, which occupy 20 to 70% of the mass. Organic matters in the aerosols contain organic acids, protein and humic acid, which behave similar to surfactants. Since surfactants contain both hydrophobic and hydrophilic functional groups in the molecule, they can play important roles in cloud formation and can affect climate change, but detailed mechanisms and magnitude are not well understood. In addition, surfactants can cause asthma, allergy, dry eye and so on. In this study, our aim is to characterize surfactants in the aerosols collected in different seasons in Okinawa, Japan. Atmospheric aerosols were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) during Sep. 2013 and July 2014. Surfactants in the environment are comprised of artificially synthesized compounds and naturally derived organics so we only differentiate them into anionic and cationic surfactants. Colorimetric methods were used to determine the concentrations of anionic surfactants as methylene blue active substance (MBAS). Cationic surfactants were also measured by colorimetric method as disulfine blue active substance (DBAS) and showed always below detection limit. Thus, we only discuss anionic surfactants measured as MBAS. Water soluble organic carbon (WSOC) and metal concentrations were also measured for the same aerosol samples. Concentrations of MBAS in the studied samples were 2-3 times higher in spring, fall and winter than those collected in summer. MBAS concentration in the aerosols showed strong correlation with sulfate ion and WSOC, and slightly weaker correlation with nss-sulfate ion. Among the metals, only sodium ion showed a relatively strong correlation with MBAS concentrations. It is suggested that the anionic surfactants in the studied aerosols are mainly derived from marine sources.

  8. Sensitivity of aerosol optical depth, single scattering albedo, and phase function calculations to assumptions on physical and chemical properties of aerosol

    EPA Science Inventory

    In coupled chemistry-meteorology simulations, the calculation of aerosol optical properties is an important task for the inclusion of the aerosol effects on the atmospheric radiative budget. However, the calculation of these properties from an aerosol profile is not uniquely defi...

  9. Organic Aerosol Formation Photoenhanced by the Formation of Secondary Photo-sensitizers in ageing Aerosols

    NASA Astrophysics Data System (ADS)

    Aregahegn, Kifle; Nozière, Barbara; George, Christian

    2013-04-01

    Humankind is facing a changing environment possibly due to anthropogenic stress on the atmosphere. In this context, aerosols play a key role by affecting the radiative climate forcing, hydrological cycle, and by their adverse effect on health. The role of organic compounds in these processes is however still poorly understood because of their massive chemical complexity and numerous transformations. This is particularly true for Secondary Organic Aerosol (SOA), which are produced in the atmosphere by organic gases. Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms can not account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS) having Kr-85 source aerosol neutralizer, Differential Mobility Analyser (DMA) and Condensation Particle Sizer (CPC), we identified that traces of the aerosol phase product of glyoxal chemistry as is explained in Gallway et al., and Yu et al., namely imidazole-2-carboxaldehyde (IC) is a strong photo-sensitizer when irradiated by near-UV in the presence of volatile organic compounds such as terpenes. Furthermore, the influence of pH, type and concentration of VOCs, composition of seed particles, relative humidity and irradiation intensity on particle growth were studied. This novel photo-sensitizer contributed to more than 30% of SOA growth in 19min irradiation time in the presence of terpenes in the

  10. Recent advances in delivery mechanisms for aerosol therapy during pediatric respiratory diseases.

    PubMed

    Wu, Yue'E; Zhang, Chonglin; Zhen, Qing

    2018-04-01

    The treatment of pediatric surgery diseases via utilization of aerosol delivery mechanisms is in progress for the betterment of pediatric care. Over the years, aerosol therapy has come to play an integral role in the treatment of pediatric respiratory diseases. Inhaled aerosol agents such as bronchodilators, corticosteroids, antibiotics, and mucolytics are commonly delivered to spontaneously breathing pediatric patients with a tracheostomy. Administering therapeutic inhaled aerosols to pediatric patients is challenging. The pediatric population ranges in age, which means patients with different airway sizes, breathing patterns, and cooperation levels. These patient-related factors impact the deposition of aerosol drugs in the lungs. The present review article will discuss the recent advancements in the delivery mechanisms for aerosol therapy in pediatric patients with respiratory diseases.

  11. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandey, Benjamin S.; Lee, Hsiang-He; Wang, Chien

    Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5). Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m −2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effectmore » is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m −2). Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m −2), while over Boreal Asia the overestimation is +43 % (−1.9 W m −2). The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.« less

  12. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

    DOE PAGES

    Grandey, Benjamin S.; Lee, Hsiang-He; Wang, Chien

    2016-11-23

    Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5). Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m −2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effectmore » is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m −2). Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m −2), while over Boreal Asia the overestimation is +43 % (−1.9 W m −2). The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.« less

  13. Enhancement of PM2.5 Concentrations by Aerosol-Meteorology Interactions Over China

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Qiang; Hong, Chaopeng; Zheng, Yixuan; Geng, Guannan; Tong, Dan; Zhang, Yuxuan; Zhang, Xiaoye

    2018-01-01

    Aerosol-meteorology interactions can change surface aerosol concentrations via different mechanisms such as altering radiation budget or cloud microphysics. However, few studies investigated the impacts of different mechanisms on temporal and spatial distribution of PM2.5 concentrations over China. Here we used the fully coupled Weather Research and Forecasting model with online chemistry (WRF-Chem) to quantify the enhancement of PM2.5 concentrations by aerosol-meteorology feedback in China in 2014 for different seasons and separate the relative impacts of aerosol radiation interactions (ARIs) and aerosol-cloud interactions (ACIs). We found that ARIs and ACIs could increase population-weighted annual mean PM2.5 concentration over China by 4.0 μg/m3 and 1.6 μg/m3, respectively. We found that ARIs play a dominant role in aerosol-meteorology interactions in winter, while the enhancement of PM2.5 concentration by ARIs and ACIs is comparable in other three seasons. ARIs reduced the wintertime monthly mean wind speed and planetary boundary layer (PBL) height by up to 0.1 m/s and 160 m, respectively, but increased the relative humidity by up to 4%, leading to accumulation of pollutants within PBL. Also, ARIs reduced dry deposition velocity of aerosols by up to 20%, resulting in an increase in PM2.5 lifetime and concentrations. ARIs can increase wintertime monthly mean surface PM2.5 concentration by a maximum of 30 μg/m3 in Sichuan Basin. ACIs can also increase PM2.5 concentration with more significant impacts in wet seasons via reduced wet scavenging and enhanced in-cloud chemistry. Dominant processes in PM2.5 enhancement are also clarified in different seasons. Results show that physical process is more important than chemical processes in winter in ARIs, while chemical process of secondary inorganic aerosols production may be crucial in wet seasons via ACIs.

  14. Hydroxyl radicals from secondary organic aerosol decomposition in water

    NASA Astrophysics Data System (ADS)

    Tong, H.; Arangio, A. M.; Lakey, P. S. J.; Berkemeier, T.; Liu, F.; Kampf, C. J.; Pöschl, U.; Shiraiwa, M.

    2015-11-01

    We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, limonene) is ~ 0.1 % upon extraction with pure water and increases to ~ 1.5 % in the presence of Fe2+ ions due to Fenton-like reactions. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical H2O2 Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.

  15. Hydroxyl radicals from secondary organic aerosol decomposition in water

    NASA Astrophysics Data System (ADS)

    Tong, Haijie; Arangio, Andrea M.; Lakey, Pascale S. J.; Berkemeier, Thomas; Liu, Fobang; Kampf, Christopher. J.; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-04-01

    We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, and limonene) is ~ 0.1% upon extraction with pure water, and which increases to ~ 1.5% in the presence of iron ions due to Fenton-like reactions. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical hydrogen peroxide Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.

  16. The role of coastal fog in increased viability of marine microbial aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M.; O'Mullan, G. D.; Weathers, K. C.; Juhl, A. R.; Uriarte, M.

    2011-12-01

    Microbes in the atmosphere (microbial aerosols) play an important role in climate and provide an ecological and biogeochemical connection between oceanic, atmospheric, and terrestrial environments. Despite the ubiquity of these bacteria (concentration estimates range from 1 x 10^4 to 6 x 10^5 cells m-3), much is still being learned about their source, viability, and interactions with climatic controls. They can be attached to ambient aerosol particles or exist singly in the air. They affect climate by serving as ice, cloud, and fog nucleators, and have the metabolic potential to alter atmospheric chemistry. Fog presence in particular has been shown to greatly increase the deposition of viable microbial aerosols in both urban and coastal environments, but the mechanisms behind this are not fully understood. To address this gap, we examined the diversity of culturable microbial aerosols from a relatively pristine coastal environment in Maine (USA) and determined the effect of fog presence on viability and community composition of microbial aerosols. 16S rRNA sequencing of culturable ocean surface bacteria and depositing microbial aerosols (under clear and foggy conditions) resulted in the detection of 31 bacterial genera, with 5 dominant genera (Vibrio, Bacillus, Pseudoalteromonas, Psychrobacter, Salinibacterium) making up 66% of all sequences. Seventy-five percent of the viable microbial aerosols falling out under foggy conditions were most similar to GenBank-published sequences detected in marine environments. The fog and ocean surface sequence libraries were significantly more similar in microbial community composition than clear (non-foggy) and ocean surface libraries. These findings support a dual role for fog in enhancing the fallout of viable marine microbial aerosols via increased gravitational settling rates and decreased aerosolization stress on the organisms. The dominant presence of marine bacteria in coastal microbial aerosols provides a strong case for

  17. Recent changes in stratospheric aerosol budget from ground-based and satellite observations

    NASA Astrophysics Data System (ADS)

    Khaykin, Sergey; Godin-Beekmann, Sophie; Keckhut, Philippe; Hauchecorne, Alain; Portafaix, Thierry; Begue, Nelson; Vernier, Jean-Paul; DeLand, Matthew; Bhartia, Pawan K.; Leblanc, Thierry

    2017-04-01

    Stratospheric aerosol budget plays an important role in climate variability and ozone chemistry. Observations of stratospheric aerosol by ground-based lidars represent a particular value as they ensure the continuity and coherence of stratospheric aerosol record. Ground-based lidars remain indispensable for complementing and validating satellite instruments and for filling gaps between satellite missions. On the other hand, geophysical interpretation of local observations is complicated without the knowledge of global distribution of stratospheric aerosol, which calls for a combined analysis of ground-based and space-borne observations. The present study aims at characterizing global and regional variability of stratospheric aerosol over the last 5 years using various sets of observations. We use the data provided by three lidars operated within NDACC (Network for Detection of Atmospheric Composition Change) at Haute-Provence, (44° N), Mauna Loa (21° N) and Maido (21° S) sites together with quasi-global-coverage aerosol measurements by CALIOP and OMPS satellite instruments. The local and space-borne measurements are shown to be in good agreement allowing for their synergetic use. Since the late 2012 stratospheric aerosol remained at background levels throughout the globe. Eruptions of Kelud volcano at 4° S in February 2014 and Calbuco volcano at 41° S in April 2015 resulted in a remarkable enhancement of stratospheric AOD at a wide latitude range. We explore meridional dispersion and lifetime of volcanic plumes in consideration of global atmospheric circulation. A focus is made on the poleward transport of volcanic aerosol and its detection at the mid-latitude Haute-Provence observatory. We show that the moderate eruptions in the Southern hemisphere leave a measurable imprint on the Northern mid-latitude aerosol loading. Having identified the volcanically-perturbed periods from local and global observations we examine the evolution of non-volcanic (background

  18. Seasonality of Aerosols the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Ford, B. J.; Heald, C. L.

    2012-12-01

    Previous studies have suggested that increases in atmospheric aerosols of biogenic origin may have caused regional cooling over the southeastern United States in recent decades. Understanding the sources and behaviors of these aerosols is important for determining their role in a changing climate and managing their air quality impacts. In this study, we investigate the strong seasonality in aerosol optical depth (AOD) observed by MODIS, MISR, and CALIOP instruments over the southeastern United States and show that this is not simulated by a chemical transport model (GEOS-Chem). However, the model does reproduce surface PM 2.5 concentrations in the region as reported by the IMPROVE and Southeastern Aerosol Research and Characterization (SEARCH) networks, as well as the muted seasonality of these concentrations. In addition, these surface measurements show that organic aerosol makes up a small fraction of total PM 2.5 and has relatively little seasonality, which calls into question the importance of biogenic aerosol as a driver for climate change in the region. Sounding profiles and ground observations of relative humidity suggest that the magnitude of seasonality in AOD cannot be explained by seasonal differences in the hygroscopic growth of aerosols. CALIOP measurements of the vertical profile of aerosol extinction confirm that the likely reconciliation of the differences in seasonality between the surface PM 2.5 and AOD observations is the formation of aerosol aloft, a process not captured by the model. These findings provide initial insights for the Southern Oxidant and Aerosol Study (SOAS) campaign in 2013 which aims to investigate the anthropogenic influence on biogenic aerosol formation in the Southeastern US and elucidate the impact on regional climate and air quality.

  19. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  20. In Situ Measurement of Aerosol Extinction

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, R.; Owano, T. G.; Bear, D.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Aerosols are important contributors to the radiative forcing in the atmosphere. Much of the uncertainty in our knowledge of climate forcing is due to uncertainties in the radiative forcing due to aerosols as illustrated in the IPCC reports of the last ten years. Improved measurement of aerosol optical properties, therefore, is critical to an improved understanding of atmospheric radiative forcing. Additionally, attempts to reconcile in situ and remote measurements of aerosol radiative properties have generally not been successful. This is due in part to the fact that it has been impossible to measure aerosol extinction in situ in the past. In this presentation we introduce a new instrument that employs the techniques used in cavity ringdown spectroscopy to measure the aerosol extinction and scattering coefficients in situ. A prototype instrument has been designed and tested in the lab and the field. It is capable of measuring aerosol extinction coefficient to 2x10(exp -6) per meter. This prototype instrument is described and results are presented.

  1. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    PubMed

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.

  2. Assessment of the aerosol distribution over Indian subcontinent in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Sanap, S. D.; Ayantika, D. C.; Pandithurai, G.; Niranjan, K.

    2014-04-01

    This paper examines the aerosol distribution over Indian subcontinent as represented in 21 models from Coupled Model Inter-comparison Project Phase 5 (CMIP5) simulations, wherein model simulated aerosol optical depth (AOD) is compared with Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite observations. The objective of the study is to provide an assessment of the capability of various global models, participating in CMIP5 project, in capturing the realistic spatial and temporal distribution of aerosol species over the Indian subcontinent. Results from our analysis show that majority of the CMIP5 models (excepting HADGEM2-ES, HADGEM2-CC) seriously underestimates the spatio-temporal variability of aerosol species over the Indian subcontinent, in particular over Indo-Gangetic Plains (IGP). Since IGP region is dominated by anthropogenic activities, high population density, and wind driven transport of dust and other aerosol species, MODIS observations reveal high AOD values over this region. Though the representation of black carbon (BC) loading in many models is fairly good, the dust loading is observed to be significantly low in majority of the models. The presence of pronounced dust activity over northern India and dust being one of the major constituent of aerosol species, the biases in dust loading has a great impact on the AOD of that region. We found that considerable biases in simulating the 850 hPa wind field (which plays important role in transport of dust from adjacent deserts) would be the possible reason for poor representation of dust AOD and in turn total AOD over Indian region in CMIP5 models. In addition, aerosol radiative forcing (ARF) underestimated/overestimated in most of the models. However, spatial distribution of ARF in multi-model ensemble mean is comparable reasonably well with observations with bias in magnitudes. This analysis emphasizes the fundamental need to improve the representation of aerosol species in current state of

  3. DREAM plays an important role in platelet activation and thrombogenesis

    PubMed Central

    Kim, Kyungho; Tseng, Alan; Barazia, Andrew; Italiano, Joseph E.

    2017-01-01

    Downstream regulatory element antagonist modulator (DREAM), a transcriptional repressor, is known to modulate pain responses. However, it is unknown whether DREAM is expressed in anucleate platelets and plays a role in thrombogenesis. By using intravital microscopy with DREAM-null mice and their bone marrow chimeras, we demonstrated that both hematopoietic and nonhematopoietic cell DREAMs are required for platelet thrombus formation following laser-induced arteriolar injury. In a FeCl3-induced thrombosis model, we found that compared with wild-type (WT) control and nonhematopoietic DREAM knockout (KO) mice, DREAM KO control and hematopoietic DREAM KO mice showed a significant delay in time to occlusion. Tail bleeding time was prolonged in DREAM KO control mice, but not in WT or DREAM bone marrow chimeric mice. In vivo adoptive transfer experiments further indicated the importance of platelet DREAM in thrombogenesis. We found that DREAM deletion does not alter the ultrastructural features of platelets but significantly impairs platelet aggregation and adenosine triphosphate secretion induced by numerous agonists (collagen-related peptide, adenosine 5′-diphosphate, A23187, thrombin, or U46619). Biochemical studies revealed that platelet DREAM positively regulates phosphoinositide 3-kinase (PI3K) activity during platelet activation. Using DREAM-null platelets and PI3K isoform-specific inhibitors, we observed that platelet DREAM is important for α-granule secretion, Ca2+ mobilization, and aggregation through PI3K class Iβ (PI3K-Iβ). Genetic and pharmacological studies in human megakaryoblastic MEG-01 cells showed that DREAM is important for A23187-induced Ca2+ mobilization and its regulatory function requires Ca2+ binding and PI3K-Iβ activation. These results suggest that platelet DREAM regulates PI3K-Iβ activity and plays an important role during thrombus formation. PMID:27903531

  4. Aerosol climate change effects on land ecosystem services.

    PubMed

    Unger, N; Yue, X; Harper, K L

    2017-08-24

    A coupled global aerosol-carbon-climate model is applied to assess the impacts of aerosol physical climate change on the land ecosystem services gross primary productivity (GPP) and net primary productivity (NPP) in the 1996-2005 period. Aerosol impacts are quantified on an annual mean basis relative to the hypothetical aerosol-free world in 1996-2005, the global climate state in the absence of the historical rise in aerosol pollution. We examine the separate and combined roles of fast feedbacks associated with the land and slow feedbacks associated with the ocean. We consider all fossil fuel, biofuel and biomass burning aerosol emission sources as anthropogenic. The effective radiative forcing for aerosol-radiation interactions is -0.44 W m -2 and aerosol-cloud interactions is -1.64 W m -2 . Aerosols cool and dry the global climate system by -0.8 °C and -0.08 mm per day relative to the aerosol-free world. Without aerosol pollution, human-induced global warming since the preindustrial would have already exceeded the 1.5 °C aspirational limit set in the Paris Agreement by the 1996-2005 decade. Aerosol climate impacts on the global average land ecosystem services are small due to large opposite sign effects in the tropical and boreal biomes. Aerosol slow feedbacks associated with the ocean strongly dominate impacts in the Amazon and North American Boreal. Aerosol cooling of the Amazon by -1.2 °C drives NPP increases of 8% or +0.76 ± 0.61 PgC per year, a 5-10 times larger impact than estimates of diffuse radiation fertilization by biomass burning aerosol in this region. The North American Boreal suffers GPP and NPP decreases of 35% due to aerosol-induced cooling and drying (-1.6 °C, -0.14 mm per day). Aerosol-land feedbacks play a larger role in the eastern US and Central Africa. Our study identifies an eco-climate teleconnection in the polluted earth system: the rise of the northern hemisphere mid-latitude reflective aerosol pollution layer causes long range

  5. Transient Climate Impacts for Scenarios of Aerosol Emissions from Asia: A Story of Coal versus Gas

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Cheng, H.; Wang, C.

    2014-12-01

    Projections of anthropogenic aerosol emissions are uncertain. In Asia, it is possible that emissions may increase if business continues as usual, with economic growth driving an increase in coal burning. But it is also possible that emissions may decrease rapidly due to the widespread adoption of cleaner technology or a shift towards non-coal fuels, such as natural gas. In this study, the transient climate impacts of three aerosol emissions scenarios are investigated: an RCP4.5 (Representative Concentration Pathway 4.5) control; a scenario with reduced Asian anthropogenic aerosol emissions; and a scenario with enhanced Asian anthropogenic aerosol emissions. A coupled atmosphere-ocean configuration of CESM (Community Earth System Model), including CAM5 (Community Atmosphere Model version 5), is used. Enhanced Asian aerosol emissions are found to delay global mean warming by one decade at the end of the century. Aerosol-induced suppression of the East Asian and South Asian summer monsoon precipitation occurs. The enhanced Asian aerosol emissions also remotely impact precipitation in other parts of the world: over the Sahel, West African monsoon precipitation is suppressed; and over Australia, austral summer monsoon precipitation is enhanced. These remote impacts on precipitation are associated with a southward shift of the ITCZ. The aerosol-induced sea surface temperature (SST) response appears to play an important role in the precipitation changes over South Asia and Australia, but not over East Asia. These results indicate that energy production in Asia, through the consequent aerosol emissions and associated radiative effects, might significantly influence future climate both locally and globally.

  6. Aerosol Enhancements in the Upper Troposphere Over The Amazon Forest: Do Amazonian Clouds Produce Aerosols?

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Afchine, A.; Albrecht, R. I.; Artaxo, P.; Borrmann, S.; Cecchini, M. A.; Costa, A.; Dollner, M.; Fütterer, D.; Järvinen, E.; Klimach, T.; Konemann, T.; Kraemer, M.; Krüger, M. L.; Machado, L.; Mertes, S.; Pöhlker, C.; Poeschl, U.; Sauer, D. N.; Schnaiter, M.; Schneider, J.; Schulz, C.; Spanu, A.; Walser, A.; Weinzierl, B.; Wendisch, M.

    2015-12-01

    The German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) on the German research aircraft HALO took place over the Amazon Basin in September/October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with trace gases, aerosol particles, and atmospheric radiation. The aircraft was equipped with about 30 remote sensing and in-situ instruments for meteorological, trace gas, aerosol, cloud, precipitation, and solar radiation measurements. Fourteen research flights were conducted during this campaign. Observations during ACRIDICON-CHUVA showed high aerosol concentrations in the upper troposphere (UT) over the Amazon Basin, with concentrations after normalization to standard conditions often exceeding those in the boundary layer (BL). This behavior was consistent between several aerosol metrics, including condensation nuclei (CN), cloud condensation nuclei (CCN), and chemical species mass concentrations. These UT aerosols were different in their composition and size distribution from the aerosol in the BL, making convective transport of particles unlikely as a source. The regions in the immediate outflow of deep convective clouds were found to be depleted in aerosol particles, whereas enhanced aerosol number and mass concentrations were found in UT regions that had experienced outflow from deep convection in the preceding 24-48 hours. This suggests that aerosol production takes place in the UT based on volatile and condensable material brought up by deep convection. Subsequently, downward mixing and transport of upper tropospheric aerosol may be a source of particles to the BL, where they increase in size by the condensation of biogenic volatile organic carbon (BVOC) oxidation products. This may be an important source of aerosol particles in the Amazonian BL, where aerosol nucleation and new

  7. Size-resolved trace metal characterization of aerosols emitted by four important source types in Switzerland

    NASA Astrophysics Data System (ADS)

    Buerki, Peter R.; Gaelli, Brigitte C.; Nyffeler, Urs P.

    In central Switzerland five types of emission sources are mainly responsible for airborne trace metals: traffic, industrial plants burning heavy oil, resuspension of soil particles, residential heatings and refuse incineration plants. The particulate emissions of each of these source types except refuse incineration were sampled using Berner impactors and the mass and elemental size distributions of Cd, Cu, Mn, Pb, Zn, As and Na determined. Cd, Na and Zn are not characteristic for any of these source types. As and Cu, occurring in the fine particle fractions are characteristic for heavy oil combustion, Mn for soil dust and sometimes for heavy and fuel oil combustion and Pb for traffic aerosols. The mass size distributions of aerosols originating from erosion and abrasion processes show a maximum mass fraction in the coarse particle range larger than about 1 μm aerodynamic equivalent diameters (A.E.D.). Aerosols originating from combustion processes show a second maximum mass fraction in the fine particle range below about 0.5μm A.E.D. Scanning electron microscopy combined with an EDS analyzer was used for the morphological characterization of emission and ambient aerosols.

  8. Aerosol concentration measurements and correlations with air mass trajectories at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Micheletti, M. I.; Louedec, K.; Freire, M.; Vitale, P.; Piacentini, R. D.

    2017-06-01

    Aerosols play an important role in radiative transfer processes involved in different fields of study. In particular, their influence is crucial in the attenuation of light at astronomical and astrophysical observatories, and has to be taken into account in light transfer models employed to reconstruct the signals. The Andean Argentinean region is increasingly being considered as a good candidate to host such facilities, as well as the ones for solar-energy resources, and an adequate knowledge of aerosols characteristics there is needed, but it is not always possible due to the vast area involved and the scarce atmospheric data at ground. The aim of this work is to find correlations between aerosol data and particle trajectories that can give an insight into the origin and behaviour of aerosols in this zone and can be employed in situations in which one does not have local aerosol measurements. For this purpose, an aerosol spectrometer and dust monitor (Grimm 1.109) was installed at the Pierre Auger Observatory of ultra-high-energy cosmic rays, to record aerosol concentrations in different size intervals, at surface level. These measurements are analysed and correlated with air mass trajectories obtained from HYSPLIT (NOAA) model calculations. High aerosol concentrations are registered predominantly when air masses have travelled mostly over continental areas, mainly from the NE direction, while low aerosol concentrations are found in correspondence with air masses coming from the Pacific Ocean, from the NW direction. Different size distribution patterns were found for the aerosols depending on their origin: marine or continental. This work shows for the first time the size distribution of aerosols registered at the Pierre Auger Observatory. The correlations found between mass and particle concentrations (total and for different size ranges) and HYSPLIT air mass trajectories, confirm that the latter can be employed as a useful tool to infer the sources, evolution

  9. Modeling the Optical Properties of Biomass Burning Aerosols: Young Smoke Aerosols From Savanna Fires and Comparisons to Observations from SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Matichuk, R. I.; Smith, J. A.; Toon, O. B.; Colarso, P. R.

    2006-01-01

    Annually, farmers in southern Africa manage their land resources and prepare their fields for cultivation by burning crop residual debris, with a peak in the burning season occurring during August and September. The emissions from these fires in southern Africa are among the greatest from fires worldwide, and the gases and aerosol particles produced adversely affect air quality large distances from their source regions, and can even be tracked in satellite imagery as they cross the Atlantic and Pacific Ocean basins. During August and September 2000 an international group of researchers participating in the Southern African Regional Science Initiate field experiment (SAFARI 2000) made extensive ground-based, airborne, and satellite measurements of these gases and aerosols in order to quantify their amounts and effects on Earth's atmosphere. In this study we interpreted the measurements of smoke aerosol particles made during SAFARI 2000 in order to better represent these particles in a numerical model simulating their transport and fate. Typically, smoke aerosols emitted from fires are concentrated by mass in particles about 0.3 micrometers in diameter (1,000,000 micrometers = 1 meter, about 3 feet); for comparison, the thickness of a human hair is about 50 micrometers, almost 200 times as great. Because of the size of these particles, at the surface they can be easily inhaled into the lungs, and in high concentrations have deleterious health effects on humans. Additionally, these particles reflect and absorb sunlight, impacting both visibility and the balance of sunlight reaching -Earth's surface, and ultimately play a role in modulating Earth's climate. Because of these important effects, it is important that numerical models used to estimate Earth's climate response to changes in atmospheric composition accurately represent the quantity and evolution of smoke particles. In our model, called the Community Aerosol and Radiation Model for Atmospheres (CARMA) we used

  10. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  11. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur.

    PubMed

    Shamjad, P M; Tripathi, S N; Thamban, Navaneeth M; Vreeland, Heidi

    2016-11-24

    Atmospheric aerosols influence Earth's radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species.

  12. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur

    PubMed Central

    Shamjad, P. M.; Tripathi, S. N.; Thamban, Navaneeth M.; Vreeland, Heidi

    2016-01-01

    Atmospheric aerosols influence Earth’s radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species. PMID:27883083

  13. Aerosol algorithm evaluation within aerosol-CCI

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Schulz, Michael; Griesfeller, Jan

    Properties of aerosol retrievals from space are difficult. Even data from dedicated satellite sensors face contaminations which limit the accuracy of aerosol retrieval products. Issues are the identification of complete cloud-free scenes, the need to assume aerosol compositional features in an underdetermined solution space and the requirement to characterize the background at high accuracy. Usually the development of aerosol is a slow process, requiring continuous feedback from evaluations. To demonstrate maturity, these evaluations need to cover different regions and seasons and many different aerosol properties, because aerosol composition is quite diverse and highly variable in space and time, as atmospheric aerosol lifetimes are only a few days. Three years ago the ESA Climate Change Initiative started to support aerosol retrieval efforts in order to develop aerosol retrieval products for the climate community from underutilized ESA satellite sensors. The initial focus was on retrievals of AOD (a measure for the atmospheric column amount) and of Angstrom (a proxy for aerosol size) from the ATSR and MERIS sensors on ENVISAT. The goal was to offer retrieval products that are comparable or better in accuracy than commonly used NASA products of MODIS or MISR. Fortunately, accurate reference data of ground based sun-/sky-photometry networks exist. Thus, retrieval assessments could and were conducted independently by different evaluation groups. Here, results of these evaluations for the year 2008 are summarized. The capability of these newly developed retrievals is analyzed and quantified in scores. These scores allowed a ranking of competing efforts and also allow skill comparisons of these new retrievals against existing and commonly used retrievals.

  14. A new approach to chemically-speciated submicron aerosol fluxes over tropical and temperate forests.

    NASA Astrophysics Data System (ADS)

    Farmer, D. K.; Kimmel, J. R.; Nemitz, E.; Phillips, G.; Docherty, K.; Chen, Q.; Martin, S.; Cubison, M.; Jimenez, J.

    2008-12-01

    Aerosols play an important role in the planet's radiation balance; however, their sources and sinks remain highly uncertain. In particular, due to instrumental limitations, there are few measurements of particle fluxes over the Earth's surface. Particles are expected to deposit over forests, leading not only to an aerosol sink, but also to an ecosystem source of nutrients and acids. However, forests emit volatile organic compounds (VOCs) that are known to produce secondary organic aerosol, thus also acting as aerosol sources. We have developed a new approach to measure biosphere-atmosphere exchange of chemically-speciated aerosol using a High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS; DeCarlo et al., Anal. Chem., 2006) in a new Eddy Covariance Flux mode (10 Hz). This approach allows us to directly measure fluxes of non-refractory organic, sulphate, nitrate and ammonium in submicron particles. Measurements have been carried out over two forests: a temperate ponderosa pine plantation at Blodgett Forest (BEARPEX-I campaign, 2007) and a tropical rain forest in the Brazilian Amazon during the wet season (AMAZE campaign, 2008). Data collected at these sites allows us to demonstrate that the flux mode of the HR-ToF-AMS meets the rigorous instrumental requirements of the eddy covariance approach and that fluxes of different chemical species can be quantified. Aerosol fluxes under clean and anthropogenically-impacted conditions are compared. These measurements allow us to better constrain dry deposition over forested environments and to understand the potential of flux measurements to constrain the biogenic SOA budget.

  15. The oxidation of SO2 by NO2(g) at the air-water interface of aquated aerosol: implications for the rapid onset of haze-aerosol events in China

    NASA Astrophysics Data System (ADS)

    Li, L.; Colussi, A. J.; Hoffmann, M. R.

    2017-12-01

    Aqueous phase chemistry plays a vital role in the global atmosphere. The importance of heterogeneous chemistry has been recently underscored by the severe haze-fog pollution episodes experienced in Chinese megacities. A key finding is that despite reduced photochemistry during the wintertime haze events, the oxidation of S(IV) into sulfate aerosol occurs rapidly in spite of the low levels of ozone and H2O2. Field observations suggest that NO2 could serve as a suitable oxidant of S(IV) during the events under neutral pH conditions. However, the haze aerosols are mostly acidic. Furthermore, the air-water interface is more acidic than bulk-phase aquated system according to our recent findings. This work investigates the chemistry taking place as NO2(g) collides with the surface of aqueous S(IV) microdroplets as a function of pH to closely simulate actual haze aerosol events under atmospheric conditions. The reaction between NO2(g) and HSO3- (aq) is studied in situ under ambient temperature and pressure via online electrospray ionization mass spectrometry. The aqueous aerosols containing HSO3- is generated using a microjet which is exposed to NO2(g) alternatively, while the composition of the 1 nm interfacial liquid layer of the aerosol is instantaneously measured. The ratio of HSO3- to HSO4- is observed to decrease with the concomitant appearance of a strong m/z 62 signal upon NO2(g) exposure. The appearance of m/z 62 indicates the formation of NO3- via the disproportionation of NO2 (2NO2(g) + H2O (l) ⇌ H++NO3-(aq) + HONO(aq)) and thus impacts the ion-ion interactions of NO3- on the ratio of HSO3- to HSO4- in the outermost interfacial layers. Parallel experiments with NO3-(aq) additions are conducted to quantify the impact of NO3- on the the ratio, in order to unravel the contribution of NO2 to the oxidation of S(IV). After accounting for the HNO3 effect, it is concluded: (1) most NO2(g) is converted into NO3- via anion-catalyzed hydrolytic disproportionation; (2

  16. Aerosol Absorption Effects in the TOMS UV Algorithm

    NASA Technical Reports Server (NTRS)

    Torres, O.; Krotkov, N.; Bhartia, P. K.

    2004-01-01

    The availability of global long-term estimates of surface UV radiation is very important, not only for preventive medicine considerations, but also as an important tool to monitor the effects of the stratospheric ozone recovery expected to occur in the next few decades as a result of the decline of the stratospheric chlorine levels. In addition to the modulating effects of ozone and clouds, aerosols also affect the levels of UV-A and W-B radiation reaching the surface. Oscillations in surface W associated with the effects of aerosol absorption may be comparable in magnitude to variations associated with the stratospheric ozone recovery. Thus, the accurate calculation of surface W radiation requires that both the scattering and absorption effects of tropospheric aerosols be taken into account. Although absorption effects of dust and elevated carbonaceous aerosols are already accounted for using Aerosol Index technique, this approach does not work for urban/industrial aerosols in the planetary boundary layer. The use of the new TOMS long-term global data record on UV aerosol absorption optical depth, can improve the accuracy of TOMS spectral UV products, by properly including the spectral attenuation effects of carbonaceous, urban/industrial and mineral aerosols. The TOMS data set on aerosol properties will be discussed, and results of its use in the TOMS surface W algorithm will be presented.

  17. Meteorological and Land Surface Properties Impacting Sea Breeze Extent and Aerosol Distribution in a Dry Environment

    NASA Astrophysics Data System (ADS)

    Igel, Adele L.; van den Heever, Susan C.; Johnson, Jill S.

    2018-01-01

    The properties of sea breeze circulations are influenced by a variety of meteorological and geophysical factors that interact with one another. These circulations can redistribute aerosol particles and pollution and therefore can play an important role in local air quality, as well as impact remote sensing. In this study, we select 11 factors that have the potential to impact either the sea breeze circulation properties and/or the spatial distribution of aerosols. Simulations are run to identify which of the 11 factors have the largest influence on the sea breeze properties and aerosol concentrations and to subsequently understand the mean response of these variables to the selected factors. All simulations are designed to be representative of conditions in coastal sub tropical environments and are thus relatively dry, as such they do not support deep convection associated with the sea breeze front. For this dry sea breeze regime, we find that the background wind speed was the most influential factor for the sea breeze propagation, with the soil saturation fraction also being important. For the spatial aerosol distribution, the most important factors were the soil moisture, sea-air temperature difference, and the initial boundary layer height. The importance of these factors seems to be strongly tied to the development of the surface-based mixed layer both ahead of and behind the sea breeze front. This study highlights potential avenues for further research regarding sea breeze dynamics and the impact of sea breeze circulations on pollution dispersion and remote sensing algorithms.

  18. Introducing Convective Cloud Microphysics to a Deep Convection Parameterization Facilitating Aerosol Indirect Effects

    NASA Astrophysics Data System (ADS)

    Alapaty, K.; Zhang, G. J.; Song, X.; Kain, J. S.; Herwehe, J. A.

    2012-12-01

    Short lived pollutants such as aerosols play an important role in modulating not only the radiative balance but also cloud microphysical properties and precipitation rates. In the past, to understand the interactions of aerosols with clouds, several cloud-resolving modeling studies were conducted. These studies indicated that in the presence of anthropogenic aerosols, single-phase deep convection precipitation is reduced or suppressed. On the other hand, anthropogenic aerosol pollution led to enhanced precipitation for mixed-phase deep convective clouds. To date, there have not been many efforts to incorporate such aerosol indirect effects (AIE) in mesoscale models or global models that use parameterization schemes for deep convection. Thus, the objective of this work is to implement a diagnostic cloud microphysical scheme directly into a deep convection parameterization facilitating aerosol indirect effects in the WRF-CMAQ integrated modeling systems. Major research issues addressed in this study are: What is the sensitivity of a deep convection scheme to cloud microphysical processes represented by a bulk double-moment scheme? How close are the simulated cloud water paths as compared to observations? Does increased aerosol pollution lead to increased precipitation for mixed-phase clouds? These research questions are addressed by performing several WRF simulations using the Kain-Fritsch convection parameterization and a diagnostic cloud microphysical scheme. In the first set of simulations (control simulations) the WRF model is used to simulate two scenarios of deep convection over the continental U.S. during two summer periods at 36 km grid resolution. In the second set, these simulations are repeated after incorporating a diagnostic cloud microphysical scheme to study the impacts of inclusion of cloud microphysical processes. Finally, in the third set, aerosol concentrations simulated by the CMAQ modeling system are supplied to the embedded cloud microphysical

  19. Characteristics and composition of atmospheric aerosols in Phimai, central Thailand during BASE-ASIA

    NASA Astrophysics Data System (ADS)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; Bell, Shaun W.

    2013-10-01

    Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.183°N, 102.565°E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 ± 64 Mm-1; absorption: 15 ± 8 Mm-1; PM10 concentration: 33 ± 17 μg m-3), and dominated by submicron particles. Major aerosol compounds included carbonaceous (OC: 9.5 ± 3.6 μg m-3; EC: 2.0 ± 2.3 μg m-3) and secondary species (SO42-: 6.4 ± 3.7 μg m-3, NH4+: 2.2 ± 1.3 μg m-3). While the site was seldom under the direct influence of large forest fires to its north, agricultural fires were ubiquitous during the experiment, as suggested by the substantial concentration of K+ (0.56 ± 0.33 μg m-3). Besides biomass burning, aerosols in Phimai during the experiment were also strongly influenced by industrial and vehicular emissions from the Bangkok metropolitan region and long-range transport from southern China. High humidity played an important role in determining the aerosol composition and properties in the region. Sulfate was primarily formed via aqueous phase reactions, and hygroscopic growth could enhance the aerosol light scattering by up to 60%, at the typical morning RH level of 85%. The aerosol single scattering albedo demonstrated distinct diurnal variation, ranging from 0.86 ± 0.04 in the evening to 0.92 ± 0.02 in the morning. This experiment marks the first time such comprehensive characterization of aerosols was made for rural central Thailand. Our results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow.

  20. Contrasting Secondary Organic Aerosol Formation in Aerosol Liquid Water During Summer and Winter

    NASA Astrophysics Data System (ADS)

    El-Sayed, M.; Hennigan, C. J.

    2017-12-01

    In this study, we characterize the formation of aqueous secondary organic aerosols (aqSOA) in the eastern United States during summer and winter. The aim was to identify the main factors affecting the reversible and irreversible uptake of water-soluble organic gases to aerosol liquid water under variable influence from biogenic and anthropogenic sources. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was measured in Baltimore, MD using a recently developed on-line method. The formation of aqSOA was observed during the summer and the winter; however, the amount of aqSOA varied significantly between the two seasons, as did the reversible and irreversible nature of the uptake. While the availability of aerosol liquid water (ALW) predominantly controlled aqSOA formation in the summer, wintertime aqSOA formation was limited by precursor VOCs as well. During the summer, aqSOA formation was tightly linked with isoprene oxidation, while the aqSOA formed in the winter was associated with biomass burning. Irreversible aqSOA was formed in both seasons; however, reversible aqSOA was only observed in the summer. Overall, these results demonstrate the importance of multi-phase chemistry in aerosol formation and underscore the significance of soluble organic gases partitioning to aerosol water both reversibly and irreversibly.

  1. The relative importance of macrophysical and cloud albedo changes for aerosol-induced radiative effects in closed-cell stratocumulus: insight from the modelling of a case study

    NASA Astrophysics Data System (ADS)

    Grosvenor, Daniel P.; Field, Paul R.; Hill, Adrian A.; Shipway, Benjamin J.

    2017-04-01

    Aerosol-cloud interactions are explored using 1 km simulations of a case study of predominantly closed-cell SE Pacific stratocumulus clouds. The simulations include realistic meteorology along with newly implemented cloud microphysics and sub-grid cloud schemes. The model was critically assessed against observations of liquid water path (LWP), broadband fluxes, cloud fraction (fc), droplet number concentrations (Nd), thermodynamic profiles, and radar reflectivities.Aerosol loading sensitivity tests showed that at low aerosol loadings, changes to aerosol affected shortwave fluxes equally through changes to cloud macrophysical characteristics (LWP, fc) and cloud albedo changes due solely to Nd changes. However, at high aerosol loadings, only the Nd albedo change was important. Evidence was also provided to show that a treatment of sub-grid clouds is as important as order of magnitude changes in aerosol loading for the accurate simulation of stratocumulus at this grid resolution.Overall, the control model demonstrated a credible ability to reproduce observations, suggesting that many of the important physical processes for accurately simulating these clouds are represented within the model and giving some confidence in the predictions of the model concerning stratocumulus and the impact of aerosol. For example, the control run was able to reproduce the shape and magnitude of the observed diurnal cycle of domain mean LWP to within ˜ 10 g m-2 for the nighttime, but with an overestimate for the daytime of up to 30 g m-2. The latter was attributed to the uniform aerosol fields imposed on the model, which meant that the model failed to include the low-Nd mode that was observed further offshore, preventing the LWP removal through precipitation that likely occurred in reality. The boundary layer was too low by around 260 m, which was attributed to the driving global model analysis. The shapes and sizes of the observed bands of clouds and open-cell-like regions of low areal

  2. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen

    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate modelsmore » typically do not comprehensively include all important processes. Our review summarizes some of the important developments during the past decade in understanding SOA formation. We also highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.« less

  3. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    DOE PAGES

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; ...

    2017-06-15

    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate modelsmore » typically do not comprehensively include all important processes. Our review summarizes some of the important developments during the past decade in understanding SOA formation. We also highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.« less

  4. Toward Investigating Optically Trapped Organic Aerosols with CARS Microspectroscopy

    NASA Astrophysics Data System (ADS)

    Voss, L. F.

    2009-12-01

    The Intergovernmental Panel on Climate Change notes the huge uncertainty in the effect that atmospheric aerosols play in determining overall global temperature, specifically in their ability to nucleate clouds. To better understand aerosol chemistry, the novel coupling of gradient force optical trapping with broad bandwidth coherent anti-Stokes Raman scattering (CARS) spectroscopy is being developed to study single particles suspended in air. Building on successful designs employed separately for the techniques, this hybrid technology will be used to explain how the oxidation of organic compounds changes the chemical and physical properties of aerosols. By trapping the particles, an individual aerosol can be studied for up to several days. Using a broad bandwidth pulse for one of the incident beams will result in a Raman vibrational spectrum from every laser pulse. Combined with signal enhancement due to resonance and coherence of nonlinear CARS spectroscopy, this technique will allow for acquisition of data on the millisecond time scale, facilitating the study of dynamic processes. This will provide insights on how aerosols react with and absorb species from the gas phase. These experiments will increase understanding of aerosol oxidation and growth mechanisms and the effects that aerosols have on our atmosphere and climate. Progress in efforts developing this novel technique to study model systems is presented.

  5. Experimental determination of the partitioning coefficient and volatility of important BVOC oxidation products using the Aerosol Collection Module (ACM) coupled to a PTR-ToF-MS

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G.; Hohaus, T.; Tillmann, R.; Schmitt, S. H.; Yu, Z.; Schlag, P.; Wegener, R.; Kaminski, M.; Kiendler-Scharr, A.

    2015-12-01

    Atmospheric aerosol can alter the Earth's radiative budget and global climate but can also affect human health. A dominant contributor to the submicrometer particulate matter (PM) is organic aerosol (OA). OA can be either directly emitted through e.g. combustion processes (primary OA) or formed through the oxidation of organic gases (secondary organic aerosol, SOA). A detailed understanding of SOA formation is of importance as it constitutes a major contribution to the total OA. The partitioning between the gas and particle phase as well as the volatility of individual components of SOA is yet poorly understood adding uncertainties and thus complicating climate modelling. In this work, a new experimental methodology was used for compound-specific analysis of organic aerosol. The Aerosol Collection Module (ACM) is a newly developed instrument that deploys an aerodynamic lens to separate the gas and particle phase of an aerosol. The particle phase is directed to a cooled sampling surface. After collection particles are thermally desorbed and transferred to a detector for further analysis. In the present work, the ACM was coupled to a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) to detect and quantify organic compounds partitioning between the gas and particle phase. This experimental approach was used in a set of experiments at the atmosphere simulation chamber SAPHIR to investigate SOA formation. Ozone oxidation with subsequent photochemical aging of β-pinene, limonene and real plant emissions from Pinus sylvestris (Scots pine) were studied. Simultaneous measurement of the gas and particle phase using the ACM-PTR-ToF-MS allows to report partitioning coefficients of important BVOC oxidation products. Additionally, volatility trends and changes of the SOA with photochemical aging are investigated and compared for all systems studied.

  6. The OMI Aerosol Absorption Product: An A-train application

    NASA Astrophysics Data System (ADS)

    Torres, O.; Jethva, H. T.; Ahn, C.

    2017-12-01

    Because of the uniquely large sensitivity of satellite-measured near-UV radiances to absorption by desert dust, carbonaceous and volcanic ash aerosols, observations by a variety of UV-capable sensors have been routinely used over the last forty years in both qualitative and quantitative applications for estimating the absorption properties of these aerosol types. In this presentation we will discuss a multi-sensor application involving observations from A-train sensors OMI, AIRS and CALIOP for the creation of a 13-year record of aerosol optical depth (AOD) and single scattering albedo (SSA). Determination of aerosol type, in terms of particle size distribution and refractive index, is an important algorithmic step that requires using external information. AIRS CO measurements are used as carbonaceous aerosols tracer to differentiate this aerosol type from desert dust. On the other hand, the height of the absorbing aerosol layer, an important parameter in UV aerosol retrievals, is prescribed using a CALIOP-based climatology. The combined use of these observations in the developments of the OMI long-term AOD/SSA record will be discussed along with an evaluation of retrieval results using independent observations.

  7. Ice nucleating particle concentration during a combustion aerosol event

    NASA Astrophysics Data System (ADS)

    Adams, Mike; O'Sullivan, Daniel; Porter, Grace; Sanchez-Marroquin, Alberto; Tarn, Mark; Harrison, Alex; McQuaid, Jim; Murray, Benjamin

    2017-04-01

    The formation of ice in supercooled clouds is important for cloud radiative properties, their lifetime and the formation of precipitation. Cloud water droplets can supercool to below -33oC, but in the presence of Ice Nucleating Particles (INPs) freezing can be initiated at much higher temperatures. The concentration of atmospheric aerosols that are active as INPs depends on a number of factors, such as temperature and aerosol composition and concentration. However, our knowledge of which aerosol types serve as INPs is limited. For example, there has been much discussion over whether aerosol from combustion processes are important as INP. This is significant because combustion aerosol have increased in concentration dramatically since pre-industrial times and therefore have the potential to exert a significant anthropogenic impact on clouds and climate. In this study we made measurements of INP concentrations in Leeds over a specific combustion aerosol event in order to test if there was a correlation between INP concentrations and combustion aerosol. The combustion aerosol event was on the 5th November which is a major bonfire and firework event celebrated throughout the UK. During the event we observed a factor of five increase in aerosol and a factor of 10 increase in black carbon, but observed no significant increase in INP concentration. This implies that black carbon and combustion aerosol did not compete with the background INP during this event.

  8. Simulation of a severe convective storm using a numerical model with explicitly incorporated aerosols

    NASA Astrophysics Data System (ADS)

    Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje

    2017-09-01

    Despite an important role the aerosols play in all stages of cloud lifecycle, their representation in numerical weather prediction models is often rather crude. This paper investigates the effects the explicit versus implicit inclusion of aerosols in a microphysics parameterization scheme in Weather Research and Forecasting (WRF) - Advanced Research WRF (WRF-ARW) model has on cloud dynamics and microphysics. The testbed selected for this study is a severe mesoscale convective system with supercells that struck west and central parts of Serbia in the afternoon of July 21, 2014. Numerical products of two model runs, i.e. one with aerosols explicitly (WRF-AE) included and another with aerosols implicitly (WRF-AI) assumed, are compared against precipitation measurements from surface network of rain gauges, as well as against radar and satellite observations. The WRF-AE model accurately captured the transportation of dust from the north Africa over the Mediterranean and to the Balkan region. On smaller scales, both models displaced the locations of clouds situated above west and central Serbia towards southeast and under-predicted the maximum values of composite radar reflectivity. Similar to satellite images, WRF-AE shows the mesoscale convective system as a merged cluster of cumulonimbus clouds. Both models over-predicted the precipitation amounts; WRF-AE over-predictions are particularly pronounced in the zones of light rain, while WRF-AI gave larger outliers. Unlike WRF-AI, the WRF-AE approach enables the modelling of time evolution and influx of aerosols into the cloud which could be of practical importance in weather forecasting and weather modification. Several likely causes for discrepancies between models and observations are discussed and prospects for further research in this field are outlined.

