Science.gov

Sample records for aerosols soa formed

  1. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  2. Chemical characterization of the main secondary organic aerosol (SOA) products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-04-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e. burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed in the atmospheric gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the low-volatility SOA products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of H2O2 and nitrite. The formed guaiacol reaction products were concentrated by using solid-phase extraction (SPE) and then purified by means of semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state 1H, 13C and 2D nuclear magnetic resonance (NMR) spectroscopy and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of UV and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  3. CMAQ Application to the Southern Oxidant and Aerosol Study (SOAS)

    EPA Pesticide Factsheets

    CMAQ was used to simulate conditions during the the Southern Oxidant and Aerosol Study (SOAS) in the summer of 2013. Data collected as part of this study have been used to perform diagnostic model evaluation.

  4. Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties

    NASA Astrophysics Data System (ADS)

    Emanuelsson, E. U.; Hallquist, M.; Kristensen, K.; Glasius, M.; Bohn, B.; Fuchs, H.; Kammer, B.; Kiendler-Scharr, A.; Nehr, S.; Rubach, F.; Tillmann, R.; Wahner, A.; Wu, H.-C.; Mentel, Th. F.

    2012-08-01

    Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. Several experiments with exclusively anthropogenic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μg m-3. The yields (0.5-9%) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Furthermore, the OH measurements in combination with the derived yields for anthropogenic SOA enabled application of a simplified model to calculate the chemical turnover of the anthropogenic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (≈8%) up to significant fraction (>50%) providing a suitable range to study the effect of aerosol composition on the aerosol volatility (volume fraction remaining at 343 K: 0.86-0.94). The anthropogenic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of anthropogenic SOA the reaction mixtures needed a higher OH dose that also increased O/C and provided a less volatile aerosol. A strong positive correlation was found between changes in volatility and O/C with the exception during dark

  5. Primary particulate emissions and secondary organic aerosol (SOA) formation from idling diesel vehicle exhaust in China.

    PubMed

    Deng, Wei; Hu, Qihou; Liu, Tengyu; Wang, Xinming; Zhang, Yanli; Song, Wei; Sun, Yele; Bi, Xinhui; Yu, Jianzhen; Yang, Weiqiang; Huang, Xinyu; Zhang, Zhou; Huang, Zhonghui; He, Quanfu; Mellouki, Abdelwahid; George, Christian

    2017-03-26

    In China diesel vehicles dominate the primary emission of particulate matters from on-road vehicles, and they might also contribute substantially to the formation of secondary organic aerosols (SOA). In this study tailpipe exhaust of three typical in-use diesel vehicles under warm idling conditions was introduced directly into an indoor smog chamber with a 30m(3) Teflon reactor to characterize primary emissions and SOA formation during photo-oxidation. The emission factors of primary organic aerosol (POA) and black carbon (BC) for the three types of Chinese diesel vehicles ranged 0.18-0.91 and 0.15-0.51gkg-fuel(-1), respectively; and the SOA production factors ranged 0.50-1.8gkg-fuel(-1) and SOA/POA ratios ranged 0.7-3.7 with an average of 2.2. The fuel-based POA emission factors and SOA production factors from this study for idling diesel vehicle exhaust were 1-3 orders of magnitude higher than those reported in previous studies for idling gasoline vehicle exhaust. The emission factors for total particle numbers were 0.65-4.0×10(15)particleskg-fuel(-1), and particles with diameters less than 50nm dominated in total particle numbers. Traditional C2-C12 precursor non-methane hydrocarbons (NMHCs) could only explain less than 3% of the SOA formed during aging and contribution from other precursors including intermediate volatile organic compounds (IVOC) needs further investigation.

  6. Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties

    NASA Astrophysics Data System (ADS)

    Emanuelsson, E. U.; Hallquist, M.; Kristensen, K.; Glasius, M.; Bohn, B.; Fuchs, H.; Kammer, B.; Kiendler-Scharr, A.; Nehr, S.; Rubach, F.; Tillmann, R.; Wahner, A.; Wu, H.-C.; Mentel, Th. F.

    2013-03-01

    Secondary organic aerosol (SOA) formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. In this study aromatic compounds served as examples of anthropogenic volatile organic compound (VOC) and a mixture of α-pinene and limonene as an example for biogenic VOC. Several experiments with exclusively aromatic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μg m-3. The yields (0.5 to 9%) were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Furthermore, the OH measurements in combination with the derived yields for aromatic SOA enabled application of a simplified model to calculate the chemical turnover of the aromatic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (≈8%) up to significant fraction (>50%) providing a suitable range to study the effect of aerosol composition on the aerosol volatility (volume fraction remaining (VFR) at 343 K: 0.86-0.94). The aromatic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of aromatic SOA the reaction mixtures needed a higher OH dose that also

  7. Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere

    PubMed Central

    2012-01-01

    2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C5H12O6S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM2.5) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM2.5 collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA. PMID:22849588

  8. Organosulfates as tracers for secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) in the atmosphere.

    PubMed

    Zhang, Haofei; Worton, David R; Lewandowski, Michael; Ortega, John; Rubitschun, Caitlin L; Park, Jeong-Hoo; Kristensen, Kasper; Campuzano-Jost, Pedro; Day, Douglas A; Jimenez, Jose L; Jaoui, Mohammed; Offenberg, John H; Kleindienst, Tadeusz E; Gilman, Jessica; Kuster, William C; de Gouw, Joost; Park, Changhyoun; Schade, Gunnar W; Frossard, Amanda A; Russell, Lynn; Kaser, Lisa; Jud, Werner; Hansel, Armin; Cappellin, Luca; Karl, Thomas; Glasius, Marianne; Guenther, Alex; Goldstein, Allen H; Seinfeld, John H; Gold, Avram; Kamens, Richard M; Surratt, Jason D

    2012-09-04

    2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C(5)H(12)O(6)S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM(2.5)) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM(2.5) collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA.

  9. Secondary Organic Aerosol Formation in the Captive Aerosol Growth and Evolution (CAGE) Chambers during the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL

    NASA Astrophysics Data System (ADS)

    Leong, Y.; Karakurt Cevik, B.; Hernandez, C.; Griffin, R. J.; Taylor, N.; Matus, J.; Collins, D. R.

    2013-12-01

    Secondary organic aerosol (SOA) represents a large portion of sub-micron particulate matter on a global scale. The composition of SOA and its formation processes are heavily influenced by anthropogenic and biogenic activity. Volatile organic compounds (VOCs) that are emitted naturally from forests or from human activity serve as precursors to SOA formation. Biogenic SOA (BSOA) is formed from biogenic VOCs and is prevalent in forested regions like the Southeastern United States. The formation and enhancement of BSOA under anthropogenic influences such as nitrogen oxides (NOx), sulfur dioxide (SO2), and oxygen radicals are still not well understood. The lack of information on anthropogenic BSOA enhancement and the reversibility of SOA formation could explain the underprediction of SOA in current models. To address some of these gaps in knowledge, this study was conducted as part of the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL during the summer of 2013. SOA growth experiments were conducted in two Captive Aerosol Growth and Evolution (CAGE) outdoor chambers located at the SEARCH site. Ambient trace gas concentrations were maintained in these chambers using semi-permeable gas-exchange membranes, while studying the growth of injected monodisperse seed aerosol. The control chamber was operated under ambient conditions; the relative humidity and oxidant and NOx levels were perturbed in the second chamber. This design allows experiments to capture the natural BSOA formation processes in the southeastern atmosphere and to study the influence of anthropogenic activity on aerosol chemistry. Chamber experiments were periodically monitored with physical and chemical instrumentation including a scanning mobility particle sizer (SMPS), a cloud condensation nuclei counter (CCNC), a humidified tandem differential mobility analyzer (H-TDMA), and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The CAGE experiments focused on SOA

  10. Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J.; Fast, J.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R.; Tyndall, G.; Washenfelder, R.; Waxman, E.; Zhang, Q.

    2014-06-01

    New pathways to form secondary organic aerosol (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous phase of cloud droplets and deliquesced particles where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aerosol aqueous-phase. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. A month-long simulation over the continental United States (US) enables us to extend our results to the continental scale. In all simulations over California, the Los Angeles (LA) basin was found to be the hot spot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a reactive (surface limited) uptake coefficient leads to higher SOA yields from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to give the highest SOA mass yields compared to a volume process and reversible formation. We find that the yields of the latter are limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations ("salting-in"). A time dependence in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume

  11. Fundamental Heterogeneous Reaction Chemistry Related to Secondary Organic Aerosols (SOA) in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Akimoto, H.

    2016-11-01

    Typical reaction pathways of formation of dicarboxylic acids, larger multifunctional compounds, oligomers, and organosulfur and organonitrogen compounds in secondary organic aerosols (SOA), revealed by laboratory experimental studies are reviewed with a short introduction to field observations. In most of the reactions forming these compounds, glyoxal, methyl glyoxal and related difunctional carbonyl compounds play an important role as precursors, and so their formation pathways in the gas phase are discussed first. A substantial discussion is then presented for the OH-initiated aqueous phase radical oxidation reactions of glyoxal and other carbonyls which form dicarboxylic acids, larger multifunctional compounds and oligomers, and aqueous-phase non-radical reactions which form oligomers, organosulfates and organonitrogen compounds. Finally, the heterogeneous oxidation reaction of gaseous O3, OH and NO3 with liquid and solid organic aerosols at the air-particle interface is discussed relating to the aging of SOA in the atmosphere.

  12. Aerosol mass spectrometric features of biogenic SOA: observations from a plant chamber and in rural atmospheric environments.

    PubMed

    Kiendler-Scharr, Astrid; Zhang, Qi; Hohaus, Thorsten; Kleist, Einhard; Mensah, Amewu; Mentel, Thomas F; Spindler, Christian; Uerlings, Ricarda; Tillmann, Ralf; Wildt, Jürgen

    2009-11-01

    Secondary organic aerosol (SOA) is known to form from a variety of anthropogenic and biogenic precursors. Current estimates of global SOA production vary over 2 orders of magnitude. Since no direct measurement technique for SOA exists, quantifying SOA remains a challenge for atmospheric studies. The identification of biogenic SOA (BSOA) based on mass spectral signatures offers the possibility to derive source information of organic aerosol (OA) with high time resolution. Here we present data from simulation experiments. The BSOA from tree emissions was characterized with an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS). Collection efficiencies were close to 1, and effective densities of the BSOA were found to be 1.3 +/- 0.1 g/cm(3). The mass spectra of SOA from different trees were found to be highly similar. The average BSOA mass spectrum from tree emissions is compared to a BSOA component spectrum extracted from field data. It is shown that overall the spectra agree well and that the mass spectral features of BSOA are distinctively different from those of OA components related to fresh fossil fuel and biomass combustions. The simulation chamber mass spectrum may potentially be useful for the identification and interpretation of biogenic SOA components in ambient data sets.

  13. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; McKinney, K.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Brito, J.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Alexander, M. L.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-10-01

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40 ‰) but varies substantially between locations, which is shown to reflect

  14. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGES

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; ...

    2015-10-23

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accountedmore » by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown

  15. Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles

    NASA Astrophysics Data System (ADS)

    Massoli, P.; Lambe, A.; Ahern, A.; Williams, L. R.; Ehn, M.; Mikkila, J.; Canagaratna, M.; Brune, W. H.; Onasch, T. B.; Jayne, J.; Petdjd, T. T.; Kulmala, M. T.; Laaksonen, A.; Kolb, C. E.; Davidovits, P.; Worsnop, D. R.

    2010-12-01

    Laboratory experiments investigated the relationship between degree of oxidation and hygroscopic properties of secondary organic aerosol (SOA) particles. The hygroscopic growth factor (HGF), the CCN activity (κCCN) and the degree of aerosol oxidation (represented by the atomic O:C ratio) were measured for α-pinene, 1,3,5-trimethylbenzene (TMB), m-xylene and α pinene/m-xylene mixture SOA generated via OH radical oxidation in an aerosol flow reactor. Our results show that both HGF and κCCN increase with O:C. The TMB and m-xylene SOA were, respectively, the least and most hygroscopic of the system studied. An average HGF of 1.25 and a κCCN of 0.2 were measured at O:C of 0.65, in agreement with results reported for ambient data. The HGF based κ(κHGF) under predicted the κCCN values of 20 to 50% for all but the TMB SOA. Within the limitations of instrumental capabilities, we define the extent to which the hygroscopic properties of SOA particles can be predicted from their oxidation level and provide parameterizations suitable for interpreting ambient data.

  16. Aerosol-halogen interaction: Change of physico-chemical properties of SOA by naturally released halogen species

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Krüger, H.; Platt, U.; Schmitt-Kopplin, P.; Zetzsch, C.

    2011-12-01

    Reactive halogen species are released by various sources like photo-activated sea-salt aerosol or salt pans and salt lakes. These heterogeneous release mechanisms have been overlooked so far, although their potential of interaction with organic aerosols like Secondary Organic Aerosol (SOA), Biomass Burning Organic Aerosol (BBOA) or Atmospheric Humic LIke Substances (HULIS) is completely unknown. Such reactions can constitute sources of gaseous organo-halogen compounds or halogenated organic particles in the atmospheric boundary layer. To study the interaction of organic aerosols with reactive halogen species (RHS), SOA was produced from α-pinene, catechol and guaiacol using an aerosol smog-chamber. The model SOAs were characterized in detail using a variety of physico-chemical methods (Ofner et al., 2011). Those aerosols were exposed to molecular halogens in the presence of UV/VIS irradiation and to halogens, released from simulated natural halogen sources like salt pans, in order to study the complex aerosol-halogen interaction. The heterogeneous reaction of RHS with those model aerosols leads to different gaseous species like CO2, CO and small reactive/toxic molecules like phosgene (COCl2). Hydrogen containing groups on the aerosol particles are destroyed to form HCl or HBr, and a significant formation of C-Br bonds could be verified in the particle phase. Carbonyl containing functional groups of the aerosol are strongly affected by the halogenation process. While changes of functional groups and gaseous species were visible using FTIR spectroscopy, optical properties were studied using Diffuse Reflectance UV/VIS spectroscopy. Overall, the optical properties of the processed organic aerosols are significantly changed. While chlorine causes a "bleaching" of the aerosol particles, bromine shifts the maximum of UV/VIS absorption to the red end of the UV/VIS spectrum. Further physico-chemical changes were recognized according to the aerosol size-distributions or the

  17. Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles

    NASA Astrophysics Data System (ADS)

    Massoli, P.; Lambe, A. T.; Ahern, A. T.; Williams, L. R.; Ehn, M.; Mikkilä, J.; Canagaratna, M. R.; Brune, W. H.; Onasch, T. B.; Jayne, J. T.; Petäjä, T.; Kulmala, M.; Laaksonen, A.; Kolb, C. E.; Davidovits, P.; Worsnop, D. R.

    2010-12-01

    Laboratory experiments investigated the relationship between oxidation level and hygroscopic properties of secondary organic aerosol (SOA) particles generated via OH radical oxidation in an aerosol flow reactor. The hygroscopic growth factor at 90% RH (HGF90%), the CCN activity ($\\kappa$ORG,CCN) and the level of oxidation (atomic O:C ratio) of the SOA particles were measured. Both HGF90% and $\\kappa$ORG,CCN increased with O:C; the HGF90% varied linearly with O:C, while $\\kappa$ORG,CCN mostly followed a nonlinear trend. An average HGF90% of 1.25 and $\\kappa$ORG,CCN of 0.19 were measured for O:C of 0.65, in agreement with results reported for ambient data. The $\\kappa$ORG values estimated from the HGF90% ($\\kappa$ORG,HGF) were 20 to 50% lower than paired $\\kappa$ORG,CCN values for all SOA particles except 1,3,5-trimethylbenzene (TMB), the least hygroscopic of the SOA systems. Within the limitations of instrumental capabilities, we show that differences in hygroscopic behavior among the investigated SOA systems may correspond to differences in elemental composition.

  18. Impact of NOx on secondary organic aerosol (SOA) formation from β-pinene photooxidation

    NASA Astrophysics Data System (ADS)

    Sarrafzadeh, Mehrnaz; Pullinen, Iida; Springer, Monika; Kleist, Einhard; Tillmann, Ralf; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Hastie, Donald R.; Wildt, Jürgen

    2016-04-01

    Secondary organic aerosols (SOA) generated from atmospheric oxidation of volatile organics contributes substantially to the global aerosol load. It has been shown that odd nitrogen (NOx) has a significant influence on the formation of this SOA. In this study, we investigated SOA formation from β-pinene photooxidation in the Jülich Plant Atmosphere Chamber (JPAC) under varying NOx conditions. At higher-NOx levels, the SOA yield was significantly suppressed by increasing the NOx concentration. However at lower-NOx levels the opposite trend, an increase in SOA with increasing NOx concentration, was observed. This increase was likely due to the increased OH concentration in the stirred flow reactor. By holding the OH concentration constant for all experiments we removed the potential effect of OH concentration on SOA mass growth. In this case increasing the NOx concentration only decreased the SOA yield. In addition, the impact of NOx on SOA formation was explored in the presence of ammonium sulfate seed aerosols. This suggested that SOA yield was only slightly suppressed under increasing NOx concentrations when seed aerosol was present.

  19. Present-day to 21st century projections of secondary organic aerosol (SOA) from a global climate-aerosol model with an explicit SOA formation scheme

    NASA Astrophysics Data System (ADS)

    Lin, G.; Penner, J. E.; Zhou, C.

    2014-12-01

    Secondary organic aerosol (SOA) has been shown to be an important component of non-refractory submicron aerosol in the atmosphere. The presence of SOA can influence the earth's radiative balance by contributing to the absorption and scattering of radiation and by altering the properties of clouds. Globally, a large fraction of SOA originates from biogenic volatile organic compounds (BVOCs), emissions of which depend on vegetation cover and climate. Temperature, CO2 concentration, and land use and land cover change have been shown to be major drivers of global isoprene emission changes in future climates. Additionally, the SOA concentration in the atmosphere not only depends on BVOC emissions, but is also controlled by anthropogenic emissions, temperature, precipitation and the oxidative capacity of the atmosphere. To project the change in SOA concentrations in the future requires a model that fully couples a BVOC emission model that represents these BVOC emission drivers, together with a sophisticated atmospheric model of SOA formation and properties. Recent studies have suggested that traditional parameterized SOA formation mechanisms that are tuned to fit smog chamber data do not fully account for the complexity and dynamics of real SOA system, calling into the question of the validity and completeness of previous SOA projections. In this study, we investigate the response of SOA mass to future physical climate change, to land cover and land use change, to changes in BVOCs emissions, and to changes in anthropogenic aerosol and gas species emissions for the year 2100, utilizing a global climate-aerosol model (CAM5-IMPACT): the NCAR Community Atmospheric Model (CAM5) coupled with a global aerosol model (IMPACT). The IMPACT model has sophisticated detailed process-based mechanisms describing aerosol microphysics and SOA formation through both gas phase and multiphase reactions. We perform sensitivity tests to isolate the relative roles of individual global change

  20. Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign

    NASA Astrophysics Data System (ADS)

    Sareen, Neha; Carlton, Annmarie G.; Surratt, Jason D.; Gold, Avram; Lee, Ben; Lopez-Hilfiker, Felipe D.; Mohr, Claudia; Thornton, Joel A.; Zhang, Zhenfa; Lim, Yong B.; Turpin, Barbara J.

    2016-11-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized, low-volatility organic aerosol and, in some cases, light-absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, and health. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented, forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols), leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify additional precursors and products that may be atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere into water at Brent, Alabama, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Hydroxyl (OH⚫) radical oxidation experiments were conducted with the aqueous mixtures collected from SOAS to better understand the formation of SOA through gas-phase followed by aqueous-phase chemistry. Total aqueous-phase organic carbon concentrations for these mixtures ranged from 92 to 179 µM-C, relevant for cloud and fog waters. Aqueous OH-reactive compounds were primarily observed as odd ions in the positive ion mode by electrospray ionization mass spectrometry (ESI-MS). Ultra high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) spectra and tandem MS (MS-MS) fragmentation of these ions were consistent with the presence of carbonyls and tetrols. Products were observed in the negative ion mode and included pyruvate and oxalate, which were confirmed by ion chromatography. Pyruvate and oxalate have been found in the particle phase in many locations (as salts and complexes). Thus

  1. Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA)

    DOE PAGES

    Hu, Weiwei; Palm, Brett B.; Day, Douglas A.; ...

    2016-09-19

    Isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting, for example, for 16–36 % of the submicron OA in the southeastern United States (SE US) summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigated withmore » an oxidation flow reactor (OFR). New IEPOX-SOA formation in the reactor was negligible, as the OFR does not accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding  ∼  100 µg m−3 of pure H2SO4 to the ambient air allows IEPOX-SOA to be efficiently formed in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical (kOH) was estimated as 4.0 ± 2.0  ×  10−13 cm3 molec−1 s−1, which is equivalent to more than a 2-week lifetime. A similar kOH was found for measurements of OH oxidation of ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (>  1  ×  1012 molec cm−3 s), the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report, for the first time, OH reactive uptake coefficients (γOH =  0.59 ± 0.33 in SE US and γOH =  0.68 ± 0.38 in Amazon) for SOA under ambient conditions. A relative humidity dependence of kOH and γOH was observed, consistent with surface-area-limited OH uptake. No decrease of kOH was observed as OH concentrations increased. These observations of physicochemical

  2. Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA)

    SciTech Connect

    Hu, Weiwei; Palm, Brett B.; Day, Douglas A.; Campuzano-Jost, Pedro; Krechmer, Jordan E.; Peng, Zhe; de Sá, Suzane S.; Martin, Scot T.; Alexander, M. Lizabeth; Baumann, Karsten; Hacker, Lina; Kiendler-Scharr, Astrid; Koss, Abigail R.; de Gouw, Joost A.; Goldstein, Allen H.; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Canonaco, Francesco; Prévôt, André S. H.; Brune, William H.; Jimenez, Jose L.

    2016-01-01

    Isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting, for example, for 16–36 % of the submicron OA in the southeastern United States (SE US) summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigated with an oxidation flow reactor (OFR). New IEPOX-SOA formation in the reactor was negligible, as the OFR does not accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding ~100 µg m-3 of pure H2SO4 to the ambient air allows IEPOX-SOA to be efficiently formed in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical (kOH) was estimated as 4.0 ± 2.0 ×10-13 cm3 molec-1 s-1, which is equivalent to more than a 2-week lifetime. A similar kOH was found for measurements of OH oxidation of ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (> 1 × 1012 molec cm-3 s), the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report, for the first time, OH reactive uptake coefficients (γOH = 0.59±0.33 in SE US and γOH = 0.68±0.38 in Amazon) for SOA under ambient conditions. A relative humidity dependence of kOH and γOH was observed, consistent with surface-area-limited OH uptake

  3. Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA)

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Palm, Brett B.; Day, Douglas A.; Campuzano-Jost, Pedro; Krechmer, Jordan E.; Peng, Zhe; de Sá, Suzane S.; Martin, Scot T.; Lizabeth Alexander, M.; Baumann, Karsten; Hacker, Lina; Kiendler-Scharr, Astrid; Koss, Abigail R.; de Gouw, Joost A.; Goldstein, Allen H.; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Canonaco, Francesco; Prévôt, André S. H.; Brune, William H.; Jimenez, Jose L.

    2016-09-01

    Isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting, for example, for 16-36 % of the submicron OA in the southeastern United States (SE US) summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigated with an oxidation flow reactor (OFR). New IEPOX-SOA formation in the reactor was negligible, as the OFR does not accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding ˜ 100 µg m-3 of pure H2SO4 to the ambient air allows IEPOX-SOA to be efficiently formed in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical (kOH) was estimated as 4.0 ± 2.0 × 10-13 cm3 molec-1 s-1, which is equivalent to more than a 2-week lifetime. A similar kOH was found for measurements of OH oxidation of ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (> 1 × 1012 molec cm-3 s), the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report, for the first time, OH reactive uptake coefficients (γOH = 0.59 ± 0.33 in SE US and γOH = 0.68 ± 0.38 in Amazon) for SOA under ambient conditions. A relative humidity dependence of kOH and γOH was observed, consistent with surface-area-limited OH uptake. No decrease of kOH was observed as OH concentrations increased. These observations of physicochemical properties of IEPOX-SOA can help to constrain OA impact on air quality and climate.

  4. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics

    NASA Astrophysics Data System (ADS)

    Beardsley, Ross L.; Jang, Myoseon

    2016-05-01

    The secondary organic aerosol (SOA) produced by the photooxidation of isoprene with and without inorganic seed is simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. Recent work has found the SOA formation of isoprene to be sensitive to both aerosol acidity ([H+], mol L-1) and aerosol liquid water content (LWC) with the presence of either leading to significant aerosol phase organic mass generation and large growth in SOA yields (YSOA). Classical partitioning models alone are insufficient to predict isoprene SOA formation due to the high volatility of photooxidation products and sensitivity of their mass yields to variations in inorganic aerosol composition. UNIPAR utilizes the chemical structures provided by a near-explicit chemical mechanism to estimate the thermodynamic properties of the gas phase products, which are lumped based on their calculated vapor pressure (eight groups) and aerosol phase reactivity (six groups). UNIPAR then determines the SOA formation of each lumping group from both partitioning and aerosol phase reactions (oligomerization, acid-catalyzed reactions and organosulfate formation) assuming a single homogeneously mixed organic-inorganic phase as a function of inorganic composition and VOC / NOx (VOC - volatile organic compound). The model is validated using isoprene photooxidation experiments performed in the dual, outdoor University of Florida Atmospheric PHotochemical Outdoor Reactor (UF APHOR) chambers. UNIPAR is able to predict the experimental SOA formation of isoprene without seed, with H2SO4 seed gradually titrated by ammonia, and with the acidic seed generated by SO2 oxidation. Oligomeric mass is predicted to account for more than 65 % of the total organic mass formed in all cases and over 85 % in the presence of strongly acidic seed. The model is run to determine the sensitivity of YSOA to [H+], LWC and VOC / NOx, and it is determined that the SOA formation of isoprene is most strongly related to [H

  5. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics

    NASA Astrophysics Data System (ADS)

    Beardsley, R. L.; Jang, M.

    2015-11-01

    The secondary organic aerosol (SOA) produced by the photooxidation of isoprene with and without inorganic seed is simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. Recent work has found the SOA formation of isoprene to be sensitive to both aerosol acidity ([H+]) and aerosol liquid water content (LWC) with the presence of either leading to significant aerosol phase organic mass generation and large growth in SOA yields (YSOA). Classical partitioning models alone are insufficient to predict isoprene SOA formation due to the high volatility of the photooxidation products and the sensitivity of their mass yields to variations in inorganic aerosol composition. UNIPAR utilizes the chemical structures provided by a near-explicit chemical mechanism to estimate the thermodynamic properties of the gas phase products, which are lumped based on their calculated vapor pressure (8 groups) and aerosol phase reactivity (6 groups). UNIPAR then determines the SOA formation of each lumping group from both partitioning and aerosol phase reactions (oligomerization, acid catalyzed reactions, and organosulfate formation) assuming a single homogeneously mixed organic-inorganic phase as a function of inorganic composition and VOC / NOx. The model is validated using isoprene photooxidation experiments performed in the dual, outdoor UF APHOR chambers. UNIPAR is able to predict the experimental SOA formation of isoprene without seed, with H2SO4 seed gradually titrated by ammonia, and with the acidic seed generated by SO2 oxidation. Oligomeric mass is predicted to account for more than 65 % of the total OM formed in all cases and over 85 % in the presence of strongly acidic seed. The model is run to determine the sensitivity of YSOA to [H+], LWC, and VOC / NOx, and it is determined that the SOA formation of isoprene is most strongly related to [H+] but is dynamically related to all three parameters. For VOC / NOx > 10, with increasing NOx both experimental and

  6. Contributions of toluene and alpha-pinene to SOA formed in an irradiated toluene/alpha-pinene/NO(x)/ air mixture: comparison of results using 14C content and SOA organic tracer methods.

    PubMed

    Offenberg, John H; Lewis, Charles W; Lewandowski, Michael; Jaoui, Mohammed; Kleindienst, Tadeusz E; Edney, Edward O

    2007-06-01

    An organic tracer method, recently proposed for estimating individual contributions of toluene and alpha-pinene to secondary organic aerosol (SOA) formation, was evaluated by conducting a laboratory study where a binary hydrocarbon mixture, containing the anthropogenic aromatic hydrocarbon, toluene, and the biogenic monoterpene, alpha-pinene, was irradiated in air in the presence of NO(x) to form SOA. The contributions of toluene and alpha-pinene to the total SOA concentration, calculated using the organic tracer method, were compared with those obtained with a more direct 14C content method. In the study, SOA to SOC ratios of 2.07 +/- 0.08 and 1.41 +/- 0.04 were measured for toluene and (alpha-pinene SOA, respectively. The individual tracer-based SOA contributions of 156 microg m(-3) for toluene and 198 microg m(-)3 for alpha-pinene, which together accounted for 82% of the gravimetrically determined total SOA concentration, compared well with the 14C values of 182 and 230 microg m(-3) measured for the respective SOA precursors. While there are uncertainties associated with the organic tracer method, largely due to the chemical complexity of SOA forming chemical mechanisms, the results of this study suggest the organic tracer method may serve as a useful tool for determining whether a precursor hydrocarbon is a major SOA contributor.

  7. An SOA model for toluene oxidation in the presence of inorganic aerosols.

    PubMed

    Cao, Gang; Jang, Myoseon

    2010-01-15

    A predictive model for secondary organic aerosol (SOA) formation including both partitioning and heterogeneous reactions is explored for the SOA produced from the oxidation of toluene in the presence of inorganic seed aerosols. The predictive SOA model comprises the explicit gas-phase chemistry of toluene, gas-particle partitioning, and heterogeneous chemistry. The resulting products from the explicit gas phase chemistry are lumped into several classes of chemical species based on their vapor pressure and reactivity for heterogeneous reactions. Both the gas-particle partitioning coefficient and the heterogeneous reaction rate constant of each lumped gas-phase product are theoretically determined using group contribution and molecular structure-reactivity. In the SOA model, the predictive SOA mass is decoupled into partitioning (OM(P)) and heterogeneous aerosol production (OM(H)). OM(P) is estimated from the SOA partitioning model developed by Schell et al. (J. Geophys. Res. 2001, 106, 28275-28293 ) that has been used in a regional air quality model (CMAQ 4.7). OM(H) is predicted from the heterogeneous SOA model developed by Jang et al. (Environ. Sci. Technol. 2006, 40, 3013-3022 ). The SOA model is evaluated using a number of the experimental SOA data that are generated in a 2 m(3) indoor Teflon film chamber under various experimental conditions (e.g., humidity, inorganic seed compositions, NO(x) concentrations). The SOA model reasonably predicts not only the gas-phase chemistry, such as the ozone formation, the conversion of NO to NO(2), and the toluene decay, but also the SOA production. The model predicted that the OM(H) fraction of the total toluene SOA mass increases as NO(x) concentrations decrease: 0.73-0.83 at low NO(x) levels and 0.17-0.47 at middle and high NO(x) levels for SOA experiments with high initial toluene concentrations. Our study also finds a significant increase in the OM(H) mass fraction in the SOA generated with low initial toluene

  8. Formation of Epoxide Derived SOA and Gas-Phase Acids through Aqueous Aerosol Processing in the Southeastern United States during SOAS

    NASA Astrophysics Data System (ADS)

    Skog, K.; Teng, A.; Nguyen, T. B.; Nguyen, K.; Suda, S. R.; Xu, L.; Isaacman-VanWertz, G. A.; Feiner, P. A.; Zhang, L.; Olson, K. F.; Koss, A.; Wild, R. J.; St Clair, J.; Crounse, J.; Baumann, K.; Wennberg, P. O.; Petters, M.; Carlton, A. M. G.; Ng, N. L.; Brune, W. H.; De Gouw, J. A.; Goldstein, A. H.; Brown, S. S.; Edgerton, E. S.; McNeill, V. F.; Keutsch, F. N.

    2015-12-01

    Secondary organic aerosol (SOA) contributes to climate and adversely affects human health, but the formation of SOA is poorly understood. Recent studies have proposed that aqueous processing of water-soluble compounds like glyoxal and IEPOX can help explain the abundance of organosulfates, higher oxygen to carbon ratios, and SOA abundance. A comprehensive set of ambient gas- and aerosol-phase data was collected during June and July of 2013 as part of the Southern Oxidant and Aerosol Study (SOAS) at the Centreville, AL ground site. Both gas-phase photochemistry and aqueous-phase aerosol chemistry were modeled using a zero-dimensional box model. While it has been suggested that glyoxal can contribute to aqueous aerosol through the formation of acids and higher-molecular-weight compounds, it did not produce enhanced aqSOA concentrations. Instead, processing of aqueous glyoxal resulted in the production of gas-phase acids. AqSOA consisted almost entirely of epoxide processing products, mainly from the processing of IEPOX to methyl tetrol, and the organosulfate. In addition, the pinene oxides contributed to the formation of aqSOA, through the formation of organosulfates, diols, and organonitrates. These data are consistent with the abundance of IEPOX and pinene oxide organonitrate derived SOA seen at this site.

  9. SOA Formation form the NO3 radicals Chemistry of Isoprene, Monoterpenes, Sesquiterpenes, Biogenic Oxygenated Compounds, and Aromatics

    NASA Astrophysics Data System (ADS)

    Kleindienst, T. E.; Jaoui, M.; Docherty, K.; Corse, E.; Offenberg, J. H.; Lewandowski, M.

    2011-12-01

    Volatile organic compounds (VOCs) are oxidized in the atmosphere primarily by hydroxyl radicals (OH) during daylight hours but also by nitrate radicals (NO3) during overnight, photochemically inactive periods. While reactions with OH have received considerable attention with regard to gas-phase reaction products and secondary organic aerosol (SOA) formation, less is known about the mechanisms and products resulting from nighttime NO3 reactions despite their potential for SOA formation. To date, there have been limited studies on the chemical characteristics of aerosol reaction products formed from VOCs oxidation with NO3, and few SOA reaction products have been identified. Nighttime reactions have nevertheless been incorporated into some air quality models despite the limited information available and substantial uncertainties which still exist. The National Exposure Research Laboratory of the U.S. Environmental Protection Agency recently undertook an integrated laboratory research effort to better understand the contribution of NO3 reactions to nighttime SOA formation. Isoprene, methacrolein, a-pinene, b-pinene, d-limonene, b-caryophyllene, farnesene, a-humulene, 2-methyl-3-buten-2-ol, toluene, m-xylene, and naphthalene were reacted with NO3 under a wide range of conditions in a series of separate photochemical reaction chamber experiments. These hydrocarbons are thought to contribute to ambient SOA formation. NO3 was formed through thermal decomposition of N2O5. The yield, physical characteristics, and composition of SOA formed in each experiment was analyzed by a suite of instruments including a scanning mobility particle sizer, a Sunset Labs semi continuous EC-OC monitor, a volatility differential mobility analyzer, a direct insertion probe-mass spectrometer, a high resolution time-of-flight aerosol mass spectrometer, and a gas-chromatography-mass spectrometer. To understand the relative contributions of nighttime versus daytime VOCs reactions, a similar

  10. Secondary Organic Aerosol Formation and Aging in a Flow Reactor in the Forested Southeast US during SOAS

    NASA Astrophysics Data System (ADS)

    Hu, W.; Palm, B. B.; Hacker, L.; Campuzano Jost, P.; Day, D. A.; Simoes de Sa, S.; Fry, J.; Ayres, B. R.; Draper, D. C.; Ortega, A. M.; Kiendler-Scharr, A.; Panujoka, A.; Virtanen, A.; Miettinen, P.; Krechmer, J.; Canagaratna, M. R.; Thompson, S.; Yatavelli, L. R.; Stark, H.; Worsnop, D. R.; Lechner, M.; Martin, S. T.; Farmer, D.; Brown, S. S.; Jimenez, J. L.

    2013-12-01

    A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area (Centreville Supersite) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 flow reactors (potential aerosol mass, PAM) were used to expose ambient air to oxidants and their output was analyzed by state-of-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a High-Resolution Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and for the first time, two different High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometers (HRToF-CIMS), and an SMPS. Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, O3 and NO3) to investigate SOA formation and aging. The OH exposure was estimated by 3 different methods (empirical parameterization, carbon monoxide consumption, and chemical box model). Effective OH exposures up to 7e12 molec cm-3 s were achieved, which is equivalent to over a month of aging in the atmosphere. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ambient OA by ≈ 30%, indicating shifting contributions of functionalization vs. fragmentation, which is similar to previous results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than the ambient OA. More SOA is typically formed during nighttime when terpenes are higher and lower during daytime when isoprene is higher. SOA formation is also observed after exposure of ambient air to O3 or NO3, although the amount and oxidation was lower than for OH exposure. Formation of organic nitrates in the NO3 reaction will be discussed. High SOA formation (above 40 μg m-3) and a large number of CIMS ions, indicating many different

  11. Secondary organic aerosol (SOA) derived from isoprene epoxydiols: Insights into formation, aging and distribution over the continental US from the DC3 and SEAC4RS campaigns

    NASA Astrophysics Data System (ADS)

    Campuzano Jost, P.; Palm, B. B.; Day, D. A.; Hu, W.; Ortega, A. M.; Jimenez, J. L.; Liao, J.; Froyd, K. D.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; St Clair, J. M.; Crounse, J.; Wennberg, P. O.; Mikoviny, T.; Wisthaler, A.; Ziemba, L. D.; Anderson, B. E.

    2014-12-01

    Isoprene-derived SOA formation has been studied extensively in the laboratory. However, it is still unclear to what extent isoprene contributes to the overall SOA burden over the southeastern US, an area with both strong isoprene emissions as well as large discrepancies between modeled and observed aerosol optical depth. For the low-NO isoprene oxidation pathway, the key gas-phase intermediate is believed to be isoprene epoxide (IEPOX), which can be incorporated into the aerosol phase by either sulfate ester formation (IEPOX sulfate) or direct hydrolysis. As first suggested by Robinson et al, the SOA formed by this mechanism (IEPOX-SOA) has a characteristic fragmentation pattern when analyzed by an Aerodyne Aerosol Mass Spectrometer (AMS) with enhanced relative abundances of the C5H6O+ ion (fC5H6O). Based on data from previous ground campaigns and chamber studies, we have developed a empirical method to quantify IEPOX-SOA and have applied it to the data from the DC3 and SEAC4RS aircraft campaigns that sampled the SE US during the Spring of 2012 and the Summer of 2013. We used Positive Matrix Factorization (PMF) to extract IEPOX-SOA factors that show good correlation with inside or downwind of high isoprene emitting areas and in general agree well with the IEPOX-SOA mass predicted by the empirical expression. According to this analysis, the empirical method performs well regardless of (at times very strong) BBOA or urban OA influences. On average 17% of SOA in the SE US boundary layer was IEPOX-SOA. Overall, the highest concentrations of IEPOX-SOA were typically found around 1-2 km AGL, several hours downwind of the isoprene source areas with high gas-phase IEPOX present. IEPOX-SOA was also detected up to altitudes of 6 km, with a clear trend towards more aged aerosol at altitude, likely a combination of chemical aging and physical airmass mixing. The unique instrument package aboard the NASA-DC8 allows us to examine the influence of multiple factors (aerosol

  12. simpleGAMMA - a reduced model of secondary organic aerosol formation in the aqueous aerosol phase (aaSOA)

    NASA Astrophysics Data System (ADS)

    Woo, J. L.; McNeill, V. F.

    2015-01-01

    There is increasing evidence that the uptake and aqueous processing of water-soluble volatile organic compounds (VOCs) by wet aerosols or cloud droplets is an important source of secondary organic aerosol (SOA). We recently developed GAMMA (Gas-Aerosol Model for Mechanism Analysis), a zero-dimensional kinetic model that couples gas-phase and detailed aqueous-phase atmospheric chemistry for speciated prediction of SOA and organosulfate formation in cloudwater or aqueous aerosols. Results from GAMMA simulations of SOA formation in aerosol water (McNeill et al., 2012) indicate that it is dominated by two pathways: isoprene epoxydiol (IEPOX) uptake followed by ring-opening chemistry (under low-NOx conditions) and glyoxal uptake. This suggested that it is possible to model the majority of aqueous aerosol phase SOA mass using a highly simplified reaction scheme. We have therefore developed a reduced version of GAMMA, simpleGAMMA. Close agreement in predicted aaSOA mass is observed between simpleGAMMA and GAMMA under all conditions tested (between pH 1-4 and RH 40-80%) after 12 h of simulation. simpleGAMMA is computationally efficient and suitable for coupling with larger-scale atmospheric chemistry models.

  13. Identification and Characterization of Biogenic SOA Component in Ambient Aerosols Based on Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Jimenez, J.; Allan, J. D.; Kiendler-Scharr, A.; Tian, J.; Canagaratna, M. R.; Williams, B.; Worsnop, D. R.; Coe, H.; Goldstein, A.; Mentel, T. F.

    2008-12-01

    Recently studies have shown that multivariate factor analysis of the highly time-resolved mass spectral data obtained with an Aerodyne Aerosol Mass Spectrometer (AMS) may allow the classification and simplification of complex organic aerosol (OA) mixtures into components that are chemically meaningful and can be related to different sources and transformation processes. Two factor analysis techniques, including the Multiple Component Analysis (MCA) method (Zhang et al., 2007) and the Positive Matrix Factorization (PMF) method (Paatero and Tapper, 1994), were applied to a Quadrupole-AMS dataset acquired from Chebogue Pt., Nova Scotia in summer 2004. Multiple OA components were determined, including a hydrocarbon-like OA (HOA) component similar in mass spectra to the hydrocarbon substances observed at urban locations and two oxygenated OA (OA) components that show different fragmentation patterns and oxygen-to-carbon ratios in their mass spectra. The HOA component correlates with inert primary emission tracers (e.g., EC and CO) and likely represents diluted POA transported from urban locations. The highly oxygenated component (OOA-I) correlates well with sulfate and shows a mass spectrum resembling that of fulvic acid - a model compound representative for highly processed/oxidized organics in the environment. The less oxygenated OA component (OOA-II) reveals a mass spectral pattern that compares well with those of the biogenic SOA produced from the mixture of VOCs emitted by spruce, pine and birch trees during exposure to ozone and UV-photolysis in the Jülich plant chamber. In addition, the time series of OOA-II correlates with biogenic SOA tracer compounds determined by the thermal desorption aerosol GC/MS-FID (TAG) instrument. Furthermore, the time-resolved size distributions of OOA components, their correlations with parallel gas and aerosol measurements, and backtrajectory analysis of air masses all support the association of OOA-II to biogenic sources. Finally

  14. Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime

    NASA Astrophysics Data System (ADS)

    Hodzic, Alma; Kasibhatla, Prasad S.; Jo, Duseong S.; Cappa, Christopher D.; Jimenez, Jose L.; Madronich, Sasha; Park, Rokjin J.

    2016-06-01

    Recent laboratory studies suggest that secondary organic aerosol (SOA) formation rates are higher than assumed in current models. There is also evidence that SOA removal by dry and wet deposition occurs more efficiently than some current models suggest and that photolysis and heterogeneous oxidation may be important (but currently ignored) SOA sinks. Here, we have updated the global GEOS-Chem model to include this new information on formation (i.e., wall-corrected yields and emissions of semi-volatile and intermediate volatility organic compounds) and on removal processes (photolysis and heterogeneous oxidation). We compare simulated SOA from various model configurations against ground, aircraft and satellite measurements to assess the extent to which these improved representations of SOA formation and removal processes are consistent with observed characteristics of the SOA distribution. The updated model presents a more dynamic picture of the life cycle of atmospheric SOA, with production rates 3.9 times higher and sinks a factor of 3.6 more efficient than in the base model. In particular, the updated model predicts larger SOA concentrations in the boundary layer and lower concentrations in the upper troposphere, leading to better agreement with surface and aircraft measurements of organic aerosol compared to the base model. Our analysis thus suggests that the long-standing discrepancy in model predictions of the vertical SOA distribution can now be resolved, at least in part, by a stronger source and stronger sinks leading to a shorter lifetime. The predicted global SOA burden in the updated model is 0.88 Tg and the corresponding direct radiative effect at top of the atmosphere is -0.33 W m-2, which is comparable to recent model estimates constrained by observations. The updated model predicts a population-weighed global mean surface SOA concentration that is a factor of 2 higher than in the base model, suggesting the need for a reanalysis of the contribution of

  15. Organic Aerosol Formation in the Humid, Photochemically-Active Southeastern US: SOAS Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Lim, Y. B.; Carlton, A. G.; Turpin, B. J.