  9. Thermal decomposition in thermal desorption instruments: importance of thermogram measurements for analysis of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Stark, H.; Yatavelli, R. L. N.; Thompson, S.; Kang, H.; Krechmer, J. E.; Kimmel, J.; Palm, B. B.; Hu, W.; Hayes, P.; Day, D. A.; Campuzano Jost, P.; Ye, P.; Canagaratna, M. R.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2017-12-01

    Understanding the chemical composition of secondary organic aerosol (SOA) is crucial for explaining sources and fate of this important aerosol class in tropospheric chemistry. Further, determining SOA volatility is key in predicting its atmospheric lifetime and fate, due to partitioning from and to the gas phase. We present three analysis approaches to determine SOA volatility distributions from two field campaigns in areas with strong biogenic emissions, a Ponderosa pine forest in Colorado, USA, from the BEACHON-RoMBAS campaign, and a mixed forest in Alabama, USA, from the SOAS campaign. We used a high-resolution-time-of-flight chemical ionization mass spectrometer (CIMS) for both campaigns, equipped with a micro-orifice volatilization impactor (MOVI) inlet for BEACHON and a filter inlet for gases and aerosols (FIGAERO) for SOAS. These inlets allow near simultaneous analysis of particle and gas-phase species by the CIMS. While gas-phase species are directly measured without heating, particles undergo thermal desorption prior to analysis. Volatility distributions can be estimated in three ways: (1) analysis of the thermograms (signal vs. temperature); (2) via partitioning theory using the gas- and particle-phase measurements; (3) from measured chemical formulas via a group contribution model. Comparison of the SOA volatility distributions from the three methods shows large discrepancies for both campaigns. Results from the thermogram method are the most consistent of the methods when compared with independent AMS-thermal denuder measurements. The volatility distributions estimated from partitioning measurements are very narrow, likely due to signal-to-noise limits in the measurements. The discrepancy between the formula and the thermogram methods indicates large-scale thermal decomposition of the SOA species. We will also show results of citric acid thermal decomposition, where, in addition to the mass spectra, measurements of CO, CO2 and H2O were made, showing

  10. Coupling spectral-bin cloud microphysics with the MOSAIC aerosol model in WRF-Chem: Methodology and results for marine stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Gao, Wenhua; Fan, Jiwen; Easter, R. C.; Yang, Qing; Zhao, Chun; Ghan, Steven J.

    2016-09-01

    Aerosol-cloud interaction processes can be represented more physically with bin cloud microphysics relative to bulk microphysical parameterizations. However, due to computational power limitations in the past, bin cloud microphysics was often run with very simple aerosol treatments. The purpose of this study is to represent better aerosol-cloud interaction processes in the Chemistry version of Weather Research and Forecast model (WRF-Chem) at convection-permitting scales by coupling spectral-bin cloud microphysics (SBM) with the MOSAIC sectional aerosol model. A flexible interface is built that exchanges cloud and aerosol information between them. The interface contains a new bin aerosol activation approach, which replaces the treatments in the original SBM. It also includes the modified aerosol resuspension and in-cloud wet removal processes with the droplet loss tendencies and precipitation fluxes from SBM. The newly coupled system is evaluated for two marine stratocumulus cases over the Southeast Pacific Ocean with either a simplified aerosol setup or full-chemistry. We compare the aerosol activation process in the newly coupled SBM-MOSAIC against the SBM simulation without chemistry using a simplified aerosol setup, and the results show consistent activation rates. A longer time simulation reinforces that aerosol resuspension through cloud drop evaporation plays an important role in replenishing aerosols and impacts cloud and precipitation in marine stratocumulus clouds. Evaluation of the coupled SBM-MOSAIC with full-chemistry using aircraft measurements suggests that the new model works realistically for the marine stratocumulus clouds, and improves the simulation of cloud microphysical properties compared to a simulation using MOSAIC coupled with the Morrison two-moment microphysics.

  11. Chemical Composition of African Biomass Burning Aerosols Over the Southeast Atlantic: Aerosol Mass Spectrometer Results from the 2016 and 2017 ORACLES Field Campaigns.

    NASA Astrophysics Data System (ADS)

    Dobracki, A. N.; Howell, S. G.; Freitag, S.; Smirnow, N.; Podolske, J. R.

    2017-12-01

    Biomass burning (BB) is one of the largest contributors of anthropogenic aerosols in the atmosphere. During BB events, organic and inorganic gases and particles are emitted into the atmosphere. Because of their abundance, particle size, and radiative properties, BB aerosols play an important role in global climate. Southern Africa produces 30% of the Earth's BB aerosol particles. Organics, Nitrates, sulfates, and refractory black carbon, along with other chemical species are lofted into the free troposphere and transported over the Southeast Atlantic Ocean. However, considerate uncertainty remains in the chemical composition of these plumes with its large variety of organic and inorganic species. As part of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) 2016 and 2017 airborne field campaigns, an Aerosol Mass Spectrometer (AMS) was used to sample the chemical composition and chemical structure of the aerosol in this region. Results show constant vertical stratification within the plume over the course of the campaign (August 2017 / September 2016). Using nitrate (NO3) and organic carbon (OC) as two tracers, the structure of the September 2016 plume had a ratio of 1:8 (NO3:OC) in the upper plume (3km-5km), while the lower plume (1km-2.5km) had a ratio of 1:12 (NO3:OC). AMS measurements were supported by carbon monoxide (CO) and carbon dioxide (CO2) measurements. This data revealed a modified combustion efficiency (MCE= ΔCO2/ΔCO2 + ΔCO) of <0.97 in the upper plume, and a higher MCE > 0.97 in the lower plume. An MCE above 0.9 represents efficient burning processes. Additionally, concentrations of C2(H2O)2 (m/z60), a common chemical fragment from breaking up carbohydrates (primarily levoglucosan) emitted by burning biomass only represented <1% of total organics throughout the campaign. These low concentrations are due to efficient combustion rather than oxidation during transport. These results are consistent with earlier studies of

  12. Radiative Effects of Aerosol in the Marine Environment: Tales from the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Barnard, J.; Chand, D.; Chapman, E. G.; Comstock, J. M.; Ferrare, R. A.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Johnson, R.; Kassianov, E.; Kluzek, C.; Laskin, A.; Lee, Y.; Mei, F.; Michalsky, J. J.; Redemann, J.; Rogers, R. R.; Russell, P. B.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Springston, S. R.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2013-12-01

    There is still uncertainty associated with the direct radiative forcing by atmospheric aerosol and its representation in atmospheric models. This is particularly true in marine environments near the coast where the aerosol loading is a function of both naturally occurring and anthropogenic aerosol. These regions are also subject to variable synoptic and thermally driven flows (land-sea breezes) that transport aerosol between the continental and marine environments. The situation is made more complicated due to seasonal changes in aerosol emissions. Given these differences in emissions, we expect significant differences in the aerosol intensive and extensive properties between summer and winter and data is needed to evaluate models over the wide range of conditions. To address this issue, the recently completed Two Column Aerosol Project (TCAP) was designed to measure the key aerosol parameters in two atmospheric columns, one located over Cape Cod, Massachusetts and another approximately 200 km from the coast over the Atlantic Ocean. Measurements included aerosol size distribution, chemical composition, optical properties and vertical distribution. Several aspects make TCAP unique, including the year-long deployment of a suite of surface-based instruments by the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility and two aircraft intensive operations periods supported by the ARM Airborne Facility, one conducted in July 2012 and a second in February 2013. The presentation will include a discussion of the impact of the aerosol optical properties and their uncertainty on simulations of the radiation budget within the TCAP domain in the context of both single column and regional scale models. Data from TCAP will be used to highlight a number of important factors, including diurnal variation in aerosol optical depth measured at the surface site, systematic changes in aerosol optical properties (including scattering, absorption, and

  13. Time Resolved Measurements of Primary Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2009-04-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the Amazonian Aerosol Characterization Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. This presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 µm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as "viable aerosols" or "fluorescent bioparticles" (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. Data from the UVAPS were averaged over 5 minute time intervals. The presence of bioparticles in the observed size range has been

  14. Aerosol Size, CCN, and Black Carbon Properties at a Coastal Site in the Eastern U.S.

    NASA Astrophysics Data System (ADS)

    Royalty, T. M.; Petters, M. D.; Grieshop, A. P.; Meskhidze, N.; Reed, R. E.; Phillips, B.; Dawson, K. W.

    2015-12-01

    Atmospheric aerosols play an important role in regulating the global radiative budget through direct and indirect effects. To date, the role of sea spray aerosols in modulating climate remains poorly understood. Here we present results from measurements performed at the United States Army Corps of Engineers' Field Research Facility in Duck, North Carolina, USA. Aerosol mobility size distributions (10-600 nm), refractory black carbon (rBC) and scattering particle size distributions (200-620 nm), and size resolved cloud condensation nuclei distributions (.07% - .6% supersaturation) were collected at the end of a 560m pier. Aerosol characteristics associated with northerly, high wind speed (15+ m s-1) flow originating from an oceanic trajectory are contrasted with aerosol properties observed during a weak to moderate westerly flow originating from a continental trajectory. Both marine and continental air masses had aerosol with bi-modal number size distributions with modes centered at 30nm and 140nm. In the marine air-mass, the CCN concentration at supersaturation of 0.4%, total aerosol number, surface, and volume concentration were low. rBC number concentration (D > 200 nm) associated with the marine air-mass was an order of magnitude less than continental number concentration and indicative of relatively unpolluted air. These measurements are consistent with measurements from other coastal sites under marine influence. The relative proportion of Aitken mode size particles increased from 1:2 to 2:1 while aerosol surface area was < 25 μm2 cm-3, suggesting that conditions upwind were potentially conducive to new particle formation. Overall, these results will contribute a better understanding to composition and size variation of marine aerosols.

  15. Impact of Transpacific Aerosol on Air Quality over the United States: A Perspective from Aerosol-Cloud-Radiation Interactions

    NASA Technical Reports Server (NTRS)

    Tao, Zhining; Yu, Hongbin; Chin, Mian

    2015-01-01

    Observations have well established that aerosols from various sources in Asia, Europe, and Africa can travel across the Pacific and reach the contiguous United States (U.S.) at least on episodic bases throughout a year, with a maximum import in spring. The imported aerosol not only can serve as an additional source to regional air pollution (e.g., direct input), but also can influence regional air quality through the aerosol-cloud-radiation (ACR) interactions that change local and regional meteorology. This study assessed impacts of the transpacific aerosol on air quality, focusing on surface ozone and PM2.5, over the U.S. using the NASA Unified Weather Research Forecast model. Based on the results of 3- month (April to June of 2010) simulations, the impact of direct input (as an additional source) of transpacific aerosol caused an increase of surface PM2.5 concentration by approximately 1.5 micro-g/cu m over the west coast and about 0.5 micro-g/cu m over the east coast of the U.S. By influencing key meteorological processes through the ACR interactions, the transpacific aerosol exerted a significant effect on both surface PM2.5 (+/-6 micro-g/cu m3) and ozone (+/-12 ppbv) over the central and eastern U.S. This suggests that the transpacific transport of aerosol could either improve or deteriorate local air quality and complicate local effort toward the compliance with the U.S. National Ambient Air Quality Standards.

  16. Aerosols and water vapor dynamics over the Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Farahat, Ashraf; El-Askary, Hesham; Al-Shaibani, Abdulaziz; Dogan, Umran

    2014-05-01

    The Kingdom of Saudi Arabia contains a vast desert area and the home of some of the largest deserts worldwide. This nature subjects the area to numerous dust storms. This is in addition to local emissions transported from industrial activities. The Arabian Peninsula dust storms have a major impact on air quality and affects dust cycle around the world. The nature of dust also affects air, ground traffics, and human health. Aerosols play a pivotal role in global climate change through their effects on the hydrological cycle and solar energy budget. Recently there have been some trials to study the nature of dust over the kingdom using satellite remote sensing and modeling to investigate the impact of aerosols of natural and anthropogenic origins from both local emissions and long-range transport on the air quality and atmospheric composition, yet a lot more needs to be done. In this study, data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board of Terra and Aqua satellites are used to analyze aerosols properties over the thirteen provinces of the Kingdom of Saudi Arabia from April 2003 to January 2012. This analysis will help to characterize aerosol and cloud properties, and the seasonal hydrological factors to establish the relative contributions of aerosols derived from different regions to the different Saudi provinces and their impacts on local atmospheric composition and air quality. During this period, we have examined possible nature and anthropogenic/natural aerosols/dust sources. The analysis is based on important parameters including the aerosol optical depth (AOD), fine mode fraction (FMF), cloud properties including cloud top temperature (CTT), cloud top pressure (CTP) and the water vapor column. Correlation between water vapor and AOD was observed over three provinces which could be a result of pollution aerosols rather than dust and is, hence, acting as cloud condensation nuclei (CCN). Increasing anomalous aerosols pattern

  17. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  18. Climate forcing by anthropogenic aerosols.

    PubMed

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  19. What Aerosol Water do Organic Compounds See?

    EPA Science Inventory

    Large amounts of aerosol water are associated with inorganic salts such as ammonium sulfate with generally smaller but important contributions from hydrophilic organics. Ambient aerosols can be externally or internally mixed in addition to containing one or multiple phases. The d...

  20. NHE8 plays important roles in gastric mucosal protection

    PubMed Central

    Xu, Hua; Li, Jing; Chen, Huacong; Wang, Chunhui

    2013-01-01

    Sodium/hydrogen exchanger (NHE) 8 is an apically expressed membrane protein in the intestinal epithelial cells. It plays important roles in sodium absorption and bicarbonate secretion in the intestine. Although NHE8 mRNA has been detected in the stomach, the precise location and physiological role of NHE8 in the gastric glands remain unclear. In the current study, we successfully detected the expression of NHE8 in the glandular region of the stomach by Western blotting and located NHE8 protein at the apical membrane in the surface mucous cells by a confocal microscopic method. We also identified the expression of downregulated-in-adenoma (DRA) in the surface mucous cells in the stomach. Using NHE8−/− mice, we found that NHE8 plays little or no role in basal gastric acid production, yet NHE8−/− mice have reduced gastric mucosal surface pH and higher incidence of developing gastric ulcer. DRA expression was reduced significantly in the stomach in NHE8−/− mice. The propensity for gastric ulcer, reduced mucosal surface pH, and low DRA expression suggest that NHE8 is indirectly involved in gastric bicarbonate secretion and gastric mucosal protection. PMID:23220221

  1. The Influence of the 2006 Indonesian Biomass Burning Aerosols on Tropical Dynamics Studied with the GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Ott, Lesley; Duncan, Bryan; Pawson, Steven; Colarco, Peter; Chin, Mian; Randles, Cynthia; Diehl, Thomas; Nielsen, Eric

    2009-01-01

    The direct and semi-direct effects of aerosols produced by Indonesian biomass burning (BB) during August November 2006 on tropical dynamics have been examined using NASA's Goddard Earth Observing System, Version 5 (GEOS-5) atmospheric general circulation model (AGCM). The AGCM includes CO, which is transported by resolved and sub-grid processes and subject to a linearized chemical loss rate. Simulations were driven by two sets of aerosol forcing fields calculated offline, one that included Indonesian BB aerosol emissions and one that did not. In order to separate the influence of the aerosols from internal model variability, the means of two ten-member ensembles were compared. Diabatic heating from BB aerosols increased temperatures over Indonesia between 150 and 400 hPa. The higher temperatures resulted in strong increases in upward grid-scale vertical motion, which increased water vapor and CO over Indonesia. In October, the largest increases in water vapor were found in the mid-troposphere (25%) while the largest increases in CO occurred just below the tropopause (80 ppbv or 50%). Diabatic heating from the Indonesian BB aerosols caused CO to increase by 9% throughout the tropical tropopause layer in November and 5% in the lower stratosphere in December. The results demonstrate that aerosol heating plays an important role in the transport of BB pollution and troposphere-to-stratosphere transport. Changes in vertical motion and cloudiness induced by aerosol heating can also alter the transport and phase of water vapor in the upper troposphere/lower stratosphere.

  2. Accelerator-based chemical and elemental analysis of atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Mentes, Besim

    Aerosol particles have always been present in the atmosphere, arising from natural sources. But it was not until recently when emissions from anthropogenic (man made) sources began to dominate, that atmospheric aerosols came into focus and the aerosol science in the environmental perspective started to grow. These sources emit or produce particles with different elemental and chemical compositions, as well as different sizes of the individual aerosols. The effects of increased pollution of the atmosphere are many, and have different time scales. One of the effects known today is acid rain, which causes problems for vegetation. Pollution is also a direct human health risk, in many cities where traffic driven by combustion engines is forbidden at certain times when the meteorological conditions are unfavourable. Aerosols play an important role in the climate, and may have both direct and indirect effect which cause cooling of the planet surface, in contrast to the so-called greenhouse gases. During this work a technique for chemical and elemental analysis of atmospheric aerosols and an elemental analysis methodology for upper tropospheric aerosols have been developed. The elemental analysis is performed by the ion beam analysis (IBA) techniques, PIXE (elements heavier than Al). PESA (C, N and O), cPESA (H) and pNRA (Mg and Na). The chemical speciation of atmospheric aerosols is obtained by ion beam thermography (IBT). During thermography the sample temperature is stepwise increased and the IBA techniques are used to continuously monitor the elemental concentration. A thermogram is obtained for each element. The vaporisation of the compounds in the sample appears as a concentration decrease in the thermograms at characteristic vaporisation temperatures (CVTs). Different aspects of IBT have been examined in Paper I to IV. The features of IBT are: almost total elemental speciation of the aerosol mass, chemical speciation of the inorganic compounds, carbon content

  3. Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.

    2014-02-01

    Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.

  4. The Importance of Play: Part Three

    ERIC Educational Resources Information Center

    Exceptional Parent, 2009

    2009-01-01

    Several membership companies of the International Playground Equipment Manufacturers Association (IPEMA) are helping differently-abled children to have access to play equipment and opportunities. These IPEMA membership companies, and others, are driven by the principles of Universal Design (UD), a new concept in playground design that helps ensure…

  5. Aerosol characteristics and sources for the Amazon basin during the wet season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artaxo, P.; Maenhaut, W.; Storms, H.

    1990-09-20

    Fine (< 2.0 {mu}m) and coarse (2.0 - 15 {mu}m) aerosol fractions were collected using stacked filter units, at three sites under the forest canopy and at three levels of a tower inside the jungle. Particle-induced x-ray emission (PIXE) was used to measure concentrations Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr, and Pb. Morphological and trace element measurements of individual particles were carried out by automated electron probe x-ray microanalysis. Gravimetric analysis was performed to obtain the fine and coarse aerosol mass concentration. The concentrations ofmore » soil dust related elements (Al, Si, Ti, Fe, Mn) were 5 times larger in the wet season compared to the 1985 ABLE 2A dry season experiment. Biogenic aerosol related elements in the fine fraction showed lower concentrations in the wet season. Fine aerosol mass concentration averaged only 2.1 {plus minus} 0.7 {mu}g m{sup {minus}3}, while the average coarse mass concentration was 6.1 {plus minus} 1.8 {mu}g m{sup {minus}3}. Sulfur concentrations averaged 76 {plus minus} 14 ng m{sup {minus}3} in the fine fraction and 37 {plus minus} 9 ng m{sup {minus}3} in the coarse fraction. Only two factors explained about 90% of the data variability for the fine and coarse aerosol fractions. These were soil dust (represented mainly by Al, Si, Ti, Mn, and Fe) and biogenic aerosol (represented by K, P, Cl, S, Zn, and the aerosol mass concentration). Biogenic particles account for 55-95% of the airborne concentrations and consisted of leaf fragments, pollen grains, fungi, algae, and other types of particles. It is possible that biogenic particles can play an important role in the global aerosol budget and in the global biogeochemical cycles of various elements.« less

  6. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  7. MODIS Aerosol Optical Depth retrieval over land considering surface BRDF effects

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2016-04-01

    Aerosols in the atmosphere play an important role in the climate system and human health. Retrieval from satellite data, Aerosol Optical Depth (AOD), one of most important indices of aerosol optical properties, has been extensively investigated. Benefiting from the high resolution at spatial and temporal and the maturity of the aerosol retrieval algorithm, MOderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOD product has been extensively applied in other scientific research such as climate change and air pollution. The latest product - MODIS Collection 6 Dark Target AOD (C6_DT) has been released. However, the accuracy of C6_DT AOD (global mean ±0.03) over land is still too low for the constraint on radiative forcing in the climate system, where the uncertainty should be reduced to ±0.02. The major uncertainty mainly lies on the underestimation/overestimation of the surface contribution to the Top Of Atmosphere (TOA) radiance since a lambertian surface is assumed in the C6_DT land algorithm. In the real world, it requires considering the heterogeneity of the surface reflection in the radiative transfer process. Based on this, we developed a new algorithm to retrieve AOD by considering surface Bidirectional Reflectance Distribution Function (BRDF) effects. The surface BRDF is much more complicated than isotropic reflection, described as 4 elements: directional-directional, directional-hemispherical, hemispherical-directional and hemispherical-hemispherical reflectance, and coupled into radiative transfer equation to generate an accurate top of atmosphere reflectance. The limited MODIS measurements (three channels available) allow us to retrieve only three parameters, which including AOD, the surface directional-directional reflectance and fine aerosol ratio η. The other three elements of the surface reflectance are expected to be constrained by ancillary data and assumptions or "a priori" information since there are more unknowns than MODIS

  8. Bounding the heterogeneous gas uptake on aerosols and ground using resistance model

    NASA Astrophysics Data System (ADS)

    Su, H.; Li, M.; Cheng, Y.

    2017-12-01

    Heterogeneous uptake on aerosols and ground are potential important atmospheric sinks for gases. Different schemes have been used to characterize the dry deposition and heterogeneous aerosol gas uptake, although they share similar characteristics. In this work, we propose a unified resistance model to compare the uptake flux on both ground and aerosols, to identify the dominate heterogeneous process within the planetary boundary layer (PBL). The Gamma(eq) is introduced to represent the reactive uptake coefficient on aerosols when these two processes are equally important. It's shown that Gamma(eq) is proportional to the dry deposition velocity, inversely proportional to aerosol surface area concentration. Under typical regional background condition, Gamma(eq) vary from 1x10-5 to 4x10-4 with gas species, land-use type and season, which indicates that aerosol gas uptake should be included in atmospheric models when uptake coefficient higher than 10-5. We address the importance of heterogeneous gas uptake on aerosols over ground especially for ozone uptake on liquid organic aerosols and for marine PBL atmosphere.

  9. Four dimensional variational assimilation of in-situ and remote-sensing aerosol data

    NASA Astrophysics Data System (ADS)

    Nieradzik, L. P.; Elbern, H.

    2012-04-01

    Aerosols play an increasingly important role in atmospheric modelling. They have a strong influence on the radiative transfer balance and a significant impact on human health. Their origin is various and so are its effects. Most of the measurement sites in Europe account for an integrated aerosol load PMx (Particulate Matter of less than x μm in diameter) which does not give any qualitative information on the composition of the aerosol. Since very different constituents contribute to PMx, like e.g. mineral dust derived from desert storms or sea salt, it is necessary to make aerosol forecasts not only of load, but also type resolved. The method of four dimensional variational data assimilation (4Dvar) is a widely known technique to enhance forecast skills of CTMs (Chemistry-Transport-Models) by ingesting in-situ and, especially, remote-sensing measurements. The EURAD-IM (EURopean Air pollution Dispersion - Inverse Model), containing a full adjoint gas-phase model, has been expanded with an adjoint of the MADE (Modal Aerosol Dynamics model for Europe) to optimise initial and boundary values for aerosols using 4Dvar. A forward and an adjoint radiative transfer model is driven by the EURAD-IM as mapping between BLAOT (Boundary Layer Aerosol Optical Thickness) and internal aerosol species. Furthermore, its condensation scheme has been bypassed by an HDMR (High-Dimensional-Model-Representation) to ensure differentiability. In this study both in-situ measured PMx as well as satellite retrieved aerosol optical thicknesses have been assimilated and the effect on forecast performance has been investigated. The source of BLAOT is the aerosol retrieval system SYNAER (SYNergetic AErosol Retrieval) from DLR-DFD that retrieves AOT by making use of both AATSR/SCIAMACHY and AVHRR/GOME-2 data respectively. Its strengths are a large spatial coverage, near real-time availability, and the classification of five intrinsic aerosol species, namely water-solubles, water-insolubles, soot

  10. Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols.

    PubMed

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Elias, Ryan J; Silakov, Alexey; Foulds, Jonathan; Muscat, Joshua; Richie, John P

    2018-05-20

    Flavoring chemicals, or flavorants, have been used in electronic cigarettes (e-cigarettes) since their inception; however, little is known about their toxicological effects. Free radicals present in e-cigarette aerosols have been shown to induce oxidative stress resulting in damage to proliferation, survival, and inflammation pathways in the cell. Aerosols generated from e-liquid solvents alone contain high levels of free radicals but few studies have looked at how these toxins are modulated by flavorants. We investigated the effects of different flavorants on free radical production in e-cigarette aerosols. Free radicals generated from 49 commercially available e-liquid flavors were captured and analyzed using electron paramagnetic resonance (EPR). The flavorant composition of each e-liquid was analyzed by gas chromatography mass spectroscopy (GCMS). Radical production was correlated with flavorant abundance. Ten compounds were identified and analyzed for their impact on free radical generation. Nearly half of the flavors modulated free radical generation. Flavorants with strong correlations included β-damascone, δ-tetradecalactone, γ-decalactone, citral, dipentene, ethyl maltol, ethyl vanillin, ethyl vanillin PG acetal, linalool, and piperonal. Dipentene, ethyl maltol, citral, linalool, and piperonal promoted radical formation in a concentration-dependent manner. Ethyl vanillin inhibited the radical formation in a concentration dependent manner. Free radical production was closely linked with the capacity to oxidize biologically-relevant lipids. Our results suggest that flavoring agents play an important role in either enhancing or inhibiting the production of free radicals in flavored e-cigarette aerosols. This information is important for developing regulatory strategies aimed at reducing potential harm from e-cigarettes. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Aerosol optical depth in the European Brewer Network

    NASA Astrophysics Data System (ADS)

    López-Solano, Javier; Redondas, Alberto; Carlund, Thomas; Rodriguez-Franco, Juan J.; Diémoz, Henri; León-Luis, Sergio F.; Hernández-Cruz, Bentorey; Guirado-Fuentes, Carmen; Kouremeti, Natalia; Gröbner, Julian; Kazadzis, Stelios; Carreño, Virgilio; Berjón, Alberto; Santana-Díaz, Daniel; Rodríguez-Valido, Manuel; De Bock, Veerle; Moreta, Juan R.; Rimmer, John; Smedley, Andrew R. D.; Boulkelia, Lamine; Jepsen, Nis; Eriksen, Paul; Bais, Alkiviadis F.; Shirotov, Vadim; Vilaplana, José M.; Wilson, Keith M.; Karppinen, Tomi

    2018-03-01

    Aerosols play an important role in key atmospheric processes and feature high spatial and temporal variabilities. This has motivated scientific interest in the development of networks capable of measuring aerosol properties over large geographical areas in near-real time. In this work we present and discuss results of an aerosol optical depth (AOD) algorithm applied to instruments of the European Brewer Network. This network is comprised of close to 50 Brewer spectrophotometers, mostly located in Europe and adjacent areas, although instruments operating at, for example, South America and Australia are also members. Although we only show results for instruments calibrated by the Regional Brewer Calibration Center for Europe, the implementation of the AOD algorithm described is intended to be used by the whole network in the future. Using data from the Brewer intercomparison campaigns in the years 2013 and 2015, and the period in between, plus comparisons with Cimel sun photometers and UVPFR instruments, we check the precision, stability, and uncertainty of the Brewer AOD in the ultraviolet range from 300 to 320 nm. Our results show a precision better than 0.01, an uncertainty of less than 0.05, and, for well-maintained instruments, a stability similar to that of the ozone measurements. We also discuss future improvements to our algorithm with respect to the input data, their processing, and the characterization of the Brewer instruments for the measurement of AOD.

  12. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere.

  13. Simulating Aqueous-Phase Isoprene-Epoxydiol (IEPOX) Secondary Organic Aerosol Production During the 2013 Southern Oxidant and Aerosol Study (SOAS)

    EPA Science Inventory

    The lack of statistically robust relationships between IEPOX (isoprene epoxydiol)-derived SOA (IEPOX SOA) and aerosol liquid water and pH observed during the 2013 Southern Oxidant and Aerosol Study (SOAS) emphasizes the importance of modeling the whole system to understand the co...

  14. Impact of anthropogenic aerosols from global, East Asian, and non-East Asian sources on East Asian summer monsoon system

    NASA Astrophysics Data System (ADS)

    Wang, Qiuyan; Wang, Zhili; Zhang, Hua

    2017-01-01

    The impact of the total effects due to anthropogenic aerosols from global, East Asian, and non-East Asian sources on East Asian summer monsoon (EASM) system is studied using an aerosol-climate online model BCC_AGCM2.0.1_CUACE/Aero. The results show that the summer mean net all-sky shortwave fluxes averaged over East Asian monsoon region (EAMR) at the top of the atmosphere (TOA) and surface reduce by 4.8 and 5.0 W m- 2, respectively, due to the increases of global aerosol emissions in 2000 relative to 1850. Changes in radiations and their resulting changes in heat and water transport and cloud fraction contribute together to the surface cooling over EAMR in summer. The increases in global anthropogenic aerosols lead to a decrease of 2.1 K in summer mean surface temperature and an increase of 0.4 hPa in summer mean surface pressure averaged over EAMR, respectively. It is shown that the changes in surface temperature and pressure are significantly larger over land than ocean, thus decreasing the contrast of land-sea surface temperature and pressure. This results in the marked anomalies of north and northeast winds over eastern and southern China and the surrounding oceans in summer, thereby weakening the EASM. The summer mean precipitation averaged over the EAMR reduces by 12%. The changes in non-East Asian aerosol emissions play a more important role in inducing the changes of local temperature and pressure, and thus significantly exacerbate the weakness of the EASM circulation due to local aerosol changes. The weakening of circulation due to both is comparable, and even the effect of non-local aerosols is larger in individual regions. The changes of local and non-local aerosols contribute comparably to the reductions in precipitation over oceans, whereas cause opposite changes over eastern China. Our results highlight the importance of aerosol changes outside East Asia in the impact of the changes of anthropogenic aerosols on EASM.

  15. Broadband Measurement of Aerosol Extinction in the Visible Range

    NASA Astrophysics Data System (ADS)

    He, Quanfu; Bluvshtein, Nir; Segev, Lior; Flores, Michel; Rudich, Yinon; Washenfelder, Rebecca; Brown, Steven

    2017-04-01

    Atmospheric aerosols influence the Earth's radiative budget directly by scattering and absorbing incoming solar radiation. Aerosol direct forcing remains one of the largest uncertainties in quantifying the role that aerosols play in the Earth's radiative budget. The optical properties of aerosols vary as a function of wavelength, but few measurements reported the wavelength dependence of aerosol extinction cross section and complex refractive indices, particularly in the blue and visible spectral range. There is also currently a large gap in our knowledge of how the optical properties evolve as a function of atmospheric aging in the visible spectrum. In this study, we constructed a new and novel laboratory instrument to measure aerosol extinction as a function of wavelength, using cavity enhanced spectroscopy with a white light source. This broadband cavity enhanced spectroscopy (BBCES) covers the 395-700 nm spectral region using a broadband light source and a grating spectrometer with charge-coupled device detector (CCD). We evaluated this BBCES by measuring extinction cross section for aerosols that are pure scattering, slightly absorbing and strongly absorbing atomized from standard materials. We also retrieved the refractive indices from the measured extinction cross sections. Secondary organic aerosols from biogenic and anthropogenic precursors were "aged" to differential time scales (1 to 10 days) in an Oxidation Flow Reactor (OFR) under the combined influence of OH, O3 and UV light. The new BBCES was used to online measure the extinction cross sections of the SOA. This talk will provide a comprehensive understanding of aerosol optical properties alerting during aging process in the 395 - 700 nm spectrum.

  16. Dynamic viscosity mapping of the oxidation of squalene aerosol particles.

    PubMed

    Athanasiadis, Athanasios; Fitzgerald, Clare; Davidson, Nicholas M; Giorio, Chiara; Botchway, Stanley W; Ward, Andrew D; Kalberer, Markus; Pope, Francis D; Kuimova, Marina K

    2016-11-09

    Organic aerosols (OAs) play important roles in multiple atmospheric processes, including climate change, and can impact human health. The physico-chemical properties of OAs are important for all these processes and can evolve through reactions with various atmospheric components, including oxidants. The dynamic nature of these reactions makes it challenging to obtain a true representation of their composition and surface chemistry. Here we investigate the microscopic viscosity of the model OA composed of squalene, undergoing chemical aging. We employ Fluorescent Lifetime Imaging Microscopy (FLIM) in conjunction with viscosity sensitive probes termed molecular rotors, in order to image the changes in microviscosity in real time during oxidation with ozone and hydroxyl radicals, which are two key oxidising species in the troposphere. We also recorded the Raman spectra of the levitated particles to follow the reactivity during particle ozonolysis. The levitation of droplets was achieved via optical trapping that enabled simultaneous levitation and measurement via FLIM or Raman spectroscopy and allowed the true aerosol phase to be probed. Our data revealed a very significant increase in viscosity of the levitated squalene droplets upon ozonolysis, following their transformation from the liquid to solid phase that was not observable when the oxidation was carried out on coverslip mounted droplets. FLIM imaging with sub-micron spatial resolution also revealed spatial heterogeneity in the viscosity distribution of oxidised droplets. Overall, a combination of molecular rotors, FLIM and optical trapping is able to provide powerful insights into OA chemistry and the microscopic structure that enables the dynamic monitoring of microscopic viscosity in aerosol particles in their true phase.

  17. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  18. Coupling Spectral-bin Cloud Microphysics with the MOSAIC Aerosol Model in WRF-Chem: Methodology and Results for Marine Stratocumulus Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wenhua; Fan, Jiwen; Easter, Richard C.

    Aerosol-cloud interaction processes can be represented more physically with bin cloud microphysics relative to bulk microphysical parameterizations. However, due to computational power limitations in the past, bin cloud microphysics was often run with very simple aerosol treatments. The purpose of this study is to represent better aerosol-cloud interaction processes in the Chemistry version of Weather Research and Forecast model (WRF-Chem) at convection-permitting scales by coupling spectral-bin cloud microphysics (SBM) with the MOSAIC sectional aerosol model. A flexible interface is built that exchanges cloud and aerosol information between them. The interface contains a new bin aerosol activation approach, which replaces themore » treatments in the original SBM. It also includes the modified aerosol resuspension and in-cloud wet removal processes with the droplet loss tendencies and precipitation fluxes from SBM. The newly coupled system is evaluated for two marine stratocumulus cases over the Southeast Pacific Ocean with either a simplified aerosol setup or full-chemistry. We compare the aerosol activation process in the newly-coupled SBM-MOSAIC against the SBM simulation without chemistry using a simplified aerosol setup, and the results show consistent activation rates. A longer time simulation reinforces that aerosol resuspension through cloud drop evaporation plays an important role in replenishing aerosols and impacts cloud and precipitation in marine stratocumulus clouds. Evaluation of the coupled SBM-MOSAIC with full-chemistry using aircraft measurements suggests that the new model works realistically for the marine stratocumulus clouds, and improves the simulation of cloud microphysical properties compared to a simulation using MOSAIC coupled with the Morrison two-moment microphysics.« less

  19. Investigation of shortcomings in simulated aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Park, S.; Allen, R.

    2017-12-01

    The vertical distribution of aerosols is one important factor for aerosol radiative forcing. Previous studies show that climate models poorly reproduce the aerosol vertical profile, with too much aerosol aloft in the upper troposphere. This bias may be related to several factors, including excessive convective mass flux and wet removal. In this study, we evaluate the aerosol vertical profile from several Coupled Model Intercomparison Project 5 (CMIP5) models, as well as the Community Atmosphere Model 5 (CAM5), relative to the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO). The results show that all models significantly underestimate extinction coefficient in the lower troposphere, while overestimating extinction coefficient in the upper troposphere. In addition, the majority of models indicate a land-ocean dependence in the relationship between aerosol extinction coefficient in the upper troposphere and convective mass flux. Over the continents, more convective mass flux is related to more aerosol aloft; over the ocean, more convective mass flux is associated with less aerosol in upper troposphere. Sensitivity experiments are conducted to investigate the role that convection and wet deposition have in contributing to the deficient simulation of the vertical aerosol profile, including the land-ocean dependence.

  20. The importance of plume rise on the concentrations and atmospheric impacts of biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Walter, Carolin; Freitas, Saulo R.; Kottmeier, Christoph; Kraut, Isabel; Rieger, Daniel; Vogel, Heike; Vogel, Bernhard

    2016-07-01

    We quantified the effects of the plume rise of biomass burning aerosol and gases for the forest fires that occurred in Saskatchewan, Canada, in July 2010. For this purpose, simulations with different assumptions regarding the plume rise and the vertical distribution of the emissions were conducted. Based on comparisons with observations, applying a one-dimensional plume rise model to predict the injection layer in combination with a parametrization of the vertical distribution of the emissions outperforms approaches in which the plume heights are initially predefined. Approximately 30 % of the fires exceed the height of 2 km with a maximum height of 8.6 km. Using this plume rise model, comparisons with satellite images in the visible spectral range show a very good agreement between the simulated and observed spatial distributions of the biomass burning plume. The simulated aerosol optical depth (AOD) with data of an AERONET station is in good agreement with respect to the absolute values and the timing of the maximum. Comparison of the vertical distribution of the biomass burning aerosol with CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) retrievals also showed the best agreement when the plume rise model was applied. We found that downwelling surface short-wave radiation below the forest fire plume is reduced by up to 50 % and that the 2 m temperature is decreased by up to 6 K. In addition, we simulated a strong change in atmospheric stability within the biomass burning plume.

  1. MIPAS observations of volcanic sulfate aerosol and sulfur dioxide in the stratosphere

    NASA Astrophysics Data System (ADS)

    Günther, Annika; Höpfner, Michael; Sinnhuber, Björn-Martin; Griessbach, Sabine; Deshler, Terry; von Clarmann, Thomas; Stiller, Gabriele

    2018-01-01

    Volcanic eruptions can increase the stratospheric sulfur loading by orders of magnitude above the background level and are the most important source of variability in stratospheric sulfur. We present a set of vertical profiles of sulfate aerosol volume densities and derived liquid-phase H2SO4 (sulfuric acid) mole fractions for 2005-2012, retrieved from infrared limb emission measurements performed with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board of the Environmental Satellite (Envisat). Relative to balloon-borne in situ measurements of aerosol at Laramie, Wyoming, the MIPAS aerosol data have a positive bias that has been corrected, based on the observed differences to the in situ data. We investigate the production of stratospheric sulfate aerosol from volcanically emitted SO2 for two case studies: the eruptions of Kasatochi in 2008 and Sarychev in 2009, which both occurred in the Northern Hemisphere midlatitudes during boreal summer. With the help of chemical transport model (CTM) simulations for the two volcanic eruptions we show that the MIPAS sulfate aerosol and SO2 data are qualitatively and quantitatively consistent with each other. Further, we demonstrate that the lifetime of SO2 is explained well by its oxidation by hydroxyl radicals (OH). While the sedimentation of sulfate aerosol plays a role, we find that the long-term decay of stratospheric sulfur after these volcanic eruptions in midlatitudes is mainly controlled by transport via the Brewer-Dobson circulation. Sulfur emitted by the two midlatitude volcanoes resides mostly north of 30° N at altitudes of ˜ 10-16 km, while at higher altitudes ( ˜ 18-22 km) part of the volcanic sulfur is transported towards the Equator where it is lifted into the stratospheric overworld and can further be transported into both hemispheres.

  2. Aerosol-Cloud-Precipitation Interactions over Indo-Gangetic Basin

    NASA Technical Reports Server (NTRS)

    Tsay, S.-C.; Lau, K. .; Holben, B. N.; Hsu, N. C.; Bhartia, P. K.

    2005-01-01

    About 60% of world population reside in Asia, in term of which sheer population density presents a major environmental stress. Economic expansion in this region is, in fact, accompanied by increases in bio-fuel burning, industrial pollution, and land cover and land use changes. With a growth rate of approx. 8%/yr for Indian economy, more than 600 million people from Lahore, Pakistan to Calcutta, India over the Indo-Gangetic Basin have particularly witnessed increased frequencies of floods and droughts as well as a dramatic increase in atmospheric loading of aerosols (i.e., anthropogenic and natural aerosol) in recent decades. This regional change (e.g., aerosol, cloud, precipitation, etc.) will constitute a vital part of the global change in the 21st century. Better understanding of the impacts of aerosols in affecting monsoon climate and water cycles is crucial in providing the physical basis to improve monsoon climate prediction and for disaster mitigation. Based on climate model simulations, absorbing aerosols (dust and black carbon) play a critical role in affecting interannual and intraseasonal variability of the Indian monsoon. An initiative on the integrated (aerosols, clouds, and precipitation) measurements approach over the Indo-Gangetic Basin will be discussed. An array of ground-based (e.g., AERONET, MPLNET, SMART-COMMIT, etc.) and satellite (e.g., Terra, A-Train, etc.) sensors will be utilized to acquire aerosol characteristics, sources/sinks, and transport processes during the pre-monsoon (April-May, aerosol forcing) season, and to obtain cloud and precipitation properties during the monsoon (May-June, water cycle response) season. Close collaboration with other international programs, such as ABC, CLIVAR, GEWEX, and CEOP in the region is anticipated.

  3. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    NASA Technical Reports Server (NTRS)

    Tsay, S. C.; Holben, B. N.; Privette, J. L.

    2005-01-01

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (1) the spectral and spectrally-averaged surface albedo, and (2) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  4. Aerosol scattering and absorption modulation transfer function

    NASA Astrophysics Data System (ADS)

    Sadot, Dan; Kopeika, Norman S.

    1993-08-01

    Recent experimental measurements of overall atmospheric modulation transfer function (MTF) indicate significant difference between the turbulence and overall atmospheric MTFs, except often at midday when turbulence is strong. We suggest here a physical explanation for those results which essentially relates to what we call a practical instrumentation-based atmospheric aerosol MTF which is a modification of the classical aerosol MTF theory. It is shown that system field-of-view and dynamic range affect strongly aerosol and overall atmospheric MTFs. It is often necessary to choose between MTF and SNR depending upon dynamic range requirements. Also, a new approach regarding aerosol absorption is presented. It is shown that aerosol-absorbed irradiance is spatial frequency dependent and enhances the degradation in image quality arising from received scattered light. This is most relevant for thermal imaging. An analytically corrected model for the aerosol MTF is presented which is relevant for imaging. An important conclusion is that the aerosol MTF is often the dominant part in the actual overall atmospheric MTF all across the optical spectral region.

  5. [Composition and source of atmosphere aerosol water soluble ions over the East China Sea in winter].

    PubMed

    He, Yu-Hui; Yang, Gui-Peng; Zhang, Hong-Hai

    2011-08-01

    With the ion chromatographic method, the water-soluble ion concentrations of Cl(-), NO3(-), SO4(2-) , CH3SO3(-) (MSA), Na+, K+, NH4+, Mg2+ and Ca2+ in the atmospheric aerosol over the East China Sea in winter 2009 was determined and the sources of these ions was investigated through correlation analysis by SPSS (statistical package for social sciences) software. The results indicated that the concentrations of secondary ions in aerosol were the highest (non-sea-salt sulfates nss-SO4(2-), NO3(-), NH4+), accounting for 78.4% of total determining ions. The calculation results of equivalent concentration of anions and cations showed that the acid ions of aerosol were neutralized inadequately. The stoichiometry of NH4+ in different compounds showed that NH4HSO4 was the main binding form of NH4+ and SO4(2-) in the aerosol. The concentration of methanesulfonic acid (MSA) was low, and the average value was (0.0088 +/- 0.0037) microg x m(-3). According to calculation, the contribution of sea-salt sulfates was 4.5% to total sulfates, and that of biogenous sulfates was 1.4% to non-sea-salt sulfate (nss-SO4(2-)), showing that human input was the main source of sulfates in aerosol over the East China Sea. In addition, nss-SO4(2-)/NO3(-) in the aerosol was 1.08, reflecting that China's energy structure adjustment played an important role in recent years.

  6. Aerosol Complexity and Implications for Predictability and Short-Term Forecasting

    NASA Technical Reports Server (NTRS)

    Colarco, Peter

    2016-01-01

    There are clear NWP and climate impacts from including aerosol radiative and cloud interactions. Changes in dynamics and cloud fields affect aerosol lifecycle, plume height, long-range transport, overall forcing of the climate system, etc. Inclusion of aerosols in NWP systems has benefit to surface field biases (e.g., T2m, U10m). Including aerosol affects has impact on analysis increments and can have statistically significant impacts on, e.g., tropical cyclogenesis. Above points are made especially with respect to aerosol radiative interactions, but aerosol-cloud interaction is a bigger signal on the global system. Many of these impacts are realized even in models with relatively simple (bulk) aerosol schemes (approx.10 -20 tracers). Simple schemes though imply simple representation of aerosol absorption and importantly for aerosol-cloud interaction particle-size distribution. Even so, more complex schemes exhibit a lot of diversity between different models, with issues such as size selection both for emitted particles and for modes. Prospects for complex sectional schemes to tune modal (and even bulk) schemes toward better selection of size representation. I think this is a ripe topic for more research -Systematic documentation of benefits of no vs. climatological vs. interactive (direct and then direct+indirect) aerosols. Document aerosol impact on analysis increments, inclusion in NWP data assimilation operator -Further refinement of baseline assumptions in model design (e.g., absorption, particle size distribution). Did not get into model resolution and interplay of other physical processes with aerosols (e.g., moist physics, obviously important), chemistry

  7. Beyond Physical Activity: The Importance of Play and Nature-Based Play Spaces for Children's Health and Development.

    PubMed

    Herrington, Susan; Brussoni, Mariana

    2015-12-01

    The reduction of child obesity continues to be a challenge worldwide. Research indicates that playing outdoors, particularly in natural play spaces, boosts children's physical activity, potentially decreasing childhood obesity. We present evidence that natural play spaces also provide for more diverse forms of play for children of varying ages and competencies. This is crucial because play spaces designed expressly for physical activity may not increase physical activity among less active children. Moreover, when researchers only examine physical activity in play, they overlook the valuable contributions that play makes to other aspects of children's health and development. To enhance research on children and their play environments, we introduce the theory of play affordances. To assist in the creation of more natural play spaces, we describe the Seven Cs, an evidence-based approach for designing children's play spaces that promotes diverse play. We end with some preliminary insights from our current research using the Seven Cs to illustrate the connections between play, nature, and children's healthy development.

  8. Exploring Climatology and Long-Term Variations of Aerosols from NASA Reanalysis MERRA-2 with Giovanni

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Ostrenga, Dana; Vollmer, Bruce; Li, Zhanqing

    2016-01-01

    Dust plays important roles in energy cycle and climate variations. The dust deposition is the major source of iron in the open ocean, which is an essential micronutrient for phytoplankton growth and therefore may influence the ocean uptake of atmospheric CO2. Mineral dust can also act as fertilizer for forests over long time periods. Over 35 years of simulated global aerosol products from NASA atmospheric reanalysis, second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) are available from NASA Goddard Earth Science Data and Information Services Center (GES DISC). The MERRA-2 covers the period 1980-present, continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated by using MERRA-2 aerosol model, which interact directly with the radiation parameterization, and radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). Dust deposition data along with other major aerosol compositions (e.g. black carbon, sea salt, and sulfate, etc.) are simulated as dry and wet deposition, respectively. The hourly and monthly data are available at spatial resolution of 0.5ox0.625o (latitude x longitude). Quick data exploration of climatology and interannual variations of MERRA-2 aerosol can be done through the online visualization and analysis tool, Giovanni. This presentation, using dust deposition as an example, demonstrates a number of MERRA-2 data services at GES DISC. Global distributions of dust depositions, and their seasonal and inter-annual variations are investigated from MERRA-2 monthly aerosol products.

  9. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    The reliability of aerosol radiative forcing estimates from climate models depends on the accuracy of simulated global aerosol distribution and composition, as well as on the models' representation of the aerosol-cloud and aerosol-radiation interactions. To help improve on previous modeling studies, we recently developed the new aerosol microphysics submodel MADE3 that explicitly tracks particle mixing state in the Aitken, accumulation, and coarse mode size ranges. We implemented MADE3 into the global atmospheric chemistry general circulation model EMAC and evaluated it by comparison of simulated aerosol properties to observations. Compared properties include continental near-surface aerosol component concentrations and size distributions, continental and marine aerosol vertical profiles, and nearly global aerosol optical depth. Recent studies have shown the specific importance of aerosol vertical profiles for determination of the aerosol radiative forcing. Therefore, our focus here is on the evaluation of simulated vertical profiles. The observational data is taken from campaigns between 1990 and 2011 over the Pacific Ocean, over North and South America, and over Europe. The datasets include black carbon and total aerosol mass mixing ratios, as well as aerosol particle number concentrations. Compared to other models, EMAC with MADE3 yields good agreement with the observations - despite a general high bias of the simulated mass mixing ratio profiles. However, BC concentrations are generally overestimated by many models in the upper troposphere. With MADE3 in EMAC, we find better agreement of the simulated BC profiles with HIPPO data than the multi-model average of the models that took part in the AeroCom project. There is an interesting difference between the profiles from individual campaigns and more "climatological" datasets. For instance, compared to spatially and temporally localized campaigns, the model simulates a more continuous decline in both total

  10. Impact of aerosol vertical distribution on aerosol direct radiative effect and heating rate in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias

    2015-04-01

    It is now well-established that aerosols cause an overall cooling effect at the surface and a warming effect within the atmosphere. At the top of the atmosphere (TOA), both positive and negative forcing can be found, depending on a number of other factors, such as surface albedo and relative position of clouds and aerosols. Whilst aerosol surface cooling is important due to its relation with surface temperature and other bio-environmental reasons, atmospheric heating is of special interest as well having significant impacts on atmospheric dynamics, such as formation of clouds and subsequent precipitation. The actual position of aerosols and their altitude relative to clouds is of major importance as certain types of aerosol, such as black carbon (BC) above clouds can have a significant impact on planetary albedo. The vertical distribution of aerosols and clouds has recently drawn the attention of the aerosol community, because partially can account for the differences between simulated aerosol radiative forcing with various models, and therefore decrease the level of our uncertainty regarding aerosol forcing, which is one of our priorities set by IPCC. The vertical profiles of aerosol optical and physical properties have been studied by various research groups around the world, following different methodologies and using various indices in order to present the impact of aerosols on radiation on different altitudes above the surface. However, there is still variability between the published results as to the actual effect of aerosols on shortwave radiation and on heating rate within the atmosphere. This study uses vertical information on aerosols from the Max Planck Aerosol Climatology (MAC-v1) global dataset, which is a combination of model output with quality ground-based measurements, in order to provide useful insight into the vertical profile of atmospheric heating for the Mediterranean region. MAC-v1 and the science behind this aerosol dataset have already

  11. Simulation of the effects of aerosol on mixed-phase orographic clouds using the WRF model with a detailed bin microphysics scheme

    NASA Astrophysics Data System (ADS)

    Xiao, Hui; Yin, Yan; Jin, Lianji; Chen, Qian; Chen, Jinghua

    2015-08-01

    The Weather Research Forecast (WRF) mesoscale model coupled with a detailed bin microphysics scheme is used to investigate the impact of aerosol particles serving as cloud condensation nuclei and ice nuclei on orographic clouds and precipitation. A mixed-phase orographic cloud developed under two scenarios of aerosol (a typical continental background and a relatively polluted urban condition) and ice nuclei over an idealized mountain is simulated. The results show that, when the initial aerosol condition is changed from the relatively clean case to the polluted scenario, more droplets are activated, leading to a delay in precipitation, but the precipitation amount over the terrain is increased by about 10%. A detailed analysis of the microphysical processes indicates that ice-phase particles play an important role in cloud development, and their contribution to precipitation becomes more important with increasing aerosol particle concentrations. The growth of ice-phase particles through riming and Wegener-Bergeron-Findeisen regime is more effective under more polluted conditions, mainly due to the increased number of droplets with a diameter of 10-30 µm. Sensitivity tests also show that a tenfold increase in the concentration of ice crystals formed from ice nucleation leads to about 7% increase in precipitation, and the sensitivity of the precipitation to changes in the concentration and size distribution of aerosol particles is becoming less pronounced when the concentration of ice crystals is also increased.

  12. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  13. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  14. Landscape fires dominate terrestrial natural aerosol - climate feedbacks

    NASA Astrophysics Data System (ADS)

    Scott, C.; Arnold, S.; Monks, S. A.; Asmi, A.; Paasonen, P.; Spracklen, D. V.

    2017-12-01

    The terrestrial biosphere is an important source of natural aerosol including landscape fire emissions and secondary organic aerosol (SOA) formed from biogenic volatile organic compounds (BVOCs). Atmospheric aerosol alters the Earth's climate by absorbing and scattering radiation (direct radiative effect; DRE) and by perturbing the properties of clouds (aerosol indirect effect; AIE). Natural aerosol sources are strongly controlled by, and can influence, climate; giving rise to potential natural aerosol-climate feedbacks. Earth System Models (ESMs) include a description of some of these natural aerosol-climate feedbacks, predicting substantial changes in natural aerosol over the coming century with associated radiative perturbations. Despite this, the sensitivity of natural aerosols simulated by ESMs to changes in climate or emissions has not been robustly tested against observations. Here we combine long-term observations of aerosol number and a global aerosol microphysics model to assess terrestrial natural aerosol-climate feedbacks. We find a strong positive relationship between the summertime anomaly in observed concentration of particles greater than 100 nm diameter and the anomaly in local air temperature. This relationship is reproduced by the model and driven by variability in dynamics and meteorology, as well as natural sources of aerosol. We use an offline radiative transfer model to determine radiative effects due to changes in two natural aerosol sources: landscape fire and biogenic SOA. We find that interannual variability in the simulated global natural aerosol radiative effect (RE) is negatively related to the global temperature anomaly. The magnitude of global aerosol-climate feedback (sum of DRE and AIE) is estimated to be -0.15 Wm-2 K-1 for landscape fire aerosol and -0.06 Wm-2 K-1 for biogenic SOA. These feedbacks are comparable in magnitude, but opposite in sign to the snow albedo feedback, highlighting the need for natural aerosol feedbacks to

  15. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  16. Substantial large-scale feedbacks between natural aerosols and climate

    NASA Astrophysics Data System (ADS)

    Scott, C. E.; Arnold, S. R.; Monks, S. A.; Asmi, A.; Paasonen, P.; Spracklen, D. V.

    2018-01-01

    The terrestrial biosphere is an important source of natural aerosol. Natural aerosol sources alter climate, but are also strongly controlled by climate, leading to the potential for natural aerosol-climate feedbacks. Here we use a global aerosol model to make an assessment of terrestrial natural aerosol-climate feedbacks, constrained by observations of aerosol number. We find that warmer-than-average temperatures are associated with higher-than-average number concentrations of large (>100 nm diameter) particles, particularly during the summer. This relationship is well reproduced by the model and is driven by both meteorological variability and variability in natural aerosol from biogenic and landscape fire sources. We find that the calculated extratropical annual mean aerosol radiative effect (both direct and indirect) is negatively related to the observed global temperature anomaly, and is driven by a positive relationship between temperature and the emission of natural aerosol. The extratropical aerosol-climate feedback is estimated to be -0.14 W m-2 K-1 for landscape fire aerosol, greater than the -0.03 W m-2 K-1 estimated for biogenic secondary organic aerosol. These feedbacks are comparable in magnitude to other biogeochemical feedbacks, highlighting the need for natural aerosol feedbacks to be included in climate simulations.

  17. Trend analysis of the Aerosol Optical Thickness and Ångström Exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2011-08-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. Aerosol Optical Thickness (AOT) and Ångström Exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) spectral observations. Additionally, temporal trends of Coarse- and Fine-mode dominant AOTs (CAOT and FAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström Exponent Difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation and (2) Number of Observations (NO) per month. Temporal increase of FAOTs prevails over regions dominated by emerging economy or slash-burn agriculture in East Asia and South Africa. On the other hand, insignificant or negative trends for FAOTs are detected over Western Europe and North America. Over desert regions, both increase and decrease of CAOTs are observed depending on meteorological conditions.

  18. Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China during 2014 APEC summit

    NASA Astrophysics Data System (ADS)

    Chen, C.; Sun, Y. L.; Xu, W. Q.; Du, W.; Zhou, L. B.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Gao, Z. Q.; Zhang, Q.; Worsnop, D. R.

    2015-08-01

    circulations of mountain-valley breezes were also found to play an important role in alleviating PM levels and achieving the "APEC blue" effect. The evolution of vertical differences between 260 m and the ground level was also investigated. Our results show complex vertical differences during the formation and evolution of severe haze episodes that are closely related to aerosol sources and boundary layer dynamics.

  19. Aerosol emission during human speech

    NASA Astrophysics Data System (ADS)

    Asadi, Sima; Wexler, Anthony S.; Cappa, Christopher D.; Bouvier, Nicole M.; Barreda-Castanon, Santiago; Ristenpart, William D.

    2017-11-01

    We show that the rate of aerosol particle emission during healthy human speech is strongly correlated with the loudness (amplitude) of vocalization. Emission rates range from approximately 1 to 50 particles per second for quiet to loud amplitudes, regardless of language spoken (English, Spanish, Mandarin, or Arabic). Intriguingly, a small fraction of individuals behave as ``super emitters,'' consistently emitting an order of magnitude more aerosol particles than their peers. We interpret the results in terms of the eggressive flowrate during vocalization, which is known to vary significantly for different types of vocalization and for different individuals. The results suggest that individual speech patterns could affect the probability of airborne disease transmission. The results also provide a possible explanation for the existence of ``super spreaders'' who transmit pathogens much more readily than average and who play a key role in the spread of epidemics.

  20. Microphysical processes affecting stratospheric aerosol particles

    NASA Technical Reports Server (NTRS)

    Hamill, P.; Toon, O. B.; Kiang, C. S.

    1977-01-01

    Physical processes which affect stratospheric aerosol particles include nucleation, condensation, evaporation, coagulation and sedimentation. Quantitative studies of these mechanisms to determine if they can account for some of the observed properties of the aerosol are carried out. It is shown that the altitude range in which nucleation of sulfuric acid-water solution droplets can take place corresponds to that region of the stratosphere where the aerosol is generally found. Since heterogeneous nucleation is the dominant nucleation mechanism, the stratospheric solution droplets are mainly formed on particles which have been mixed up from the troposphere or injected into the stratosphere by volcanoes or meteorites. Particle growth by heteromolecular condensation can account for the observed increase in mixing ratio of large particles in the stratosphere. Coagulation is important in reducing the number of particles smaller than 0.05 micron radius. Growth by condensation, applied to the mixed nature of the particles, shows that available information is consistent with ammonium sulfate being formed by liquid phase chemical reactions in the aerosol particles. The upper altitude limit of the aerosol layer is probably due to the evaporation of sulfuric acid aerosol particles, while the lower limit is due to mixing across the tropopause.

  1. The East and Southeast Asia Initiatives: Aerosol Column Measurements

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, Christina N.; Li, Zhanqing

    2003-01-01

    Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during spring- time. However, with the economical growth in China, increases in the emission of air pollutants generated from industrial and vehicular sources will not only impact the radiation balance, but adverse health effects to humans all year round. In addition, both of these dust and air pollution clouds can transport swiftly across the Pacific reaching North America within a few days, possessing an even larger scale effect. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network. Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3,Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth- atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Two new initiatives, EAST-AIRE (East

  2. Surface-Sensitive and Bulk Studies on the Complexation and Photosensitized Degradation of Catechol by Iron(III) as a Model for Multicomponent Aerosol Systems

    NASA Astrophysics Data System (ADS)

    Al-abadleh, H. A.; Tofan-Lazar, J.; Situm, A.; Ruffolo, J.; Slikboer, S.

    2013-12-01

    Surface water plays a crucial role in facilitating or inhibiting surface reactions in atmospheric aerosols. Little is known about the role of surface water in the complexation of organic molecules to transition metals in multicomponent aerosol systems. We will show results from real time diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments for the in situ complexation of catechol to Fe(III) and its photosensitized degradation under dry and humid conditions. Catechol was chosen as a simple model for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). It has also been detected in secondary organic aerosols (SOA) formed from the reaction of hydroxyl radicals with benzene. Given the importance of the iron content in aerosols and its biogeochemistry, our studies were conducted using FeCl3. For comparison, these surface-sensitive studies were complemented with bulk aqueous ATR-FTIR, UV-vis, and HPLC measurements for structural, quantitative and qualitative information about complexes in the bulk, and potential degradation products. The implications of our studies on understanding interfacial and condensed phase chemistry relevant to multicomponent aerosols, water thin islands on buildings, and ocean surfaces containing transition metals will be discussed.

  3. Aeronet-based Microphysical and Optical Properties of Smoke-dominated Aerosol near Source Regions and Transported over Oceans, and Implications for Satellite Retrievals of Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-01-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad families of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA 0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA 0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savanna at Mongu (Zambia), with average SSA 0.85 in the midvisible. These can serve as candidate sets of aerosol microphysicaloptical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  4. What is the impact of natural variability and aerosol-cloud interaction on the effective radiative forcing of anthropogenic aerosol?

    NASA Astrophysics Data System (ADS)

    Fiedler, S.; Stevens, B.; Mauritsen, T.

    2017-12-01

    State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in

  5. Design and testing of a shrouded probe for airborne aerosol sampling in a high velocity airstream

    NASA Astrophysics Data System (ADS)

    Cain, Stuart Arthur

    1997-07-01

    Tropospheric aerosols play an important role in many phenomena related to global climate and climate change and two important parameters, aerosol size distribution and concentration, have been the focus of a great deal of attention. To study these parameters it is necessary to obtain a representative sample of the ambient aerosol using an airborne aerosol sampling probe mounted on a suitably equipped aircraft. Recently, however, serious questions have been raised (Huebert et al., 1990; Baumgardner et al., 1991) concerning the current procedures and techniques used in airborne aerosol sampling. We believe that these questions can be answered by: (1) use of a shrouded aerosol sampling probe, (2) proper aerodynamic sampler design using numerical simulation techniques, (3) calculation of the sampler calibration curve to be used in determining free-stream aerosol properties from measurements made with the sampler and (4) wind tunnel tests to verify the design and investigate the performance of the sampler at small angles of attack (typical in airborne sampling applications due to wind gusts and aircraft fuel consumption). Our analysis is limited to the collection of insoluble particles representative of the global tropospheric 'background aerosol' (0.1-2.6 μm diameter) whose characteristics are least likely to be affected by the collection process. We begin with a survey of the most relevant problems associated with current airborne aerosol samplers and define the physical quantity that we wish to measure. This includes the derivation of a unique mathematical expression relating the free-stream aerosol size distribution to aerosol data obtained from the airborne measurements with the sampler. We follow with the presentation of the results of our application of Computational Fluid Dynamics (CFD) and Computational Particle Dynamics (CPD) to the design of a shrouded probe for airborne aerosol sampling of insoluble tropospheric particles in the size range 0.1 to 15

  6. Informing Aerosol Transport Models With Satellite Multi-Angle Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Limbacher, J.; Patadia, F.; Petrenko, M.; Martin, M. Val; Chin, M.; Gaitley, B.; Garay, M.; Kalashnikova, O.; Nelson, D.; Scollo, S.

    2011-01-01

    As the aerosol products from the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) mature, we are placing greater focus on ways of using the aerosol amount and type data products, and aerosol plume heights, to constrain aerosol transport models. We have demonstrated the ability to map aerosol air-mass-types regionally, and have identified product upgrades required to apply them globally, including the need for a quality flag indicating the aerosol type information content, that varies depending upon retrieval conditions. We have shown that MISR aerosol type can distinguish smoke from dust, volcanic ash from sulfate and water particles, and can identify qualitative differences in mixtures of smoke, dust, and pollution aerosol components in urban settings. We demonstrated the use of stereo imaging to map smoke, dust, and volcanic effluent plume injection height, and the combination of MISR and MODIS aerosol optical depth maps to constrain wildfire smoke source strength. This talk will briefly highlight where we stand on these application, with emphasis on the steps we are taking toward applying the capabilities toward constraining aerosol transport models, planet-wide.

  7. The Global Atmosphere Watch Aerosol Programme

    NASA Astrophysics Data System (ADS)

    Baltensperger, U.

    2003-04-01

    ://ies.jrc.cec.eu.int/wdca/) using the NARSTO data exchange standard. The Institute for Tropospheric Research in Leipzig hosts a GAW World Calibration Centre (WCC) for physical aerosol parameters. A host for the chemical parameters still must be located. None of the Global sites perform a full set of measurements, and many Regional sites have not yet started with aerosol ac- tivities at all. Capacity building and fund raising are therefore important priorities in order to achieve the goals of the GAW global aerosol programme. It should be em- phasized that GAW works with many partners in the World Meteorological Organi- zation as well as other agencies in an attempt to develop an integrated system of satellite and non-satellite observations of the global aerosol.

  8. Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Liu, Huan; Li, Zhanqing; Zhang, Wanchun; Zhai, Panmao

    2017-02-01

    Meteorological conditions within the planetary boundary layer (PBL) are closely governed by large-scale synoptic patterns and play important roles in air quality by directly and indirectly affecting the emission, transport, formation, and deposition of air pollutants. Partly due to the lack of long-term fine-resolution observations of the PBL, the relationships between synoptic patterns, PBL structure, and aerosol pollution in Beijing have not been well understood. This study applied the obliquely rotated principal component analysis in T-mode to classify the summertime synoptic conditions over Beijing using the National Centers for Environmental Prediction reanalysis from 2011 to 2014, and investigated their relationships with PBL structure and aerosol pollution by combining numerical simulations, measurements of surface meteorological variables, fine-resolution soundings, the concentration of particles with diameters less than or equal to 2.5 µm, total cloud cover (CLD), and reanalysis data. Among the seven identified synoptic patterns, three types accounted for 67 % of the total number of cases studied and were associated with heavy aerosol pollution events. These particular synoptic patterns were characterized by high-pressure systems located to the east or southeast of Beijing at the 925 hPa level, which blocked the air flow seaward, and southerly PBL winds that brought in polluted air from the southern industrial zone. The horizontal transport of pollutants induced by the synoptic forcings may be the most important factor affecting the air quality of Beijing in summer. In the vertical dimension, these three synoptic patterns featured a relatively low boundary layer height (BLH) in the afternoon, accompanied by high CLD and southerly cold advection from the seas within the PBL. The high CLD reduced the solar radiation reaching the surface, and suppressed the thermal turbulence, leading to lower BLH. Besides, the numerical sensitive experiments show that cold

  9. The composition and variability of atmospheric aerosol over Southeast Asia during 2008

    NASA Astrophysics Data System (ADS)

    Trivitayanurak, W.; Palmer, P. I.; Barkley, M. P.; Robinson, N. H.; Coe, H.; Oram, D. E.

    2012-01-01

    We use a nested version of the GEOS-Chem global 3-D chemistry transport model to better understand the composition and variation of aerosol over Borneo and the broader Southeast Asian region in conjunction with aircraft and satellite observations. Our focus on Southeast Asia reflects the importance of this region as a source of reactive organic gases and aerosols from natural forests, biomass burning, and food and fuel crops. We particularly focus on July 2008 when the UK BAe-146 research aircraft was deployed over northern Malaysian Borneo as part of the ACES/OP3 measurement campaign. During July 2008 we find using the model that Borneo (defined as Borneo Island and the surrounding Indonesian islands) was a net exporter of primary organic aerosol (42 kT) and black carbon aerosol (11 kT). We find only 13% of volatile organic compound oxidation products partition to secondary organic aerosol (SOA), with Borneo being a net exporter of SOA (15 kT). SOA represents approximately 19% of the total organic aerosol over the region. Sulphate is mainly from aqueous-phase oxidation (68%), with smaller contributions from gas-phase oxidation (15%) and advection into the regions (14%). We find that there is a large source of sea salt, as expected, but this largely deposits within the region; we find that dust aerosol plays only a relatively small role in the aerosol burden. In contrast to coincident surface measurements over Northern Borneo that find a pristine environment with evidence for substantial biogenic SOA formation we find that the free troposphere is influenced by biomass burning aerosol transported from the northwest of the Island and further afield. We find several transport events during July 2008 over Borneo associated with elevated aerosol concentrations, none of which coincide with the aircraft flights. We use MODIS aerosol optical depths (AOD) data and the model to put the July campaign into a longer temporal perspective. We find that Borneo is where the model

  10. Heterogeneous oxidation of pesticides on aerosol condensed phase

    NASA Astrophysics Data System (ADS)

    Socorro, Joanna; Durand, Amandine; Temime-Roussel, Brice; Ravier, Sylvain; Gligorovski, Sasho; Wortham, Henri; Quivet, Etienne

    2015-04-01

    Pesticides are widely used all over the world. It is known that they exhibit adverse health effects and environmental risks due to their physico-chemical properties and their extensive use which is growing every year. They are distributed in the atmosphere, an important vector of dissemination, over long distances away from the target area. The partitioning of pesticides between the gas and particulate phases influences their atmospheric fate. Most of the pesticides are semi-volatile compounds, emphasizing the importance of assessing their heterogeneous reactivity towards atmospheric oxidants. These reactions are important because they are involved in, among others, direct and indirect climate changes, adverse health effects from inhaled particles, effects on cloud chemistry and ozone production. In this work, the importance of atmospheric degradation of pesticides is evaluated on the surface of aerosol deliquescent particles. The photolysis processing and heterogeneous reactivity towards O3 and OH, was evaluated of eight commonly used pesticides (cyprodinil, deltamethrin, difenoconazole, fipronil, oxadiazon, pendimethalin, permethrin, tetraconazole) adsorbed on silica particles. Silicate particles are present in air-borne mineral dust in atmospheric aerosols, and heterogeneous reactions can be different in the presence of these mineral particles. Depending on their origin and conditioning, aerosol particles containing pesticides can have complex and highly porous microstructures, which are influenced by electric charge effects and interaction with water vapour. Therefore, the kinetic experiments and consecutive product studies were performed at atmospherically relevant relative humidity (RH) of 55 %. The identification of surface bound products was performed using GC-(QqQ)-MS/MS and LC-(Q-ToF)-MS/MS and the gas-phase products were on-line monitored by PTR-ToF-MS. Based on the detected and identified reaction products, it was observed that water plays a crucial

  11. A Comprehensive Analysis about the Aerosol's Albedo Effect at SGP Site

    NASA Astrophysics Data System (ADS)

    Qiu, Y.

    2016-12-01

    Positive relationship between cloud droplet effective radius (DER) and aerosol amount has been found in early studies based on limited observation samples over the Southern Great Plain (SGP) in Oklahoma of US. Using 8-year cloud and aerosol observations by the Atmospheric Radiation Measurement (ARM) program, We here carry out a comprehensive analysis about the seasonal variation of aerosol effect on cloud DER at the SGP site. It shows that cloud DER is larger under polluted conditions than that under clean conditions in all seasons other than summer, indicating a positive aerosol first indirect effect (also called Twomey effect) only in summer. Note that the pollution conditions are classified based on the surface observation of aerosol optical depth (AOD). Different factors that influence the AOD-DER relationship have been shown in many early studies, we analyze the potential effects of various factors on the AOD-DER relationship and find that cloud types and precipitable water vapor (PWV) play more important roles.We limit our study to clouds with bases below 1 km and tops about 3 km which make sure what we study are low liquid clouds. The correlation between AOD and DER is negative in all seasons in lower one-third of PWV, and positive in other seasons except negative in summer under higher one-third of PWV. It suggests the increase of PWV could promote the relationship of AOD-Re from negative to positive. Restricting NCEP reanalysis data to limit the variation in the meteorological conditions, the correlation of AOD-Re is -0.3054 in lower PWV and -0.2327 in higher PWV( p<0.05 in two cases), which shows that the increase of PWV can weaken the Twomey effect.

  12. Evaluating the Impact of Aerosols on Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Freitas, Saulo; Silva, Arlindo; Benedetti, Angela; Grell, Georg; Members, Wgne; Zarzur, Mauricio

    2015-04-01

    The Working Group on Numerical Experimentation (WMO, http://www.wmo.int/pages/about/sec/rescrosscut/resdept_wgne.html) has organized an exercise to evaluate the impact of aerosols on NWP. This exercise will involve regional and global models currently used for weather forecast by the operational centers worldwide and aims at addressing the following questions: a) How important are aerosols for predicting the physical system (NWP, seasonal, climate) as distinct from predicting the aerosols themselves? b) How important is atmospheric model quality for air quality forecasting? c) What are the current capabilities of NWP models to simulate aerosol impacts on weather prediction? Toward this goal we have selected 3 strong or persistent events of aerosol pollution worldwide that could be fairly represented in current NWP models and that allowed for an evaluation of the aerosol impact on weather prediction. The selected events includes a strong dust storm that blew off the coast of Libya and over the Mediterranean, an extremely severe episode of air pollution in Beijing and surrounding areas, and an extreme case of biomass burning smoke in Brazil. The experimental design calls for simulations with and without explicitly accounting for aerosol feedbacks in the cloud and radiation parameterizations. In this presentation we will summarize the results of this study focusing on the evaluation of model performance in terms of its ability to faithfully simulate aerosol optical depth, and the assessment of the aerosol impact on the predictions of near surface wind, temperature, humidity, rainfall and the surface energy budget.

  13. Enhancement in the upper tropospheric humidity associated with aerosol loading over tropical Pacific

    NASA Astrophysics Data System (ADS)

    Kottayil, Ajil; Satheesan, K.

    2015-12-01

    Many modeling studies have indicated that aerosol interactions with clouds increase the upper tropospheric humidity (UTH), but observational evidences are sparse. Using satellite datasets of upper tropospheric humidity and aerosols, this study shows that aerosols increase the upper tropospheric humidity over the tropical North West Pacific (NWP) and North East Pacific (NEP). The observations show an increase in the UTH by 2.8%RH over NEP for an increment of 0.12 in aerosol optical depth (AOD) and 2%RH increase in UTH over NWP for an increment of 0.19 in AOD. The study also quantifies the change in longwave cloud radiative forcing (LWCRF) as a consequence of the increase in UTH due to aerosols. The LWCRF increases by 3.38 W m-2 over NEP and by 4.46 W m-2 over NWP. The result that aerosols increase the upper tropospheric humidity is significant since the latter plays a crucial role in regulating the Earth's radiation budget and water vapor feedback.

  14. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    NASA Technical Reports Server (NTRS)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  15. Estimation and Bias Correction of Aerosol Abundance using Data-driven Machine Learning and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Malakar, Nabin K.; Lary, D. L.; Moore, A.; Gencaga, D.; Roscoe, B.; Albayrak, Arif; Petrenko, Maksym; Wei, Jennifer

    2012-01-01

    Air quality information is increasingly becoming a public health concern, since some of the aerosol particles pose harmful effects to peoples health. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. The comparison between the AOD measured from the ground-based Aerosol Robotic Network (AERONET) system and the satellite MODIS instruments at 550 nm shows that there is a bias between the two data products. We performed a comprehensive analysis exploring possible factors which may be contributing to the inter-instrumental bias between MODIS and AERONET. The analysis used several measured variables, including the MODIS AOD, as input in order to train a neural network in regression mode to predict the AERONET AOD values. This not only allowed us to obtain an estimate, but also allowed us to infer the optimal sets of variables that played an important role in the prediction. In addition, we applied machine learning to infer the global abundance of ground level PM2.5 from the AOD data and other ancillary satellite and meteorology products. This research is part of our goal to provide air quality information, which can also be useful for global epidemiology studies.

  16. Characteristics of Aerosols over the Garhwal Himalayas: India

    NASA Astrophysics Data System (ADS)

    Soni, A.; Panwar, P.; Sundriyal, S.; Prabhu, V.; Shridhar, V.

    2017-12-01

    Aerosols and Black Carbon (BC) is very important pollutants in context of global warming study. Due to high spatio-temporal variation in aerosols, there is a large uncertainty in climate change study. This study was conducted to understand the particulate pollution level in different altitude ranging from 300 m AMSL to 2600 m AMSL (see fig.). In this study eight different sizes of aerosols (10 µm to 0.43 µm) concentration along with BC measured during summer season (MJJ) of 2014-2016 over 5 different locations of Garhwal Himalayas using Anderson Cascade Impactor (ACI) and Aethalometer AE-33. Sampling was performed continuously for 15-20 days at each site. It is the preliminary study to understand the sources of aerosols. Further chemical analysis of different sizes of aerosols helps to identify sources accurately. It will also help in future policies implications. High altitude site i.e. at 2600 m was very close to the Gangotri Glacier where river Ganga originates. The Ganga is one of the most important river in India, millions people rely on the water of this river. Since last decade many catastrophic events happened in this region because of melting of glacier fastly. Previously, no one studies BC and aerosols over this important fragile landscape. BC concentration was ranging from 4.72 ± 5.64 µg m-3 to 15.06 ± 7.69 µg m-3 at 2600 m to 300 m AMSL. At high altitude site highest aerosol concentration was observed to be 56.43 µg m-3 on the size range of PM3.3-4.7. During April-May there was a big fire event (around 3500 hector forest burnt) and the sampling period at 2600 m was on May. So that, to understand transportation of aerosols from forest fire region backward trajectories were calculated using HYSPLIT model. It gives evidence that during summer months aerosols transported from neighbouring forest fire area. While the concentration at lowest altitude was observed to be 248.95 µg m-3 in the size range of PM9-10 which is much higher than the permissible

  17. Organic condensation: A vital link connecting aerosol formation to climate forcing (Invited)

    NASA Astrophysics Data System (ADS)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petdjd, T. T.; Slowik, J. G.; Chang, R. Y.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M. T.

    2010-12-01

    Aerosol-cloud interactions represent the largest uncertainty in calculations of Earth’s radiative forcing. Number concentrations of atmospheric aerosol particles are in the core of this uncertainty, as they govern the numbers of cloud condensation nuclei (CCN) and influence the albedo and lifetime of clouds. Aerosols also impair air quality through their adverse effects on atmospheric visibility and human health. The ultrafine fraction (<100 nm) of atmospheric aerosol particles often dominates the total aerosol numbers, and nucleation of atmospheric vapours is one of the most important sources of these particles. To have climatic relevance, however, the freshly-nucleated particles need to grow in size, and consequently their climatic importance remains to be quantified (see Fig. 1). We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapours is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We demonstrate that state-of-the-science organic gas-particle partitioning models fail to reproduce the observations; we propose a new modelling approach that is consistent with the measurements. Finally, we demonstrate the large sensitivity of climatic forcing of atmospheric aerosols to these interactions between organic vapours and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models. Figure 1. Organic emissions and the dynamic processes governing the climatic importance of ultrafine aerosol. Condensable vapours are produced upon oxidation of volatile organic compounds (VOCs) and can 1) nucleate to form new small particles; 2) grow freshly formed particles to larger sizes and increase their probability to serve as CCN; 3) condense on the background aerosol (> 100 nm) and enhance the loss of ultrafine particles. Primary organic aerosol (POA) contributes to the large end of the

  18. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  19. Can Aerosol Offset Urban Heat Island Effect?

    NASA Astrophysics Data System (ADS)

    Jin, M. S.; Shepherd, J. M.

    2009-12-01

    The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.

  20. The impact of changing surface ocean conditions on the dissolution of aerosol iron

    NASA Astrophysics Data System (ADS)

    Fishwick, Matthew P.; Sedwick, Peter N.; Lohan, Maeve C.; Worsfold, Paul J.; Buck, Kristen N.; Church, Thomas M.; Ussher, Simon J.

    2014-11-01

    The proportion of aerosol iron (Fe) that dissolves in seawater varies greatly and is dependent on aerosol composition and the physicochemical conditions of seawater, which may change depending on location or be altered by global environmental change. Aerosol and surface seawater samples were collected in the Sargasso Sea and used to investigate the impact of these changing conditions on aerosol Fe dissolution in seawater. Our data show that seawater temperature, pH, and oxygen concentration, within the range of current and projected future values, had no significant effect on the dissolution of aerosol Fe. However, the source and composition of aerosols had the most significant effect on the aerosol Fe solubility, with the most anthropogenically influenced samples having the highest fractional solubility (up to 3.2%). The impact of ocean warming and acidification on aerosol Fe dissolution is therefore unlikely to be as important as changes in land usage and fossil fuel combustion. Our experimental results also reveal important changes in the size distribution of soluble aerosol Fe in solution, depending on the chemical conditions of seawater. Under typical conditions, the majority (77-100%) of Fe released from aerosols into ambient seawater existed in the colloidal (0.02-0.4 µm) size fraction. However, in the presence of a sufficient concentration of strong Fe-binding organic ligands (10 nM) most of the aerosol-derived colloidal Fe was converted to soluble Fe (<0.02 µm). This finding highlights the potential importance of organic ligands in retaining aerosol Fe in a biologically available form in the surface ocean.

  1. Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit

    NASA Astrophysics Data System (ADS)

    Chen, C.; Sun, Y. L.; Xu, W. Q.; Du, W.; Zhou, L. B.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Gao, Z. Q.; Zhang, Q.; Worsnop, D. R.

    2015-11-01

    The megacity of Beijing has experienced frequent severe fine particle pollution during the last decade. Although the sources and formation mechanisms of aerosol particles have been extensively investigated on the basis of ground measurements, real-time characterization of aerosol particle composition and sources above the urban canopy in Beijing is rare. In this study, we conducted real-time measurements of non-refractory submicron aerosol (NR-PM1) composition at 260 m at the Beijing 325 m meteorological tower (BMT) from 10 October to 12 November 2014, by using an aerosol chemical speciation monitor (ACSM) along with synchronous measurements of size-resolved NR-PM1 composition near ground level using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The NR-PM1 composition above the urban canopy was dominated by organics (46 %), followed by nitrate (27 %) and sulfate (13 %). The high contribution of nitrate and high NO3- / SO42- mass ratios illustrates an important role of nitrate in particulate matter (PM) pollution during the study period. The organic aerosol (OA) was mainly composed of secondary OA (SOA), accounting for 61 % on an average. Different from that measured at the ground site, primary OA (POA) correlated moderately with SOA, likely suggesting a high contribution from regional transport above the urban canopy. The Asia-Pacific Economic Cooperation (APEC) summit with strict emission controls provides a unique opportunity to study the impacts of emission controls on aerosol chemistry. All aerosol species were shown to have significant decreases of 40-80 % during APEC from those measured before APEC, suggesting that emission controls over regional scales substantially reduced PM levels. However, the bulk aerosol composition was relatively similar before and during APEC as a result of synergetic controls of aerosol precursors. In addition to emission controls, the routine circulations of mountain-valley breezes were also found to play

  2. Hydroxyl radicals from secondary organic aerosol decomposition in water

    NASA Astrophysics Data System (ADS)

    Tong, Haijie; Arangio, Andrea M.; Lakey, Pascale S. J.; Berkemeier, Thomas; Liu, Fobang; Kampf, Christopher J.; Brune, William H.; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-02-01

    We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, limonene) is ˜ 0.1 % upon extraction with pure water and increases to ˜ 1.5 % in the presence of Fe2+ ions due to Fenton-like reactions. Upon extraction of SOA samples from OH photooxidation of isoprene, we also detected OH yields of around ˜ 0.1 %, which increases upon addition of Fe2+. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical H2O2 Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.

  3. Impacts of increasing the aerosol complexity in the Met Office global NWP model

    NASA Astrophysics Data System (ADS)

    Mulcahy, J. P.; Walters, D. N.; Bellouin, N.; Milton, S. F.

    2013-11-01

    Inclusion of the direct and indirect radiative effects of aerosols in high resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing longwave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propogate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high latitude clean air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short range forecasts. However, the indirect aerosol effect leads to a strengthening of the low level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance

  4. On the association between pre-monsoon aerosol and all-India summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Patil, S. D.; Preethi, B.; Bansod, S. D.; Singh, H. N.; Revadekar, J. V.; Munot, A. A.

    2013-09-01

    Summer monsoon rainfall which gives 75-90% of the annual rainfall plays vital role in Indian economy as the food grain production in India is very much dependent on the summer monsoon rainfall. It has been suggested by recent studies that aerosol loading over the Indian region plays significant role in modulating the monsoon circulation and consequent rainfall distribution over the Indian sub-continent. Increased industrialization and the increasing deforestation over past few decades probably cause a gradual increase in the aerosol concentration. A significant negative relationship between pre-monsoon (March-May i.e. MAM) aerosol loading over BOB and IGP regions and the forthcoming monsoon rainfall have been observed from the thorough analysis of the fifteen years (1997-2011) monthly Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) and All-India Summer Monsoon Rainfall (AISMR) data. Composite analysis revealed that AI anomalies during pre-monsoon season are negative for excess year and positive for deficient monsoon years over the Indian subcontinent, with strong variation over Bay of Bengal (BOB) and Indo-Gangetic Plain (IGP) regions from the month of March onwards. The correlation coefficients between AISMR and pre-monsoon AI over BOB and IGP regions are found to be negative and significant at 5% level. The study clearly brings out that the pre-monsoon aerosol loading over the BOB and IGP regions has a significant correlational link with the forthcoming monsoon intensity; however a further study of the aerosol properties and their feedback to the cloud microphysical properties is asked for establishing their causal linkage.

  5. Raman lidar and sun photometer measurements of aerosols and water vapor during the ARM RCS experiment

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Evans, K. D.; Holben, B. N.

    1995-01-01

    The first Atmospheric Radiation Measurement (ARM) Remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program. These activities are part of an overall plan to assess general circulation model (GCM) parameterization research. Since radiation processes are one of the key areas included in this parameterization research, measurements of water vapor and aerosols are required because of the important roles these atmospheric constituents play in radiative transfer. Two instruments were deployed during this IOP to measure water vapor and aerosols and study their relationship. The NASA/Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) acquired water vapor and aerosol profile data during 15 nights of operations. The lidar acquired vertical profiles as well as nearly horizontal profiles directed near an instrumented 60 meter tower. Aerosol optical thickness, phase function, size distribution, and integrated water vapor were derived from measurements with a multiband automatic sun and sky scanning radiometer deployed at this site.

  6. Sub 2 nm Particle Characterization in Systems with Aerosol Formation and Growth

    NASA Astrophysics Data System (ADS)

    Wang, Yang

    Aerosol science and technology enable continual advances in material synthesis and atmospheric pollutant control. Among these advances, one important frontier is characterizing the initial stages of particle formation by real time measurement of particles below 2 nm in size. Sub 2 nm particles play important roles by acting as seeds for particle growth, ultimately determining the final properties of the generated particles. Tailoring nanoparticle properties requires a thorough understanding and precise control of the particle formation processes, which in turn requires characterizing nanoparticle formation from the initial stages. The knowledge on particle formation in early stages can also be applied in quantum dot synthesis and material doping. This dissertation pursued two approaches in investigating incipient particle characterization in systems with aerosol formation and growth: (1) using a high-resolution differential mobility analyzer (DMA) to measure the size distributions of sub 2 nm particles generated from high-temperature aerosol reactors, and (2) analyzing the physical and chemical pathways of aerosol formation during combustion. Part. 1. Particle size distributions reveal important information about particle formation dynamics. DMAs are widely utilized to measure particle size distributions. However, our knowledge of the initial stages of particle formation is incomplete, due to the Brownian broadening effects in conventional DMAs. The first part of this dissertation studied the applicability of high-resolution DMAs in characterizing sub 2 nm particles generated from high-temperature aerosol reactors, including a flame aerosol reactor (FLAR) and a furnace aerosol reactor (FUAR). Comparison against a conventional DMA (Nano DMA, Model 3085, TSI Inc.) demonstrated that the increased sheath flow rates and shortened residence time indeed greatly suppressed the diffusion broadening effect in a high-resolution DMA (half mini type). The incipient particle

  7. Forced vs unforced drivers of Atlantic SST variability - linking forced role to magnitude of aerosol forcing

    NASA Astrophysics Data System (ADS)

    Booth, B.; Dunstone, N.; Halloran, P. R.; Andrews, T.; Bellouin, N.; Martin, E. R.

    2014-12-01

    Historical variations in North Atlantic SSTs have been a key driver of regional climate change - linked to drought frequency in the Sahel, Amazon and American Mid-West, rainfall and heat waves in Europe and frequency of Atlantic tropical storms. Traditionally these SST variations were deemed to arise from internally generated ocean variability. We present results from recent studies (Booth et al, 2012, Dunstone, 2013) that identify a mechanism via which volcanic and industrial aerosols could explain a large fraction of observed Atlantic variability, and its associated climate impacts. This work has prompted a lot of subsequent discussion about the relative contribution of ocean generated and external forced variability in the Atlantic. Here we present new results, that extend this earlier work, by looking at forced variability in the CMIP5 modelling context. This provides new insights into the potential externally forced role aerosols may play in the real world. CMIP5 models that represent aerosol-cloud interactions tend to have stronger correlations to observed variations in SSTs, but disagree on the magnitude of forced variability that they explain. We can link this contribution to the magnitude of aerosol forcing in each of these models - a factor that is both dependent on the aerosol parameterisation and the representation of boundary layer cloud in this region. This suggests that whether aerosols have played a larger or smaller role in historical Atlantic variability is tied to whether aerosols have a larger or smaller aerosol forcing (particularly indirect) in the real world. This in turn suggests that benefits of reducing current aerosol uncertainty are likely to extend beyond better estimates of global forcing, to providing a clearer picture of the past aerosol driven role in historical regional climate change.

  8. Constructing An Event Based Aerosol Product Under High Aerosol Loading Conditions

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Shi, Y.; Mattoo, S.; Remer, L. A.; Zhang, J.

    2016-12-01

    High aerosol loading events, such as the Indonesia's forest fire in Fall 2015 or the persistent wintertime haze near Beijing, gain tremendous interests due to their large impact on regional visibility and air quality. Understanding the optical properties of these events and further being able to simulate and predict these events are beneficial. However, it is a great challenge to consistently identify and then retrieve aerosol optical depth (AOD) from passive sensors during heavy aerosol events. Some reasons include:1). large differences between optical properties of high-loading aerosols and those under normal conditions, 2) spectral signals of optically thick aerosols can be mistaken with surface depending on aerosol types, and 3) Extremely optically thick aerosol plumes can also be misidentified as clouds due to its high optical thickness. Thus, even under clear-sky conditions, the global distribution of extreme aerosol events is not well captured in datasets such as the MODIS Dark-Target (DT) aerosol product. In this study, with the synthetic use of OMI Aerosol Index, MODIS cloud product, and operational DT product, the heavy smoke events over the seven sea region are identified and retrieved over the dry season. An event based aerosol product that would compensate the standard "global" aerosol retrieval will be created and evaluated. The impact of missing high AOD retrievals on the regional aerosol climatology will be studied using this newly developed research product.

  9. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken

    2016-11-28

    The influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosol concentration;more » here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  10. Aerosol Mapping From Space: Strengths, Limitations, and Applications

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    2010-01-01

    The aerosol data products from the NASA Earth Observing System's MISR and MODIS instruments provide significant advances in regional and global aerosol optical depth (AOD) mapping, aerosol type measurement, and source plume characterization from space. These products have been and are being used for many applications, ranging from regional air quality assessment, to aerosol air mass type identification and evolution, to wildfire smoke injection height and aerosol transport model validation. However, retrieval uncertainties and coverage gaps still limit the quantitative constraints these satellite data place on some important questions, such as global-scale long-term trends and direct aerosol radiative forcing. Major advances in these areas seem to require a different paradigm, involving the integration of satellite with suborbital data and with models. This presentation will briefly summarize where we stand, and what incremental improvements we can expect, with the current MISR and MODIS aerosol products, and will then elaborate on some initial steps aimed at the necessary integration of satellite data with data from other sources and with chemical transport models.

  11. Secondary organic aerosols - formation and ageing studies in the SAPHIR chamber

    NASA Astrophysics Data System (ADS)

    Spindler, Christian; Müller, Lars; Trimborn, Achim; Mentel, Thomas; Hoffmann, Thorsten

    2010-05-01

    Secondary organic aerosol (SOA) formation from oxidation products of biogenic volatile organic compounds (BVOC) constitutes an important coupling between vegetation, atmospheric chemistry, and climate change. Such secondary organic aerosol components play an important role in particle formation in Boreal regions ((Laaksonen et al., 2008)), where biogenic secondary organic aerosols contribute to an overall negative radiative forcing, thus a negative feed back between vegetation and climate warming (Spracklen et al., 2008). Within the EUCAARI project we investigated SOA formation from mixtures of monoterpenes (and sesquiterpenes) as emitted typically from Boreal tree species in Southern Finland. The experiments were performed in the large photochemical reactor SAPHIR in Juelich at natural light and oxidant levels. Oxidation of the BVOC mixtures and SOA formation was induced by OH radicals and O3. The SOA was formed on the first day and then aged for another day. The resulting SOA was characterized by HR-ToF-AMS, APCI-MS, and filter samples with subsequent H-NMR, GC-MS and HPLC-MS analysis. The chemical evolution of the SOA is characterized by a fast increase of the O/C ratio during the formation process on the first day, stable O/C ratio during night, and a distinctive increase of O/C ratio at the second day. The increase of the O/C ratio on the second day is highly correlated to the OH dose and is accompanied by condensational growth of the particles. We will present simultaneous factor analysis of AMS times series (PMF, Ulbrich et al., 2009 ) and direct measurements of individual chemical species. We found that four factors were needed to represent the time evolution of the SOA composition (in the mass spectra) if oxidation by OH plays a mayor role. Corresponding to these factors we observed individual, representative molecules with very similar time behaviour. The correlation between tracers and AMS factors is astonishingly good as the molecular tracers

  12. New Measurements of Aerosol Vertical Structure from Space Using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Ginoux, Paul; Colarco, Peter; Chin, Mian; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William

    2003-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GUS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output,

  13. New Measurements of Aerosol Vertical Structure from Space using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, E. J.; Spinhime, J.; Palm, S.; Hlavka, D.; Hart, W.; Ginoux, P.; Chin, M.; Colarco, P.

    2004-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth,s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GLAS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output.

  14. Aerosol Transport Over Equatorial Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  15. A Campaign Study of Sea Spray Aerosol Properties in the Bay of Aarhus

    NASA Astrophysics Data System (ADS)

    Nguyen, Quynh; Rasmussen, Berit; Kristensen, Kasper; Sloth Nielsen, Lærke; Bilde, Merete

    2016-04-01

    The oceans of the world are a dominant source of atmospheric aerosol. Together with mineral dust, sea spray aerosols (SSA) constitute the largest mass flux of particulate matter in the atmosphere (Andreae and Rosenfeld, 2008). Due to their effects on the global radiative budget - both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN), SSA are considered an important component of the climate system. The sea-surface microlayer (SML) is an ultra-thin boundary layer between the ocean and the atmosphere. The high concentration of surface-active organic compounds in the SML, compared to that of the underlying water column, creates rigid film-like layer over the surface of the ocean. The SML is believed to play an important role in the formation and composition of SSA. However, current knowledge on the SML and its impacts on SSA remain limited. To characterize the SML of natural seawater and examine its impacts on aerosol properties, a field campaign was conducted in the bay of Aarhus, Denmark, during spring 2015. Bulk seawater was collected 1-2 times every week along with selective sampling of the SML. Characterization of the sea water and SML included a wide range of measurements, including surface tension, water activity, dissolved organic matter, and chemical composition analysis by liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS). SSA was generated from sampled sea water by diffusion of air bubbles through a 10L seawater sample situated in a sea spray tank. Particle number concentration and CCN measurements were conducted along with measurements of the organic share in the aerosol phase as indicated by volatility measurements. To investigate the effect of the SML, spiking of the seawater samples with additional SML was performed and measurements repeated for comparison. Preliminary results show that the SML samples

  16. Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Chen, Chien-Lung

    In this study, the chemical characteristics of winter aerosol at four sites in southern Taiwan were determined and the Gaussian Trajectory transfer coefficient model (GTx) was then used to identify the major air pollutant sources affecting the study sites. Aerosols were found to be acidic at all four sites. The most important constituents of the particulate matter (PM) by mass were SO 42-, organic carbon (OC), NO 3-, elemental carbon (EC) and NH 4+, with SO 42-, NO 3-, and NH 4+ together constituting 86.0-87.9% of the total PM 2.5 soluble inorganic salts and 68.9-78.3% of the total PM 2.5-10 soluble inorganic salts, showing that secondary photochemical solution components such as these were the major contributors to the aerosol water-soluble ions. The coastal site, Linyuan (LY), had the highest PM mass percentage of sea salts, higher in the coarse fraction, and higher sea salts during daytime than during nighttime, indicating that the prevailing daytime sea breeze brought with it more sea-salt aerosol. Other than sea salts, crustal matter, and EC in PM 2.5 at Jenwu (JW) and in PM 2.5-10 at LY, all aerosol components were higher during nighttime, due to relatively low nighttime mixing heights limiting vertical and horizontal dispersion. At JW, a site with heavy traffic loadings, the OC/EC ratio in the nighttime fine and coarse fractions of approximately 2.2 was higher than during daytime, indicating that in addition to primary organic aerosol (POA), secondary organic aerosol (SOA) also contributed to the nighttime PM 2.5. This was also true of the nighttime coarse fraction at LY. The GTx produced correlation coefficients ( r) for simulated and observed daily concentrations of PM 10 at the four sites (receptors) in the range 0.45-0.59 and biases from -6% to -20%. Source apportionment indicated that point sources were the largest PM 10 source at JW, LY and Daliao (DL), while at Meinung (MN), a suburban site with less local PM 10, SO x and NO x emissions, upwind

  17. Impacts of increasing the aerosol complexity in the Met Office global NWP model

    NASA Astrophysics Data System (ADS)

    Mulcahy, Jane; Walters, David; Bellouin, Nicolas; Milton, Sean

    2014-05-01

    Inclusion of the direct and indirect radiative effects of aerosols in high resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing longwave radiation over West Africa due to a better representation of dust. Inclusion of the indirect aerosol effects has significant impacts on the SW radiation particularly at high latitudes due to lower cloud amounts in high latitude clean air regions. This leads to improved surface radiation biases at the North Slope of Alaska ARM site. Verification of temperature and height forecasts is also improved in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short range forecasts. However, the indirect aerosol effect leads to a strengthening of the low level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. This study highlights the importance of including a more realistic treatment of aerosol-cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex

  18. The Impact of Marine Enzymatic Activity on Sea Spray Aerosol Properties

    NASA Astrophysics Data System (ADS)

    Ryder, O. S.; Michaud, J. M.; Sauer, J. S.; Lee, C.; Förster, J. D.; Pöhlker, C.; Andreae, M. O.; Prather, K. A.