    2013-12-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized low volatility organic aerosol and, in some cases, light absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, health, and the environment. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols) leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify other precursors that are atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere at Brent, Alabama during the Southern Oxidant and Aerosol Study (SOAS). Four mist chambers in parallel collected ambient gases in a DI water medium at 20-25 LPM with a 4 hr collection time. Total organic carbon (TOC) values in daily composited samples were 64-180 μM. Aqueous OH radical oxidation experiments were conducted with these mixtures in a newly designed cuvette chamber to understand the formation of SOA through gas followed by aqueous chemistry. OH radicals (3.5E-2 μM [OH] s-1) were formed in-situ in the chamber, continuously by H2O2 photolysis. Precursors and products of these aqueous OH experiments were characterized using ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. ESI-MS results from a June 12th, 2013 sample showed precursors to be primarily odd, positive mode ions, indicative of the presence of non-nitrogen containing alcohols, aldehydes, organic peroxides, or epoxides. Products were seen in the negative mode and included organic acid ions like pyruvate

  16. Secondary Organic Aerosol Formation and Aging in a Flow Reactor in the Forested Southeast US during SOAS

    NASA Astrophysics Data System (ADS)

    Hu, W.; Palm, B. B.; Hacker, L.; Campuzano Jost, P.; Day, D. A.; de Sá, S. S.; Ayres, B. R.; Draper, D.; Fry, J.; Ortega, A. M.; Kiendler-Scharr, A.; Pajunoja, A.; Virtanen, A.; Krechmer, J.; Canagaratna, M. R.; Thompson, S.; Yatavelli, R. L. N.; Stark, H.; Worsnop, D. R.; Martin, S. T.; Farmer, D.; Brown, S. S.; Jimenez, J. L.

    2015-12-01

    A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area in Centreville Supersite, AL (SEARCH network) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 oxidation flow reactors (OFR) were used to expose ambient air to oxidants and their output was analyzed by state-of-the-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a HR Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and Two HR-TOF Chemical Ionization Mass Spectrometers (HRToF-CIMS). Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, NO3 radicals and O3) to investigate the oxidation of BVOCs (including isoprene derived epoxydiols, IEPOX) and SOA formation and aging. Effective OH exposures up to 1×1013 molec cm-3 s were achieved, equivalent to over a month of aging in the atmosphere. Multiple oxidation products from isoprene and monoterpenes including small gas-phase acids were observed in OH OFR. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ~30% of ambient OA, indicating shifting contributions of functionalization vs. fragmentation, consistent with results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than ambient OA. More SOA is typically formed during nighttime when terpenes are higher and photochemistry is absent, and less during daytime when isoprene is higher, although the IEPOX pathway is suppressed in the OFR. SOA is also observed after exposure of ambient air to O3 or NO3, although the amounts and oxidation levels were lower than for OH. Formation of organic nitrates in the NO3 reaction will also be discussed.A major field campaign (Southern Oxidant and Aerosol

  17. Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation

    NASA Astrophysics Data System (ADS)

    Ortiz-Montalvo, Diana L.; Schwier, Allison N.; Lim, Yong B.; McNeill, V. Faye; Turpin, Barbara J.

    2016-04-01

    The volatility of secondary organic aerosol (SOA) formed through cloud processing (aqueous hydroxyl radical (radOH) oxidation and droplet evaporation) of methylglyoxal (MGly) was studied. Effective vapor pressure and effective enthalpy of vaporization (ΔHvap,eff) were determined using 1) droplets containing MGly and its oxidation products, 2) a Vibrating Orifice Aerosol Generator (VOAG) system, and 3) Temperature Programmed Desorption Aerosol-Chemical Ionization Mass Spectrometry (TPD Aerosol-CIMS). Simulated in-cloud MGly oxidation (for 10-30 min) produces an organic mixture of higher and lower volatility components with an overall effective vapor pressure of (4 ± 7) × 10-7 atm at pH 3. The effective vapor pressure decreases by a factor of 2 with addition of ammonium hydroxide (pH 7). The fraction of organic material remaining in the particle-phase after drying was smaller than for similar experiments with glycolaldehyde and glyoxal SOA. The ΔHvap,eff of pyruvic acid and oxalic acid + methylglyoxal in the mixture (from TPD Aerosol-CIMS) were smaller than the theoretical enthalpies of the pure compounds and smaller than that estimated for the entire precursor/product mix after droplet evaporation. After 10-30 min of aqueous oxidation (one cloud cycle) the majority of the MGly + radOH precursor/product mix (even neutralized) will volatilize during droplet evaporation; neutralization and at least 80 min of oxidation at 10-12 M radOH (or >12 h at 10-14 M) is needed before low volatility ammonium oxalate exceeds pyruvate.

  18. The SOA formation model combined with semiempirical quantum chemistry for predicting UV-Vis absorption of secondary organic aerosols.

    PubMed

    Zhong, Min; Jang, Myoseon; Oliferenko, Alexander; Pillai, Girinath G; Katritzky, Alan R

    2012-07-07

    A new model for predicting the UV-visible absorption spectra of secondary organic aerosols (SOA) has been developed. The model consists of two primary parts: a SOA formation model and a semiempirical quantum chemistry method. The mass of SOA is predicted using the PHRCSOA (Partitioning Heterogeneous Reaction Consortium Secondary Organic Aerosol) model developed by Cao and Jang [Environ. Sci. Technol., 2010, 44, 727]. The chemical composition is estimated using a combination of the kinetic model (MCM) and the PHRCSOA model. The absorption spectrum is obtained by taking the sum of the spectrum of each SOA product calculated using a semiempirical NDDO (Neglect of Diatomic Differential Overlap)-based method. SOA was generated from the photochemical reaction of toluene or α-pinene at different NO(x) levels (low NO(x): 24-26 ppm, middle NO(x): 49 ppb, high NO(x): 104-105 ppb) using a 2 m(3) indoor Teflon film chamber. The model simulation reasonably agrees with the measured absorption spectra of α-pinene SOA but underestimates toluene SOA under high and middle NO(x) conditions. The absorption spectrum of toluene SOA is moderately enhanced with increasing NO(x) concentrations, while that of α-pinene SOA is not affected. Both measured and calculated UV-visible spectra show that the light absorption of toluene SOA is much stronger than that of α-pinene SOA.

  19. Key parameters controlling OH-initiated formation of secondary organic aerosol in the aqueous phase (aqSOA)

    NASA Astrophysics Data System (ADS)

    Ervens, Barbara; Sorooshian, Armin; Lim, Yong B.; Turpin, Barbara J.

    2014-04-01

    Secondary organic aerosol formation in the aqueous phase of cloud droplets and aerosol particles (aqSOA) might contribute substantially to the total SOA burden and help to explain discrepancies between observed and predicted SOA properties. In order to implement aqSOA formation in models, key processes controlling formation within the multiphase system have to be identified. We explore parameters affecting phase transfer and OH(aq)-initiated aqSOA formation as a function of OH(aq) availability. Box model results suggest OH(aq)-limited photochemical aqSOA formation in cloud water even if aqueous OH(aq) sources are present. This limitation manifests itself as an apparent surface dependence of aqSOA formation. We estimate chemical OH(aq) production fluxes, necessary to establish thermodynamic equilibrium between the phases (based on Henry's law constants) for both cloud and aqueous particles. Estimates show that no (currently known) OH(aq) source in cloud water can remove this limitation, whereas in aerosol water, it might be feasible. Ambient organic mass (oxalate) measurements in stratocumulus clouds as a function of cloud drop surface area and liquid water content exhibit trends similar to model results. These findings support the use of parameterizations of cloud-aqSOA using effective droplet radius rather than liquid water volume or drop surface area. Sensitivity studies suggest that future laboratory studies should explore aqSOA yields in multiphase systems as a function of these parameters and at atmospherically relevant OH(aq) levels. Since aerosol-aqSOA formation significantly depends on OH(aq) availability, parameterizations might be less straightforward, and oxidant (OH) sources within aerosol water emerge as one of the major uncertainties in aerosol-aqSOA formation.

  20. Cloud Condensation Nuclei Activity, Droplet Growth Kinetics and Hygroscopicity of Biogenic and Anthropogenic Secondary Organic Aerosol (SOA)

    NASA Astrophysics Data System (ADS)

    Zhao, Defeng; Buchholz, Angela; Kortner, Birthe; Schlag, Patrick; Rubach, Florian; Hendrik, Fucks; Kiendler-Scharr, Astrid; Tillmann, Ralf; Wahner, Andreas; Hallquist, Mattias; Flores, Michel; Rudich, Yinon; Glasius, Marianne; Kourtchev, Ivan; Kalberer, Markus; Mentel, Thomas

    2015-04-01

    Recent field data and model analysis show that secondary organic aerosol (SOA) formation is enhanced under anthropogenic influences (de Gouw et al. 2005, Spracklen et al. 2011). The interaction of biogenic VOCs (BVOCs) with anthropogenic emissions such as anthropogenic VOCs (AVOCs) could change the particle formation yields and the aerosol properties, as was recently demonstrated (Emanuelsson et al., 2013; Flores et al., 2014). However, the effect of the interaction of BVOCs with AVOCs on cloud condensation nuclei (CCN) activity and hygroscopicity of SOA remains elusive. Characterizing such changes is necessary in order to assess the indirect radiative forcing of biogenic aerosols that form under anthropogenic influence. In this study, we investigated the influence of AVOCs on CCN activation and hygroscopic growth of BSOA. SOA was formed from photooxidation of monoterpenes and aromatics as representatives of BVOCs and AVOCs, respectively. The hygroscopicity and CCN activation of BSOA were studied and compared with that of anthropogenic SOA (ASOA) and the mixture of ASOA and BSOA (ABSOA). We found that ASOA had a significantly higher hygroscopicity than BSOA at similar OH dose, which is attributed to a higher oxidation level of ASOA. While the ASOA fraction had an enhancing effect on the hygroscopicity of ABSOA compared to BSOA, the hygroscopicity of ABSOA cannot be explained by a linear combination of the pure ASOA and BSOA systems, indicating potentially additional non-linear effects such as oligomerization. However, in contrast to hygroscopicity, ASOA showed similar CCN activity as BSOA, in spite of its higher oxidation level. The ASOA fraction did not enhance the CCN activity of ABSOA. The discrepancy between hygroscopicity and CCN activity is discussed. In addition, BSOA, ABSOA and ASOA formed similar droplet size with ammonium sulfate in CCN at a given supersaturation, indicating none of these aerosols had a delay in the water uptake in the supersaturated

  1. Oxidant supply and aqueous photochemical SOA formation in cloud droplets and aqueous aerosol

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Ervens, B.; Lim, Y. B.

    2012-12-01

    Many recent laboratory, field and model studies point to significant contributions to the total secondary organic aerosol (SOA) budget from aqueous phase reactions in cloud droplets and aqueous aerosol particles. Laboratory studies of the photochemical oxidation of glyoxal and methylglyoxal in the aqueous phase show a strong dependence on the initial concentration of dissolved organics, with preferential formation of large molecules (dimers, oligomers) at the high concentrations found in ambient deliquesced aerosol particles. In such experimental studies OH radicals are produced in the aqueous phase (via hydrogen peroxide photolysis) and OH radical is assumed to be the major oxidant. An explicit aqueous photooxidation mechanism has been validated, in part, based on the observed temporal evolution of organic intermediates and products in these experiments. In this work, this mechanism was incorporated into multiphase process models (box, cloud parcel) in order to further explore aqueous SOA formation in dilute cloud droplets and concentrated aerosol particles. We found that the predicted SOA mass in both aqueous phases can be comparable despite the much lower liquid water content in aerosols, where oligomer formation is favored. Direct uptake from the gas phase was the largest source of OH radicals in the aqueous phase. In-situ production through the Fenton reaction (Fe), hydrogen peroxide and nitrate photolysis were minor sources. Since phase transfer is slower than the OH(aq) consumption by organics, modeled OH(aq) concentrations were smaller by 1-2 orders of magnitude than predicted based on thermodynamic equilibrium. Our model studies suggest that, unless there are substantial additional sources of OH radical in the aqueous phase, aqueous SOA formation will be oxidant limited. Since the phase transfer rate is a function of the drop (or particle) surface area, aqueous SOA formation may occur preferentially at or near the drop/particle surface (e.g., be surface

  2. Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA.

    PubMed

    Lopez-Hilfiker, F D; Mohr, C; D'Ambro, E L; Lutz, A; Riedel, T P; Gaston, C J; Iyer, S; Zhang, Z; Gold, A; Surratt, J D; Lee, B H; Kurten, T; Hu, W W; Jimenez, J; Hallquist, M; Thornton, J A

    2016-03-01

    We present measurements as part of the Southern Oxidant and Aerosol Study (SOAS) during which atmospheric aerosol particles were comprehensively characterized. We present results utilizing a Filter Inlet for Gases and AEROsol coupled to a chemical ionization mass spectrometer (CIMS). We focus on the volatility and composition of isoprene derived organic aerosol tracers and of the bulk organic aerosol. By utilizing the online volatility and molecular composition information provided by the FIGAERO-CIMS, we show that the vast majority of commonly reported molecular tracers of isoprene epoxydiol (IEPOX) derived secondary organic aerosol (SOA) is derived from thermal decomposition of accretion products or other low volatility organics having effective saturation vapor concentrations <10(-3) μg m(-3). In addition, while accounting for up to 30% of total submicrometer organic aerosol mass, the IEPOX-derived SOA has a higher volatility than the remaining bulk. That IEPOX-SOA, and more generally bulk organic aerosol in the Southeastern U.S. is comprised of effectively nonvolatile material has important implications for modeling SOA derived from isoprene, and for mechanistic interpretations of molecular tracer measurements. Our results show that partitioning theory performs well for 2-methyltetrols, once accretion product decomposition is taken into account. No significant partitioning delays due to aerosol phase or viscosity are observed, and no partitioning to particle-phase water or other unexplained mechanisms are needed to explain our results.

  3. Secondary Organic Aerosol (SOA) formation from hydroxyl radical oxidation and ozonolysis of monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Kaminski, M.; Schlag, P.; Fuchs, H.; Acir, I.-H.; Bohn, B.; Häseler, R.; Kiendler-Scharr, A.; Rohrer, F.; Tillmann, R.; Wang, M. J.; Wegener, R.; Wildt, J.; Wahner, A.; Mentel, T. F.

    2014-05-01

    Oxidation by hydroxyl radical (OH) and ozonolysis are the two major pathways of daytime biogenic volatile organic compounds (VOCs) oxidation and secondary organic aerosol (SOA) formation. In this study, we investigated the particle formation of several common monoterpenes (α-pinene, β-pinene, and limonene) by OH dominated oxidation, which has seldom been investigated. OH oxidation experiments were carried out in the SAPHIR chamber in Jülich, Germany, at low NOx (0.01-1 ppbV) and low ozone (O3) concentration. OH concentration and OH reactivity were measured directly so that the overall reaction rates of organic compounds with OH were quantified. Multi-generation reaction process, particle growth, new particle formation, particle yield, and chemical composition were analyzed and compared with that of monoterpene ozonolysis. Multi-generation products were found to be important in OH dominated SOA formation. The relative role of functionalization and fragmentation in the reaction process of OH oxidation was analyzed by examining the particle mass and the particle size as a function of OH dose. We developed a novel method which quantitatively links particle growth to the reaction of OH with organics in a reaction system. This method was also used to analyze the evolution of functionalization and fragmentation of organics in the particle formation by OH oxidation. It shows that functionalization of organics was dominant in the beginning of the reaction (within two lifetimes of the monoterpene) and fragmentation started to be dominant after that. We compared particle formation from OH oxidation with that from pure ozonolysis. In individual experiments, growth rates of the particle size did not necessarily correlate with the reaction rate of monoterpene with OH and O3. Comparing the size growth rates at the similar reaction rates of monoterpene with OH or O3 indicates that generally, OH oxidation and ozonolysis had similar efficiency in particle growth. The SOA yield of

  4. Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Tuet, Wing Y.; Chen, Yunle; Xu, Lu; Fok, Shierly; Gao, Dong; Weber, Rodney J.; Ng, Nga L.

    2017-01-01

    Particulate matter (PM), of which a significant fraction is comprised of secondary organic aerosols (SOA), has received considerable attention due to its health implications. In this study, the water-soluble oxidative potential (OPWS) of SOA generated from the photooxidation of biogenic and anthropogenic hydrocarbon precursors (isoprene, α-pinene, β-caryophyllene, pentadecane, m-xylene, and naphthalene) under different reaction conditions (RO2+ HO2 vs. RO2+ NO dominant, dry vs. humid) was characterized using dithiothreitol (DTT) consumption. The measured intrinsic OPWS-DTT values ranged from 9 to 205 pmol min-1 µg-1 and were highly dependent on the specific hydrocarbon precursor, with naphthalene and isoprene SOA generating the highest and lowest OPWS-DTT values, respectively. Humidity and RO2 fate affected OPWS-DTT in a hydrocarbon-specific manner, with naphthalene SOA exhibiting the most pronounced effects, likely due to the formation of nitroaromatics. Together, these results suggest that precursor identity may be more influential than reaction condition in determining SOA oxidative potential, demonstrating the importance of sources, such as incomplete combustion, to aerosol toxicity. In the context of other PM sources, all SOA systems, with the exception of naphthalene SOA, were less DTT active than ambient sources related to incomplete combustion, including diesel and gasoline combustion as well as biomass burning. Finally, naphthalene SOA was as DTT active as biomass burning aerosol, which was found to be the most DTT-active OA source in a previous ambient study. These results highlight a need to consider SOA contributions (particularly from anthropogenic hydrocarbons) to health effects in the context of hydrocarbon emissions, SOA yields, and other PM sources.

  5. Secondary Organic Aerosol (SOA) Formation from Hydroxyl Radical Oxidation and Ozonolysis of Monoterpenes

    NASA Astrophysics Data System (ADS)

    Zhao, Defeng; Kaminski, Martin; Schlag, Patrick; Fuchs, Hendrik; Acir, Ismail-Hakki; Bohn, Birger; Haeseler, Rolf; Kiendler-Scharr, Astrid; Rohrer, Franz; Tillmann, Ralf; Wang, Mingjin; Wegner, Robert; Wahner, Andreas; Mentel, Thomas

    2014-05-01

    Hydroxyl radical (OH) oxidation and ozonolysis are the two major pathways of daytime biogenic volatile organic compounds (VOCs) oxidation and secondary organic aerosol (SOA) formation. The pure OH oxidation of monoterpenes, an important biogenic VOC class, has seldom been investigated. In order to elucidate the importance of the reaction pathyways of the OH oxidation and ozonolysis and their roles in particle formation and growth, we investigated the particle formation of several common monoterpenes (alpha-pinene, beta-pinene, and limonene) in the large atmosphere simulation chamber SAPHIR in Juelich, Germany. The experiments were conducted for both OH dominant and pure ozonolysis case (in the presence of CO as OH scavenger) at ambient relevant conditions (low OA, low VOC and low NOx concentration). OH and ozone (O3) concentrations were measured so that the oxidation rates of OH and O3 with precursors were quantified. The particle formation and growth, aerosol yield, multi-generation reaction process and aerosol composition were analyzed. Pure ozonolysis generated a large amount of particles indicating ozonolysis plays an important role in particle formation as well as OH oxidation. In individual experiments, particle growth rates did not necessarily correlate with OH or O3 oxidation rates. However, comparing the growth rates at similar OH or O3 oxidation rates shows that generally, OH oxidation and ozonolysis have similar efficiency in particle growth. Multi-generation products are shown to be important in the OH oxidation experiment based on aerosol yield "growth curve" (Ng et al., 2006). The reaction process of OH oxidation experiments was analyzed as a function of OH dose to elucidate the role of functionalization and fragmentation. A novel analysis was developed to link the particle formation with the reaction with OH, which was also used to examine the role of functionalization and fragmentation in the particle formation by OH oxidation. These analyses show

  6. simpleGAMMA v1.0 - a reduced model of secondary organic aerosol formation in the aqueous aerosol phase (aaSOA)

    NASA Astrophysics Data System (ADS)

    Woo, J. L.; McNeill, V. F.

    2015-06-01

    There is increasing evidence that the uptake and aqueous processing of water-soluble volatile organic compounds (VOCs) by wet aerosols or cloud droplets is an important source of secondary organic aerosol (SOA). We recently developed GAMMA (Gas-Aerosol Model for Mechanism Analysis), a zero-dimensional kinetic model that couples gas-phase and detailed aqueous-phase atmospheric chemistry for speciated prediction of SOA and organosulfate formation in cloud water or aqueous aerosols. Results from GAMMA simulations of SOA formation in aerosol water (aaSOA) (McNeill et al., 2012) indicate that it is dominated by two pathways: isoprene epoxydiol (IEPOX) uptake followed by ring-opening chemistry (under low-NOx conditions) and glyoxal uptake. This suggested that it is possible to model the majority of aaSOA mass using a highly simplified reaction scheme. We have therefore developed a reduced version of GAMMA, simpleGAMMA. Close agreement in predicted aaSOA mass is observed between simpleGAMMA and GAMMA under all conditions tested (between pH 1-4 and RH 40-80 %) after 12 h of simulation. simpleGAMMA is computationally efficient and suitable for coupling with larger-scale atmospheric chemistry models or analyzing ambient measurement data.

  7. Global Transformation and Fate of Secondary Organic Aerosols: Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions

    NASA Astrophysics Data System (ADS)

    Shrivastava, M. B.; Easter, R. C.; Liu, X.; Zelenyuk, A.; Singh, B.; Zhang, K.; Ma, P. L.; Chand, D.; Ghan, S. J.; Jimenez, J. L.; Zhang, Q.; Fast, J. D.; Rasch, P. J.; Tiitta, P.

    2014-12-01

    Secondary organic aerosols (SOA) are often represented crudely in global models. We have implemented three new detailed SOA treatments within the Community Atmosphere Model version 5 (CAM5) that allow us to compare the semi-volatile versus non-volatile SOA treatments (based on some of the latest experimental findings) and also investigate the effects of gas-phase fragmentation reactions. For semi-volatile SOA treatments, fragmentation reactions decrease simulated SOA burden from 7.5 Tg to 1.8 Tg. For the non-volatile SOA treatment (with fragmentation), the burden is 3.1 Tg. Larger differences between non-volatile and semi-volatile SOA (upto a factor of 5) correspond to continental outflow over the oceans. Compared to a global dataset of surface Aerosol Mass Spectrometer measurements and the US IMPROVE network measurements, the non-volatile SOA with fragmentation treatment (FragNVSOA) agrees best at rural locations. Urban SOA is under-predicted but this may be due to the coarse model resolution. Our revised treatments show much better agreement with aircraft measurements of organic aerosols (OA) over the N. American Arctic and sub-Arctic in spring and summer, compared to the standard CAM5 formulation. This is due to treating SOA precursor gases from biomass burning, and long-range transport of biomass burning OA at elevated levels (also supported by satellite data), which undergoes less wet removal compared to the surface OA sources in the standard CAM5. Although the total simulated OA from biomass burning agrees better with aircraft measurements, recent field observations typically report lower SOA formation, suggesting that constraining the POA-SOA split from biomass burning should be the focus of future studies. The non-volatile and semi-volatile configurations predict the direct radiative forcing of SOA as -0.5 W m-2 and -0.26 W m-2 respectively, at top of the atmosphere, which are higher than previously estimated by most models, but in reasonable agreement with

  8. Modeling Gas-Particle Partitioning of SOA: Effects of Aerosol Physical State and RH

    NASA Astrophysics Data System (ADS)

    Zuend, A.; Seinfeld, J.

    2011-12-01

    Aged tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. In liquid aerosol particles non-ideal mixing of all species determines whether the condensed phase undergoes liquid-liquid phase separation or whether it is stable in a single mixed phase, and whether it contains solid salts in equilibrium with their saturated solution. The extended thermodynamic model AIOMFAC is able to predict such phase states by representing the variety of organic components using functional groups within a group-contribution concept. The number and composition of different condensed phases impacts the diversity of reaction media for multiphase chemistry and the gas-particle partitioning of semivolatile species. Recent studies show that under certain conditions biogenic and other organic-rich particles can be present in a highly viscous, semisolid or amorphous solid physical state, with consequences regarding reaction kinetics and mass transfer limitations. We present results of new gas-particle partitioning computations for aerosol chamber data using a model based on AIOMFAC activity coefficients and state-of-the-art vapor pressure estimation methods. Different environmental conditions in terms of temperature, relative humidity (RH), salt content, amount of precursor VOCs, and physical state of the particles are considered. We show how modifications of absorptive and adsorptive gas-particle mass transfer affects the total aerosol mass in the calculations and how the results of these modeling approaches compare to data of aerosol chamber experiments, such as alpha-pinene oxidation SOA. For a condensed phase in a mixed liquid state containing ammonium sulfate, the model predicts liquid-liquid phase separation up to high RH in case of, on average, moderately hydrophilic organic compounds, such as first generation oxidation products of alpha-pinene. The computations also reveal that treating liquid phases as ideal

  9. Mass spectral analysis of organic aerosol formed downwind of the Deepwater Horizon oil spill: field studies and laboratory confirmations.

    PubMed

    Bahreini, R; Middlebrook, A M; Brock, C A; de Gouw, J A; McKeen, S A; Williams, L R; Daumit, K E; Lambe, A T; Massoli, P; Canagaratna, M R; Ahmadov, R; Carrasquillo, A J; Cross, E S; Ervens, B; Holloway, J S; Hunter, J F; Onasch, T B; Pollack, I B; Roberts, J M; Ryerson, T B; Warneke, C; Davidovits, P; Worsnop, D R; Kroll, J H

    2012-08-07

    In June 2010, the NOAA WP-3D aircraft conducted two survey flights around the Deepwater Horizon (DWH) oil spill. The Gulf oil spill resulted in an isolated source of secondary organic aerosol (SOA) precursors in a relatively clean environment. Measurements of aerosol composition and volatile organic species (VOCs) indicated formation of SOA from intermediate-volatility organic compounds (IVOCs) downwind of the oil spill (Science2011, 331, doi 10.1126/science.1200320). In an effort to better understand formation of SOA in this environment, we present mass spectral characteristics of SOA in the Gulf and of SOA formed in the laboratory from evaporated light crude oil. Compared to urban primary organic aerosol, high-mass-resolution analysis of the background-subtracted SOA spectra in the Gulf (for short, "Gulf SOA") showed higher contribution of C(x)H(y)O(+) relative to C(x)H(y)(+) fragments at the same nominal mass. In each transect downwind of the DWH spill site, a gradient in the degree of oxidation of the Gulf SOA was observed: more oxidized SOA (oxygen/carbon = O/C ∼0.4) was observed in the area impacted by fresher oil; less oxidized SOA (O/C ∼0.3), with contribution from fragments with a hydrocarbon backbone, was found in a broader region of more-aged surface oil. Furthermore, in the plumes originating from the more-aged oil, contribution of oxygenated fragments to SOA decreased with downwind distance. Despite differences between experimental conditions in the laboratory and the ambient environment, mass spectra of SOA formed from gas-phase oxidation of crude oil by OH radicals in a smog chamber and a flow tube reactor strongly resembled the mass spectra of Gulf SOA (r(2) > 0.94). Processes that led to the observed Gulf SOA characteristics are also likely to occur in polluted regions where VOCs and IVOCs are coemitted.

  10. Elucidating the Chemical Complexity of Organic Aerosol Constituents Measured During the Southeastern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Yee, L.; Isaacman, G. A.; Spielman, S. R.; Worton, D. R.; Zhang, H.; Kreisberg, N. M.; Wilson, K. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Thousands of volatile organic compounds are uniquely created in the atmosphere, many of which undergo chemical transformations that result in more highly-oxidized and often lower vapor pressure species. These species can contribute to secondary organic aerosol, a complex mixture of organic compounds that is still not chemically well-resolved. Organic aerosol collected on filters taken during the Southeastern Oxidant and Aerosol Study (SOAS) constitute hundreds of unique chemical compounds. Some of these include known anthropogenic and biogenic tracers characterized using standardized analytical techniques (e.g. GC-MS, UPLC, LC-MS), but the majority of the chemical diversity has yet to be explored. By employing analytical techniques involving sample derivatization and comprehensive two-dimensional gas chromatography (GC x GC) with high-resolution-time-of-flight mass spectrometry (HR-ToF-MS), we elucidate the chemical complexity of the organic aerosol matrix along the volatility and polarity grids. Further, by utilizing both electron impact (EI) and novel soft vacuum ultraviolet (VUV) ionization mass spectrometry, a greater fraction of the organic mass is fully speciated. The GC x GC-HR-ToF-MS with EI/VUV technique efficiently provides an unprecedented level of speciation for complex ambient samples. We present an extensive chemical characterization and quantification of organic species that goes beyond typical atmospheric tracers in the SOAS samples. We further demonstrate that complex organic mixtures can be chemically deconvoluted by elucidation of chemical formulae, volatility, functionality, and polarity. These parameters provide insight into the sources (anthropogenic vs. biogenic), chemical processes (oxidation pathways), and environmental factors (temperature, humidity), controlling organic aerosol growth in the Southeastern United States.

  11. Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors.

    PubMed

    Lambe, Andrew T; Onasch, Timothy B; Croasdale, David R; Wright, Justin P; Martin, Alexander T; Franklin, Jonathan P; Massoli, Paola; Kroll, Jesse H; Canagaratna, Manjula R; Brune, William H; Worsnop, Douglas R; Davidovits, Paul

    2012-05-15

    Functionalization (oxygen addition) and fragmentation (carbon loss) reactions governing secondary organic aerosol (SOA) formation from the OH oxidation of alkane precursors were studied in a flow reactor in the absence of NO(x). SOA precursors were n-decane (n-C10), n-pentadecane (n-C15), n-heptadecane (n-C17), tricyclo[5.2.1.0(2,6)]decane (JP-10), and vapors of diesel fuel and Southern Louisiana crude oil. Aerosol mass spectra were measured with a high-resolution time-of-flight aerosol mass spectrometer, from which normalized SOA yields, hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios, and C(x)H(y)+, C(x)H(y)O+, and C(x)H(y)O(2)+ ion abundances were extracted as a function of OH exposure. Normalized SOA yield curves exhibited an increase followed by a decrease as a function of OH exposure, with maximum yields at O/C ratios ranging from 0.29 to 0.74. The decrease in SOA yield correlates with an increase in oxygen content and decrease in carbon content, consistent with transitions from functionalization to fragmentation. For a subset of alkane precursors (n-C10, n-C15, and JP-10), maximum SOA yields were estimated to be 0.39, 0.69, and 1.1. In addition, maximum SOA yields correspond with a maximum in the C(x)H(y)O+ relative abundance. Measured correlations between OH exposure, O/C ratio, and H/C ratio may enable identification of alkane precursor contributions to ambient SOA.

  12. Land cover maps, BVOC emissions, and SOA burden in a global aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Stanelle, Tanja; Henrot, Alexandra; Bey, Isaelle

    2015-04-01

    It has been reported that different land cover representations influence the emission of biogenic volatile organic compounds (BVOC) (e.g. Guenther et al., 2006). But the land cover forcing used in model simulations is quite uncertain (e.g. Jung et al., 2006). As a consequence the simulated emission of BVOCs depends on the applied land cover map. To test the sensitivity of global and regional estimates of BVOC emissions on the applied land cover map we applied 3 different land cover maps into our global aerosol-climate model ECHAM6-HAM2.2. We found a high sensitivity for tropical regions. BVOCs are a very prominent precursor for the production of Secondary Organic Aerosols (SOA). Therefore the sensitivity of BVOC emissions on land cover maps impacts the SOA burden in the atmosphere. With our model system we are able to quantify that impact. References: Guenther et al. (2006), Estimates of global terrestrial isoprene emissions using MEGAN, Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006. Jung et al. (2006), Exploiting synergies of global land cover products for carbon cycle modeling, Rem. Sens. Environm., 101, 534-553, doi:10.1016/j.rse.2006.01.020.

  13. Temperature Effects on Secondary Organic Aerosol (SOA) from the Dark Ozonolysis and Photo-Oxidation of Isoprene.

    PubMed

    Clark, Christopher H; Kacarab, Mary; Nakao, Shunsuke; Asa-Awuku, Akua; Sato, Kei; Cocker, David R

    2016-06-07

    Isoprene is globally the most ubiquitous nonmethane hydrocarbon. The biogenic emission is found in abundance and has a propensity for SOA formation in diverse climates. It is important to characterize isoprene SOA formation with varying reaction temperature. In this work, the effect of temperature on SOA formation, physical properties, and chemical nature is probed. Three experimental systems are probed for temperature effects on SOA formation from isoprene, NO + H2O2 photo-oxidation, H2O2 only photo-oxidation, and dark ozonolysis. These experiments show that isoprene readily forms SOA in unseeded chamber experiments, even during dark ozonolysis, and also reveal that temperature affects SOA yield, volatility, and density formed from isoprene. As temperature increases SOA yield is shown to generally decrease, particle density is shown to be stable (or increase slightly), and formed SOA is shown to be less volatile. Chemical characterization is shown to have a complex trend with both temperature and oxidant, but extensive chemical speciation are provided.

  14. Acid-catalyzed Reactions in Model Secondary Organic Aerosol (SOA): Insights using Desorption-electrospray Ionization (DESI) Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fiddler, M. N.; Cooks, R. G.; Shepson, P.

    2008-12-01

    Atmospheric aerosols are presently little understood in terms of their sources, formation, and effect on climate forcing, despite their significant impacts on climate change and respiratory health. Secondary organic aerosols (SOA), which were thought to arise entirely from simple gas-particle partitioning, have recently been found to contain oligomeric species which result from the condensed-phase reactions of volatile organic compounds (VOCs). The non-methane VOC with the greatest emission flux, isoprene, is known to produce aerosols through chemistry involving its oxidation products. We selected one of its major oxidation product, methacrolein, to assess its role in oligomeric SOA formation in response to the acidic conditions found in cloud water. Since it has been found that acidified aerosol produces oligomeric species with greater molecular weight and yield, acid-catalyzed oligomerization is likely a significant process in the formation of SOA. Aqueous solutions of methacrolein were acidified with sulfuric acid, and studied using linear ion trap mass spectrometry (LIT-MS) with a home-built desorption-electrospray ionization (DESI) source. An extremely heterogeneous mixture of products was produced in this system, resulting from hydrolysis, acid- catalyzed oxidation, reduction, and organosulfate formation. Evidence for disproportionation and heterocycle formation are proposed as reaction mechanisms hitherto unrecognized in the production of SOA. The proposed structure and formation mechanism for several species, based upon their MS/MS spectra, will also be presented.

  15. Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2 ol (MBO) in the Atmosphere

    EPA Science Inventory

    2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was exa...

  16. A comparison of secondary organic aerosol (SOA) yields and composition from ozonolysis of monoterpenes at varying concentrations of NO2

    NASA Astrophysics Data System (ADS)

    Draper, D. C.; Farmer, D. K.; Desyaterik, Y.; Fry, J. L.

    2015-05-01

    The effect of NO2 on secondary organic aerosol (SOA) formation from ozonolysis of α-pinene, β-pinene, Δ3-carene, and limonene was investigated using a dark flow-through reaction chamber. SOA mass yields were calculated for each monoterpene from ozonolysis with varying NO2 concentrations. Kinetics modeling of the first generation gas-phase chemistry suggests that differences in observed aerosol yields for different NO2 concentrations are consistent with NO3 formation and subsequent competition between O3 and NO3 to oxidize each monoterpene. α-pinene was the only monoterpene studied that showed a systematic decrease in both aerosol number concentration and mass concentration with increasing [NO2]. β-pinene and Δ3-carene produced fewer particles at higher [NO2], but both retained moderate mass yields. Limonene exhibited both higher number concentrations and greater mass concentrations at higher [NO2]. SOA from each experiment was collected and analyzed by HPLC-ESI-MS, enabling comparisons between product distributions for each system. In general, the systems influenced by NO3 oxidation contained more high molecular weight products (MW >400 amu), suggesting the importance of oligomerization mechanisms in NO3-initiated SOA formation. α-pinene, which showed anomalously low aerosol mass yields in the presence of NO2, showed no increase in these oligomer peaks, suggesting that lack of oligomer formation is a likely cause of α-pinene's near 0% yields with NO3. Through direct comparisons of mixed-oxidant systems, this work suggests that NO3 is likely to dominate nighttime oxidation pathways in most regions with both biogenic and anthropogenic influences. Therefore, accurately constraining SOA yields from NO3 oxidation, which vary substantially with the VOC precursor, is essential in predicting nighttime aerosol production.

  17. Potential Aerosol Mass (PAM) flow reactor measurements of SOA formation in a Ponderosa Pine forest in the southern Rocky Mountains during BEACHON-RoMBAS

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Fry, J.; Brown, S. S.; Zarzana, K. J.; Dube, W. P.; Wagner, N.; Draper, D.; Brune, W. H.; Jimenez, J. L.

    2012-12-01

    A Potential Aerosol Mass (PAM) photooxidation flow reactor was used in combination with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer to characterize biogenic secondary organic aerosol (SOA) formation in a terpene-dominated forest during the July-August 2011 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) field campaign at the U.S. Forest Service Manitou Forest Observatory, Colorado, as well as in corresponding laboratory experiments. In the PAM reactor, a chosen oxidant (OH, O3, or NO3) was generated and controlled over a range of values up to 10,000 times ambient levels. High oxidant concentrations accelerated the gas-phase, heterogeneous, and possibly aqueous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and existing aerosol, which led to repartitioning into the aerosol phase. PAM oxidative processing represented from a few hours up to ~20 days of equivalent atmospheric aging during the ~3 minute reactor residence time. During BEACHON-RoMBAS, PAM photooxidation enhanced SOA at intermediate OH exposure (1-10 equivalent days) but resulted in net loss of OA at long OH exposure (10-20 equivalent days), demonstrating the competing effects of functionalization vs. fragmentation (and possibly photolysis) as aging increased. PAM oxidation also resulted in f44 vs. f43 and Van Krevelen diagram (H/C vs. O/C) slopes similar to ambient oxidation, suggesting the PAM reactor employs oxidation pathways similar to ambient air. Single precursor aerosol yields were measured using the PAM reactor in the laboratory as a function of organic aerosol concentration and reacted hydrocarbon amounts. When applying the laboratory PAM yields with complete consumption of the most abundant VOCs measured at the forest site (monoterpenes, sesquiterpenes, MBO, and toluene), a simple model underpredicted the amount of SOA formed in the PAM reactor in the

  18. Examining the Effects of Anthropogenic Emissions on Isoprene-Derived Secondary Organic Aerosol Formation During the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee, Ground Site

    EPA Science Inventory

    A suite of offline and real-time gas- and particle-phase measurements was deployed atLook Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formatio...

  19. [Numerical modeling analysis of secondary organic aerosol (SOA) combined with the ground-based measurements in the Pearl River Delta region].

    PubMed

    Guo, Xiao-Shuang; Situ, Shu-Ping; Wang, Xue-Mei; Ding, Xiang; Wang, Xin-Ming; Yan, Cai-Qing; Li, Xiao-Ying; Zheng, Mei

    2014-05-01

    Two simulations were conducted with different secondary organic aerosol (SOA) methods-VBS (volatile basis set) approach and SORGAM (secondary organic aerosol model) , which have been coupled in the WRF/Chem (weather research and forecasting model with chemistry) model. Ground-based observation data from 18th to 25th November 2008 were used to examine the model performance of SOA in the Pearl River Delta(PRD)region. The results showed that VBS approach could better reproduce the temporal variation and magnitude of SOA compared with SORGAM, and the mean absolute deviation and correlation coefficient between the observed and the simulated data using VBS approach were -4.88 microg m-3 and 0.91, respectively, while they were -5.32 microg.m-3 and 0. 18 with SORGAM. This is mainly because the VBS approach considers SOA precursors with a wider volatility range and the process of chemical aging in SOA formation. Spatiotemporal distribution of SOA in the PRD from the VBS simulation was also analyzed. The results indicated that the SOA has a significant diurnal variation, and the maximal SOA concentration occurred at noon and in the early afternoon. Because of the transport and the considerable spatial distribution of O3 , the SOA concentrations were different in different PRD cities, and the highest concentration of SOA was observed in the downwind area, including Zhongshan, Zhuhai and Jiangmen.

  20. Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3.

    PubMed

    Docherty, Kenneth S; Wu, Wilbur; Lim, Yong Bin; Ziemann, Paul J

    2005-06-01

    The role of organic peroxides in secondary organic aerosol (SOA) formation from reactions of monoterpenes with O3 was investigated in a series of environmental chamber experiments. Reactions were performed with endocyclic (alpha-pinene and delta3-carene) and exocyclic (beta-pinene and sabinene) alkenes in dry and humid air and in the presence of the OH radical scavengers: cyclohexane, 1-propanol, and formaldehyde. A thermal desorption particle beam mass spectrometer was used to probe the identity and volatility of SOA components, and an iodometric-spectrophotometric method was used to quantify organic peroxides. Thermal desorption profiles and mass spectra showed that the most volatile SOA components had vapor pressures similar to pinic acid and that much of the SOA consisted of less volatile species that were probably oligomeric compounds. Peroxide analyses indicated that the SOA was predominantly organic peroxides, providing evidence that the oligomers were mostly peroxyhemiacetals formed by heterogeneous reactions of hydroperoxides and aldehydes. For example, it was estimated that organic peroxides contributed approximately 47 and approximately 85% of the SOA mass formed in the alpha- and beta-pinene reactions, respectively. Reactions performed with different OH radical scavengers indicated that most of the hydroperoxides were formed through the hydroperoxide channel rather than by reactions of stabilized Criegee intermediates. The effect of the OH radical scavenger on the SOA yield was also investigated, and the results were consistent with results of recent experiments and model simulations that support a mechanism based on changes in the [HO2]/[RO2] ratios. These are the first measurements of organic peroxides in monoterpene SOA, and the results have important implications for understanding the mechanisms of SOA formation and the potential effects of atmospheric aerosol particles on the environment and human health.

  1. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    SciTech Connect

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; Anastasio, Cort N.; Laskin, Julia; Zhang, Qi

    2014-01-01

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), desorption electrospray ionization mass spectrometry (DESIMS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O/C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than •OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O/C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.

  2. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGES

    Yu, L.; Smith, J.; Laskin, A.; ...

    2014-08-19

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (·OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified,more » including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than ·OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  3. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGES

    Yu, L.; Smith, J.; Laskin, A.; ...

    2014-12-23

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C6H5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenatedmore » molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV–visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  4. CONTRIBUTIONS OF TOLUENE AND Α -PINENE TO SOA FORMED IN AN IRRADIATED TOLUENE/Α-PINENE/NOX/AIR MIXTURE: COMPARISON OF RESULTS USING 14C CONTENT AND SOA ORGANIC TRACER METHODS

    EPA Science Inventory

    An organic tracer method, recently proposed for estimating individual contributions of toluene and α-pinene to secondary organic aerosol (SOA) formation, was evaluated by conducting a laboratory study where a binary hydrocarbon mixture, containing the anthropogenic aromatic hydro...

  5. Aqueous Secondary Organic Aerosol (aqSOA) Formation By Radical Reactions: Model Studies Comparing the Role of OH Versus Organic Radicals

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Renard, P.; Reed Harris, A.; Vaida, V.; Monod, A.

    2014-12-01

    Chemical reactions in the aqueous phase are thought to significantly contribute to ambient aerosol mass under specific conditions. Results from many laboratory studies suggest that these reactions are efficiently initiated by the OH radical and lead to high molecular weight compounds (oligomers). Recent laboratory experiments have shown that methyl vinyl ketone (MVK) can form oligomers in high yield in aqueous solutions similar to aerosol water. Additional experiments have shown that the direct photolysis of pyruvic acid can generate organic radicals that initiate similar oligomer products upon oxidation of MVK (Renard et al., submitted). Sources of the OH radical in the aerosol aqueous phase include the direct uptake from the gas phase, Fenton reactions and, to a smaller extent, direct photolyses of hydrogen peroxide and nitrate. Recent model studies imply that under many conditions, aqSOA formation might be oxidant-limited since these OH(aq) sources are not sufficient to provide a continuous OH supply. This limitation can be (partially) removed if additional radical sources in the multiphase system are considered. Exemplary, we include the direct photolysis of aqueous pyruvic acid as a proxy for possible other radical sources. Model results will be shown and consequences for aqSOA formation and processing under ambient conditions will be discussed.

  6. Is dry deposition of semi-volatile organic gases a significant loss of secondary organic aerosols (SOA)?

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Aumont, B.; Knote, C. J.; Lee-Taylor, J. M.; Madronich, S.

    2013-12-01

    Dry deposition removal of semi-volatile organic compounds from the atmosphere and its impact on organic aerosol mass is currently under-explored and not well represented in chemistry-climate models, especially for the many complex partly oxidized organics involved in particle formation. The main reason for this omission is that current models use simplified SOA mechanisms that lump precursors and their products into volatility bins, therefore losing information on important properties of individual molecules (or groups) that are needed to calculate dry deposition. In this study, we apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to simulate SOA formation and estimate the influence of dry deposition of gas-phase organics on SOA concentrations downwind of an urban area (Mexico City), as well as over a pine forest. SOA precursors considered here include short- and long-chain alkanes (C3-25), alkenes, light aromatics, isoprene and monoterpenes. We show that dry deposition of oxidized gases is not an efficient sink for anthropogenic SOA, as it removes <5% of SOA within the city's boundary layer and ~15% downwind. The effect on biogenic SOA is however significantly larger. We discuss reasons for these differences, and investigate separately the impacts on short and long-chain species. We show that the dry deposition is competing with the uptake of gases to the aerosol phase. In the absence of this condensation, ~50% of the regionally produced mass downwind of Mexico City would have been dry-deposited. However, because dry deposition of submicron aerosols is slow, condensation onto particles protects organic gases from deposition and therefore increases their atmospheric burden and lifetime. We use the explicit GECKO-A model to build an empirical parameterization for use in 3D models. Removal (dry and wet) of organic vapors depends on their solubility, and required Henry's law solubility coefficients were estimated for

  7. Submicron aerosol organic functional groups, ions, and water content at the Centreville SEARCH site (Alabama), during SOAS campaign

    NASA Astrophysics Data System (ADS)

    Ruggeri, G.; Ergin, G.; Modini, R. L.; Takahama, S.

    2013-12-01

    The SOAS campaign was conducted from June 1 to July 15 of 2013 in order to understand the relationship between biogenic and anthropogenic emissions in the South East US1,2. In this study, the organic and inorganic composition of submicron aerosol in the Centreville SEARCH site was measured by Fourier Transform Infrared Spectroscopy (FTIR) and the Ambient Ion Monitor (AIM; URG Corporation), whereas the aerosol water content was measured with a Dry Ambient Aerosol Size Spectrometer (DAASS)3. Organic functional group analysis was performed on PM1 aerosol selected by cyclone and collected on teflon filters with a time resolution of 4-12 hours, using one inlet heated to 50 °C and the other operated either at ambient temperature or 70 °C 4. The AIM measured both condensed and gas phase composition with a time resolution of 1 hour, providing partitioning behavior of inorganic species such as NH3/NH4+, HNO3/NO3-. These measurements collectively permit calculation of pure-component vapor pressures of candidate organic compounds and activity coefficients of interacting components in the condensed phase, using models such as SIMPOL.15, E-AIM6, and AIOMFAC7. From these results, the water content of the aerosol is predicted, and a comparison between modeled and measured partitioning of inorganic compounds and water vapor are discussed, in addition to organic aerosol volatility prediction based on functional group analysis. [1]- Goldstein, A.H., et al., Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(22), 8835-8840. [2]- Carlton, A.G., Turpin, B.J., 2013. Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water. Atmospheric Chemistry and Physics Discussions 13, 12743-12770. [3]- Khlystov, A., Stanier, C.O., Takahama, S., Pandis, S.N., 2005. Water content of ambient

  8. Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing

    NASA Astrophysics Data System (ADS)

    Ghirardo, Andrea; Xie, Junfei; Zheng, Xunhua; Wang, Yuesi; Grote, Rüdiger; Block, Katja; Wildt, Jürgen; Mentel, Thomas; Kiendler-Scharr, Astrid; Hallquist, Mattias; Butterbach-Bahl, Klaus; Schnitzler, Jörg-Peter

    2016-03-01

    Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs), which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs) and "stress-induced" BVOCs (sBVOCs) from the dominant broadleaf woody plant species in the megacity of Beijing. Based on the municipal tree census and cuvette BVOC measurements on leaf level, we built an inventory of BVOC emissions, and assessed the potential impact of BVOCs on secondary organic aerosol (SOA) formation in 2005 and 2010, i.e., before and after realizing the large tree-planting program for the 2008 Olympic Games. We found that sBVOCs, such as fatty acid derivatives, benzenoids, and sesquiterpenes, constituted a significant fraction ( ˜ 40 %) of the total annual BVOC emissions, and we estimated that the overall annual BVOC budget may have doubled from ˜ 4.8 × 109 g C year-1 in 2005 to ˜ 10.3 × 109 g C year-1 in 2010 due to the increase in urban greening, while at the same time the emission of anthropogenic VOCs (AVOCs) decreased by 24 %. Based on the BVOC emission assessment, we estimated the biological impact on SOA mass formation potential in Beijing. Constitutive and stress-induced BVOCs might produce similar amounts of secondary aerosol in Beijing. However, the main contributors of SOA-mass formations originated from anthropogenic sources (> 90 %). This study demonstrates the general importance to include sBVOCs when studying BVOC emissions. Although the main problems regarding air quality in Beijing still originate from anthropogenic activities, the present survey suggests that in urban plantation programs, the selection of low-emitting plant species has some potential beneficial effects on urban air quality.

  9. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States

    EPA Science Inventory

    Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles,...

  10. Can Secondary Organic Aerosol Formed in Atmospheric Simulation Chamber Be Continuously Aging?

    NASA Astrophysics Data System (ADS)

    Qi, L.; Nakao, S.; Malloy, Q.; Warren, B.; Cocker, D.

    2009-12-01

    Recent smog chamber studies have found that the oxidative processing (i.e. aging) of organic aerosol affects the chemical and physical properties for both aromatic and terpene aerosol precursors. Evidence from laboratory experiments suggests that organic aerosol can be converted from a hydrophobic to a hydrophilic state with aging. Several possible chemical mechanisms have been proposed based on chamber studies from other research groups e.g. heterogeneous reaction at the particle surface. Previous experiments conducted in the UC Riverside/CE-CERT environment chamber have shown little evidence of particle aging in terms of changes in hygroscopic properties from α-pinene dark ozonolysis systems. In this study, we simulate chemical aging of carbonaceous aerosol generated from α-pinene ozonolysis, α-pinene photooxidation and m-xylene photooxidation with an emphasis on the further uptake of oxidants, the evolution of aerosol hygroscopicity, particle density and elemental chemical composition (C:O:H) estimated from aerosol mass spectra to further investigate chamber secondary organic aerosol (SOA) aging behavior. Experimental results indicate that the SOA formed from photooxidation systems do get more functionalized as the oxidative age process go while dark ozonolysis SOA do not show aging phenomena within the normal chamber experiment duration.

  11. SOA FROM ISOPRENE OXIDATION PRODUCTS: MODEL SIMULATION OF CLOUD CHEMISTRY

    EPA Science Inventory

    Recent laboratory evidence supports the hypothesis that secondary organic aerosol (SOA) is formed in the atmosphere through aqueous-phase reactions in clouds. The results of batch photochemical reactions of glyoxal, methylglyoxal and hydrogen peroxide are presented. These labor...

  12. Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions

    NASA Astrophysics Data System (ADS)

    Im, Y.; Jang, M.; Beardsley, R. L.

    2013-03-01

    The Unified Partitioning-Aerosol phase Reaction (UNIPAR) model has been developed to predict the secondary organic aerosol (SOA) formation through multiphase reactions. An explicit gas-kinetic model was employed to express gas-phase oxidation of aromatic hydrocarbons. Gas-phase products are grouped based on volatility (6 levels) and reactivity (5 levels) and used to construct the stoichiometric coefficients (αi,j) matrix, the set of parameters used to describe the concentrations of organic compounds in multiphase. Weighting of the αi,j matrix as a function of NOx improved the evaluation of NOx effects on SOA. The total amount of organic matter (OMT) is predicted by two modules in the UNIPAR model: OMP by a partitioning process and OMAR by aerosol-phase reactions. OMP is estimated using the SOA partitioning model that has been used in a regional air quality model (CMAQ 5.0.1). OMAR predicts multiphase reactions of organic compounds, such as oligomerization, acid-catalyzed reactions, and organosulfate (OS) formation. The model was evaluated with the SOA data produced from the photooxidation of toluene and 1,3,5-trimethylbenzene using an outdoor reactor (UF-APHOR chamber). The model reasonably simulates SOA formation under various aerosol acidities, NOx concentrations, humidities and temperatures. Furthermore, the OS fraction in the SOA predicted by the model was in good agreement with the experimentally measured OS fraction.

  13. Chemical Characterization of Secondary Organic Aerosol Formed from Atmospheric Aqueous-phase Reactions of Phenolic Compounds

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Anastasio, C.; Zhang, Q.

    2012-12-01

    Phenolic compounds, which are released in significant amounts from biomass burning, may undergo fast aqueous-phase reactions to form secondary organic aerosol (SOA) in the atmosphere. Understanding the aqueous-phase reaction mechanisms of these compounds and the composition of their reaction products is thus important for constraining SOA sources and predicting organic aerosol properties in models. In this study, we investigate the aqueous-phase reactions of three phenols (phenol, guaiacol and syringol) with two oxidants - excited triplet states (3C*) of non-phenolic aromatic carbonyls and hydroxyl radical (OH). By employing four analytical methods including high-resolution aerosol mass spectrometry, total organic carbon analysis, ion chromatography, and liquid chromatography-mass spectrometry, we thoroughly characterize the chemical compositions of the low volatility reaction products of phenols and propose formation mechanisms based on this information. Our results indicate that phenolic SOA is highly oxygenated, with O/C ratios in the range of 0.83-1.03, and that the SOA of phenol is usually more oxidized than those of guaiacol and syringol. Among the three precursors, syringol generates the largest fraction of higher molecular weight (MW) products. For the same precursor, the SOA formed via reaction with 3C* is less oxidized than that formed via reaction with OH. In addition, oxidation by 3C* enhances the formation of higher MW species, including phenolic dimers, higher oligomers and hydroxylated products, compared to reactions initiated by OH, which appear to favor the formation of organic acids. However, our results indicate that the yields of small organic acids (e.g., formate, acetate, oxalate, and malate) are low for both reaction pathways, together accounting for less than 5% of total SOA mass.

  14. Improving the simulation of organic aerosols from anthropogenic and burning sources: a simplified SOA formation mechanism and the impact of trash burning

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Wiedinmyer, C.; Jimenez, J. L.

    2011-12-01

    Organic aerosols (OA) are an major component of fine aerosols, but their sources are poorly understood. We present results of two methods to improve OA predictions in anthropogenic pollution and biomass-burning impacted regions. (1) An empirical parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is implemented into community chemistry-transport models (WRF/Chem and CHIMERE) and tested in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA. This approach is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass, as described in Hodzic and Jimenez (GMDD, 2011). The oxygen to carbon ratio in organic aerosols is also parameterizated vs. photochemical aged based on the ambient observations, and is used to estimate the aerosol hygroscopicity and CCN activity. The predicted SOA is assessed against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment, and compared to previous model results using the more complex volatility basis approach (VBS) of Robinson et al.. The results suggest that the simplified approach reproduces the observed average SOA mass within 30% in the urban area and downwind, and gives better results than the original VBS. In addition to being much less computationally expensive than VBS-type methods, the empirical approach can also be used in regions where the emissions of SOA precursors are not yet available. (2) The contribution of trash burning emissions to primary and secondary organic aerosols in Mexico City are estimated, using a recently-developed emission inventory. Submicron antimony (Sb) is used as a garbage-burning tracer following the results of Christian et al. (ACP 2010), which allows evaluation of the emissions inventory. Results suggests that trash burning may be an appreciable source of organic aerosols in the Mexico City

  15. Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions

    NASA Astrophysics Data System (ADS)

    Im, Y.; Jang, M.; Beardsley, R. L.

    2014-04-01

    The Unified Partitioning-Aerosol phase Reaction (UNIPAR) model has been developed to predict the secondary organic aerosol (SOA) formation through multiphase reactions. The model was evaluated with aromatic SOA data produced from the photooxidation of toluene and 1,3,5-trimethylbenzene (135-TMB) under various concentrations of NOx and SO2 using an outdoor reactor (University of Florida Atmospheric PHotochemical Outdoor Reactor (UF-APHOR) chamber). When inorganic species (sulfate, ammonium and water) are present in aerosol, the prediction of both toluene SOA and 135-TMB SOA, in which the oxygen-to-carbon (O : C) ratio is lower than 0.62, are approached under the assumption of a complete organic/electrolyte-phase separation below a certain relative humidity. An explicit gas-kinetic model was employed to express gas-phase oxidation of aromatic hydrocarbons. Gas-phase products are grouped based on their volatility (6 levels) and reactivity (5 levels) and exploited to construct the stoichiometric coefficient (αi,j) matrix, the set of parameters used to describe the concentrations of organic compounds in multiphase. Weighting of the αi,j matrix as a function of NOx improved the evaluation of NOx effects on aromatic SOA. The total amount of organic matter (OMT) is predicted by two modules in the UNIPAR model: OMP by a partitioning process and OMAR by aerosol-phase reactions. The OMAR module predicts multiphase reactions of organic compounds, such as oligomerization, acid-catalyzed reactions, and organosulfate (OS) formation. The model reasonably simulates SOA formation under various aerosol acidities, NOx concentrations, humidities and temperatures. Furthermore, the OS fractions in the SOA predicted by the model were in good agreement with the experimentally measured OS fractions.

  16. Chamber studies of SOA formation from aromatic hydrocarbons: observation of limited glyoxal uptake

    NASA Astrophysics Data System (ADS)

    Nakao, S.; Liu, Y.; Tang, P.; Chen, C.-L.; Zhang, J.; Cocker, D. R., III

    2012-05-01

    This study evaluates the significance of glyoxal acting as an intermediate species leading to secondary organic aerosol (SOA) formation from aromatic hydrocarbon photooxidation under humid conditions. Rapid SOA formation from glyoxal uptake onto aqueous (NH4)2SO4 seed particles is observed in agreement with previous studies; however, glyoxal did not partition significantly to SOA (with or without aqueous seed) during aromatic hydrocarbon photooxidation within an environmental chamber (RH less than 80%). Rather, glyoxal influences SOA formation by raising hydroxyl (OH) radical concentrations. Four experimental approaches supporting this conclusion are presented in this paper: (1) increased SOA formation and decreased SOA volatility in the toluene + NOx photooxidation system with additional glyoxal was reproduced by matching OH radical concentrations through H2O2 addition; (2) glyoxal addition to SOA seed formed from toluene + NOx photooxidation did not increase SOA volume under dark; (3) SOA formation from toluene + NOx photooxidation with and without deliquesced (NH4)2SO4 seed resulted in similar SOA growth, consistent with a minor contribution from glyoxal uptake onto deliquesced seed and organic coatings; and (4) the fraction of a C4H9+ fragment (observed by Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer, HR-ToF-AMS) in SOA from 2-tert-butylphenol (BP) oxidation was unchanged in the presence of additional glyoxal despite enhanced SOA formation. This study suggests that glyoxal uptake onto aerosol during the oxidation of aromatic hydrocarbons is more limited than previously thought.

  17. Influence of dry deposition of semi-volatile organic compounds (VOC) on secondary organic aerosol (SOA) formation in the Mexico City plume

    NASA Astrophysics Data System (ADS)

    Hodzic, Alma; Madronich, Sasha; Aumont, Bernard; Lee-Taylor, Julia; Karl, Thomas

    2013-04-01

    The dry deposition removal of organic compounds from the atmosphere and its impact on organic aerosol mass is currently unexplored and unaccounted for in chemistry-climate models. The main reason for this omission is that current models use simplified SOA mechanisms that lump precursors and their products into volatility bins, therefore losing information on other important properties of individual molecules (or groups) that are needed to calculate dry deposition. In this study, we apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to simulate SOA formation and estimate the influence of dry deposition of VOCs on SOA concentrations downwind of Mexico City. SOA precursors considered here include short- and long-chain alkanes (C3-25), alkenes, and light aromatics. The results suggest that 90% of SOA produced in Mexico City originates from the oxidation and partitioning of long-chain (C>12) alkanes, while the regionally exported SOA is almost equally produced from long-chain alkanes and from shorter alkanes and light aromatics. We show that dry deposition of oxidized gases is not an efficient sink for SOA, as it removes <5% of SOA within the city's boundary layer and ~15% downwind. We discuss reasons for this limited influence, and investigate separately the impacts on short and long-chain species. We show that the dry deposition is competing with the uptake of gases to the aerosol phase, and because dry deposition of submicron aerosols is slow, condensation onto particles protects organic gases from deposition and therefore increases their atmospheric burden and lifetime. In the absence of this condensation, ~50% of the regionally produced mass would have been dry-deposited.

  18. In-Situ Measurements of Aerosol Optical and Hygroscopic Properties at the Look Rock Site during SOAS 2013

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zimmermann, K.; Bertram, T. H.; Corrigan, A. L.; Guzman, J. M.; Russell, L. M.; Budisulistiorini, S.; Li, X.; Surratt, J. D.; Hicks, W.; Bairai, S. T.; Cappa, C. D.

    2013-12-01

    One of the main goals of the Southern Oxidant and Aerosol Study (SOAS) is to characterize the climate-relevant properties of aerosols over the southeastern United States at the interface of biogenic and anthropogenic emissions. As part of the SOAS campaign, the UCD cavity ringdown/photoacoustic spectrometer was deployed to make in-situ measurements of aerosol light extinction, absorption and sub-saturated hygroscopicity at the Look Rock site (LRK) in the Great Smoky Mountains National Park, TN from June 1 to July 15, 2013. The site is influenced by substantial biogenic emissions with varying impacts from anthropogenic pollutants, allowing for direct examination of the optical and hygroscopic properties of anthropogenic-influenced biogenic secondary organic aerosols (SOA). During the experiment period, the average dry aerosol extinction (Bext), absorption (Babs) coefficients and single scattering albedo (SSA) at 532 nm were 30.3 × 16.5 Mm-1, 1.12 × 0.78 Mm-1 and 0.96 × 0.06. The Babs at 532 nm was well correlated (r2 = 0.79) with the refractory black carbon (rBC) number concentration determined by a single particle soot spectrometer (SP2). The absorption by black carbon (BC), brown carbon (BrC) and the absorption enhancement due to the 'lensing' effect were quantified by comparing the Babs of ambient and thermo-denuded aerosols at 405 nm and 532 nm. The optical sub-saturated hygroscopic growth factor was derived from extinction and particle size distribution measurements at dry and elevated relative humidity. In addition, to explore the extent to which ammonia mediated chemistry leads to BrC formation, as suggested in recent laboratory studies(1,2), we performed an NH3 perturbation experiment in-situ for 1 week during the study, in which ambient aerosols were exposed to approximately 100 ppb NH3 with a residence time of ~ 3hr. The broader implications of these observational data at LRK will be discussed in the context of the concurrent gas and aerosol chemical

  19. Photochemical Aging of α-pinene and β-pinene Secondary Organic Aerosol formed from Nitrate Radical Oxidation.

    PubMed

    Nah, Theodora; Sanchez, Javier; Boyd, Christopher M; Ng, Nga Lee

    2016-01-05

    The nitrate radical (NO3) is the dominant nighttime oxidant in most urban and rural environments and reacts rapidly with biogenic volatile organic compounds to form secondary organic aerosol (SOA) and organic nitrates (ON). Here, we study the formation of SOA and ON from the NO3 oxidation of two monoterpenes (α-pinene and β-pinene) and investigate how they evolve during photochemical aging. High SOA mass loadings are produced in the NO3+β-pinene reaction, during which we detected 41 highly oxygenated gas- and particle-phase ON possessing 4 to 9 oxygen atoms. The fraction of particle-phase ON in the β-pinene SOA remains fairly constant during photochemical aging. In contrast to the NO3+β-pinene reaction, low SOA mass loadings are produced during the NO3+α-pinene reaction, during which only 5 highly oxygenated gas- and particle-phase ON are detected. The majority of the particle-phase ON evaporates from the α-pinene SOA during photochemical aging, thus exhibiting a drastically different behavior from that of β-pinene SOA. Our results indicate that nighttime ON formed by NO3+monoterpene chemistry can serve as either permanent or temporary NOx sinks depending on the monoterpene precursor.

  20. Modeling the formation of secondary organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the alpha-pinene-, beta-pinene-, sabinene-, delta 3-carene-, and cyclohexene-ozone systems.

    PubMed

    Seinfeld, J H; Erdakos, G B; Asher, W E; Pankow, J F

    2001-05-01

    Atmospheric oxidation of volatile organic compounds can lead to the formation of secondary organic aerosol (SOA) through the gas/particle (G/P) partitioning of the oxidation products. Since water is ubiquitous in the atmosphere, the extent of the partitioning for any individual organic product depends not only on the amounts and properties of the partitioning organic compounds, but also on the amount of water present. Predicting the effects of water on the atmospheric G/P distributions of organic compounds is, therefore, central to understanding SOA formation. The goals of the current work are to gain understanding of how increases in RH affect (1) overall SOA yields, (2) water uptake by SOA, (3) the behaviors of individual oxidation products, and (4) the fundamental physical properties of the SOA phase that govern the G/P distribution of each of the oxidation products. Part 1 of this series considered SOA formation from five parent hydrocarbons in the absence of water. This paper predicts how adding RH to those systems uniformly increases both the amount of condensed organic mass and the amount of liquid water in the SOA phase. The presence of inorganic components is not considered. The effect of increasing RH is predicted to be stronger for SOA produced from cyclohexene as compared to SOA produced from four monoterpenes. This is likely a result of the greater general degree of oxidation (and hydrophilicity) of the cyclohexene products. Good agreement was obtained between predicted SOA yields and laboratory SOA yield data actually obtained in the presence of water. As RH increases, the compounds that play the largest roles in changing both the organic and water masses in the SOA phase are those with vapor pressures that are intermediate between those of essentially nonvolatile and highly volatile species. RH-driven changes in the compound-dependent G/P partitioning coefficient Kp result from changes in both the average molecular weight MWom of the absorbing

  1. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    NASA Astrophysics Data System (ADS)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2015-09-01

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool which explicitly represents SOA formation and gas/wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas/wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up to 0.35 yield unit due to the loss of organic vapors to chamber walls.

  2. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    NASA Astrophysics Data System (ADS)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2016-02-01

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas-wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas-wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.

  3. Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Li, X.; Bairai, S. T.; Renfro, J.; Liu, Y.; Liu, Y. J.; McKinney, K. A.; Martin, S. T.; McNeill, V. F.; Pye, H. O. T.; Nenes, A.; Neff, M. E.; Stone, E. A.; Mueller, S.; Knote, C.; Shaw, S. L.; Zhang, Z.; Gold, A.; Surratt, J. D.

    2015-08-01

    A suite of offline and real-time gas- and particle-phase measurements was deployed at Look Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formation. High- and low-time-resolution PM2.5 samples were collected for analysis of known tracer compounds in isoprene-derived SOA by gas chromatography/electron ionization-mass spectrometry (GC/EI-MS) and ultra performance liquid chromatography/diode array detection-electrospray ionization-high-resolution quadrupole time-of-flight mass spectrometry (UPLC/DAD-ESI-HR-QTOFMS). Source apportionment of the organic aerosol (OA) was determined by positive matrix factorization (PMF) analysis of mass spectrometric data acquired on an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). Campaign average mass concentrations of the sum of quantified isoprene-derived SOA tracers contributed to ~ 9 % (up to 28 %) of the total OA mass, with isoprene-epoxydiol (IEPOX) chemistry accounting for ~ 97 % of the quantified tracers. PMF analysis resolved a factor with a profile similar to the IEPOX-OA factor resolved in an Atlanta study and was therefore designated IEPOX-OA. This factor was strongly correlated (r2 > 0.7) with 2-methyltetrols, C5-alkene triols, IEPOX-derived organosulfates, and dimers of organosulfates, confirming the role of IEPOX chemistry as the source. On average, IEPOX-derived SOA tracer mass was ~ 26 % (up to 49 %) of the IEPOX-OA factor mass, which accounted for 32 % of the total OA. A low-volatility oxygenated organic aerosol (LV-OOA) and an oxidized factor with a profile similar to 91Fac observed in areas where emissions are biogenic-dominated were also resolved by PMF analysis, whereas no primary organic aerosol (POA) sources could be resolved. These findings were consistent with low levels of primary pollutants, such as nitric oxide (NO ~ 0.03 ppb), carbon monoxide (CO ~ 116 ppb), and black

  4. Formation of Organic Tracers for Isoprene SOA under Acidic Conditions

    EPA Science Inventory

    The chemical compositions of a series of secondary organic aerosol (SOA) samples, formed by irradiating mixtures of isoprene and NO in a smog chamber in the absence or presence of acidic aerosols, were analyzed using derivatization-based GC-MS methods. In addition to the known is...

  5. Exposure of BALB/c Mice to Diesel Engine Exhaust Origin Secondary Organic Aerosol (DE-SOA) during the Developmental Stages Impairs the Social Behavior in Adult Life of the Males.

    PubMed

    Win-Shwe, Tin-Tin; Kyi-Tha-Thu, Chaw; Moe, Yadanar; Fujitani, Yuji; Tsukahara, Shinji; Hirano, Seishiro

    2015-01-01

    Secondary organic aerosol (SOA) is a component of particulate matter (PM) 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE) originated SOA (DE-SOA) affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the developmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control), DE, DE-SOA and gas without any PM in the inhalation chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO)-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty preference as well as social interaction were remarkably impaired, expression levels of estrogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, expression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxicity and impair social behavior in the males.

  6. Exposure of BALB/c Mice to Diesel Engine Exhaust Origin Secondary Organic Aerosol (DE-SOA) during the Developmental Stages Impairs the Social Behavior in Adult Life of the Males

    PubMed Central

    Win-Shwe, Tin-Tin; Kyi-Tha-Thu, Chaw; Moe, Yadanar; Fujitani, Yuji; Tsukahara, Shinji; Hirano, Seishiro

    2016-01-01

    Secondary organic aerosol (SOA) is a component of particulate matter (PM) 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE) originated SOA (DE-SOA) affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the developmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control), DE, DE-SOA and gas without any PM in the inhalation chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO)-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty preference as well as social interaction were remarkably impaired, expression levels of estrogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, expression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxicity and impair social behavior in the males. PMID:26834549

  7. Elemental sulfur aerosol-forming mechanism

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Francisco, Joseph S.

    2017-01-01

    Elemental sulfur aerosols are ubiquitous in the atmospheres of Venus, ancient Earth, and Mars. There is now an evolving body of evidence suggesting that these aerosols have also played a role in the evolution of early life on Earth. However, the exact details of their formation mechanism remain an open question. The present theoretical calculations suggest a chemical mechanism that takes advantage of the interaction between sulfur oxides, SOn (n = 1, 2, 3) and hydrogen sulfide (nH2S), resulting in the efficient formation of a Sn+1 particle. Interestingly, the SOn + nH2S → Sn+1 + nH2O reactions occur via low-energy pathways under water or sulfuric acid catalysis. Once the Sn+1 particles are formed, they may further nucleate to form larger polysulfur aerosols, thus providing a chemical framework for understanding the formation mechanism of S0 aerosols in different environments.

  8. Constraining uncertainties in particle-wall deposition correction during SOA formation in chamber experiments

    NASA Astrophysics Data System (ADS)

    Nah, Theodora; McVay, Renee C.; Pierce, Jeffrey R.; Seinfeld, John H.; Ng, Nga L.

    2017-02-01

    The effect of vapor-wall deposition on secondary organic aerosol (SOA) formation has gained significant attention; however, uncertainties in experimentally derived SOA mass yields due to uncertainties in particle-wall deposition remain. Different approaches have been used to correct for particle-wall deposition in SOA formation studies, each having its own set of assumptions in determining the particle-wall loss rate. In volatile and intermediate-volatility organic compound (VOC and IVOC) systems in which SOA formation is governed by kinetically limited growth, the effect of vapor-wall deposition on SOA mass yields can be constrained by using high surface area concentrations of seed aerosol to promote the condensation of SOA-forming vapors onto seed aerosol instead of the chamber walls. However, under such high seed aerosol levels, the presence of significant coagulation may complicate the particle-wall deposition correction. Here, we present a model framework that accounts for coagulation in chamber studies in which high seed aerosol surface area concentrations are used. For the α-pinene ozonolysis system, we find that after accounting for coagulation, SOA mass yields remain approximately constant when high seed aerosol surface area concentrations ( ≥ 8000 µm2 cm-3) are used, consistent with our prior study (Nah et al., 2016) showing that α-pinene ozonolysis SOA formation is governed by quasi-equilibrium growth. In addition, we systematically assess the uncertainties in the calculated SOA mass concentrations and yields between four different particle-wall loss correction methods over the series of α-pinene ozonolysis experiments. At low seed aerosol surface area concentrations (< 3000 µm2 cm-3), the SOA mass yields at peak SOA growth obtained from the particle-wall loss correction methods agree within 14 %. However, at high seed aerosol surface area concentrations ( ≥ 8000 µm2 cm-3), the SOA mass yields at peak SOA growth obtained from different particle

  9. Cloud Forming Potential of Aminium Carboxylate Aerosols

    NASA Astrophysics Data System (ADS)

    Gomez Hernandez, M. E.; McKeown, M.; Taylor, N.; Collins, D. R.; Lavi, A.; Rudich, Y.; Zhang, R.

    2014-12-01

    Atmospheric aerosols affect visibility, air quality, human health, climate, and in particular the aerosol direct and indirect forcings represent the largest uncertainty in climate projections. In this paper, we present laboratory measurements of the hygroscopic growth factors (HGf) and cloud condensation nuclei (CCN) activity of a series of aminium carboxylate salt aerosols, utilizing a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) coupled to a Condensation Particle Counter (CPC) and a CCN counter. HGf measurements were conducted for size-selected aerosols with diameters ranging from 46 nm to 151 nm and at relative humidity (RH%) values ranging from 10 to 90%. In addition, we have calculated the CCN activation diameters for the aminium carboxylate aerosols and derived the hygroscopicity parameter (k or kappa) values for all species using three methods, i.e., the mixing rule approximation, HGf, and CCN results. Our results show that variations in the ratio of acid to base directly affect the activation diameter, HGf, and (k) values of the aminium carboxylate aerosols. Atmospheric implications of the variations in the chemical composition of aminium carboxylate aerosols on their cloud forming potential will be discussed.

  10. Molecular distributions and isotopic compositions of marine aerosols over the western North Atlantic: Dicarboxylic acids, ketoacids, α-dicarbonyls (glyoxal and methylglyoxal), fatty acids, sugars, and SOA tracers

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Ono, K.; Tachibana, E.; Quinn, P.; Bates, T. S.

    2013-12-01

    Marine aerosols were collected over the western North Atlantic from off the coast of Boston to Bermuda during the WACS (Western Atlantic Climate Study) cruise of R/V Ronald H. Brown in August 2012 using a high volume air sampler and pre-combusted quartz fiber filters. Aerosol filter samples (n=5) were analyzed for OC/EC, major inorganic ions, low molecular weight dicarboxylic acids and various secondary organic aerosol (SOA) tracers using carbon analyzer, ion chromatograph, GC/FID and GC/MS, respectively. Homologous series (C2-C12) of dicarboxylic acids (31-335 ng m-3) were detected with a predominance of oxalic acid. Total carbon and nitrogen and their stable isotope ratios were determined as well as stable carbon isotopic compositions of individual diacids using IRMS. Diacids were found to be the most abundant compound class followed by monoterpene-SOA tracers > isoprene-SOA tracers > sugar compounds > ketoacids > fatty alcohols > fatty acids > α-dicarbonyls > aromatic acids > n-alkanes. The concentrations of these compounds were higher in the coastal site and decreased in the open ocean. However, diacids stayed relatively high even in the remote ocean. Interestingly, contributions of oxalic acid to total aerosol carbon increased from the coast (2.3%) to the remote ocean (5.6%) during long-range atmospheric transport. Stable carbon isotopic composition of oxalic acid increased from the coast (-17.5‰) to open ocean (-12.4‰), suggesting that photochemical aging of organic aerosols occurred during the atmospheric transport over the ocean. Stable carbon isotope ratios of bulk aerosol carbon also increased from the coast near Boston to the open ocean near Bermuda.

  11. Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA).

    PubMed

    Redmond, Haley; Thompson, Jonathan E

    2011-04-21

    In this work we describe and evaluate a simple scheme by which the refractive index (λ = 589 nm) of non-absorbing components common to secondary organic aerosols (SOA) may be predicted from molecular formula and density (g cm(-3)). The QSPR approach described is based on three parameters linked to refractive index-molecular polarizability, the ratio of mass density to molecular weight, and degree of unsaturation. After computing these quantities for a training set of 111 compounds common to atmospheric aerosols, multi-linear regression analysis was conducted to establish a quantitative relationship between the parameters and accepted value of refractive index. The resulting quantitative relationship can often estimate refractive index to ±0.01 when averaged across a variety of compound classes. A notable exception is for alcohols for which the model consistently underestimates refractive index. Homogenous internal mixtures can conceivably be addressed through use of either the volume or mole fraction mixing rules commonly used in the aerosol community. Predicted refractive indices reconstructed from chemical composition data presented in the literature generally agree with previous reports of SOA refractive index. Additionally, the predicted refractive indices lie near measured values we report for λ = 532 nm for SOA generated from vapors of α-pinene (R.I. 1.49-1.51) and toluene (R.I. 1.49-1.50). We envision the QSPR method may find use in reconstructing optical scattering of organic aerosols if mass composition data is known. Alternatively, the method described could be incorporated into in models of organic aerosol formation/phase partitioning to better constrain organic aerosol optical properties.

  12. The characterisation of secondary organic aerosol formed during the photodecomposition of 1,3-butadiene in air containing nitric oxide

    NASA Astrophysics Data System (ADS)

    Angove, D. E.; Fookes, C. J. R.; Hynes, R. G.; Walters, C. K.; Azzi, M.

    The formation of secondary organic aerosol (SOA) at yields of 0.4-0.5% and having a geometric mean diameter <100 nm has been observed during indoor environmental chamber experiments on 1.0-2.2 ppmv 1,3-butadiene in the presence of 0.5-1.1 ppmv NO. The SOA was collected on glass fibre filters, some of which were acetylated using a pyridine/acetic anhydride mixture immediately after collection. Analysis of the SOA by Fourier transform infrared spectroscopy (FTIR) resulted in bands assigned to OH stretching in alcoholic and carboxylic hydroxyl groups, NO stretching in NO 3 and C dbnd O stretching at 1728 cm -1, the latter indicative of formate esters rather than aldehydes or ketones. Initial NMR spectra showed a broad polymeric-like feature, which separated into peaks representative of monomeric units as the SOA hydrolysed over 3 days. Subsequent GC-MS and NMR analyses were used to identify 18 species, which represented 75-80% of the SOA mass. Some of the unidentified mass is probably composed of organic nitrates. Low vapour pressure (⩽10 -7 Torr) species detected were glycerol, threitol, erythritol and isomeric forms tentatively identified as threonic and erythronic acid nitrate. Gel permeation chromatography of acetylated SOA gave a polymer molecular weight distribution range up to ˜4.0×10 5 g mol -1, with a peak molecular weight of 6.12×10 4 g mol -1. A chemical mechanism for the formation of endogenous seed aerosol directly from 1,3-butadiene is presented. It is proposed that the SOA is polymeric and composed of C1-C4 oxygenated species, including formate esters and hemiacetal formates.

  13. Molecular formula composition of β-caryophyllene ozonolysis SOA formed in humid and dry conditions

    NASA Astrophysics Data System (ADS)

    Kundu, Shuvashish; Fisseha, Rebeka; Putman, Annie L.; Rahn, Thom A.; Mazzoleni, Lynn R.

    2017-04-01

    We studied the molecular formula composition of six β-caryophyllene SOA samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry under various reaction conditions. The SOA samples were generated in dry or low relative humidity (RH) chamber conditions with or without cyclohexane. All of the studied SOA mass spectra have three distinct clusters of hundreds of negative ions referred to as Group I (100 < m/z < 400), Group II (400 < m/z < 700) and Group III (700 < m/z < 1 000) compounds. C14-16H22-28O2-11, C28-29H42-48O6-16 and C42-43H68-70O14-16 were observed as highly abundant organic compounds in the compound class of Group I, II and III, respectively. The relative intensities of most analytes were higher in humid conditions compared to those in dry conditions, indicating the importance of water-dependent reactions and the catalytic role of water both in the presence and absence of cyclohexane. In addition, molecular formulas with higher average carbon numbers were observed in humid SOA than in dry SOA in the absence of cyclohexane, suggesting a decrease of cleavage reactions in humid condition. This study characterizes β-caryophyllene ozonolysis SOA based on ultrahigh mass resolution and demonstrates the significance of humidity in terms of the molecular distributions and relative abundances of the analytes. We also discuss the possible mechanism for the formation of Group I-III compounds based on the current understanding of SOA formation in the atmosphere.

  14. Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from Biogenic Precursor Hydrocarbons

    EPA Science Inventory

    Secondary organic aerosol (SOA) formation and dynamics may be important factors for the role of aerosols in adverse health effects, visibility and climate change. Formation of SOA occurs when a parent volatile organic compound is oxidized to create products that form in a conden...

  15. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation

    SciTech Connect

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2016-02-08

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. Furthermore, this work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.

  16. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation

    DOE PAGES

    La, Y. S.; Camredon, M.; Ziemann, P. J.; ...

    2016-02-08

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chambermore » experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. Furthermore, this work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.« less

  17. On the mixing and evaporation of secondary organic aerosol components.

    PubMed

    Loza, Christine L; Coggon, Matthew M; Nguyen, Tran B; Zuend, Andreas; Flagan, Richard C; Seinfeld, John H

    2013-06-18

    The physical state and chemical composition of an organic aerosol affect its degree of mixing and its interactions with condensing species. We present here a laboratory chamber procedure for studying the effect of the mixing of organic aerosol components on particle evaporation. The procedure is applied to the formation of secondary organic aerosol (SOA) from α-pinene and toluene photooxidation. SOA evaporation is induced by heating the chamber aerosol from room temperature (25 °C) to 42 °C over 7 h and detected by a shift in the peak diameter of the SOA size distribution. With this protocol, α-pinene SOA is found to be more volatile than toluene SOA. When SOA is formed from the two precursors sequentially, the evaporation behavior of the SOA most closely resembles that of SOA from the second parent hydrocarbon, suggesting that the structure of the mixed SOA resembles a core of SOA from the initial precursor coated by a layer of SOA from the second precursor. Such a core-and-shell configuration of the organic aerosol phases implies limited mixing of the SOA from the two precursors on the time scale of the experiments, consistent with a high viscosity of at least one of the phases.

  18. Characterisation of secondary organic aerosol formed during cloud condensation-evaporation cycles from isoprene photooxidation (CUMULUS project)

    NASA Astrophysics Data System (ADS)

    Giorio, Chiara; Bregonzio, Lola; Siekmann, Frank; Temime-Roussel, Brice; Ravier, Sylvain; Pangui, Edouard; Tapparo, Andrea; Kalberer, Markus; Monod, Anne; Doussin, Jean-François

    2014-05-01

    Biogenic volatile organic compounds (BVOCs) undergo many reactions in the atmosphere and form a wide range of oxidised and water-soluble compounds. These compounds could partition into atmospheric water droplets, and react within the aqueous phase producing higher molecular weight and less volatile compounds which could remain in the particle phase after water evaporation (Ervens et al., 2011). The aim of this work is the characterisation of secondary organic aerosol (SOA) formed from the photooxidation of isoprene and the effect of cloud water on SOA formation and composition. The experiments were performed during the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), at the 4.2 m3 stainless steel CESAM chamber at LISA (Wang et al., 2011). In each experiment, isoprene was injected in the chamber together with HONO under dry conditions before irradiation. Gas phase compounds were analyzed on-line by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS), a Fourier Transform Infrared Spectrometer (FTIR), NOx and O3 analyzers. SOA formation and composition were analysed on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Particular attention has been focused on SOA formation and aging during cloud condensation-evaporation cycles simulated in the smog chamber. In all experiments, we observed that during cloud formation water soluble gas-phase oxidation products readily partitioned into cloud droplets and new SOA was promptly produced which partly persisted after cloud evaporation. Chemical composition, elemental ratios and density of SOA, measured with the HR-ToF-AMS, were compared before, during cloud formation and after cloud evaporation. Experiments with other precursors, i.e. methacrolein, and effects of the presence of seeds were also investigated. Ervens, B. et al. (2011) Atmos. Chem. Phys. 11, 11069 11102. Wang, J. et al

  19. Influence of humidity, temperature, and radicals on the formation and thermal properties of secondary organic aerosol (SOA) from ozonolysis of β-pinene.

    PubMed

    Emanuelsson, Eva U; Watne, Ågot K; Lutz, Anna; Ljungström, Evert; Hallquist, Mattias

    2013-10-10

    The influence of water and radicals on SOAs produced by β-pinene ozonolysis was investigated at 298 and 288 K using a laminar flow reactor. A volatility tandem differential mobility analyzer (VTDMA) was used to measure the evaporation of the SOA, enabling the parametrization of its volatility properties. The parameters extracted included the temperature at which 50% of the aerosol had evaporated (T(VFR0.5)) and the slope factor (S(VFR)). An increase in S(VFR) indicates a broader distribution of vapor pressures for the aerosol constituents. Reducing the reaction temperature increased S(VFR) and decreased T(VFR0.5) under humid conditions but had less effect on T(VFR0.5) under dry conditions. In general, higher water concentrations gave lower T(VFR0.5) values, more negative S(VFR) values, and a reduction in total SOA production. The radical conditions were changed by introducing OH scavengers to generate systems with and without OH radicals and with different [HO2]/[RO2] ratios. The presence of a scavenger and lower [HO2]/[RO2] ratio reduced SOA production. Observed changes in S(VFR) values could be linked to the more complex chemistry that occurs in the absence of a scavenger and indicated that additional HO2 chemistry gives products with a wider range of vapor pressures. Updates to existing ozonolysis mechanisms with routes that describe the observed responses to water and radical conditions for monoterpenes with endocyclic and exocyclic double bonds are discussed.

  20. In-cloud processes of methacrolein under simulated conditions - Part 3: Hygroscopic and volatility properties of the formed secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Michaud, V.; El Haddad, I.; Liu, Yao; Sellegri, K.; Laj, P.; Villani, P.; Picard, D.; Marchand, N.; Monod, A.