    2016-12-01

    The composition of sea spray aerosol (SSA) and the relationship between its organic fraction and biological ocean conditions is not well understood, resulting in considerable disagreement in the literature linking biological markers to SSA chemical composition. Recent work suggests that enzymatic activity in seawater may play a key role in dictating aerosol composition by changing the organic pool from which SSA is formed. Here we investigate the role of enzymatic activity on SSA spatial chemical composition, aerosol phase and morphological microstructure. In these experiments, SSA was generated using a novel mini-Marine Aerosol Reference Tank system. SSA collected onto substrates was generated from artificial salt water that had been doped with either 1) unsaturated triglycerides or 2) diatom cellular lysate, both followed by lipase. Results from analysis including morphological studies via atomic force microscopy, and chemical composition investigations both under dry and RH conditions via STXM-NEXAFS are presented.

  19. Tropospheric Trace Gas Interactions with Aerosols

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.; Maddrea, George L., Jr. (Technical Monitor)

    2002-01-01

    Tropospheric aerosols are of considerable environmental importance. They modify the radiative budget of Earth by scattering and absorbing radiation, and by providing nuclei for cloud formation. Additionally, they provide surfaces for heterogeneous and multiphase reactions that affect tropospheric chemistry. For example, Dentener and Crutzen (1993) showed that reactions of N2O5 and NO3 with sulfate aerosols may significantly alter the tropospheric concentrations of NO(x), O3, and OH by converting NOx to HNO3 which is rapidly removed by precipitation. Zhang et al. (1994) assumed these same reactions would occur on dust aerosols and showed that dust outbreaks may reduce NO(x) levels by up to 50%. Dentener et al. (1996) studied the possible effect of reactions on dust on sulfate, nitrate, and O3 concentration. Heterogeneous and multiphase reactions on aerosols may also perturb the sulfur cycle the chlorine cycle and the bromine cycle. Because these reactions can release free chlorine and free bromine they might lead to the destruction of ozone in the marine boundary layer that may be important to include in models of tropospheric chemistry. The goal of our proposed work is to examine the role of heterogeneous and multiphase reactions in the tropospheric cycles of reactive nitrogen and sulfur.

  20. Modern dust aerosol availability in northwestern China.

    PubMed

    Wang, Xunming; Cheng, Hong; Che, Huizheng; Sun, Jimin; Lu, Huayu; Qiang, Mingrui; Hua, Ting; Zhu, Bingqi; Li, Hui; Ma, Wenyong; Lang, Lili; Jiao, Linlin; Li, Danfeng

    2017-08-18

    The sources of modern dust aerosols and their emission magnitudes are fundamental for linking dust with climate and environment. Using field sample data, wind tunnel experiments and statistical analysis, we determined the contributions of wadis, gobi (stony desert), lakebeds, riverbeds, and interdunes to modern dust aerosol availability in the three important potential dust sources including the Tarim Basin, Qaidam Basin, and Ala Shan Plateau of China. The results show that riverbeds are the dominant landscape for modern dust aerosol availabilities in the Qaidam Basin, while wadis, gobi, and interdunes are the main landscapes over the Ala Shan Plateau and Tarim Basin. The Ala Shan Plateau and Tarim Basin are potential dust sources in northwestern China, while the Qaidam Basin is not a major source of the modern dust aerosols nowadays, and it is not acting in a significant way to the Loess Plateau presently. Moreover, most of modern dust aerosol emissions from China originated from aeolian processes with low intensities rather than from major dust events.

  1. Impact of Aerosol Processing on Orographic Clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al

  2. Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.; Springston, S.; Jayne, J.

    2010-03-15

    Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+more » rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and <0.05 {micro}g/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model

  3. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; hide

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  4. African Dust Aerosols as Atmospheric Ice Nuclei

    NASA Technical Reports Server (NTRS)

    DeMott, Paul J.; Brooks, Sarah D.; Prenni, Anthony J.; Kreidenweis, Sonia M.; Sassen, Kenneth; Poellot, Michael; Rogers, David C.; Baumgardner, Darrel

    2003-01-01

    Measurements of the ice nucleating ability of aerosol particles in air masses over Florida having sources from North Africa support the potential importance of dust aerosols for indirectly affecting cloud properties and climate. The concentrations of ice nuclei within dust layers at particle sizes below 1 pn exceeded 1/cu cm; the highest ever reported with our device at temperatures warmer than homogeneous freezing conditions. These measurements add to previous direct and indirect evidence of the ice nucleation efficiency of desert dust aerosols, but also confirm their contribution to ice nuclei populations at great distances from source regions.

  5. Techniques for the Retrieval of Aerosol Properties Over Land and Ocean Using Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.; Diner, David J.; Kahn, Ralph; Ackerman, Thomas P.; Verstraete, Michel M.; Pinty, Bernard; Gordon, Howard R.

    1997-01-01

    Aerosols are believed to play a direct role in the radiation budget of Earth but their net radiative effect is not well established, particularly on regional scales. Whether aerosols heat or cool a given location depends on their composition and column amount and also on the surface albedo, information that is not routinely available, especially over land.

  6. Aerosol growth in Titan’s ionosphere

    PubMed Central

    Lavvas, Panayotis; Yelle, Roger V.; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J.; Wahlund, Jan-Erik; Crary, Frank J.; Snowden, Darci

    2013-01-01

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan’s upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  7. Growth rates of fine aerosol particles at a site near Beijing in June 2013

    NASA Astrophysics Data System (ADS)

    Zhao, Chuanfeng; Li, Yanan; Zhang, Fang; Sun, Yele; Wang, Pucai

    2018-02-01

    Growth of fine aerosol particles is investigated during the Aerosol-CCN-Cloud Closure Experiment campaign in June 2013 at an urban site near Beijing. Analyses show a high frequency (˜ 50%) of fine aerosol particle growth events, and show that the growth rates range from 2.1 to 6.5 nm h-1 with a mean value of ˜ 5.1 nm h-1. A review of previous studies indicates that at least four mechanisms can affect the growth of fine aerosol particles: vapor condensation, intramodal coagulation, extramodal coagulation, and multi-phase chemical reaction. At the initial stage of fine aerosol particle growth, condensational growth usually plays a major role and coagulation efficiency generally increases with particle sizes. An overview of previous studies shows higher growth rates over megacity, urban and boreal forest regions than over rural and oceanic regions. This is most likely due to the higher condensational vapor, which can cause strong condensational growth of fine aerosol particles. Associated with these multiple factors of influence, there are large uncertainties for the aerosol particle growth rates, even at the same location.

  8. Multi-Satellite Synergy for Aerosol Analysis in the Asian Monsoon Region

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym

    2012-01-01

    Atmospheric aerosols represent one of the greatest uncertainties in environmental and climate research, particularly in tropical monsoon regions such as the Southeast Asian regions, where significant contributions from a variety of aerosol sources and types is complicated by unstable atmospheric dynamics. Although aerosols are now routinely retrieved from multiple satellite Sensors, in trying to answer important science questions about aerosol distribution, properties, and impacts, researchers often rely on retrievals from only one or two sensors, thereby running the risk of incurring biases due to sensor/algorithm peculiarities. We are conducting detailed studies of aerosol retrieval uncertainties from various satellite sensors (including Terra-/ Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, SeaWiFS, and Calipso-CALIOP), based on the collocation of these data products over AERONET and other important ground stations, within the online Multi-sensor Aerosol Products Sampling System (MAPSS) framework that was developed recently. Such analyses are aimed at developing a synthesis of results that can be utilized in building reliable unified aerosol information and climate data records from multiple satellite measurements. In this presentation, we will show preliminary results of. an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors, particularly focused on the Asian Monsoon region, along with some comparisons from the African Monsoon region.

  9. Seasonal dependence of aerosol processing in urban Philadelphia

    NASA Astrophysics Data System (ADS)

    Avery, A. M.; Waring, M. S.; DeCarlo, P. F.

    2017-12-01

    Urban aerosols pose an important threat to human health due to the conflation of emissions and concentrated population exposed. Winter and summer aerosol and trace gas measurements were taken in downtown Philadelphia in 2016. Measurements included aerosol composition and size with an Aerodyne Aerosol Mass Spectrometer (AMS), particle size distributions with an SMPS, and an aethalometer. Trace gas measurements of O3, NO, CH4, CO, and CO2 were taken concurrently. Sampling in seasonal extremes provided contrast in aerosol and trace gas composition, aerosol processing, and emission factors. Inorganic aerosol components contributed approximately 60% of the submicron aerosol mass, while summertime aerosol composition was roughly 70% organic matter. Positive Matrix Factorization (PMF) on the organic aerosol (OA) matrix revealed three factors in common in each season, including an oxygenated organic aerosol (OOA) factor with different temporal behavior in each season. In summertime, OOA varied diurnally with ozone and daytime temperature, but in the wintertime, it was anti-correlated with ozone and temperature, and instead trended with calculated liquid water, indicating a seasonally-dependent processing of organic aerosol in Philadelphia's urban environment. Due to the inorganic dominant winter aerosol, liquid water much higher (2.65 μg/m3) in winter than in summer (1.54 μg/m3). Diurnally varying concentrations of background gas phase species (CH4, CO2) were higher in winter and varied less as a result of boundary layer conditions; ozone was also higher in background in winter than summer. Winter stagnation events with low windspeed showed large buildup of trace gases CH4, CO, CO2, and NO. Traffic related aerosol was also elevated with black carbon and hydrocarbon-like OA (HOA) plumes of each at 3-5 times higher than the winter the average value for each. Winter ratios of HOA to black carbon were significantly higher in the winter than the summer due to lower

  10. Maritime Aerosol Network (MAN) as a Component of AERONET

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Holben, B. N.; Slutsker, I.; Giles, D. M.; McClain, C. R.; Eck, T. F.; Sakerin, S. M.; Macke, A.; Croot, P.; Zibordi, G.; hide

    2008-01-01

    The World Ocean produces a large amount of natural aerosols that have all impact on the Earth's albedo and climate. Sea-salt is the major contributor to aerosol optical depth over the oceans. [Mahowald et al. 2006; Chin et al. 2002; Satheesh et al. 1999; Winter and Chylek, 1997] and therefore affects the radiative balance over the ocean through the direct [Haywood et al. 1999] and indirect aerosol effect [O'Dowd et al. 1999]. Aerosols over the oceans (produced marine and advected from land sources) are important for various atmospheric processes [Lewis and Schwartz, 2004] and remote sensing studies [Gordon, 1997].

  11. The Importance of Fantasy, Fairness, and Friendship in Children's Play: An Interview with Vivian Gussin Paley

    ERIC Educational Resources Information Center

    American Journal of Play, 2009

    2009-01-01

    Vivian Gussin Paley is a teacher, writer, lecturer, and advocate for the importance of play for young children. Author of a dozen books about children learning through play, she has received numerous honors and awards including an Erickson Institute Award for Service to Children, a MacArthur Foundation Fellows award, and a John Dewey Society's…

  12. Narrowing the Gap in Quantification of Aerosol-Cloud Radiative Effects

    NASA Astrophysics Data System (ADS)

    Feingold, G.; McComiskey, A. C.; Yamaguchi, T.; Kazil, J.; Johnson, J. S.; Carslaw, K. S.

    2016-12-01

    Despite large advances in our understanding of aerosol and cloud processes over the past years, uncertainty in the aerosol-cloud radiative effect/forcing is still of major concern. In this talk we will advocate a methodology for quantifying the aerosol-cloud radiative effect that considers the primacy of fundamental cloud properties such as cloud amount and albedo alongside the need for process level understanding of aerosol-cloud interactions. We will present a framework for quantifying the aerosol-cloud radiative effect, regime-by-regime, through process-based modelling and observations at the large eddy scale. We will argue that understanding the co-variability between meteorological and aerosol drivers of the radiative properties of the cloud system may be as important an endeavour as attempting to untangle these drivers.

  13. Two-Column Aerosol Project (TCAP) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K

    aerosol and cloud properties that were deployed for the first time during the TCAP. Key lessons learned during TCAP include the need for closer coordination between the AMF, MAOS, and the AAF so that all AMF instruments can be online and functioning during the AAF IOPs. Based on experiences from TCAP, it is also important for instrument mentors, or other relevant individuals, to review data on a regular basis to ensure that data quality remains high during the entire deployment. TCAP was marked by two important meteorological events including the passage of Hurricane Sandy at the end of October 2012 and the occurrence of one of the largest New England blizzards in recorded history. During Sandy the AMF received some, generally minor, damage and was largely functional a short time after the storm. The blizzard led to extensive power outages on Cape Cod and a multi-day interruption of measurements by the AMF, MAOS, and AAF. In each case, however, the ARM Facilities were returned to service and functioning as soon as was reasonably possible.« less

  14. Impact of aerosols on ice crystal size

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Jiang, Jonathan H.; Li, Qinbin; Fu, Rong; Huang, Lei; Liu, Xiaohong; Shi, Xiangjun; Su, Hui; He, Cenlin

    2018-01-01

    The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.

  15. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  16. On play and playing.

    PubMed

    Rudan, Dusko

    2013-12-01

    The paper offers a review of the development of the concept of play and playing. The true beginnings of the development of the theories of play are set as late as in the 19th century. It is difficult to define play as such; it may much more easily be defined through its antipode--work. In the beginning, play used to be connected with education; it was not before Freud's theory of psychoanalysis and Piaget's developmental psychology that the importance of play in a child's development began to be explained in more detail. The paper further tackles the role of play in the adult age. Detailed attention is paid to psychodynamic and psychoanalytic authors, in particular D. W. Winnicott and his understanding of playing in the intermediary (transitional) empirical or experiential space. In other words, playing occupies a space and time of its own. The neuroscientific concept of playing is also tackled, in the connection with development as well.

  17. Impacts of Aerosols on Seasonal Precipitation and Snowpack in California Based on Convection-Permitting WRF-Chem Simulations

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Wu, L.; Jiang, J. H.; Su, H.; Yu, N.; Zhao, C.; Qian, Y.; Zhao, B.; Liou, K. N.; Choi, Y. S.

    2017-12-01

    A version of the WRF-Chem model with fully coupled aerosol-meteorology-snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside of California are studied. We differentiate three pathways of aerosol effects including aerosol-radiation interaction (ARI), aerosol-snow interaction (ASI), and aerosol-cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34-42°N, 117-124°W, not including ocean points) are reduced when aerosols are included, therefore reducing the high model biases of these variables when aerosol effects are not considered. Aerosols affect California water resources through the warming of mountain tops and anomalously low precipitation, however, different aerosol sources play different roles in changing surface temperature, precipitation and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountain tops through ASI, in which the reduced snow albedo associated with dirty snow leads to more surface absorption of solar radiation and reduced SWE. Transported and local anthropogenic aerosols play a dominant role in increasing cloud water amount but reducing precipitation through ACI, leading to reduced SWE and runoff over the Sierra Nevada, as well as the warming of mountain tops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October to June are about -0.19 K and 0.22 K for the whole domain and over mountain tops, respectively. Overall, the averaged reduction during October to June is about 7% for precipitation, 3% for

  18. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    NASA Astrophysics Data System (ADS)

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-03-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions.

  19. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    PubMed Central

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-01-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions. PMID:26979973

  20. Aerosol Retrievals Using Channel 1 and 2 AVHRR Data

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Geogdzhayev, Igor V.; Cairns, Brian; Rossow, William B.

    1999-01-01

    The effect of tropospheric aerosols on global climate via the direct and indirect radiative forcings is one of the largest remaining uncertainties in climate change studies. Current assessments of the direct aerosol radiative effect mainly focus on sulfate aerosols. It has become clear, however, that other aerosol types like soil dust and smoke from biomass burning are also likely to be important climate forcing factors. The magnitude and even the sign of the climate forcing caused by these aerosol types is still unknown. General circulation models (GCMs) can be used to estimate the climatic effect of the direct radiative forcing by tropospheric and stratospheric aerosols. Aerosol optical properties are already parameterized in the Goddard Institute for Space Studies GCM. Once the global distribution of aerosol properties (optical thickness, size distribution, and chemical composition) is available, the calculation of the direct aerosol forcing is rather straighfforward. However, estimates of the indirect aerosol effect require additional knowledge of the physics and chemistry of aerosol-cloud interactions which are still poorly understood. One of the main objectives of the Global Aerosol Climatology Project, established in 1998 as a joint initiative of NASA's Radiation Science Program and GEWEX, is to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations for the full period of available satellite data. This will be accomplished primarily through a systematic application of multichannel aerosol retrieval algorithms to existing satellite data and advanced 3-dimensional aerosol chemistry/transport models. In this paper we outline the methodology of analyzing channel 1 and 2 AVHRR radiance data over the oceans and describe preliminary retrieval results.

  1. Enhanced water use efficiency in global terrestrial ecosystems under increasing aerosol loadings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaoliang; Chen, Min; Liu, Yaling

    Aerosols play a crucial role in the climate system, affecting incoming radiation and cloud formation. Based on a modelling framework that couples ecosystem processes with the atmospheric transfer of radiation, we analyze the effect of aerosols on surface incoming radiation, gross primary productivity (GPP), water losses from ecosystems through evapotranspiration (ET) and ecosystem water use efficiency (WUE, defined as GPP/ET) for 2003–2010 and validate them at global FLUXNET sites. The total diffuse radiation increases under relatively low or intermediate aerosol loadings, but decreases under more polluted conditions. We find that aerosol-induced changes in GPP depend on leaf area index, aerosolmore » loading and cloudiness. Specifically, low and moderate aerosol loadings cause increases in GPP for all plant types, while heavy aerosol loadings result in enhancement (decrease) in GPP for dense (sparse) vegetation. On the other hand, ET is mainly negatively affected by aerosol loadings due to the reduction in total incoming radiation. Finally, WUE shows a consistent rise in all plant types under increasing aerosol loadings. Overall, the simulated daily WUE compares well with observations at 43 eddy-covariance tower sites (R 2=0.84 and RMSE=0.01gC (kg H 2O) -1) with better performance at forest sites. In addition to the increasing portions of diffuse light, the rise in WUE is also favored by the reduction in radiation- and heat-stress caused by the aerosols, especially for wet and hot climates.« less

  2. Preferential aerosolization of bacteria in bioaerosols generated in vitro.

    PubMed

    Perrott, P; Turgeon, N; Gauthier-Levesque, L; Duchaine, C

    2017-09-01

    Little is known about how bacteria are aerosolized in terms of whether some bacteria will be found in the air more readily than others that are present in the source. This report describes in vitro experiments to compare aerosolization rates (also known as preferential aerosolization) of Gram-positive and Gram-negative bacteria as well as rod- and coccus-shaped bacteria, using two nebulization conditions. A consortium of five bacterial species was aerosolized in a homemade chamber. Aerosols generated with a commercial nebulizer and a homemade bubble-burst aerosol generator were compared. Data suggest that Pseudomonas aeruginosa was preferentially aerosolized in comparison to Moraxella catarrhalis, Lactobacillus paracasei, Staphylococcus aureus and Streptococcus suis, independently of the method of aerosolization. Bacterial integrity of Strep. suis was more preserved compared to other bacteria studied as revealed with PMA-qPCR. We reported the design of an aerosol chamber and bubble-burst generator for the in vitro study of preferential aerosolization. In our setting, preferential aerosolization was influenced by bacterial properties instead of aerosolization mechanism. These findings could have important implications for predicting the composition of bioaerosols in various locations such as wastewater treatment plants, agricultural settings and health care settings. © 2017 The Society for Applied Microbiology.

  3. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE PAGES

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; ...

    2016-11-28

    Here, the influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosolmore » concentration; here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  4. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken

    Here, the influence of aerosol concentration on cloud droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud droplet growth and fallout. As aerosol concentration is increased the cloud droplet mean diameter decreases as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τ c < τ t) for high aerosol concentration, and slow microphysics (τ c > τ t) for low aerosolmore » concentration; here, τ c is the phase relaxation time and τ t is the turbulence correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τ s -1 =τ c -1 + τ t -1, and the measurements are in excellent agreement with this finding. This finding underscores the importance of droplet size dispersion for the aerosol indirect effect: increasing aerosol concentration not only suppresses precipitation formation through reduction of the mean droplet diameter, but perhaps more importantly, through narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol / slow microphysics limit are likely of leading importance for precipitation formation.« less

  5. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations

    NASA Astrophysics Data System (ADS)

    Wu, Longtao; Gu, Yu; Jiang, Jonathan H.; Su, Hui; Yu, Nanpeng; Zhao, Chun; Qian, Yun; Zhao, Bin; Liou, Kuo-Nan; Choi, Yong-Sang

    2018-04-01

    A version of the WRF-Chem model with fully coupled aerosol-meteorology-snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol-radiation interaction (ARI), aerosol-snow interaction (ASI), and aerosol-cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34-42° N, 117-124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about -0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about 7 % for precipitation

  6. Aerosol Correction for Improving OMPS/LP Ozone Retrieval

    NASA Technical Reports Server (NTRS)

    Chen, Zhong; Bhartia, Pawan K.; Loughman, Robert

    2015-01-01

    The Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) on board the Suomi National Polar-orbiting Partnership (SNPP) satellite was launched on Oct. 28, 2011. Limb profilers measures the radiance scattered from the Earth's atmospheric in limb viewing mode from 290 to 1000 nm and infer ozone profiles from tropopause to 60 km. The recently released OMPS-LP Version 2 data product contains the first publicly released ozone profiles retrievals, and these are now available for the entire OMPS mission, which extends from April, 2012. The Version 2 data product retrievals incorporate several important improvements to the algorithm. One of the primary changes is to turn off the aerosol retrieval module. The aerosol profiles retrieved inside the ozone code was not helping the ozone retrieval and was adding noise and other artifacts. Aerosols including polar stratospheric cloud (PSC) and polar mesospheric clouds (PMC) have a detectable effect on OMPS-LP data. Our results show that ignoring the aerosol contribution would produce an ozone density bias of up to 10 percent in the region of maximum aerosol extinction. Therefore, aerosol correction is needed to improve the quality of the retrieved ozone concentration profile. We provide Aerosol Scattering Index (ASI) for detecting aerosols-PMC-PSC, defined as ln(Im-Ic) normalized at 45km, where Im is the measured radiance and Ic is the calculated radiance assuming no aerosols. Since ASI varies with wavelengths, latitude and altitude, we can start by assuming no aerosol profiles in calculating the ASIs and then use the aerosol profile to see if it significantly reduces the residuals. We also discuss the effect of aerosol size distribution on the ozone profile retrieval process. Finally, we present an aerosol-PMC-PSC correction scheme.

  7. Chemical and microphysical properties of the aerosol during foggy and nonfoggy episodes: a relationship between organic and inorganic content of the aerosol

    NASA Astrophysics Data System (ADS)

    Kaul, D. S.; Gupta, T.; Tripathi, S. N.

    2012-06-01

    An extensive field measurement during winter was carried out at a site located in the Indo-Gangetic Plain (IGP) which gets heavily influenced by the fog during winter almost every year. The chemical and microphysical properties of the aerosols during foggy and nonfoggy episodes and chemical composition of the fogwater are presented. Positive matrix factorization (PMF) as a tool for the source apportionment was employed to understand the sources of pollution. Four major sources viz. biomass burning, refractory, secondary and mineral dust were identified. Aerosols properties during foggy episodes were heavily influenced by almost all the sources and they caused considerable loading of almost all the organic and inorganic species during the period. The biomass generated aerosols were removed from the atmosphere by scavenging during foggy episodes. The wet removal of almost all the species by the fog droplets was observed. The K+, water soluble organic carbon (WSOC), water soluble inorganic carbon (WSIC) and NO3- were most heavily scavenged among the species and their concentrations consequently became lower than the nonfoggy episode concentrations. The production of secondary inorganic aerosol, mainly sulfate and ammonium, during foggy episodes was considerably higher than nitrate which was rather heavily scavenged and removed by the fog droplets. The fogwater analysis showed that dissolved inorganic species play a vital role in processing of organic carbon such as the formation of organo-sulfate and organo-nitrate inside the fog droplets. The formation of organo-sulfate and organo-nitrate in aerosol and the influence of acidity on the secondary organic aerosol (SOA) formation were rather found to be negligible. The study average inorganic component of the aerosol was considerably higher than the carbonaceous component during both foggy and nonfoggy episode. The secondary production of the aerosol changed the microphysical properties of aerosol which was reflected by

  8. Photochemical Formation of Aerosol in Planetary Atmospheres: Photon and Water Mediated Chemistry of SO_2

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Donaldson, D. J.; Vaida, Veronica

    2016-06-01

    Sulfur compounds have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere. However, several discrepancies between modeling and observations of the Venusian atmosphere show there are still problems in our fundamental understanding of sulfur chemistry. This is of particular concern due to the important role sulfur compounds play in the formation of aerosols, which have a direct impact on planetary climates, including Earth's. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and will present spectroscopic studies to document such effects. I will present recent work investigating mixtures of SO_2 and water that generate large quantities of aerosol when irradiated with solar UV light, even in the absence of traditional OH chemistry. I will discuss a proposed mechanism for the formation of sulfurous acid (H_2SO_3) and present recent experimental work that supports this proposed mechanism. Additionally, the implications that photon-induced hydration of SO_2 has for aerosol formation in the atmosphere of earth as well as other planetary atmospheres will be discussed.

  9. Aerosol studies during the ESCOMPTE experiment: an overview

    NASA Astrophysics Data System (ADS)

    Cachier, Hélène; Aulagnier, Fabien; Sarda, Roland; Gautier, François; Masclet, Pierre; Besombes, Jean-Luc; Marchand, Nicolas; Despiau, Serge; Croci, Delphine; Mallet, Marc; Laj, Paolo; Marinoni, Angela; Deveau, Pierre-Alexandre; Roger, Jean-Claude; Putaud, Jean-Philippe; Van Dingenen, Rita; Dell'Acqua, Alessandro; Viidanoja, Jyrkki; Martins-Dos Santos, Sebastiao; Liousse, Cathy; Cousin, Frédéric; Rosset, Robert; Gardrat, Eric; Galy-Lacaux, Corinne

    2005-03-01

    The "Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions" (ESCOMPTE) experiment took place in the Southern part of France in the Marseilles/Fos-Berre region during 6 weeks in June and July 2001. One task was to document the regional sources of atmospheric particles and to gain some insight into the aerosol transformations in the atmosphere. For this purpose, seven sites were chosen and equipped with the same basic instrumentation to obtain the chemical closure of the bulk aerosol phase and size-segregated samples. Some specific additional experiments were conducted for the speciation of the organic matter and the aerosol size distribution in number. Finally, four multiwavelength sun-photometers were also deployed during the experiment. Interestingly, in this region, three intense aerosol sources (urban, industrial and biogenic) are very active, and data show consistent results, enlightening an important background of particles over the whole ESCOMPTE domain. Notable is the overwhelming importance of the carbonaceous fraction (comprising primary and secondary particles), which is always more abundant than sulphates. Particle size studies show that, on average, more than 90% of the mean regional aerosol number is found on a size range smaller than 300 nm in diameter. The most original result is the evidence of the rapid formation of secondary aerosols occurring in the whole ESCOMPTE domain. This formation is much more important than that usually observed at these latitudes since two thirds of the particulate mass collected off source zones is estimated to be generated during atmospheric transport. On the other hand, the marine source has poor influence in the region, especially during the overlapping pollution events of Intensive Observation Periods (IOP). Preliminary results from the 0D and 3D versions of the MesoNH-aerosol model show that, with optimised gas and particle sources, the model accounts

  10. Importance of including ammonium sulfate ((NH4)2SO4) aerosols for ice cloud parameterization in GCMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, P. S.; Sud, Yogesh C.; Liu, Xiaohong

    2010-02-22

    A common deficiency of many cloud-physics parameterizations including the NASA’s microphysics of clouds with aerosol- cloud interactions (hereafter called McRAS-AC) is that they simulate less (larger) than the observed ice cloud particle number (size). A single column model (SCM) of McRAS-AC and Global Circulation Model (GCM) physics together with an adiabatic parcel model (APM) for ice-cloud nucleation (IN) of aerosols were used to systematically examine the influence of ammonium sulfate ((NH4)2SO4) aerosols, not included in the present formulations of McRAS-AC. Specifically, the influence of (NH4)2SO4 aerosols on the optical properties of both liquid and ice clouds were analyzed. First anmore » (NH4)2SO4 parameterization was included in the APM to assess its effect vis-à-vis that of the other aerosols. Subsequently, several evaluation tests were conducted over the ARM-SGP and thirteen other locations (sorted into pristine and polluted conditions) distributed over marine and continental sites with the SCM. The statistics of the simulated cloud climatology were evaluated against the available ground and satellite data. The results showed that inclusion of (NH4)2SO4 in the SCM made a remarkable improvement in the simulated effective radius of ice clouds. However, the corresponding ice-cloud optical thickness increased more than is observed. This can be caused by lack of cloud advection and evaporation. We argue that this deficiency can be mitigated by adjusting the other tunable parameters of McRAS-AC such as precipitation efficiency. Inclusion of ice cloud particle splintering introduced through well- established empirical equations is found to further improve the results. Preliminary tests show that these changes make a substantial improvement in simulating the cloud optical properties in the GCM, particularly by simulating a far more realistic cloud distribution over the ITCZ.« less

  11. Implications of MODIS impression of aerosol loading over urban and rural settlements in Nigeria: Possible links to energy consumption patterns in the country

    NASA Astrophysics Data System (ADS)

    Dom Onyeuwaoma, Nnaemeka

    2016-07-01

    A study of aerosol loading patterns in some selected cities in Nigeria was carried out using MODIS, TOMS/OMI AND AIRS satellite imageries for a period of 10 years. The results showed that an aerosol optical depth (AOD) loading obtained ranged from 0.02-0.9, UV aerosol index (AI) and carbon monoxide (CO) results ranged from 1.32- 2.43 and 2.22-2.6 molecule/cm2, respectively. The CO data was used to infer the presence of carbonecous aerosols from biomass, fossil combustion and industrial activities. This result indicates that areas with higher AOD and AI do not correspond in high CO loading. From the HYSPLIT and HAT analysis conducted it showed that advection plays important role in the dispersion of aerosols. This implies that aerosols can reside in a place remote from where they are generated. Also, the high concentration of CO aerosol in the southern cities suggests a high rate of industrial pollution as a result of fossil fuel burning, vehicular emissions, high population density and gas flaring. Therefore, emphasis should be on the need to switch to renewable energy options as an alternative to fossil fuel. Furthermore, plans for mitigations should not be limited to industrialized cities only but extended to other cities which might be bearing the real brunt of industrial emissions as shown in this work.

  12. Titan aerosol and gas experiment for the Huygens Probe

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Oberbeck, V.; Ohara, B. J.; Pollack, J. B.; Valentin, J. R.; Bar-Nun, A.; Cohen, M. J.; Ferris, J. P.; Greenberg, J. M.

    1991-01-01

    The Cassini Mission is a joint undertaking of NASA and the European Space Agency (ESA) to explore the Saturnian System with a Saturn Orbiter and a Titan Probe. The launch vehicle and the Saturn Orbiter are the responsibility of NASA while the Huygens Probe (detachable Titan Probe) is the responsibility of ESA. The spacecraft will be launched in 1996 and the Huygens Probe will arrive at Titan in 2003. The Cassini Mission-Huygens Probe provides a unique opportunity to obtain detailed information about the atmosphere and, possibly, the surface of Titan. Titan possesses a substantial nitrogen atmosphere containing methane and many other organic compounds. Aerosols play an important role in the atmospheric processes on Titan. The Huygens Probe offers an opportunity to determine how organic particles are formed and grow which will clarify their role on Earth. A powerful analytical instrument, capable of addressing the above technology and other science questions, was recently proposed for the Huygens Probe. It is comprised of an aerosol and gas sampler and processor, and a gas chromatograph-ion mobility spectrometer. The instrument will be able to measure complex organics that make up the collected aerosols to the approximate 1 ppm level. Gases will be measured to approximately 10 ppb. Because the Titan atmosphere is expected to be quite complex, a gas chromatograph-ion mobility spectrometer is used to provide unequivocal identification of the components of the analytes. Further details of the science question to be investigated and the proposed instrument are described. The expected results and their implications are also addressed.

  13. Fine Iron Aerosols Are Internally Mixed with Nitrate in the Urban European Atmosphere.

    PubMed

    Dall'Osto, Manuel; Beddows, D C S; Harrison, Roy M; Onat, Burcu

    2016-04-19

    Atmospheric iron aerosol is a bioavailable essential nutrient playing a role in oceanic productivity. Using aerosol time-of-flight mass spectrometry (ATOFMS), the particle size (0.3-1.5 μm), chemical composition and mixing state of Fe-containing particles collected at two European urban sites (London and Barcelona) were characterized. Out of the six particle types accounting for the entire Fe-aerosol population, that arising from long-range transport (LRT) of fine Fe-containing particles (Fe-LRT, 54-82% across the two sites) was predominant. This particle type was found to be internally mixed with nitrate and not with sulfate, and likely mostly associated with urban traffic activities. This is in profound contrast with previous studies carried out in Asia, where the majority of iron-containing particles are mixed with sulfate and are of coal combustion origin. Other minor fine iron aerosol sources included mineral dust (8-11%), traffic brake wear material (1-17%), shipping/oil (1-6%), biomass combustion (4-13%) and vegetative debris (1-3%). Overall, relative to anthropogenic Asian Fe-sulfate dust, anthropogenic European dust internally mixed with additional key nutrients such as nitrate is likely to play a different role in ocean global biogeochemical cycles.

  14. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in

  15. Variability and Trends of Aerosol Properties over Kanpur, Northern India using AERONET Data (2001-10)

    NASA Technical Reports Server (NTRS)

    Kaskaoutis, Dimitris G.; Singh, Ramesh.P.; Gautam, Ritesh; Sharma, Manish; Kosmopoulos, P. G.; Tripathi, S. N.

    2012-01-01

    Natural and anthropogenic aerosols over northern India play an important role in influencing the regional radiation budget, causing climate implications to the overall hydrological cycle of South Asia. In the context of regional climate change and air quality, we discuss aerosol loading variability and trends at Kanpur AERONET station located in the central part of the Indo-Gangetic plains (IGP), during the last decade (2001-10). Ground-based radiometric measurements show an overall increase in column-integrated aerosol optical depth (AOD) on a yearly basis. This upward trend is mainly due to a sustained increase in the seasonal/monthly averaged AOD during the winter (Dec-Feb) and post-monsoon (Oct-Nov) seasons (dominated by anthropogenic emissions). In contrast, a neutral to weak declining trend is observed during late pre-monsoon (Mar-May) and monsoon (Jun-Sep) months, mainly influenced by inter-annual variations of dust outbreaks. A general decrease in coarse-mode aerosols associated with variable dust activity is observed, whereas the statistically significant increasing post-monsoon/winter AOD is reflected in a shift of the columnar size distribution towards relatively larger particles in the accumulation mode. Overall, the present study provides an insight into the pronounced seasonal behavior in aerosol loading trends and, in general, is in agreement with that associating the findings with those recently reported by satellite observations (MODIS and MISR) over northern India. Our results further suggest that anthropogenic emissions (due mainly to fossil-fuel and biomass combustion) over the IGP have continued to increase in the last decade.

  16. Atmosphere aerosol satellite project Aerosol-UA

    NASA Astrophysics Data System (ADS)

    Milinevsky, Gennadi; Yatskiv, Yaroslav; Syniavskyi, Ivan; Bovchaliuk, Andrii; Degtyaryov, Oleksandr; Sosonkin, Mikhail; Mishchenko, Michael; Danylevsky, Vassyl; Ivanov, Yury; Oberemok, Yevgeny; Masley, Volodymyr; Rosenbush, Vera; Moskalev, Sergii

    2017-04-01

    The experiment Aerosol-UA is Ukrainian space mission aimed to the terrestrial atmospheric aerosol spatial distribution and microphysics investigations. The experiment concept is based on idea of Glory/APS mission of precise orbital measurements of polarization and intensity of the sunlight scattered by the atmosphere, aerosol and the surface the multichannel Scanning Polarimeter (ScanPol) with narrow field-of-view. ScanPol measurements will be accompanied by the wide-angle MultiSpectral Imager-Polarimeter (MSIP). The ScanPol is designed to measure Stokes parameters I, Q, U within the spectral range from the UV to the SWIR in a wide range of phase angles along satellite ground path. Expected ScanPol polarimetric accuracy is 0.15%. A high accuracy measurement of the degree of linear polarization is provided by on-board calibration of the ScanPol polarimeter. On-board calibration is performed for each scan of the mirror scanning system. A set of calibrators is viewed during the part of the scan range when the ScanPol polarimeter looks in the direction opposite to the Earth's surface. These reference assemblies provide calibration of the zero of the polarimetric scale (unpolarized reference assembly) and the scale factor for the polarimetric scale (polarized reference assembly). The zero of the radiometric scale is provided by the dark reference assembly.The spectral channels of the ScanPol are used to estimate the tropospheric aerosol absorption, the aerosol over the ocean and the land surface, the signals from cirrus clouds, stratospheric aerosols caused by major volcanic eruptions, and the contribution of the Earth's surface. The imager-polarimeter MSIP will collect 60°x60° field-of-view images on the state of the atmosphere and surface in the area, where the ScanPol polarimeter will measure, to retrieve aerosol optical depth and polarization properties of aerosol by registration of three Stokes parameters simultaneously in three spectral channels. The two more

  17. CalWater 2 - Precipitation, Aerosols, and Pacific Atmospheric Rivers Experiment

    NASA Astrophysics Data System (ADS)

    Spackman, J. R.; Ralph, F. M.; Prather, K. A.; Cayan, D. R.; DeMott, P. J.; Dettinger, M. D.; Fairall, C. W.; Leung, L. R.; Rosenfeld, D.; Rutledge, S. A.; Waliser, D. E.; White, A. B.

    2014-12-01

    Emerging research has identified two phenomena that play key roles in the variability of the water supply and the incidence of extreme precipitation events along the West Coast of the United States. These phenomena include the role of (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major storms along the U.S. West Coast, and (2) aerosols—from local sources as well as those transported from remote continents—and their modulating effects on western U.S. precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of extreme precipitation and its effects, including the provision of beneficial water supply. This presentation summarizes the science objectives and strategies to address gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic precipitation along the U.S. West Coast. Observations are proposed for multiple winter seasons as part of a 5-year broad interagency vision referred to as CalWater 2 to address these science gaps (http://esrl.noaa.gov/psd/calwater). In January-February 2015, a field campaign has been planned consisting of a targeted set of aircraft and ship-based measurements and associated evaluation of data in near-shore regions of California and in the eastern Pacific. In close coordination with NOAA, DOE's Atmospheric Radiation Measurement (ARM) program is also contributing air and shipborne facilities for ACAPEX (ARM Cloud Aerosol and Precipitation Experiment), a DOE-sponsored study complementing CalWater 2. Ground-based measurements from NOAA's HydroMeteorological Testbed (HMT) network in California and aerosol chemical instrumentation at Bodega Bay, California have been designed to add important near surface-level context for the

  18. Aerosols from overseas rival domestic emissions over North America.

    PubMed

    Yu, Hongbin; Remer, Lorraine A; Chin, Mian; Bian, Huisheng; Tan, Qian; Yuan, Tianle; Zhang, Yan

    2012-08-03

    Many types of aerosols have lifetimes long enough for their transcontinental transport, making them potentially important contributors to air quality and climate change in remote locations. We estimate that the mass of aerosols arriving at North American shores from overseas is comparable with the total mass of particulates emitted domestically. Curbing domestic emissions of particulates and precursor gases, therefore, is not sufficient to mitigate aerosol impacts in North America. The imported contribution is dominated by dust leaving Asia, not by combustion-generated particles. Thus, even a reduction of industrial emissions of the emerging economies of Asia could be overwhelmed by an increase of dust emissions due to changes in meteorological conditions and potential desertification.

  19. Aerosol Lidar and MODIS Satellite Comparisons for Future Aerosol Loading Forecast

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell; Szykman, James; Severance, Kurt; Chu, D. Allen; Rosen, Rebecca; Al-Saadi, Jassim

    2006-01-01

    Knowledge of the concentration and distribution of atmospheric aerosols using both airborne lidar and satellite instruments is a field of active research. An aircraft based aerosol lidar has been used to study the distribution of atmospheric aerosols in the California Central Valley and eastern US coast. Concurrently, satellite aerosol retrievals, from the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument aboard the Terra and Aqua satellites, were take over the Central Valley. The MODIS Level 2 aerosol data product provides retrieved ambient aerosol optical properties (e.g., optical depth (AOD) and size distribution) globally over ocean and land at a spatial resolution of 10 km. The Central Valley topography was overlaid with MODIS AOD (5x5 sq km resolution) and the aerosol scattering vertical profiles from a lidar flight. Backward air parcel trajectories for the lidar data show that air from the Pacific and northern part of the Central Valley converge confining the aerosols to the lower valley region and below the mixed layer. Below an altitude of 1 km, the lidar aerosol and MODIS AOD exhibit good agreement. Both data sets indicate a high presence of aerosols near Bakersfield and the Tehachapi Mountains. These and other results to be presented indicate that the majority of the aerosols are below the mixed layer such that the MODIS AOD should correspond well with surface measurements. Lidar measurements will help interpret satellite AOD retrievals so that one day they can be used on a routine basis for prediction of boundary layer aerosol pollution events.

  20. 78 FR 77771 - Culturally Significant Object Imported for Exhibition Determinations: “Love and Play: A Pair of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... DEPARTMENT OF STATE [Public Notice 8571] Culturally Significant Object Imported for Exhibition Determinations: ``Love and Play: A Pair of Paintings by Fragonard-- Toledo Museum of Art and Thyssen-Bornemisza... the exhibition ``Love and Play: A Pair of Paintings by Fragonard--Toledo Museum of Art and Thyssen...

  1. The MAC aerosol climatology

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2015-12-01

    Aerosol is highly diverse in space and time. And many different aerosol optical properties are needed (consistent to each other) for the determination of radiative effects. To sidestep a complex (and uncertain) aerosol treatment (emission to mass to optics) a monthly gridded climatology for aerosol properties has been developed. This MPI Aerosol Climatology (MAC) is strongly tied to observational statistics for aerosol column optical properties by AERONET (over land) and by MAN (over oceans). To fill spatial gaps, to address decadal change and to address vertical variability, these sparsely distributed local data are extended with central data of an ensemble of output from global models with complex aerosol modules. This data merging in performed for aerosol column amount (AOD), for aerosol size (AOD,fine) and for aerosol absorption (AAOD). The resulting MAC aerosol climatology is an example for the combination of high quality local observations with spatial, temporal and vertical context from model simulations.

  2. Natural and Anthropogenic Aerosols in the World's Megacities and Climate Impacts

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Singh, R.; El-Askary, H.; Qu, J.

    2005-12-01

    The world's megacities are the sites of production of a variety of aerosols and are themselves affected by natural and human-induced aerosols. In particular, sources of aerosols impacting cities include: industrial and automobile emission; sand and dust storms from, e.g., the Sahara and Gobi Deserts; as well as fire-induced aerosols. Improving the ability of various stakeholder organizations to respond effectively to high concentrations of aerosols, with special emphasis on mineral dust from dust storms; smoke from controlled burns, wild fires and agricultural burning; and anthropogenic aerosols, would be an important goal not just to understand climate forcings but also to be able to better respond to the increasing amounts of aerosols at global and regional levels. Cities and surrounding areas are affected without good estimates of the current and future conditions of the aerosols and their impact on regional and global climate. Remotely sensed (RS) NASA, NOAA and international platform data can be used to characterize the properties of aerosol clouds and special hazard events such as sand and dust storms (SDS). Aerosol analysis and prediction-model capabilities from which stakeholders can choose the tools that best match their needs and technological expertise are important. Scientists validating mesoscale and aerosol-transport models, aerosol retrievals from satellite measurements are indispensable for robust climate predictions. Here we give two examples of generic SDS cases and urban pollution and their possible impact on climate: The Sahara desert is a major source of dust aerosols dust transport is an important climatic process. The aerosols in the form of dust particles reflect the incoming solar radiation to space, thereby reducing the amount of radiation available to the ground, known as `direct' radiative forcing of aerosols. The aerosols also change the cloud albedo and microphysical properties of clouds, known as `indirect' radiative forcing of

  3. Remote Sensing of Aerosol and Non-Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Dubovik, O.; Holben, B. N.; Remer, L. A.; Tanre, D.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Remote sensing of aerosol from the new satellite instruments (e.g. MODIS from Terra) and ground based radiometers (e.g. the AERONET) provides the opportunity to measure the absorption characteristics of the ambient undisturbed aerosol in the entire atmospheric column. For example Landsat and AERONET data are used to measure spectral absorption of sunlight by dust from West Africa. Both Application of the Landsat and AERONET data demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. This is due to difficulties of measuring dust absorption in situ, and due to the often contamination of dust properties by the presence of air pollution or smoke. We use the remotely sensed aerosol absorption properties described by the spectral sin le scattering albedo, together with statistics of the monthly optical thickness for the fine and coarse aerosol derived from the MODIS data. The result is an estimate of the flux of solar radiation absorbed by the aerosol layer in different regions around the globe where aerosol is prevalent. If this aerosol forcing through absorption is not included in global circulation models, it may be interpreted as anomalous absorption in these regions. In a preliminary exercise we also use the absorption measurements by AERONET, to derive the non-aerosol absorption of the atmosphere in cloud free conditions. The results are obtained for the atmospheric windows: 0.44 microns, 0.66 microns, 0.86 microns and 1.05 microns. In all the locations over the land and ocean that were tested no anomalous absorption in these wavelengths, was found within absorption optical thickness of +/- 0.005.

  4. Characterization of ambient aerosols at the San Francisco International Airport using BioAerosol Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, P T; McJimpsey, E L; Coffee, K R

    2006-03-16

    The BioAerosol Mass Spectrometry (BAMS) system is a rapidly fieldable, fully autonomous instrument that can perform correlated measurements of multiple orthogonal properties of individual aerosol particles. The BAMS front end uses optical techniques to nondestructively measure a particle's aerodynamic diameter and fluorescence properties. Fluorescence can be excited at 266nm or 355nm and is detected in two broad wavelength bands. Individual particles with appropriate size and fluorescence properties can then be analyzed more thoroughly in a dual-polarity time-of-flight mass spectrometer. Over the course of two deployments to the San Francisco International Airport, more than 6.5 million individual aerosol particles were fullymore » analyzed by the system. Analysis of the resulting data has provided a number of important insights relevant to rapid bioaerosol detection, which are described here.« less

  5. Coherent Evaluation of Aerosol Data Products from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2011-01-01

    Aerosol retrieval from satellite has practically become routine, especially during the last decade. However, there is often disagreement between similar aerosol parameters retrieved from different sensors, thereby leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus, and the inconsistencies are not well characterized and understood, there will be no way of developing reliable model inputs and climate data records from satellite aerosol measurements. Fortunately, the Aerosol Robotic Network (AERONET) is providing well-calibrated globally representative ground-based aerosol measurements corresponding to the satellite-retrieved products. Through a recently developed web-based Multi-sensor Aerosol Products Sampling System (MAPSS), we are utilizing the advantages offered by collocated AERONET and satellite products to characterize and evaluate aerosol retrieval from multiple sensors. Indeed, MAPSS and its companion statistical tool AeroStat are facilitating detailed comparative uncertainty analysis of satellite aerosol measurements from Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.

  6. Nitrogen speciation in various types of aerosols in spring over the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Luo, L.; Yao, X. H.; Gao, H. W.; Hsu, S. C.; Li, J. W.; Kao, S. J.

    2016-01-01

    -static condition. Mean dry deposition of total dissolved nitrogen (TDN) for sea-fog-modified aerosols (1090 ± 671 µmol N m-2 d-1) was 5 times higher than that for dust aerosols (190 ± 41.6 µmol N m-2 d-1) and around 20 times higher than that for background aerosols (56.8 ± 59.1 µmol N m-2 d-1). Apparently, spring sea fog on the ECSs played an important role in removing atmospheric reactive nitrogen from the Chinese mainland and depositing it into the ECSs, thus effectively preventing its seaward export to the NWPO.

  7. Nitrogen speciation in various types of aerosol in spring over the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Luo, L.; Yao, X. H.; Gao, H. W.; Hsu, S. C.; Li, J. W.; Kao, S.-J.

    2015-09-01

    (1090 ± 671 μmol N m-2 d-1) was 5 times higher than dust aerosols (190 ± 41.6 μmol N m-2 d-1) and around 20 times higher than background aerosols (56.8 ± 59.1 μmol N m-2 d-1). Apparently, spring sea fog on the ECSs played an important role in removing atmospheric reactive nitrogen from the Chinese mainland and depositing it into the ECSs, thus effectively preventing its seaward export to the NWPO.

  8. Modelling of Criegee Intermediates using the 3-D global model, STOCHEM-CRI and investigating their global impacts on Secondary Organic Aerosol formation

    NASA Astrophysics Data System (ADS)

    Khan, M. Anwar H.; Cooke, Michael; Utembe, Steve; Archibald, Alexander; Derwent, Richard; Jenkin, Mike; Lyons, Kyle; Kent, Adam; Percival, Carl; Shallcross, Dudley E.