    2009-07-01

    The hygroscopic and volatility properties of secondary organic aerosol (SOA) produced from the nebulization of solutions after aqueous phase photooxidation of methacrolein was experimentally studied in a laboratory, using a Volatility-Hygroscopicity Tandem DMA (VHTDMA). The obtained SOA were 80% 100°C-volatile after 5 h of reaction and only 20% 100°C-volatile after 22 h of reaction. The Hygroscopic Growth Factor (HGF) of the SOA produced from the nebulization of solutions after aqueous-phase photooxidation of methacrolein is 1.34-1.43, which is significantly higher than the HGF of SOA formed by gas-phase photooxidation of terpenes, usually found almost hydrophobic. These hygroscopic properties were confirmed for SOA formed by the nebulization of the same solutions where NaCl was added. The hygroscopic properties of the cloud droplet residuals decrease with the reaction time, in parallel with the formation of more refractory compounds. This decrease was mainly attributed to the 250°C-refractive fraction (presumably representative of the highest molecular weight compounds), which evolved from moderately hygroscopic (HGF of 1.52) to less hygroscopic (HGF of 1.36). Oligomerization is suggested as a process responsible for the decrease of both volatility and hygroscopicity with time. The NaCl seeded experiments enabled us to show that 19±4 mg L-1 of SOA was produced after 9.5 h of reaction and 41±9 mg L-1 after 22 h of in-cloud reaction. Because more and more SOA is formed as the reaction time increases, our results show that the reaction products formed during the aqueous-phase OH-oxidation of methacrolein may play a major role in the properties of residual particles upon the droplet's evaporation. Therefore, the specific physical properties of SOA produced during cloud processes should be taken into account for a global estimation of SOA and their atmospheric impacts.

  1. Oligomers Formed Through In-cloud Metylglyoxal Reactions: Chemical Composition, Properties, and Mechanisms Investigated by Ultra-high Resolution FT-ICR Mass Spectrometry

    EPA Science Inventory

    Secondary organic aerosol (SOA) is a substantial component of total atmospheric organic particulate matter, but little is known about the composition of SOA formed through cloud processing. We conducted aqueous phase photooxidation experiments of methylglyoxal and hydroxyl radica...

  2. Characterisation of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene during Cloud Condensation-Evaporation Cycles (CUMULUS Project)

    NASA Astrophysics Data System (ADS)

    Doussin, J. F.; Giorio, C.; Bregonzio-Rozier, L.; Siekmann, F.; Temime-Roussel, B.; Gratien, A.; Ravier, S.; Pangui, E.; Tapparo, A.; Kalberer, M.; Vermeylen, R.; Claeys, M.; Monod, A.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) undergo many oxidation processes in the atmosphere accompanied by formation of water-soluble compounds. These compounds could partition into atmospheric water droplets, and react within the aqueous phase producing higher molecular weight and less volatile compounds which could form new aerosol (Ervens et al., 2011). This work investigates the formation and composition of secondary organic aerosol (SOA) from the photooxidation of isoprene and methacrolein (its main first-generation oxidation product) and the effect of cloud water on SOA formation and composition. The experiments were performed within the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere) at the 4.2 m3 stainless steel CESAM chamber (Wang et al., 2011). In each experiment, isoprene or methacrolein was injected in the chamber together with HONO under dry conditions before irradiation. The experimental protocol was optimised to generate cloud events in the chamber, lasting for ca. 10 minutes in the presence of light. Gas phase compounds were analyzed on-line by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS), a Fourier Transform Infrared Spectrometer (FTIR), NOx and O3 analyzers. SOA formation and composition were analysed on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and off-line through sampling on filters and analysis in GC-MS and LC-MS. We observed that during cloud formation water soluble gas-phase oxidation products readily partitioned into cloud droplets and new SOA was promptly produced. Chemical composition, elemental ratios and density of SOA were compared before, during cloud formation and after cloud evaporation. Ervens, B. et al. (2011) Atmos. Chem. Phys. 11, 11069-11102. Wang, J. et al. (2011) Atmos. Measur. Tech. 4, 2465-2494.

  3. The water up-take of semisolid SOA particles

    NASA Astrophysics Data System (ADS)

    Pajunoja, A.; Lambe, A. T.; Hakala, J. P.; Rastak, N.; Hao, L.; Paramonov, M.; Hong, J.; Laaksonen, A. J.; Kulmala, M. T.; Massoli, P.; Onasch, T. B.; Donahue, N. M.; Riipinen, I.; Davidovits, P.; Worsnop, D. R.; Petäjä, T.; Virtanen, A.

    2014-12-01

    The dependence of aerosol particle hygroscopicity on particle composition is often represented with the single parameter k commonly used in global models to describe the hygroscopic properties of atmospheric aerosol particles. From the theoretical formulation of k the same value is expected for ideal solutes in both the sub- and supersaturated regimes as typically calculated from hygroscopicity tandem differential mobility analyser (HTDMA) and cloud condensation nuclei counter (CCNc) measurements respectively (i.e. k HGF and kCCN). Yet, a number of recent studies conducted on SOA indicate that the two measurements yield different k values (k HGF < kCCN). There are several studies discussing the behaviour but the underlying reasons are unresolved. To investigate this in more detailed, CCNc and HTDMA measurements were conducted to determine the effects of chemical composition, oxidation level, the phase state and RH on the associated water uptake properties of biogenic SOA particles formed from isoprene, a-pinene, and longifolene precursors. Pure SOA particles by OH and/or O3 oxidation of the gas-phase precursors were formed in a PAM (Potential Aerosol Mass) flow tube reactor. Hygroscopic growth factors (HGF) were measured by Hygroscopicity Tandem Differential Mobility Analyser (HTDMA) at RH range of 50-~95% and CCN activation by CCN counter. To investigate the physical phase of the particles the particle bounced fraction (BF) using an Aerosol Bounce Instrument (ABI) was also measured. SOA oxidation state and composition was measured by a c-ToF-AMS. Based on the measurements we suggest that at subsaturation conditions semi solid SOA particles take up water mostly via surface adsorption resulting a large discrepancy between the kHGF and kCCN values. By calculating the aerosol direct radiative effect (Wm-2) using our results we also show that ambiguity about the κ values has important implications for quantifying the climate effects of SOA in atmospheric models.

  4. Effect of Hydrophilic Organic Seed Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of α-Pinene

    SciTech Connect

    Song, Chen; Zaveri, Rahul A.; Shilling, John E.; Alexander, M. L.; Newburn, Matthew K.

    2011-07-26

    Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized VOC product will increase as the mass loading of preexisting organic aerosol increases. In a previous study, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the secondary organic aerosol (SOA) yields from ozonolysis of {alpha}-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, non-polar, hydrophobic POA may gradually become polar and hydrophilic as it undergoes oxidative aging while POA formed from biomass burning is already somewhat polar and hydrophilic. In this study, we investigate the effects of model hydrophilic POA such as fulvic acid, adipic acid and citric acid on the gas-particle partitioning of SOA from {alpha}-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of {alpha}-pinene SOA into the particle-phase. The other two POA seed particles have negligible effect on the {alpha}-pinene SOA yields, suggesting that {alpha}-pinene SOA forms a well-mixed organic aerosol phase with citric acid while a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted POA.

  5. Chemical Characterization of Secondary Organic Aerosol Formed Through Cloud Processing of Methylglyoxal

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Seitzinger, S. P.; Carlton, A. G.; Turpin, B. J.; Klein, G. C.; Marshall, A. G.

    2007-12-01

    There is increasing evidence suggesting that secondary organic aerosol (SOA) forms as a result of low volatility product formation in atmospheric aqueous phase reactions. In this work aqueous phase photooxidation experiments between methylglyoxal (an isoprene oxidation product) and hydroxyl radical were conducted to simulate the cloud processing of methylglyoxal. The results verify that, as predicted, oxalic acid forms through cloud processing of methylglyoxal. This work adds to the growing body of literature (Altieri et al., 2006; Carlton et al., 2006; Carlton et al., 2007; Crahan et al., 2004; Warneck, 2003; 2005; Yu et al., 2005) supporting the hypothesis that cloud processing is a substantial source of oxalic acid to the atmosphere. Oxalic acid is the most abundant dicarboxylic acid in the atmosphere and a contributor to SOA. The formation of additional monomer products (e.g., malic acid, succinic acid, glycolic acid) and the development of an oligomer system were also identified through use of a combination of electrospray ionization mass spectrometry (ESI-MS) techniques: a quadrupole ESI-MS, an ion trap ESI-MS-MS, and an ultra-high resolution ESI FT-ICR MS. We propose a mechanism of oligomer formation through esterification of monomers with a hydroxy acid formed from hydroxyl radical initiated reactions. Oligomers were only recently identified as cloud processing products (Altieri et al., 2006), and this work is the first chemical characterization of oligomers formed through cloud processing reactions. The chemical characterization includes the distribution of molecular weights, elemental compositions, structure, and organic mass to organic carbon (OM:OC) ratio. Methylglyoxal is a water- soluble product of both biogenic and anthropogenic hydrocarbon oxidation. The varied and multiple sources of methylglyoxal suggest there is strong potential for these low volatility products (e.g., oxalic acid and oligomers) to significantly contribute to SOA.

  6. Sources, properties, aging, and anthropogenic influences on OA and SOA over the Southeast US and the Amazon during SOAS, DC3, SEAC4RS, and GoAmazon

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; Campuzano Jost, P.; Hu, W.; Palm, B. B.; Thompson, S.; Krechmer, J.; Day, D. A.; Stark, H.; Peng, Z.; Ortega, A. M.; Isaacman, G. A.; Goldstein, A. H.; Holzinger, R.; de Sá, S. S.; Martin, S. T.; Alexander, M. L.; Guenther, A. B.; Canagaratna, M. R.; Massoli, P.; Kimmel, J.; Jayne, J. T.; Worsnop, D. R.; Brune, W. H.; Lee-Taylor, J. M.; Hodzic, A.; Madronich, S.; Offenberg, J. H.; Ferreira De Brito, J.; Artaxo, P.; Manzi, A. O.

    2014-12-01

    The SE US and the Amazon have large sources of biogenic VOCs and varying anthropogenic pollution impact, and often poor aerosol model performance. Recent results on the sources, properties, aging, and impact of anthropogenic pollution on OA and secondary OA (SOA) over these regions will be presented. SOA from IEPOX accounts for 14-17% of the OA on average over the SE US and extending up to 6 km. Higher IEPOX-SOA correlates with airmasses of high isoprene, IEPOX, sulfate, acidity, and lower NO. The IEPOX organosulfate accounts for ~10% of IEPOX-SOA over the SE US. The AMS ion C5H6O+ is shown to be a good marker of IEPOX-SOA, while total m/z 82 (as in ACSM) suffers larger interferences. The sinks of IEPOX-SOA via both OH oxidation and evaporation are slow. The low-volatility of IEPOX-SOA contrasts with the small semivolatile molecules that have so far been identified as its components, suggesting the importance of oligomerization. Urban SOA is estimated to account for 25% of the OA in the SE US using either the GEOS-Chem model or the measured 14C (using recent results that urban SOA (POA) is 30% (50%) non-fossil, mainly due to cooking emissions). An oxidation flow reactor (OFR) is used to investigate SOA formation by OH, O3, and NO3 in-situ. Largest SOA formation is always observed at night when monoterpenes (MT) are largest, and is underpredicted by SOA models that use MT as precursors but ignore partially-oxidized products. Closure results from models (VBS and GECKO-A) that account for the whole oxidation chain will be presented. The partitioning of organic acids is found to proceed rapidly in response to temperature changes, in contrast with recent reports of very slow equilibration. The agreement with absorptive partitioning theory is reasonable for most species, except small acids that may be formed by thermal decomposition during analysis. Partitioning data from four instruments is compared, with reasonable agreement in many cases including the rapid response

  7. Separating Cloud Forming Nuclei from Interstitial Aerosol

    SciTech Connect

    Kulkarni, Gourihar R.

    2012-09-12

    It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

  8. Secondary Organic Aerosol Formation from 2-Methyl-3-Buten-2-ol (MBO) Photooxidation: Evidence for Acid-Catalyzed Reactive Uptake of Epoxide

    NASA Astrophysics Data System (ADS)

    Surratt, J. D.; Zhang, H.; Worton, D. R.; Lewandowski, M.; Ortega, J.; Zhang, Z.; Lin, Y.; Park, J.; Kristensen, K.; Bhathela, N.; Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.; Jaoui, M.; Offenberg, J. H.; Kleindienst, T. E.; Gilman, J. B.; De Gouw, J. A.; Park, C.; Schade, G. W.; Frossard, A. A.; Russell, L. M.; Kaser, L.; Jud, W.; Hansel, A.; Karl, T.; Glasius, M.; Gold, A.; Seinfeld, J.; Guenther, A. B.

    2012-12-01

    2-methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied aerosol acidity levels. Results indicate SOA was enhanced with increasing aerosol acidity especially under low-NO conditions. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C5H12O6S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. This organosulfate species was also observed and correlated with aerosol acidity from ambient fine aerosol (PM2.5) samples that were collected from different field campaigns where MBO emissions are important, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Importantly, this compound can account for as high as 1% of the total organic aerosol mass in the atmosphere. It is hypothesized that MBO epoxide generated under low-NO conditions is the precursor to MBO SOA based upon the above results. Thus, the MBO epoxide was synthesized in high purity to investigate its potential to form SOA via reactive uptake in a series of controlled dark chamber studies. Our results suggest the MBO epoxide substantially forms SOA only in the presence of acidic seed aerosols. The chemical characterization results of the SOA constituents are consistent with field measurements in terms of the major SOA tracers.

  9. SOA Formation from Aqueous Processing of BVOCs in the Southeastern United States during SOAS

    NASA Astrophysics Data System (ADS)

    Skog, K.; Keutsch, F. N.

    2013-12-01

    Secondary organic aerosol (SOA) contributes to climate change and adversely affects human health, but the formation of SOA is poorly understood. Recent studies have shown that aqueous processing of water soluble compounds like glyoxal and glycolaldehyde can help close the gap in our understanding of SOA formation. During June and July of 2013, a comprehensive suite of instruments were deployed at the Southern Oxidant and Aerosol Study (SOAS) Centreville, AL ground site measuring oxidants, glyoxal and glycolaldehyde as well as their precursors, anthropogenic influence, aerosol properties and meteorology. Results from a zero-dimensional gas phase photochemical model and a zero-dimensional aqueous SOA model will be compared to the observations. Analysis will focus on the modeled contribution of glyoxal and glycolaldehyde in the context of closing the aqueous SOA budget.

  10. How will SOA change in the future?: SOA IN THE FUTURE

    SciTech Connect

    Lin, Guangxing; Penner, Joyce E.; Zhou, Cheng

    2016-02-17

    Secondary organic aerosol (SOA) plays a significant role in the Earth system by altering its radiative balance. Here we use an Earth system model coupled with an explicit SOA formation module to estimate the response of SOA concentrations to changes in climate, anthropogenic emissions, and human land use in the future. We find that climate change is the major driver for SOA change under the representative concentration pathways for the 8.5 future scenario. Climate change increases isoprene emission rate by 18% with the effect of temperature increases outweighing that of the CO2 inhibition effect. Annual mean global SOA mass is increased by 25% as a result of climate change. However, anthropogenic emissions and land use change decrease SOA. The net effect is that future global SOA burden in 2100 is nearly the same as that of the present day. The SOA concentrations over the Northern Hemisphere are predicted to decline in the future due to the control of sulfur emissions.

  11. Modeling the multiday evolution and aging of secondary organic aerosol during MILAGRO 2006.

    PubMed

    Dzepina, Katja; Cappa, Christopher D; Volkamer, Rainer M; Madronich, Sasha; Decarlo, Peter F; Zaveri, Rahul A; Jimenez, Jose L

    2011-04-15

    In this study, we apply several recently proposed models to the evolution of secondary organic aerosols (SOA) and organic gases advected from downtown Mexico City at an altitude of ∼3.5 km during three days of aging, in a way that is directly comparable to simulations in regional and global models. We constrain the model with and compare its results to available observations. The model SOA formed from oxidation of volatile organic compounds (V-SOA) when using a non-aging SOA parameterization cannot explain the observed SOA concentrations in aged pollution, despite the increasing importance of the low-NO(x) channel. However, when using an aging SOA parameterization, V-SOA alone is similar to the regional aircraft observations, highlighting the wide diversity in current V-SOA formulations. When the SOA formed from oxidation of semivolatile and intermediate volatility organic vapors (SI-SOA) is computed following Robinson et al. (2007) the model matches the observed SOA mass, but its O/C is ∼2× too low. With the parameterization of Grieshop et al. (2009), the total SOA mass is ∼2× too high, but O/C and volatility are closer to the observations. Heating or dilution cause the evaporation of a substantial fraction of the model SOA; this fraction is reduced by aging although differently for heating vs dilution. Lifting of the airmass to the free-troposphere during dry convection substantially increases SOA by condensation of semivolatile vapors; this effect is reduced by aging.

  12. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  13. Identification of significant precursor gases of secondary organic aerosols from residential wood combustion

    NASA Astrophysics Data System (ADS)

    Bruns, Emily A.; El Haddad, Imad; Slowik, Jay G.; Kilic, Dogushan; Klein, Felix; Baltensperger, Urs; Prévôt, André S. H.

    2016-06-01

    Organic gases undergoing conversion to form secondary organic aerosol (SOA) during atmospheric aging are largely unidentified, particularly in regions influenced by anthropogenic emissions. SOA dominates the atmospheric organic aerosol burden and this knowledge gap contributes to uncertainties in aerosol effects on climate and human health. Here we characterize primary and aged emissions from residential wood combustion using high resolution mass spectrometry to identify SOA precursors. We determine that SOA precursors traditionally included in models account for only ~3–27% of the observed SOA, whereas for the first time we explain ~84–116% of the SOA by inclusion of non-traditional precursors. Although hundreds of organic gases are emitted during wood combustion, SOA is dominated by the aging products of only 22 compounds. In some cases, oxidation products of phenol, naphthalene and benzene alone comprise up to ~80% of the observed SOA. Identifying the main precursors responsible for SOA formation enables improved model parameterizations and SOA mitigation strategies in regions impacted by residential wood combustion, more productive targets for ambient monitoring programs and future laboratories studies, and links between direct emissions and SOA impacts on climate and health in these regions.

  14. Identification of significant precursor gases of secondary organic aerosols from residential wood combustion

    PubMed Central

    Bruns, Emily A.; El Haddad, Imad; Slowik, Jay G.; Kilic, Dogushan; Klein, Felix; Baltensperger, Urs; Prévôt, André S. H.

    2016-01-01

    Organic gases undergoing conversion to form secondary organic aerosol (SOA) during atmospheric aging are largely unidentified, particularly in regions influenced by anthropogenic emissions. SOA dominates the atmospheric organic aerosol burden and this knowledge gap contributes to uncertainties in aerosol effects on climate and human health. Here we characterize primary and aged emissions from residential wood combustion using high resolution mass spectrometry to identify SOA precursors. We determine that SOA precursors traditionally included in models account for only ~3–27% of the observed SOA, whereas for the first time we explain ~84–116% of the SOA by inclusion of non-traditional precursors. Although hundreds of organic gases are emitted during wood combustion, SOA is dominated by the aging products of only 22 compounds. In some cases, oxidation products of phenol, naphthalene and benzene alone comprise up to ~80% of the observed SOA. Identifying the main precursors responsible for SOA formation enables improved model parameterizations and SOA mitigation strategies in regions impacted by residential wood combustion, more productive targets for ambient monitoring programs and future laboratories studies, and links between direct emissions and SOA impacts on climate and health in these regions. PMID:27312480

  15. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Maso, M. D.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-03-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Secondary organic aerosols (SOA) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOC) emitted by vegetation are a major source of SOA. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed SOA, and possibly their climatic effects. This raises questions whether stress-induced changes in SOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on SOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical SOA formation for infested plants in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify SOA formation. While sesquiterpenes, methyl salicylate, and C17-BVOC increase SOA yield, green leaf volatiles suppress SOA formation. By classifying emission types, stressors and SOA formation potential, we propose possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  16. Optical Properties of Polymers Relevant to Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Marrero-Ortiz, W.; Gomez-Hernandez, M. E.; Xu, W.; Guo, S.; Zhang, R.

    2014-12-01

    Atmospheric aerosols play a critical role in climate directly by scattering and absorbing solar radiation and indirectly by modifying the cloud formation. Currently, the direct and indirect effects of aerosols represent the largest uncertainty in climate predictions models. Some aerosols are directly emitted, but the majority are formed in the atmosphere by the oxidation of gaseous precursors. However, the formation of aerosols at the molecular level is not fully characterized. Certain category of secondary organic aerosols (SOA), which represent a significant fraction of the total aerosol burden, can be light-absorbing, also known as brown carbon. However, the overall contribution of SOA to the brown carbon and the related climate forcing is poorly understood. Such incomplete understanding is due in part to the chemical complexity of SOA and the lack of knowledge regarding SOA formation, transformation, and optical properties. Based on previous laboratory experiments, field measurements, and modeling studies, it has been suggested that the polymers and oligomers play an important role in the SOA formation. Atmospheric polymers could be produced by the hydration or heterogeneous reactions of epoxides and small α-dicarbonyls. Their aqueous chemistry products have been shown to give light-absorbing and high molecular weight oligomeric species, which increase the SOA mass production and alter the direct and indirect effect of aerosols. In this paper, the aerosol chemistry of small α-dicarbonyl compounds with amines is investigated and the associated optical properties are measured using spectroscopic techniques. The differences between primary, secondary and tertiary amines with glyoxal and methylglyoxal are evaluated in terms of SOA browning efficiency. Atmospheric implications of our present work for understanding the formation of light-absorbing SOA will be presented, particularly in terms of the product distribution of light-absorbing SOA formed by aqueous phase

  17. How important are glassy SOA ice nuclei for the formation of cirrus clouds?

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Penner, J. E.; Lin, G.; Liu, X.; Wang, M.

    2014-12-01

    Extremely low ice numbers (i.e. 5 - 100 / L) have been observed in the tropical troposphere layer (TTL) in a variety of field campaigns. Various mechanisms have been proposed to explain these low numbers, including the effect of glassy secondary organic aerosol acting as heterogeneous ice nuclei (IN). In this study, we explored these effects using the CAM5.3 model. SOA fields were provided by an offline version of the University of Michigan-IMPACT model, which has a detailed process-based mechanism that describes aerosol microphysics and SOA formation through both gas phase and multiphase reactions. The transition criterion of SOA to glassy heterogeneous IN follows the parameterization developed by Wang et al. 2012. With this parameterization, glassy SOA IN form mainly when the temperature (T) is lower than 210K. In the default CAM5.3 set-up in which only the fraction of Aitken mode sulfate aerosols with diameter larger than 100nm participate in the ice nucleation (Liu and Penner 2005 parameterization), glassy SOA IN are shown to decrease the ice number (Ni) by suppressing some of the homogeneous freezing at low temperatures thereby leading to an improved representation of the relationship between Ni and T compared to the observations summarized by Kramer et al. 2009. However, when we allow the total number of the Aitken mode sulfate particles to participate in homogeneous freezing, glassy SOA IN have only a small impact on the relationship between Ni and T. If the subgrid updraft velocity is decreased to 0.1 m/s (compared to 0.2 m/s in the default set-up), there is a large decrease of Ni, since homogeneous freezing is more easily suppressed by glassy SOA IN at these updrafts. We also present the effects of glassy SOA IN using an alternative ice nucleation scheme (Barahona and Nenes, 2009).

  18. Potential of Aerosol Liquid Water to Facilitate Organic Aerosol Formation: Assessing Knowledge Gaps about Precursors and Partitioning.

    PubMed

    Sareen, Neha; Waxman, Eleanor M; Turpin, Barbara J; Volkamer, Rainer; Carlton, Annmarie G

    2017-03-06

    Isoprene epoxydiol (IEPOX), glyoxal, and methylglyoxal are ubiquitous water-soluble organic gases (WSOGs) that partition to aerosol liquid water (ALW) and clouds to form aqueous secondary organic aerosol (aqSOA). Recent laboratory-derived Setschenow (or salting) coefficients suggest glyoxal's potential to form aqSOA is enhanced by high aerosol salt molality, or "salting-in". In the southeastern U.S., aqSOA is responsible for a significant fraction of ambient organic aerosol, and correlates with sulfate mass. However, the mechanistic explanation for this correlation remains elusive, and an assessment of the importance of different WSOGs to aqSOA is currently missing. We employ EPA's CMAQ model to the continental U.S. during the Southern Oxidant and Aerosol Study (SOAS) to compare the potential of glyoxal, methylglyoxal, and IEPOX to partition to ALW, as the initial step toward aqSOA formation. Among these three studied compounds, IEPOX is a dominant contributor, ∼72% on average in the continental U.S., to potential aqSOA mass due to Henry's Law constants and molecular weights. Glyoxal contributes significantly, and application of the Setschenow coefficient leads to a greater than 3-fold model domain average increase in glyoxal's aqSOA mass potential. Methylglyoxal is predicted to be a minor contributor. Acid or ammonium - catalyzed ring-opening IEPOX chemistry as well as sulfate-driven ALW and the associated molality may explain positive correlations between SOA and sulfate during SOAS and illustrate ways in which anthropogenic sulfate could regulate biogenic aqSOA formation, ways not presently included in atmospheric models but relevant to development of effective control strategies.

  19. SOA formation potential of emissions from soil and leaf litter.

    PubMed

    Faiola, Celia L; Vanderschelden, Graham S; Wen, Miao; Elloy, Farah C; Cobos, Douglas R; Watts, Richard J; Jobson, B Thomas; Vanreken, Timothy M

    2014-01-21

    Soil and leaf litter are significant global sources of small oxidized volatile organic compounds, VOCs (e.g., methanol and acetaldehyde). They may also be significant sources of larger VOCs that could act as precursors to secondary organic aerosol (SOA) formation. To investigate this, soil and leaf litter samples were collected from the University of Idaho Experimental Forest and transported to the laboratory. There, the VOC emissions were characterized and used to drive SOA formation via dark, ozone-initiated reactions. Monoterpenes dominated the emission profile with emission rates as high as 228 μg-C m(-2) h(-1). The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and α-pinene. Measured soil and litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest surface soil and litter monoterpene emissions could range from 12 to 136% of canopy emissions in spring and fall. Thus, emissions from leaf litter may potentially extend the biogenic emissions season, contributing to significant organic aerosol formation in the spring and fall when reduced solar radiation and temperatures reduce emissions from living vegetation.

  20. Secondary organic aerosol formation from photo-oxidation of unburned fuel: experimental results and implications for aerosol formation from combustion emissions.

    PubMed

    Jathar, Shantanu H; Miracolo, Marissa A; Tkacik, Daniel S; Donahue, Neil M; Adams, Peter J; Robinson, Allen L

    2013-11-19

    We conducted photo-oxidation experiments in a smog chamber to investigate secondary organic aerosol (SOA) formation from eleven different unburned fuels: commercial gasoline, three types of jet fuel, and seven different diesel fuels. The goals were to investigate the influence of fuel composition on SOA formation and to compare SOA production from unburned fuel to that from diluted exhaust. The trends in SOA production were largely consistent with differences in carbon number and molecular structure of the fuel, i.e., fuels with higher carbon numbers and/or more aromatics formed more SOA than fuels with lower carbon numbers and/or substituted alkanes. However, SOA production from different diesel fuels did not depend strongly on aromatic content, highlighting the important contribution of large alkanes to SOA formation from mixtures of high carbon number (lower volatility) precursors. In comparison to diesels, SOA production from higher volatility fuels such as gasoline appeared to be more sensitive to aromatic content. On the basis of a comparison of SOA mass yields (SOA mass formed per mass of fuel reacted) and SOA composition (as measured by an aerosol mass spectrometer) from unburned fuels and diluted exhaust, unburned fuels may be reasonable surrogates for emissions from uncontrolled engines but not for emissions from engines with after treatment devices such as catalytic converters.

  1. Simulation of semi-explicit mechanisms of SOA formation from glyoxal in a 3-D model

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J.; Fast, J.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R.; Tyndall, G.; Washenfelder, R.; Waxman, E.; Zhang, Q.

    2013-10-01

    New pathways to form secondary organic aerosols (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous-phase of cloud droplets and deliquesced aerosols where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include a detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aqueous-phase of aerosols. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. In all simulations the LA basin was found to be the hotspot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a simple uptake coefficient, as frequently employed in global modeling studies, leads to higher SOA contributions from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to be the main contributor to SOA mass compared to a volume process and reversible formation. We find that contribution of the latter is limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations ("salting-in"). A kinetic limitation in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume pathways contribute >20% of glyoxal SOA mass, and the total mass formed (5.8% of total SOA in the LA

  2. Morphology of Mixed Primary and Secondary Organic Particles and the Adsorption of Spectator Organic Gases during Aerosol Formation

    SciTech Connect

    Vaden, Timothy D.; Song, Chen; Zaveri, Rahul A.; Imre, D.; Zelenyuk, Alla

    2010-04-13

    Traditional semi-empirical secondary organic aerosol (SOA) models assume that SOA mixes well with primary organic aerosols (POA), which significantly enhances the modeled SOA yields. These models further assume that the organic compounds in the gas phase do no condense on SOA as it forms. These assumptions were challenged through a detailed experimental investigation of the compositions and morphologies of SOA particles formed during ozonolysis of α-pinene in the presence of dioctyl phthalate (DOP) particles and DOP gas phase component using a single particle mass spectrometer. Ultraviolet (UV) laser depth-profiling experiments were used to characterize different types of mixed SOA/DOP particles: those formed by condensation of the oxidized α-pinene products on size-selected DOP particles and by condensation of DOP on size-selected α-pinene SOA particles. The results of these measurements conclusively show that the hydrophilic SOA and hydrophobic DOP do not mix, but instead form distinct phases. An examination of homogeneously-nucleated SOA particles formed in the presence of DOP shows them to be encapsulated by a thin DOP layer. Thus SOA can adsorb gas-phase DOP even though it has an extremely low vapor pressure (1.3×10-7 Torr), which has significant implications for SOA formation and fate in the atmosphere, where numerous organic compounds with various volatilities are present.

  3. Development of a supercritical fluid extraction-gas chromatography-mass spectrometry method for the identification of highly polar compounds in secondary organic aerosols formed from biogenic hydrocarbons in smog chamber experiments.

    PubMed

    Chiappini, L; Perraudin, E; Durand-Jolibois, R; Doussin, J F

    2006-11-01

    A new one-step method for the analysis of highly polar components of secondary organic aerosols (SOA) has been developed. This method should lead to a better understanding of SOA formation and evolution since it enables the compounds responsible for SOA formation to be identified. Since it is based on supercritical fluid extraction coupled to gas chromatography-mass spectrometry, it minimizes the analysis time and significantly enhances sensitivity, which makes it suitable for trace-level compounds, which are constituents of SOA. One of the key features of this method is the in situ derivatisation step: an online silylation allowing the measurement of highly polar, polyfunctional compounds, which is a prerequisite for the elucidation of chemical mechanisms. This paper presents the development of this analytical method and highlights its ability to address this major atmospheric issue through the analysis of SOA formed from the ozonolysis of a biogenic hydrocarbon (sabinene). Ozonolysis of sabinene was performed in a 6 m3 Teflon chamber. The aerosol components were derivatised in situ. More than thirty products, such as sabinaketone, sabinic acid and other multifunctional compounds including dicarboxylic acids and oxoacids, were measured. Nine of them were identified and quantified. The sensitivity and the linearity (0.91

  4. Early stage composition of SOA produced by α-pinene/ozone reaction: α-Acyloxyhydroperoxy aldehydes and acidic dimers

    NASA Astrophysics Data System (ADS)

    Witkowski, Bartłomiej; Gierczak, Tomasz

    2014-10-01

    Composition of the freshly formed secondary organic aerosol (SOA) generated by ozonolysis of cyclohexene, cyclohexene-d10 (model precursors) and α-pinene was studied using liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-ESI/MS2). SOA was generated in the flow-tube reactor under the following conditions: 22 ± 2 °C, 1 atm and reaction time was approx. 30 s. In an attempt to resolve the current ambiguities, regarding the structure of α-pinene SOA nucleating agents, analytical methods for analysis of α-acyloxyhydroperoxy aldehydes and oligomers containing carboxylic group were developed to study the potential nucleating agents. Negatively charged m/z 351, 341, 337, 357 and 367 ions corresponding to the acidic oligomers were detected in freshly formed α-pinene SOA. For the first time, structures and formation mechanism for compounds detected as m/z 337 and 351 ions were proposed. Based on the model precursor analysis (cyclohexene and cyclohexene-d10) it was concluded that these compounds were most likely formed via aldol reaction of the lower molecular weight aerosol components. α-Acyloxyhydroperoxy aldehydes were studied in the SOA samples using previously developed, novel method, based on the prediction of fragmentation spectrum for the compounds of interest. It was concluded that α-acyloxyhydroperoxy aldehydes were not formed in significant quantities. Based on the obtained results, possible SOA formation and growth mechanism is discussed.

  5. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    EPA Science Inventory

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...

  6. Laboratory studies on secondary organic aerosol formation from crude oil vapors.

    PubMed

    Li, R; Palm, B B; Borbon, A; Graus, M; Warneke, C; Ortega, A M; Day, D A; Brune, W H; Jimenez, J L; de Gouw, J A

    2013-01-01

    Airborne measurements of aerosol composition and gas phase compounds over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico in June 2010 indicated the presence of high concentrations of secondary organic aerosol (SOA) formed from organic compounds of intermediate volatility. In this work, we investigated SOA formation from South Louisiana crude oil vapors reacting with OH in a Potential Aerosol Mass flow reactor. We use the dependence of evaporation time on the saturation concentration (C*) of the SOA precursors to separate the contribution of species of different C* to total SOA formation. This study shows consistent results with those at the DWH oil spill: (1) organic compounds of intermediate volatility with C* = 10(5)-10(6) μg m(-3) contribute the large majority of SOA mass formed, and have much larger SOA yields (0.37 for C* = 10(5) and 0.21 for C* = 10(6) μg m(-3)) than more volatile compounds with C*≥10(7) μg m(-3), (2) the mass spectral signature of SOA formed from oxidation of the less volatile compounds in the reactor shows good agreement with that of SOA formed at DWH oil spill. These results also support the use of flow reactors simulating atmospheric SOA formation and aging.

  7. Simulation of semi-explicit mechanisms of SOA formation from glyoxal in a 3D model

    NASA Astrophysics Data System (ADS)

    Knote, C. J.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J. F.; Fast, J. D.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R. M.; Tyndall, G. S.; Washenfelder, R. A.; Waxman, E.; Zhang, Q.

    2013-12-01

    Formation of secondary organic aerosols (SOA) through multi-phase processing of glyoxal has been proposed recently as a relevant contributor to SOA mass. Glyoxal has both anthropogenic and biogenic sources, and readily partitions into the aqueous-phase of cloud droplets and aerosols. Both reversible and irreversible chemistry in the liquid-phase has been observed. A recent laboratory study indicates that the presence of salts in the liquid-phase strongly enhances the Henry';s law constant of glyoxal, allowing for much more effective multi-phase processing. In our work we investigate the contribution of glyoxal to SOA formation on the regional scale. We employ the regional chemistry transport model WRF-chem with MOZART gas-phase chemistry and MOSAIC aerosols, which we both extended to improve the description of glyoxal formation in the gas-phase, and its interactions with aerosols. The detailed description of aerosols in our setup allows us to compare very simple (uptake coefficient) parameterizations of SOA formation from glyoxal, as has been used in previous modeling studies, with much more detailed descriptions of the various pathways postulated based on laboratory studies. Measurements taken during the CARES and CalNex campaigns in California in summer 2010 allowed us to constrain the model, including the major direct precursors of glyoxal. Simulations at convection-permitting resolution over a 2 week period in June 2010 have been conducted to assess the effect of the different ways to parameterize SOA formation from glyoxal and investigate its regional variability. We find that depending on the parameterization used the contribution of glyoxal to SOA is between 1 and 15% in the LA basin during this period, and that simple parameterizations based on uptake coefficients derived from box model studies lead to higher contributions (15%) than parameterizations based on lab experiments (1%). A kinetic limitation found in experiments hinders substantial contribution

  8. Can secondary organic aerosol formed in an atmospheric simulation chamber continuously age?

    NASA Astrophysics Data System (ADS)

    Qi, Li; Nakao, Shunsuke; Malloy, Quentin; Warren, Bethany; Cocker, David R.

    2010-08-01

    This work investigates the oxidative aging process of SOA derived from select aromatic ( m-xylene) and biogenic (α-pinene) precursors within an environmental chamber. Simultaneous measurements of SOA hygroscopicity, volatility, particle density, and elemental chemical composition (C:O:H) reveal only slight particle aging for up to the first 16 h of formation. The chemical aging observed is consistent with SOA that is decreasing in volatility and increasing in O/C and hydrophilicity. Even after aging, the O/C (0.25 and 0.40 for α-pinene and m-xylene oxidation, respectively) was below the OOAI and OOAII ambient fractions measured by high-resolution aerosol mass spectra coupled with Positive Matrix Factorization (PMF). The rate of increase in O/C does not appear to be sufficient to achieve OOAI or OOAII levels of oxygenation within regular chamber experiment duration. No chemical aging was observed for SOA during dark α-pinene ozonolysis with a hydroxyl radical scavenger present. This finding is consistent with observations by other groups that SOA from this system is comprised of first generation products.

  9. Limited Effect of Anthropogenic Nitrogen Oxides on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Knote, C. J.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Yu, P.

    2014-12-01

    Globally secondary organic aerosol (SOA) is mostly formed from biogenic vegetation emissions and as such is regarded as natural aerosol that cannot be reduced by emission control legislation. However, recent research implies that human activities facilitate SOA formation by affecting the amount of precursor emission, the chemical processing and the partitioning into the aerosol phase. Among the multiple human influences, nitrogen oxides (NO + NO2 = NOx) have been assumed to play a critical role in the chemical formation of low volatile compounds. The goal of this study is to improve the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-Chem) by implementing an updated 4-product Volatility Basis Set (VBS) scheme, and apply it to investigate the impact of anthropogenic NOx on SOA. We first compare three different SOA parameterizations: a 2-product model and the updated VBS model both with and without a SOA aging parameterization. Secondly we evaluate predicted organic aerosol amounts against surface measurement from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network and Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns. We then perform sensitivity experiments to examine how the SOA loading responds to a 50% reduction in anthropogenic NOx in different regions. We find limited SOA reductions of -2.3%, -5.6% and -4.0% for global, southeastern U.S. and Amazon NOx perturbations, respectively. To investigate the chemical processes in more detail, we also use a simplified box model with the same gas-phase chemistry and gas-aerosol partitioning mechanism as in CAM4-Chem to examine the SOA yields dependence on initial precursor emissions and background NOx level. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- versus high-NOx pathways, OH versus NO3-initiated oxidation) and to offsetting

  10. Terpenylic and Related Lactone-Containing Acids: Novel Monoterpene Secondary Organic Aerosol Tracers with Dimer-Forming Properties

    NASA Astrophysics Data System (ADS)

    Claeys, M.; Iinuma, Y.; Szmigielski, R.; Farhat, Y.; Surratt, J. D.; Blockhuys, F.; van Alsenoy, C.; Böge, O.; Sierau, B.; Gómez-González, Y.; Vermeylen, R.; van der Veken, P.; Shahgholi, M.; Chan, A. W.; Herrmann, H.; Seinfeld, J.; Maenhaut, W.

    2009-12-01

    Blue haze is a natural phenomenon that is observed in forested regions worldwide and is due to the formation of secondary organic aerosol (SOA) particles. While evidence exists for organic molecular clusters in the size range of < 2 nm, the chemical structures of the nucleating particles have remained unresolved. In the present study, novel SOA products from the monoterpene α-pinene with unique dimer-forming properties have been identified as lactone-containing terpenoic acids, i.e., terpenylic (molecular weight (MW) 172), terebic (MW 158) and 2-hydroxyterpenylic acid (MW 188), and diaterpenylic acid acetate (MW 232). The structural characterizations were based on synthesis of reference compounds and detailed interpretation of negative ion electrospray ionization mass spectral [(-)ESI-MS] data, including accurate mass and MSn ion trap measurements. Terpenylic acid and diaterpenylic acid acetate are early oxidation products formed upon both photooxidation and ozonolysis, and are abundant SOA tracers in ambient fine aerosol from coniferous forest sites (e.g., K-puszta, Hungary). Terebic and 2-hydroxyterpenylic acid can be explained by further oxidation of terpenylic acid, and are also prominent tracers in ambient fine aerosol. Quantum chemical calculations support that non-covalent dimer formation involving double hydrogen bonding interactions between carboxyl groups of the monomers is energetically favorable. Lactone-containing terpenoic acids also form through photooxidation from monoterpenes other than α-pinene, i.e., terebic acid from Δ3-carene, and terpenylic, homoterpenylic (MW 186), and terebic acid from β-pinene. A distinct feature of terpenylic acid and related lactone-containing acids is that they can be selectively detected in positive ion (+)ESI-MS, unlike isobaric dicarboxylic terpenoic acids such as norpinic (MW 172) and pinic acid (MW 186). Interestingly, terpenylic, terebic and homoterpenylic acid were already reported in the early German

  11. Evaporation Kinetics and Phase of Laboratory and Ambient Secondary Organic Aerosol

    SciTech Connect

    Vaden, Timothy D.; Imre, Dan G.; Beranek, Josef; Shrivastava, ManishKumar B.; Zelenyuk, Alla

    2011-02-08

    Field measurements of secondary organic aerosol (SOA) find higher mass loads than predicted by models, sparking intense efforts to find additional SOA sources but leaving the assumption of rapid SOA evaporation unchallenged. We characterized room-temperature evaporation of pure SOA and SOA formed in the presence of spectator organic vapors with and without aging. We find that it takes ~24 hrs for pure SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ~10 minutes timescales predicted by models. The presence of spectator organic vapors and aging dramatically reduces the evaporation, and in some cases nearly stops it. For all cases, SOA evaporation behavior is size independent and does not follow the liquid droplet evaporation kinetics assumed by models.

  12. Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber

    NASA Astrophysics Data System (ADS)

    Nordin, E. Z.; Eriksson, A. C.; Roldin, P.; Nilsson, P. T.; Carlsson, J. E.; Kajos, M. K.; Hellén, H.; Wittbom, C.; Rissler, J.; Löndahl, J.; Swietlicki, E.; Svenningsson, B.; Bohgard, M.; Kulmala, M.; Hallquist, M.; Pagels, J. H.

    2013-06-01

    Gasoline vehicles have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from three passenger vehicles (EURO2-EURO4) were investigated with photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out down to atmospherically relevant organic aerosol mass concentrations. The characterization instruments included a high-resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind of urban areas. After a cumulative OH exposure of ~5 × 106 cm-3 h, the formed SOA was 1-2 orders of magnitude higher than the primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 43), approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6-C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher-order aromatic compounds such as C10 and C11 light aromatics, naphthalene and methyl-naphthalenes. We conclude that approaches using only light aromatic precursors give an incomplete picture of the magnitude of SOA formation and the SOA composition from gasoline exhaust.

  13. Comparison of different gas-phase mechanisms and aerosol modules for simulating particulate matter formation.

    PubMed

    Kim, Youngseob; Couvidat, Florian; Sartelet, Karine; Seigneur, Christian

    2011-11-01

    The effects of two gas-phase chemical kinetic mechanisms, Regional Atmospheric Chemistry Mechanism version 2 (RACM2) and Carbon-Bond 05 (CB05), and two secondary organic aerosol (SOA) modules, the Secondary Organic Aerosoi Model (SORGAM) and AER/EPRI/Caltech model (AEC), on fine (aerodynamic diameter < or =2.5 microm) particulate matter (PM2.5) formation is studied. The major sources of uncertainty in the chemistry of SOA formation are investigated. The use of all major SOA precursors and the treatment of SOA oligomerization are found to be the most important factors for SOA formation, leading to 66% and 60% more SOA, respectively. The explicit representation of high-NO, and low-NOx gas-phase chemical regimes is also important with increases in SOA of 30-120% depending on the approach used to implement the distinct SOA yields within the gas-phase chemical kinetic mechanism; further work is needed to develop gas-phase mechanisms that are fully compatible with SOA formation algorithms. The treatment of isoprene SOA as hydrophobic or hydrophilic leads to a significant difference, with more SOA being formed in the latter case. The activity coefficients may also be a major source of uncertainty, as they may differ significantly between atmospheric particles, which contain a myriad of SOA, primary organic aerosol (POA), and inorganic aerosol species, and particles formed in a smog chamber from a single precursor under dry conditions. Significant interactions exist between the uncertainties of the gas-phase chemistry and those of the SOA module.

  14. Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of α-pinene

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomoki; Matsumi, Yutaka; Sato, Kei; Imamura, Takashi; Yamazaki, Akihiro; Uchiyama, Akihiro

    2010-12-01

    It has recently been suggested that some organic aerosols can absorb solar radiation, especially at the shorter visible and UV wavelengths. Although quantitative characterization of the optical properties of secondary organic aerosols (SOAs) is required in order to confirm the effect of SOAs on the atmospheric radiation balance, the light absorption of SOAs has not yet been thoroughly investigated. In this study, we conducted laboratory experiments to measure the optical properties of SOAs generated during the photooxidation of toluene in the presence of NOx and the ozonolysis of α-pinene. Extinction and scattering coefficients of the SOAs were measured by a cavity ring-down aerosol extinction spectrometer and an integrating nephelometer, respectively. Refractive indices of the SOAs were determined so that the measured particle size dependence of the extinction and scattering efficiencies could be reproduced by calculations using Mie scattering theory. As a result, significant light absorption was found at 355 nm for the toluene SOAs. In contrast, no significant absorption was found either at 355 or 532 nm for the α-pinene SOAs. Using the obtained refractive index, mass absorption cross-section values of the toluene SOAs were calculated to be 0.3-3 m2 g-1 at 355 nm. The results indicate that light absorption by the SOAs formed from the photooxidation of aromatic hydrocarbons have a potential to influence the total aerosol light absorption, especially at UV wavelengths.

  15. Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types.

    PubMed

    Kolesar, Katheryn R; Li, Ziyue; Wilson, Kevin R; Cappa, Christopher D

    2015-10-20

    The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs) encompassing both anthropogenic and biogenic compounds and O3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.

  16. Lessons Learned About Organic Aerosol Formation in the Southeast U.S. Using Observations and Modeling

    EPA Science Inventory

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA). In this work, modeling of isoprene SOA via heterogeneous uptake is explored and compared to observations from the Southern Oxidant and Aerosol Study (SOAS).

  17. Epoxide as a Precursor to Secondary Organic Aerosol Formation from Isoprene Photooxidation in the Presence of Nitrogen Oxides

    EPA Science Inventory

    Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear...

  18. Secondary organic aerosol formation and source apportionment in Southeast Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Ying, Qi

    2011-06-01

    The latest version of US EPA's Community Multi-scale Air Quality (CMAQ v4.7) model with the most recent update on secondary organic aerosol (SOA) formation pathways was adapted into a source-oriented modeling framework to determine the contributions of different emission sources to SOA concentrations from a carbon source perspective in Southeast Texas during the 2000 Texas Air Quality Study (TexAQS 2000) from August 25 to September 5, 2000. A comparison of the VOC and SOA predictions with observations shows that anthropogenic emissions of long chain alkanes and aromatics are likely underestimated in the EPA's Clean Air Interstate Rule (CAIR) inventory and the current SOA mechanism in CMAQ still under-predicts SOA. The peak SOA concentrations measured at La Porte are more accurately predicted by increasing the emissions of the anthropogenic SOA precursors by a factor of 5 although the overall precursor concentrations are better predicted by increasing the emissions by a factor of 2. A linear correlation between SOA and odd oxygen (ΔSOA/ΔOx = 23.0-28.4 μg m-3/ppm Ox) can be found when they are formed simultaneously in the air masses passing the urban Houston area on high SOA days. Based on the adjusted emissions (a factor of 2 increase in the alkane and aromatics precursor emissions), approximately 20% of the total SOA in the Houston-Galveston Bay area is due to anthropogenic sources. Solvent utilization and gasoline engines are the main anthropogenic sources. SOA from alkanes and aromatics accounts for approximately 2-4% and 5-9% of total SOA, respectively. The predicted overall anthropogenic SOA concentrations are not sensitive to the half-life time used to calculate the conversion rate of semi-volatile organic compounds to non-volatile oligomers in the particle phase. The main precursors of biogenic SOA are sesquiterpenes, which contribute to approximately 12-35% of total SOA. Monoterpenes contribute to 3-14% and isoprene accounts for approximately 6-9% of the

  19. Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol.

    PubMed

    Vaden, Timothy D; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla

    2011-02-08

    Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of "spectator" organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models.

  20. Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol

    PubMed Central

    Vaden, Timothy D.; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla

    2011-01-01

    Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of “spectator” organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models. PMID:21262848

  1. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  2. Identification of oxidized organic atmospheric species during the Southern Oxidant and Aerosol Study (SOAS) using a novel Ion Mobility Time-of-Flight Chemical Ionization Mass Spectrometer (IMS-ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Krechmer, J.; Canagaratna, M.; Kimmel, J.; Junninen, H.; Knochenmuss, R.; Cubison, M.; Massoli, P.; Stark, H.; Jayne, J. T.; Surratt, J. D.; Jimenez, J. L.; Worsnop, D. R.

    2013-12-01

    We present results from the field deployment of a novel Ion Mobility Time-of-flight Chemical Ionization Mass Spectrometer (CI-IMS-TOF) during the Southern Oxidant and Aerosol Study (SOAS). IMS-TOF is a 2-dimensional analysis method, which separates gas-phase ions by mobility prior to determination of mass-to-charge ratio by mass spectrometry. Ion mobility is a unique physical property that is determined by the collisional cross section of an ion. Because mobility depends on size and shape, the IMS measurement is able to resolve isomers and isobaric compounds. Additionally, trends in IMS-TOF data space can be used to identify relationships between ions, such as common functionality or polymeric series. During SOAS we interfaced the IMS-TOF to a nitrate ion (NO3-) chemical ionization source that enables the selective ionization of highly oxidized gas phase species (those having a high O:C ratio) through clustering with the reagent ion. Highly oxidized products of terpenes and isoprene are important secondary organic aerosol precursors (SOA) that play an uncertain but important role in particle-phase chemistry. We present several case studies of atmospheric events during SOAS that exhibited elevated concentrations of sulfuric acid and/or organics. These events exhibited a rise in particle number and provide an opportunity to examine the role that organic species may have in local atmospheric new particle formation events. We also present the results from the field deployment and subsequent laboratory studies utilizing a Potential Aerosol Mass (PAM) flow reactor as the inlet for the CI-IMS-TOF. The reactor draws in ambient air and exposes it to high concentrations of the OH radical, created by photolysis O3 in the presence of water. The highly oxidized products are then sampled directly by the CI-IMS-TOF. We performed several experiments including placing pine and deciduous plants directly in front of the reactor opening and observed large increases in the number and

  3. A Novel PTR-ToF-MS Inlet System for On-line Chemical Analysis of SOA

    NASA Astrophysics Data System (ADS)

    Eichler, Philipp; Müller, Markus; D'Anna, Barbara; Wisthaler, Armin

    2014-05-01

    Secondary organic aerosol (SOA) is formed from biogenic and anthropogenic precursors in the atmosphere. Because of its impact on human health and the environment there is a strong interest in understanding the chemistry of SOA formation and transformation. Its volatility, chemical complexity and reactivity and low ambient concentrations challenge the chemical analysis of SOA. Here we present a novel analytical setup for on-line measurements of SOA under ambient conditions by chemical ionization mass spectrometry. The method overcomes current limitations in the chemical analysis of SOA by combining on-line enrichment of the particle concentration and on-line mass spectrometric detection using soft chemical ionization. On-line sampling allows for highly time-resolved analysis of organic aerosol compounds and avoids potential sampling artifacts from sample pre-collection and pretreatment. The deployment of a soft ionization method minimizes the fragmentation of fragile organic aerosol compounds in the mass spectrometer. A proton-transfer-reaction time-of-flight mass-spectrometer (PTR-ToF-MS) is combined with a three-stage aerosol inlet system consisting of an activated carbon monolith denuder, an aerodynamic lens (ADL) and a thermodesorption unit. The denuder strips off gas-phase organic compounds and the ADL enriches the particle concentration in the sample flow. Ultimately, organic aerosol compounds are volatilized at 120 °C in the thermodesorption unit before being introduced into the PTR-ToF-MS system for chemical analysis. The ADL is designed to increase the particle concentration in the sample flow by a factor of up to 50 for particles in the size range between 50 and 1000 nm. This novel enrichment step enables the real-time in situ analysis of SOA at sub µg/m³-levels by PTR-ToF-MS. This work is funded through the PIMMS ITN, which is supported by the European Commission's 7th Framework Programme under grant agreement number 287382.

  4. Characteristics of aerosolized ice forming marine biogenic particles

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.

    atomus and Emiliania huxleyi, cells and cell fragments efficiently nucleate ice in the deposition mode, however, only T. pseudonana and N. atomus form ice in the immersion mode, presumably due to different cell wall compositions. This further corroborates the role of phytoplanktonic species for aerosolization of marine biogenic cloud active particles. Experimental data are used to parameterize marine biogenic particle fluxes and heterogeneous ice nucleation as a function of biological activity. The atmospheric implications of the results and their implementation into cloud and climate models are discussed.

  5. Synthesis and Analysis of Putative Terpene Oxidation Products and the Secondary Organic Aerosol Particles that Form from Them

    NASA Astrophysics Data System (ADS)

    Ebben, C. J.; Strick, B. F.; Upshur, M.; Shrestha, M.; Velarde, L.; Lu, Z.; Wang, H.; Xiao, D.; Batista, V. S.; Martin, S. T.; Thomson, R. J.; Geiger, F. M.

    2013-12-01

    The terpenes isoprene and α-pinene are abundant volatile organic compounds (VOCs) that are emitted by trees and oxidized in the atmosphere. However, the chemical processes involved in the formation of secondary organic aerosol (SOA) particles from VOCs are not well understood. In this work, we use a combined synthetic, analytical, and theoretical approach to gain a molecular level understanding of the chemistry involved in the formation of SOA particles from VOC precursors. To this end, we have synthesized putative products of isoprene and α-pinene oxidation and the oligomers that form from them. Specifically, we have focused on the epoxide and 2-methyltetraols that form from isoprene oxidation by hydroxyl radicals, as well as products of α-pinene ozonolysis. In our analysis, we utilize a spectroscopic technique called sum frequency generation (SFG). SFG is a coherent, surface-specific, vibrational spectroscopy that uses infrared and visible laser light fields, overlapped spatially and temporally at a surface, to probe vibrational transitions within molecules. Our use of this technique allows us to assess the chemical identity of aerosol-forming components at their surfaces, where interactions with the gas phase occur. The spectral responses from these compounds are compared to those of synthetic isoprene- and α-pinene-derived aerosol particles, as well as natural aerosol particles collected in tropical and boreal forests to begin to predict the constituents that may be present at the surfaces of these particles. In addition, isotope editing is utilized to gain a better understanding of α-pinene. The rigidity of this molecule makes it difficult to understand spectroscopically. The combination of synthesis with deuterium labeling, theory, and broadband and high-resolution SFG spectroscopy in the C-H and C-D stretching regions allow us to determine the orientation of this important molecule on a surface, which could have implications for its reactivity in the

  6. Constraining condensed-phase formation kinetics of secondary organic aerosol components from isoprene epoxydiols

    NASA Astrophysics Data System (ADS)

    Riedel, T. P.; Lin, Y.-H.; Zhang, Z.; Chu, K.; Thornton, J. A.; Vizuete, W.; Gold, A.; Surratt, J. D.

    2016-02-01

    Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.

  7. SOA multiday growth: Model artifact or reality?

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J. M.; Madronich, S.; Aumont, B.; Hodzic, A.; Camredon, M.; Valorso, R.

    2013-12-01

    Simulations of SOA gas-particle partitioning with the explicit gas-phase chemical mechanism generator GECKO-A show significant SOA mass growth continuing for several days, even as the initial air parcel is diluted into the regional atmosphere. This result is a robust feature of our model and occurs with both anthropogenic and biogenic precursors. The growth originates from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase. This result implies that sources of aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over a wider region than previously imagined, and that SOA measurements near precursor sources may routinely underestimate this influence. It highlights the need to better understand the sink terms in the SOA budget.

  8. SOA from BVOCs in the Southeastern United States

    EPA Science Inventory

    Biogenic hydrocarbons contribute to organic aerosol in the southeast United States. In this work, we represent aerosol formation from the oxidation of isoprene and monoterpenes in CMAQ and compare to data from the Southeast Oxidants and Aerosol Study (SOAS). Sensitivity simulatio...

  9. Morphology of mixed primary and secondary organic particles and the adsorption of spectator organic gases during aerosol formation

    PubMed Central

    Vaden, Timothy D.; Song, Chen; Zaveri, Rahul A.; Imre, Dan; Zelenyuk, Alla

    2010-01-01

    Primary organic aerosol (POA) and associated vapors can play an important role in determining the formation and properties of secondary organic aerosol (SOA). If SOA and POA are miscible, POA will significantly enhance SOA formation and some POA vapor will incorporate into SOA particles. When the two are not miscible, condensation of SOA on POA particles forms particles with complex morphology. In addition, POA vapor can adsorb to the surface of SOA particles increasing their mass and affecting their evaporation rates. To gain insight into SOA/POA interactions we present a detailed experimental investigation of the morphologies of SOA particles formed during ozonolysis of α-pinene in the presence of dioctyl phthalate (DOP) particles, serving as a simplified model of hydrophobic POA, using a single-particle mass spectrometer. Ultraviolet laser depth-profiling experiments were used to characterize two different types of mixed SOA/DOP particles: those formed by condensation of the oxidized α-pinene products on size-selected DOP particles and by condensation of DOP on size-selected α-pinene SOA particles. The results show that the hydrophilic SOA and hydrophobic DOP do not mix but instead form layered phases. In addition, an examination of homogeneously nucleated SOA particles formed in the presence of DOP vapor shows them to have an adsorbed DOP coating layer that is ∼4 nm thick and carries 12% of the particles mass. These results may have implications for SOA formation and behavior in the atmosphere, where numerous organic compounds with various volatilities and different polarities are present. PMID:20194795

  10. Secondary organic aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles

    NASA Astrophysics Data System (ADS)

    Brégonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Pangui, E.; Morales, S. B.; Temime-Roussel, B.; Gratien, A.; Michoud, V.; Cazaunau, M.; DeWitt, H. L.; Tapparo, A.; Monod, A.; Doussin, J.-F.

    2016-02-01

    The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene / NOx / light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.

  11. Investigations of BVOC-SOA-cloud-climate feedbacks via interactive biogenic emissions using NorESM

    NASA Astrophysics Data System (ADS)

    Alterskjær, Kari; Egill Kristjansson, Jon; Grini, Alf; Iversen, Trond; Kirkevåg, Alf; Olivié, Dirk; Schulz, Michael; Seland, Øyvind

    2016-04-01

    Climate feedbacks represent a large source of uncertainty in future climate projections. One such feedback involves a change in emissions of biogenic volatile organic compounds (BVOCs) under global warming and a subsequent change in cloud radiative effects. Parts of the atmospheric BVOCs will oxidize in the atmosphere, which may reduce their volatility enough to form secondary organic aerosols (SOA). A changed SOA load will affect cloud radiative properties through aerosol-cloud interactions (ACI) and therefore act to reduce or enhance the temperature change resulting from greenhouse gases alone. In order to study this effect, a development version of the Norwegian Earth System Model (NorESM) has been extended to include explicit atmospheric particle nucleation and a treatment of SOA based on work by Risto Makkonen and collaborators. Biogenic sources of monoterpene and isoprene are interactively calculated by the Model of Emissions of Gases and Aerosols from Nature (MEGAN), version 2.1, incorporated into the Community Land Model, version 4.5. Monoterpene and isoprene are oxidized by O3, OH and NO3 to form SOA with a yield of 15 % and 5 % respectively. It is assumed that 50 % of the product from monoterpene ozonolysis is of low enough volatility to nucleate new particles. The remaining oxidized BVOCs condensate onto preexisting particles. The model improvements include three new tracers to account for both SOA and the BVOCs. This allows for transport of both SOA and precursor gases, making it possible for SOA to form above the surface layer of the model. The new SOA treatment also changes the size distribution of most model aerosols due to condensation. Preliminary results from 6-year simulations with prescribed sea surface temperatures show that the present day emissions of both isoprene (435.9 Tg/yr) and monoterpenes (121.4 Tg/yr) are within the range found in other studies. The resulting SOA production is on the order of 77 Tg/yr, also within the range found by

  12. Modeling SOA production from the oxidation of intermediate volatility alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-12-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapour pressure. This process was investigated using the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere). Results for the C8-C24 n-alkane series show the expected trends, i.e. (i) SOA yield grows with the carbon backbone of the parent hydrocarbon, (ii) SOA yields decreases with the decreasing pre-existing organic aerosol concentration, (iii) the number of generations required to describe SOA production increases when the pre-existing organic aerosol concentration decreases. Most SOA contributors were found to be not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA). Branched alkanes are more prone to fragment in the early stage of the oxidation than their corresponding linear analogues. Fragmentation is expected to alter both the yield and the mean oxidation state of the SOA. Here, GECKO-A is applied to generate highly detailed oxidation schemes for various series of branched and cyclised alkanes. Branching and cyclisation effects on SOA yields and oxidation states will be examined.

  13. Linking Load, Fuel, and Emission Controls to Photochemical Production of Secondary Organic Aerosol from a Diesel Engine.

    PubMed

    Jathar, Shantanu H; Friedman, Beth; Galang, Abril A; Link, Michael F; Brophy, Patrick; Volckens, John; Eluri, Sailaja; Farmer, Delphine K

    2017-02-07

    Diesel engines are important sources of fine particle pollution in urban environments, but their contribution to the atmospheric formation of secondary organic aerosol (SOA) is not well constrained. We investigated direct emissions of primary organic aerosol (POA) and photochemical production of SOA from a diesel engine using an oxidation flow reactor (OFR). In less than a day of simulated atmospheric aging, SOA production exceeded POA emissions by an order of magnitude or more. Efficient combustion at higher engine loads coupled to the removal of SOA precursors and particle emissions by aftertreatment systems reduced POA emission factors by an order of magnitude and SOA production factors by factors of 2-10. The only exception was that the retrofitted aftertreatment did not reduce SOA production at idle loads where exhaust temperatures were low enough to limit removal of SOA precursors in the oxidation catalyst. Use of biodiesel resulted in nearly identical POA and SOA compared to diesel. The effective SOA yield of diesel exhaust was similar to that of unburned diesel fuel. While OFRs can help study the multiday evolution, at low particle concentrations OFRs may not allow for complete gas/particle partitioning and bias the potential of precursors to form SOA.

  14. Probing the Evaporation Dynamics of Mixed SOA/Squalane Particles Using Size-Resolved Composition and Single-Particle Measurements.

    PubMed

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2015-08-18

    An analysis of the formation and evaporation of mixed-particles containing squalane (a surrogate for hydrophobic primary organic aerosol, POA) and secondary organic aerosol (SOA) is presented. In these experiments, one material (D62-squalane or SOA from α-pinene + O3) was prepared first to serve as surface area for condensation of the other, forming the mixed-particles. The mixed-particles were then subjected to a heating-ramp from 22 to 44 °C. We were able to determine that (1) almost all of the SOA mass is comprised of material less volatile than D62-squalane; (2) AMS collection efficiency in these mixed-particle systems can be parametrized as a function of the relative mass fraction of the components; and (3) the vast majority of D62-squalane is able to evaporate from the mixed particles, and does so on the same time scale regardless of the order of preparation. We also performed two-population mixing experiments to directly test whether D62-squalane and SOA from α-pinene + O3 form a single solution or two separate phases. We find that these two OA types are immiscible, which informs our inference of the morphology of the mixed-particles. If the morphology is core-shell and dictated by the order of preparation, these data indicate that squalane is able to diffuse relatively quickly through the SOA shell, implying that there are no major diffusion limitations.

  15. To what extent can biogenic SOA be controlled?

    PubMed

    Carlton, Annmarie G; Pinder, Robert W; Bhave, Prakash V; Pouliot, George A

    2010-05-01

    The implicit assumption that biogenic secondary organic aerosol (SOA) is natural and can not be controlled hinders effective air quality management. Anthropogenic pollution facilitates transformation of naturally emitted volatile organic compounds (VOCs) to the particle phase, enhancing the ambient concentrations of biogenic secondary organic aerosol (SOA). It is therefore conceivable that some portion of ambient biogenic SOA can be removed by controlling emissions of anthropogenic pollutants. Direct measurement of the controllable fraction of biogenic SOA is not possible, but can be estimated through 3-dimensional photochemical air quality modeling. To examine this in detail, 22 CMAQ model simulations were conducted over the continental U.S. (August 15 to September 4, 2003). The relative contributions of five emitted pollution classes (i.e., NO(x), NH(3), SO(x), reactive non methane carbon (RNMC) and primary carbonaceous particulate matter (PCM)) on biogenic SOA were estimated by removing anthropogenic emissions of these pollutants, one at a time and all together. Model results demonstrate a strong influence of anthropogenic emissions on predicted biogenic SOA concentrations, suggesting more than 50% of biogenic SOA in the eastern U.S. can be controlled. Because biogenic SOA is substantially enhanced by controllable emissions, classification of SOA as biogenic or anthropogenic based solely on VOC origin is not sufficient to describe the controllable fraction.

  16. Modeling the Multiday Evolution and Aging of Secondary Organic Aerosol During MILAGRO 2006

    SciTech Connect

    Dzepina, K.; Cappa, Christopher D.; Volkamer, Rainer M.; Madronich, Sasha; DeCarlo, Peter; Zaveri, Rahul A.; Jimenez, Jose L.

    2011-03-22

    In this study we apply several recently-proposed models to the evolution of secondary organic aerosols (SOA) and organic gases advected from downtown Mexico City at an altitude of ~3.5 km during three days of aging. We constrain the model with and compare its results to available observations. The model SOA formed from oxidation of volatile organic compounds (V-SOA) when using the aromatic SOA parameterization of Ng et al. (2007) cannot explain the observed SOA concentrations in aged pollution, even as the low-NOx channel becomes more important away from the city. However, when using the aromatic SOA parameterization of Tsimpidi et al. (2010), V-SOA alone is similar to the regional aircraft observations, highlighting the wide diversity in current V-SOA formulations. When the SOA formed from oxidation of both semivolatile and intermediate volatility organic vapors (SI-SOA) is computed following Robinson et al. (2007) the model matches the observed SOA mass, but its O/C is too low by a factor of 2. With the parameterization of Grieshop et al. (2009) the total SOA mass is overpredicted by a factor of ~2 but O/C and volatility are closer to the observations. Heating or dilution of the air results in evaporation of a substantial fraction of the model SOA; this fraction is reduced by aging although differently for heating vs. dilution. Finally, lifting of the airmass tothe free-troposphere during dry convection results in a substantial increase of SOA bycondensation of semivolatile vapors, with this effect being reduced by aging.

  17. Ultraviolet Absorption by Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Madronich, S.; Lee-Taylor, J. M.; Hodzic, A.; Aumont, B.

    2014-12-01

    Secondary organic aerosols (SOA) are typically formed in the atmosphere by the condensation of a myriad of intermediates from the photo-oxidation of volatile organic compounds (VOCs). Many of these partly oxidized molecules have functional groups (chromophores) that absorb at the ultraviolet (UV) wavelengths available in the troposphere (λ ≳ 290 nm). We used the explicit chemical model GECKO-A (Generator of Explicit Chemistry and Kinetics for Organics in the Atmosphere) to estimate UV absorption cross sections for the gaseous and particulate components of SOA from different precursors (biogenic and anthropogenic) and formed in different environments (low and high NOx, day and night). Model predictions are evaluated with laboratory and field measurements of SOA UV optical properties (esp. mass absorption coefficients and single scattering albedo), and implications are presented for surface UV radiation trends, urban actinic flux modification, and SOA lifetimes.

  18. Effects of NOx on the volatility of secondary organic aerosol from isoprene photooxidation

    SciTech Connect

    Xu, Lu; Kollman, Matthew S.; Song, Chen; Shilling, John E.; Ng, L. N.

    2014-01-28

    The effects of NOx on the volatility of the secondary organic aerosol (SOA) formed from isoprene photooxidation are investigated in environmental chamber experiments. Two types of experiments are performed. In HO2-dominant experiments, organic peroxy radicals (RO2) primarily react with HO2. In mixed experiments, RO2 reacts through multiple pathways. The volatility and oxidation state of isoprene SOA is sensitive to and displays a non-linear dependence on NOx levels. When initial NO/isoprene ratio is approximately 3 (ppbv:ppbv), SOA are shown to be most oxidized and least volatile, associated with the highest SOA yield. A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) is applied to characterize the key chemical properties of aerosols. While the composition of SOA in mixed experiments does not change substantially over time, SOA become less volatile and more oxidized as oxidation progresses in HO2-dominant experiments. Analysis of the SOA composition suggests that the further reactions of organic peroxides and alcohols may produce carboxylic acids, which might play a strong role in SOA aging.

  19. Secondary Aerosol Formation from Oxidation of Aromatics Hydrocarbons by Cl atoms

    NASA Astrophysics Data System (ADS)

    Cai, X.; Griffin, R.

    2006-12-01

    Aerosol Formation From the Oxidation of Aromatic Hydrocarbons by Chlorine Atmospheric secondary organic aerosol (SOA) affects regional and global air quality. The formation mechanisms of SOA via the oxidation of volatile organic compounds by hydroxyl radicals, ozone, and nitrate radicals have been studied intensively during the last decade. Chlorine atoms (Cl) also have been hypothesized to be effective oxidants in marine and industrially influenced areas. Recent work by the authors has indicated that significant amounts of SOA are formed from the oxidation of monoterpenes by Cl. Aromatic hydrocarbons are important for generation of both SOA and ozone in urban areas because of their large emission rates and high reactivity. The goal of this work was to quantify the SOA formation potentials of two representative aromatic hydrocarbons through laboratory chamber experiments in which oxidation was initiated by Cl. The system constructed for this study includes an experimental chamber, a gas chromatograph for quantification of aromatic mixing ratios, a Scanning Mobility Particle Spectrometer to measure SOA size distributions, a zero air generator, and an illuminating system. The model aromatic hydrocarbons chosen for this study are toluene and m-xylene. Aerosol yields are estimated based on measured aerosol volume concentration, the concentration of consumed hydrocarbon, and estimation of wall loss of the newly formed aerosol. Toluene and m-xylene exhibit similar SOA yields from the oxidation initiated by Cl. The toluene SOA yield from Cl-initiated oxidation, however, depends on the ratio between the mixing ratios of the initial chlorine source and toluene in the chamber. For toluene experiments with higher such ratios, SOA yields vary from 0.05 to 0.079 for generated aerosol ranging from 4.2 to12.0 micrograms per cubic meter. In the lower ratio experiments, SOA yields are from 0.033 to 0.064, corresponding to generated aerosol from 3.0 to 11.0 micrograms per cubic

  20. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  1. Water absorption by secondary organic aerosol and its effect on inorganic aerosol behavior

    SciTech Connect

    Ansari, A.S.; Pandis, S.N.

    2000-01-01

    The hygroscopic nature of atmospheric aerosol has generally been associated with its inorganic fraction. In this study, a group contribution method is used to predict the water absorption of secondary organic aerosol (SOA). Compared against growth measurements of mixed inorganic-organic particles, this method appears to provide a first-order approximation in predicting SOA water absorption. The growth of common SOA species is predicted to be significantly less than common atmospheric inorganic salts such as (NH{sub 4}){sub 2}SO{sub 4} and NaCl. Using this group contribution method as a tool in predicting SOA water absorption, an integrated modeling approach is developed combining available SOA and inorganic aerosol models to predict overall aerosol behavior. The effect of SOA on water absorption and nitrate partitioning between the gas and aerosol phases is determined. On average, it appears that SOA accounts for approximately 7% of total aerosol water and increases aerosol nitrate concentrations by approximately 10%. At high relative humidity and low SOA mass fractions, the role of SOA in nitrate partitioning and its contribution to total aerosol water is negligible. However, the water absorption of SOA appears to be less sensitive to changes in relative humidity than that of inorganic species, and thus at low relative humidity and high SOA mass fraction concentrations, SOA is predicted to account for approximately 20% of total aerosol water and a 50% increase in aerosol nitrate concentrations. These findings could improve the results of modeling studies where aerosol nitrate has often been underpredicted.

  2. Real-time continuous characterization of secondary organic aerosol derived from isoprene epoxydiols in downtown Atlanta, Georgia, using the Aerodyne Aerosol Chemical Speciation Monitor.

    PubMed

    Budisulistiorini, Sri Hapsari; Canagaratna, Manjula R; Croteau, Philip L; Marth, Wendy J; Baumann, Karsten; Edgerton, Eric S; Shaw, Stephanie L; Knipping, Eladio M; Worsnop, Douglas R; Jayne, John T; Gold, Avram; Surratt, Jason D

    2013-06-04

    Real-time continuous chemical measurements of fine aerosol were made using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) during summer and fall 2011 in downtown Atlanta, Georgia. Organic mass spectra measured by the ACSM were analyzed by positive matrix factorization (PMF), yielding three conventional factors: hydrocarbon-like organic aerosol (HOA), semivolatile oxygenated organic aerosol (SV-OOA), and low-volatility oxygenated organic aerosol (LV-OOA). An additional OOA factor that contributed to 33 ± 10% of the organic mass was resolved in summer. This factor had a mass spectrum that strongly correlated (r(2) = 0.74) to that obtained from laboratory-generated secondary organic aerosol (SOA) derived from synthetic isoprene epoxydiols (IEPOX). Time series of this additional factor is also well correlated (r(2) = 0.59) with IEPOX-derived SOA tracers from filters collected in Atlanta but less correlated (r(2) < 0.3) with a methacrylic acid epoxide (MAE)-derived SOA tracer, α-pinene SOA tracers, and a biomass burning tracer (i.e., levoglucosan), and primary emissions. Our analyses suggest IEPOX as the source of this additional factor, which has some correlation with aerosol acidity (r(2) = 0.3), measured as H(+) (nmol m(-3)), and sulfate mass loading (r(2) = 0.48), consistent with prior work showing that these two parameters promote heterogeneous chemistry of IEPOX to form SOA.

  3. Global transformation and fate of SOA: Implications of low-volatility SOA and gas-phase fragmentation reactions

    NASA Astrophysics Data System (ADS)

    Shrivastava, Manish; Easter, Richard C.; Liu, Xiaohong; Zelenyuk, Alla; Singh, Balwinder; Zhang, Kai; Ma, Po-Lun; Chand, Duli; Ghan, Steven; Jimenez, Jose L.; Zhang, Qi; Fast, Jerome; Rasch, Philip J.; Tiitta, Petri

    2015-05-01

    Secondary organic aerosols (SOA) are large contributors to fine-particle loadings and radiative forcing but are often represented crudely in global models. We have implemented three new detailed SOA treatments within the Community Atmosphere Model version 5 (CAM5) that allow us to compare the semivolatile versus nonvolatile SOA treatments (based on some of the latest experimental findings) and to investigate the effects of gas-phase fragmentation reactions. The new treatments also track SOA from biomass burning and biofuel, fossil fuel, and biogenic sources. For semivolatile SOA treatments, fragmentation reactions decrease the simulated annual global SOA burden from 7.5 Tg to 1.8 Tg. For the nonvolatile SOA treatment with fragmentation, the burden is 3.1 Tg. Larger differences between nonvolatile and semivolatile SOA (up to a factor of 5) exist in areas of continental outflow over the oceans. According to comparisons with observations from global surface Aerosol Mass Spectrometer measurements and the U.S. Interagency Monitoring of Protected Visual Environments (IMPROVE) network measurements, the FragNVSOA treatment, which treats SOA as nonvolatile and includes gas-phase fragmentation reactions, agrees best at rural locations. Urban SOA is underpredicted, but this may be due to the coarse model resolution. All three revised treatments show much better agreement with aircraft measurements of organic aerosols (OA) over the North American Arctic and sub-Arctic in spring and summer, compared to the standard CAM5 formulation. This is mainly due to the oxidation of SOA precursor gases from biomass burning, not included in standard CAM5, and long-range transport of biomass burning OA at high altitudes. The revised model configurations that include fragmentation (both semivolatile and nonvolatile SOA) show much better agreement with MODerate resolution Imaging Spectrometers (MODIS) aerosol optical depth data over regions dominated by biomass burning during the summer

  4. THERMAL PROPERTIES OF SECONDARY ORGANIC AEROSOLS

    EPA Science Inventory

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in several hydrocarbon/NOx irradiation experiments. These measurements were used to estimate the thermal behavior of the particles that may be formed in the atmosphere. These laborator...

  5. Effect of Ammonia on Glyoxal SOA in Inorganic Aqueous Seed Particles

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Volkamer, R. M.; Laskin, A.; Laskin, J.; Koenig, T. K.; Baltensperger, U.; Dommen, J.; Prevot, A. S.; Slowik, J.; Maxut, A.; Noziere, B.; Wang, S.; Yu, J.

    2014-12-01

    Glyoxal (C2H2O2) is a ubiquitous small molecule that is observed in the terrestrial biogenic, urban, marine and arctic atmosphere. It forms secondary organic aerosol (SOA) as a result of multiphase chemical reactions in water. The rate of these reactions is controlled by the effective Henry's law partitioning coefficient (Heff) which is enhanced in the presence of inorganic salts by up to 3 orders of magnitude (Kampf et al., 2013, ES&T). Aerosol particles are among the most concentrated salt solutions on Earth and the SOA formation rate in aerosol water is strongly modified by this 'salting-in' mechanism. We have studied the effect of gas-phase ammonia on the rate of SOA formation in real particles composed of different inorganic salts (sulfate, nitrate, chloride). A series of simulation chamber experiments were conducted at the Paul Scherrer Institut in Switzerland during Summer 2013. The SOA formation rate in experiments with added gas-phase ammonia (NH3) was found to be greatly accelerated compared to experiments without added NH3. Product analysis of particles included online HR-ToF-AMS and offline nano-DESI and LC-MS. We find that imidazole-like oligomer compounds dominate the observed products, rather than high-O/C oligomers containing solely C, H, and O. We further employed isotopically labelled di-substituted 13C glyoxal experiments in order to unambiguously link product formation to glyoxal (and separate it from chamber wall contamination). We present a molecular perspective on the reaction pathways and evaluate the effect of environmental parameters (RH, particle pH, seed chemical composition) on the formation of these imidazole-like oligomer compounds. The implications for SOA formation from photosensitized oxidation chemistry is discussed.

  6. Secondary organic aerosol formation from gasoline passenger vehicle emissions investigated in a smog chamber

    NASA Astrophysics Data System (ADS)

    Nordin, E. Z.; Eriksson, A. C.; Roldin, P.; Nilsson, P. T.; Carlsson, J. E.; Kajos, M. K.; Hellén, H.; Wittbom, C.; Rissler, J.; Löndahl, J.; Swietlicki, E.; Svenningsson, B.; Bohgard, M.; Kulmala, M.; Hallquist, M.; Pagels, J.

    2012-12-01

    Gasoline vehicles have elevated emissions of volatile organic compounds during cold starts and idling and have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from one Euro II, one Euro III and one Euro IV passenger vehicles were investigated using photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out at atmospherically relevant organic aerosol mass concentrations. The characterization methods included a high resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind urban areas. After 4 h aging the formed SOA was 1-2 orders of magnitude higher than the Primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 4 3) approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6-C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher order aromatic compounds such as C10, C11 light aromatics, naphthalene and methyl-naphthalenes.

  7. Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation.

    PubMed

    Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2015-11-17

    The effects of particle-phase water and the acidity of pre-existing sulfate seed particles on the formation of isoprene secondary organic aerosol (SOA) was investigated. SOA was generated from the photo-oxidation of isoprene in a flow tube reactor at 70% relative humidity (RH) and room temperature in the presence of three different sulfate seeds (effloresced and deliquesced ammonium sulfate and ammonium bisulfate) under low NOx conditions. High OH exposure conditions lead to little isoprene epoxydiol (IEPOX) SOA being generated. The primary result is that particle-phase water had the largest effect on the amount of SOA formed, with 60% more SOA formation occurring with deliquesced ammonium sulfate seeds as compared to that on effloresced ones. The additional organic material was highly oxidized. Although the amount of SOA formed did not exhibit a dependence on the range of seed particle acidity examined, perhaps because of the low amount of IEPOX SOA, the levels of high-molecular-weight material increased with acidity. While the uptake of organics was partially reversible under drying, the results nevertheless indicate that particle-phase water enhanced the amount of organic aerosol material formed and that the RH cycling of sulfate particles may mediate the extent of isoprene SOA formation in the atmosphere.

  8. The sources, properties, and evolution of organic aerosols in the atmosphere

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.

    2015-12-01

    Organic aerosols (OA) account for about 1/2 of the submicron particle mass in the atmosphere leading to important impacts on climate, human health, and other issues, but their sources, properties, and evolution are poorly understood. OA is comprised of primary OA (POA, emitted in the particle phase) and secondary OA (SOA, formed by gas-to-particle conversion). Together with others in the community and contrary to the understanding at the time, we demonstrated in the mid-2000s that SOA dominates over POA at most locations. This paradigm shift has led to intense research on the sources, processing, properties, and fate of SOA. Because pre-existing and commercial instruments were very limited for the analysis of the complex mixtures of highly oxidized species comprising real OA, we developed or co-developed several experimental and data analysis techniques aimed at extracting more information out of ambient and laboratory air, and pioneered their application in field experiments. We proposed a new paradigm (Jimenez et al., Science, 2009) that is consistent with worldwide measurements and in which OA and OA precursor gases evolve continuously by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. The amount of SOA formed from urban air is remarkably consistent across the world, although the contributions of different sources remain a subject of debate. Biomass burning emissions rarely form additional OA mass after emission, although rapid chemical aging is always observed. Global model-measurement comparisons suggest the need for a large (100 Tg/yr) "anthropogenically-controlled" SOA source, thought to be dominated by anthropogenically-enhanced biogenic SOA. SOA formed from several pathways from biogenic emissions is starting to be better characterized, as are key SOA properties such as

  9. SOA YIELDS AND ORGANIC PRODUCT DISTRIBUTION FROM NATURAL HYDROCARBON/NOX IRRADIATIONS

    EPA Science Inventory

    Secondary organic aerosol (SOA) typically comprises one-quarter to one-third of the ambient aerosol mass in summertime urban atmospheres. In tropospheric environments, the main precursors of SOA come from aromatic and natural hydrocarbons. Recent work by various investigators...

  10. Unspeciated Organic Emissions From Combustion Sources And Their Influence On The Secondary Organic Aerosol Budget In The United States

    NASA Astrophysics Data System (ADS)

    Jathar, S.; Gordon, T.; Hennigan, C. J.; Pye, H. O.; Donahue, N. M.; Adams, P. J.; Robinson, A. L.

    2012-12-01

    Combustion sources are a major source of organic emissions and therefore a potentially important source for secondary organic aerosol (SOA) formation in the atmosphere. Although speciated organic emissions from combustion sources are considered in models to form SOA, a large fraction of the organics are unspeciated. In this work, we analyze data from numerous smog chamber experiments, which photo-oxidized dilute emissions from different combustion sources (on-road gasoline vehicles, aircraft, on-road diesel vehicles, wood burning and open biomass burning), to determine the contribution that unspeciated emissions make to SOA formation. An SOA model based on speciated organics is able to explain, on average, 8-31% of the SOA measured in the experiments. We hypothesize that the remainder results from the gas-phase oxidation of unspeciated emissions, which account on average for 25-75% of the non-methane organic gas (NMOG) emissions. Using the SOA data, we develop, for the first time, source-specific parameterizations to model SOA from unspeciated emissions; all sources seem to have median SOA yields similar to large n-alkanes (C12+). To assess the influence of unspeciated emissions on SOA formation regionally, we use the parameterization to predict SOA production in the United States. Using emissions data collected during the smog chamber experiments and data available in literature, we build a gross inventory for unspeciated emissions in the United States. We discover that unspeciated organics might be included in the current generation of SOA models but misallocated in terms of its SOA potential. The top six combustion sources (on- and off-road gasoline, on- and off-road diesel, open biomass and wood burning) emit 2.61 Tg yr-1 of unspeciated emissions (20% of US anthropogenic VOC emissions from combustion sources) and are estimated to form a minimum of 0.68 Tg yr-1 of SOA; the estimate is a third of the biogenic SOA produced in the US. We predict that accounting for

  11. Secondary Organic Aerosol Formation from 2-Methyl-3-Buten-2-ol Photooxidation: Evidence of Acid-Catalyzed Reactive Uptake of Epoxides

    SciTech Connect

    Zhang, Haofei; Zhang, Zhenfa; Cui, Tianqu; Lin, Ying-Hsuan; Bhathela, Neil A.; Ortega, John; Worton, David; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Gold, Avram; Surratt, Jason D.

    2014-04-08

    Secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) photooxidation has recently been observed in both field and laboratory studies. Similar to isoprene, MBO-derived SOA increases with elevated aerosol acidity in the absence of nitric oxide; therefore, an epoxide intermediate, (3,3-dimethyloxiran-2-yl)methanol (MBO epoxide) was synthesized and tentatively proposed here to explain this enhancement. In the present study, the potential of the synthetic MBO epoxide to form SOA via reactive uptake was systematically examined. SOA was observed only in the presence of acidic aerosols. Major SOA constituents, 2,3-dihydroxyisopentanol (DHIP) and MBO-derived organosulfate isomers, were chemically characterized in both laboratory-generated SOA and in ambient fine aerosols collected from the BEACHON-RoMBAS field campaign during summer 2011, where MBO emissions are substantial. Our results support epoxides as potential products of MBO photooxidation leading to formation of atmospheric SOA and suggest that reactive uptake of epoxides may generally explain acid enhancement of SOA observed from other biogenic hydrocarbons.

  12. Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Sullivan, Amy P.; Hodas, Natasha; Turpin, Barbara J.; Skog, Kate; Keutsch, Frank N.; Gilardoni, Stefania; Paglione, Marco; Rinaldi, Matteo; Decesari, Stefano; Facchini, Maria Cristina; Poulain, Laurent; Herrmann, Hartmut; Wiedensohler, Alfred; Nemitz, Eiko; Twigg, Marsailidh M.; Collett, Jeffrey L., Jr.

    2016-07-01

    Laboratory experiments suggest that water-soluble products from the gas-phase oxidation of volatile organic compounds can partition into atmospheric waters where they are further oxidized to form low volatility products, providing an alternative route for oxidation in addition to further oxidation in the gas phase. These products can remain in the particle phase after water evaporation, forming what is termed as aqueous secondary organic aerosol (aqSOA). However, few studies have attempted to observe ambient aqSOA. Therefore, a suite of measurements, including near-real-time WSOC (water-soluble organic carbon), inorganic anions/cations, organic acids, and gas-phase glyoxal, were made during the PEGASOS (Pan-European Gas-AeroSOls-climate interaction Study) 2012 campaign in the Po Valley, Italy, to search for evidence of aqSOA. Our analysis focused on four periods: Period A on 19-21 June, Period B on 30 June and 1-2 July, Period C on 3-5 July, and Period D on 6-7 July to represent the first (Period A) and second (Periods B, C, and D) halves of the study. These periods were picked to cover varying levels of WSOC and aerosol liquid water. In addition, back trajectory analysis suggested all sites sampled similar air masses on a given day. The data collected during both periods were divided into times of increasing relative humidity (RH) and decreasing RH, with the aim of diminishing the influence of dilution and mixing on SOA concentrations and other measured variables. Evidence for local aqSOA formation was only observed during Period A. When this occurred, there was a correlation of WSOC with organic aerosol (R2 = 0.84), aerosol liquid water (R2 = 0.65), RH (R2 = 0.39), and aerosol nitrate (R2 = 0.66). Additionally, this was only observed during times of increasing RH, which coincided with dark conditions. Comparisons of WSOC with oxygenated organic aerosol (OOA) factors, determined from application of positive matrix factorization analysis on the aerosol mass

  13. Formation of hydroxyl radicals from photolysis of secondary organic aerosol material

    NASA Astrophysics Data System (ADS)

    Badali, K. M.; Zhou, S.; Aljawhary, D.; Antiñolo, M.; Chen, W. J.; Lok, A.; Mungall, E.; Wong, J. P. S.; Zhao, R.; Abbatt, J. P. D.