    2016-04-01

    Gas phase reactions of ozone with unsaturated compounds form stabilized Criegee intermediates (sCI) which play an important role in controlling the budgets of many tropospheric species including OH, organic acids and secondary organic aerosols (SOA). Recently sCI has been proposed to play a significant role in atmospheric sulfate and nitrate chemistry by forming sulfuric acid (promoter of aerosol formation) and nitrate radical (a powerful oxidizing agent). sCI can also undergo association reactions with water, alcohols, and carboxylic acids to form hydroperoxides and with aldehydes and ketones to form secondary ozonides. The products from these reactions are low volatility compounds which can contribute to the formation of SOA. The importance of plant emitted alkenes (isoprene, monoterpenes, sesquiterpenes) in the production of SOA through sCI formation have already been investigated in laboratory studies. However, the SOA formation from these reactions are absent in current global models. Thus, the formation of SOA has been incorporated in the global model, STOCHEM-CRI, a 3-D global chemistry transport model and the role of CI chemistry in controlling atmospheric composition and climate, and the influence of water vapor has been discussed in the study.

  9. Long-term study of aerosol-cloud-precipitation interaction over the eastern part of India using satellite observations during pre-monsoon season

    NASA Astrophysics Data System (ADS)

    Kant, Sunny; Panda, Jagabandhu; Pani, Shantanu Kumar; Wang, Pao K.

    2018-05-01

    This study attempts to analyze possible aerosol-cloud-precipitation interaction over the eastern part of India including Bhubaneswar city and the whole Odisha region primarily using a long-term satellite-based dataset from 2000 to 2016 during pre-monsoon period. Relationship between aerosol optical depth (AOD), rainfall, and cloud properties is examined by taking convectively driven rain events. The two-sample student's t test is used to compute "p" value of datasets that are statically significant. Role of aerosols in governing cloud properties is analyzed through the variation of COD (cloud optical depth) and CER (cloud effective radius) in the AOD ranges 0.2-0.8. A relatively stronger and affirmative AOD-CER relationship is observed over Bhubaneswar city compared to Odisha region though the aerosols still play an appreciable role for the later too. The AOD-COD relationship is weak over both the regions. For Odisha, relationships between aerosol and cloud parameters are insignificant irrespective of rainfall regimes. Fostering of heavy rainfall over these regions takes place due to invigoration and microphysical effect during pre-monsoon months, depending upon meteorological conditions. Liquid water content and presence of a mixed-phase zone, both seem to be quite important in the convectively driven precipitation over Odisha region including Bhubaneswar city.

  10. Impact of aerosol size representation on modeling aerosol-cloud interactions

    DOE PAGES

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; ...

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  11. Assessment of cirrus cloud and aerosol radiative effect in South-East Asia by ground-based NASA MPLNET lidar network data and CALIPSO satellite measurements

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Welton, Ellsworth J.; Di Girolamo, Paolo; Fatkhuroyan, Fatkhuroyan; Gu, Yu; Marquis, Jared W.

    2017-10-01

    Aerosol, together with cirrus clouds, play a fundamental role in the earth-atmosphere system radiation budget, especially at tropical latitudes, where the Earth surface coverage by cirrus cloud can easily reach 70%. In this study we evaluate the combined aerosol and cirrus cloud net radiative effects in a wild and barren region like South East Asia. This part of the world is extremely vulnerable to climate change and it is source of important anthropogenic and natural aerosol emissions. The analysis has been carried out by computing cirrus cloud and aerosol net radiative effects through the Fu-Liou-Gu atmospheric radiative transfer model, adequately adapted to input lidar measurements, at surface and top-of-the atmosphere. The aerosol radiative effects were computed respectively using the retrieved lidar extinction from Cloud-Aerosol Lidar with Orthogonal Polarization in 2011 and 2012 and the lidar on-board of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations for the South East Asia Region (27N-12S, 77E-132E) with 5° x 5° spatial resolution. To assess the cirrus cloud radiative effect, we used the ground-based Micro Pulse Lidar Network measurements at Singapore permanent observational site. Results put in evidence that strong aerosol emission areas are related on average to a net surface cooling. On the contrary, cirrus cloud radiative effect shows a net daytime positive warming of the system earth-atmosphere. This effect is weak over the ocean where the albedo is lower and never counter-balances the net cooling produced by aerosols. The net cooling is stronger in 2011, with an associated reduction in precipitations by the four of the five rain-gauges stations deployed in three regions as Sumatra, Kalimantan and Java with respect to 2012. We can speculate that aerosol emissions may be associated with lower rainfall, however some very important phenomena as El Nino Southern Oscillation , Madden-Julian Oscillation, Monsoon and Indian Dipole are not

  12. Aerosol Classification from High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Ferrare, R. A.; Hostetler, C. A.; Kahnert, M.; Vaughan, M. A.; Cook, A. L.; Harper, D. B.; Berkoff, T.; Seaman, S. T.; Collins, J. E., Jr.; Fenn, M. A.; Rogers, R. R.

    2015-12-01

    The NASA Langley airborne High Spectral Resolution Lidars, HSRL-1 and HSRL-2, have acquired large datasets of vertically resolved aerosol extinction, backscatter, and depolarization during >30 airborne field missions since 2006. The lidar measurements of aerosol intensive parameters like lidar ratio and color ratio embed information about intrinsic aerosol properties, and are combined to qualitatively classify HSRL aerosol measurements into aerosol types. Knowledge of aerosol type is important for assessing aerosol radiative forcing, and can provide useful information for source attribution studies. However, atmospheric aerosol is frequently not a single pure type, but instead is a mixture, which affects the optical and radiative properties of the aerosol. We show that aerosol intensive parameters measured by lidar can be understood using mixing rules for cases of external mixing. Beyond coarse classification and mixing between classes, variations in the lidar aerosol intensive parameters provide additional insight into aerosol processes and composition. This is illustrated by depolarization measurements at three wavelengths, 355 nm, 532 nm, and 1064 nm, made by HSRL-2. Particle depolarization ratio is an indicator of non-spherical particles. Three cases each have a significantly different spectral dependence of the depolarization ratio, related to the size of the depolarizing particles. For two dust cases, large non-spherical particles account for the depolarization of the lidar light. The spectral dependence reflects the size distribution of these particles and reveals differences in the transport histories of the two plumes. For a smoke case, the depolarization is inferred to be due to the presence of small coated soot aggregates. Interestingly, the depolarization at 355 nm is similar for this smoke case compared to the dust cases, having potential implications for the upcoming EarthCARE satellite, which will measure particle depolarization ratio only at 355 nm.

  13. Aerosol generation and measurement of multi-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Myojo, Toshihiko; Oyabu, Takako; Nishi, Kenichiro; Kadoya, Chikara; Tanaka, Isamu; Ono-Ogasawara, Mariko; Sakae, Hirokazu; Shirai, Tadashi

    2009-01-01

    Mass production of some kinds of carbon nanotubes (CNT) is now imminent, but little is known about the risk associated with their exposure. It is important to assess the propensity of the CNT to release particles into air for its risk assessment. In this study, we conducted aerosolization of a multi-walled CNT (MWCNT) to assess several aerosol measuring instruments. A Palas RBG-1000 aerosol generator applied mechanical stress to the MWCNT by a rotating brush at feed rates ranging from 2 to 20 mm/h, which the MWCNT was fed to a two-component fluidized bed. The fluidized bed aerosol generator was used to disperse the MWCNT aerosol once more. We monitored the generated MWCNT aerosol concentrations based on number, area, and mass using a condensation particle counter and nanoparticle surface area monitor. Also we quantified carbon mass in MWCNT aerosol samples by a carbon monitor. The shape of aerosolized MWCNT fibers was observed by a scanning electron microscope (SEM). The MWCNT was well dispersed by our system. We found isolated MWCNT fibers in the aerosols by SEM and the count median lengths of MWCNT fibers were 4-6 μm. The MWCNT was quantified by the carbon monitor with a modified condition based on the NIOSH analytical manual. The MWCNT aerosol concentration (EC mass base) was 4 mg/m3 at 2 mm/h in this study.

  14. Evaluating Secondary Inorganic Aerosols in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Mezuman, Keren; Bauer, Susanne E.; Tsigaridis, Kostas

    2016-01-01

    The spatial distribution of aerosols and their chemical composition dictates whether aerosols have a cooling or a warming effect on the climate system. Hence, properly modeling the three-dimensional distribution of aerosols is a crucial step for coherent climate simulations. Since surface measurement networks only give 2-D data, and most satellites supply integrated column information, it is thus important to integrate aircraft measurements in climate model evaluations. In this study, the vertical distribution of secondary inorganic aerosol (i.e., sulfate, ammonium, and nitrate) is evaluated against a collection of 14 AMS flight campaigns and surface measurements from 2000 to 2010 in the USA and Europe. GISS ModelE2 is used with multiple aerosol microphysics (MATRIX, OMA) and thermodynamic (ISORROPIA II, EQSAM) configurations. Our results show that the MATRIX microphysical scheme improves the model performance for sulfate, but that there is a systematic underestimation of ammonium and nitrate over the USA and Europe in all model configurations. In terms of gaseous precursors, nitric acid concentrations are largely underestimated at the surface while overestimated in the higher levels of the model. Heterogeneous reactions on dust surfaces are an important sink for nitric acid, even high in the troposphere. At high altitudes, nitrate formation is calculated to be ammonia limited. The underestimation of ammonium and nitrate in polluted regions is most likely caused by a too simplified treatment of the NH3/NH4(+) partitioning which affects the HNO3/NO3(-) partitioning.

  15. Global Survey of Submicron Aerosol Acidity (pH)

    NASA Astrophysics Data System (ADS)

    Nault, B.; Day, D. A.; Campuzano Jost, P.; Hu, W.; Schroder, J. C.; Bian, H.; Chin, M.; Clegg, S. L.; Colarco, P. R.; Dibb, J. E.; Kim, M. J.; Kodros, J.; Marais, E. A.; Pierce, J. R.; Scheuer, E. M.; Wennberg, P. O.; Jimenez, J. L.

    2017-12-01

    Aerosol acidity (H+, often expressed as "pH" defined in various ways) is an important property that influences uptake and partitioning of gases, and homogeneous and surface aqueous reactions of key inorganic and organic compounds. As there is currently no rapid method to measure ambient aerosol acidity, a thermodynamic model, constrained by both inorganic aerosol species (e.g., NH4, NO3, SO4, Cl) and at least one inorganic gas (HNO3, NH3, or HCl), are currently understood to lead to the most reliable estimates of aerosol acidity. In this study, we calculated submicron (less than PM1) aerosol pH from the NASA ATom, "pole-to-pole," flights that covers both the Pacific and Atlantic ocean basins. The E-AIM thermodynamic model was used with measurements by an Aerodyne high-resolution time-of-flight aerosol-mass-spectrometer (HR-ToF-AMS) of inorganic aerosol species, along with inorganic gas measurements from other mass spectrometers and ion chromatography. We compare the results with those for the NASA KORUS-AQ, SEAC4RS, DC3, and ARCTAS campaigns, as well as several ground-based campaigns and recently-published studies. This provides an opportunity to compare the aerosol acidity in urban, rural, and remote regions, by season, and between the boundary layer and free troposphere. In addition, we compare the submicron aerosol acidity from these various localities with results from global models, such as GEOS-Chem, in order to investigate the ability of the global models to simulate aerosol acidity, and the processes it affects, such as nitrate, ammonium, and MSA partitioning.

  16. Inside versus Outside: Ion Redistribution in Nitric Acid Reacted Sea Spray Aerosol Particles as Determined by Single Particle Analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Guasco, T.; Ryder, O. S.; Baltrusaitis, J.; Cuadra-Rodriguez, L. A.; Collins, D. B.; Ruppel, M. J.; Bertram, T. H.; Prather, K. A.; Grassian, V. H.

    2013-12-01

    Sea spray aerosol (SSA) particles were generated under real-world conditions using natural seawater and a unique ocean-atmosphere facility equipped with actual breaking waves or a marine aerosol reference tank (MART) that replicates those conditions. The SSA particles were exposed to nitric acid in situ in a flow tube and the well-known chloride displacement and nitrate formation reaction was observed. However, as discussed here, little is known about how this anion displacement reaction affects the distribution of cations and other chemical constituents within and phase state of individual SSA particles. Single particle analysis of individual SSA particles shows that cations (Na+, K+, Mg2+ and Ca2+) within individual particles undergo a spatial redistribution after heterogeneous reaction with nitric acid, along with a more concentrated layer of organic matter at the surface of the particle. These data suggest that specific ion and aerosol pH effects play an important role in aerosol particle structure in ways that have not been previously recognized. The ordering of organic coatings can impact trace gas uptake, and subsequently impact trace gas budgets of O3 and NOx.

  17. Combined Retrievals of Boreal Forest Fire Aerosol Properties with a Polarimeter and Lidar

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, K.; Cairns, B.; Ottaviani, M.; Ferrare, R.; Haire, J.; Hostetler, C.; Obland, M.; Rogers, R.; Redemann, J.; Shinozuka, Y.; hide

    2011-01-01

    Absorbing aerosols play an important, but uncertain, role in the global climate. Much of this uncertainty is due to a lack of adequate aerosol measurements. While great strides have been made in observational capability in the previous years and decades, it has become increasingly apparent that this development must continue. Scanning polarimeters have been designed to help resolve this issue by making accurate, multi-spectral, multi-angle polarized observations. This work involves the use of the Research Scanning Polarimeter (RSP). The RSP was designed as the airborne prototype for the Aerosol Polarimetery Sensor (APS), which was due to be launched as part of the (ultimately failed) NASA Glory mission. Field observations with the RSP, however, have established that simultaneous retrievals of aerosol absorption and vertical distribution over bright land surfaces are quite uncertain. We test a merger of RSP and High Spectral Resolution Lidar (HSRL) data with observations of boreal forest fire smoke, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). During ARCTAS, the RSP and HSRL instruments were mounted on the same aircraft, and validation data were provided by instruments on an aircraft flying a coordinated flight pattern. We found that the lidar data did indeed improve aerosol retrievals using an optimal estimation method, although not primarily because of the constraints imposed on the aerosol vertical distribution. The more useful piece of information from the HSRL was the total column aerosol optical depth, which was used to select the initial value (optimization starting point) of the aerosol number concentration. When ground based sun photometer network climatologies of number concentration were used as an initial value, we found that roughly half of the retrievals had unrealistic sizes and imaginary indices, even though the retrieved spectral optical depths agreed within uncertainties to

  18. Increased ionization supports growth of aerosols into cloud condensation nuclei.

    PubMed

    Svensmark, H; Enghoff, M B; Shaviv, N J; Svensmark, J

    2017-12-19

    Ions produced by cosmic rays have been thought to influence aerosols and clouds. In this study, the effect of ionization on the growth of aerosols into cloud condensation nuclei is investigated theoretically and experimentally. We show that the mass-flux of small ions can constitute an important addition to the growth caused by condensation of neutral molecules. Under atmospheric conditions the growth from ions can constitute several percent of the neutral growth. We performed experimental studies which quantify the effect of ions on the growth of aerosols between nucleation and sizes >20 nm and find good agreement with theory. Ion-induced condensation should be of importance not just in Earth's present day atmosphere for the growth of aerosols into cloud condensation nuclei under pristine marine conditions, but also under elevated atmospheric ionization caused by increased supernova activity.

  19. Designing Out the Play: Accessibility and Playfulness in Inclusive Play.

    PubMed

    Holt, Raymond; Beckett, Angharad

    2017-01-01

    Play is an important part of child development, yet disabled children are often excluded from the opportunity to play, either due to lack of accessible toys and games, or social pressures. This paper presents a case study reflecting on the development of Button Bash: a switch accessible game intended to encourage inclusive play between disabled and non-disabled children. In particular, the paper focuses on how changes intended to make the game more accessible tended to make it less playful, and reflects on the relationship between playfulness and accessibility.

  20. Mitochondria play an important role in the cell proliferation suppressing activity of berberine

    PubMed Central

    Yan, Xiao-Jin; Yu, Xuan; Wang, Xin-Pei; Jiang, Jing-Fei; Yuan, Zhi-Yi; Lu, Xi; Lei, Fan; Xing, Dong-Ming

    2017-01-01

    After being studied for approximately a century, berberine (BBR) has been found to act on various targets and pathways. A great challenge in the pharmacological analysis of BBR at present is to identify which target(s) plays a decisive role. In the study described herein, a rescue experiment was designed to show the important role of mitochondria in BBR activity. A toxic dose of BBR was applied to inhibit cell proliferation and mitochondrial activity, then α-ketobutyrate (AKB), an analogue of pyruvate that serves only as an electron receptor of NADH, was proven to partially restore cell proliferation. However, mitochondrial morphology damage and TCA cycle suppression were not recovered by AKB. As the AKB just help to regenerate NAD+, which is make up for part function of mitochondrial, the recovered cell proliferation stands for the contribution of mitochondria to the activity of BBR. Our results also indicate that BBR suppresses tumour growth and reduces energy charge and mitochondrial DNA (mtDNA) copy number in a HepG2 xenograft model. In summary, our study suggests that mitochondria play an important role in BBR activity regarding tumour cell proliferation and metabolism. PMID:28181523

  1. Development of algorithms for using satellite meteorological data sets to study global transport of stratospheric aerosols and ozone

    NASA Technical Reports Server (NTRS)

    Want, P. H.; Deepak, A.

    1985-01-01

    The utilization of stratospheric aerosol and ozone measurements obtained from the NASA developed SAM II and SAGE satellite instruments were investigated for their global scale transports. The stratospheric aerosols showed that during the stratospheric warming of the winter 1978 to 1979, the distribution of the zonal mean aerosol extinction ratio in the northern high latitude exhibited distinct changes. Dynamic processes might have played an important role in maintenance role in maintenance of this zonal mean distribution. As to the stratospheric ozone, large poleward ozone transports are shown to occur in the altitude region from 24 km to 38 km near 55N during this warming. This altitude region is shown to be a transition region of the phase relationship between ozone and temperature waves from an in-phase one above 38 km. It is shown that the ozone solar heating in the upper stratosphere might lead to enhancement of the damping rate of the planetary waves due to infrared radiation alone in agreement with theoretical analyses and an earlier observational study.

  2. pH Variance in Aerosols Undergoing Liquid-Liquid Phase Separation

    NASA Astrophysics Data System (ADS)

    Eddingsaas, N. C.; Dallemagne, M.; Huang, X.

    2014-12-01

    The water content of aerosols is largely governed by relative humidity (RH). As the relative humidity decreases, and thus the water content of aerosols, a number of processes occur including the shrinking of aerosols, the increase in concentration of components, and potentially the formation of liquid liquid phase separation (llps) due to the salting out of inorganic salts. The most ubiquitous salt in atmospheric aerosols is ammonium sulfate which results in many aerosols to be at least mildly acidic. However, during llps, the pH of the different phases is not necessarily the same. Many reactions that take place within atmospheric aerosols are acid catalyzed so a better understanding of the pH of the individual phases as well as the interface between the phases is important to understanding aerosol processing and aging. Through the use of pH sensitive dyes and confocal microscopy we have directly measured the pH of micron sized model aerosols during high RH where the aerosols are in a single phase, at intermediate while the aerosols are in llps, and low RH where the aerosols consist of one liquid phase and one solid phase. We will discuss the variation in RH during these different phase states in the presence and absence of excess sulfuric acid. We will also discuss how this variation in pH affects aging of aerosols.

  3. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions.

    PubMed

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A; Yang, Fan

    2016-12-13

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics ([Formula: see text]) for high aerosol concentration, and slow microphysics ([Formula: see text]) for low aerosol concentration; here, [Formula: see text] is the phase-relaxation time and [Formula: see text] is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as [Formula: see text], and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation.

  4. Changes in organic aerosol composition with aging inferred from aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Canagaratna, M. R.; Jimenez, J. L.; Chhabra, P. S.; Seinfeld, J. H.; Worsnop, D. R.

    2011-07-01

    Organic aerosols (OA) can be separated with factor analysis of aerosol mass spectrometer (AMS) data into hydrocarbon-like OA (HOA) and oxygenated OA (OOA). We develop a new method to parameterize H:C of OOA in terms of f43 (ratio of m/z 43, mostly C2H3O+, to total signal in the component mass spectrum). Such parameterization allows for the transformation of large database of ambient OOA components from the f44 (mostly CO2+, likely from acid groups) vs. f43 space ("triangle plot") (Ng et al., 2010) into the Van Krevelen diagram (H:C vs. O:C) (Van Krevelen, 1950). Heald et al. (2010) examined the evolution of total OA in the Van Krevelen diagram. In this work total OA is deconvolved into components that correspond to primary (HOA and others) and secondary (OOA) organic aerosols. By deconvolving total OA into different components, we remove physical mixing effects between secondary and primary aerosols which allows for examination of the evolution of OOA components alone in the Van Krevelen space. This provides a unique means of following ambient secondary OA evolution that is analogous to and can be compared with trends observed in chamber studies of secondary organic aerosol formation. The triangle plot in Ng et al. (2010) indicates that f44 of OOA components increases with photochemical age, suggesting the importance of acid formation in OOA evolution. Once they are transformed with the new parameterization, the triangle plot of the OOA components from all sites occupy an area in Van Krevelen space which follows a ΔH:C/ΔO:C slope of ~ -0.5. This slope suggests that ambient OOA aging results in net changes in chemical composition that are equivalent to the addition of both acid and alcohol/peroxide functional groups without fragmentation (i.e. C-C bond breakage), and/or the addition of acid groups with fragmentation. These results provide a framework for linking the bulk aerosol chemical composition evolution to molecular-level studies.

  5. The signal of aerosol-induced changes in sunshine duration records: A review of the evidence

    NASA Astrophysics Data System (ADS)

    Sanchez-Romero, A.; Sanchez-Lorenzo, A.; Calbó, J.; González, J. A.; Azorin-Molina, C.

    2014-04-01

    Aerosols play a significant yet complex and central role in the Earth's radiation budget, and knowledge of long-term changes in the atmospheric turbidity induced by aerosols is therefore fundamental for a better understanding of climate change. However, there is little available information on changes in aerosol concentration in the atmosphere, especially prior to the 1980s. The present paper reviews publications reporting the suitability of sunshine duration records with regard to detecting changes in atmospheric aerosols. Some of the studies reviewed propose methods for estimating aerosol-related magnitudes, such as turbidity, from sunshine deficit at approximately sunrise and sunset, when the impact of aerosols on the solar beam is more easily observed. In addition, there is abundant evidence that one cause of the decadal changes observed in sunshine duration records involves variations in atmospheric aerosol loading. Possible directions for future research are also suggested: in particular, detailed studies of the burn (not only its length but also its width) registered by means of Campbell-Stokes sunshine recorders may provide a way of creating time series of atmospheric aerosol loading metrics dating back to over 120 years from the present.

  6. Measurements of Primary Biogenic Aerosol Particles with an Ultraviolet Aerodynamic Particle Sizer (UVAPS) During AMAZE-08

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2008-12-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the AMazonian Aerosol CharacteriZation Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. The presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 μm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as 'viable aerosols' or 'fluorescent bioparticles' (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. First data analyses show a pronounced peak of FBAP at diameters around 2-3 μm. In this size range the biogenic particle fraction was

  7. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO 3 − aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; ...

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO 3 −) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na + and Ca 2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms bymore » multiphase reactions of HNO 3 and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH 4NO 3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO 3 on mineral aerosol supports the conclusion that aerosol NO 3 − is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO 3 − and HNO 3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  8. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  9. SPEX: a highly accurate spectropolarimeter for atmospheric aerosol characterization

    NASA Astrophysics Data System (ADS)

    Rietjens, J. H. H.; Smit, J. M.; di Noia, A.; Hasekamp, O. P.; van Harten, G.; Snik, F.; Keller, C. U.

    2017-11-01

    Global characterization of atmospheric aerosol in terms of the microphysical properties of the particles is essential for understanding the role aerosols in Earth climate [1]. For more accurate predictions of future climate the uncertainties of the net radiative forcing of aerosols in the Earth's atmosphere must be reduced [2]. Essential parameters that are needed as input in climate models are not only the aerosol optical thickness (AOT), but also particle specific properties such as the aerosol mean size, the single scattering albedo (SSA) and the complex refractive index. The latter can be used to discriminate between absorbing and non-absorbing aerosol types, and between natural and anthropogenic aerosol. Classification of aerosol types is also very important for air-quality and health-related issues [3]. Remote sensing from an orbiting satellite platform is the only way to globally characterize atmospheric aerosol at a relevant timescale of 1 day [4]. One of the few methods that can be employed for measuring the microphysical properties of aerosols is to observe both radiance and degree of linear polarization of sunlight scattered in the Earth atmosphere under different viewing directions [5][6][7]. The requirement on the absolute accuracy of the degree of linear polarization PL is very stringent: the absolute error in PL must be smaller then 0.001+0.005.PL in order to retrieve aerosol parameters with sufficient accuracy to advance climate modelling and to enable discrimination of aerosol types based on their refractive index for air-quality studies [6][7]. In this paper we present the SPEX instrument, which is a multi-angle spectropolarimeter that can comply with the polarimetric accuracy needed for characterizing aerosols in the Earth's atmosphere. We describe the implementation of spectral polarization modulation in a prototype instrument of SPEX and show results of ground based measurements from which aerosol microphysical properties are retrieved.

  10. Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Kourtchev, I.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.

    2013-05-01

    Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18%, "biomass burning" organic aerosol (BBOA) comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21%, and finally a species type characterized by primary {m/z} peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).

  11. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  12. Aerosol microphysics simulations of the Mt. Pinatubo eruption with the UKCA composition-climate model

    NASA Astrophysics Data System (ADS)

    Dhomse, S. S.; Emmerson, K. M.; Mann, G. W.; Bellouin, N.; Carslaw, K. S.; Chipperfield, M. P.; Hommel, R.; Abraham, N. L.; Telford, P.; Braesicke, P.; Dalvi, M.; Johnson, C. E.; O'Connor, F.; Morgenstern, O.; Pyle, J. A.; Deshler, T.; Zawodny, J. M.; Thomason, L. W.

    2014-01-01

    particles propagates into a factor 2 high bias in N150. Our comparison suggests that new particle formation in the initial phase of large eruptions, and subsequent particle growth to optically-active sizes, might be playing an important role in determining the magnitude of the climate impacts from volcanoes like Pinatubo.

  13. Aerosol patterns and aerosol-cloud-interactions off the West African Coast based on the A-train formation

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Bendix, Jörg; Cermak, Jan

    2013-04-01

    In this study, spatial and temporal aerosol patterns off the Western African coast are characterized and related to cloud properties, based on satellite data Atmospheric aerosols play a key role in atmospheric processes and influence our environmental system in a complex way. Their identification, characterization, transport patterns as well as their interactions with clouds pose major challenges. Especially the last aspect reveals major uncertainties in terms of the Earth's radiation budget as reported in the IPCC's Fourth Assessment Report (IPCC, 2007). Western and Southern Africa are dominated by two well-known source types of atmospheric aerosols. First, the Saharan Desert is the world's largest aeolian dust emitting source region. Second, biomass burning aerosol is commonly transported off-shore further south (Kaufman et al., 2005). Both aerosol types influence Earth's climate in different manners and can be detected by the MODIS (MODerate resolution Imaging Spectrometer) sensor onboard the EOS platforms as they propagate to the Central and Southern Atlantic. The motivation of this study was to reveal the seasonal pattern of the Saharan dust transport based on an observation period of 11 years and trying to explain the meteorological mechanisms. North African dust plumes are transported along a latitude of 19°N in July and 6°N in January. The seasonally fluctuating intensities adapt to the annual cycle of wind and precipitation regimes. A strong relationship is found between the spatial shift of the Azores High and the Saharan dust load over the middle Atlantic Ocean. Monthly Aerosol Optical Thickness products of Terra MODIS and NCEP-DOE (National Centers for Environmental Predictions) Reanalysis II data are used for this purpose. The relationship between aerosol and cloud droplet parameters is blurred by high sensitivities to aerosol size and composition (Feingold, 2003; McFiggans et al., 2006) as well as meteorological context (Ackerman et al., 2004

  14. 17 years of aerosol and clouds from the ATSR Series of Instruments

    NASA Astrophysics Data System (ADS)

    Poulsen, C. A.

    2015-12-01

    Aerosols play a significant role in Earth's climate by scattering and absorbing incoming sunlight and affecting the formation and radiative properties of clouds. The extent to which aerosols affect cloud remains one of the largest sources of uncertainty amongst all influences on climate change. Now, a new comprehensive datasets has been developed under the ESA Climate Change Initiative (CCI) programme to quantify how changes in aerosol levels affect these clouds. The unique dataset is constructed from the Optimal Retrieval of Aerosol and Cloud (ORAC) algorithm used in (A)ATSR (Along Track Scanning Radiometer) retrievals of aerosols generated in the Aerosol CCI and the CC4CL ( Community Code for CLimate) for cloud retrieval in the Cloud CCI. The ATSR instrument is a dual viewing instrument with on board visible and infra red calibration systems making it an ideal instrument to study trends of Aerosol and Clouds and their interactions. The data set begins in 1995 and ends in 2012. A new instrument in the series SLSTR(Sea and Land Surface Temperature Radiometer) will be launch in 2015. The Aerosol and Clouds are retreived using similar algorithms to maximise the consistency of the results These state-of-the-art retrievals have been merged together to quantify the susceptibility of cloud properties to changes in aerosol concentration. Aerosol-cloud susceptibilities are calculated from several thousand samples in each 1x1 degree globally gridded region. Two-D histograms of the aerosol and cloud properties are also included to facilitate seamless comparisons between other satellite and modelling data sets. The analysis of these two long term records will be discussed individually and the initial comparisons between these new joint products and models will be presented.

  15. Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model

    NASA Astrophysics Data System (ADS)

    Mulcahy, J. P.; Walters, D. N.; Bellouin, N.; Milton, S. F.

    2014-05-01

    The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the

  16. Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment(BASE-ASIA)

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, Christina N.; King, Michael D.; Shu, Peter K.

    2002-01-01

    Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially in Africa, South America, and South East Asia. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass-burning processes, which influence the Earth-atmosphere energetics and hence impact both global climate and tropospheric chemistry. Some gases and aerosols can serve as active cloud condensation nuclei, which play important role in determining the net radiation budget, precipitation rate, and cloud lifetime. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); the reflectivity and emissivity of the land; and the stability of ecosystems and ecosystem biodiversity. Compared to Africa and South America, the climatology in South East Asia reveals quite different characteristics, showing distinct large-scale smoke and cloud sources and interaction regimes. The fresh water distribution in this region is highly dependent on monsoon rainfall; in fact, the predictability of the tropical climate system is much reduced during the boreal spring, which is associated with the peak season of biomass burning activities. Estimating the burning fuel (e.g., bark, branches, and wood), an important part of studying regional carbon cycle, may rely on utilizing a wide range of distinctive spectral features in the shortwave and longwave regions. Therefore, to accurately assess the impact of smoke aerosols in this region requires continuous observations from satellites, aircraft, networks of ground-based instruments and dedicated field experiments. A new initiative will be proposed and discussed.

  17. Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2012-06-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σt) and (2) number of observations per month (nt). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr-1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr-1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr-1 at Avignon and -2.29% yr-1 at Ispra) and North America (-0.52% yr-1 for GSFC and -0.01% yr-1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr-1 at Solar_Village and -1.18% yr-1 at Ouagadougou) are observed depending on meteorological conditions.

  18. Characterization of Ambient Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Levy, M. E.; Zheng, J.; Molina, L. T.

    2013-12-01

    Because of the strong absorption over a broad range of the electromagnetic spectra, black carbon (BC) is a key short-lived climate forcer, which contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. The impact of BC on the radiative forcing of the Earth-Atmosphere system is highly dependent of the particle properties. In this presentation, emphasis will be placed on characterizing BC containing aerosols in at the California-Mexico border to obtain a greater understanding of the atmospheric aging and properties of ambient BC aerosols. A comprehensive set of directly measured aerosol properties, including the particle size distribution, effective density, hygroscopicity, volatility, and several optical properties, will be discussed to quantify the mixing state and composition of ambient particles. In Tijuana, Mexico, submicron aerosols are strongly influenced by vehicle emissions; subsequently, the BC concentration in Tijuana is considerably higher than most US cities with an average BC concentration of 2.71 × 2.65 g cm-3. BC accounts for 24.75 % × 9.44 of the total submicron concentration on average, but periodically accounts for over 50%. This high concentration of BC strongly influences many observed aerosol properties such as single scattering albedo, hygroscopicity, effective density, and volatility.

  19. Biomass-Burning Aerosols in South East-Asia: Smoke Impact Assessment (BASE-ASIA)

    NASA Technical Reports Server (NTRS)

    Tsay, S.-C.; Hsu, N. C.; King, M. D.; Sun, W.-Y.

    2004-01-01

    Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth- atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth s radiation and water budget. Analyses from satellite measurements reveal the reflected solar (emitted thermal) radiation from clouds due to smoke aerosols can be reduced (enhanced) by 100 (20) Watts per square meter over the month of March 2000. In addition, the reduction in cloud spectral reflectance is large enough to lead to significant errors in satellite retrievals of cloud properties (e.g., optical thickness and effective radius). The fresh water distribution in this region is highly dependent on monsoon rainfall; in fact, the predictability of the tropical climate system is much reduced during the boreal spring. Therefore, to accurately assess the impact of smoke aerosols in this region requires continuous observations from satellites, aircraft, ground-based networks and dedicated field experiments. BASE-ASIA initiative has been proposed and will be discussed.

  20. Exploring the Longwave Radiative Effects of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Hansell, Richard A., Jr.

    2012-01-01

    Dust aerosols not only affect air quality and visibility where they pose a significant health and safety risk, but they can also play a role in modulating the energy balance of the Earth-atmosphere system by directly interacting with local radiative fields. Consequently, dust aerosols can impact regional climate patterns such as changes in precipitation and the evolution of the hydrological cycle. Assessing the direct effect of dust aerosols at the solar wavelengths is fairly straightforward due in part to the relatively large signal-to-noise ratio in broadband irradiance measurements. The longwave (LW) impacts, on the other hand, are rather difficult to ascertain since the measured dust signal level (10 Wm-2) is on the same order as the instrumental uncertainties. Moreover, compared to the shortwave (SW), limited experimental data on the LW optical properties of dust makes it a difficult challenge for constraining the LW impacts. Owing to the strong absorption features found in many terrestrial minerals (e.g., silicates and clays), the LW effects, although much smaller in magnitude compared to the SW, can still have a sizeable impact on the energetics of the Earth-atmosphere system, which can potentially trigger changes in the heat and moisture surface budgets, and dynamics of the atmosphere. The current endeavor is an integral part of an on-going research study to perform detailed assessments of dust direct aerosol radiative effects (DARE) using comprehensive global datasets from NASA Goddards mobile ground-based facility (cf. http://smartlabs.gsfc.nasa.gov/) during previous field experiments near key dust source regions. Here we examine and compare the results from two of these studies: the 2006 NASA African Monsoon Multidisciplinary Activities and the 2008 Asian Monsoon Years. The former study focused on transported Saharan dust at Sal Island (16.73N, 22.93W), Cape Verde along the west coast of Africa while the latter focused on Asian dust at Zhangye China (39

  1. Unique airborne measurements at the tropopause of Fukushima Xe-133, aerosol, and aerosol precursors indicate aerosol formation via homogeneous and cosmic ray induced nucleation

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Arnold, Frank; Aufmhoff, Heinfried; Minikin, Andreas; Baumann, Robert; Simgen, Hardy; Lindemann, Stefan; Rauch, Ludwig; Kaether, Frank; Pirjola, Liisa; Schumann, Ulrich

    2014-05-01

    We report unique airborne measurements, at the tropopause, of the Fukushima radio nuclide Xe-133, aerosol particles (size, shape, number concentration, volatility), aerosol precursor gases (particularly SO2, HNO3, H2O). Our measurements and accompanying model simulations indicate homogeneous and cosmic ray induced aerosol formation at the tropopause. Using an extremely sensitive detection method, we managed to detect Fukushima Xe-133, an ideal transport tracer, at and even above the tropopause. To our knowledge, these airborne Xe-133 measurements are the only of their kind. Our investigations represent a striking example how a pioneering measurement of a Fukshima radio nuclide, employing an extremely sensitive method, can lead to new insights into an important atmospheric process. After the Fukushima accidential Xe-133 release (mostly during 11-15 March 2011), we have conducted two aircraft missions, which took place over Central Europe, on 23 March and 11 April 2011. In the air masses, encountered by the research aircraft on 23 March, we have detected Fukushima Xe-133 by an extremely sensitive method, at and even above the tropopause. Besides increased concentrations of Xe-133, we have detected also increased concentrations of the gases SO2, HNO3, and H2O. The Xe-133 data and accompanying transport model simulations indicate that a West-Pacific Warm Conveyor Belt (WCB) lifted East-Asian planetary boundary layer air to and even above the tropopause, followed by relatively fast quasi-horizontal advection to Europe. Along with Xe-133, anthropogenic SO2, NOx (mostly released from East-Asian ground-level combustion sources), and warer vapour were also lifted by the WCB. After the lift, SO2 and NOx experienced efficient solar UV-radiation driven conversion to the important aerosol precursors gases H2SO4 and HNO3. Our investigations indicate that, increased concentrations of the gases SO2, HNO3, and H2O promoted homogeneous and cosmic ray induced aerosol formation at and

  2. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... depth. A color scale is used to represent this quantity, and high aerosol amount is indicated by yellow or green pixels, and clearer skies ... out most clearly, whereas MISR's oblique cameras enhance sensitivity to even thin layers of aerosols. In the March image, the only ...

  3. Study of Aerosol - Cloud Interaction over Indo - Gangetic Basin During Normal Monsoon and Drought Years

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Ramachandran, S.

    2017-12-01

    Clouds are one of the major factors that influence the Earth's radiation budget and also change the precipitation pattern. Atmospheric aerosols play a crucial role in modifying the cloud properties acting as cloud condensation nuclei (CCN). It can change cloud droplet number concentration, cloud droplet size and hence cloud albedo. Therefore, the effects of aerosol on cloud parameters are one of the most important topics in climate change study. In the present study, we investigate the spatial variability of aerosol - cloud interactions during normal monsoon years and drought years over entire Indo - Gangetic Basin (IGB) which is one of the most polluted regions of the world. Based on aerosol loading and their major emission sources, we divided the entire IGB in to six major sub regions (R1: 66 - 71 E, 24 - 29 N; R2: 71 - 76 E, 29 - 34 N; R3: 76 - 81 E, 26 - 31 N; R4: 81 - 86 E, 23 - 28 N; R5: 86 - 91 E, 22 - 27 N and R6: 91 - 96 E, 23 - 28 N). With this objective, fifteen years (2001 - 2015), daily mean aerosol optical depth, cloud parameters and rainfall data obtained from MODerate resolution Imaging Spectroradiometer (MODIS) on board of Terra satellite and Tropical Rainfall Measuring Mission (TRMM) is analyzed over each sub regions of IGB for monsoon season (JJAS : June, July, August and September months). Preliminary results suggest that a slightly change in aerosol optical depth can affect the significant contribution of cloud fraction and other cloud properties which also show a large spatial heterogeneity. During drought years, higher cloud effective radius (i.e. CER > 20µm) decreases from western to eastern IGB suggesting the enhancement in cloud albedo. Relatively week correlation between cloud optical thickness and rainfall is found during drought years than the normal monsoon years over western IGB. The results from the present study will be helpful to reduce uncertainty in understanding of aerosol - cloud interaction over IGB. Further details will be

  4. Secondary organic aerosol: a comparison between foggy and nonfoggy days.

    PubMed

    Kaul, D S; Gupta, Tarun; Tripathi, S N; Tare, V; Collett, J L

    2011-09-01

    Carbonaceous species, meteorological parameters, trace gases, and fogwater chemistry were measured during winter in the Indian city of Kanpur to study secondary organic aerosol (SOA) during foggy and clear (nonfoggy) days. Enhanced SOA production was observed during fog episodes. It is hypothesized that aqueous phase chemistry in fog drops is responsible for increasing SOA production. SOA concentrations on foggy days exceeded those on clear days at all times of day; peak foggy day SOA concentrations were observed in the evening vs peak clear day SOA concentrations which occurred in the afternoon. Changes in biomass burning emissions on foggy days were examined because of their potential to confound estimates of SOA production based on analysis of organic to elemental carbon (OC/EC) ratios. No evidence of biomass burning influence on SOA during foggy days was found. Enhanced oxidation of SO(2) to sulfate during foggy days was observed, possibly causing the regional aerosol to become more acidic. No evidence was found in this study, either, for effects of temperature or relative humidity on SOA production. In addition to SOA production, fogs can also play an important role in cleaning the atmosphere of carbonaceous aerosols. Preferential scavenging of water-soluble organic carbon (WSOC) by fog droplets was observed. OC was found to be enriched in smaller droplets, limiting the rate of OC deposition by droplet sedimentation. Lower EC concentrations were observed on foggy days, despite greater stagnation and lower mixing heights, suggesting fog scavenging and removal of EC was active as well.

  5. Vertical profile of aerosols in the Himalayan region using an ultralight aircraft platform

    NASA Astrophysics Data System (ADS)

    Singh, A.; Mahata, K.; Rupakheti, M.; Lawrence, M. G.; Junkermann, W.

    2017-12-01

    Indo-gangetic plain (IGP) and Himalayan foothills have large spatial and temporal heterogeneity in aerosols characteristics. Regional meteorology around 850-500 mb plays an important role in the transformation and transportation of aerosols from west Asia to IGP, into Himalayan foothill, as well to high-altitude region of the Himalayas. In order to quantify the vertical and horizontal variation of aerosol properties in the Himalayan , an airborne campaign was carried out in the Pokhara Valley/Nepal (83°50'-84°10' E, 25°7'-28°15' N, 815 masl ) in two phases: test flights during May 2016 and an intensive airborne sampling flight in December-January 2017. This paper provides an overview of airborne measurement campaign from the first phase of measurements in May 2016. A two-seater microlight aircraft (IKARUS C 42) was used as the aerial platform. This was deemed the feasible option in Nepal for an aerial campaign; technical specification of the aircraft include an approximately 6 hrs of flying time, short-take off run, > 100 kgs of payload, suitable for spiral upward and downward profiling. The instrument package consist of GRIMM 1.108 for particle size distribution from 0.3 to 20 um at 6 seconds time resolution, and TSI CPC 3375 for total ultrafine particle (UFP) concentration at 1 s. The package also includes a Magee Scientific Aethalometer (AE42) for aerosol absorption at seven different wavelengths. Meteorological parameters include temperature and dew point at a sampling rate of 1 Hz or higher. The paper provides a snapshot of observed vertical profile (from 800 to 4500masl) of aerosols size, number and black carbon over one of populated mountain valley in Nepal during the pre-monsoon season. During the airborne measurement, local fires- mostly agriculture burn were observed, however no large scale forest fire was captured. Sharp morning and afternoon gradients were observed in the vertical profile for aerosol number and size, mostly dominated by <400 nm. The

  6. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    PubMed Central

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A.; Yang, Fan

    2016-01-01

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τc<τt) for high aerosol concentration, and slow microphysics (τc>τt) for low aerosol concentration; here, τc is the phase-relaxation time and τt is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τs−1=τc−1+τt−1, and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation. PMID:27911802

  7. Key Role of Nitrate in Phase Transitions of Urban Particles: Implications of Important Reactive Surfaces for Secondary Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Sun, Jiaxing; Liu, Lei; Xu, Liang; Wang, Yuanyuan; Wu, Zhijun; Hu, Min; Shi, Zongbo; Li, Yongjie; Zhang, Xiaoye; Chen, Jianmin; Li, Weijun

    2018-01-01

    Ammonium sulfate (AS) and ammonium nitrate (AN) are key components of urban fine particles. Both field and model studies showed that heterogeneous reactions of SO2, NO2, and NH3 on wet aerosols accelerated the haze formation in northern China. However, little is known on phase transitions of AS-AN containing haze particles. Here hygroscopic properties of laboratory-generated AS-AN particles and individual particles collected during haze events in an urban site were investigated using an individual particle hygroscopicity system. AS-AN particles showed a two-stage deliquescence at mutual deliquescence relative humidity (MDRH) and full deliquescence relative humidity (DRH) and three physical states: solid before MDRH, solid-aqueous between MDRH and DRH, and aqueous after DRH. During hydration, urban haze particles displayed a solid core and aqueous shell at RH = 60-80% and aqueous phase at RH > 80%. Most particles were in aqueous phase at RH > 50% during dehydration. Our results show that AS content in individual particles determines their DRH and AN content determines their MDRH. AN content increase can reduce MDRH, which indicates occurrence of aqueous shell at lower RH. The humidity-dependent phase transitions of nitrate-abundant urban particles are important to provide reactive surfaces of secondary aerosol formation in the polluted air.

  8. Sources and Variability of Aerosols and Aerosol-Cloud Interactions in the Arctic

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhang, B.; Taylor, P. C.; Moore, R.; Barahona, D.; Fairlie, T. D.; Chen, G.; Ham, S. H.; Kato, S.

    2017-12-01

    Arctic sea ice in recent decades has significantly declined. This requires understanding of the Arctic surface energy balance, of which clouds are a major driver. However, the mechanisms for the formation and evolution of clouds in the Arctic and the roles of aerosols therein are highly uncertain. Here we conduct data analysis and global model simulations to examine the sources and variability of aerosols and aerosol-cloud interactions in the Arctic. We use the MERRA-2 reanalysis data (2006-present) from the NASA Global Modeling and Assimilation Office (GMAO) to (1) quantify contributions of different aerosol types to the aerosol budget and aerosol optical depths in the Arctic, (2) ­examine aerosol distributions and variability and diagnose the major pathways for mid-latitude pollution transport to the Arctic, including their seasonal and interannual variability, and (3) characterize the distribution and variability of clouds (cloud optical depth, cloud fraction, cloud liquid and ice water path, cloud top height) in the Arctic. We compare MERRA-2 aerosol and cloud properties with those from C3M, a 3-D aerosol and cloud data product developed at NASA Langley Research Center and merged from multiple A-Train satellite (CERES, CloudSat, CALIPSO, and MODIS) observations. We also conduct perturbation experiments using the NASA GEOS-5 chemistry-climate model (with GOCART aerosol module coupled with two-moment cloud microphysics), and discuss the roles of various types of aerosols in the formation and evolution of clouds in the Arctic.

  9. Significant radiative impact of volcanic aerosol in the lowermost stratosphere

    PubMed Central

    Andersson, Sandra M.; Martinsson, Bengt G.; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A. M.; Hermann, Markus; van Velthoven, Peter F. J.; Zahn, Andreas

    2015-01-01

    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008–2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing. PMID:26158244

  10. Spectral Absorption Properties of Aerosol Particles from 350-2500nm

    NASA Technical Reports Server (NTRS)

    Martins, J. Vanderlei; Artaxo, Paulo; Kaufman, Yoram J.; Castanho, Andrea D.; Remer, Lorraine A.

    2009-01-01

    The aerosol spectral absorption efficiency (alpha (sub a) in square meters per gram) is measured over an extended wavelength range (350 2500 nm) using an improved calibrated and validated reflectance technique and applied to urban aerosol samples from Sao Paulo, Brazil and from a site in Virginia, Eastern US, that experiences transported urban/industrial aerosol. The average alpha (sub a) values (approximately 3 square meters per gram at 550 nm) for Sao Paulo samples are 10 times larger than alpha (sub a) values obtained for aerosols in Virginia. Sao Paulo aerosols also show evidence of enhanced UV absorption in selected samples, probably associated with organic aerosol components. This extra UV absorption can double the absorption efficiency observed from black carbon alone, therefore reducing by up to 50% the surface UV fluxes, with important implications for climate, UV photolysis rates, and remote sensing from space.

  11. Carbonaceous Aerosol Characterization during 2016 KOR-US 2016

    NASA Astrophysics Data System (ADS)

    Rodriguez, B.; Santos, G. M.; Sanchez, D.; Jeong, D.; Czimczik, C. I.; Kim, S.

    2017-12-01

    Atmospheric carbonaceous aerosols are a major component of fine particulate matter and assume important roles in Earth's climate and human health. Because atmospheric carbonaceous aerosols exist as a continuum ranging from small, light-scattering organic carbon (OC), to highly-condensed, light-absorbing elemental carbon (EC) they have contrasting effects on interaction with incoming and outgoing radiation, cloud formation, and snow/ice albedo. By strengthening our understanding of the relative contribution and sources of OC and EC we will be able to further describe aerosol formation and mixing at the regional level. To understand the relative anthropogenic and biogenic contributions to carbonaceous aerosol, 12 PM10 aerosols samples were collected on quartz fiber filters at the Mt. Taewha Research Forest in South Korea during the KORUS-AQ 2016 campaign over periods of 24-48 hours with a high-volume air sampler. Analysis of bulk C and N concentrations and absorption properties of filter extracts interspersed with HYSPLIT model results indicated that continental outflow across the Yellow Sea in enriched in bulk nitrogen loading and enhanced bulk absorptive properties of the aerosols. Bulk radiocarbon analysis also indicated enriched values in all samples indicating contamination from a nuclear power plant or the combustion of biomedical waste nearby. Here, we aim to investigate further the chemical characterization of VOCs adsorbed unto the aerosol through TD-GC-TOFMS. With this dataset we aim to determine the relative contribution of anthropogenic and biogenic aerosols by utilizing specific chemical tracers for source apportionment.

  12. Evaluation of liquid aerosol transport through porous media

    NASA Astrophysics Data System (ADS)

    Hall, R.; Murdoch, L.; Falta, R.; Looney, B.; Riha, B.