    2015-02-01

    This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA) material formed by terpene ozonolysis. The SOA aerosol is collected on filters, dissolved in water containing a radical trap (benzoic acid), and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH), the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF) assay, which was calibrated using H2O2. The OH formation rates from SOA are five times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over three times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloudwater and aerosol chemistry.

  14. Phase, Viscosity, Morphology, and Room Temperature Evaporation Rates of SOA Particles Generated from Different Precursors, at Low and High Relative Humidities, and their Interaction with Hydrophobic Organics

    NASA Astrophysics Data System (ADS)

    Wilson, J. M.; Zelenyuk, A.; Imre, D. G.; Beranek, J.; Abramson, E.; Shrivastava, M.

    2012-12-01

    Formation, properties, transformations, and temporal evolution of secondary organic aerosol (SOA) particles strongly depend on particle phase. Semi-volatile molecules that comprise SOA particles were assumed to form a low viscosity solution that maintains equilibrium with the evolving gas phase by rapid evaporation condensation. However, studies by our group indicate that laboratory-generated alpha-pinene SOA particles and ambient SOA characterized in a recent field campaign are in a semi-solid, highly viscous phase, and their evaporation rates are orders of magnitude slower than predicted. We present the results of recent studies in which we have extended our work to include SOA particles generated by oxidation of a number of precursors including limonene, n-alkenes, cyclo-alkenes and isoprene. The resulting particles are characterized by their phase, morphology and room temperature evaporation rates. We conclude that, while the detailed properties of SOA particles depend of their precursor, all studied SOA particles are highly viscous semi-solids that exhibit very slow evaporation rates. Given that atmospheric relative humidity (RH) can change particle phase, it is important to investigate the effect of RH on the phase and evaporation kinetics of SOA particles. To this end SOA particles were generated at low and high (~90%) RH, and their evaporation kinetics and phase were characterized as a function of RH. In the ambient atmosphere SOA particles form in the presence of a mixture of different organic compounds, which are present at or below their equilibrium vapor pressure, and thus have been ignored. However, our data show that these compounds can adsorb to the surface of particles during SOA formation, becoming trapped in the highly viscous SOA, and affect particle properties. We examine the interaction between SOA particles and different hydrophobic organics representing typical anthropogenic emissions by making SOA in the presence of the vapors of these

  15. Modeling the Multiday Evolution and Aging of Secondary Organic Aerosol During MILAGRO 2006

    NASA Astrophysics Data System (ADS)

    Dzepina, K.; Cappa, C. D.; Volkamer, R.; Madronich, S.; Decarlo, P. F.; Zaveri, R. A.; Jimenez, J. L.

    2010-12-01

    In this study we apply several recently-proposed models to the evolution of secondary organic aerosols (SOA) and organic gases advected from downtown Mexico City at an altitude of ~3.5 km during three days of aging. We constrain the model with and compare its results to available observations. The model SOA formed from oxidation of volatile organic compounds (V-SOA) alone cannot explain the observed mass loadings in aged pollution. Over the regional scale ~5% of the model SOA is due to the low-NOx aromatic V-SOA pathway, which has a higher yield and produces comparably “low-volatility” species that remain in the particle phase as dilution proceeds and more volatile components evaporate. The model SOA formed from oxidation of both semivolatile and intermediate volatility organic vapors (SI-SOA) accounts for most of the predicted SOA mass concentration. With the SI-SOA parameterization of Robinson et al. (2007) the model matches the observed SOA mass, but its O/C is too low by a factor of 2. With the parameterization of Grieshop et al. (2009) the total SOA mass is overpredicted by a factor of ~2 but O/C and volatility are much closer to the observations. Heating or dilution of the air results in evaporation of a substantial fraction of the model SOA; this fraction is reduced by aging although differently for heating vs. dilution. Finally, lifting of the airmass to the free-troposphere during dry convection results in a substantial increase of SOA by condensation of semivolatile vapors, with this effect being reduced by aging.

  16. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Yee, L. D.; Schilling, K.; Loza, C. L.; Craven, J. S.; Zuend, A.; Ziemann, P. J.; Seinfeld, J.

    2013-12-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosol (SOA). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multi-generation gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a mid-experiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. The results of the current work have a number of implications for SOA models. While the dynamics of an aerosol size distribution reflects the mechanism of growth, we demonstrate here that it provides a key constraint in interpreting laboratory and ambient SOA formation. This work, although carried out specifically for the long chain alkane, dodecane, is expected to be widely applicable to other major classes of SOA precursors. SOA consists of a myriad of organic compounds containing various functional groups, which can generally undergo heterogeneous/multiphase reactions forming low-volatility products such as oligomers and other high molecular mass compounds. If particle-phase chemistry is indeed

  17. EVIDENCE FOR ORGANOSULFATES IN SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    Recent work has shown that particle-phase reactions contribute to the formation of secondary organic aerosol (SOA), with enhancements of SOA yields in the presence of acidic seed aerosol. In this study, the chemical composition of SOA from the photooxidations of α-pinene and isop...

  18. Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model

    NASA Astrophysics Data System (ADS)

    Fry, J. L.; Kiendler-Scharr, A.; Rollins, A. W.; Wooldridge, P. J.; Brown, S. S.; Fuchs, H.; Dubé, W.; Mensah, A.; Dal Maso, M.; Tillmann, R.; Dorn, H.-P.; Brauers, T.; Cohen, R. C.

    2009-02-01

    The yields of organic nitrates and of secondary organic aerosol (SOA) particle formation were measured for the reaction NO3+β-pinene under dry and humid conditions in the atmosphere simulation chamber SAPHIR at Research Center Jülich. These experiments were conducted at low concentrations of NO3 (NO3+N2O5<10 ppb) and β-pinene (peak~15 ppb), with no seed aerosol. SOA formation was observed to be prompt and substantial (~50% mass yield under both dry conditions and at 60% RH), and highly correlated with organic nitrate formation. The observed gas/aerosol partitioning of organic nitrates can be simulated using an absorptive partitioning model to derive an estimated vapor pressure of the condensing nitrate species of pvap~5×10-6 Torr (6.67×10-4 Pa), which constrains speculation about the oxidation mechanism and chemical identity of the organic nitrate. Once formed the SOA in this system continues to evolve, resulting in measurable aerosol volume decrease with time. The observations of high aerosol yield from NOx-dependent oxidation of monoterpenes provide an example of a significant anthropogenic source of SOA from biogenic hydrocarbon precursors. Estimates of the NO3+β-pinene SOA source strength for California and the globe indicate that NO3 reactions with monoterpenes are likely an important source (0.5-8% of the global total) of organic aerosol on regional and global scales.

  19. Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model

    NASA Astrophysics Data System (ADS)

    Fry, J. L.; Kiendler-Scharr, A.; Rollins, A. W.; Wooldridge, P. J.; Brown, S. S.; Fuchs, H.; Dube, W.; Mensah, A.; Dal Maso, M.; Tillmann, R.; Dorn, H.-P.; Brauers, T.; Cohen, R. C.

    2008-10-01

    The yields of organic nitrates and of secondary organic aerosol (SOA) particle formation were measured for the reaction NO3+β-pinene under dry and humid conditions in the atmosphere simulation chamber SAPHIR at Research Center Jülich. These experiments were conducted at low concentrations of NO3 (NO3+N2O5<10 ppb) and β-pinene (peak~15 ppb), with no seed aerosol. SOA formation was observed to be prompt and substantial (~50% mass yield under both dry conditions and at 60% RH), and highly correlated with organic nitrate formation. The observed gas/aerosol partitioning of organic nitrates can be simulated using an absorptive partitioning model to derive an estimated vapor pressure of the condensing nitrate species of pvap~5×10-6 Torr (6.67×10-4 Pa), which constrains speculation about the oxidation mechanism and chemical identity of the organic nitrate. Once formed the SOA in this system continues to evolve, resulting in measurable aerosol volume decrease with time. The observations of high aerosol yield from NOx-dependent oxidation of monoterpenes provide an example of a significant anthropogenic source of SOA from biogenic hydrocarbon precursors. Estimates of the NO3+β-pinene SOA source strength for California and the globe indicate that NO3 reactions with monoterpenes are likely an important source (0.5 8% of the global total) of organic aerosol on regional and global scales.

  20. A note on the effects of inorganic seed aerosol on the oxidation state of secondary organic aerosol—α-Pinene ozonolysis

    NASA Astrophysics Data System (ADS)

    Huang, Dan Dan; Zhang, Xuan; Dalleska, Nathan F.; Lignell, Hanna; Coggon, Matthew M.; Chan, Chi-Ming; Flagan, Richard C.; Seinfeld, John H.; Chan, Chak K.

    2016-10-01

    We compare the oxidation state and molecular composition of α-pinene-derived secondary organic aerosol (SOA) by varying the types and surface areas of inorganic seed aerosol that are used to promote the condensation of SOA-forming vapors. The oxidation state of α-pinene SOA is found to increase with inorganic seed surface area, likely a result of enhanced condensation of low-volatility organic compounds on particles versus deposition on the chamber wall. α-Pinene SOA is more highly oxygenated in the presence of sodium nitrate (SN) seed than ammonium sulfate seed. The relative abundance of semivolatile monomers and low-volatility dimer components that account for more than half of α-pinene SOA mass is not significantly affected by the composition of seed aerosol. Enhanced uptake of highly oxidized small carboxylic acids onto SN seed particles is observed, which could potentially explain the observed higher SOA oxidation state in the presence of SN seed aerosol. Overall, our results demonstrate that a combined effect of seed aerosol composition and surface area leads to an increase in the O:C atomic ratio of α-pinene SOA by as much as a factor of 2.

  1. Molecular characterization of nitrogen and sulfur containing compounds in night-time SOA

    NASA Astrophysics Data System (ADS)

    Iinuma, Yoshiteru; Mutzel, Anke; Rodigast, Maria; Böge, Olaf; Herrmann, Hartmut

    2014-05-01

    The oxidation of volatile organic compounds (VOCs) leads to the formation of low volatile organic compounds that can form secondary organic aerosol (SOA). Studies in the past showed that laboratory generated and ambient SOA are made of polar molecules with O/C ratios generally greater than 0.5. More recent studies have shown that SOA compounds can contain heteroatoms mainly sulfur and nitrogen atoms. Offline chemical analysis with high-resolution mass spectrometers and fragmentation experiments has shown that sulphur containing compounds are mainly organosulfates and nitrogen containing species are aromatic heterocyclic compounds such as imidazole and nitrated aromatic compounds such as nitrophenols. In addition to these, SOA compounds containing both sulfur and nitrogen have been reported from the analysis of ambient organic aerosol, rainwater, fog and cloud samples. Based on the mass spectrometric evidence these compounds are attributed to nitrooxy-organosulfates originating from isoprene and monoterpenes. Although these compounds are ubiquitously detected in the ambient samples, reports about their detection in laboratory generated SOA are scares and their formation mechanisms are not well understood. In the present study, we investigated the formation of sulfur and nitrogen containing SOA species in the oxidation of biogenic VOCs. Photooxidation and night-time oxidation experiments were performed in a smog chamber to produce SOA samples. The laboratory generated SOA samples were analysed with UPLC-IMS-TOFMS (Ultra Performance Liquid Chromatography coupled to Ion Mobility Spectrometry and Time of Flight Mass Spectrometry). The presence of highly acidic sulphate seed particles (pH0) did not promote the formation of compounds with chemical formula of C10H17NO7S- and m/z value of 294.0653, indicating that the formation mechanisms of these compounds unlikely involve the ring opening reactions of epoxides and subsequent sulfation reactions. On the other hand, their

  2. Equilibration timescale of atmospheric secondary organic aerosol partitioning

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Seinfeld, John H.

    2012-12-01

    Secondary organic aerosol (SOA) formed from partitioning of oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs) accounts for a substantial portion of atmospheric particulate matter. In describing SOA formation, it is generally assumed that VOC oxidation products rapidly adopt gas-aerosol equilibrium. Here we estimate the equilibration timescale, τeq, of SOA gas-particle partitioning using a state-of-the-art kinetic flux model. τeq is found to be of order seconds to minutes for partitioning of relatively high volatility organic compounds into liquid particles, thereby adhering to equilibrium gas-particle partitioning. However, τeq increases to hours or days for organic aerosol associated with semi-solid particles, low volatility, large particle size, and low mass loadings. Instantaneous equilibrium partitioning may lead to substantial overestimation of particle mass concentration and underestimation of gas-phase concentration.

  3. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    SciTech Connect

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew E.; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  4. Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Sullivan, A. P.; Hodas, N.; Turpin, B. J.; Skog, K.; Keutsch, F. N.; Gilardoni, S.; Paglione, M.; Rinaldi, M.; Decesari, S.; Facchini, M. C.; Poulain, L.; Herrmann, H.; Wiedensohler, A.; Nemitz, E.; Twigg, M. M.; Collett, J. L., Jr.

    2015-12-01

    Laboratory experiments suggest that water-soluble products from the gas-phase oxidation of volatile organic compounds can partition into atmospheric waters where they are further oxidized to form low volatility products, providing an alternative route for oxidation in addition to further oxidation in the gas-phase. These products can remain in the particle phase after water evaporation forming what is termed as aqueous secondary organic aerosol (aqSOA). However, few studies have attempted to observe ambient aqSOA. Therefore, a suite of measurements, including near real-time WSOC (water-soluble organic carbon), inorganic anions/cations, organic acids, and gas-phase glyoxal, were made during the PEGASOS (Pan-European Gas-AeroSols-climate interaction Study) 2012 campaign in the Po Valley, Italy to search for evidence of aqSOA. Our analysis focused on two specific periods: Period A on 19-21 June and Period B on 3-5 July to represent the first and second halves of the study, respectively. The large scale circulation was predominately from the west in both periods. Plus back trajectory analysis suggested all sites sampled similar air masses during both periods allowing for comparison of Periods A and B. The data collected during both periods were divided into times of increasing relative humidity (RH) and decreasing RH with the aim of diminishing the influence of dilution and mixing on SOA concentrations and other measured variables. Evidence for local aqSOA formation was only observed during Period A. When this occurred, there was a correlation of WSOC with organic aerosol (R2 = 0.86), aerosol liquid water (R2 = 0.69), RH (R2 = 0.45), and aerosol nitrate (R2 = 0.71). Additionally, this was only observed during times of increasing RH, which coincided with dark conditions. Comparisons of WSOC with oxygenated organic aerosol (OOA) factors determined from application of positive matrix factorization analysis on the aerosol mass spectrometer observations of the submicron non

  5. Change in global aerosol composition since preindustrial times

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Krol, M.; Dentener, F. J.; Balkanski, Y.; Lathière, J.; Metzger, S.; Hauglustaine, D. A.; Kanakidou, M.

    2006-06-01

    To elucidate human induced changes of aerosol load and composition in the atmosphere, a coupled aerosol and gas-phase chemistry transport model of the troposphere and lower stratosphere has been used. This is the first 3-d modeling study that focuses on aerosol chemical composition change since preindustrial times considering the secondary organic aerosol formation together with all other main aerosol components including nitrate. In particular, we evaluate non-sea-salt sulfate (nss-SO4=), ammonium (NH4+), nitrate (NO3-), black carbon (BC), sea-salt, dust, primary and secondary organics (POA and SOA) with a focus on the importance of secondary organic aerosols. Our calculations show that the aerosol optical depth (AOD) has increased by about 21% since preindustrial times. This enhancement of AOD is attributed to a rise in the atmospheric load of BC, nss-SO4=, NO3-, POA and SOA by factors of 3.3, 2.6, 2.7, 2.3 and 1.2, respectively, whereas we assumed that the natural dust and sea-salt sources remained constant. The nowadays increase in carbonaceous aerosol loading is dampened by a 34-42% faster conversion of hydrophobic to hydrophilic carbonaceous aerosol leading to higher removal rates. These changes between the various aerosol components resulted in significant modifications of the aerosol chemical composition. The relative importance of the various aerosol components is critical for the aerosol climatic effect, since atmospheric aerosols behave differently when their chemical composition changes. According to this study, the aerosol composition changed significantly over the different continents and with height since preindustrial times. The presence of anthropogenically emitted primary particles in the atmosphere facilitates the condensation of the semi-volatile species that form SOA onto the aerosol phase, particularly in the boundary layer. The SOA burden that is dominated by the natural component has increased by 24% while its contribution to the AOD has

  6. Change in global aerosol composition since preindustrial times

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Krol, M.; Dentener, F. J.; Balkanski, Y.; Lathière, J.; Metzger, S.; Hauglustaine, D. A.; Kanakidou, M.

    2006-11-01

    To elucidate human induced changes of aerosol load and composition in the atmosphere, a coupled aerosol and gas-phase chemistry transport model of the troposphere and lower stratosphere has been used. The present 3-D modeling study focuses on aerosol chemical composition change since preindustrial times considering the secondary organic aerosol formation together with all other main aerosol components including nitrate. In particular, we evaluate non-sea-salt sulfate (nss-SO4=), ammonium (NH4+), nitrate (NO3-), black carbon (BC), sea-salt, dust, primary and secondary organics (POA and SOA) with a focus on the importance of secondary organic aerosols. Our calculations show that the aerosol optical depth (AOD) has increased by about 21% since preindustrial times. This enhancement of AOD is attributed to a rise in the atmospheric load of BC, nss-SO4=, NO3SOA by factors of 3.3, 2.6, 2.7, 2.3 and 1.2, respectively, whereas we assumed that the natural dust and sea-salt sources remained constant. The nowadays increase in carbonaceous aerosol loading is dampened by a 34-42% faster conversion of hydrophobic to hydrophilic carbonaceous aerosol leading to higher removal rates. These changes between the various aerosol components resulted in significant modifications of the aerosol chemical composition. The relative importance of the various aerosol components is critical for the aerosol climatic effect, since atmospheric aerosols behave differently when their chemical composition changes. According to this study, the aerosol composition changed significantly over the different continents and with height since preindustrial times. The presence of anthropogenically emitted primary particles in the atmosphere facilitates the condensation of the semi-volatile species that form SOA onto the aerosol phase, particularly in the boundary layer. The SOA burden that is dominated by the natural component has increased by 24% while its contribution to the AOD has increased

  7. SOA Formation Potential of Emissions from Soil and Leaf Litter

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Vanderschelden, G. S.; Wen, M.; Cobos, D. R.; Jobson, B. T.; VanReken, T. M.

    2013-12-01

    In the United States, emissions of volatile organic compounds (VOCs) from natural sources exceed all anthropogenic sources combined. VOCs participate in oxidative chemistry in the atmosphere and impact the concentrations of ozone and particulate material. The formation of secondary organic aerosol (SOA) is particularly complex and is frequently underestimated using state-of-the-art modeling techniques. We present findings that suggest emissions of important SOA precursors from soil and leaf litter are higher than current inventories would suggest, particularly under conditions typical of Fall and Spring. Soil and leaf litter samples were collected at Big Meadow Creek from the University of Idaho Experimental Forest. The dominant tree species in this area of the forest are ponderosa pine, Douglas-fir, and western larch. Samples were transported to the laboratory and housed within a 0.9 cubic meter Teflon dynamic chamber where VOC emissions were continuously monitored with a GC-FID-MS and PTR-MS. Aerosol was generated from soil and leaf litter emissions by pumping the emissions into a 7 cubic meter Teflon aerosol growth chamber where they were oxidized with ozone in the absence of light. The evolution of particle microphysical and chemical characteristics was monitored over the following eight hours. Particle size distribution and chemical composition were measured with a SMPS and HR-ToF-AMS respectively. Monoterpenes dominated the emission profile with emission rates up to 283 micrograms carbon per meter squared per hour. The dominant monoterpenes emitted were beta-pinene, alpha-pinene, and delta-3-carene in descending order. The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and alpha-pinene. Measured soil/litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest that during fall and spring when tree emissions are lower, monoterpene emissions within forests may be

  8. Consideration of HOMs in α- and β-pinene SOA model

    NASA Astrophysics Data System (ADS)

    Gatzsche, Kathrin; Iinuma, Yoshiteru; Mutzel, Anke; Berndt, Torsten; Wolke, Ralf

    2016-04-01

    Secondary organic aerosol (SOA) is the major burden of the atmospheric organic particulate matter with 140 - 910 TgC yr-1 (Hallquist et al., 2009). SOA particles are formed via the oxidation of volatile organic carbons (VOCs), where the volatility of the VOCs is lowered due to the increase in their functionalization as well as their binding ability. Therefore, gaseous compounds can either nucleate to form new particles or condense on existing particles. The framework of SOA formation under natural conditions is very complex, because there are a multitude of gas-phase precursors, atmospheric degradation processes and products after oxidation. A lacking understanding about chemical and physical processes associated with SOA formation makes modeling of SOA processes difficult, leading to discrepancy between measured and modeled global SOA burdens. The present study utilizes a parcel model SPACCIM (SPectral Aerosol Cloud Chemistry Interaction Model, Wolke et al., 2005) that couples a multiphase chemical model with a microphysical model. For SOA modeling a further development of SPACCIM was necessary. Therefore, two components are added (i) a gas-phase chemistry mechanism for the VOC oxidation and (ii) a partitioning approach for the gas-to-particle phase transfer. An aggregated gas-phase chemistry mechanism for α- and β-pinene was adapted from Chen and Griffin (2005). For the phase transfer an absorptive partitioning approach (Pankow, 1994) and a kinetic approach (Zaveri et al., 2014) are implemented. Whereby the kinetic approach serves some advantages. The organic aerosol can be resolved in different size sections, whereby the particle radius is involved in the partitioning equations. The phase state of the organic material and the reactivity of the organic compounds in the particle-phase directly influence the modeled SOA yields. Recently, highly oxidized multifunctional organic compounds (HOMs) were found in the gas phase from lab and field studies. They are also

  9. Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions.

    PubMed

    Gentner, Drew R; Jathar, Shantanu H; Gordon, Timothy D; Bahreini, Roya; Day, Douglas A; El Haddad, Imad; Hayes, Patrick L; Pieber, Simone M; Platt, Stephen M; de Gouw, Joost; Goldstein, Allen H; Harley, Robert A; Jimenez, Jose L; Prévôt, André S H; Robinson, Allen L

    2017-02-07

    Secondary organic aerosol (SOA) is formed from the atmospheric oxidation of gas-phase organic compounds leading to the formation of particle mass. Gasoline- and diesel-powered motor vehicles, both on/off-road, are important sources of SOA precursors. They emit complex mixtures of gas-phase organic compounds that vary in volatility and molecular structure-factors that influence their contributions to urban SOA. However, the relative importance of each vehicle type with respect to SOA formation remains unclear due to conflicting evidence from recent laboratory, field, and modeling studies. Both are likely important, with evolving contributions that vary with location and over short time scales. This review summarizes evidence, research needs, and discrepancies between top-down and bottom-up approaches used to estimate SOA from motor vehicles, focusing on inconsistencies between molecular-level understanding and regional observations. The effect of emission controls (e.g., exhaust aftertreatment technologies, fuel formulation) on SOA precursor emissions needs comprehensive evaluation, especially with international perspective given heterogeneity in regulations and technology penetration. Novel studies are needed to identify and quantify "missing" emissions that appear to contribute substantially to SOA production, especially in gasoline vehicles with the most advanced aftertreatment. Initial evidence suggests catalyzed diesel particulate filters greatly reduce emissions of SOA precursors along with primary aerosol.

  10. Secondary organic aerosol formation initiated by α-terpineol ozonolysis in indoor air.

    PubMed

    Yang, Y; Waring, M S

    2016-12-01

    Secondary organic aerosol (SOA) owing to reactive organic gas (ROG) ozonolysis can be an important indoor particle source. However, SOA formation owing to ozonolysis of α-terpineol, which is emitted by consumer product usage and reacts strongly with ozone, has not been systematically quantified. Therefore, we conducted 21 experiments to investigate the SOA formation initiated by α-terpineol ozonolysis for high (0.84 h(-1) ), moderate (0.61 h(-1) ), and low (0.36 h(-1) ) air exchange rates (AER), which is the frequency with which indoor is replaced by outdoor air. α-Terpineol concentrations of 6.39 to 226 ppb were combined with high ozone (~25 ppm) to ensure rapid and complete ozonolysis. No reactants were replenished, so SOA peaked quickly and then decreased due to AER and surface losses, and peak SOA ranged from 2.03 to 281 μg/m(3) at unit density. SOA mass formation was parameterized with the aerosol mass fraction (AMF), a.k.a. the SOA yield, and AMFs ranged from 0.056 to 0.24. The AMFs strongly and positively correlated with reacted α-terpineol, whereas they weakly and negatively correlated with higher AERs. One-product, two-product, and volatility basis set (VBS) models were fit to the AMF data. Predictive modeling demonstrated that α-terpineol ozonolysis could meaningfully form SOA in indoor air.

  11. Sensitivity analysis of simulated SOA loadings using a variance-based statistical approach: SENSITIVITY ANALYSIS OF SOA

    SciTech Connect

    Shrivastava, Manish; Zhao, Chun; Easter, Richard C.; Qian, Yun; Zelenyuk, Alla; Fast, Jerome D.; Liu, Ying; Zhang, Qi; Guenther, Alex

    2016-04-08

    We investigate the sensitivity of secondary organic aerosol (SOA) loadings simulated by a regional chemical transport model to 7 selected tunable model parameters: 4 involving emissions of anthropogenic and biogenic volatile organic compounds, anthropogenic semi-volatile and intermediate volatility organics (SIVOCs), and NOx, 2 involving dry deposition of SOA precursor gases, and one involving particle-phase transformation of SOA to low volatility. We adopt a quasi-Monte Carlo sampling approach to effectively sample the high-dimensional parameter space, and perform a 250 member ensemble of simulations using a regional model, accounting for some of the latest advances in SOA treatments based on our recent work. We then conduct a variance-based sensitivity analysis using the generalized linear model method to study the responses of simulated SOA loadings to the tunable parameters. Analysis of SOA variance from all 250 simulations shows that the volatility transformation parameter, which controls whether particle-phase transformation of SOA from semi-volatile SOA to non-volatile is on or off, is the dominant contributor to variance of simulated surface-level daytime SOA (65% domain average contribution). We also split the simulations into 2 subsets of 125 each, depending on whether the volatility transformation is turned on/off. For each subset, the SOA variances are dominated by the parameters involving biogenic VOC and anthropogenic SIVOC emissions. Furthermore, biogenic VOC emissions have a larger contribution to SOA variance when the SOA transformation to non-volatile is on, while anthropogenic SIVOC emissions have a larger contribution when the transformation is off. NOx contributes less than 4.3% to SOA variance, and this low contribution is mainly attributed to dominance of intermediate to high NOx conditions throughout the simulated domain. The two parameters related to dry deposition of SOA precursor gases also have very low contributions to SOA variance

  12. Skin exposure to deodorants/antiperspirants in aerosol form.

    PubMed

    Steiling, W; Buttgereit, P; Hall, B; O'Keeffe, L; Safford, B; Tozer, S; Coroama, M

    2012-06-01

    Many cosmetic products are available in spray form. Even though the principal targets of these products are the skin and hair, spraying leads to the partitioning of the product between the target and the surrounding air. In the previous COLIPA study (Hall et al., 2007) the daily use of deodorant/antiperspirant (Deo/AP) in spray form was quantified in terms of the amount of product dispensed from the spray can, without specifically quantifying the product fraction reaching the skin during use. Results of the present study provide this additional information, necessary for a reliable safety assessment of sprayed Deo/AP products. In a novel experimental approach the information obtained from real-life movement analysis (automated motion imaging) of volunteers using their own products was integrated with the aerosol cloud sampling data obtained from the same products, leading to the computation of the product deposited on the skin. The 90th percentile values, expressed as percent deposition relative to the can weight loss after spraying, are 23.5% and 11.4% for ethanol-based and non-ethanol-based products, respectively. Additionally, the study has generated data on the skin area covered by the products, spray duration time, spray angle and spray distance from the skin.

  13. An amorphous solid state of biogenic secondary organic aerosol particles.

    PubMed

    Virtanen, Annele; Joutsensaari, Jorma; Koop, Thomas; Kannosto, Jonna; Yli-Pirilä, Pasi; Leskinen, Jani; Mäkelä, Jyrki M; Holopainen, Jarmo K; Pöschl, Ulrich; Kulmala, Markku; Worsnop, Douglas R; Laaksonen, Ari

    2010-10-14

    Secondary organic aerosol (SOA) particles are formed in the atmosphere from condensable oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs). On a global scale, biogenic VOCs account for about 90% of VOC emissions and of SOA formation (90 billion kilograms of carbon per year). SOA particles can scatter radiation and act as cloud condensation or ice nuclei, and thereby influence the Earth's radiation balance and climate. They consist of a myriad of different compounds with varying physicochemical properties, and little information is available on the phase state of SOA particles. Gas-particle partitioning models usually assume that SOA particles are liquid, but here we present experimental evidence that they can be solid under ambient conditions. We investigated biogenic SOA particles formed from oxidation products of VOCs in plant chamber experiments and in boreal forests within a few hours after atmospheric nucleation events. On the basis of observed particle bouncing in an aerosol impactor and of electron microscopy we conclude that biogenic SOA particles can adopt an amorphous solid-most probably glassy-state. This amorphous solid state should provoke a rethinking of SOA processes because it may influence the partitioning of semi-volatile compounds, reduce the rate of heterogeneous chemical reactions, affect the particles' ability to accommodate water and act as cloud condensation or ice nuclei, and change the atmospheric lifetime of the particles. Thus, the results of this study challenge traditional views of the kinetics and thermodynamics of SOA formation and transformation in the atmosphere and their implications for air quality and climate.

  14. Chemical characterization of biogenic SOA generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2014-10-01

    The largest global source of secondary organic aerosol in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic VOC profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate, a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six different coniferous plant types. VOCs emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA particle size distribution and chemical composition were measured using a scanning mobility particle sizer (SMPS) and Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS), respectively. The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+) m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, methyl jasmonate, is also presented. Elemental analysis results demonstrated an O:C range of baseline biogenic SOA between 0.3-0.47. The O:C of standard methyl jasmonate SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient datasets collected in forest environments.

  15. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol.

    PubMed

    Smith, Jeremy D; Kinney, Haley; Anastasio, Cort

    2015-04-21

    Chemical processing in atmospheric aqueous phases, such as cloud and fog drops, can play a significant role in the production and evolution of secondary organic aerosol (SOA). In this work we examine aqueous SOA production via the oxidation of benzene-diols (dihydroxy-benzenes) by the triplet excited state of 3,4-dimethoxybenzaldehyde, (3)DMB*, and by hydroxyl radical, ˙OH. Reactions of the three benzene-diols (catechol (CAT), resorcinol (RES) and hydroquinone (HQ)) with (3)DMB* or ˙OH proceed rapidly, with rate constants near diffusion-controlled values. The two oxidants exhibit different behaviors with pH, with rate constants for (3)DMB* increasing as pH decreases from pH 5 to 2, while rate constants with ˙OH decrease in more acidic solutions. Mass yields of SOA were near 100% for all three benzene-diols with both oxidants. We also examined the reactivity of atmospherically relevant mixtures of phenols and benzene-diols in the presence of (3)DMB*. We find that the kinetics of phenol and benzene-diol loss, and the production of SOA mass, in mixtures are generally consistent with rate constants determined in experiments containing a single phenol or benzene-diol. Combining our aqueous kinetic and SOA mass yield data with previously published gas-phase data, we estimate a total SOA production rate from benzene-diol oxidation in a foggy area with significant wood combustion to be nearly 0.6 μg mair(-3) h(-1), with approximately half from the aqueous oxidation of resorcinol and hydroquinone, and half from the gas-phase oxidation of catechol.

  16. Characterization of particulate products for aging of ethylbenzene secondary organic aerosol in the presence of ammonium sulfate seed aerosol.

    PubMed

    Huang, Mingqiang; Zhang, Jiahui; Cai, Shunyou; Liao, Yingmin; Zhao, Weixiong; Hu, Changjin; Gu, Xuejun; Fang, Li; Zhang, Weijun

    2016-09-01

    Aging of secondary organic aerosol (SOA) particles formed from OH- initiated oxidation of ethylbenzene in the presence of high mass (100-300μg/m(3)) concentrations of (NH4)2SO4 seed aerosol was investigated in a home-made smog chamber in this study. The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with a Fuzzy C-Means (FCM) clustering algorithm. Experimental results showed that nitrophenol, ethyl-nitrophenol, 2,4-dinitrophenol, methyl glyoxylic acid, 5-ethyl-6-oxo-2,4-hexadienoic acid, 2-ethyl-2,4-hexadiendioic acid, 2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid, 1H-imidazole, hydrated N-glyoxal substituted 1H-imidazole, hydrated glyoxal dimer substituted imidazole, 1H-imidazole-2-carbaldehyde, N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight (HMW) components were the predominant products in the aged particles. Compared to the previous aromatic SOA aging studies, imidazole compounds, which can absorb solar radiation effectively, were newly detected in aged ethylbenzene SOA in the presence of high concentrations of (NH4)2SO4 seed aerosol. These findings provide new information for discussing aromatic SOA aging mechanisms.

  17. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States.

    PubMed

    Jathar, Shantanu H; Gordon, Timothy D; Hennigan, Christopher J; Pye, Havala O T; Pouliot, George; Adams, Peter J; Donahue, Neil M; Robinson, Allen L

    2014-07-22

    Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles, and biomass burning. About 10-20% of NMOG emissions from these major combustion sources are not routinely speciated and therefore are currently misclassified in emission inventories and chemical transport models. The smog chamber data demonstrate that this misclassification biases model predictions of SOA production low because the unspeciated NMOG produce more SOA per unit mass than the speciated NMOG. We present new source-specific SOA yield parameterizations for these unspeciated emissions. These parameterizations and associated source profiles are designed for implementation in chemical transport models. Box model calculations using these new parameterizations predict that NMOG emissions from the top six combustion sources form 0.7 Tg y(-1) of first-generation SOA in the United States, almost 90% of which is from biomass burning and gasoline vehicles. About 85% of this SOA comes from unspeciated NMOG, demonstrating that chemical transport models need improved treatment of combustion emissions to accurately predict ambient SOA concentrations.

  18. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    SciTech Connect

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  19. The atmospheric aerosol-forming potential of whole gasoline vapor

    SciTech Connect

    Odum, J.R.; Jungkamp, T.P.W.; Griffin, R.J.

    1997-04-04

    A series of sunlight-irradiated, smog-chamber experiments confirmed that the atmosphere organic aerosol formation potential of whole gasoline vapor can be accounted for solely in terms of the aromatic fraction of the fuel. The total amount of secondary organic aerosol produced from the atmospheric oxidation of whole gasoline vapor can be represented as the sum of the contributions of the individual aromatic molecular constituents of the fuel. The urban atmospheric, anthropogenic hydrocarbon profile is approximated well by evaporated whole gasoline, and thus these results suggest that it is possible to model atmospheric secondary organic aerosol formation. 23 refs., 3 figs., 2 tabs.

  20. Nitrogen Containing Organic Compounds and Oligomers in Secondary Organic Aerosol Formed by Photooxidation of Isoprene

    SciTech Connect

    Nguyen, Tran B.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Serguei

    2011-07-06

    Electrospray ionization high-resolution mass spectrometry (ESI HR-MS) was used to probe molecular structures of oligomers in secondary organic aerosol (SOA) generated in laboratory experiments on isoprene photooxidation at low- and high-NOx conditions. Up to 80-90% of the observed products are oligomers and up to 33% are nitrogen-containing organic compounds (NOC). We observe oligomers with up to 8 monomer units in length. Tandem mass spectrometry (MSn) confirms NOC compounds are organic nitrates and elucidates plausible chemical building blocks contributing to oligomer formation. Most organic nitrates are comprised of methylglyceric acid units. Other important multifunctional C2-C5 monomer units are identified including methylglyoxal, hydroxyacetone, hydroxyacetic acid, glycolaldehyde, and 2-methyltetrols. The majority of the NOC oligomers contain only one nitrate moiety resulting in a low average N:C ratio of 0.019. Average O:C ratios of the detected SOA compounds are 0.54 under the low-NOx conditions and 0.83 under the high-NOx conditions. Our results underscore the importance of isoprene photooxidation as a source of NOC in organic particulate matter.

  1. Global transformation and fate of SOA: Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions

    SciTech Connect

    Shrivastava, ManishKumar B.; Easter, Richard C.; Liu, Xiaohong; Zelenyuk, Alla; Singh, Balwinder; Zhang, Kai; Ma, Po-Lun; Chand, Duli; Ghan, Steven J.; Jiminez, J. L.; Zhang, Qibin; Fast, Jerome D.; Rasch, Philip J.; Tiitta, P.

    2015-05-16

    Secondary organic aerosols (SOA) are large contributors to fine particle loadings and radiative forcing, but are often represented crudely in global models. We have implemented three new detailed SOA treatments within the Community Atmosphere Model version 5 (CAM5) that allow us to compare the semi-volatile versus non-volatile SOA treatments (based on some of the latest experimental findings) and also investigate the effects of gas-phase fragmentation reactions. For semi-volatile SOA treatments, fragmentation reactions decrease simulated SOA burden from 7.5 Tg to 1.8 Tg. For the non-volatile SOA treatment with fragmentation, the burden is 3.1 Tg. Larger differences between non-volatile and semi-volatile SOA (upto a factor of 5) correspond to continental outflow over the oceans. Compared to a global dataset of surface Aerosol Mass Spectrometer measurements and the US IMPROVE network measurements, the non-volatile SOA with fragmentation treatment (FragNVSOA) agrees best at rural locations. Urban SOA is under-predicted but this may be due to the coarse model resolution. All our three revised treatments show much better agreement with aircraft measurements of organic aerosols (OA) over the N. American Arctic and sub-Arctic in spring and summer, compared to the standard CAM5 formulation. This is due to treating SOA precursor gases from biomass burning, and long-range transport of biomass burning OA at elevated levels. The revised model configuration that include fragmentation (both semi-volatile and non-volatile SOA) show much better agreement with MODIS AOD data over regions dominated by biomass burning during the summer, and predict biomass burning as the largest global source of OA followed by biogenic and anthropogenic sources. The non-volatile and semi-volatile configuration predict the direct radiative forcing of SOA as -0.5 W m-2 and -0.26 W m-2 respectively, at top of the atmosphere, which are higher than previously estimated by most models, but in reasonable

  2. Formation of hydroxyl radicals from photolysis of secondary organic aerosol material

    NASA Astrophysics Data System (ADS)

    Badali, K. M.; Zhou, S.; Aljawhary, D.; Antiñolo, M.; Chen, W. J.; Lok, A.; Mungall, E.; Wong, J. P. S.; Zhao, R.; Abbatt, J. P. D.

    2015-07-01

    This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA) material formed by terpene ozonolysis. The SOA is collected on filters, dissolved in water containing a radical trap (benzoic acid), and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH), the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF) assay, which was calibrated using H2O2. The OH formation rates from SOA are 5 times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions, assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis, but we cannot rule out a contribution from secondary processes as well. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over 3 times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA and assuming that the peroxides drive most of the ultraviolet absorption, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloud water and aerosol chemistry.

  3. Hydroxyl radicals from secondary organic aerosol decomposition in water

    NASA Astrophysics Data System (ADS)

    Tong, Haijie; Arangio, Andrea M.; Lakey, Pascale S. J.; Berkemeier, Thomas; Liu, Fobang; Kampf, Christopher J.; Brune, William H.; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-02-01

    We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, limonene) is ˜ 0.1 % upon extraction with pure water and increases to ˜ 1.5 % in the presence of Fe2+ ions due to Fenton-like reactions. Upon extraction of SOA samples from OH photooxidation of isoprene, we also detected OH yields of around ˜ 0.1 %, which increases upon addition of Fe2+. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical H2O2 Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.

  4. Chemical insights, explicit chemistry and yields of secondary organic aerosol from methylglyoxal and glyoxal

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Tan, Y.; Turpin, B. J.

    2013-02-01

    Atmospherically abundant, volatile water soluble organic compounds formed through gas phase chemistry (e.g., glyoxal (C2), methylglyoxal (C3) and acetic acid) have great potential to form secondary organic aerosol (SOA) via aqueous chemistry in clouds, fogs and wet aerosols. This paper (1) provides chemical insights into aqueous-phase OH radical-initiated reactions leading to SOA formation from methylglyoxal and (2) uses this and a previously published glyoxal mechanism (Lim et al., 2010) to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012). This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010), and is used to simulate the profiles of products and to estimate SOA yields. At cloud relevant concentrations (∼ 10-6-∼ 10-3 M; Munger et al., 1995) of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass) are ∼ 120% for glyoxal and ∼ 80% for methylglyoxal. Oligomerization of unreacted aldehydes during droplet evaporation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (∼ 10 M), the major products are oligomers formed via organic radical-radical reactions, and simulated SOA yields (by mass) are ∼ 90% for both glyoxal and methylglyoxal.

  5. Effect of Humidity on the Composition of Isoprene Photooxidation Secondary Organic Aerosol

    SciTech Connect

    Nguyen, Tran B.; Roach, Patrick J.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Serguei

    2011-07-18

    The effect of relative humidity (RH) on the composition and concentrations of gas-phase products and secondary organic aerosol (SOA) generated from the photooxidation of isoprene under high-NOx conditions was investigated. The yields of most gas-phase products were the same regardless of initial water vapor concentration with exception of hydroxyacetone and glycolaldehyde, which were considerably affected by RH. A significant change was observed in the SOA composition, with many unique condensed-phase products formed under humid (90% RH) vs. dry (<2% RH) conditions, without any observable effect on the rate and extent of the SOA mass growth.

  6. Comparing secondary organic aerosol formation in two U.S. cities

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-12-01

    Secondary organic aerosols (SOAs) form from the oxidation of volatile organic compounds (VOCs) in the atmosphere, and the composition and abundance of SOAs determine their effects on air quality, human health, and the planetary radiation budget. To investigate how the production of SOAs varies with location, Zhang et al. conducted a parallel set of experiments in Los Angeles, Calif., and Atlanta, Ga. Both cities see a large amount of volatile organic compounds thrown into the air because of anthropogenic emissions, largely stemming from vehicles. Atlanta, unlike Los Angeles, also sees a large amount of biogenic emissions from vegetation in the region.

  7. Modeling SOA formation from the oxidation of intermediate volatility n-alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-08-01

    The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C8-C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (COA). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing COA, (iii) SOA production rates increase with increasing COA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.

  8. Modeling SOA formation from the oxidation of intermediate volatility n-alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-06-01

    The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C8-C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (COA). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing COA, (iii) SOA production rates increase with increasing COA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.

  9. Control of ozonolysis kinetics and aerosol yield by nuances in the molecular structure of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Harvey, Rebecca M.; Petrucci, Giuseppe A.

    2015-12-01

    Secondary organic aerosol (SOA) plays integral roles in climate and human health, yet there remains a limited understanding of the mechanisms that lead to its formation and ultimate fate, as evidenced by a disparity between modeled atmospheric SOA loadings and field measurements. This disparity highlights the need for a more accurate representation of the molecular-level interactions between SOA sources and oxidative pathways. Due to the paucity of detailed chemical data for most SOA precursors of atmospheric relevance, models generally predict SOA loadings using structure activity relationships generalized to classes of SOA precursors. However, the kinetics and SOA forming potential of molecules are nuanced by seemingly minor structural differences in parent molecules that may be neglected in models. Laboratory chamber studies were used to measure SOA yields and rate constants for the ozonolysis of several linear, cyclic and oxygenated C5-C7 alkenes whose molecular structure vary in the site of unsaturation and/or the presence/position of functional groups and that represent atmospherically relevant classes of molecules. For the alkenes studied in this work, we found greater SOA yields for cyclic compounds compared to their linear analogs. For 1-alkenes, SOA yield increased with carbon number but was also dependent on the position of the double bond (internal vs terminal). Both the identity and position of oxygenated functional groups influenced SOA yield and kinetics through steric and electronic effects. Additionally, terminal alkenes generally resulted in a greater SOA yield than analogous internal alkenes, indicating that the position of the double bond in alkenes plays an important role in its atmospheric fate. Herein, we demonstrate the nuanced behavior of these ozonolysis reactions and discuss relationships between parent compound molecular structure and SOA yield and kinetics.