    2016-07-01

    Application of remediation methods in contaminated vadose zones has been hindered by an inability to effectively distribute liquid- or solid-phase amendments. Injection as aerosols in a carrier gas could be a viable method for achieving useful distributions of amendments in unsaturated materials. The objectives of this work were to characterize radial transport of aerosols in unsaturated porous media, and to develop capabilities for predicting results of aerosol injection scenarios at the field-scale. Transport processes were investigated by conducting lab-scale injection experiments with radial flow geometry, and predictive capabilities were obtained by developing and validating a numerical model for simulating coupled aerosol transport, deposition, and multi-phase flow in porous media. Soybean oil was transported more than 2 m through sand by injecting it as micron-scale aerosol droplets. Oil saturation in the sand increased with time to a maximum of 0.25, and decreased with radial distance in the experiments. The numerical analysis predicted the distribution of oil saturation with only minor calibration. The results indicated that evolution of oil saturation was controlled by aerosol deposition and subsequent flow of the liquid oil, and simulation requires including these two coupled processes. The calibrated model was used to evaluate field applications. The results suggest that amendments can be delivered to the vadose zone as aerosols, and that gas injection rate and aerosol particle size will be important controls on the process.

  13. Aerosol radiative effects over BIMSTEC regions

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Kar, S. C.; Mupparthy, Raghavendra S.

    Aerosols can have variety of shapes, composition, sizes and other properties that influence their optical characteristics and thus the radiative impact. The visible impact of aerosol is the formation of haze, a layer of particles from vehicular, industrial emissions and biomass burning. The characterization of these fine particles is important for regulators and researchers because of their potential impact on human health, their ability to travel thousands of kilometers crossing international borders, and their influence on climate forcing and global warming. The Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) with Member Countries Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand has emerged as an important regional group for technical and economic Cooperation. Continuing the quest for a deeper understanding of BIMSTEC countries weather and climate, in this paper we focused on aerosols and their direct radiative effects. Because of various contrasts like geophysical, agricultural practices, heterogeneous land/ocean surface, population etc these regions present an excellent natural laboratory for studying aerosol-meteorology interactions in tropical to sub-tropical environments. We exploited data available on multiple platforms (such as MISR, MODIS etc) and models (OPAC, SBDART etc) to compute the results. Ten regions were selected with different surface characteristics, also having considerable differences in the long-term trends and seasonal distribution of aerosols. In a preliminary analysis pertaining to pre-monsoon (March-April-May) of 2013, AOD _{555nm} is found to be maximum over Bangladesh (>0.52) and minimum over Bhutan (0.22), whereas other regions have intermediate values. Concurrent to these variability of AOD we found a strong reduction in incoming flux at surface of all the regions (> -25 Wm (-2) ), except Bhutan and Sri Lanka (< -18Wm (-2) ). The top of the atmosphere (TOA) forcing values are

  14. Characterization of urban aerosol in Cork City (Ireland) using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.

    2012-11-01

    Ambient wintertime background urban aerosol in Cork City, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the 1 200 000 single particles characterized by an Aerosol Time-Of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally-mixed to different proportions with Elemental Carbon (EC), sulphate and nitrate while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was also characterized using a High Resolution Time-Of-Flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) and was also found to comprise organic matter as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and then chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix and a five-factor solution was found to describe the variance in the data well. Specifically, "Hydrocarbon-like" Organic Aerosol (HOA) comprised 19% of the mass, "Oxygenated low volatility" Organic Aerosols (LV-OOA) comprised 19%, "Biomass wood Burning" Organic Aerosol (BBOA) comprised 23%, non-wood solid-fuel combustion "Peat and Coal" Organic Aerosol (PCOA) comprised 21%, and finally, a species type characterized by primary m/z peaks at 41 and 55, similar to previously-reported "Cooking" Organic Aerosol (COA) but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Despite wood, cool and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosols mass and non refractory PM1, respectively).

  15. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    NASA Astrophysics Data System (ADS)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  16. Aerosol indirect effect on tropospheric ozone via lightning

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.

    2012-12-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications

  17. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Longtao; Gu, Yu; Jiang, Jonathan H.

    Here, a version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing largemore » biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about –0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June

  18. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Longtao; Gu, Yu; Jiang, Jonathan H.

    A version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing large biasesmore » in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about -0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June is about

  19. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations

    DOE PAGES

    Wu, Longtao; Gu, Yu; Jiang, Jonathan H.; ...

    2018-04-23

    Here, a version of the WRF-Chem model with fully coupled aerosol–meteorology–snowpack is employed to investigate the impacts of various aerosol sources on precipitation and snowpack in California. In particular, the impacts of locally emitted anthropogenic and dust aerosols, and aerosols transported from outside California are studied. We differentiate three pathways of aerosol effects: aerosol–radiation interaction (ARI), aerosol–snow interaction (ASI), and aerosol–cloud interaction (ACI). The convection-permitting model simulations show that precipitation, snow water equivalent (SWE), and surface air temperature averaged over the whole domain (34–42° N, 117–124° W, not including ocean points) are reduced when aerosols are included, therefore reducing largemore » biases in these variables due to the absence of aerosol effects in the model. Aerosols affect California water resources through the warming of mountaintops and the reduction of precipitation; however, different aerosol sources play different roles in changing surface temperature, precipitation, and snowpack in California by means of various weights of the three pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE over the mountains. Locally emitted dust aerosols warm the surface of mountaintops through ASI, in which the reduced snow albedo associated with dusty snow leads to more surface absorption of solar radiation and reduced SWE. Transported aerosols and local anthropogenic aerosols play a dominant role in increasing nonprecipitating clouds but reducing precipitation through ACI, leading to reduced SWE and runoff on the Sierra Nevada, as well as the warming of mountaintops associated with decreased SWE and hence lower surface albedo. The average changes in surface temperature from October 2012 to June 2013 are about –0.19 and 0.22 K for the whole domain and over mountaintops, respectively. Overall, the averaged reduction during October to June

  20. Mycobacterium avium Subspecies paratuberculosis: Human Exposure through Environmental and Domestic Aerosols

    PubMed Central

    Rhodes, Glenn; Richardson, Hollian; Hermon-Taylor, John; Weightman, Andrew; Higham, Andrew; Pickup, Roger

    2014-01-01

    Mycobacterium avium subspecies paratuberculosis (Map) causes Johne’s disease in animals and is significantly associated with Crohn’s disease (CD) in humans. Our previous studies have shown Map to be present in U.K. rivers due to land deposition from chronic livestock infection and runoff driven by rainfall. The epidemiology of CD in Cardiff showed a significant association with the River Taff, in which Map can be detected on a regular basis. We have previously hypothesized that aerosols from the river might influence the epidemiology of CD. In this preliminary study, we detected Map by quantitative PCR in one of five aerosol samples collected above the River Taff. In addition, we examined domestic showers from different regions in the U.K. and detected Map in three out of 30 independent samples. In detecting Map in river aerosols and those from domestic showers, this is the first study to provide evidence that aerosols are an exposure route for Map to humans and may play a role in the epidemiology of CD. PMID:25438013

  1. Aerosol Climate Time Series in ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  2. The Importance of Free Play in the Early Childhood Classroom: Perspectives from a Teacher

    ERIC Educational Resources Information Center

    Engel, Maria

    2015-01-01

    Teaching is hard. It's the most rewarding, fulfilling job in the world, but it's also frustrating, infuriating, and really, really hard. In this article, the author reflects on the importance of free play in early childhood classrooms. If teachers want to create happy children who love learning, forcing them to sit at desks or tables through early…

  3. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G

    2010-05-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Dynamics and Properties of Global Aerosol using MODIS, AERONET and GOCART Model

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Chin, Mian; Reme, Lorraine; Tanre, Didier; Mattoo, Shana

    2002-01-01

    Recently produced daily Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol data for the whole year of 2001 are used to show the concentration and dynamics of aerosol over ocean and large parts of the continents. The data were validated against the Aerosol Robotic Network (AERONET) measurements over land and ocean in a special issue in GRL now in press. Monthly averages and a movie based on the daily data are produced and used to demonstrate the spatial and temporal evolution of aerosol. The MODIS wide spectral range is used to distinguish fine smoke and pollution aerosol from coarse dust and salt. The aerosol is observed above ocean and land. The movie produced from the MODIS data provides a new dimension to aerosol observations by showing the dynamics of the system. For example in February smoke and dust emitted from the Sahel and West Africa is shown to travel to the North-East Atlantic. In April heavy dust and pollution from East Asia is shown to travel to North America. In May-June pollution and dust play a dynamical dance in the Arabian Sea and Bay of Bengal. In Aug-September smoke from South Africa and South America is shown to pulsate in tandem and to periodically to be transported to the otherwise pristine Southern part of the Southern Hemisphere. The MODIS data are compared with the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation Transport (GOCART) model to test and adjust source and sink strengths in the model and to study the effect of clouds on the representation of the satellite data.

  5. The optical properties of absorbing aerosols with fractal soot aggregates: Implications for aerosol remote sensing

    NASA Astrophysics Data System (ADS)

    Cheng, Tianhai; Gu, Xingfa; Wu, Yu; Chen, Hao; Yu, Tao

    2013-08-01

    Applying sphere aerosol models to replace the absorbing fine-sized dominated aerosols can potentially result in significant errors in the climate models and aerosol remote sensing retrieval. In this paper, the optical properties of absorbing fine-sized dominated aerosol were modeled, which are taking into account the fresh emitted soot particles (agglomerates of primary spherules), aged soot particles (semi-externally mixed with other weakly absorbing aerosols), and coarse aerosol particles (dust particles). The optical properties of the individual fresh and aged soot aggregates are calculated using the superposition T-matrix method. In order to quantify the morphology effect of absorbing aerosol models on the aerosol remote sensing retrieval, the ensemble averaged optical properties of absorbing fine-sized dominated aerosols are calculated based on the size distribution of fine aerosols (fresh and aged soot) and coarse aerosols. The corresponding optical properties of sphere absorbing aerosol models using Lorenz-Mie solutions were presented for comparison. The comparison study demonstrates that the sphere absorbing aerosol models underestimate the absorption ability of the fine-sized dominated aerosol particles. The morphology effect of absorbing fine-sized dominated aerosols on the TOA radiances and polarized radiances is also investigated. It is found that the sphere aerosol models overestimate the TOA reflectance and polarized reflectance by approximately a factor of 3 at wavelength of 0.865 μm. In other words, the fine-sized dominated aerosol models can cause large errors in the retrieved aerosol properties if satellite reflectance measurements are analyzed using the conventional Mie theory for spherical particles.

  6. The Polar Mesopause Sulfate Aerosol Layer

    NASA Astrophysics Data System (ADS)

    Mills, M. J.; Toon, O. B.; Thomas, G.; Solomon, S.

    2001-05-01

    Noctilucent ("night-luminous") clouds (NLC), or as seen from space, Polar Mesospheric Clouds (PMC), are typically 1 to 2 km thick and located at altitudes of 80 to 85 km, where the temperature is near 150K. NLC generally occur between 50 degrees latitude to the pole from May to August in the Northern Hemisphere, with occasional sightings at lower latitudes. An extraordinary low-latitude sighting occurred on June 21, 1999 at 41oN. Direct evidence that PMC are composed of water ice was recently reported from satellite observations made in the near infrared. The formation of ice clouds in the upper atmosphere has been studied extensively as a result of the role of Polar Stratospheric Clouds (PSC) in polar ozone depletion. There exists ample evidence that preexisting stratospheric liquid sulfate aerosol plays an important role in the formation of solid PSC particles. Until recent laboratory measurements showed otherwise, however, it was believed that photolysis of sulfuric acid in the upper stratosphere would prevent the formation of such aerosol in the mesosphere. We present here calculations from a microphysical atmospheric model which point to sulfate from volcanic and non-volcanic sources alike as the origin of nuclei on which PMC and NLC form. Current theories have relied on meteor 'smoke' particles arising from meteor ablation and recondensation to explain the nucleation of NLC/PMC ice particles. Our calculated sizes and concentrations of high latitude summer mesosphere sulfate aerosol particles are comparable to or exceed those expected of the meteor source. The model shows that large volcanic eruptions will add significantly to this particle population, several years following the injection. The record of the number of NLC sightings in response to large volcanic eruptions is contradictory. However, microphysical models show that injections of particles may result in positive, negative or neutral response in the visual brightness of NLC, depending on sulfur

  7. Relationship between fluid bed aerosol generator operation and the aerosol produced

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, R.L.; Yerkes, K.

    1980-12-01

    The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriationmore » constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.« less

  8. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  9. Impact of Biomass Burning Aerosols on the Biosphere over Amazonia

    NASA Astrophysics Data System (ADS)

    Malavelle, F.; Haywood, J.; Mercado, L.; Folberth, G.; Bellouin, N.

    2014-12-01

    Biomass burning (BB) smoke from deforestation and the burning of agricultural waste emit a complex cocktail of aerosol particles and gases. BB emissions show a regional hotspot over South America on the edges of Amazonia. These major perturbations and impacts on surface temperature, surface fluxes, chemistry, radiation, rainfall, may have significant consequent impacts on the Amazon rainforest, the largest and most productive carbon store on the planet. There is therefore potential for very significant interaction and interplay between aerosols, clouds, radiation and the biosphere in the region. Terrestrial carbon production (i.e. photosynthesis) is intimately tied to the supply of photosynthetically active radiation (PAR - i.e. wavelengths between 300-690 nm). PAR in sufficient intensity and duration is critical for plant growth. However, if a decrease in total radiation is accompanied by an increase in the component of diffuse radiation, plant productivity may increase due to higher light use efficiency per unit of PAR and less photosynthetic saturation. This effect, sometimes referred as diffuse light fertilization effect, could have increased the global land carbon sink by approximately one quarter during the global dimming period and is expected to be a least as important locally. By directly interacting with radiation, BB aerosols significantly reduce the total amount of PAR available to plant canopies. In addition, BB aerosols also play a centre role in cloud formation because they provide the necessary cloud condensation nuclei, hence indirectly altering the water cycle and the components and quantity of PAR. In this presentation, we use the recent observations from the South American Biomass Burning Analysis (SAMBBA) to explore the impact of radiation changes on the carbon cycle in the Amazon region caused by BB emissions. A parameterisation of the impact of diffuse and direct radiation upon photosynthesis rates and net primary productivity in the

  10. Comparison of Cloud and Aerosol Detection between CERES Edition 3 Cloud Mask and CALIPSO Version 2 Data Products

    NASA Astrophysics Data System (ADS)

    Trepte, Qing; Minnis, Patrick; Sun-Mack, Sunny; Trepte, Charles

    Clouds and aerosol play important roles in the global climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a crucial first step in determining their influence on surface and top-of-atmosphere radiative fluxes. This paper presents a comparison analysis of a new version of the Clouds and Earth's Radiant Energy System (CERES) Edition 3 cloud detection algorithms using Aqua MODIS data with the recently released Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Version 2 Vertical Feature Mask (VFM). Improvements in CERES Edition 3 cloud mask include dust detection, thin cirrus tests, enhanced low cloud detection at night, and a smoother transition from mid-latitude to polar regions. For the CALIPSO Version 2 data set, changes to the lidar calibration can result in significant improvements to its identification of optically thick aerosol layers. The Aqua and CALIPSO satellites, part of the A-train satellite constellation, provide a unique opportunity for validating passive sensor cloud and aerosol detection using an active sensor. In this paper, individual comparison cases will be discussed for different types of clouds and aerosols over various surfaces, for daytime and nighttime conditions, and for regions ranging from the tropics to the poles. Examples will include an assessment of the CERES detection algorithm for optically thin cirrus, marine stratus, and polar night clouds as well as its ability to characterize Saharan dust plumes off the African coast. With the CALIPSO lidar's unique ability to probe the vertical structure of clouds and aerosol layers, it provides an excellent validation data set for cloud detection algorithms, especially for polar nighttime clouds.

  11. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  12. A comparison of uncertainties in the aerosol direct radiative effect in the SE U.S. calculated using satellite-based and ground-based aerosol properties

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.

    2017-12-01

    Satellite-retrieved aerosol optical depth is typically used for measurement-based estimates of the aerosol direct radiative effect (DRE) on solar radiation, on both global and regional scales. The SE U.S. is one of only a few regions not to have warmed during the 20th century and is home to some of the highest summertime levels of biogenic and sulfate aerosols in the U.S. While decreases in aerosol optical depth over the past few decades have likely reduced the cooling effect of aerosols in the region, satellite-derived estimates of aerosol DRE alone may not be sufficient to study long-term DRE trends and the roles played by changing AOD and aerosol optical properties. Appalachian State University (APP) in Boone, NC is home to the only co-located NASA AERONET, NOAA ESRL, and (active) NASA MPLNET sites in the U.S. and is well-positioned to validate satellite-based aerosol retrievals and better constrain background aerosol DRE in regional climate models. As part of the first multi-year `ground truth' DRE study in the SE U.S., Sherman and McComiskey (2017) applied nearly four years of spectral AOD from the APP AERONET site, along with single-scattering albedo(SSA) and asymmetry parameter from the APP NOAA ESRL site, as inputs to the SBDART Radiative Transfer model to calculate seasonal dependence of aerosol DRE and DRE uncertainties at the top-of-atmosphere and at the surface. Clear sky aerosol DRE uncertainty at the TOA (surface) above APP ranges from 0.44 Wm-2 (0.73 Wm-2) for DEC to 0.90 Wm-2 (1.3 Wm-2) for JUN. Expressed as a fraction of seasonal-mean DRE, these uncertainties are 12-20% for all seasons except winter, when they are close to 50%. Use of MODIS or MISR AOD in place of AERONET increases these uncertainties by factors of 2.5 to 5 and DRE uncertainties are dominated by AOD uncertainty for all seasons. The use of SSA from OMI or MISR further increases the DRE uncertainties, especially during the higher AOD summer months, when DRE sensitivity to aerosol

  13. SAGE II aerosol extinction and scattering data from balloon-borne photography

    NASA Technical Reports Server (NTRS)

    Ackerman, M.; Lippens, G.; Chu, W.; De Muer, D.

    1987-01-01

    Earth limb radiance and extinction near sunset have been observed from a balloon-borne gondola nearly simultaneously and on air masses close to those probed by the SAGE II instrumentation on April 22, 1985. The results show the importance of accuracy of the altitude determination on the aerosol measurements. They indicate an important altitude dependence of the stratospheric aerosol granulometry in agreement with SAGE II results.

  14. Propagation of Respiratory Aerosols by the Vuvuzela

    PubMed Central

    Lai, Ka-Man; Bottomley, Christian; McNerney, Ruth

    2011-01-01

    Vuvuzelas, the plastic blowing horns used by sports fans, recently achieved international recognition during the FIFA World Cup soccer tournament in South Africa. We hypothesised that vuvuzelas might facilitate the generation and dissemination of respiratory aerosols. To investigate the quantity and size of aerosols emitted when the instrument is played, eight healthy volunteers were asked to blow a vuvuzela. For each individual the concentration of particles in expelled air was measured using a six channel laser particle counter and the duration of blowing and velocity of air leaving the vuvuzela were recorded. To allow comparison with other activities undertaken at sports events each individual was also asked to shout and the measurements were repeated while using a paper cone to confine the exhaled air. Triplicate measurements were taken for each individual. The mean peak particle counts were 658×103 per litre for the vuvuzela and 3.7×103 per litre for shouting, representing a mean log10 difference of 2.20 (95% CI: 2.03,2.36; p<0.001). The majority (>97%) of particles captured from either the vuvuzela or shouting were between 0.5 and 5 microns in diameter. Mean peak airflows recorded for the vuvuzela and shouting were 6.1 and 1.8 litres per second respectively. We conclude that plastic blowing horns (vuvuzelas) have the capacity to propel extremely large numbers of aerosols into the atmosphere of a size able to penetrate the lower lung. Some respiratory pathogens are spread via contaminated aerosols emitted by infected persons. Further investigation is required to assess the potential of the vuvuzela to contribute to the transmission of aerosol borne diseases. We recommend, as a precautionary measure, that people with respiratory infections should be advised not to blow their vuvuzela in enclosed spaces and where there is a risk of infecting others. PMID:21629778

  15. Aerosol Production from Charbroiled and Wet-Fried Meats

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Blanc, L. E.

    2012-12-01

    Previous work in our laboratory focused on the chemical and optical characterization of aerosols produced during the dry-frying of different meat samples. This method yielded a complex ensemble of particles composed of water and long-chain fatty acids with the latter dominated by oleic, stearic, and palmitic acids. The present study examines how wet-frying and charbroiling cooking methods affect the physical and chemical properties of their derived aerosols. Samples of ground beef, salmon, chicken, and pork were subject to both cooking methods in the laboratory, with their respective aerosols swept into a laminar flow cell where they were optically analyzed in the mid-infrared and collected through a gas chromatography probe for chemical characterization. This presentation will compare and contrast the nature of the aerosols generated in each cooking method, particularly those produced during charbroiling which exposes the samples, and their drippings, to significantly higher temperatures. Characterization of such cooking-related aerosols is important because of the potential impact of these particles on air quality, particularly in urban areas.

  16. Seasonal variation of marine organic aerosols in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Fu, P.; Kawamura, K.

    2017-12-01

    Atmospheric aerosols were collected in the marine boundary layer during five marine cruises in the northern Pacific Ocean from October 1996 to July 1997. Organic molecular compositions of the marine aerosols were measured using gas chromatography/mass spectrometry (GC/MS). Higher concentrations of levoglucosan and its isomers, the biomass-burning tracers, were observed in the coastal regions than those in the central north Pacific. Seasonal trends of biomass burning tracers were found to be higher in fall-winter-spring than in summer, suggesting an enhanced influence of continental aerosols to the marine atmosphere during cold seasons when the westerlies prevail. However, the atmospheric levels of secondary organic aerosol (SOA) tracers from the photooxidation of isoprene and monoterpenes were higher in warm seasons than cold seasons, which are in accordance with the enhanced emissions of biogenic volatile organic compounds (BVOCs) in summer. Stable C isotope ratios of total carbon (δ13CTC) in the marine aerosols ranged from -28.5‰ to -23.6‰ (mean -26.4‰), suggesting an important input of terrestrial/continental aerosol particles. Stable N isotope ratios (2.6‰ to 12.9‰, mean 7.1‰) were found to be higher in the coastal regions than those in the open oceans, suggesting an enhanced emission of marine aerosols in the open oceans. The fluorescence properties of the water-soluble organic carbon (WSOC) in the marine aerosols conform the importance of marine emitted organics in the open ocean, especially during the high biological activity periods.

  17. Smog chamber experiments to investigate Henry's law constants of glyoxal using different seed aerosols as well as imidazole formation in the presence of ammonia

    NASA Astrophysics Data System (ADS)

    Jakob, Ronit

    2015-04-01

    Aerosols play an important role in the chemistry and physics of the atmosphere. Hence, they have a direct as well as an indirect impact on the earth's climate. Depending on their formation, one distinguishes between primary and secondary aerosols[1]. Important groups within the secondary aerosols are the secondary organic aerosols (SOAs). In order to improve predictions about these impacts on the earth's climate the existing models need to be optimized, because they still underestimate SOA formation[2]. Glyoxal, the smallest α-dicarbonyl, not only acts as a tracer for SOA formation but also as a direct contributor to SOA. Because glyoxal has such a high vapour pressure, it was common knowledge that it does not take part in gas-particle partitioning and therefore has no impact on direct SOA formation. However, the Henry's law constant for glyoxal is surprisingly high. This has been explained by the hydration of the aldehyde groups, which means that a species with a lower vapour pressure is produced. Therefore the distribution of glyoxal between gas- and particle phase is atmospherically relevant and the direct contribution of glyoxal to SOA can no longer be neglected[3]. Besides this particulate glyoxal is able to undergo heterogeneous chemistry with gaseous ammonia to form imidazoles. This plays an important role for regions with aerosols exhibiting alkaline pH values for example from lifestock or soil dust because imidazoles as nitrogen containing compounds change the optical properties of aerosols[4]. A high salt concentration present in chamber seed aerosols leads to an enhanced glyoxal uptake into the particle. This effect is called "salting-in". The salting effect depends on the composition of the seed aerosol as well as the soluble compound. For very polar compounds, like glyoxal, a "salting-in" is observed[3]. Glyoxal particle formation during a smog chamber campaign at Paul-Scherrer-Institut (PSI) in Switzerland was examined using different seed aerosols

  18. The Physics and Chemistry of Marine Aerosols

    NASA Astrophysics Data System (ADS)

    Russell, Lynn M.

    Understanding the physics and chemistry of the marine atmosphere requires both predicting the evolution of its gas and aerosol phases and making observations that reflect the processes in that evolution. This work presents a model of the most fundamental physical and chemical processes important in the marine atmosphere, and discusses the current uncertainties in our theoretical understanding of those processes. Backing up these predictions with observations requires improved instrumentation for field measurements of aerosol. One important advance in this instrumentation is described for accelerating the speed of size distribution measurements. Observations of aerosols in the marine boundary layer during the Atlantic Stratocumulus Transition Experiment (ASTEX) provide an illustration of the impact of cloud processing in marine stratus. More advanced measurements aboard aircraft were enabled by redesigning the design of the system for separating particles by differential mobility and counting them by condensational growth. With this instrumentation, observations made during the Monterey Area Ship Tracks (MAST) Experiment have illustrated the role of aerosol emissions of ships in forming tracks in clouds. High-resolution gas chromatography and mass spectrometry was used with samples extracted by supercritical fluid extraction in order to identify the role of combustion organics in forming ship tracks. The results illustrate the need both for more sophisticated models incorporating organic species in cloud activation and for more extensive boundary layer observations.

  19. Multi-wavelength aerosol light absorption measurements in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Chi, Xuguang; Pöhlker, Christopher; Morán, Daniel; Ditas, Florian; Massabò, Dario; Prati, Paolo; Rizzo, Luciana; Artaxo, Paulo; Andreae, Meinrat

    2015-04-01

    The most important light-absorbing aerosol is black carbon (BC), which is emitted by incomplete combustion of fossil fuels and biomass. BC is considered the second anthropogenic contributor to global warming. Beyond BC, other aerosols like some organics, dust, and primary biological aerosol particles are able to absorb radiation. In contrast to BC, the light absorption coefficient of these aerosols is wavelength dependent. Therefore, multi-wavelength measurements become important in environments where BC is not the predominant light-absorbing aerosol like in the Amazon. The Amazon Tall Tower Observatory (ATTO) site is located in the remote Amazon rainforest, one of the most pristine continental sites in the world during the wet season. In the dry season, winds coming from the southern hemisphere are loaded with biomass burning aerosol particles originated by farming-related deforestation. BC and aerosol number concentration data from the last two years indicate this is the most polluted period. Two different techniques have been implemented to measure the light absorption at different wavelengths; one of them is the 7-wavelengths Aethalometer, model AE30, an instrument that measures the light attenuation on a filter substrate and requires multiple scattering and filter-loading corrections to retrieve the light absorption coefficient. The other method is an offline technique, the Multi-Wavelength Absorbance Analysis (MWAA), which is able to measure reflectance and absorbance by aerosols collected on a filter and, by means of a radiative model, can retrieve the light absorption coefficient. Filters collected during May-September 2014, comprehending wet-to-dry transition and most of the dry season, were analyzed. The results indicate that the Absorption Ångström Exponent (AAE), a parameter that is directly proportional to the wavelength dependence of the aerosol light absorption, is close to 1.0 during the transition period and slightly decreases in the beginning of

  20. Evaluating Aerosol Process Modules within the Framework of the Aerosol Modeling Testbed

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Velu, V.; Gustafson, W. I.; Chapman, E.; Easter, R. C.; Shrivastava, M.; Singh, B.

    2012-12-01

    Factors that influence predictions of aerosol direct and indirect forcing, such as aerosol mass, composition, size distribution, hygroscopicity, and optical properties, still contain large uncertainties in both regional and global models. New aerosol treatments are usually implemented into a 3-D atmospheric model and evaluated using a limited number of measurements from a specific case study. Under this modeling paradigm, the performance and computational efficiency of several treatments for a specific aerosol process cannot be adequately quantified because many other processes among various modeling studies (e.g. grid configuration, meteorology, emission rates) are different as well. The scientific community needs to know the advantages and disadvantages of specific aerosol treatments when the meteorology, chemistry, and other aerosol processes are identical in order to reduce the uncertainties associated with aerosols predictions. To address these issues, an Aerosol Modeling Testbed (AMT) has been developed that systematically and objectively evaluates new aerosol treatments for use in regional and global models. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from the Community Atmosphere Model version 5 (CAM5) have also been ported to WRF so that they can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. Data from several campaigns, including the 2006

  1. Formation and evolution of molecular products in α-pinene secondary organic aerosol.

    PubMed

    Zhang, Xuan; McVay, Renee C; Huang, Dan D; Dalleska, Nathan F; Aumont, Bernard; Flagan, Richard C; Seinfeld, John H

    2015-11-17

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA.

  2. Radiative forcing of the desert aerosol at Ouarzazate (Morocco)

    NASA Astrophysics Data System (ADS)

    Tahiri, Abdelouahid; Diouri, Mohamed

    2018-05-01

    The atmospheric aerosol contributes to the definition of the climate with direct effect, the diffusion and absorption of solar and terrestrial radiations, and indirect, the cloud formation process where aerosols behave as condensation nuclei and alter the optical properties. Satellites and ground-based networks (solar photometers) allow the terrestrial aerosol observation and the determination of impact. Desert aerosol considered among the main types of tropospheric aerosols whose optical property uncertainties are still quite important. The analysis concerns the optical parameters recorded in 2015 at Ouarzazate solar photometric station (AERONET/PHOTONS network, http://aeronet.gsfc.nasa.gov/) close to Saharan zone. The daily average aerosol optical depthτaer at 0.5μm, are relatively high in summer and less degree in spring (from 0.01 to 1.82). Daily average of the Angstrom coefficients α vary between 0.01 and 1.55. The daily average of aerosol radiative forcing at the surface range between -150W/m2 and -10 W/m2 with peaks recorded in summer, characterized locally by large loads of desert aerosol in agreement with the advections of the Southeast of Morocco. Those recorded at the Top of the atmosphere show a variation from -74 W/m2 to +24 W/m2

  3. Geochemical behaviour of the Tunisian background aerosols in Sirocco wind circulations

    NASA Astrophysics Data System (ADS)

    Azri, Chafai; Abida, Habib; Medhioub, Khaled

    2009-05-01

    This study examines spatial and time evolutions of the principal constituents of the Tunisian background aerosols under Sirocco wind circulations. Aerosols coming from the Sahara Desert were found to be loaded with particulate matter, especially silicon. The aerosols were shown to have varying geochemical behaviour along the "South-North" displacement of the Saharan plumes, depending on the wind flow characteristics, geomorphologic features and the nature of soils swept by the wind. In the south and the center part of the country, the transfer of aerosol constituents to the soil (by gravity and/or impaction) was probably predominated by localized enrichment phenomena. The latter are reinforced by the effect of turbulent winds over bare soils, wind wakes and probably selective disintegration, especially in the vicinity of the geomorphologic features of central Tunisia. These relatively high features, extending over important distances, appear to be of paramount importance for the phenomena of redistribution of aerosol constituents even during periods without Sirocco wind circulations. In the northern section of the country, aerosol constituent concentrations dropped to almost 50%, in spite of the abundance of localized turbulent winds. This may be explained by the effect of forests and the relatively dense vegetation cover, which clearly reinforces the transfer phenomena to the soil and the attenuate of dust entrainment.

  4. A new approach to modeling aerosol effects on East Asian climate: Parametric uncertainties associated with emissions, cloud microphysics, and their interactions: AEROSOL EFFECTS ON EAST ASIAN CLIMATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Huiping; Qian, Yun; Zhao, Chun

    2015-09-09

    In this study, we adopt a parametric sensitivity analysis framework that integrates the quasi-Monte Carlo parameter sampling approach and a surrogate model to examine aerosol effects on the East Asian Monsoon climate simulated in the Community Atmosphere Model (CAM5). A total number of 256 CAM5 simulations are conducted to quantify the model responses to the uncertain parameters associated with cloud microphysics parameterizations and aerosol (e.g., sulfate, black carbon (BC), and dust) emission factors and their interactions. Results show that the interaction terms among parameters are important for quantifying the sensitivity of fields of interest, especially precipitation, to the parameters. Themore » relative importance of cloud-microphysics parameters and emission factors (strength) depends on evaluation metrics or the model fields we focused on, and the presence of uncertainty in cloud microphysics imposes an additional challenge in quantifying the impact of aerosols on cloud and climate. Due to their different optical and microphysical properties and spatial distributions, sulfate, BC, and dust aerosols have very different impacts on East Asian Monsoon through aerosol-cloud-radiation interactions. The climatic effects of aerosol do not always have a monotonic response to the change of emission factors. The spatial patterns of both sign and magnitude of aerosol-induced changes in radiative fluxes, cloud, and precipitation could be different, depending on the aerosol types, when parameters are sampled in different ranges of values. We also identify the different cloud microphysical parameters that show the most significant impact on climatic effect induced by sulfate, BC and dust, respectively, in East Asia.« less

  5. X-ray analysis of aerosol samples from a therapeutic cave

    NASA Astrophysics Data System (ADS)

    Alföldy, B.; Török, Sz.; Kocsonya, A.; Szőkefalvi-Nagy, Z.; Balla, Md. I.

    2001-04-01

    Cave therapy is an efficient therapeutic method to cure asthma, the exact healing effect, however, is not clarified, yet. This study is motivated by the basic assumption that aerosols do play the key role in the cave therapy. This study is based on measurements of single aerosol particles originating from a therapeutic cave of Budapest, Hungary (Szemlőhegyi cave). Aerosol particles have been collected in the regions arranged for the therapeutic treatment. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition. Three particle classes have been detected based on major element concentration: alumino-silicate, quartz and calcium carbonate. Calcium ions have well-known physiological influence: anti-spastic, anti-inflammation and excretion reducing effects. Inflammation, accompanying spasm and extreme excretion production cause the smothering stigma, the so-called asthma. Therefore it could be assumed that calcium ions present in high concentration in the cave's atmosphere is the major cause of the healing effect.

  6. What Controls the Vertical Distribution of Aerosol? Relationships Between Process Sensitivity in HadGEM3-UKCA and Inter-Model Variation from AeroCom Phase II

    NASA Technical Reports Server (NTRS)

    Kipling, Zak; Stier, Philip; Johnson, Colin E.; Mann, Graham W.; Bellouin, Nicolas; Bauer, Susanne E.; Bergman, Tommi; Chin, Mian; Diehl, Thomas; Ghan, Steven J.; hide

    2016-01-01

    The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3-UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN >3 nm), while the profiles of larger particles (e.g. CN>100 nm) are controlled by the

  7. Aerosol modelling and validation during ESCOMPTE 2001

    NASA Astrophysics Data System (ADS)

    Cousin, F.; Liousse, C.; Cachier, H.; Bessagnet, B.; Guillaume, B.; Rosset, R.

    The ESCOMPTE 2001 programme (Atmospheric Research. 69(3-4) (2004) 241) has resulted in an exhaustive set of dynamical, radiative, gas and aerosol observations (surface and aircraft measurements). A previous paper (Atmospheric Research. (2004) in press) has dealt with dynamics and gas-phase chemistry. The present paper is an extension to aerosol formation, transport and evolution. To account for important loadings of primary and secondary aerosols and their transformation processes in the ESCOMPTE domain, the ORISAM aerosol module (Atmospheric Environment. 35 (2001) 4751) was implemented on-line in the air-quality Meso-NH-C model. Additional developments have been introduced in ORganic and Inorganic Spectral Aerosol Module (ORISAM) to improve the comparison between simulations and experimental surface and aircraft field data. This paper discusses this comparison for a simulation performed during one selected day, 24 June 2001, during the Intensive Observation Period IOP2b. Our work relies on BC and OCp emission inventories specifically developed for ESCOMPTE. This study confirms the need for a fine resolution aerosol inventory with spectral chemical speciation. BC levels are satisfactorily reproduced, thus validating our emission inventory and its processing through Meso-NH-C. However, comparisons for reactive species generally denote an underestimation of concentrations. Organic aerosol levels are rather well simulated though with a trend to underestimation in the afternoon. Inorganic aerosol species are underestimated for several reasons, some of them have been identified. For sulphates, primary emissions were introduced. Improvement was obtained too for modelled nitrate and ammonium levels after introducing heterogeneous chemistry. However, no modelling of terrigeneous particles is probably a major cause for nitrates and ammonium underestimations. Particle numbers and size distributions are well reproduced, but only in the submicrometer range. Our work points out

  8. MODIS 3km Aerosol Product: Algorithm and Global Perspective

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Mattoo, S.; Levy, R. C.; Munchak, L.

    2013-01-01

    After more than a decade of producing a nominal 10 km aerosol product based on the dark target method, the MODIS aerosol team will be releasing a nominal 3 km product as part of their Collection 6 release. The new product differs from the original 10 km product only in the manner in which reflectance pixels are ingested, organized and selected by the aerosol algorithm. Overall, the 3 km product closely mirrors the 10 km product. However, the finer resolution product is able to retrieve over ocean closer to islands and coastlines, and is better able to resolve fine aerosol features such as smoke plumes over both ocean and land. In some situations, it provides retrievals over entire regions that the 10 km product barely samples. In situations traditionally difficult for the dark target algorithm, such as over bright or urban surfaces the 3 km product introduces isolated spikes of artificially high aerosol optical depth (AOD) that the 10 km algorithm avoids. Over land, globally, the 3 km product appears to be 0.01 to 0.02 higher than the 10 km product, while over ocean, the 3 km algorithm is retrieving a proportionally greater number of very low aerosol loading situations. Based on collocations with ground-based observations for only six months, expected errors associated with the 3 km land product are determined to be greater than for the 10 km product: 0.05 0.25 AOD. Over ocean, the suggestion is for expected errors to be the same as the 10 km product: 0.03 0.05 AOD. The advantage of the product is on the local scale, which will require continued evaluation not addressed here. Nevertheless, the new 3 km product is expected to provide important information complementary to existing satellite-derived products and become an important tool for the aerosol community.

  9. The high field strength element budget of atmospheric aerosols (puy de Dôme, France)

    NASA Astrophysics Data System (ADS)

    Vlastelic, Ivan; Suchorski, Krzysztof; Sellegri, Karine; Colomb, Aurélie; Nauret, François; Bouvier, Laetitia; Piro, Jean-Luc

    2015-10-01

    High field strength elements (HFSE), including Zr, Hf, Nb, Ta and Ti have low solubility in aqueous fluids and partition into dense and resistant minerals. HFSE proved useful in studying terrestrial weathering and sediment transport, but little is known about their behavior during atmospheric processes, which play an important role in global sedimentary cycles. The atmospheric budget of HFSE is evaluated from the sequential dissolution of aerosol samples collected between 2011 and 2014 at puy de Dôme (1465 m elevation, French Massif Central). Aerosols were sampled during nighttime, while the site is generally located above the planetary boundary layer. Systematic, partial recovery of HFSE during gentle dissolution of aerosols indicates that resistant minerals are ubiquitous in air samples. Total dissolution of aerosols in pressure vessels reveals that Zr and Hf occur on average in sub-crustal abundance, which is consistent with the sampling site being dominantly influenced by oceanic air masses depleted in zircons. Conversely, zircon excess occasionally occurs in continental air masses, in particular those originating from northern Africa. Overall, the Hf/Nd ratio, a proxy for zircon fractionation, varies from 0.26 to 3.94 times the Upper Continental Crust (UCC) value, encompassing the range of worldwide loess. This wide compositional range is consistent with (1) the occurrence of coarse zircons (10-30 μm) in dust source, with possible local enrichments relative to bulk UCC in residual wind-winnowed soils, and (2) gravitational settling of coarse zircons during long-distance (>ca. 1000 km) transport. Niobium and Ta are systematically more abundant (by a mean factor of ∼3) in puy de Dôme aerosols than expected from average crustal or soil concentrations. The volume-weighted average Nb/Ta ratio of 15.5 ± 2.6 (1σ) is also higher than in bulk UCC (11.4-13.3). The positive Nb-Ta anomaly of free troposphere aerosols unlikely reflects a net Nb-Ta enrichment but

  10. Columnar aerosol optical properties at AERONET sites in northern, central and southern Mexico

    NASA Astrophysics Data System (ADS)

    Carabali, Giovanni; Estévez, Hector; Florean-Cruz, Claudia; Navarro-Medina, Abigail; Valdés-Barrón, Mauro; Bonifaz-Alfonzo, Roberto; Riveros-Rosas, David; Velasco-Herrera, Víctor; Vázquez-Gálvez, Felipe

    2017-04-01

    The column-integrated optical properties of aerosol in the north, central and southern Mexico were investigated based on Sun/sky radiometer measurements made at Aerosol Robotic Network (AERONET) sites. Characterization of aerosol properties in these Mexico regions is important due to natural and anthropogenic significant events that occurred: dust storms from Sonora desert, biomass burning from south forest areas and urban/industrial from Mexico City due to the increases in fossil fuel combustion. Some cities in northern Mexico located near desert areas are affected by the dust from Sonora and Chihuahua deserts. These particles are suspended in the atmosphere due to strong wind activity that creates dust storms. In the central part of the Mexican territory, urban air pollution is one of the biggest problems. Mexico City is the most important urban area that face seriously environmental problem generated by daily anthropogenic emissions from activities of some 21 million people and the vast amount of industry. On the other hand, biomass burning in the Yucatan Peninsula, Southern Mexico, and Guatemala is an important source of anthropogenic aerosol in the troposphere (Crutzen and Andrade, 1990). The pollution from these fires affects air quality locally and is transported over the Gulf of Mexico to the United States (Wang et al., 2006). The aim of this work is to study the optical properties of different types of aerosols by analyzing a 5-year (2005-2010) data set from AErosol RObotic NETwork (AERONET). Time series of Angstrom exponent (α) and aerosol optical depth (τ) in 7 wavelengths from 340 to 1020 nm are shown. Additionally, a graphical framework to classify aerosol properties using direct sun-photometer observations in the different regions of Mexico is presented. That aerosol classification was made by applying the method described by Gobbi et al (2007), which relies on the combined analysis of α and its spectral curvature δα.

  11. Influence of aqueous chemistry on the chemical composition of fog water and interstitial aerosol in Fresno

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin; Ge, Xinlei; Collier, Sonya; Xu, Jianzhong; Sun, Yele; Wang, Youliang; Herckes, Pierre; Zhang, Qi

    2015-04-01

    A measurement study was conducted in the Central Valley (Fresno) of California in January 2010, during which radiation fog events were frequently observed. Fog plays important roles in atmospheric chemistry by scavenging aerosol particles and trace gases and serving as a medium for various aqueous-phase reactions. Understanding the effects of fog on the microphysical and chemical processing of aerosol particles requires detailed information on their chemical composition. In this study, we characterized the chemical composition of fog water and interstitial aerosol particles to study the effects of fog processing on aerosol properties. Fog water samples were collected during the 2010 Fresno campaigns with a Caltech Active Strand Cloud water Collector (CASCC) while interstitial submicron aerosols were characterized in real time with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a scanning Mobility Particle Sizer (SMPS). The fog water samples were later analyzed using the HR-ToF-AMS, ion chromatography, and a total carbon analyzer. The chemical composition and characteristics of interstitial particles during the fog events were compared to those of dissolved inorganic and organic matter in fog waters. Compared to interstitial aerosols, fog water is composed of a higher fraction of ammonium nitrate and oxygenated organics, due to aqueous formation of secondary aerosol species as well as enhanced gas-to-particle partitioning of water soluble species under water rich conditions. Sulfate is formed most efficiently in fog water although its contribution to total dissolved mass is relatively low. The HR-ToF-AMS mass spectra of organic matter in fog water (FOM) are very similar to that of oxygenated organic aerosols (OOA) derived from positive matrix factorization (PMF) of the HR-ToF-AMS spectra of ambient aerosol (r2 = 0.96), but FOM appears to contain a large fraction of acidic functional groups than OOA. FOM is also enriched of

  12. Uncertainties of aerosol retrieval from neglecting non-sphericity of dust aerosols

    NASA Astrophysics Data System (ADS)

    Li, Chi; Xue, Yong; Yang, Leiku; Guang, Jie

    2013-04-01

    The Mie theory is conventionally applied to calculate aerosol optical properties in satellite remote sensing applications, while dust aerosols cannot be well modeled by the Mie calculation for their non-sphericity. It has been cited in Mishchenko et al. (1995; 1997) that neglecting non-sphericity can severely influence aerosol optical depth (AOD, ?) retrieval in case of dust aerosols because of large difference of phase functions under spherical and non-spherical assumptions, whereas this uncertainty has not been thoroughly studied. This paper aims at a better understanding of uncertainties on AOD retrieval caused by aerosol non-sphericity. A dust aerosol model with known refractive index and size distribution is generated from long-term AERONET observations since 1999 over China. Then aerosol optical properties, such as the extinction, phase function, single scattering albedo (SSA) are calculated respectively in the assumption of spherical and non-spherical aerosols. Mie calculation is carried out for spherical assumption, meanwhile for non-spherical aerosol modeling, we adopt the pre-calculated scattering kernels and software package presented by Dubovik et al. (2002; 2006), which describes dust as a shape mixture of randomly oriented polydisperse spheroids. Consequently we generate two lookup tables (LUTspheric and LUTspheroid) from simulated satellite received reflectance at top of atmosphere (TOA) under varieties of observing conditions and aerosol loadings using Second Simulation of a Satellite Signal in the Solar Spectrum - Vector (6SV) code. All the simulations are made at 550 nm, and for simplicity the Lambertian surface is assumed. Using the obtained LUTs we examine the differences of TOA reflectance (Δ?TOA = ?spheric - ?spheroid) under different surface reflectance and aerosol loadings. Afterwards AOD is retrieved using LUTspheric from the simulated TOA reflectance by LUTspheroid in order to detect the retrieval errors (Δ? = ?retreived -?input) induced

  13. Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.

    2011-11-01

    Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.

  14. An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties

    NASA Astrophysics Data System (ADS)

    Sorooshian, Armin; Wonaschütz, Anna; Jarjour, Elias G.; Hashimoto, Bryce I.; Schichtel, Bret A.; Betterton, Eric A.

    2011-10-01

    This study reports a comprehensive characterization of atmospheric aerosol particle properties in relation to meteorological and back trajectory data in the southern Arizona region, which includes two of the fastest growing metropolitan areas in the United States (Phoenix and Tucson). Multiple data sets (MODIS, AERONET, OMI/TOMS, MISR, GOCART, ground-based aerosol measurements) are used to examine monthly trends in aerosol composition, aerosol optical depth (AOD), and aerosol size. Fine soil, sulfate, and organics dominate PM2.5 mass in the region. Dust strongly influences the region between March and July owing to the dry and hot meteorological conditions and back trajectory patterns. Because monsoon precipitation begins typically in July, dust levels decrease, while AOD, sulfate, and organic aerosol reach their maximum levels because of summertime photochemistry and monsoon moisture. Evidence points to biogenic volatile organic compounds being a significant source of secondary organic aerosol in this region. Biomass burning also is shown to be a major contributor to the carbonaceous aerosol budget in the region, leading to enhanced organic and elemental carbon levels aloft at a sky-island site north of Tucson (Mt. Lemmon). Phoenix exhibits different monthly trends for aerosol components in comparison with the other sites owing to the strong influence of fossil carbon and anthropogenic dust. Trend analyses between 1988 and 2009 indicate that the strongest statistically significant trends are reductions in sulfate, elemental carbon, and organic carbon, and increases in fine soil during the spring (March-May) at select sites. These results can be explained by population growth, land-use changes, and improved source controls.

  15. Frost flowers and sea-salt aerosols over seasonal sea-ice areas in northwestern Greenland during winter-spring

    NASA Astrophysics Data System (ADS)

    Hara, Keiichiro; Matoba, Sumito; Hirabayashi, Motohiro; Yamasaki, Tetsuhide

    2017-07-01

    Sea salts and halogens in aerosols, frost flowers, and brine play an important role in atmospheric chemistry in polar regions. Simultaneous sampling and observations of frost flowers, brine, and aerosol particles were conducted around Siorapaluk in northwestern Greenland during December 2013 to March 2014. Results show that water-soluble frost flower and brine components are sea-salt components (e.g., Na+, Cl-, Mg2+, K+, Ca2+, Br-, and iodine). Concentration factors of sea-salt components of frost flowers and brine relative to seawater were 1.14-3.67. Sea-salt enrichment of Mg2+, K+, Ca2+, and halogens (Cl-, Br-, and iodine) in frost flowers is associated with sea-salt fractionation by precipitation of mirabilite and hydrohalite. High aerosol number concentrations correspond to the occurrence of higher abundance of sea-salt particles in both coarse and fine modes, and blowing snow and strong winds. Aerosol number concentrations, particularly in coarse mode, are increased considerably by release from the sea-ice surface under strong wind conditions. Sulfate depletion by sea-salt fractionation was found to be limited in sea-salt aerosols because of the presence of non-sea-salt (NSS) SO42-. However, coarse and fine sea-salt particles were found to be rich in Mg. Strong Mg enrichment might be more likely to proceed in fine sea-salt particles. Magnesium-rich sea-salt particles might be released from the surface of snow and slush layer (brine) on sea ice and frost flowers. Mirabilite-like and ikaite-like particles were identified only in aerosol samples collected near new sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.

  16. Primary and secondary organic aerosols in Fresno, California during wintertime: Results from high resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ge, Xinlei; Setyan, Ari; Sun, Yele; Zhang, Qi

    2012-10-01

    Organic aerosols (OA) were studied in Fresno, California, in winter 2010 with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). OA dominated the submicron aerosol mass (average = 67%) with an average concentration of 7.9μg m-3 and a nominal formula of C1H1.59N0.014O0.27S0.00008, which corresponds to an average organic mass-to-carbon ratio of 1.50. Three primary OA (POA) factors and one oxygenated OA factor (OOA) representative of secondary OA (SOA) were identified via Positive Matrix Factorization of the high-resolution mass spectra. The three POA factors, which include a traffic-related hydrocarbon-like OA (HOA), a cooking OA (COA), and a biomass burning OA (BBOA) released from residential heating, accounted for an average 57% of the OA mass and up to 80% between 6 - 9 P.M., during which enhanced emissions from evening rush hour traffic, dinner cooking, and residential wood burning were exacerbated by low mixed layer height. The mass-based size distributions of the OA factors were estimated based on multilinear analysis of the size-resolved mass spectra of organics. Both HOA and BBOA peaked at ˜140 nm in vacuum aerodynamic diameter (Dva) while OOA peaked at an accumulation mode of ˜460 nm. COA exhibited a unique size distribution with two size modes centering at ˜200 nm and 450 nm respectively. This study highlights the leading roles played by anthropogenic POA emissions, primarily from traffic, cooking and residential heating, in aerosol pollution in Fresno in wintertime.

  17. Aerosol Optical Properties Derived from the DRAGON-NE Asia Campaign, and Implications for a Single-Channel Algorithm to Retrieve Aerosol Optical Depth in Spring from Meteorological Imager (MI) On-Board the Communication, Ocean, and Meteorological Satellite (COMS)

    NASA Technical Reports Server (NTRS)

    Kim, M.; Kim, J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T. F.; Lim, J.; Song, C.; Lee, S.; hide

    2016-01-01

    An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-northeast (NE) Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD) from a Meteorological Imager (MI) on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS). This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 +/- 0.04) in the assumed single scattering albedo (SSA) can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET) inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs) were categorized by SSAs at 675 nm of 0.92 +/- 0.035 for spring (March, April, and May). After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 +/- 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 +/- 0.40 to 2.14 +/- 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT) with the new aerosol model, show

  18. Satellite Estimates of the Direct Radiative Forcing of Biomass Burning Aerosols Over South America and Africa

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Kliche, Donna V.; Berendes, Todd; Welch, Ronald M.; Yang, S.K.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic are important to the earth's radiative balance. Therefore it is important to provide adequate validation information on the spatial, temporal and radiative properties of aerosols. This will enable us to predict realistic global estimates of aerosol radiative effects more confidently. The current study utilizes 66 AVHRR LAC (Local Area Coverage) and coincident Earth Radiation Budget Experiment (ERBE) images to characterize the fires, smoke and radiative forcings of biomass burning aerosols over four major ecosystems of South America.

  19. Aerosol composition and source apportionment in Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Oyola, Pedro; Martinez, Roberto

    1999-04-01

    Santiago de Chile, São Paulo and Mexico City are Latin American urban areas that suffer from heavy air pollution. In order to study air pollution in Santiago area, an aerosol source apportionment study was designed to measure ambient aerosol composition and size distribution for two downtown sampling sites in Santiago. The aerosol monitoring stations were operated in Gotuzo and Las Condes during July and August 1996. The study employed stacked filter units (SFU) for aerosol sampling, collecting fine mode aerosol (dp<2 μm) and coarse mode aerosol (2Aerosol mass (PM 10 mass of particles smaller than 10 μm) and black carbon concentration were also measured. Particle-Induced X-ray Emission (PIXE) was used to measure the concentration of 22 trace elements at levels below 0.5 ng m -3. Quantitative aerosol source apportionment was performed using Absolute Principal Factor Analysis (APFA). Very high aerosol concentrations were observed (up to 400 μg/m 3 PM 10). The main aerosol particle sources in Santiago are resuspended soil dust and traffic emissions. Coarse particles account for 63% of PM 10 aerosol in Gotuzo and 53% in Las Condes. A major part of this component is resuspended soil dust. In the fine fraction, resuspended soil dust accounts for 15% of fine mass, and the aerosols associated with transportation activities account for a high 64% of the fine particle mass. Sulfate particle is an important component of the aerosol in Santiago, mainly originating from gas-to-particle conversion from SO 2. In the Gotuzo site, sulfates are the highest aerosol component, accounting for 64.5% of fine mass. Direct traffic emissions are generally mixed with resuspended soil dust. It is difficult to separate the two components, because the soil dust in downtown Santiago is contaminated with Pb, Br, Cl, and other heavy metals that are also tracers for traffic emissions. Residual oil combustion is observed, with the presence of V, S and Ni. An

  20. Investigation of biomass burning and aerosol loading and transport in South America utilizing geostationary satellites

    NASA Technical Reports Server (NTRS)

    Menzel, Paul; Prins, Elaine

    1995-01-01

    This study attempts to assess the extent of burning and associated aerosol transport regimes in South America and the South Atlantic using geostationary satellite observations, in order to explore the possible roles of biomass burning in climate change and more directly in atmospheric chemistry and radiative transfer processes. Modeling and analysis efforts have suggested that the direct and indirect radiative effects of aerosols from biomass burning may play a major role in the radiative balance of the earth and are an important factor in climate change calculations. One of the most active regions of biomass burning is located in South America, associated with deforestation in the selva (forest), grassland management, and other agricultural practices. As part of the NASA Aerosol Interdisciplinary Program, we are utilizing GOES-7 (1988) and GOES-8 (1995) visible and multispectral infrared data (4, 11, and 12 microns) to document daily biomass burning activity in South America and to distinguish smoke/aerosols from other multi-level clouds and low-level moisture. This study catalogues the areal extent and transport of smoke/aerosols throughout the region and over the Atlantic Ocean for the 1988 (July-September) and 1995 (June-October) biomass burning seasons. The smoke/haze cover estimates are compared to the locations of fires to determine the source and verify the haze is actually associated with biomass burning activities. The temporal resolution of the GOES data (half-hourly in South America) makes it possible to determine the prevailing circulation and transport of aerosols by considering a series of visible and infrared images and tracking the motion of smoke, haze and adjacent clouds. The study area extends from 40 to 70 deg W and 0 to 40 deg S with aerosol coverage extending over the Atlantic Ocean when necessary. Fire activity is estimated with the GOES Automated Biomass Burning Algorithm (ABBA). To date, our efforts have focused on GOES-7 and GOES-8 ABBA

  1. Optical Properties of Black and Brown Carbon Aerosols from Laboratory Combustion of Wildland Fuels

    NASA Astrophysics Data System (ADS)

    Beres, N. D.; Molzan, J.

    2015-12-01

    Aerosol light absorption in the solar spectral region (300 nm - 2300 nm) of the atmosphere is key for the direct aerosol radiative forcing, which is determined by aerosol single scattering albedo (SSA), asymmetry parameter, and by the albedo of the underlying surface. SSA is of key importance for the sign and quantity of aerosol direct radiative forcing; that is, does the aerosol make the earth look darker (heating) or whiter (cooling)? In addition, these optical properties are needed for satellite retrievals of aerosol optical depth and properties. During wildland fires, aerosol optical absorption is largely determined by black carbon (BC) and brown carbon (BrC) emissions. BC is strongly absorbing throughout the solar spectrum, while BrC absorption strongly increases toward shorter wavelength and can be neglected in the red and infrared. Optical properties of BrC emitted from wildland fires are poorly understood and need to be studied as function of fuel type and moisture content and combustion conditions. While much more is known about BC optical properties, knowledge for the ultraviolet (UV) spectral region is still lacking and critically needed for satellite remote sensing (e.g., TOMS, OMI) and for modeling of tropospheric photochemistry. Here, a project to better characterize biomass burning aerosol optical properties is described. It utilizes a laboratory biomass combustion chamber to generate aerosols through combustion of different wildland fuels of global and regional importance. Combustion aerosol optics is characterized with an integrating nephelometer to measure aerosol light scattering and a photoacoustic instrument to measure aerosol light absorption. These measurements will yield optical properties that are needed to improve qualitative and quantitative understanding of aerosol radiative forcing and satellite retrievals for absorbing carbonaceous aerosols from combustion of wildland fuels.

  2. Device Cleaning and Infection Control in Aerosol Therapy.

    PubMed

    O'Malley, Catherine A

    2015-06-01

    Aerosol delivery equipment used to administer inhaled medications includes the nebulizer, positive expiratory pressure devices added to the nebulizer, and valved holding chambers (spacers). These devices are semi-critical medical devices, and as such, infection prevention and control (IPC) guidelines recommend that they be cleaned, disinfected, rinsed with sterile water, and air-dried. There is confusion surrounding the care of aerosol devices because of inconsistencies in the various published IPC guidelines, lack of a standard of practice among institutions and respiratory therapists (RTs), and manufacturer's instructions for use of these devices are not always compatible with guidelines or practice. Challenges lie in awareness of IPC guidelines and establishing a standard for the care of aerosol delivery devices among all stakeholders/manufacturers, governments, vendors, and users. The latest IPC guideline from the Cystic Fibrosis Foundation, reviewed and endorsed by the Society for Healthcare Epidemiology of America and the Association for Professionals in Infection Control, has a recommendation for disposable nebulizers and a recommendation for reusable nebulizers. Reusable nebulizers should be cleaned, disinfected, rinsed with sterile water (if using a cold disinfectant), and air-dried between uses. The mouthpiece/mask of disposable nebulizers should be wiped with an alcohol pad, the residual volume should be rinsed out with sterile water after use, and the nebulizer should be replaced every 24 h. The RT plays a significant and responsible role in providing and teaching aerosol therapy to patients. The RT and all stakeholders need to work together to provide a standard of care for the safe use of aerosol delivery devices. Copyright © 2015 by Daedalus Enterprises.

  3. Field evidences for the positive effects of aerosols on tree growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Wu, Jin; Chen, Min

    Theoretical and eddy-covariance studies demonstrate that aerosol-loading stimulates canopy photosynthesis, but field evidence for the aerosol effect on tree growth is limited. For this study, we measured in-situ daily stem growth rates of aspen trees under a wide range of aerosol-loading in China. The results showed that daily stem growth rates were positively correlated with aerosol-loading, even at exceptionally high aerosol levels. Using structural equation modelling analysis, we showed that variations in stem growth rates can be largely attributed to two environmental variables co-varying with aerosol loading: diffuse fraction of radiation and vapor pressure deficit (VPD). Furthermore, we found thatmore » these two factors influence stem growth by influencing photosynthesis from different parts of canopy. By using field observations and a mechanistic photosynthesis model, we demonstrate that photosynthetic rates of both sun and shade leaves increased under high aerosol-loading conditions but for different reasons. For sun leaves, the photosynthetic increase was primarily attributed to the concurrent lower VPD; for shade leaves, the positive aerosol effect was tightly connected with increased diffuse light. Overall, our study provides the first field-evidence of increased tree growth under high aerosol loading. We highlight the importance of understanding biophysical mechanisms of aerosol-meteorology interactions, and incorporating the different pathways of aerosol effects into earth system models to improve the prediction of large-scale aerosol impacts, and the associated vegetation-mediated climate feedbacks.« less

  4. Field evidences for the positive effects of aerosols on tree growth

    DOE PAGES

    Wang, Xin; Wu, Jin; Chen, Min; ...

    2018-06-01

    Theoretical and eddy-covariance studies demonstrate that aerosol-loading stimulates canopy photosynthesis, but field evidence for the aerosol effect on tree growth is limited. For this study, we measured in-situ daily stem growth rates of aspen trees under a wide range of aerosol-loading in China. The results showed that daily stem growth rates were positively correlated with aerosol-loading, even at exceptionally high aerosol levels. Using structural equation modelling analysis, we showed that variations in stem growth rates can be largely attributed to two environmental variables co-varying with aerosol loading: diffuse fraction of radiation and vapor pressure deficit (VPD). Furthermore, we found thatmore » these two factors influence stem growth by influencing photosynthesis from different parts of canopy. By using field observations and a mechanistic photosynthesis model, we demonstrate that photosynthetic rates of both sun and shade leaves increased under high aerosol-loading conditions but for different reasons. For sun leaves, the photosynthetic increase was primarily attributed to the concurrent lower VPD; for shade leaves, the positive aerosol effect was tightly connected with increased diffuse light. Overall, our study provides the first field-evidence of increased tree growth under high aerosol loading. We highlight the importance of understanding biophysical mechanisms of aerosol-meteorology interactions, and incorporating the different pathways of aerosol effects into earth system models to improve the prediction of large-scale aerosol impacts, and the associated vegetation-mediated climate feedbacks.« less

  5. Aerosol Measurements by the Globally Distributed Micro Pulse Lidar Network

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Judd; Campbell, James; Berkoff, Tim; Starr, David (Technical Monitor)

    2001-01-01

    Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide full time profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently eight sites in operation and over a dozen planned. At all sited there are also passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The network operation includes instrument operation and calibration and the processing of aerosol measurements with standard retrievals and data products from the network sites. Data products include optical thickness and extinction cross section profiles. Application of data is to supplement satellite aerosol measurements and to provide a climatology of the height distribution of aerosol. The height distribution of aerosol is important for aerosol transport and the direct scattering and absorption of shortwave radiation in the atmosphere. Current satellite and other data already provide a great amount of information on aerosol distribution, but no passive technique can adequately resolve the height profile of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched in early 2002. GLAS will provide global measurements of the height distribution of aerosol. The MP lidar network will provide ground truth and analysis support for GLAS and other NASA Earth Observing System data. The instruments, sites, calibration procedures and standard data product algorithms for the MPL network will be described.

  6. Strong impacts on aerosol indirect effects from historical oxidant changes

    NASA Astrophysics Data System (ADS)

    Hafsahl Karset, Inger Helene; Koren Berntsen, Terje; Storelvmo, Trude; Alterskjær, Kari; Grini, Alf; Olivié, Dirk; Kirkevåg, Alf; Seland, Øyvind; Iversen, Trond; Schulz, Michael

    2018-06-01

    Uncertainties in effective radiative forcings through aerosol-cloud interactions (ERFaci, also called aerosol indirect effects) contribute strongly to the uncertainty in the total preindustrial-to-present-day anthropogenic forcing. Some forcing estimates of the total aerosol indirect effect are so negative that they even offset the greenhouse gas forcing. This study highlights the role of oxidants in modeling of preindustrial-to-present-day aerosol indirect effects. We argue that the aerosol precursor gases should be exposed to oxidants of its era to get a more correct representation of secondary aerosol formation. Our model simulations show that the total aerosol indirect effect changes from -1.32 to -1.07 W m-2 when the precursor gases in the preindustrial simulation are exposed to preindustrial instead of present-day oxidants. This happens because of a brightening of the clouds in the preindustrial simulation, mainly due to large changes in the nitrate radical (NO3). The weaker oxidative power of the preindustrial atmosphere extends the lifetime of the precursor gases, enabling them to be transported higher up in the atmosphere and towards more remote areas where the susceptibility of the cloud albedo to aerosol changes is high. The oxidation changes also shift the importance of different chemical reactions and produce more condensate, thus increasing the size of the aerosols and making it easier for them to activate as cloud condensation nuclei.

  7. Aerosols and lightning activity: The effect of vertical profile and aerosol type

    NASA Astrophysics Data System (ADS)

    Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Amiridis, V.; Marinou, E.; Price, C.; Kazantzidis, A.

    2016-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been utilized for the first time in a study regarding lightning activity modulation due to aerosols. Lightning activity observations, obtained by the ZEUS long range Lightning Detection Network, European Centre for Medium range Weather Forecasts (ECMWF) Convective Available Potential Energy (CAPE) data and Cloud Fraction (CF) retrieved by MODIS on board Aqua satellite have been combined with CALIPSO CALIOP data over the Mediterranean basin and for the period March to November, from 2007 to 2014. The results indicate that lightning activity is enhanced during days characterized by higher Aerosol Optical Depth (AOD) values, compared to days with no lightning. This study contributes to existing studies on the link between lightning activity and aerosols, which have been based just on columnar AOD satellite retrievals, by performing a deeper analysis into the effect of aerosol profiles and aerosol types. Correlation coefficients of R = 0.73 between the CALIPSO AOD and the number of lightning strikes detected by ZEUS and of R = 0.93 between ECMWF CAPE and lightning activity are obtained. The analysis of extinction coefficient values at 532 nm indicates that at an altitudinal range exists, between 1.1 km and 2.9 km, where the values for extinction coefficient of lightning-active and non-lightning-active cases are statistically significantly different. Finally, based on the CALIPSO aerosol subtype classification, we have investigated the aerosol conditions of lightning-active and non-lightning-active cases. According to the results polluted dust aerosols are more frequently observed during non-lightning-active days, while dust and smoke aerosols are more abundant in the atmosphere during the lightning-active days.

  8. Spectral solar attenuation due to aerosol loading over an urban area in India

    NASA Astrophysics Data System (ADS)

    Latha, K. Madhavi; Badarinath, K. V. S.

    2005-06-01

    Anthropogenic activities in urban areas are sources for atmospheric aerosols and are increasing due to population explosion and migration. Many large cities in the developing world are presently plagued by high levels of atmospheric pollution and long-term effect of urban aerosol on climate is an important topic. In the present study, ground-based measurements of solar irradiance, aerosol loading and black carbon (BC) aerosol concentration have been analyzed during different aerosol loading conditions during 2003 over an urban environment. BC aerosols concentration has been observed to be enhanced during high aerosol optical depth day suggesting influence of local anthropogenic activities. The analysis of wind fields over the study area during the measurement period is from north with continental air mass prevailing over the region. Spectral measurements of solar irradiance exhibited variations based on aerosol loading in urban atmosphere. Relative attenuations caused by aerosols have been found to be of the order of 21% and 17% on the irradiance on visible and near infrared respectively.

  9. Aerosol retrieval experiments in the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; de Leeuw, G.; Griesfeller, J.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-08-01

    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013), algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun photometer

  10. Can Biomass Burning Explain Isotopically Light Fe in Marine Aerosols?

    NASA Astrophysics Data System (ADS)

    Sherry, A. M.; Anbar, A. D.; Herckes, P.; Romaniello, S. J.

    2016-02-01

    Iron (Fe) is an important micronutrient that limits primary productivity in large parts of the ocean. In these regions, atmospheric aerosol deposition is an important source of Fe to the surface ocean and thus has a critical impact on ocean biogeochemistry. Fe-bearing aerosols originate from many sources with potentially distinct Fe isotopic compositions. Consequently, Fe isotopes may provide a new tool to trace the sources of aerosol Fe to the oceans. Mead et al. (2013) first discovered that Fe in the fine fraction of Bermuda aerosols is often isotopically lighter than Fe from known anthropogenic and crustal sources. 1 These authors suggested that this light isotopic signature was likely the result of biomass burning, since Fe in plants is the only known source of isotopically light Fe. More recently, Conway et al. found that Fe in the soluble fraction of aerosols collected during 2010-2011 North Atlantic GEOTRACES cruises also showed light isotope values, which they likewise attributed to biomass burning.2 These studies are further supported by new modeling work which suggests that biomass burning aerosols should contribute significant amounts of soluble Fe to tropical and southern oceans.3To test if biomass burning releases aerosols with a light Fe isotope composition, we are conducting lab-scale biomass burning experiments using natural samples of vegetation and leaf litter. Burn aerosols were collected on cellulose filters, then digested and analyzed for trace metal concentrations using inductively-coupled mass spectrometry (ICP-MS). Fe isotopes were determined by using multiple collector ICP-MS following separation and purification of Fe using anion exchange chromatography. We will discuss metal concentration and isotope data from these experiments with implications for the interpretation of Fe isotope signals in aerosol samples. 1Mead, C et al. GRL, 2013, 40, 5722-5727. 2 Conway, T et al. Goldschmidt Abs 2015 593. 3Ito, A. ES&T Lett, 2015, 2, 70-75.

  11. The NASA-Ames Research Center stratospheric aerosol model. 2. Sensitivity studies and comparison with observatories

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Turco, R. P.; Hamill, P.; Kiang, C. S.; Whitten, R. C.

    1979-01-01

    Sensitivity tests were performed on a one-dimensional, physical-chemical model of the unperturbed stratospheric aerosols, and model calculations were compared with observations. The tests and comparisons suggest that coagulation controls the particle number mixing ratio, although the number of condensation nuclei at the tropopause and the diffusion coefficient at high altitudes are also important. The sulfur gas source strength and the aerosol residence time are much more important than the supply of condensation nuclei in establishing mass and large particle concentrations. The particle size is also controlled mainly by gas supply and residence time. In situ observations of the aerosols and laboratory measurements of aerosols, parameters that can provide further information about the physics and chemistry of the stratosphere and the aerosols found there are provided.

  12. Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing.

    PubMed

    Wang, Menghua

    2006-12-10

    The current ocean color data processing system for the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and the moderate resolution imaging spectroradiometer (MODIS) uses the Rayleigh lookup tables that were generated using the vector radiative transfer theory with inclusion of the polarization effects. The polarization effects, however, are not accounted for in the aerosol lookup tables for the ocean color data processing. I describe a study of the aerosol polarization effects on the atmospheric correction and aerosol retrieval algorithms in the ocean color remote sensing. Using an efficient method for the multiple vector radiative transfer computations, aerosol lookup tables that include polarization effects are generated. Simulations have been carried out to evaluate the aerosol polarization effects on the derived ocean color and aerosol products for all possible solar-sensor geometries and the various aerosol optical properties. Furthermore, the new aerosol lookup tables have been implemented in the SeaWiFS data processing system and extensively tested and evaluated with SeaWiFS regional and global measurements. Results show that in open oceans (maritime environment), the aerosol polarization effects on the ocean color and aerosol products are usually negligible, while there are some noticeable effects on the derived products in the coastal regions with nonmaritime aerosols.

  13. Measurement of phase function of aerosol at different altitudes by CCD Lidar

    NASA Astrophysics Data System (ADS)

    Sun, Peiyu; Yuan, Ke'e.; Yang, Jie; Hu, Shunxing

    2018-02-01

    The aerosols near the ground are closely related to human health and climate change, the study on which has important significance. As we all know, the aerosol is inhomogeneous at different altitudes, of which the phase function is also different. In order to simplify the retrieval algorithm, it is usually assumed that the aerosol is uniform at different altitudes, which will bring measurement error. In this work, an experimental approach is demonstrated to measure the scattering phase function of atmospheric aerosol particles at different heights by CCD lidar system, which could solve the problem of the traditional CCD lidar system in assumption of phase function. The phase functions obtained by the new experimental approach are used to retrieve the aerosol extinction coefficient profiles. By comparison of the aerosol extinction coefficient retrieved by Mie-scattering aerosol lidar and CCD lidar at night, the reliability of new experimental approach is verified.

  14. Distinguishing the roles of meteorology, emission control measures, regional transport, and co-benefits of reduced aerosol feedbacks in ;APEC Blue;

    NASA Astrophysics Data System (ADS)

    Gao, Meng; Liu, Zirui; Wang, Yuesi; Lu, Xiao; Ji, Dongsheng; Wang, Lili; Li, Meng; Wang, Zifa; Zhang, Qiang; Carmichael, Gregory R.

    2017-10-01

    Air quality are strongly influenced by both emissions and meteorological conditions. During the Asia Pacific Economic Cooperation (APEC) week (November 5-11, 2014), the Chinese government implemented unprecedented strict emission control measures in Beijing and surrounding provinces, and then a phenomenon referred to as ;APEC Blue; (rare blue sky) occurred. It is challenging to quantify the effectiveness of the implemented strict control measures solely based on observations. In this study, we use the WRF-Chem model to distinguish the roles of meteorology, emission control measures, regional transport, and co-benefits of reduced aerosol feedbacks during APEC week. In general, meteorological variables, PM2.5 concentrations and PM2.5 chemical compositions are well reproduced in Beijing. Positive weather conditions (lower temperature, lower relative humidity, higher wind speeds and enhanced boundary layer heights) play important roles in ;APEC Blue;. Applying strict emission control measures in Beijing and five surrounding provinces can only explain an average decrease of 17.7 μg/m3 (-21.8%) decreases in PM2.5 concentrations, roughly more than half of which is caused by emission controls that implemented in the five surrounding provinces (12.5 μg/m3). During the APEC week, non-local emissions contributed to 41.3% to PM2.5 concentrations in Beijing, and the effectiveness of implementing emission control measures hinges on dominant pathways and transport speeds. Besides, we also quantified the contribution of reduced aerosol feedbacks due to strict emission control measures in this study. During daytime, co-benefits of reduced aerosol feedbacks account for about 10.9% of the total decreases in PM2.5 concentrations in urban Beijing. The separation of contributions from aerosol absorption and scattering restates the importance of controlling BC to accelerate the effectiveness of aerosol pollution control.

  15. Impacts of springtime biomass burning in the northern Southeast Asia on marine organic aerosols over the Gulf of Tonkin, China.

    PubMed

    Zheng, Lishan; Yang, Xiaoyang; Lai, Senchao; Ren, Hong; Yue, Siyao; Zhang, Yingyi; Huang, Xin; Gao, Yuanguan; Sun, Yele; Wang, Zifa; Fu, Pingqing

    2018-06-01

    Fine particles (PM 2.5 ) samples, collected at Weizhou Island over the Gulf of Tonkin on a daytime and nighttime basis in the spring of 2015, were analyzed for primary and secondary organic tracers, together with organic carbon (OC), elemental carbon (EC), and stable carbon isotopic composition (δ 13 C) of total carbon (TC). Five organic compound classes, including saccharides, lignin/resin products, fatty acids, biogenic SOA tracers and phthalic acids, were quantified by gas chromatography/mass spectrometry (GC/MS). Levoglucosan was the most abundant organic species, indicating that the sampling site was under strong influence of biomass burning. Based on the tracer-based methods, the biomass-burning-derived fraction was estimated to be the dominant contributor to aerosol OC, accounting for 15.7% ± 11.1% and 22.2% ± 17.4% of OC in daytime and nighttime samples, respectively. In two episodes E1 and E2, organic aerosols characterized by elevated concentrations of levoglucosan as well as its isomers, sugar compounds, lignin products, high molecular weight (HMW) fatty acids and β-caryophyllinic acid, were attributed to the influence of intensive biomass burning in the northern Southeast Asia (SEA). However, the discrepancies in the ratios of levoglucosan to mannosan (L/M) and OC (L/OC) as well as the δ 13 C values suggest the type of biomass burning and the sources of organic aerosols in E1 and E2 were different. Hardwood and/or C 4 plants were the major burning materials in E1, while burning of softwood and/or C 3 plants played important role in E2. Furthermore, more complex sources and enhanced secondary contribution were found to play a part in organic aerosols in E2. This study highlights the significant influence of springtime biomass burning in the northern SEA to the organic molecular compositions of marine aerosols over the Gulf of Tonkin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Aerosols, light, and water: Measurements of aerosol optical properties at different relative humidities

    NASA Astrophysics Data System (ADS)

    Orozco, Daniel

    The Earth's atmosphere is composed of a large number of different gases as well as tiny suspended particles, both in solid and liquid state. These tiny particles, called atmospheric aerosols, have an immense impact on our health and on our global climate. Atmospheric aerosols influence the Earth's radiation budget both directly and indirectly. In the direct effect, aerosols scatter and absorb sunlight changing the radiative balance of the Earth-atmosphere system. Aerosols indirectly influence the Earth's radiation budget by modifying the microphysical and radiative properties of clouds as well as their water content and lifetime. In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering coefficient and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. This dissertation presents the aerosol hygroscopicity experiment investigated using a novel dryer-humidifier system, coupled to a TSI-3563 nephelometer, to obtain the light scattering coefficient (sp) as a function of relative humidity (RH) in hydration and dehydration modes. The measurements were performed in Porterville, CA (Jan 10-Feb 6, 2013), Baltimore, MD (Jul 3-30, 2013), and Golden, CO (Jul 12-Aug 10, 2014). Observations in Porterville and Golden were part of the NASA-sponsored DISCOVER-AQ project. The measured sp under varying RH in the three sites was combined with ground aerosol extinction, PM2:5mass concentrations, particle composition measurements, and compared with airborne observations performed during campaigns. The enhancement factor, f(RH), defined as the ratio of sp

  17. Multi-Decadal Change of Atmospheric Aerosols and Their Effect on Surface Radiation

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Tan, Qian; Wild, Martin; Qian, Yun; Yu, Hongbin; Bian, Huisheng; Wang, Weiguo

    2012-01-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007, during which a suite of aerosol data from satellite observations and ground-based remote sensing and in-situ measurements have become available. We analyze the long-term global and regional aerosol optical depth and concentration trends and their relationship to the changes of emissions" and assess the role aerosols play in the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening") at different regions of the world, including the major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of emissions, dust and biomass burning regions that have large interannual variabilities, downwind regions that are directly affected by the changes in the source area, and remote regions that are considered to representing "background" conditions.

  18. Metals and possible sources of lead in aerosols at the Dinghushan nature reserve, southern China.

    PubMed

    Zhu, Xiao-min; Kuang, Yuan-wen; Li, Jiong; Schroll, Reiner; Wen, Da-zhi

    2015-08-15

    Aerosols play an important role in depositing metals into forest ecosystems. Better understanding of forest aerosols with regard to their metal content and their possible sources is of great significance for air quality and forest health. Particulate matter with an aerodynamic diameter less than 2.5 µm (PM(2.5)) in aerosols was collected every month for 20 months using moderate-volume samplers in the Dinghushan (DHS) nature reserve in southern China. The concentrations of metals (Al, Cd, Mn, Ni, Pb, and Zn) as well as the Pb isotopic ratios in the PM(2.5) samples were measured by inductively coupled plasma mass spectrometry (ICP-MS). Moderate pollution with aerosol PM(2.5) was detected at the DHS nature reserve with the air mass from mainland China being the predominant PM(2.5) source. The high enrichment factors (EFs) for the heavy metals Pb, Cd, and Zn, as well as the PM(2.5) mass concentrations, coupled with backward trajectory analysis, indicated the anthropogenic origins of the PM(2.5) and of the heavy metals in the PM(2.5). The Pb isotopic ratios revealed the contributions from various Pb sources, which varied between seasons. Industrial emissions and automobile exhaust from the Pearl River Delta (PRD) primarily contributed to the anthropogenic Pb in PM(2.5), although there was occasionally a contribution from coal combustion during the wet season. Pb isotopic ratios analyses are helpful for air quality assessment and Pb source tracing. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans.

    PubMed

    Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram

    2016-12-26

    An estimation of the aerosol multiple-scattering reflectance is an important part of the atmospheric correction procedure in satellite ocean color data processing. Most commonly, the utilization of two near-infrared (NIR) bands to estimate the aerosol optical properties has been adopted for the estimation of the effects of aerosols. Previously, the operational Geostationary Color Ocean Imager (GOCI) atmospheric correction scheme relies on a single-scattering reflectance ratio (SSE), which was developed for the processing of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data to determine the appropriate aerosol models and their aerosol optical thicknesses. The scheme computes reflectance contributions (weighting factor) of candidate aerosol models in a single scattering domain then spectrally extrapolates the single-scattering aerosol reflectance from NIR to visible (VIS) bands using the SSE. However, it directly applies the weight value to all wavelengths in a multiple-scattering domain although the multiple-scattering aerosol reflectance has a non-linear relationship with the single-scattering reflectance and inter-band relationship of multiple scattering aerosol reflectances is non-linear. To avoid these issues, we propose an alternative scheme for estimating the aerosol reflectance that uses the spectral relationships in the aerosol multiple-scattering reflectance between different wavelengths (called SRAMS). The process directly calculates the multiple-scattering reflectance contributions in NIR with no residual errors for selected aerosol models. Then it spectrally extrapolates the reflectance contribution from NIR to visible bands for each selected model using the SRAMS. To assess the performance of the algorithm regarding the errors in the water reflectance at the surface or remote-sensing reflectance retrieval, we compared the SRAMS atmospheric correction results with the SSE atmospheric correction using both simulations and in situ match-ups with the

  20. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  1. AtTMEM18 plays important roles in pollen tube and vegetative growth in Arabidopsis

    PubMed Central

    Dou, Xiao‐Ying; Yang, Ke‐Zhen; Ma, Zhao‐Xia; Chen, Li‐Qun; Zhang, Xue‐Qin; Bai, Jin‐Rong

    2016-01-01

    Abstract In flowering plants, pollen tube growth is essential for delivery of male gametes into the female gametophyte or embryo sac for double fertilization. Although many genes have been identified as being involved in the process, the molecular mechanisms of pollen tube growth remains poorly understood. In this study, we identified that the Arabidopsis Transmembrane Protein 18 (AtTMEM18) gene played important roles in pollen tube growth. The AtTMEM18 shares a high similarity with the Transmembrane 18 proteins (TMEM18s) that are conserved in most eukaryotes and may play important roles in obesity in humans. Mutation in the AtTMEM18 by a Ds insertion caused abnormal callose deposition in the pollen grains and had a significant impact on pollen germination and pollen tube growth. AtTMEM18 is expressed in pollen grains, pollen tubes, root tips and other vegetative tissues. The pollen‐rescued assays showed that the mutation in AtTMEM18 also caused defects in roots, stems, leaves and transmitting tracts. AtTMEM18‐GFP was located around the nuclei. Genetic assays demonstrated that the localization of AtTMEM18 around the nuclei in the generative cells of pollen grains was essential for the male fertility. Furthermore, expression of the rice TMEM18‐homologous protein (OsTMEM18) driven by LAT52 promoter could recover the fertility of the Arabidopsis attmem18 mutant. These results suggested that the TMEM18 is important for plant growth in Arabidopsis. PMID:26699939

  2. Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution

    NASA Astrophysics Data System (ADS)

    Safarpour, S.; Abdullah, K.; Lim, H. S.; Dadras, M.

    2017-09-01

    Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Terra satellites, for the 10 years period of 2000 - 2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer and winter and ordinary kriging yielded the best results for fall.

  3. Measurements of fluorescent aerosols using a mutil-channel lidar spectrometer system during DUBI 2016 Campaign

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Huang, J.; Zhou, T.; Shi, J.; Sugimoto, N.; Tang, K.

    2016-12-01

    Atmospheric bioaerosols are relevant for public health and may play an important role in the climate system. Previous studies have shown that abundant bioaerosols (such as microorganisms) injected into the atmosphere along with dust events, could affect leeward ecosystem and human health, even induce globe climate change. However, the challenge in quantifying bioaerosol climate effects (e.g., radiative forcing and aerosol-cloud interactions) arises from large spatial and temporal heterogeneity of their concentrations, compositions, sizes, shape and optical properties. Lidar, as one of most advanced active remote sensing, is used to offer some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. In order to investigate the characterization of atmospheric bioaerosols along transported pathways of dust aerosols, we carried out DUBI (DUst BIoaerosol) 2016 Campaign over Northern China in spring of 2016. Lots of instruments, including bioaerosol sampling, lidar as well as others, were installed at three sites­ (Erenhot, Zhangbei and Jinan) simultaneously. A multi-channel lidar spectrometer system was developed to observe Mie, Raman scattering and laser-induced fluorescence excitation at 355 nm from the atmosphere. The lidar system operated polarization measurements at 355nm, aiming to identify dust particles from other aerosols. It employs a high power pulsed laser with energy of 80mJ at 355nm and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum between 360nm and 720nm with spectral resolution 5.7 nm using two spectrometers simultaneously. The spectrometer mainly includes an F/3.7 Crossed Czerny-Turner spectrographs, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at Zhangbei during DUBI 2016 Campaign. It has been

  4. Fungal spores overwhelm biogenic organic aerosols in a midlatitudinal forest

    NASA Astrophysics Data System (ADS)

    Zhu, Chunmao; Kawamura, Kimitaka; Fukuda, Yasuro; Mochida, Michihiro; Iwamoto, Yoko

    2016-06-01

    Both primary biological aerosol particles (PBAPs) and oxidation products of biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosols (OAs) in forested regions. However, little is known about their relative importance in diurnal timescales. Here, we report biomarkers of PBAP and secondary organic aerosols (SOAs) for their diurnal variability in a temperate coniferous forest in Wakayama, Japan. Tracers of fungal spores, trehalose, arabitol and mannitol, showed significantly higher levels in nighttime than daytime (p < 0.05), resulting from the nocturnal sporulation under near-saturated relative humidity. On the contrary, BVOC oxidation products showed higher levels in daytime than nighttime, indicating substantial photochemical SOA formation. Using tracer-based methods, we estimated that fungal spores account for 45 % of organic carbon (OC) in nighttime and 22 % in daytime, whereas BVOC oxidation products account for 15 and 19 %, respectively. To our knowledge, we present for the first time highly time-resolved results that fungal spores overwhelmed BVOC oxidation products in contributing to OA especially in nighttime. This study emphasizes the importance of both PBAPs and SOAs in forming forest organic aerosols.

  5. Long term aerosol and trace gas measurements in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  6. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  7. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  8. A numerical study of aerosol effects on the dynamics and microphysics of a deep convective cloud in a continental environment

    NASA Astrophysics Data System (ADS)

    Cui, Zhiqiang; Carslaw, Kenneth S.; Yin, Yan; Davies, Stewart

    2006-03-01

    The effects of aerosols on a deep convective cloud in a midlatitude continental environment are studied using an axisymmetric cloud model with a sectional treatment of aerosol and hydrometeor microphysical processes. Simulations are conducted using observations from the Cooperative Convective Precipitation Experiments (CCOPE). The isolated cloud occurred in an environment with low wind shear and with relatively dry air in the midtroposphere and upper troposphere. By varying the concentration of aerosol particles in the accumulation mode within realistic limits for a continental environment, the simulated cloud exhibited different properties. The overall impact as the aerosol concentration increased is that (1) the cloud development was inhibited; (2) the precipitation was suppressed; (3) the maximum values of liquid water content decreased, but the maximum values of droplet number concentration increased before the dissipating stage; (4) a clear tendency was found for ice crystals to be larger and less numerous in the anvil cloud; and (5) there was a significant reduction of the inflow in the lower 2 km of the atmosphere. In the relatively dry environment in the midtroposphere, the latent heat changes associated with the Wegener-Bergeron-Findeisen mechanism played an important role in the upper part of the cloud at altitudes below the homogeneous freezing level. In particular, immersion freezing and latent heat release were much more rapid in the base simulation than in the increased aerosol simulation. Less latent heat release and insufficient inflow together impeded the development of the cloud with the higher aerosol loading. Our simulations suggest that continental clouds existing below the homogeneous freezing level could show an opposite response of cloud top height and anvil crystal concentrations to changes in aerosol to what has previously been reported for clouds ascending to higher levels.

  9. Contributions to Pliocene Arctic warmth from removal of anthropogenic aerosol and enhanced forest fire emissions

    NASA Astrophysics Data System (ADS)

    Feng, R.; Otto-Bliesner, B. L.; Fletcher, T.; Ballantyne, A.; Brady, E. C.

    2016-12-01

    Changing atmosphere chemistry in the past has been hypothesized to have altered the earth's radiation budget, and hence the climate. Here, we use an advanced climate model to test whether this hypothesis can help explain the amplified warming in the northern high latitudes during the mid-Pliocene warm period (mPWP, 3.0 - 3.3 Ma). The amplified warming, suggested by terrestrial proxy records of northern high latitudes, is underestimated in previous climate simulations. This mismatch between observations and models may be partially due to proxy uncertainties, but also to insufficient model sensitivity, or incomplete knowledge of mPWP climate forcings. To explore the latter aspect, we conducted three coupled simulations using the same mPWP geography and topography, vegetation and CO2 level according to the PRISM3 reconstructions, but alternating emission scenarios among clean, polluted, and clean plus forest fire case. In the clean and polluted case, year-1850 emission and year-1850 natural plus year-2000 industrial emission are prescribed respectively. For the clean-plus-forest fire simulation, emissions from mPWP forest fire are constrained with a process-based prognostic fire model using fixed proxy SSTs. Preliminary results suggest that mPWP Arctic warmth is largely attributable to the removal of anthropogenic aerosols and enhanced deposition of the black carbon on snow and ice emitted from northern high latitude forest fires. Cloud radiative responses are shown to accelerate the summer sea ice melting from the continental margins, triggering the positive surface albedo and water vapor feedback that maintain a low perennial sea ice state in the Arctic Ocean. These results identify the important role that changes in aerosol chemistry may play in amplifying arctic surface temperatures of mPWP and insights on the role that aerosols may play in amplifying future Arctic temperatures.

  10. Effects of mixing states on the multiple-scattering properties of soot aerosols.

    PubMed

    Cheng, Tianhai; Wu, Yu; Gu, Xingfa; Chen, Hao

    2015-04-20

    The radiative properties of soot aerosols are highly sensitive to the mixing states of black carbon particles and other aerosol components. Light absorption properties are enhanced by the mixing state of soot aerosols. Quantification of the effects of mixing states on the scattering properties of soot aerosol are still not completely resolved, especially for multiple-scattering properties. This study focuses on the effects of the mixing state on the multiple scattering of soot aerosols using the vector radiative transfer model. Two types of soot aerosols with different mixing states such as external mixture soot aerosols and internal mixture soot aerosols are studied. Upward radiance/polarization and hemispheric flux are studied with variable soot aerosol loadings for clear and haze scenarios. Our study showed dramatic changes in upward radiance/polarization due to the effects of the mixing state on the multiple scattering of soot aerosols. The relative difference in upward radiance due to the different mixing states can reach 16%, whereas the relative difference of upward polarization can reach 200%. The effects of the mixing state on the multiple-scattering properties of soot aerosols increase with increasing soot aerosol loading. The effects of the soot aerosol mixing state on upwelling hemispheric flux are much smaller than in upward radiance/polarization, which increase with increasing solar zenith angle. The relative difference in upwelling hemispheric flux due to the different soot aerosol mixing states can reach 18% when the solar zenith angle is 75°. The findings should improve our understanding of the effects of mixing states on the optical properties of soot aerosols and their effects on climate. The mixing mechanism of soot aerosols is of critical importance in evaluating the climate effects of soot aerosols, which should be explicitly included in radiative forcing models and aerosol remote sensing.

  11. Roles of production, consumption and trade in global and regional aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Lin, J.; Tong, D.; Davis, S. J.; Ni, R.; Tan, X.; Pan, D.; Zhao, H.; Lu, Z.; Streets, D. G.; Feng, T.; Zhang, Q.; Yan, Y.; Hu, Y.; Li, J.; Liu, Z.; Jiang, X.; Geng, G.; He, K.; Huang, Y.; Guan, D.

    2016-12-01

    Anthropogenic aerosols exert strong radiative forcing on the climate system. Prevailing view regards aerosol radiative forcing as a result of emissions from regions' economic production, with China and other developing regions having the largest contributions to radiative forcing at present. However, economic production is driven by global demand for computation, and international trade allows for separation of regions consuming goods and services from regions where goods and related aerosol pollution are produced. It has recently been recognized that regions' consumption and trade have profoundly altered the spatial distribution of aerosol emissions and pollution. Building upon our previous work, this study quantifies for the first time the roles of trade and consumption in aerosol climate forcing attributed to different regions. We contrast the direct radiative forcing of aerosols related to regions' consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers like Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences in radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of

  12. Validation of MODIS aerosol optical depth over the Mediterranean Coast

    NASA Astrophysics Data System (ADS)

    Díaz-Martínez, J. Vicente; Segura, Sara; Estellés, Víctor; Utrillas, M. Pilar; Martínez-Lozano, J. Antonio

    2013-04-01

    Atmospheric aerosols, due to their high spatial and temporal variability, are considered one of the largest sources of uncertainty in different processes affecting visibility, air quality, human health, and climate. Among their effects on climate, they play an important role in the energy balance of the Earth. On one hand they have a direct effect by scattering and absorbing solar radiation; on the other, they also have an impact in precipitation, modifying clouds, or affecting air quality. The application of remote sensing techniques to investigate aerosol effects on climate has advanced significatively over last years. In this work, the products employed have been obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS is a sensor located onboard both Earth Observing Systems (EOS) Terra and Aqua satellites, which provide almost complete global coverage every day. These satellites have been acquiring data since early 2000 (Terra) and mid 2002 (Aqua) and offer different products for land, ocean and atmosphere. Atmospheric aerosol products are presented as level 2 products with a pixel size of 10 x 10 km2 in nadir. MODIS aerosol optical depth (AOD) is retrieved by different algorithms depending on the pixel surface, distinguishing between land and ocean. For its validation, ground based sunphotometer data from AERONET (Aerosol Robotic Network) has been employed. AERONET is an international operative network of Cimel CE318 sky-sunphotometers that provides the most extensive aerosol data base globally available of ground-based measurements. The ground sunphotometric technique is considered the most accurate for the retrieval of radiative properties of aerosols in the atmospheric column. In this study we present a validation of MODIS C051 AOD employing AERONET measurements over different Mediterranean coastal sites centered over an area of 50 x 50 km2, which includes both pixels over land and ocean. The validation is done comparing spatial

  13. Relative importance of multiple scattering by air molecules and aerosols in forming the atmospheric path radiance in the visible and near-infrared parts of the spectrum.

    PubMed

    Antoine, D; Morel, A

    1998-04-20

    Single and multiple scattering by molecules or by atmospheric aerosols only (homogeneous scattering), and heterogeneous scattering by aerosols and molecules, are recorded in Monte Carlo simulations. It is shown that heterogeneous scattering (1) always contributes significantly to the path reflectance (rho(path)), (2) is realized at the expense of homogeneous scattering, (3) decreases when aerosols are absorbing, and (4) introduces deviations in the spectral dependencies of reflectances compared with the Rayleigh exponent and the aerosol angstrom exponent. The ratio of rho(path) to the Rayleigh reflectance for an aerosol-free atmosphere is linearly related to the aerosol optical thickness. This result provides a basis for a new scheme for atmospheric correction of remotely sensed ocean color observations.

  14. simplified aerosol representations in global modeling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Peters, Karsten; Stevens, Bjorn; Rast, Sebastian; Schutgens, Nick; Stier, Philip

    2015-04-01

    The detailed treatment of aerosol in global modeling is complex and time-consuming. Thus simplified approaches are investigated, which prescribe 4D (space and time) distributions of aerosol optical properties and of aerosol microphysical properties. Aerosol optical properties are required to assess aerosol direct radiative effects and aerosol microphysical properties (in terms of their ability as aerosol nuclei to modify cloud droplet concentrations) are needed to address the indirect aerosol impact on cloud properties. Following the simplifying concept of the monthly gridded (1x1 lat/lon) aerosol climatology (MAC), new approaches are presented and evaluated against more detailed methods, including comparisons to detailed simulations with complex aerosol component modules.

  15. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  16. Influences of upwind emission sources and atmospheric processing on aerosol chemistry and properties at a rural location in the Northeastern U.S.

    DOE PAGES

    Zhou, Shan; Collier, Sonya; Xu, Jianzhong; ...