  10. Secondary Organic Aerosol Formation from the Ozonolysis of Cycloalkenes

    NASA Astrophysics Data System (ADS)

    Keywood, M.; Varutbangkul, V.; Gao, S.; Brechtel, F.; Bahreini, R.; Flagan, R. C.; Seinfeld, J. H.

    2003-12-01

    Secondary organic aerosol (SOA) is ubiquitous in the atmosphere being present in both urban and remote locations and exerting influence on human health, visibility and climate. Despite its importance, our understanding of SOA formation still lacks essential elements, limiting our understanding of the effect of SOA on climate forcing. While there do exist experimental data on SOA yields from both biogenic and anthropogenic precursor compounds, it is difficult to extend these results to predict the aerosol-forming potential of precursor compounds not yet studied. In response to this, a series of chamber experiments were carried out in the Caltech Indoor Chamber Facility, where compounds from the cycloalkene and methyl-substituted cycloalkene families were oxidized by ozone in the dark. The reactions were carried out in dual 28 m3 teflon chambers at 20oC and relative humidity below 5%, in the presence of ammonium sulfate seed aerosol. Cyclohexane was used as a scavenger to prevent side oxidation reactions with OH radicals, generated during ozonolysis of the cycloalkene. While cycloalkenes may not be important precursors for SOA formation in the ambient atmosphere, the system was chosen for its simplicity relative to atmospherically relevant SOA precursors such as the biogenic monoterpenes and sesquiterpenes. Cycloalkenes may be seen as the simplified structures on which these more complicated compounds are based. The compounds reacted included the cycloalkenes: cyclopentene, cyclohexene, cycloheptene and cyclooctene, the methyl-substituted cycloalkenes: 1-methyl-1-cyclohexene, 3-methyl-1-cyclohexene, 1-methy-1-cycloheptene and1-methyl-1-cylopentene, and other related classes of hydrocarbons: methylene cyclohexane and terpinolene. Data collected include aerosol yield, chemical composition and hygroscopic behaviour. The effect of the precursor hydrocarbon structure on these properties of the SOA will be discussed.

  11. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    EPA Science Inventory

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  12. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    NASA Astrophysics Data System (ADS)

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; George, Katheryn M.; Anastasio, Cort; Laskin, Julia; Dillner, Ann M.; Zhang, Qi

    2016-04-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C∗) and hydroxyl radical (OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ˜ 2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures (C∗) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C∗ values is observed

  13. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Laskin, A.; George, K. M.; Anastasio, C.; Laskin, J.; Dillner, A. M.; Zhang, Q.

    2015-10-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ∼ 2 h irradiation under midday, winter solstice sunlight in northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated open-ring molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures C*) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C* values is observed

  14. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    DOE PAGES

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; ...

    2016-04-13

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl (3C∗) and hydroxyl radical (•OH). Changes in the molecular composition of aqSOA as amore » function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to  ∼  2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures (C∗) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C∗ values

  15. Organic aerosol formation from biogenic compounds over the Ponderosa pine forest in Colorado

    NASA Astrophysics Data System (ADS)

    Roux, Alma Hodzic; Lee-Taylor, Julia; Cui, Yuyan; Madronich, Sasha

    2013-05-01

    The secondary organic aerosol (SOA) formation and regional growth from biogenic precursors is of particular interest given their abundance in the atmosphere, and has been investigated during the Rocky Mountain Biogenic Aerosol field Study in 2011 in the pine forest canopy (dominated by terpene emissions) using both WRF/Chem 4km simulations and the GECKO-A explicit chemistry box-model runs. We have quantified the relative contribution of different biogenic precursors to SOA levels that were measured by the aerosol mass spectrometer at the site, and investigated the relative contribution of OH, O3 and NO3 chemistry to the formed SOA mass during day-and nighttime. Although, the local production and mass concentrations of submicron organic aerosols at the site seem relatively modest ˜1-2 ug/m3, we show that the optically active regional mass is increased as the SOA formation continues for several days in the background forest air. We investigate whether the simplified SOA parameterizations used in 3D models can capture this growth. In addition, preliminary comparisons of the number concentrations and the composition of ultrafine particles (8 - 30nm) from WRF/Chem simulations and TD-CIMS measurements are also discussed, and the contribution of organic aerosols to CCN formation is quantified.

  16. Effect of Vapor Pressure Scheme on Multiday Evolution of SOA in an Explicit Model

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J.; Madronich, S.; Aumont, B.; Camredon, M.; Emmons, L. K.; Tyndall, G. S.; Valorso, R.

    2011-12-01

    Recent modeling of the evolution of Secondary Organic Aerosol (SOA) has led to the critically important prediction that SOA mass continues to increase for several days after emission of primary pollutants. This growth of organic aerosol in dispersing plumes originating from urban point sources has direct implications for regional aerosol radiative forcing. We investigate the robustness of predicted SOA mass growth downwind of Mexico City in the model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere), by assessing its sensitivity to the choice of vapor pressure prediction scheme. We also explore the implications for multi-day SOA mass growth of glassification / solidification of SOA constituents during aging. Finally we use output from the MOZART-4 chemical transport model to evaluate our results in the regional and global context.

  17. Aerosols formed from the chemical reaction of monoterpenes and ozone

    NASA Astrophysics Data System (ADS)

    Yokouchi, Y.; Ambe, Y.

    Chamber experiments were conducted to study the aerosol products from the ozonolysis of the major atmospheric monoterpenes; α-pinene, β-pinene and limonene. It was found that the α-pinene-O 3 reaction produced mainly 2', 2'-dimethyl-3'-acetyl cyclobutyl ethanal (pinonaldehyde), the β-pinene-O 3 reaction, mainly 6,6-dimethyl-bicyclo [3.1.1] heptan-2-one and the limonene-O 3 reaction, several unidentified products. These products were sought in forest aerosols and pinonaldehyde was detected in the atmosphere.

  18. Aerosols formed from the chemical reaction of monoterpenes and ozone

    NASA Astrophysics Data System (ADS)

    Yokouchi, Y.; Ambe, Y.

    Chamber experiments were conducted to study the aerosol products from the ozonolysis of the major atmospheric monoterpenes; α-pinene, β-pinene and limonene. It was found that the α-pinend-O 3 reaction produced mainly 2'. 2'-dimethyl-3'-acetyl cyclobutyl ethanal (pinonaldehyde), the β-pinene-O 3 reaction, mainly 6,6-dimethyl-bicyclo [3.1.1] heptan-2-one and the limonene-O 3 reaction, several unidentified products. These products were sought in forest aerosols and pinonaldehyde was detected in the atmosphere.

  19. Light absorption coefficient measurement of SOA using a UV-Visible spectrometer connected with an integrating sphere

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Jang, Myoseon

    2011-08-01

    A method for measuring an aerosol light absorption coefficient ( B a) has been developed using a conventional UV-visible spectrometer equipped with an integrating sphere covering a wide range of wavelengths (280-800 nm). The feasibility of the proposed method was evaluated in both the transmittance mode (TUV-IS) and the reflective mode (RUV-IS) using the reference aerosol known for the cross-sectional area. The aerosol was collected on a conventional filter and measured for B a values. The resulting RUV-IS method was applied to measure light absorption of secondary organic aerosol (SOA). SOA was produced through photooxidation of different precursor hydrocarbons such as toluene, d-limonene and α-pinene in the presence of NO x (60-70 ppb) and inorganic seed aerosol using a 2-m 3 indoor Teflon film chamber. Of the three precursor hydrocarbons, the B a value of toluene SOA (0.574 m 2 g -1 at 350 nm) was the highest compared with B a values for α-pinene SOA (0.029 m 2 g -1) and d-limonene SOA (0.038 m 2 g -1). When d-limonene SOA or toluene SOA was internally mixed with neutral [(NH 4) 2SO 4] or acidic inorganic seed (NH 4HSO 4:H 2SO 4 = 1:1 by mole), the SOA showed 2-3 times greater B a values at 350 nm than the SOA with no seed. Aerosol aging with a light source for this study reduced B a values of SOA (e.g., on average 10% for toluene SOA and 30% for d-limonene SOA within 4 h). Overall, weak absorption appeared for chamber-generated SOA over wavelengths ranging from 280 to 550 nm, which fall into the sunlight spectrum.

  20. Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; Nguyen, N. T.; Robertson, W. H.; Na, K.; Sahay, K. N.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2014-05-01

    Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices, including diesel particulate filters (DPFs), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOCs). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle,~Urban Dynamometer Driving Schedule, and creep + idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photooxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary PM emissions and SOA production from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber - with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after 3 h of oxidation at typical urban VOC / NOx ratios (3 : 1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the nonmethane organic gas emissions that could not be speciated using traditional one-dimensional gas chromatography. The

  1. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-01

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for the no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9-5.6, 6.4-12.0 and 0.9-2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.

  2. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    DOE PAGES

    Zheng, Y.; Unger, N.; Hodzic, A.; ...

    2015-12-08

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for themore » no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  3. Secondary Organic Aerosol Produced from Aqueous Reactions of Phenols in Fog Drops and Deliquesced Particles

    NASA Astrophysics Data System (ADS)

    Smith, J.; Anastasio, C.

    2014-12-01

    The formation and evolution of secondary organic aerosol (SOA) in atmospheric condensed phases (i.e., aqueous SOA) can proceed rapidly, but relatively little is known of the important aqueous SOA precursors or their reaction pathways. In our work we are studying the aqueous SOA formed from reactions of phenols (phenol, guaiacol, and syringol), benzene-diols (catechol, resorcinol, and hydroquinone), and phenolic carbonyls (e.g., vanillin and syringaldehyde). These species are potentially important aqueous SOA precursors because they are released in large quantities from biomass burning, have high Henry's Law constants (KH = 103 -109 M-1 atm-1) and are rapidly oxidized. To evaluate the importance of aqueous reactions of phenols as a source of SOA, we first quantified the kinetics and SOA mass yields for 11 phenols reacting via direct photodegradation, hydroxyl radical (•OH), and with an excited organic triplet state (3C*). In the second step, which is the focus of this work, we use these laboratory results in a simple model of fog chemistry using conditions during a previously reported heavy biomass burning event in Bakersfield, CA. Our calculations indicate that under aqueous aerosol conditions (i.e., a liquid water content of 100 μg m-3) the rate of aqueous SOA production (RSOA(aq)) from phenols is similar to the rate in the gas phase. In contrast, under fog/cloud conditions the aqueous RSOA from phenols is 10 times higher than the rate in the gas phase. In both of these cases aqueous RSOA is dominated by the oxidation of phenols by 3C*, followed by direct photodegradation of phenolic carbonyls, and then •OH oxidation. Our results suggest that aqueous oxidation of phenols is a significant source of SOA during fog events and also during times when deliquesced aerosols are present.

  4. Modeling anthropogenically-controled secondary organic aerosols in a megacity: a simplified framework for global and climate models

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Jimenez, J. L.

    2011-04-01

    A simplified parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is tested and optimized in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA in global and climate models. A regional chemistry-transport model is used as the testbed for the parameterization, which is compared against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment. The empirical parameterization is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass. The approach consists in emitting an organic gas as lumped SOA precursor surrogate proportional to anthropogenic or biomass burning CO emissions according to the observed ratio between SOA and CO in aged air, and reacting this surrogate with OH into a single non-volatile species that condenses to form SOA. An emission factor of 0.08 g of the lumped SOA precursor per g of CO and a rate constant with OH of 1.25 × 10-11 cm3 molecule-1 s-1 reproduce the observed average SOA mass within 30% in the urban area and downwind. When a 2.5 times slower rate is used (5 × 10-12 cm3 molecule-1 s-1) the predicted SOA amount and temporal evolution is nearly identical to the results obtained with SOA formation from semi-volatile and intermediate volatility primary organic vapors according to the Robinson et al. (2007) formulation. Our simplified method has the advantage of being much less computationally expensive than Robinson-type methods, and can be used in regions where the emissions of SOA precursors are not yet available. As the aged pollution SOA/ΔCO ratios are rather consistent globally, this parameterization could be reasonably tested in and applied to other regions. The potential enhancement of biogenic SOA by anthropogenic pollution, which has been suggested to play a major role in global SOA formation, is also tested using two simple

  5. Modeling anthropogenically controlled secondary organic aerosols in a megacity: a simplified framework for global and climate models

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Jimenez, J. L.

    2011-10-01

    A simplified parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is tested and optimized in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA mass and hygroscopicity in global and climate models. A regional chemistry-transport model is used as the testbed for the parameterization, which is compared against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment. The empirical parameterization is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass. The approach consists in emitting an organic gas as lumped SOA precursor surrogate proportional to anthropogenic or biomass burning CO emissions according to the observed ratio between SOA and CO in aged air, and reacting this surrogate with OH into a single non-volatile species that condenses to form SOA. An emission factor of 0.08 g of the lumped SOA precursor per g of CO and a rate constant with OH of 1.25 × 10-11 cm3 molecule-1 s-1 reproduce the observed average SOA mass within 30 % in the urban area and downwind. When a 2.5 times slower rate is used (5 × 10-12 cm3 molecule-1 s-1) the predicted SOA amount and temporal evolution is nearly identical to the results obtained with SOA formation from semi-volatile and intermediate volatility primary organic vapors according to the Robinson et al. (2007) formulation. Our simplified method has the advantage of being much less computationally expensive than Robinson-type methods, and can be used in regions where the emissions of SOA precursors are not yet available. As the aged SOA/ΔCO ratios are rather consistent globally for anthropogenic pollution, this parameterization could be reasonably tested in and applied to other regions. The evolution of oxygen-to-carbon ratio was also empirically modeled and the predicted levels were found to be in reasonable agreement

  6. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    NASA Astrophysics Data System (ADS)

    Liu, Shang; Ahlm, Lars; Day, Douglas A.; Russell, Lynn M.; Zhao, Yunliang; Gentner, Drew R.; Weber, Robin J.; Goldstein, Allen H.; Jaoui, Mohammed; Offenberg, John H.; Kleindienst, Tadeusz E.; Rubitschun, Caitlin; Surratt, Jason D.; Sheesley, Rebecca J.; Scheller, Scott

    2012-12-01

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemical and physical properties of SOA at Bakersfield, California, a site influenced by anthropogenic and terrestrial biogenic emissions. Factor analysis was applied to the infrared and mass spectra of fine particles to identify sources and atmospheric processing that contributed to the organic mass (OM). We found that OM accounted for 56% of submicron particle mass, with SOA components contributing 80% to 90% of OM from 15 May to 29 June 2010. SOA formed from alkane and aromatic compounds, the two major classes of vehicle-emitted hydrocarbons, accounted for 65% OM (72% SOA). The alkane and aromatic SOA components were associated with 200 nm to 500 nm accumulation mode particles, likely from condensation of daytime photochemical products of VOCs. In contrast, biogenic SOA likely formed from condensation of secondary organic vapors, produced from NO3radical oxidation reactions during nighttime hours, on 400 nm to 700 nm sized primary particles, and accounted for less than 10% OM. Local petroleum operation emissions contributed 13% to the OM, and the moderate O/C (0.2) of this factor suggested it was largely of secondary origin. Approximately 10% of organic aerosols in submicron particles were identified as either vegetative detritus (10%) or cooking activities (7%), from Fourier transform infrared spectroscopic and aerosol mass spectrometry measurements, respectively. While the mass spectra of several linearly independent SOA components were nearly identical and external source markers were needed to separate them, each component had distinct infrared spectrum, likely associated with the source-specific VOCs from which they formed.

  7. Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010

    NASA Astrophysics Data System (ADS)

    Hayes, P. L.; Carlton, A. G.; Baker, K. R.; Ahmadov, R.; Washenfelder, R. A.; Alvarez, S.; Rappenglück, B.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Zotter, P.; Prévôt, A. S. H.; Szidat, S.; Kleindienst, T. E.; Offenberg, J. H.; Jimenez, J. L.

    2014-12-01

    Four different parameterizations for the formation and evolution of secondary organic aerosol (SOA) are evaluated using a 0-D box model representing the Los Angeles Metropolitan Region during the CalNex 2010 field campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model-measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model/measurement agreement for mass concentration. When comparing the three parameterizations, the Grieshop et al. (2009) parameterization more accurately reproduces both the SOA mass concentration and oxygen-to-carbon ratio inside the urban area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the parameterizations over-predict urban SOA formation at long

  8. Characterizing the Amount and Chemistry of Biogenic SOA Formation from Pine Forest Air Using a Flow Reactor

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Fry, J.; Zarzana, K. J.; Draper, D. C.; Brown, S. S.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Hodzic, A.; Dube, W. P.; Wagner, N. L.; Brune, W. H.; Jimenez, J. L.

    2013-12-01

    The amount and chemistry of biogenic secondary organic aerosol (SOA) formation was characterized as a function of oxidant exposure using a Potential Aerosol Mass (PAM) oxidative flow reactor, sampling air in a terpene- and MBO-dominated pine forest during the 2011 BEACHON-RoMBAS field campaign at the U.S. Forest Service Manitou Forest Experimental Observatory in the Colorado Rocky Mountains. In the reactor, a chosen oxidant (OH, O3, or NO3) was generated and stepped over a range of values up to 10,000 times ambient levels, accelerating the gas-phase and heterogeneous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and preexisting aerosol. The resulting SOA formation was measured using an Aerodyne HR-ToF-AMS, a TSI SMPS and a PTR-TOF-MS. Oxidative processing in the flow reactor was equivalent to a few hours up to ~20 days of atmospheric aging during the ~4-min reactor residence time. During BEACHON-RoMBAS, OH oxidation led to a net production of up to several μg/m3 of SOA at intermediate exposures (1-10 equivalent days) but resulted in net loss of OA mass (up to ~30%) at higher OH exposures (10-20 equivalent days), demonstrating the competing effects of functionalization/condensation vs. fragmentation/evaporation reactions as OH exposure increased. O3 and NO3 oxidation led to smaller (up to 0.5 μg/m3) SOA production, and loss of SOA mass due to fragmentation reactions was not observed. OH oxidation resulted in f44 vs. f43 and Van Krevelen diagram (H:C vs. O:C) slopes similar to ambient oxidation, suggesting the flow reactor oxidation pathways are similar to those in ambient air. Organic nitrate SOA production was observed from NO3 radical oxidation only. New particle formation was observed from OH oxidation, but not O3 or NO3 oxidation under our experimental conditions. An enhancement of SOA production under the influence of anthropogenic pollution (Denver) was also observed. High-resolution AMS measurements showed that the O:C and H

  9. CCN activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-01-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3), contains less volatile compounds than the primary aliphatic amine (BA) aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. Higher CCN activity (κ > 0.3) was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2), as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3). Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss) settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that

  10. [Numerical simulation study of SOA in Pearl River Delta region].

    PubMed

    Cheng, Yan-li; Li, Tian-tian; Bai, Yu-hua; Li, Jin-long; Liu, Zhao-rong; Wang, Xue-song

    2009-12-01

    Secondary organic aerosols (SOA) is an important component of the atmospheric particle pollution, thus, determining the status and sources of SOA pollution is the premise of deeply understanding the occurrence, development law and the influence factors of the atmospheric particle pollution. Based on the pollution sources and meteorological data of Pearl River Delta region, the study used the two-dimensional model coupled with SOA module to stimulate the status and source of SOA pollution in regional scale. The results show: the generation of SOA presents obvious characteristics of photochemical reaction, and the high concentration appears at about 14:00; SOA concentration is high in some areas of Guangshou and Dongguan with large pollution source-emission, and it is also high in some areas of Zhongshan, Zhuhai and Jiangmen which are at downwind position of Guangzhou and Dongguan. Contribution ratios of several main pollution sources to SOA are: biogenic sources 72.6%, mobile sources 30.7%, point sources 12%, solvent and oil paint sources 12%, surface sources less than 5% respectively.

  11. Importance of Aqueous-phase Secondary Organic Aerosol Formation from Aromatics in an Atmospheric Hydrocarbon Mixture

    NASA Astrophysics Data System (ADS)

    Parikh, H. M.; Carlton, A. G.; Vizuete, W.; Zhang, H.; Zhou, Y.; Chen, E.; Kamens, R. M.

    2010-12-01

    Two new secondary organic aerosol (SOA) modeling frameworks are developed, one based on an aromatic gas and particle-phase kinetic mechanism and another based on a parameterized SOA model used in conjunction with an underlying gas-phase mechanism, both of which simulate SOA formation through partitioning to two stable liquid phases: one hydrophilic containing particle aqueous-phase and the other hydrophobic comprising mainly organic components. The models were evaluated against outdoor smog chamber experiments with different combinations of initial toluene, o-xylene, p-xylene, toluene and xylene mixtures, NOx, non-SOA-forming hydrocarbon mixture, initial seed type, and humidity. Aerosol data for experiments with either ammonium sulfate or initial background seed particles, in the presence of an atmospheric hydrocarbon mixture, NOx and in sunlight under a dry atmosphere (RH = 6 to 10%) show reduced SOA formation when compared to experiments with similar initial gas and particle concentrations at higher relative humidities (RH = 40 to 90%). Both frameworks simulated reasonable fits to the total observed SOA concentrations under all conditions. For both dry and wet experiments with low initial seed, semi-volatile product partitioning in particle organic-phase is mass-transfer limited and is modeled using a dynamic gas-particle partitioning algorithm with accommodation coefficient as the primary pseudo-transport parameter. Further, the modeled SOA product distributions for both frameworks clearly show the importance of the contribution of aqueous-phase SOA particularly under conditions of low initial seed concentrations and high-humidity. For both models, under these conditions, aqueous-phase SOA from uptake of glyoxal, methylglyoxal and related polar products to particle water phase dominates as compared to the partitioning of semi-volatiles to particle organic phase. Interestingly, both the kinetic and parameterized SOA frameworks simulate similar amounts of aqueous

  12. Molecular composition of fresh and aged secondary organic aerosol from a mixture of biogenic volatile compounds: a high-resolution mass spectrometry study

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; Doussin, J.-F.; Giorio, C.; Mahon, B.; Wilson, E. M.; Maurin, N.; Pangui, E.; Venables, D. S.; Wenger, J. C.; Kalberer, M.

    2015-05-01

    Field observations over the past decade indicate that a significant fraction of organic aerosol in remote areas may contain highly oxidized molecules. Aerosol processing or further oxidation (aging) of organic aerosol has been suggested to be responsible for their formation through heterogeneous reaction with oxidants and multigenerational oxidation of vapours by OH radicals. In this study we investigated the influence of several aging processes on the molecular composition of secondary organic aerosols (SOA) using direct infusion and liquid chromatography high-resolution mass spectrometry. SOA was formed in simulation chamber experiments from ozonolysis of a mixture of four biogenic volatile organic compounds (BVOC): α-pinene, β-pinene, Δ3-carene and isoprene. The SOA was subsequently aged under three different sets of conditions: in the dark in the presence of residual ozone, with UV irradiation and OH radicals, and using UV light only. Among all studied conditions, only OH radical-initiated aging was found to influence the molecular composition of the aerosol and showed an increase in carbon oxidation state (OSC) and elemental O / C ratios of the SOA components. None of the aging processes produced an observable effect on the oligomers formed from ozonolysis of the BVOC mixture, which were found to be equally abundant in both "fresh" and "aged" SOA. Additional experiments using α-pinene as the sole precursor demonstrated that oligomers are an important group of compounds in SOA produced from both ozonolysis and OH radical-initiated oxidation processes; however, a completely different set of oligomers is formed under these two oxidation regimes. SOA from the OH-initiated oxidation of α-pinene had a significantly higher overall OSC and O / C compared to that from pure ozonolysis experiments confirming that the OH radical reaction is more likely to be responsible for the occurrence of highly oxidized species in ambient biogenic SOA.

  13. Evolution of the complex refractive index in the UV spectral region in ageing secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Flores, J. M.; Zhao, D. F.; Segev, L.; Schlag, P.; Kiendler-Scharr, A.; Fuchs, H.; Watne, Å. K.; Bluvshtein, N.; Mentel, Th. F.; Hallquist, M.; Rudich, Y.

    2014-06-01

    The chemical and physical properties of secondary organic aerosol (SOA) formed by the photochemical degradation of biogenic and anthropogenic volatile organic compounds (VOC) are as yet still poorly constrained. The evolution of the complex refractive index (RI) of SOA, formed from purely biogenic VOC and mixtures of biogenic and anthropogenic VOC, was studied over a diurnal cycle in the SAPHIR photochemical outdoor chamber in Jülich, Germany. The correlation of RI with SOA chemical and physical properties such as oxidation level and volatility was examined. The RI was retrieved by a newly developed broadband cavity-enhanced spectrometer for aerosol optical extinction measurements in the UV spectral region (360 to 420 nm). Chemical composition and volatility of the particles were monitored by a high-resolution time-of-flight aerosol mass spectrometer, and a volatility tandem differential mobility analyzer. SOA was formed by ozonolysis of either (i) a mixture of biogenic VOC (α-pinene and limonene), (ii) biogenic VOC mixture with subsequent addition of an anthropogenic VOC (p-xylene-d10), or (iii) a mixture of biogenic and anthropogenic VOC. The SOA aged by ozone/OH reactions up to 29.5 h was found to be non-absorbing in all cases. The SOA with p-xylene-d10 showed an increase of the scattering component of the RI correlated with an increase of the O / C ratio and with an increase in the SOA density. There was a greater increase in the scattering component of the RI when the SOA was produced from the mixture of biogenic VOCs and anthropogenic VOC than from the sequential addition of the VOCs after approximately the same ageing time. The increase of the scattering component was inversely correlated with the SOA volatility. Two RI retrievals determined for the pure biogenic SOA showed a constant RI for up to 5 h of ageing. Mass spectral characterization shows the three types of the SOA formed in this study have a significant amount of semivolatile components. The

  14. SOA: A Quality Attribute Perspective

    DTIC Science & Technology

    2011-06-23

    JMS) – CORBA … • Infrastructure services available to service providers and/or service consumers to perform common tasks or satisfy QoS requirements...Services is one technology for SOA implementation SOA and Quality Attributes SOA WS* Web Services CORBA REST Services and POX Key Class Realization

  15. Integrating phase and composition of secondary organic aerosol from the ozonolysis of α-pinene

    PubMed Central

    Kidd, Carla; Perraud, Véronique; Wingen, Lisa M.; Finlayson-Pitts, Barbara J.

    2014-01-01

    Airborne particles are important for public health, visibility, and climate. Predicting their concentrations, effects, and responses to control strategies requires accurate models of their formation and growth in air. This is challenging, as a large fraction is formed by complex reactions of volatile organic compounds, generating secondary organic aerosol (SOA), which grows to sizes important for visibility, climate, and deposition in the lung. Growth of SOA is particularly sensitive to the phase/viscosity of the particles and remains poorly understood. We report studies using a custom-designed impactor with a germanium crystal as the impaction surface to study SOA formed from the ozonolysis of α-pinene at relative humidities (RHs) up to 87% at 297 ± 2 K (which corresponds to a maximum RH of 70–86% inside the impactor). The impaction patterns provide insight into changes in phase/viscosity as a function of RH. Attenuated total reflectance-Fourier transform infrared spectroscopy and aerosol mass spectrometry provide simultaneous information on composition changes with RH. The results show that as the RH at which the SOA is formed increases, there is a decrease in viscosity, accompanied by an increasing contribution from carboxylic acids and a decreasing contribution from higher molecular mass products. In contrast, SOA that is formed dry and subsequently humidified remains solid to high RH. The results of these studies have significant implications for modeling the growth, aging, and ultimately, lifetime of SOA in the atmosphere. PMID:24821796

  16. Optical properties and aging of light-absorbing secondary organic aerosol

    DOE PAGES

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; ...

    2016-10-14

    The light-absorbing organic aerosol (OA) commonly referred to as “brown carbon” (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NOx concentrations, photolysis time, and relative humidity (RH) on the light absorptionmore » of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  17. Optical properties and aging of light-absorbing secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-01

    The light-absorbing organic aerosol (OA) commonly referred to as "brown carbon" (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NOx concentrations, photolysis time, and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  18. SOA formation from partitioning and heterogeneous reactions: model study in the presence of inorganic species.

    PubMed

    Jang, Myoseon; Czoschke, Nadine M; Northcross, Amanda L; Cao, Gang; Shaof, David

    2006-05-01

    A predictive model for secondary organic aerosol (SOA) formation by both partitioning and heterogeneous reactions was developed for SOA created from ozonolysis of alpha-pinene in the presence of preexisting inorganic seed aerosols. SOA was created in a 2 m3 polytetrafluoroethylene film indoor chamber under darkness. Extensive sets of SOA experiments were conducted varying humidity, inorganic seed compositions comprising of ammonium sulfate and sulfuric acid, and amounts of inorganic seed mass. SOA mass was decoupled into partitioning (OM(P)) and heterogeneous aerosol production (OM(H)). The reaction rate constant for OM(H) production was subdivided into three categories (fast, medium, and slow) to consider different reactivity of organic products for the particle phase heterogeneous reactions. The influence of particle acidity on reaction rates was treated in a previous semiempirical model. Model OM(H) was developed with medium and strong acidic seed aerosols, and then extrapolated to OM(H) in weak acidic conditions, which are more relevant to atmospheric aerosols. To demonstrate the effects of preexisting glyoxal derivatives (e.g., glyoxal hydrate and dimer) on OM(H), SOA was created with a seed mixture comprising of aqueous glyoxal and inorganic species. Our results show that heterogeneous SOA formation was also influenced by preexisting reactive glyoxal derivatives.

  19. Cloud forming potential of oligomers relevant to secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Guo, Song; Gomez-Hernandez, Mario; Zamora, Misti L.; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Zhang, Annie L.; Collins, Don R.; Zhang, Renyi

    2014-09-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity are measured for surrogates that mimic atmospherically relevant oligomers, including glyoxal trimer dihydrate, methyl glyoxal trimer dihydrate, sucrose, methyl glyoxal mixtures with sulfuric acid and glycolic acid, and 2,4-hexandienal mixtures with sulfuric acid and glycolic acid. For the single-component aerosols, the measured HGF ranges from 1.3 to 1.4 at a relative humidity of 90%, and the hygroscopicity parameter (κ) is in the range of 0.06 to 0.19 on the basis of the measured CCN activity and 0.13 to 0.22 on the basis of the measured HGF, compared to the calculated values of 0.08 to 0.16. Large differences exist in the κ values derived using the measured HGF and CCN data for the multi-component aerosols. Our results reveal that, in contrast to the oxidation process, oligomerization decreases particle hygroscopicity and CCN activity and provides guidance for analyzing the organic species in ambient aerosols.

  20. Aerosol formation by ozonolysis of α- and β-pinene with initial concentrations below 1 ppb

    NASA Astrophysics Data System (ADS)

    Saathoff, Harald; Naumann, Karl-Heinz; Möhler, Ottmar

    2014-05-01

    Secondary organic aerosols (SOA) from the oxidation of biogenic volatile organic compounds (BVOC) are a large fraction of the tropospheric aerosol especially over tropical continental regions. The dominant SOA forming compounds are monoterpenes of which pinene is the most abundant. The reactions of monoterpenes with OH radicals, NO3 radicals, and ozone yield secondary organic aerosol mass in highly variable yields. Despite the various studies on SOA formation the influence of temperature and precursor concentrations on SOA yields are still major uncertainties in tropospheric aerosol models. In previous studies we observed a negative temperature dependence of SOA yields for SOA from ozonolysis α-pinene and limonene (Saathoff et al., 2009). However, this study as well as most of the literature data for measured SOA yields is limited to terpene concentrations of several ppb and higher (e.g. Bernard et al., 2012), hence about an order of magnitude higher than terpene concentrations even near their sources. Monoterpene concentrations in and above tropical or boral forests reach values up to a few tenth of a ppb during daytime decreasing rapidly with altitude in the boundary layer (Kesselmeier et al. 2000; Boy et al., 2004). Therefore we investigated the yield of SOA material from the ozonolysis of α- and β-pinene under simulated tropospheric conditions in the large aerosol chamber AIDA on time scales of several hours and for terpene concentrations between 0.1 and 1 ppb. The temperatures investigated were 243, 274, and 296 K with relative humidities ranging from 25% to 41%. The organic aerosol was generated by controlled oxidation with an excess of ozone (220-930 ppb) and the aerosol yield is calculated from size distributions measured with differential mobility analysers (SMPS, TSI, 3071 & 3080N) in the size range between 2 and 820 nm. On the basis of the measured initial particle size distribution, particle number concentration (CPC, TSI, 3775, 3776, 3022), and

  1. Recent Studies Investigating Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Weber, R. J.

    2009-05-01

    The metropolitan areas of Mexico City and Atlanta have very different emissions and meteorology, yet in both cities secondary organic aerosol (SOA) comprises a significant fraction of fine particle mass. SOA in Mexico City is predominately from anthropogenic emissions and a number of studies have investigated the role of dicarbonyl partitioning to aerosol liquid water as a SOA formation route [Volkamer et al., 2006; 2007]. Hennigan et al. [2008] noted a high correlation between SOA (measured as water-soluble organic carbon) and fine particle nitrate in Mexico City and used this to estimate the volatility of both species during periods of rapidly decreasing RH in late morning. Secondary aerosol may also form when particles are much drier. In Mexico City, both nitrate and SOA were also frequently observed and highly correlated in late afternoon when RH was below 30 percent. A thermodynamic model could reproduce the observed morning nitrate under high RH when equilibrium was between nitric acid and dissolved nitrate, whereas equilibrium between vapor and crystalline ammonium nitrate was predicted in the afternoon [Fountoukis et al., 2007]. By analogy, these results may suggest two different SOA partitioning mechanisms in Mexico City, occurring at different times of the day. In contrast, measurements suggest that SOA in the southeastern United States is largely from biogenic precursors, and there is evidence that liquid water also plays a role. The stability of dissolved organic aerosol in response to loss of liquid water is currently being investigated and preliminary data suggest that like Mexico City, there is some degree of volatility. Recent experiments comparing data from rural-urban sites shows that there are periods when anthropogenic emissions also substantially contribute to SOA in the Atlanta metropolitan region. However, the mechanisms, or organic precursors involved, are yet to be determined. Results from these various ongoing studies will be presented

  2. Global combustion sources of organic aerosols: model comparison with 84 AMS factor-analysis data sets

    NASA Astrophysics Data System (ADS)

    Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Pandis, Spyros N.; Lelieveld, Jos

    2016-07-01

    Emissions of organic compounds from biomass, biofuel, and fossil fuel combustion strongly influence the global atmospheric aerosol load. Some of the organics are directly released as primary organic aerosol (POA). Most are emitted in the gas phase and undergo chemical transformations (i.e., oxidation by hydroxyl radical) and form secondary organic aerosol (SOA). In this work we use the global chemistry climate model ECHAM/MESSy Atmospheric Chemistry (EMAC) with a computationally efficient module for the description of organic aerosol (OA) composition and evolution in the atmosphere (ORACLE). The tropospheric burden of open biomass and anthropogenic (fossil and biofuel) combustion particles is estimated to be 0.59 and 0.63 Tg, respectively, accounting for about 30 and 32 % of the total tropospheric OA load. About 30 % of the open biomass burning and 10 % of the anthropogenic combustion aerosols originate from direct particle emissions, whereas the rest is formed in the atmosphere. A comprehensive data set of aerosol mass spectrometer (AMS) measurements along with factor-analysis results from 84 field campaigns across the Northern Hemisphere are used to evaluate the model results. Both the AMS observations and the model results suggest that over urban areas both POA (25-40 %) and SOA (60-75 %) contribute substantially to the overall OA mass, whereas further downwind and in rural areas the POA concentrations decrease substantially and SOA dominates (80-85 %). EMAC does a reasonable job in reproducing POA and SOA levels during most of the year. However, it tends to underpredict POA and SOA concentrations during winter indicating that the model misses wintertime sources of OA (e.g., residential biofuel use) and SOA formation pathways (e.g., multiphase oxidation).

  3. Secondary Organic Aerosol Formation from Ambient Air in an Oxidation Flow Reactor at GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; de Sa, Suzane S.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei; Seco, Roger; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Yee, Lindsay; Isaacman-VanWertz, Gabrial; Goldstein, Allen; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    During GoAmazon2014/5, ambient air was exposed to controlled concentrations of OH or O3 in situ using an oxidation flow reactor (OFR). Oxidation ranged from hours-several weeks of aging. Oxidized air was sampled by several instruments (e.g., HR-AMS, ACSM, PTR-TOF-MS, SMPS, CCN) at both the T3 site (IOP1: Feb 1-Mar 31, 2014, and IOP2: Aug 15-Oct 15, 2014) and T2 site (between IOPs and into 2nd IOP). The oxidation of ambient air in the OFR led to substantial and variable secondary organic aerosol (SOA) formation from any SOA-precursor gases, known and unknown, that entered the OFR. In general, more SOA was produced during the nighttime than daytime, suggesting that SOA-precursor gases were found in relatively higher concentrations at night. Similarly, more SOA was formed in the dry season (IOP2) than wet season (IOP1). The maximum amount of SOA produced during nighttime from OH oxidation ranged from less than 1 μg/m3 on some nights to greater than 10 μg/m3 on other nights. O3 oxidation of ambient air also led to SOA formation, although several times less than from OH oxidation. The amount of SOA formation sometimes, but not always, correlated with measured gas-phase biogenic and/or anthropogenic SOA precursors (e.g., SV-TAG sesquiterpenes, PTR-TOFMS aromatics, isoprene, and monoterpenes). The SOA mass formed in the OFR from OH oxidation was up to an order of magnitude larger than could be explained from aerosol yields of measured primary VOCs. This along with measurements from previous campaigns suggests that most SOA was formed from intermediate S/IVOC sources (e.g., VOC oxidation products, evaporated POA, or direct emissions). To verify the SOA yields of VOCs under OFR experimental conditions, atmospherically-relevant concentrations of several VOCs were added individually into ambient air in the OFR and oxidized by OH or O3. SOA yields in the OFR were similar to published chamber yields. Preliminary PMF factor analysis showed production of secondary factors in

  4. Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Deng, W.; Hu, Q.; Ding, X.; Zhang, Y.; He, Q.; Zhang, Z.; Lü, S.; Bi, X.; Chen, J.; Yu, J.

    2015-04-01

    In China, fast increase in passenger vehicles has procured the growing concern about vehicle exhausts as an important source of anthropogenic secondary organic aerosols (SOA) in megacities hard-hit by haze. However, there are still no chamber simulation studies in China on SOA formation from vehicle exhausts. In this study, the SOA formation of emissions from two idling light-duty gasoline vehicles (LDGVs) (Euro 1 and Euro 4) in China was investigated in a 30 m3 smog chamber. Five photo-oxidation experiments were carried out at 25 °C with the relative humidity around 50%. After aging at an OH exposure of 5 × 106 molecules cm-3 h, the formed SOA was 12-259 times as high as primary OA (POA). The SOA production factors (PF) were 0.001-0.044 g kg-1 fuel, comparable with those from the previous studies at the quite similar OH exposure. This quite lower OH exposure than that in typical atmospheric condition might however lead to the underestimation of the SOA formation potential from LDGVs. Effective SOA yield data in this study were well fit by a one-product gas-particle partitioning model and quite lower than those of a previous study investigating SOA formation form three idling passenger vehicles (Euro 2-Euro 4). Traditional single-ring aromatic precursors and naphthalene could explain 51-90% of the formed SOA. Unspeciated species such as branched and cyclic alkanes might be the possible precursors for the unexplained SOA. A high-resolution time-of-flight aerosol mass spectrometer was used to characterize the chemical composition of SOA. The relationship between f43 (ratio of m/z 43, mostly C2H3O+, to the total signal in mass spectrum) and f44 (mostly CO2+) of the gasoline vehicle exhaust SOA is similar to the ambient semi-volatile oxygenated organic aerosol (SV-OOA). We plot the O : C and H : C molar ratios of SOA in a Van Krevelen diagram. The slopes of ΔH : C/ΔO : C ranged from -0.59 to -0.36, suggesting that the oxidation chemistry in these experiments was a

  5. VOC characteristics, emissions and contributions to SOA formation during hazy episodes

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Wu, Fangkun; Hu, Bo; Tang, Guiqian; Zhang, Junke; Wang, Yuesi

    2016-09-01

    Volatile organic compounds (VOC) are important precursors of secondary organic aerosols (SOA). The pollution processes in Beijing were investigated from 18th October to 6th November 2013 to study the characteristics, SOA formation potential and contributing factors of VOC during hazy episodes. The mean concentrations of VOC were 67.4 ± 33.3 μg m-3 on clear days and have 5-7-fold increase in polluted periods. VOC concentrations rapidly increased at a visibility range of 4-5 km with the rate of 25%/km in alkanes, alkenes and halocarbons and the rate of 45%/km in aromatics. Analysis of the mixing layer height (MLH); wind speed and ratios of benzene/toluene (B/T), ethylbenzene/m,p-xylene (E/X), and isopentane/n-pentane (i/n) under different visibility conditions revealed that the MLH and wind speed were the 2 major factors affecting the variability of VOC during clear days and that local emissions and photochemical reactions were main causes of VOC variation on polluted days. Combined with the fractional aerosol coefficient (FAC) method, the SOA formation potentials of alkanes, alkenes and aromatics were 0.3 ± 0.2 μg m-3, 1.1 ± 1.0 μg m-3 and 6.5 ± 6.4 μg m-3, respectively. As the visibility deteriorated, the SOA formation potential increased from 2.1 μg m-3 to 13.2 μg m-3, and the fraction of SOA-forming aromatics rapidly increased from 56.3% to 90.1%. Initial sources were resolved by a positive matrix factorization (PMF) model. Vehicle-related emissions were an important source of VOC at all visibility ranges, accounting for 23%-32%. As visibility declined, emissions from solvents and the chemical industry increased from 13.2% and 6.3% to 34.2% and 23.0%, respectively. Solvents had the greatest SOA formation ability, accounting for 52.5% on average on hazy days, followed by vehicle-related emissions (20.7%).

  6. Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; Nguyen, N. T.; Robertson, W. H.; Na, K.; Sahay, K. N.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2013-09-01

    Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices including diesel particulate filters (DPF), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOC). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle, Urban Dynamometer Driving Schedule, and creep+idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photo-oxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary and secondary fine particulate matter from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber - with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after three hours of oxidation at typical urban VOC : NOx ratios (3:1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the non-methane organic gas emissions that could not be speciated using traditional one-dimensional gas

  7. The STAR Grants Contribution to the SOAS Campaign

    EPA Science Inventory

    The Southern Oxidant and Aerosol Study (SOAS) is a community-led field campaign that was part of the Southeast Atmosphere Study (SAS). As one of the largest field studies in decades to characterize air quality in the Southeastern United States, SAS is a collaborative project invo...

  8. SOA governance in healthcare organisations.

    PubMed

    Koumaditis, Konstantinos; Themistocleous, Marinos; Vassilakopoulos, Georgios

    2013-01-01

    Service Oriented Architecture (SOA) is increasingly adopted by many sectors, including healthcare. Due to the nature of healthcare systems there is a need to increase SOA adoption success rates as the non integrated nature of healthcare systems is responsible for medical errors that cause the loss of tens of thousands patients per year. Following our previous research [1] we propose that SOA governance is a critical success factor for SOA success in healthcare. Literature reports multiple SOA governance models that have limitations and they are confusing. In addition to this, there is a lack of healthcare specific SOA governance models. This highlights a literature void and thus the purpose of this paper is to proposed a healthcare specific SOA governance framework.