    2016-05-19

    Continuous real-time measurements of atmospheric aerosol with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer coupled with a fast temperature-stepping thermodenuder were carried out in summer 2011 at Brookhaven National Laboratory (BNL, 40.871°N, 72.89°W) during the Department of Energy Aerosol Life Cycle Intensive Operational Period campaign. BNL was frequently downwind of emissions from the New York metropolitan area and was exposed to various combinations of anthropogenic, biogenic, and marine emissions based on air mass history. The average concentration of submicrometer aerosol (PM1) during this study was 12.6 µg m –3 with 64% of the mass being organic. Organic aerosol (OA) atmore » BNL was found to be overwhelmingly secondary, consisting of (1) a fresher, semivolatile oxygenated organic aerosol (SV-OOA; oxygen-to-carbon ratio (O/C) = 0.54; 63% of OA mass) that was strongly influenced by transported urban plumes; (2) a regional, more aged, low-volatility OOA (LV-OOA; O/C = 0.97; 29% of OA mass) influenced by aqueous-phase processing; and (3) a nitrogen-enriched OA (NOA; nitrogen-to-carbon ratio (N/C) = 0.185; 8% of OA mass) likely composed of amine salts formed from acid-base reactions in industrial emissions. Urban emissions from the New York metropolitan areas to the W and SW in particular led to elevated PM1 mass concentration and altered aerosol composition at BNL. Transported urban plumes and local biogenic emissions likely interacted to enhance secondary organic aerosol production, primarily represented by SV-OOA. Lastly, these results suggest an important role that urban anthropogenic emissions play in affecting ambient PM concentration, composition, and physical-chemical properties at rural areas in the Northeast U.S.« less

  17. Influences of upwind emission sources and atmospheric processing on aerosol chemistry and properties at a rural location in the Northeastern U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shan; Collier, Sonya; Xu, Jianzhong

    Continuous real-time measurements of atmospheric aerosol with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer coupled with a fast temperature-stepping thermodenuder were carried out in summer 2011 at Brookhaven National Laboratory (BNL, 40.871°N, 72.89°W) during the Department of Energy Aerosol Life Cycle Intensive Operational Period campaign. BNL was frequently downwind of emissions from the New York metropolitan area and was exposed to various combinations of anthropogenic, biogenic, and marine emissions based on air mass history. The average concentration of submicrometer aerosol (PM1) during this study was 12.6 µg m –3 with 64% of the mass being organic. Organic aerosol (OA) atmore » BNL was found to be overwhelmingly secondary, consisting of (1) a fresher, semivolatile oxygenated organic aerosol (SV-OOA; oxygen-to-carbon ratio (O/C) = 0.54; 63% of OA mass) that was strongly influenced by transported urban plumes; (2) a regional, more aged, low-volatility OOA (LV-OOA; O/C = 0.97; 29% of OA mass) influenced by aqueous-phase processing; and (3) a nitrogen-enriched OA (NOA; nitrogen-to-carbon ratio (N/C) = 0.185; 8% of OA mass) likely composed of amine salts formed from acid-base reactions in industrial emissions. Urban emissions from the New York metropolitan areas to the W and SW in particular led to elevated PM1 mass concentration and altered aerosol composition at BNL. Transported urban plumes and local biogenic emissions likely interacted to enhance secondary organic aerosol production, primarily represented by SV-OOA. Lastly, these results suggest an important role that urban anthropogenic emissions play in affecting ambient PM concentration, composition, and physical-chemical properties at rural areas in the Northeast U.S.« less

  18. A scattering methodology for droplet sizing of e-cigarette aerosols.

    PubMed

    Pratte, Pascal; Cosandey, Stéphane; Goujon-Ginglinger, Catherine

    2016-10-01

    Knowledge of the droplet size distribution of inhalable aerosols is important to predict aerosol deposition yield at various respiratory tract locations in human. Optical methodologies are usually preferred over the multi-stage cascade impactor for high-throughput measurements of aerosol particle/droplet size distributions. Evaluate the Laser Aerosol Spectrometer technology based on Polystyrene Sphere Latex (PSL) calibration curve applied for the experimental determination of droplet size distributions in the diameter range typical of commercial e-cigarette aerosols (147-1361 nm). This calibration procedure was tested for a TSI Laser Aerosol Spectrometer (LAS) operating at a wavelength of 633 nm and assessed against model di-ethyl-hexyl-sebacat (DEHS) droplets and e-cigarette aerosols. The PSL size response was measured, and intra- and between-day standard deviations calculated. DEHS droplet sizes were underestimated by 15-20% by the LAS when the PSL calibration curve was used; however, the intra- and between-day relative standard deviations were < 3%. This bias is attributed to the fact that the index of refraction of PSL calibrated particles is different in comparison to test aerosols. This 15-20% does not include the droplet evaporation component, which may reduce droplet size prior a measurement is performed. Aerosol concentration was measured accurately with a maximum uncertainty of 20%. Count median diameters and mass median aerodynamic diameters of selected e-cigarette aerosols ranged from 130-191 nm to 225-293 nm, respectively, similar to published values. The LAS instrument can be used to measure e-cigarette aerosol droplet size distributions with a bias underestimating the expected value by 15-20% when using a precise PSL calibration curve. Controlled variability of DEHS size measurements can be achieved with the LAS system; however, this method can only be applied to test aerosols having a refractive index close to that of PSL particles used

  19. Experimental Infection of Syrian Hamsters with Aerosolized Nipah virus.

    PubMed

    Escaffre, Olivier; Hill, Terence; Ikegami, Tetsuro; Juelich, Terry L; Smith, Jennifer K; Zhang, Lihong; Perez, David E; Atkins, Colm; Park, Arnold; Lawrence, William S; Sivasubramani, Satheesh K; Peel, Jennifer E; Peterson, Johnny W; Lee, Benhur; Freiberg, Alexander N

    2018-06-15

    Nipah virus (NiV) is a paramyxovirus (genus henipavirus) that can cause severe respiratory illness and encephalitis in humans. Transmission occurs through consumption of NiV-contaminated foods, and contact with NiV-infected animals or human body fluids. However, it is unclear whether aerosols derived from aforesaid sources or others also contribute to transmission, and current knowledge on NiV-induced pathogenicity after small particle aerosol exposure is still limited. infectivity, pathogenicity and real-time dissemination of aerosolized NiV in Syrian hamsters was evaluated using NiV-Malaysia (NiV-M) and/or its recombinant expressing firefly luciferase (rNiV-Fluc NP). both viruses had an equivalent pathogenicity in hamsters that developed respiratory and neurological symptoms of disease, similar to using intranasal route, with no direct correlations to the dose. Finally, we show that virus replication was predominantly initiated in the lower respiratory tract, and although delayed, also intensely in the oronasal cavity and possibly the brain, with gradual increase of signal in these regions until at least day 5-6 post-infection. hamsters infected with small-particle aerosolized NiV undergo similar clinical manifestations of the disease as previously described using liquid inoculum, and exhibit histopathological lesions consistent with NiV patient reports. NiV droplets could therefore play a role in transmission by close contact.

  20. Satellite Perspective of Aerosol Intercontinental Transport: From Qualitative Tracking to Quantitative Characterization

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Remer, Lorraine A.; Kahn, Ralph A.; Chin, Mian; Zhang, Yan

    2012-01-01

    Evidence of aerosol intercontinental transport (ICT) is both widespread and compelling. Model simulations suggest that ICT could significantly affect regional air quality and climate, but the broad inter-model spread of results underscores a need of constraining model simulations with measurements. Satellites have inherent advantages over in situ measurements to characterize aerosol ICT, because of their spatial and temporal coverage. Significant progress in satellite remote sensing of aerosol properties during the Earth Observing System (EOS) era offers opportunity to increase quantitative characterization and estimates of aerosol ICT, beyond the capability of pre-EOS era satellites that could only qualitatively track aerosol plumes. EOS satellites also observe emission strengths and injection heights of some aerosols, aerosol precursors, and aerosol-related gases, which can help characterize aerosol ICT. After an overview of these advances, we review how the current generation of satellite measurements have been used to (1) characterize the evolution of aerosol plumes (e.g., both horizontal and vertical transport, and properties) on an episodic basis, (2) understand the seasonal and inter-annual variations of aerosol ICT and their control factors, (3) estimate the export and import fluxes of aerosols, and (4) evaluate and constrain model simulations. Substantial effort is needed to further explore an integrated approach using measurements from on-orbit satellites (e.g., A-Train synergy) for observational characterization and model constraint of aerosol intercontinental transport and to develop advanced sensors for future missions.

  1. Nicotine Delivery to Rats via Lung Alveolar Region-Targeted Aerosol Technology Produces Blood Pharmacokinetics Resembling Human Smoking

    PubMed Central

    2013-01-01

    Introduction: Nicotine is a heavily used addictive drug acquired through smoking tobacco. Nicotine in cigarette smoke is deposited and absorbed in the lungs, which results in a rapidly peaked slowly declining arterial concentration. This pattern plays an important role in initiation of nicotine addiction. Methods: A method and device were developed for delivering nicotine to rodents with lung alveolar region-targeted aerosol technology. The dose of delivery can be controlled by the nicotine aerosol concentration and duration of exposure. Results: Our data showed that, in the breathing zone of the nose-only exposure chamber, the aerosol droplet size distribution was within the respirable diameter range. Rats were exposed to nicotine aerosol for 2min. The arterial blood nicotine concentration reached 43.2±15.7ng/ml (mean ± SD) within 1–4min and declined over the next 20min, closely resembling the magnitude and early pharmacokinetics of a human smoking a cigarette. The acute inhalation toxicity of nicotine: LC50 = 2.3mg/L was determined; it was affected by pH, suggesting that acidification decreases nicotine absorption and/or bioavailability. Conclusions: A noninvasive method and toolkit were developed for delivering nicotine to rodents that enable rapid delivery of a controllable amount of nicotine into the systemic circulation and brain-inducing dose-dependent pharmacological effects, even a lethal dose. Aerosol inhalation can produce nicotine kinetics in both arterial and venous blood resembling human smoking. This method can be applied to studies of the effects of chronic intermittent nicotine exposure, nicotine addiction, toxicology, tobacco-related diseases, teratogenicity, and for discovery of pharmacological therapeutics. PMID:23239844

  2. The Influence of Aerosol Hygroscopicity on Retrieving the Aerosol Extincting Coefficient from MPL Data

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Zhao, C.

    2016-12-01

    Micro-pulse Lidar (MPL) measurements have been widely used to profile the ambient aerosol extincting coefficient(). Lidar Ratio (LR) ,which highly depends on the particle number size distribution (PNSD) and aerosol hygroscopicity, is the most important factor to retrieve the profile. A constant AOD constrained LR is usually used in current algorithms, which would lead to large bias when the relative humidity (RH) in the mixed layer is high. In this research, the influences of PNSD, aerosol hygroscopicity and RH profiles on the vertical variation of LR were investigated based on the datasets from field measurements in the North China Plain (NCP). Results show that LR can have an enhancement factor of more than 120% when the RH reaches to 92%. A new algorithm of retrieving the profile is proposed based on the variation of LR due to aerosol hygroscopicity. The magnitude and vertical structures of retrieved using this method can be significantly different to that of the fiexed LR method. The relative difference can reach up to 40% when the RH in the mixed layer is higher than 90% . Sensitivity studies show that RH profile and PNSD affect most on the retrieved by fiexed LR method. In view of this, a scheme of LR enhancement factor by RH is proposed in the NCP. The relative differnce of the calculated between using this scheme and the new algorithm with the variable LR can be less than 10%.

  3. A new stochastic algorithm for inversion of dust aerosol size distribution

    NASA Astrophysics Data System (ADS)

    Wang, Li; Li, Feng; Yang, Ma-ying

    2015-08-01

    Dust aerosol size distribution is an important source of information about atmospheric aerosols, and it can be determined from multiwavelength extinction measurements. This paper describes a stochastic inverse technique based on artificial bee colony (ABC) algorithm to invert the dust aerosol size distribution by light extinction method. The direct problems for the size distribution of water drop and dust particle, which are the main elements of atmospheric aerosols, are solved by the Mie theory and the Lambert-Beer Law in multispectral region. And then, the parameters of three widely used functions, i.e. the log normal distribution (L-N), the Junge distribution (J-J), and the normal distribution (N-N), which can provide the most useful representation of aerosol size distributions, are inversed by the ABC algorithm in the dependent model. Numerical results show that the ABC algorithm can be successfully applied to recover the aerosol size distribution with high feasibility and reliability even in the presence of random noise.

  4. Effects of surface-active organic matter on carbon dioxide nucleation in atmospheric wet aerosols: a molecular dynamics study.

    PubMed

    Daskalakis, Vangelis; Charalambous, Fevronia; Panagiotou, Fostira; Nearchou, Irene

    2014-11-21

    Organic matter (OM) uptake in cloud droplets produces water-soluble secondary organic aerosols (SOA) via aqueous chemistry. These play a significant role in aerosol properties. We report the effects of OM uptake in wet aerosols, in terms of the dissolved-to-gas carbon dioxide nucleation using molecular dynamics (MD) simulations. Carbon dioxide has been implicated in the natural rainwater as well as seawater acidity. Variability of the cloud and raindrop pH is assumed in space and time, as regional emissions, local human activities and geophysical characteristics differ. Rain scavenging of inorganic SOx, NOx and NH3 plays a major role in rain acidity in terms of acid-base activity, however carbon dioxide solubility also remains a key parameter. Based on the MD simulations we propose that the presence of surface-active OM promotes the dissolved-to-gas carbon dioxide nucleation in wet aerosols, even at low temperatures, strongly decreasing carbon dioxide solubility. A discussion is made on the role of OM in controlling the pH of a cloud or raindrop, as a consequence, without involving OM ionization equilibrium. The results are compared with experimental and computational studies in the literature.

  5. Generating monodisperse pharmacological aerosols using the spinning-top aerosol generator.

    PubMed

    Biddiscombe, Martyn F; Barnes, Peter J; Usmani, Omar S

    2006-01-01

    Pharmacological aerosols of precisely controlled particle size and narrow dispersity can be generated using the spinning-top aerosol generator (STAG). The ability of the STAG to generate monodisperse aerosols from solutions of raw drug compounds makes it a valuable research instrument. In this paper, the versatility of this instrument has been further demonstrated by aerosolizing a range of commercially available nebulized pulmonary therapy preparations. Nebules of Flixotide (fluticasone propionate), Pulmicort (budesonide), Combivent (salbutamol sulphate and ipratropium bromide), Bricanyl (terbutaline sulphate), Atrovent(ipratropium bromide), and Salamol (salbutamol sulphate) were each mixed with ethanol and delivered to the STAG. Monodisperse drug aerosol distributions were generated with MMADs of 0.95-6.7 microm. To achieve larger particle sizes from the nebulizer drug suspensions, the STAG formed compound particle agglomerates derived from the smaller insoluble drug particles. These compound agglomerates behaved aerodynamically as a single particle, and this was verified using an aerodynamic particle sizer and an Andersen Cascade Impactor. Scanning electron microscope images demonstrated their physical structure. On the other hand using the nebulizer drug solutions, spherical particles proportional to the original droplet diameter were generated. The aerosols generated by the STAG can allow investigators to study the scientific principles of inhaled drug deposition and lung physiology for a range of therapeutic agents.

  6. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  7. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    NASA Technical Reports Server (NTRS)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    that the aerosol does play a role in invigorating convective clouds.

  8. Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment (BASE-ASIA)

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, Christina N.; King, Michael D.; Sun, Wen-Yih

    2003-01-01

    Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth-atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Analyses from satellite measurements reveal that smoke is frequently present solar (emitted thermal) radiation from clouds due to smoke aerosols can be reduced (enhanced) by as much as 100 (20) W/sq m over the month of March 2000. In addition, the reduction in cloud spectral reflectance at 670 run is large enough to lead to significant errors in retrieving cloud properties (e.g., optical thickness and effective radius) from satellite measurements. The fresh water distribution in this region is highly dependent on monsoon rainfall; in fact, the predictability of the tropical climate system is much reduced during the boreal spring. Estimating the burning fuel (e.g., bark, branches, and wood), an important part of studying regional carbon cycle, may rely on utilizing a wide range of distinctive spectral features in the shortwave and

  9. Antarctic aerosols - A review

    NASA Astrophysics Data System (ADS)

    Shaw, Glenn E.

    1988-02-01

    Tropospheric aerosols with the diameter range of half a micron reside in the atmosphere for tens of days and teleconnect Antarctica with other regions by transport that reaches planetary scales of distances; thus, the aerosol on the Antarctic ice represents 'memory modules' of events that took place at regions separated from Antarctica by tens of thousands of kilometers. In terms of aerosol mass, the aerosol species include insoluble crustal products (less than 5 percent), transported sea-salt residues (highly variable but averaging about 10 percent), Ni-rich meteoric material, and anomalously enriched material with an unknown origin. Most (70-90 percent by mass) of the aerosol over the Antarctic ice shield, however, is the 'natural acid sulfate aerosol', apparently deriving from biological processes taking place in the surrounding oceans.

  10. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  11. Field Studies of Broadband Aerosol Optical Extinction in the Ultraviolet Spectral Region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A.; Brock, C. A.; Brown, S. S.

    2013-12-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. In the case of brown carbon, its wavelength-dependent absorption in the ultraviolet spectral region has been suggested as an important component of aerosol radiative forcing. We describe a new field instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We deployed this instrument during the Fire Lab at Missoula Experiment during Fall 2012 to measure biomass burning aerosol, and again during the Southern Oxidant and Aerosol Study in summer 2013 to measure organic aerosol in the Southeastern U.S. In both field experiments, we determined aerosol optical extinction as a function of wavelength and can interpret this together with size distribution and composition measurements to characterize the aerosol optical properties and radiative forcing.

  12. Characterization of aerosol particles at the forested site in Lithuania

    NASA Astrophysics Data System (ADS)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  13. Improving aerosol vertical retrieval for NWP application: Studying the impact of IR-sensed aerosol on data assimilation systems.

    NASA Astrophysics Data System (ADS)

    Oyola, Mayra; Marquis, Jared; Ruston, Benjamin; Campbell, James; Baker, Nancy; Westphal, Douglas; Zhang, Jianglong; Hyer, Edward

    2017-04-01

    Radiometric measurements from passive infrared (IR) sensors are important in numerical weather prediction (NWP) because they are sensitive to surface temperatures and atmospheric temperature profiles. However, these measurements are also sensitive to absorbing and scattering constituents in the atmosphere. Dust aerosols absorb in the IR and are found over many global regions with irregular spatial and temporal frequency. Retrievals of temperature using IR data are thus vulnerable to dust-IR radiance biases, most notably over tropical oceans where accurate surface and atmospheric temperatures are critical to accurate prediction of tropical cyclone development. Previous studies have shown that dust aerosols can bias retrieved brightness temperatures (BT) by up to 10K in some IR channels that are assimilated to constrain atmospheric temperature and water vapor profiles. Other BT-derived parameters such as sea surface temperatures (SSTs) are susceptible to negative biases of at least 1K or higher, which conflicts with the accuracy requirement for most research and operational applications (i.e., +/- 0.3 K). This problem is not limited to just satellite retrievals. BT bias also impacts the incorporation of background fields from NWP analyses in data assimilation (DA) systems. The effect of aerosols on IR fluxes at the ocean surface is a function of both aerosol loading and vertical profile. Therefore, knowledge of the aerosol vertical distribution, and understanding of how well this distribution is captured by NWP models, is necessary to ensuring proper treatment of aerosol-affected radiances in both retrieval and data assimilation. This understanding can be achieved by conducting modeling studies and by the exploitation of a robust observational dataset, such as satellite-based lidar profiling, which can be used to characterize aerosol type and distribution. In this talk, we describe such an application using the Navy Aerosol Analysis Prediction System (NAAPS) and

  14. Aerosol impacts on climate and environment over East Asia

    NASA Astrophysics Data System (ADS)

    Nakata, M.; Sano, I.; Mukai, S.

    2014-12-01

    It is well known that the aerosol distribution in East Asia is complex due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the behavior of natural dusts. Therefore, detailed observations of atmospheric particles in East Asian are important. It is concerned about the change of concentration of aerosols causes various effects on the climate by directly and indirectly modifying the optical properties and lifetimes of cloud. In addition to radiation budget change, aerosol has a significant potential to change cloud and precipitation. These circulation fields change influence on emission of natural aerosols such as dust aerosols and sea salt aerosols. Also, air pollution in megacities in East Asia has become a serious problem. Especially problematic are fine particles called PM2.5, whose diameter is 2.5 mm or less. Particulate matter (PM) pollution as indicated by high PM2.5 readings will cause a spike in the mortality rate of patients suffering from heart and lung diseases. Because fine particles are much smaller than inhalable coarse particles, the can penetrate deeper into the lungs and cause more severe effects on human health. Anthropogenic sources of PM2.5 include automobiles, factories, coal-burning power plants, and heaters in homes. It is well known that the size of dust particles decreases during long-range transport via westerly winds, and the resulting dust storms can contain high concentrations of fine particles. Accordingly, PM2.5 concentrations correspond well to both anthropogenic and dust aerosols. This work intends to investigate impacts of aerosol on regional climate change and environment over East Asia using observations and model simulations.

  15. Aerosol retrieval for APEX airborne imaging spectrometer: a preliminary analysis

    NASA Astrophysics Data System (ADS)

    Seidel, Felix; Nieke, Jens; Schläpfer, Daniel; Höller, Robert; von Hoyningen-Huene, Wolfgang; Itten, Klaus

    2005-10-01

    In order to achieve quantitative measurements of the Earth's surface radiance and reflectance, it is important to determine the aerosol optical thickness (AOT) to correct for the optical influence of atmospheric particles. An advanced method for aerosol detection and quantification is required, which is not strongly dependant on disturbing effects due to surface reflectance, gas absorption and Rayleigh scattering features. A short review of existing applicable methods to the APEX airborne imaging spectrometer (380nm to 2500nm), leads to the suggested aerosol retrieval method here in this paper. It will measure the distinct radiance change between two near-UV spectral bands (385nm & 412nm) due to aerosol induced scattering and absorption features. Atmospheric radiation transfer model calculations have been used to analyze the AOT retrieval capability and accuracy of APEX. The noise-equivalent differential AOT is presented along with the retrieval sensitivity to various input variables. It is shown, that the suggested method will be able to identify different aerosol model types and measure AOT and columnar size distribution. The proposed accurate AOT determination will lead to a unique opportunity of two-dimensional pixel-wise mapping of aerosol properties at a high spatial resolution. This will be helpful especially for regional climate studies, atmospheric pollution monitoring and for the improvement of aerosol dispersion models and the validation of aerosol algorithms on spaceborne sensors.

  16. Aerosol-administered alpha-tocopherol attenuates lung inflammation in rats given lipopolysaccharide intratracheally.

    PubMed

    Hybertson, Brooks M; Chung, Jin H; Fini, Mehdi A; Lee, Young M; Allard, Jenny D; Hansen, Brian N; Cho, Okyong J; Shibao, Gayle N; Repine, John E

    2005-04-01

    Intrapulmonary administration of bacterial lipopolysaccharide (LPS) induces a well-characterized lung inflammatory response involving alveolar macrophage activation, proinflammatory cytokine elaboration, and neutrophil influx. Vitamin E, a lipophilic antioxidant consisting of a family that includes tocopherols and tocotrienols, has previously been shown to have a variety of anti-inflammatory effects, raising interest in its possible uses in disease prevention or therapy. Because aerosol delivery is a specific and rapid way to administer agents to the lungs, the authors undertook to determine whether inhaled vitamin E aerosols would have an anti-inflammatory effect in the lungs. Using a rat model of acute lung inflammation caused by intratracheally administered LPS (10 microg Pseudomonas aeruginosa LPS), the authors examined the effect of aerosol-administered vitamin E, in this case alpha-tocopherol, on several indices of lung inflammation which are increased by LPS treatment. It was found that inhaled alpha-tocopherol aerosol, but not inhaled alpha-tocopherol acetate aerosol, decreased tumor necrosis factor alpha (TNFalpha) and cytokine-induced neutrophil chemoattractant-1 (CINC-1) mRNA levels in lung tissue, TNFalpha and CINC-1 immunoreactive protein levels in lung lavage, and the number of neutrophils recoverable by lung lavage from rats given LPS intratracheally. These results contribute to the increasing body of work describing immunomodulatory functions of alpha-tocopherol, and support the idea that direct aerosol administration of alpha-tocopherol may play a beneficial role in strategies to control inflammatory lung illnesses.

  17. Perspective: Aerosol microphysics: From molecules to the chemical physics of aerosols

    NASA Astrophysics Data System (ADS)

    Bzdek, Bryan R.; Reid, Jonathan P.

    2017-12-01

    Aerosols are found in a wide diversity of contexts and applications, including the atmosphere, pharmaceutics, and industry. Aerosols are dispersions of particles in a gas, and the coupling of the two phases results in highly dynamic systems where chemical and physical properties like size, composition, phase, and refractive index change rapidly in response to environmental perturbations. Aerosol particles span a wide range of sizes from 1 nm to tens of micrometres or from small molecular clusters that may more closely resemble gas phase molecules to large particles that can have similar qualities to bulk materials. However, even large particles with finite volumes exhibit distinct properties from the bulk condensed phase, due in part to their higher surface-to-volume ratio and their ability to easily access supersaturated solute states inaccessible in the bulk. Aerosols represent a major challenge for study because of the facile coupling between the particle and gas, the small amounts of sample available for analysis, and the sheer breadth of operative processes. Time scales of aerosol processes can be as short as nanoseconds or as long as years. Despite their very different impacts and applications, fundamental chemical physics processes serve as a common theme that underpins our understanding of aerosols. This perspective article discusses challenges in the study of aerosols and highlights recent chemical physics advancements that have enabled improved understanding of these complex systems.

  18. Word Play: Scaffolding Language Development through Child-Directed Play

    ERIC Educational Resources Information Center

    Wasik, Barbara A.; Jacobi-Vessels, Jill L.

    2017-01-01

    Play is an important activity in young children's lives. It is how children explore their world and build knowledge. Although free play, which is play that is totally child directed, contributes to children's learning, self-regulation and motivation, adults' participation in children's play is critical in their development, especially their…

  19. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of

  20. Coarse mode aerosols in the High Arctic

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  1. Potential climate effect of mineral aerosols over West Africa. Part I: model validation and contemporary climate evaluation

    NASA Astrophysics Data System (ADS)

    Ji, Zhenming; Wang, Guiling; Pal, Jeremy S.; Yu, Miao

    2016-02-01

    Mineral dusts present in the atmosphere can play an important role in climate over West Africa and surrounding regions. However, current understanding regarding how dust aerosols influence climate of West Africa is very limited. In this study, a regional climate model is used to investigate the potential climatic impacts of dust aerosols. Two sets of simulations driven by reanalysis and Earth System Model boundary conditions are performed with and without the representation of dust processes. The model, regardless of the boundary forcing, captures the spatial and temporal variability of the aerosol optical depth and surface concentration. The shortwave radiative forcing of dust is negative at the surface and positive in the atmosphere, with greater changes in the spring and summer. The presence of mineral dusts causes surface cooling and lower troposphere heating, resulting in a stabilization effect and reduction in precipitation in the northern portion of the monsoon close to the dust emissions region. This results in an enhancement of precipitation to the south. While dusts cause the lower troposphere to stabilize, upper tropospheric cooling makes the region more prone to intense deep convection as is evident by a simulated increase in extreme precipitation. In a companion paper, the impacts of dust emissions on future West African climate are investigated.

  2. Indirect effect of changing aerosol concentrations on methane and ozone radiative forcing

    NASA Astrophysics Data System (ADS)

    Rowlinson, Matthew; Rap, Alexandru; Arnold, Steve; Forster, Piers; Chipperfield, Martyn

    2017-04-01

    Atmospheric aerosols interact with climate in number of complex ways and quantifying the overall effect remains the dominant uncertainty in estimating anthropogenic climate forcing (IPCC, 2013). The radiative forcing (RF) caused by the direct effect of aerosol interacting with radiation is estimated at -0.35 (-0.85 to +0.15) Wm-2, while cloud-aerosol interactions are estimated at -0.45 (-1.2 to 0.0) Wm-2 (IPCC, 2013). The net impact is a cooling with an effective radiative forcing (ERF) of 0.9 (-1.9 to -0.1) Wm-2 (IPCC, 2013). One effect of aerosols which has not been well evaluated is their effect on atmospheric chemistry. Atmospheric aerosols provide a surface for homogeneous reactions to occur, altering reactions rates and the availability of oxidants, thereby influencing the removal/production of radiatively important species such as methane (CH4) and tropospheric ozone (O3). Oxidants such as the hydroxyl radical (OH) determine the atmospheric lifetime and hence burden of CH4, therefore changes to atmospheric aerosols which impact oxidation chemistry will also influence RF due to CH4. This effect could enhance or offset the negative RF of aerosols, depending on how the individual aerosol changes availability of oxidants. Quantifying the importance of this mechanism for RF is necessary to provide accurate estimates of the effect of aerosols, and assess relative effectiveness of measures to decrease aerosol emissions and precursors. Using a sophisticated aerosol micro-physics model (GLOMAP) coupled to the TOMCAT three-dimensional chemical transport model, we separately simulate changes in atmospheric composition resulting from a 50% decline in anthropogenic emissions of black carbon aerosol (BC), volatile organic compounds (VOCs) and anthropogenic precursors of sulphate and nitrate. The impact of changes to each aerosol on lifetime of CH4 is then calculated to establish the resulting impact on CH4 burden and RF. Cutting global anthropogenic SO2 emissions by 50

  3. Lipocalin 2 Plays an Important Role in Regulating Inflammation in Retinal Degeneration.

    PubMed

    Parmar, Tanu; Parmar, Vipul M; Perusek, Lindsay; Georges, Anouk; Takahashi, Masayo; Crabb, John W; Maeda, Akiko

    2018-05-01

    It has become increasingly important to understand how retinal inflammation is regulated because inflammation plays a role in retinal degenerative diseases. Lipocalin 2 (LCN2), an acute stress response protein with multiple innate immune functions, is increased in ATP-binding cassette subfamily A member 4 ( Abca4 ) -/- retinol dehydrogenase 8 ( Rdh8 ) -/- double-knockout mice, an animal model for Stargardt disease and age-related macular degeneration (AMD). To examine roles of LCN2 in retinal inflammation and degeneration, Lcn2 -/- Abca4 -/- Rdh8 -/- triple-knockout mice were generated. Exacerbated inflammation following light exposure was observed in Lcn2 -/- Abca4 -/- Rdh8 -/- mice as compared with Abca4 -/- Rdh8 -/- mice, with upregulation of proinflammatory genes and microglial activation. RNA array analyses revealed an increase in immune response molecules such as Ccl8 , Ccl2 , and Cxcl10 To further probe a possible regulatory role for LCN2 in retinal inflammation, we examined the in vitro effects of LCN2 on NF-κB signaling in human retinal pigmented epithelial (RPE) cells differentiated from induced pluripotent stem cells derived from healthy donors. We found that LCN2 induced expression of antioxidant enzymes heme oxygenase 1 and superoxide dismutase 2 in these RPE cells and could inhibit the cytotoxic effects of H 2 O 2 and LPS. ELISA revealed increased LCN2 levels in plasma of patients with Stargardt disease, retinitis pigmentosa, and age-related macular degeneration as compared with healthy controls. Finally, overexpression of LCN2 in RPE cells displayed protection from cell death. Overall these results suggest that LCN2 is involved in prosurvival responses during cell stress and plays an important role in regulating inflammation during retinal degeneration. Copyright © 2018 by The American Association of Immunologists, Inc.

  4. Global Impacts of Gas-Phase Chemistry-Aerosol Interactions on Direct Radiative Forcing by Anthropogenic Aerosols and Ozone

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.

    2005-01-01

    We present here a first global modeling study on the influence of gas-phase chemistry/aerosol interactions on estimates of anthropogenic forcing by tropospheric O3 and aerosols. Concentrations of gas-phase species and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols in the preindustrial, present-day, and year 2100 (IPCC SRES A2) atmospheres are simulated online in the Goddard Institute for Space Studies general circulation model II' (GISS GCM II'). With fully coupled chemistry and aerosols, the preindustrial, presentday, and year 2100 global burdens of tropospheric ozone are predicted to be 190, 319, and 519 Tg, respectively. The burdens of sulfate, nitrate, black carbon, and organic carbon are predicted respectively to be 0.32. 0.18, 0.01, 0.33 Tg in preindustrial time, 1.40, 0.48, 0.23, 1.60 Tg in presentday, and 1.37, 1.97, 0.54, 3.31 Tg in year 2100. Anthropogenic O3 is predicted to have a globally and annually averaged present-day forcing of +0.22 W m(sup -2) and year 2100 forcing of +0.57 W m(sup -2) at the top of the atmosphere (TOA). Net anthropogenic TOA forcing by internally mixed sulfate, nitrate, organic carbon, and black carbon aerosols is estimated to be virtually zero in the present-day and +0.34 W m(sup -2) in year 2100, whereas it is predicted to be -0.39 W m(sup -2) in present-day and -0.61 W m(sup -2) in year 2100 if the aerosols are externally mixed. Heterogeneous reactions are shown to be important in affecting anthropogenic forcing. When reactions of N2O5, NO3, NO2, and HO2 on aerosols are accounted for, TOA anthropogenic O3 forcing is less by 20-45% in present-day and by 20-32% in year 2100 at mid to high latitudes in the Northern Hemisphere, as compared with values predicted in the absence of heterogeneous gas aerosol reactions. Mineral dust uptake of HNO3 and O3 is shown to have practically no influence on anthropogenic O3 forcing. Heterogeneous reactions of N2Os

  5. Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation

    NASA Technical Reports Server (NTRS)

    Guzman, Marcelo I.; Athalye, Richa R.; Rodriguez, Jose M.

    2012-01-01

    During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO2, NaNO3, NaClO4, and NaIO4. The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f (Isub x-)) and their correlation with ion properties. Although no correlation exists between f (sub x-) and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R(sub x-), dehydration free-energy ?Gdehyd, and polarizability alpha, follows the order: (R(sub x-)(exp -2)) > (R(sub x-)(exp -1)) >(R(sub x-) > delta G(sub dehyd) > alpha. The same pure physical process is observed in H2O and D2O. The factor f (sub x-) does not change with pH (6.8-8.6), counterion (Li+, Na+, K+, and Cs+) substitution effects, or solvent polarity changes in methanol - and ethanol-water mixtures (0 <= xH2O <= 1). Sodium polysorbate 20 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I- on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I- < Br- < Cl- over the oceanic boundary layer due to concentration effects in sea spray aerosol formation.

  6. Comparison of heterogeneous photolytic reduction of Hg(II) in the coal fly ashes and synthetic aerosols

    NASA Astrophysics Data System (ADS)

    Tong, Yindong; Eichhorst, Terry; Olson, Michael R.; Rutter, Andrew P.; Shafer, Martin M.; Wang, Xuejun; Schauer, James J.

    2014-03-01

    In this study, we examined the heterogeneous reduction of Hg(II) on the coal fly ash samples and synthetic aerosols under different light conditions in a controlled laboratory reactor. Three types of coal fly ashes were studied: a high carbon fly ash from a stoker boiler, a low carbon/low sulfate fly ash from a pulverized coal combustor burning low sulfur coal, and a high sulfate fly ash from a pulverized coal combustor burning high sulfur coal. The rate of Hg(II) reduction on the three diverse fly ash samples was found to be relatively fast with an average half-life of 1.6 h under clear sky atmospheric conditions (under the irradiance of 1000 W/m2). The reduction rate in the low sulfate/low carbon fly ash was approximately 1.5 times faster than with the other coal fly ash samples. Synthetic aerosols made of carbon black and levoglucosan produced Hg(II) reduction rates similar to coal fly ashes. However, aerosols composed of adipic acid resulted in reduction rates that were 3-5 times faster. The sensitivity of adipic acid reduction to light source wavelength was found to be greater than for the coal fly ash and other synthetic aerosols. Aerosols made from the water extracts of coal fly ash samples produced reduction rates equal to or slightly higher than with the native fly ash suggesting that the soluble components of fly ash play a significant role in the reduction mechanism. The measured reduction rates are likely important in the chemical processing of mercury in power plant plumes and potentially in the atmosphere and should be considered for incorporation in atmospheric transport models that are used to understand the fate of atmospheric mercury.

  7. Impacts of Aerosol-Monsoon Interaction on Rainfall and Circulation over Northern India and the Himalaya Foothills

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong; Shi, Jainn-Jong; Matsui, T.; Chin, M.; Tan, Qian; Peters-Lidard, C.; Tao, W. K.

    2016-01-01

    The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all- India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: 1) control with no aerosol, 2) aerosol radiative effect only and 3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into mesoscale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be substantial and cannot be ignored.

  8. Impacts of aerosol-monsoon interaction on rainfall and circulation over Northern India and the Himalaya Foothills

    NASA Astrophysics Data System (ADS)

    Lau, William K. M.; Kim, Kyu-Myong; Shi, Jainn-Jong; Matsui, T.; Chin, M.; Tan, Qian; Peters-Lidard, C.; Tao, W. K.

    2017-09-01

    The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all-India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using the NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: (1) control with no aerosol, (2) aerosol radiative effect only and (3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol-monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large-scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. in Clim Dyn 26(7-8):855-864, 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India/northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into meso-scale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be

  9. Biomass burning and its effects on fine aerosol acidity, water content and nitrogen partitioning

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Nenes, Athanasios; Paraskevopoulou, Despina; Fourtziou, Luciana; Stavroulas, Iasonas; Liakakou, Eleni; Myriokefalitakis, Stelios; Daskalakis, Nikos; Weber, Rodney; Kanakidou, Maria; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2017-04-01

    Aerosol acidity is an important property that drives the partitioning of semi-volatile species, the formation of secondary particulate matter and metal and nutrient solubility. Aerosol acidity varies considerably between aerosol types, RH, temperature, the degree of atmospheric chemical aging and may also change during transport. Among aerosol different sources, sea salt and dust have been well studied and their impact on aerosol acidity and water uptake is more or less understood. Biomass burning (BB) on the other hand, despite its significance as a source in a regional and global scale, is much less understood. Currently, there is no practical and accurate enough method, to directly measure the pH of in-situ aerosol. The combination of thermodynamic models, with targeted experimental observations can provide reliable predictions of aerosol particle water and pH, using as input the concentration of gas/aerosol species, temperature (T), and relative humidity (RH). As such an example, ISORROPIA-II (Fountoukis and Nenes, 2007) has been used for the thermodynamic analysis of measurements conducted in downtown Athens during winter 2013, in order to evaluate the effect of BB on aerosol water and acidity. Biomass burning, especially during night time, was found to contribute significantly to the increased organics concentrations, but as well to the BC component associated with wood burning, particulate nitrates, chloride, and potassium. These increased concentrations were found to impact on fine aerosol water, with Winorg having an average concentration of 11±14 μg m-3 and Worg 12±19 μg m-3 with the organic component constituting almost 38% of the total calculated submicron water. When investigating the fine aerosol acidity it was derived that aerosol was generally acidic, with average pH during strong BB influence of 2.8±0.5, value similar to the pH observed for regional aerosol influenced by important biomass burning episodes at the remote background site of

  10. Aerosol specification in single-column Community Atmosphere Model version 5

    DOE PAGES

    Lebassi-Habtezion, B.; Caldwell, P. M.

    2015-03-27

    Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important).more » By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm −3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.« less

  11. Aerosolization and Atmospheric Transformation of Engineered Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tiwari, Andrea J.

    While research on the environmental impacts of engineered nanoparticles (ENPs) is growing, the potential for them to be chemically transformed in the atmosphere has been largely ignored. The overall objective of this work was to assess the atmospheric transformation of carbonaceous nanoparticles (CNPs). The research focuses on C60 fullerene because it is an important member of the carbonaceous nanoparticle (CNP) family and is used in a wide variety of applications. The first specific objective was to review the potential of atmospheric transformations to alter the environmental impacts of CNPs. We described atmospheric processes that were likely to physically or chemically alter aerosolized CNPs and demonstrated their relevance to CNP behavior and toxicity in the aqueous and terrestrial environment. In order to investigate the transformations of CNP aerosols under controlled conditions, we developed an aerosolization technique that produces nano-scale aerosols without using solvents, which can alter the surface chemistry of the aerosols. We demonstrated the technique with carbonaceous (C60) and metal oxide (TiO2, CeO2) nanoparticle powders. All resulting aerosols exhibited unimodal size distributions and mode particle diameters below 100 nm. We used the new aerosolization technique to investigate the reaction between aerosolized C60 and atmospherically realistic levels of ozone (O3) in terms of reaction products, reaction rate, and oxidative stress potential. We identified C60O, C60O2, and C60O3 as products of the C60-O3 reaction. We demonstrated that the oxidative stress potential of C 60 may be enhanced by exposure to O3. We found the pseudo-first order reaction rate to be 9 x 10-6 to 2 x 10 -5 s-1, which is several orders of magnitude lower than the rate for several PAH species under comparable conditions. This research has demonstrated that a thorough understanding of atmospheric chemistry of ENPs is critical for accurate prediction of their environmental

  12. Formation of halogen-induced secondary organic aerosol (XOA)

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    Reactive halogen species (RHS) are very important due to their potential of stratospheric ozone depletion and surface ozone destruction. RHS seem to interact with precursors of secondary organic aerosol (SOA) similarly to common atmospheric oxidants like OH radicals and ozone. The potential interaction of RHS with preformed SOA has recently been studied (Ofner et al., 2012). Although aerosol formation from reaction of RHS with typical SOA precursors was previously studied (e.g. Cai et al., 2006), no data are available on bromine-induced aerosol formation from organic precursors yet. An aerosol smog-chamber was used to examine the halogen-induced secondary organic aerosol (XOA) formation under atmospheric conditions using simulated sunlight. With a concentration of 10 ppb for the organic precursor, 2 ppb for molecular chlorine, and 10 ppb for molecular bromine, the experimental setup is close to ambient conditions. By combined measurements of the aerosol size distribution, ozone and NOx mixing ratios, as well as the decay of the organic precursor, aerosol yields and aerosol growth rates were determined. The decay of the organic precursor was analyzed by capillary gas chromatography coupled with flame-ionization detection (GC-FID) and the aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS). Additionally, with the decay rate of the precursor and the calculated photolysis rates of molecular halogen species, based on the well-known spectrum of the solar simulator, mechanistic details on the XOA formation pathways can be determined. We observed XOA formation even at very low precursor and RHS concentrations with a diameter mode at 10-20 nm and a number concentration up to 1000000 particles cm-3. While the XOA formation from chlorine is very rapid, the interaction of bromine with the organic precursors is about five times slower. The aerosol yield reached maximum values of 0.01 for the reaction of chlorine with α-pinene and 0.0004 for

  13. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  14. An Overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Aerosol effects on atmospheric radiation are a leading source of uncertainty in predicting future climate. As a result, the International Global Atmospheric Chemistry Program has established a Focus on Atmospheric Aerosols (IGAC/FAA) and endorsed a series of aerosol field campaigns. TARFOX, the second in the IGAC/FAA series, was designed to reduce this uncertainty by measuring aerosol properties and effects in the US eastern seaboard, where one of the world's major plumes of industrial haze moves from the continent over the Atlantic Ocean. TARFOX's objectives are to: 1. Make simultaneous measurements of: (a) aerosol effects on radiation fields, and (b) the chemical, physical, and optical properties of the aerosols causing those effects. 2. Perform a variety of closure studies by using overdetermined data sets to test the mutual consistency of measurements and calculations of a wide range of aerosol properties and effects. 3. Use the results of the closure studies to assess and reduce uncertainties in estimates of aerosol radiative forcing, as well as to guide future field programs. An important subset of the closure studies is tests and improvements of algorithms used to derive aerosol properties and radiative effects from satellite measurements. The TARFOX Intensive Field Period (IFP) was conducted July 10-31, 1996. It included coordinated measurements from four satellites (GOES-8, NOAA-14, ERS-2, LANDSAT), four aircraft (ER-2, C-130, C-131, and a modified Cessna), land sites, and ships. A variety of aerosol conditions was sampled, ranging from relatively clean behind frontal passages to moderately polluted with aerosol optical depths exceeding 0.5 at mid-visible wavelengths. The latter conditions included separate incidents of enhancements caused primarily by anthropogenic sources and another incident of enhancement apparently influenced by recent fog processing. Spatial gradients of aerosol optical thickness were sampled to aid in isolating aerosol effects from

  15. The History of Therapeutic Aerosols: A Chronological Review.

    PubMed

    Stein, Stephen W; Thiel, Charles G

    2017-02-01

    In 1956, Riker Laboratories, Inc., (now 3 M Drug Delivery Systems) introduced the first pressurized metered dose inhaler (MDI). In many respects, the introduction of the MDI marked the beginning of the modern pharmaceutical aerosol industry. The MDI was the first truly portable and convenient inhaler that effectively delivered drug to the lung and quickly gained widespread acceptance. Since 1956, the pharmaceutical aerosol industry has experienced dramatic growth. The signing of the Montreal Protocol in 1987 led to a surge in innovation that resulted in the diversification of inhaler technologies with significantly enhanced delivery efficiency, including modern MDIs, dry powder inhalers, and nebulizer systems. The innovative inhalers and drugs discovered by the pharmaceutical aerosol industry, particularly since 1956, have improved the quality of life of literally hundreds of millions of people. Yet, the delivery of therapeutic aerosols has a surprisingly rich history dating back more than 3500 years to ancient Egypt. The delivery of atropine and related compounds has been a crucial inhalation therapy throughout this period and the delivery of associated structural analogs remains an important therapy today. Over the centuries, discoveries from many cultures have advanced the delivery of therapeutic aerosols. For thousands of years, therapeutic aerosols were prepared by the patient or a physician with direct oversight of the patient using custom-made delivery systems. However, starting with the Industrial Revolution, advancements in manufacturing resulted in the bulk production of therapeutic aerosol delivery systems produced by people completely disconnected from contact with the patient. This trend continued and accelerated in the 20th century with the mass commercialization of modern pharmaceutical inhaler products. In this article, we will provide a summary of therapeutic aerosol delivery from ancient times to the present along with a look to the future. We

  16. The History of Therapeutic Aerosols: A Chronological Review

    PubMed Central

    Thiel, Charles G.

    2017-01-01

    Abstract In 1956, Riker Laboratories, Inc., (now 3 M Drug Delivery Systems) introduced the first pressurized metered dose inhaler (MDI). In many respects, the introduction of the MDI marked the beginning of the modern pharmaceutical aerosol industry. The MDI was the first truly portable and convenient inhaler that effectively delivered drug to the lung and quickly gained widespread acceptance. Since 1956, the pharmaceutical aerosol industry has experienced dramatic growth. The signing of the Montreal Protocol in 1987 led to a surge in innovation that resulted in the diversification of inhaler technologies with significantly enhanced delivery efficiency, including modern MDIs, dry powder inhalers, and nebulizer systems. The innovative inhalers and drugs discovered by the pharmaceutical aerosol industry, particularly since 1956, have improved the quality of life of literally hundreds of millions of people. Yet, the delivery of therapeutic aerosols has a surprisingly rich history dating back more than 3500 years to ancient Egypt. The delivery of atropine and related compounds has been a crucial inhalation therapy throughout this period and the delivery of associated structural analogs remains an important therapy today. Over the centuries, discoveries from many cultures have advanced the delivery of therapeutic aerosols. For thousands of years, therapeutic aerosols were prepared by the patient or a physician with direct oversight of the patient using custom-made delivery systems. However, starting with the Industrial Revolution, advancements in manufacturing resulted in the bulk production of therapeutic aerosol delivery systems produced by people completely disconnected from contact with the patient. This trend continued and accelerated in the 20th century with the mass commercialization of modern pharmaceutical inhaler products. In this article, we will provide a summary of therapeutic aerosol delivery from ancient times to the present along with a look to the

  17. Aerosol, cloud, and precipitation interactions in Eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wood, R.; Dong, X.

    2017-12-01

    With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In addition, ENA is periodically impacted by anthropogenic aerosol both from North American and from continental Europe, making it an excellent location to study the CCN budget in a remote marine region periodically perturbed by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on remote marine clouds. Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA), funded by DOE Atmospheric Radiation Measurement (ARM) program, is designed to improve the understanding of marine boundary CCN budget, cloud and drizzle microphysics, and the impact of aerosol on marine low cloud and precipitation in the ENA by combining airborne observations and long term surface based measurements. The study has two airborne deployments. The first deployment took place from June 15 to July 25, 2017, and the second one will take place from January 10 to February 20, 2018. Flights during the first deployment were carried out in the Azores, near the ARM ENA site on Graciosa Island. The long term measurements at the ENA site provide important Climatological context for the airborne observations during the two deployments, and the cloud structures provided by the scanning radars at the ENA site put the detailed in-situ measurements into mesoscale and cloud lifecycle contexts. Another important aspect of this study is to provide high quality in-situ measurements for validating and improving ground-based retrieval algorithms at the ENA

  18. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2014-07-01

    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.

  19. Characterization of distinct Arctic aerosol accumulation modes and their sources

    NASA Astrophysics Data System (ADS)

    Lange, R.; Dall'Osto, M.; Skov, H.; Nøjgaard, J. K.; Nielsen, I. E.; Beddows, D. C. S.; Simo, R.; Harrison, R. M.; Massling, A.

    2018-06-01

    In this work we use cluster analysis of long term particle size distribution data to expand an array of different shorter term atmospheric measurements, thereby gaining insights into longer term patterns and properties of Arctic aerosol. Measurements of aerosol number size distributions (9-915 nm) were conducted at Villum Research Station (VRS), Station Nord in North Greenland during a 5 year record (2012-2016). Alongside this, measurements of aerosol composition, meteorological parameters, gaseous compounds and cloud condensation nuclei (CCN) activity were performed during different shorter occasions. K-means clustering analysis of particle number size distributions on daily basis identified several clusters. Clusters of accumulation mode aerosols (main size modes > 100 nm) accounted for 56% of the total aerosol during the sampling period (89-91% during February-April, 1-3% during June-August). By association to chemical composition, cloud condensation nuclei properties, and meteorological variables, three typical accumulation mode aerosol clusters were identified: Haze (32% of the time), Bimodal (14%) and Aged (6%). In brief: (1) Haze accumulation mode aerosol shows a single mode at 150 nm, peaking in February-April, with highest loadings of sulfate and black carbon concentrations. (2) Accumulation mode Bimodal aerosol shows two modes, at 38 nm and 150 nm, peaking in June-August, with the highest ratio of organics to sulfate concentrations. (3) Aged accumulation mode aerosol shows a single mode at 213 nm, peaking in September-October and is associated with cloudy and humid weather conditions during autumn. The three aerosol clusters were considered alongside CCN concentrations. We suggest that organic compounds, that are likely marine biogenic in nature, greatly influence the Bimodal cluster and contribute significantly to its CCN activity. This stresses the importance of better characterizing the marine ecosystem and the aerosol-mediated climate effects in the

  20. Initial Verification of GEOS-4 Aerosols Using CALIPSO and MODIS: Scene Classification

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Colarco, Peter R.; Hlavka, Dennis; Levy, Robert C.; Vaughan, Mark A.; daSilva, Arlindo

    2007-01-01

    A-train sensors such as MODIS and MISR provide column aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important because retrievals are often dependent upon selection of the right aerosol model. In addition, aerosol scene classification helps place the retrieved products in context for comparisons and analysis with aerosol transport models. The recent addition of CALIPSO to the A-train now provides a means of classifying aerosol distribution with altitude. CALIPSO level 1 products include profiles of attenuated backscatter at 532 and 1064 nm, and depolarization at 532 nm. Backscatter intensity, wavelength ratio, and depolarization provide information on the vertical profile of aerosol concentration, size, and shape. Thus similar estimates of aerosol type using MODIS or MISR are possible with CALIPSO, and the combination of data from all sensors provides a means of 3D aerosol scene classification. The NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-4) provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS-4 aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures along the flight track for NASA's Geoscience Laser Altimeter System (GLAS) satellite lidar. GLAS launched in 2003 and did not have the benefit of depolarization measurements or other sensors from the A-train. Aerosol typing from GLAS data alone was not possible, and the GEOS-4 aerosol classifier has been used to identify aerosol type and improve the retrieval of GLAS products. Here we compare 3D aerosol scene classification using CALIPSO and MODIS with the GEOS-4 aerosol classifier. Dust, smoke, and pollution examples will be discussed in the context of providing an initial verification of the 3D GEOS-4 aerosol products. Prior model verification has only been attempted with surface mass