  9. In-cloud processes of methacrolein under simulated conditions - Part 3: Hygroscopic and volatility properties of the formed Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Michaud, V.; El Haddad, I.; Liu, Y.; Sellegri, K.; Laj, P.; Villani, P.; Picard, D.; Marchand, N.; Monod, A.

    2009-03-01

    The hygroscopic and volatility properties of SOA produced from the nebulization of solutions after aqueous phase photooxidation of methacrolein was experimentally studied in laboratory, using a Volatility-Hygroscopicity Tandem DMA (VHTDMA). The obtained SOA were 80% 100°C-volatile after 5 h of reaction and only 20% 100°C-volatile after 22 h of reaction. The Hygroscopic Growth Factor (HGF) of the SOA produced from the nebulization of solutions after aqueous-phase photooxidation of methacrolein is 1.34-1.43, which is significantly higher than the HGF of SOA formed by gas-phase phtooxidation of terpenes, usually found nearly hydrophobic. These hygroscopic properties were confirmed for SOA formed by the nebulization of the same solutions where NaCl was added. The hygroscopic properties of the cloud droplet residuals decrease with the reaction time, in parallel with the formation of more refractory compounds. This decrease was mainly attributed to the 250°C-refractive fraction (presumably representative of the highest molecular weigh compounds), evolved from moderately hygroscopic (HGF of 1.52) to less hygroscopic (HGF of 1.36). Oligomerization is suggested as a process responsible for the decrease of both volatility and hygroscopicity with time. The NaCl seeded experiments enabled us to show that 19±4 mg L-1 of SOA was produced after 9.5 h of reaction and 41±9 mg L-1 after 22 h of in-cloud reaction. Because more and more SOA is formed as the reaction time increases, our results show that the reaction products formed during the aqueous-phase OH-oxidation of methacrolein may play a major role in the properties of residual particles upon droplet's evaporation. Therefore, the specific physical properties of SOA produced during cloud processes should be taken into account for a global estimation of SOA and their atmospheric impacts.

  10. Effects of inorganic seed aerosols on the particulate products of aged 1,3,5-trimethylbenzene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Huang, Mingqiang; Hao, Liqing; Cai, Shunyou; Gu, Xuejun; Zhang, Weixiong; Hu, Changjin; Wang, Zhenya; Fang, Li; Zhang, Weijun

    2017-03-01

    Inorganic aerosols such as (NH4)2SO4, NaNO3 and CaCl2 are commonly present in the Chinese urban atmosphere. They could significantly affect the formation and aging of ambient secondary organic aerosols (SOA), but the underlying mechanisms remain unknown. In this work we studied SOA formation from the photooxidation reaction of 1,3,5-trimethylbenzene (135-TMB) with 100 μg/m3 of the above three types of inorganic aerosols as seeds in a laboratory chamber. We focused on the aging products of SOA particles by exposing them to high levels of oxidizing hydroxyl radicals (OH). The particulate products of SOA were measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) and Fuzzy C-Means (FCM) were applied to organic mass spectra for clustering. In the presence of (NH4)2SO4 seeds, 4-methyl-1H-imidazole, 4-methyl-imidazole-2-acetaldehyde and other imidazole derivative compounds formed from reactions of NH4+ with methylglyoxal were detected as new aged products. We also observed aromatic nitrogen-containing organic compounds as the major aged products in the presence of NaNO3 seeds as a consequence of reaction with OH and NO2 radicals, which were generated by UV irradiation of acidic aqueous nitrate, inducing nitration reactions with phenolic compounds. As CaCl2 has the strongest hygroscopic properties of the three salt particles tested, the greater water content on the surface of the aerosol may facilitate the condensing of more gas-phase organic acid products to the hygroscopic CaCl2 seeds, forming H+ ions that catalyze the heterogeneous reaction of aldehydes, products of photooxidation of 135-TMB, and forming high-molecular-weight (HMW) compounds. These results provide new insight into the aromatic SOA aging mechanisms.

  11. Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides.

    PubMed

    Lin, Ying-Hsuan; Zhang, Haofei; Pye, Havala O T; Zhang, Zhenfa; Marth, Wendy J; Park, Sarah; Arashiro, Maiko; Cui, Tianqu; Budisulistiorini, Sri Hapsari; Sexton, Kenneth G; Vizuete, William; Xie, Ying; Luecken, Deborah J; Piletic, Ivan R; Edney, Edward O; Bartolotti, Libero J; Gold, Avram; Surratt, Jason D

    2013-04-23

    Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear. We present evidence from controlled smog chamber experiments and field measurements that in the presence of high levels of nitrogen oxides (NO(x) = NO + NO2) typical of urban atmospheres, 2-methyloxirane-2-carboxylic acid (methacrylic acid epoxide, MAE) is a precursor to known isoprene-derived SOA tracers, and ultimately to SOA. We propose that MAE arises from decomposition of the OH adduct of methacryloylperoxynitrate (MPAN). This hypothesis is supported by the similarity of SOA constituents derived from MAE to those from photooxidation of isoprene, methacrolein, and MPAN under high-NOx conditions. Strong support is further derived from computational chemistry calculations and Community Multiscale Air Quality model simulations, yielding predictions consistent with field observations. Field measurements taken in Chapel Hill, North Carolina, considered along with the modeling results indicate the atmospheric significance and relevance of MAE chemistry across the United States, especially in urban areas heavily impacted by isoprene emissions. Identification of MAE implies a major role of atmospheric epoxides in forming SOA from isoprene photooxidation. Updating current atmospheric modeling frameworks with MAE chemistry could improve the way that SOA has been attributed to isoprene based on ambient tracer measurements, and lead to SOA parameterizations that better capture the dependency of yield on NO(x).

  12. Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides

    PubMed Central

    Lin, Ying-Hsuan; Zhang, Haofei; Pye, Havala O. T.; Zhang, Zhenfa; Marth, Wendy J.; Park, Sarah; Arashiro, Maiko; Cui, Tianqu; Budisulistiorini, Sri Hapsari; Sexton, Kenneth G.; Vizuete, William; Xie, Ying; Luecken, Deborah J.; Piletic, Ivan R.; Edney, Edward O.; Bartolotti, Libero J.; Gold, Avram; Surratt, Jason D.

    2013-01-01

    Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear. We present evidence from controlled smog chamber experiments and field measurements that in the presence of high levels of nitrogen oxides (NOx = NO + NO2) typical of urban atmospheres, 2-methyloxirane-2-carboxylic acid (methacrylic acid epoxide, MAE) is a precursor to known isoprene-derived SOA tracers, and ultimately to SOA. We propose that MAE arises from decomposition of the OH adduct of methacryloylperoxynitrate (MPAN). This hypothesis is supported by the similarity of SOA constituents derived from MAE to those from photooxidation of isoprene, methacrolein, and MPAN under high-NOx conditions. Strong support is further derived from computational chemistry calculations and Community Multiscale Air Quality model simulations, yielding predictions consistent with field observations. Field measurements taken in Chapel Hill, North Carolina, considered along with the modeling results indicate the atmospheric significance and relevance of MAE chemistry across the United States, especially in urban areas heavily impacted by isoprene emissions. Identification of MAE implies a major role of atmospheric epoxides in forming SOA from isoprene photooxidation. Updating current atmospheric modeling frameworks with MAE chemistry could improve the way that SOA has been attributed to isoprene based on ambient tracer measurements, and lead to SOA parameterizations that better capture the dependency of yield on NOx. PMID:23553832

  13. Impacts of Oil and Gas Exploration Activities on SOA formation in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Vu, K. K. T.; Dingle, J. H.; Apel, E. C.; Blake, N. J.; Campos, T. L.; Cantrell, C. A.; Flocke, F. M.; Fried, A.; Herndon, S. C.; Hills, A. J.; Hornbrook, R. S.; Huey, L. G.; Kaser, L.; Mauldin, L.; Meinardi, S.; Montzka, D.; Nowak, J. B.; Richter, D.; Roscioli, J. R.; Schroeder, J.; Shertz, S.; Stell, M. H.; Tanner, D.; Tyndall, G. S.; Walega, J.; Weibring, P.; Weinheimer, A. J.

    2015-12-01

    Oil and gas exploration activities (O&G) in Wattenberg Field, located north of the Denver Metropolitan area, have expanded in the last few years. Although VOC emissions and the potential for ozone formation in the area from these sources have been studied previously, no information is available on the impact on secondary organic aerosol (SOA) formation. During the Front Range Air Pollution and Photochemistry Experiment (FRAPPE), airborne measurements of trace gases and aerosol composition were made in the northern Front Range during July-August 2014. We present analyses on evolution of organic aerosol (OA) and their precursors in order to assess the impact of urban vs. O&G emissions on SOA formation. Significant contribution of SOA to total OA was observed in pure urban and urban plumes mixed with O&G emissions. Under an OH-exposure of 2.8×1011 molecule cm-3 s, enhancement ratios of OA relative to carbon monoxide (ΔOA/ΔCO) increased by factors of ~3.6-5.4; however, (ΔSOA/ΔCO)urban+O&G was 87% higher than (ΔSOA/ΔCO)urban. Predicted ΔSOA/ΔCO values from the oxidation of C7-C11 alkanes, C6-C9 aromatics, and biogenics were about a factor of 10-15 too small compared to the measurements. Predicated alkane-derived SOA contributed to 38% (16%) of anthropogenic ΔSOA/ΔCO values in urban+O&G- (urban-) influenced air masses.

  14. Hydroxyl radicals from secondary organic aerosol decomposition in water

    NASA Astrophysics Data System (ADS)

    Tong, Haijie; Arangio, Andrea M.; Lakey, Pascale S. J.; Berkemeier, Thomas; Liu, Fobang; Kampf, Christopher. J.; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-04-01

    We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, and limonene) is ~ 0.1% upon extraction with pure water, and which increases to ~ 1.5% in the presence of iron ions due to Fenton-like reactions. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical hydrogen peroxide Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.

  15. Hydroxyl radicals from secondary organic aerosol decomposition in water

    NASA Astrophysics Data System (ADS)

    Tong, H.; Arangio, A. M.; Lakey, P. S. J.; Berkemeier, T.; Liu, F.; Kampf, C. J.; Pöschl, U.; Shiraiwa, M.

    2015-11-01

    We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, limonene) is ~ 0.1 % upon extraction with pure water and increases to ~ 1.5 % in the presence of Fe2+ ions due to Fenton-like reactions. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical H2O2 Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.

  16. Aerosol from Organic Nitrogen in the Southeast United States

    EPA Science Inventory

    Biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosol in the southeastern United States. During the Southern Oxidant and Aerosol Study (SOAS), a portion of ambient organic aerosol was attributed to isoprene oxidation and organic nitrogen from BVO...

  17. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  18. Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Deng, W.; Hu, Q.; Ding, X.; Zhang, Y.; He, Q.; Zhang, Z.; Lü, S.; Bi, X.; Chen, J.; Yu, J.

    2015-08-01

    In China, a rapid increase in passenger vehicles has led to the growing concern of vehicle exhaust as an important source of anthropogenic secondary organic aerosol (SOA) in megacities hard hit by haze. In this study, the SOA formation of emissions from two idling light-duty gasoline vehicles (LDGVs) (Euro 1 and Euro 4) operated in China was investigated in a 30 m3 smog chamber. Five photo-oxidation experiments were carried out at 25 °C with relative humidity at around 50 %. After aging at an OH exposure of 5 × 106 molecules cm-3 h, the formed SOA was 12-259 times as high as primary organic aerosol (POA). The SOA production factors (PF) were 0.001-0.044 g kg-1 fuel, comparable with those from the previous studies at comparable OH exposure. This quite lower OH exposure than that in typical atmospheric conditions might however lead to the underestimation of the SOA formation potential from LDGVs. Effective SOA yields in this study were well fit by a one-product gas-particle partitioning model but quite lower than those of a previous study investigating SOA formation from three idling passenger vehicles (Euro 2-4). Traditional single-ring aromatic precursors and naphthalene could explain 51-90 % of the formed SOA. Unspeciated species such as branched and cyclic alkanes might be the possible precursors for the unexplained SOA. A high-resolution time-of-flight aerosol mass spectrometer was used to characterize the chemical composition of SOA. The relationship between f43 (ratio of m/z 43, mostly C2H3O+, to the total signal in mass spectrum) and f44 (mostly CO2+) of the gasoline vehicle exhaust SOA is similar to the ambient semi-volatile oxygenated organic aerosol (SV-OOA). We plot the O : C and H : C molar ratios of SOA in a Van Krevelen diagram. The slopes of ΔH : C / ΔO : C ranged from -0.59 to -0.36, suggesting that the oxidation chemistry in these experiments was a combination of carboxylic acid and alcohol/peroxide formation.

  19. FTIR Analysis of Functional Groups in Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Shokri, S. M.; McKenzie, G.; Dransfield, T. J.

    2012-12-01

    Secondary organic aerosols (SOA) are suspensions of particulate matter composed of compounds formed from chemical reactions of organic species in the atmosphere. Atmospheric particulate matter can have impacts on climate, the environment and human health. Standardized techniques to analyze the characteristics and composition of complex secondary organic aerosols are necessary to further investigate the formation of SOA and provide a better understanding of the reaction pathways of organic species in the atmosphere. While Aerosol Mass Spectrometry (AMS) can provide detailed information about the elemental composition of a sample, it reveals little about the chemical moieties which make up the particles. This work probes aerosol particles deposited on Teflon filters using FTIR, based on the protocols of Russell, et al. (Journal of Geophysical Research - Atmospheres, 114, 2009) and the spectral fitting algorithm of Takahama, et al (submitted, 2012). To validate the necessary calibration curves for the analysis of complex samples, primary aerosols of key compounds (e.g., citric acid, ammonium sulfate, sodium benzoate) were generated, and the accumulated masses of the aerosol samples were related to their IR absorption intensity. These validated calibration curves were then used to classify and quantify functional groups in SOA samples generated in chamber studies by MIT's Kroll group. The fitting algorithm currently quantifies the following functionalities: alcohols, alkanes, alkenes, amines, aromatics, carbonyls and carboxylic acids.

  20. Secondary organic aerosol production from aqueous photooxidation of glycolaldehyde: Laboratory experiments

    NASA Astrophysics Data System (ADS)

    Perri, Mark J.; Seitzinger, Sybil; Turpin, Barbara J.

    Organic particulate matter (PM) formed in the atmosphere (secondary organic aerosol; SOA) is a substantial yet poorly understood contributor to atmospheric PM. Aqueous photooxidation in clouds, fogs and aerosols is a newly recognized SOA formation pathway. This study investigates the potential for aqueous glycolaldehyde oxidation to produce low volatility products that contribute SOA mass. To our knowledge, this is the first confirmation that aqueous oxidation of glycolaldehyde via the hydroxyl radical forms glyoxal and glycolic acid, as previously assumed. Subsequent reactions form formic acid, glyoxylic acid, and oxalic acid as expected. Unexpected products include malonic acid, succinic acid, and higher molecular weight compounds, including oligomers. Due to (1) the large source strength of glycolaldehyde from precursors such as isoprene and ethene, (2) its water solubility, and (3) the aqueous formation of low volatility products (organic acids and oligomers), we predict that aqueous photooxidation of glycolaldehyde and other aldehydes in cloud, fog, and aerosol water is an important source of SOA and that incorporation of this SOA formation pathway in chemical transport models will help explain the current under-prediction of organic PM concentrations.

  1. Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions on SOA Loadings and their Spatial and Temporal Evolution in the Atmosphere

    SciTech Connect

    Shrivastava, ManishKumar B.; Zelenyuk, Alla; Imre, Dan; Easter, Richard C.; Beranek, Josef; Zaveri, Rahul A.; Fast, Jerome D.

    2013-04-27

    Recent laboratory and field measurements by a number of groups show that secondary organic aerosol (SOA) evaporates orders of magnitude slower than traditional models assume. In addition, chemical transport models using volatility basis set (VBS) SOA schemes neglect gas-phase fragmentation reactions, which are known to be extremely important. In this work, we present modeling studies to investigate the implications of non-evaporating SOA and gas-phase fragmentation reactions. Using the 3-D chemical transport model, WRF-Chem, we show that previous parameterizations, which neglect fragmentation during multi-generational gas-phase chemistry of semi-volatile/inter-mediate volatility organics ("aging SIVOC"), significantly over-predict SOA as compared to aircraft measurements downwind of Mexico City. In sharp contrast, the revised models, which include gas-phase fragmentation, show much better agreement with measurements downwind of Mexico City. We also demonstrate complex differences in spatial SOA distributions when we transform SOA to non-volatile secondary organic aerosol (NVSOA) to account for experimental observations. Using a simple box model, we show that for same amount of SOA precursors, earlier models that do not employ multi-generation gas-phase chemistry of precursors ("non-aging SIVOC"), produce orders of magnitude lower SOA than "aging SIVOC" parameterizations both with and without fragmentation. In addition, traditional absorptive partitioning models predict almost complete SOA evaporation at farther downwind locations for both "non-aging SIVOC" and "aging SIVOC" with fragmentation. In contrast, in our revised approach, SOA transformed to NVSOA implies significantly higher background concentrations as it remains in particle phase even under highly dilute conditions. This work has significant implications on understanding the role of multi-generational chemistry and NVSOA formation on SOA evolution in the atmosphere.

  2. Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia

    SciTech Connect

    Flores, J. M.; Washenfelder, Rebecca; Adler, Gabriela; Lee, H-J; Segev, Lior; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey; Brown, Steven; Rudich, Yinon

    2014-05-14

    Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions for the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (α-pinene, limonene, and α-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360 – 420 nm range for these aerosols using broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged α-pinene SOA increased from n = 1.50 (±0.01) for the unreacted SOA to n = 1.57 (± 0.01) after a 1.5h exposure to 1.9 ppm NH3; whereas,the imaginary component (k) remained below k < 0.001 (± 0.002). For the limonene and α-humulene SOA the real part did not change significantly, and we observed a small change in the imaginary component of the RI. The imaginary component increased from k = 0.0 to an average k= 0.029 (± 0.021) for α-humulene SOA, and from k < 0.001 (± 0.002) to an average k = 0.032 (±0.019) for limonene SOA after a 1.5 h exposure to 1.3 and 1.9 ppm of NH3, respectively. Collected filter samples of the aged and unreacted α-pinene SOA and limonene SOA were analyzed off-line with nanospray desorption electrospray ionization high resolution mass spectrometry (nano-DESI/HR-MS), and in-situ with a Time-of-Fligh Aerosol Mass Spectrometer, confirming that the SOA reacted and that various nitrogen-containing reaction products formed. If we assume that NH3 aging reactions scale linearly with time and concentration, then a 1.5 h reaction with 1 ppm NH3 in the laboratory is equivalent to 24 h reaction with 63 ppbv NH3, indicating that the observed aerosol absorption will be limited

  3. Primary to secondary organic aerosol: evolution of organic emissions from mobile combustion sources

    NASA Astrophysics Data System (ADS)

    Presto, A. A.; Gordon, T. D.; Robinson, A. L.

    2014-05-01

    A series of smog chamber experiments were conducted to investigate the transformation of primary organic aerosol (POA) and formation of secondary organic aerosol (SOA) during the photooxidation of dilute exhaust from a fleet of gasoline and diesel motor vehicles and two gas-turbine engines. In experiments where POA was present in the chamber at the onset of photooxidation, positive matrix factorization (PMF) was used to determine separate POA and SOA factors from aerosol mass spectrometer data. A 2-factor solution, with one POA factor and one SOA factor, was sufficient to describe the organic aerosol for gasoline vehicles, diesel vehicles, and one of the gas-turbine engines. Experiments with the second gas-turbine engine required a 3-factor PMF solution with a POA factor and two SOA factors. Results from the PMF analysis were compared to the residual method for determining SOA and POA mass concentrations. The residual method apportioned a larger fraction of the organic aerosol mass as POA because it assumes that all mass at m / z 57 is associated with POA. The POA mass spectrum for the gasoline and diesel vehicles exhibited high abundances of the CnH2n+1 series of ions (m / z 43, 57, etc.) and was similar to the mass spectra of the hydrocarbon-like organic aerosol factor determined from ambient data sets with one exception, a diesel vehicle equipped with a diesel oxidation catalyst. POA mass spectra for the gas-turbine engines are enriched in the CnH2n-1 series of ions (m / z 41, 55, etc.), consistent with the composition of the lubricating oil used in these engines. The SOA formed from the three sources exhibits high abundances of m / z 44 and 43, indicative of mild oxidation. The SOA mass spectra are consistent with less-oxidized ambient SV-OOA (semivolatile oxygenated organic aerosols) and fall within the triangular region of f44 versus f43 defined by ambient measurements. However there is poor absolute agreement between the experimentally derived SOA mass

  4. High-time resolved measurements of biogenic and anthropogenic secondary organic aerosol precursors and products in urban air

    NASA Astrophysics Data System (ADS)

    Flores, Rosa M.; Doskey, Paul V.

    2016-04-01

    Volatile organic compounds (VOCs), which are present in the atmosphere entirely in the gas phase are directly emitted by biogenic (~1089 Tg yr-1) and anthropogenic sources (~185 Tg yr-1). However, the sources and molecular speciation of intermediate VOCs (IVOCs), which are for the most part also present almost entirely in the gas phase, are not well characterized. The VOCs and IVOCs participate in reactions that form ozone and semivolatile OC (SVOC) that partition into the aerosol phase. Formation and evolution of secondary organic aerosol (SOA) are part of a complex dynamic process that depends on the molecular speciation and concentration of VOCs, IVOCs, primary organic aerosol (POA), and the level of oxidants (NO3, OH, O3). The current lack of understanding of OA properties and their impact on radiative forcing, ecosystems, and human health is partly due to limitations of models to predict SOA production on local, regional, and global scales. More accurate forecasting of SOA production requires high-temporal resolution measurement and molecular characterization of SOA precursors and products. For the subject study, the IVOCs and aerosol-phase organic matter were collected using the high-volume sampling technique and were analyzed by multidimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToFMS). The IVOCs included terpenes, terpenoids, n-alkanes, branched alkanes, isoprenoids, alkylbenzenes, cycloalkylbenzenes, PAH, alkyl PAH, and an unresolved complex mixture (UCM). Diurnal variations of OA species containing multiple oxygenated functionalities and selected SOA tracers of isorprene, α-pinene, toluene, cyclohexene, and n-dodecane oxidation were also quantified. The data for SOA precursor and oxidation products presented here will be useful for evaluating the ability of molecular-specific SOA models to forecast SOA production in and downwind of urban areas.

  5. Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D. N.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-06-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.

  6. A Study of Cloud Processing of Organic Aerosols Using Models and CHAPS Data

    SciTech Connect

    Ervens, Barbara

    2012-01-17

    The main theme of our work has been the identification of parameters that mostly affect the formation and modification of aerosol particles and their interaction with water vapor. Our detailed process model studies led to simplifications/parameterizations of these effects that bridge detailed aerosol information from laboratory and field studies and the need for computationally efficient expressions in complex atmospheric models. One focus of our studies has been organic aerosol mass that is formed in the atmosphere by physical and/or chemical processes (secondary organic aerosol, SOA) and represents a large fraction of atmospheric particulate matter. Most current models only describe SOA formation by condensation of low volatility (or semivolatile) gas phase products and neglect processes in the aqueous phase of particles or cloud droplets that differently affect aerosol size and vertical distribution and chemical composition (hygroscopicity). We developed and applied models of aqueous phase SOA formation in cloud droplets and aerosol particles (aqSOA). Placing our model results into the context of laboratory, model and field studies suggests a potentially significant contribution of aqSOA to the global organic mass loading. The second focus of our work has been the analysis of ambient data of particles that might act as cloud condensation nuclei (CCN) at different locations and emission scenarios. Our model studies showed that the description of particle chemical composition and mixing state can often be greatly simplified, in particular in aged aerosol. While over the past years many CCN studies have been successful performed by using such simplified composition/mixing state assumptions, much more uncertainty exists in aerosol-cloud interactions in cold clouds (ice or mixed-phase). Therefore we extended our parcel model that describes warm cloud formation by ice microphysics and explored microphysical parameters that determine the phase state and lifetime of

  7. Incremental Reactivity Effects on Secondary Organic Aerosol Formation in Urban Atmospheres with and without Biogenic Influence

    NASA Astrophysics Data System (ADS)

    Kacarab, Mary; Li, Lijie; Carter, William P. L.; Cocker, David R., III

    2016-04-01

    Two different surrogate mixtures of anthropogenic and biogenic volatile organic compounds (VOCs) were developed to study secondary organic aerosol (SOA) formation at atmospheric reactivities similar to urban regions with varying biogenic influence levels. Environmental chamber simulations were designed to enable the study of the incremental aerosol formation from select anthropogenic (m-Xylene, 1,2,4-Trimethylbenzene, and 1-Methylnaphthalene) and biogenic (α-pinene) precursors under the chemical reactivity set by the two different surrogate mixtures. The surrogate reactive organic gas (ROG) mixtures were based on that used to develop the maximum incremental reactivity (MIR) factors for evaluation of O3 forming potential. Multiple incremental aerosol formation experiments were performed in the University of California Riverside (UCR) College of Engineering Center for Environmental Research and Technology (CE-CERT) dual 90m3 environmental chambers. Incremental aerosol yields were determined for each of the VOCs studied and compared to yields found from single precursor studies. Aerosol physical properties of density, volatility, and hygroscopicity were monitored throughout experiments. Bulk elemental chemical composition from high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) data will also be presented. Incremental yields and SOA chemical and physical characteristics will be compared with data from previous single VOC studies conducted for these aerosol precursors following traditional VOC/NOx chamber experiments. Evaluation of the incremental effects of VOCs on SOA formation and properties are paramount in evaluating how to best extrapolate environmental chamber observations to the ambient atmosphere and provides useful insights into current SOA formation models. Further, the comparison of incremental SOA from VOCs in varying surrogate urban atmospheres (with and without strong biogenic influence) allows for a unique perspective on the impacts

  8. Infrared spectroscopy and Mie scattering of acetylene aerosols formed in a low temperature diffusion cell

    NASA Technical Reports Server (NTRS)

    Dunder, T.; Miller, R. E.

    1990-01-01

    A method is described for forming and spectroscopically characterizing cryogenic aerosols formed in a low temperature gas cell. By adjusting the cell pressure, gas composition and flow rate, the size distribution of aerosol particles can be varied over a wide range. The combination of pressure and flow rate determine the residence time of the aerosols in the cell and hence the time available for the particles to grow. FTIR spectroscopy, over the range from 600/cm to 6000/cm, is used to characterize the aerosols. The particle size distribution can be varied so that, at one extreme, the spectra show only absorption features associated with the infrared active vibrational bands and, at the other, they display both absorption and Mie scattering. In the latter case, Mie scattering theory is used to obtain semiquantitative aerosol size distributions, which can be understood in terms of the interplay between nucleation and condensation. In the case of acetylene aerosols, the infrared spectra suggest that the particles exist in the high temperature cubic phase of the solid.

  9. Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM2.5 collected from the Birmingham, Alabama, ground site during the 2013 Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Rattanavaraha, Weruka; Chu, Kevin; Hapsari Budisulistiorini, Sri; Riva, Matthieu; Lin, Ying-Hsuan; Edgerton, Eric S.; Baumann, Karsten; Shaw, Stephanie L.; Guo, Hongyu; King, Laura; Weber, Rodney J.; Neff, Miranda E.; Stone, Elizabeth A.; Offenberg, John H.; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.

    2016-04-01

    In the southeastern US, substantial emissions of isoprene from deciduous trees undergo atmospheric oxidation to form secondary organic aerosol (SOA) that contributes to fine particulate matter (PM2.5). Laboratory studies have revealed that anthropogenic pollutants, such as sulfur dioxide (SO2), oxides of nitrogen (NOx), and aerosol acidity, can enhance SOA formation from the hydroxyl radical (OH)-initiated oxidation of isoprene; however, the mechanisms by which specific pollutants enhance isoprene SOA in ambient PM2.5 remain unclear. As one aspect of an investigation to examine how anthropogenic pollutants influence isoprene-derived SOA formation, high-volume PM2.5 filter samples were collected at the Birmingham, Alabama (BHM), ground site during the 2013 Southern Oxidant and Aerosol Study (SOAS). Sample extracts were analyzed by gas chromatography-electron ionization-mass spectrometry (GC/EI-MS) with prior trimethylsilylation and ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) to identify known isoprene SOA tracers. Tracers quantified using both surrogate and authentic standards were compared with collocated gas- and particle-phase data as well as meteorological data provided by the Southeastern Aerosol Research and Characterization (SEARCH) network to assess the impact of anthropogenic pollution on isoprene-derived SOA formation. Results of this study reveal that isoprene-derived SOA tracers contribute a substantial mass fraction of organic matter (OM) ( ˜ 7 to ˜ 20 %). Isoprene-derived SOA tracers correlated with sulfate (SO42-) (r2 = 0.34, n = 117) but not with NOx. Moderate correlations between methacrylic acid epoxide and hydroxymethyl-methyl-α-lactone (together abbreviated MAE/HMML)-derived SOA tracers with nitrate radical production (P[NO3]) (r2 = 0.57, n = 40) were observed during nighttime, suggesting a potential role of the NO3 radical in

  10. Evolution of the complex refractive index in the near UV spectral region in ageing secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Flores, J. M.; Zhao, D. F.; Segev, L.; Schlag, P.; Kiendler-Scharr, A.; Fuchs, H.; Watne, Å. K.; Bluvshtein, N.; Mentel, Th. F.; Hallquist, M.; Rudich, Y.

    2014-02-01

    The chemical and physical properties of secondary organic aerosol (SOA) formed by the photochemical degradation of biogenic and anthropogenic volatile organic compounds (VOC) are yet poorly constrained. The evolution of the complex refractive index (RI) of SOA, formed from purely biogenic VOC and mixtures of biogenic and anthropogenic VOC was studied over a diurnal cycle in the SAPHIR photochemical outdoor chamber in Jülich, Germany. The correlation of RI with SOA chemical and physical properties such as oxidation level and volatility was examined. The RI was retrieved by a newly developed broadband cavity enhanced spectrometer for aerosol optical extinction measurements in the near UV spectral region (360 to 420 nm). Chemical composition and volatility of the particles were monitored by a high resolution time of flight aerosol mass spectrometer, and a volatility tandem differential mobility analyzer. SOA was formed by ozonolysis of either (i) a mixture of biogenic VOC (α-pinene and limonene), (ii) biogenic VOC mixture with subsequent addition of an anthropogenic VOC (p-xylene-d10), or (iii) a mixture of biogenic and anthropogenic VOC. The SOA aged by ozone / OH reactions up to 29.5 h was found to be non-absorbing in all cases. The SOA with p-xylene-d10 showed an increase of the scattering component of the RI correlated with an increase of the O / C ratio and with an increase in the SOA density. There was a greater increase in the scattering component of the RI when the SOA was produced from the mixture of biogenic VOCs and anthropogenic VOC than from the sequential addition of the VOCs after the approximate same ageing time. The increase of the scattering component was inversely correlated with the SOA volatility. Two RI retrievals determined for the pure biogenic SOA showed a constant RI for up to 5 h of ageing. Mass spectral characterization shows the three types of the SOA formed in this study have significant amount of semivolatile components. The influence

  11. Effect of SO2 concentration on SOA formation in a photorreactor from a mixture of anthropogenic hydrocarbons and HONO

    NASA Astrophysics Data System (ADS)

    García Vivanco, Marta; Santiago, Manuel; García Diego, Cristina; Borrás, Esther; Ródenas, Milagros; Martínez-Tarifa, Adela

    2010-05-01

    Sulfur dioxide (SO2) is an important urban atmospheric pollutant, mainly produced by the combustion of fossil fuels containing sulfur. In the atmosphere, SO2 can react with OH radicals to form sulfuric acid, which can condense to form acidic aerosol. Sulfuric acid particles act as an acid catalyst for some heterogeneous carbonyl reactions like hydration, polymerization or acetals formation, which may lead to a large increase on SOA mass. In order to evaluate the effect of the SO2 concentration on SOA formation, 3 experiments were performed during the campaign carried out by CIEMAT on the EUPHORE facility (CEAM, Valencia, Spain) during June- July 2008. The objective of the campaign was to evaluate the effect of different experimental conditions on SOA formation from the photooxidation of some anthropogenic and biogenic VOCs using HONO as oxidant. Experiment on 6/17/08 was selected as base case (no SO2 was introduced) and experiments 6/26/08 and 7/1/08 were selected as high SO2 (2600 ug/m3) and low SO2 (60 ug/m3) concentration experiments respectively. In the three experiments a mixture of toluene, 1,3,5-TMB (trimethylbenzene), o-xylene and octane was selected as the parent VOCs. Single and coupled to mass spectroscopy gas cromatography (GC and GC/MS), as well as high performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR) were used to measure the initial VOCs and oxidant concentrations decay and the formation of gas phase oxidation products through the experiments. Aerosol size distribution and concentration were measured with SMPS (scanning mobility particle sizer) and TEOM (tapered element oscillating monitor) respectively. In addition, analysis of the organic and inorganic aerosol content was also performed via filter sampling followed by GC/MS and ionic chromatography (for organic and inrganic content respectively). Comparing the filters collected in the three experiments, clearly the largest mass aerosol formation is observed

  12. Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: A contrast in secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolu; Lin, Ying-Hsuan; Surratt, Jason D.; Zotter, Peter; Prévôt, Andre S. H.; Weber, Rodney J.

    2011-11-01

    Light absorption spectra and carbon mass of fine particle water-soluble components were measured during the summer of 2010 in the Los Angeles (LA) basin, California, and Atlanta, Georgia. Fresh LA secondary organic carbon had a consistent brown color and a bulk absorption per soluble carbon mass at 365 nm that was 4 to 6 times higher than freshly-formed Atlanta soluble organic carbon. Radiocarbon measurements of filter samples show that LA secondary organic aerosol (SOA) was mainly from fossil carbon and chemical analysis of aqueous filter extracts identified nitro-aromatics as one component of LA brown SOA. Interpreting soluble brown carbon as a property of freshly-formed anthropogenic SOA, the difference in absorption per carbon mass between these two cities suggests most fresh secondary water-soluble organic carbon formed within Atlanta is not from an anthropogenic process similar to LA. Contrasting emissions of biogenic volatile organic compounds may account for these differences.

  13. Particle size analysis of radioactive aerosols formed by irradiation of argon using 65 MeV quasi-monoenergetic neutrons.

    PubMed

    Endo, A; Noguchi, H; Tanaka, Su; Kanda, Y; Oki, Y; Iida, T; Sato, K; Tsuda, S

    2002-04-01

    The size distributions of 38Cl and 39Cl aerosols formed from the irradiation of argon gas containing di-octyl phthalate (DOP) aerosols by 65 MeV quasi-monoenergetic neutrons were measured to study the formation mechanism of radioactive aerosols in high-energy radiation fields. Both the number size distribution and the activity-weighted size distribution were measured using an electrical low-pressure impactor. It was found that the 35Cl and 39Cl aerosols are formed by attachment of the radioactive atoms generated by the neutron-induced reaction to the DOP aerosol particles.

  14. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2014-05-01

    The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter (PM) after 3 h of oxidation inside the chamber at typical atmospheric oxidant levels (and 5 times the amount of SOA as primary PM after 5 × 106 molecules cm-3 h of OH exposure). Therefore, the contribution of light-duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photooxidizing exhaust from newer (LEV2) vehicles was a factor of 3 lower than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions (a factor of 11-15) in nonmethane organic gas emissions. These data suggest that a complex and nonlinear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the timescale of these experiments, the mixture of organic vapors

  15. Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation

    NASA Astrophysics Data System (ADS)

    Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.

    2015-02-01

    Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.

  16. Oil Sands Operations in Alberta, Canada: A large source of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S. M.; Hayden, K.; Taha, Y. M.; Stroud, C.; Darlington, A. L.; Drollette, B.; Gordon, M.; Lee, P.; Liu, P.; Leithead, A.; Moussa, S.; Wang, D.; O'Brien, J.; Mittermeier, R. L.; Brook, J.; Lu, G.; Staebler, R. M.; Han, Y.; Tokarek, T. W.; Osthoff, H. D.; Makar, P.; Zhang, J.; Plata, D.; Gentner, D. R.

    2015-12-01

    Little is known of the reaction products of emissions to the atmosphere from extraction of oil from unconventional sources in the oil sands (OS) region of Alberta, Canada. This study examines these reaction products, and in particular, the extent to which they form secondary organic aerosol (SOA), which can significantly contribute to regional particulate matter formation. An aircraft measurement campaign was conducted over the Athabasca oil sands region between August 13 and September 7, 2013. A broad suite of measurements were made during 22 flights, including organic aerosol mass and composition with a High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and organic aerosol gas-phase precursors by Proton Transfer Reaction (PTR) and off-line gas chromatography mass spectrometry. Large concentrations of organic aerosol were measured downwind of the OS region, which we show to be entirely secondary in nature. Laboratory experiments demonstrated that bitumen (the mined product) contains semi-volatile vapours in the C12-C18 range that will be emitted at ambient temperatures. When oxidized, these vapours form SOA with highly similar HR-ToF-AMS spectra to the SOA measured in the flights. Box modelling of the OS plume evolution indicated that the measured levels of traditional volatile organic compounds (VOCs) are not capable of accounting for the amount of SOA formed in OS plumes. This discrepancy is only reconciled in the model by including bitumen vapours along with their oxidation and condensation into the model. The concentration of bitumen vapours required to produce SOA matching observations is similar to that of traditional VOC precursors of SOA. It was further estimated that the cumulative SOA mass formation approximately 100 km downwind of the OS during these flights, and under these meteorological conditions was up to 82 tonnes/day. The combination of airborne measurements, laboratory experiments and box modelling indicated that semi

  17. Oligomer and SOA formation through aqueous phase photooxidation of methacrolein and methyl vinyl ketone

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Siekmann, Frank; Renard, Pascal; El Zein, Atallah; Salque, Guillaume; El Haddad, Imad; Temime-Roussel, Brice; Voisin, Didier; Thissen, Roland; Monod, Anne

    2012-03-01

    This work investigates the ability of methacrolein (MACR) and methyl vinyl ketone (MVK) (the two main gas phase atmospheric oxidation products of isoprene) to form oligomers and secondary organic aerosol (SOA) upon aqueous phase OH-oxidation and subsequent water evaporation. For the two precursors, electrospray mass spectrometry (in infusion and coupled to liquid chromatography) analysis of the reacting solutions brought clear evidence for the formation of oligomer systems having a mass range of up to 1400 Da. More than 11 series of oligomers were found. For MVK, the intensity and masses of oligomers became increasingly important as MVK initial concentrations increased from 0.2 to 20 mM. For both precursors, the oligomers were responsible for the SOA formation during nebulization experiments. The evaluated SOA mass yield ranged from 3.9 to 9.9% for MVK. These yields were time dependent and were in good agreement with the range (1.6-11.7%) obtained for MACR under the same conditions by El Haddad et al. (2009).

  18. Secondary Organic Aerosol Formation from Ultra-Low Super Ultra-Low and Partial Zero Emission Vehicle Exhaust

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Zhao, Y.; Lambe, A. T.; Saleh, R.; Saliba, G.; Maldonado, H.; Sardar, S.; Frodin, B.; Drozd, G.; Goldstein, A. H.; Kroll, J. H.; Cross, E. S.; Franklin, J. P.

    2015-12-01

    Secondary organic aerosol (SOA) is the dominant component of organic aerosol in many urban areas during the summertime. On-road light duty gasoline vehicles (LDGV) have been indicated as a major source of SOA precursors. Emissions of the SOA-forming non methane hydrocarbons (NMHCs) from on-road LDGV have been substantially reduced along with more stringent emission standards, leading to reduced potential for SOA formation. However, recent smog chamber measurements reported that the reductions in SOA formation were less than those in NMHC emissions, indicating that newer, low emitting vehicles may emit a more efficient of SOA precursors. Vehicles that meet the ultra-low, super ultra-low and partial zero emission standards have substantially lower NMHC emissions than vehicles tested in past studies. To better understand the effects of more stringent emission controls on the SOA formation, we conducted experiments 13 vehicles recruited from the Southern California vehicle fleet (five ultra-low emission vehicles, four super ultra-low emission vehicles and four partial zero emission vehicles) at the California Air Resources Board Haagen-Smit Laboratory. In addition, we investigated several vehicles compliant with older emission standards have also been investigated here to bridge the previous studies. Dilute vehicle exhaust were photo-oxidized in a smog chamber with the VOC-to-NOx ratio adjusted to simulate the photochemistry in urban air. Application of literature data from single-ring aromatic compounds cannot explain the observed SOA during chamber experiments. The average ratios between estimated and measured SOA for vehicles under different emission standards ranged from 0.04 to 0.71. Comprehensive measurements of SOA precursor emissions were made, including NMHCs, intermediate volatility and semi-volatile organic compounds. This study presents results of SOA production from these low emitting vehicles and compares the results with recently published data. This

  19. Evaporation kinetics of laboratory-generated secondary organic aerosols at elevated relative humidity.

    PubMed

    Wilson, Jacqueline; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla

    2015-01-06

    Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semisolid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on α-pinene SOA particles generated, evaporated, and aged at <5%, 50 and 90% RH, and on limonene SOA particles at <5% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30-70% of the particle mass evaporates in 2 h, followed by a much slower evaporation rate. Evaporation kinetics at <5% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses; with aging at elevated RH leading to a more significant effect. In all cases, the observed SOA evaporation is nearly size-independent.

  20. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multi-layer model ADCHAM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

    2014-01-01

    We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: (1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), (2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and (3) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. These salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar like amorphous phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if low-volatility and viscous oligomerized SOA material accumulates in the particle surface layer upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass transfer limited uptake of condensable organic compounds onto wall deposited particles or directly onto the Teflon chamber walls of smog chambers can have profound influence on the

  1. Effects of seed aerosols on the growth of secondary organic aerosols from the photooxidation of toluene.

    PubMed

    Hao, Li-qing; Wang, Zhen-ya; Huang, Ming-qiang; Fang, Li; Zhang, Wei-jun

    2007-01-01

    Hydroxyl radical (.OH)-initiated photooxidation reaction of toluene was carried out in a self-made smog chamber. Four individual seed aerosols such as ammonium sulfate, ammonium nitrate, sodium silicate and calcium chloride, were introduced into the chamber to assess their influence on the growth of secondary organic aerosols (SOA). It was found that the low concentration of seed aerosols might lead to high concentration of SOA particles. Seed aerosols would promote rates of SOA formation at the start of the reaction and inhibit its formation rate with prolonging the reaction time. In the case of ca. 9000 pt/cm3 seed aerosol load, the addition of sodium silicate induced a same effect on the SOA formation as ammonium nitrate. The influence of the four individual seed aerosols on the generation of SOA decreased in the order of calcium chloride>sodium silicate and ammonium nitrate>ammonium sulfate.

  2. Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS

    DOE PAGES

    Woody, Matthew C.; Baker, Kirk R.; Hayes, Patrick L.; ...

    2016-03-29

    Community Multiscale Air Quality (CMAQ) model simulations utilizing the traditional organic aerosol (OA) treatment (CMAQ-AE6) and a volatility basis set (VBS) treatment for OA (CMAQ-VBS) were evaluated against measurements collected at routine monitoring networks (Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE)) and those collected during the 2010 California at the Nexus of Air Quality and Climate Change (CalNex) field campaign to examine important sources of OA in southern California. Traditionally, CMAQ treats primary organic aerosol (POA) as nonvolatile and uses a two-product framework to represent secondary organic aerosol (SOA) formation. CMAQ-VBS instead treats POA asmore » semivolatile and lumps OA using volatility bins spaced an order of magnitude apart. The CMAQ-VBS approach underpredicted organic carbon (OC) at IMPROVE and CSN sites to a greater degree than CMAQ-AE6 due to the semivolatile POA treatment. However, comparisons to aerosol mass spectrometer (AMS) measurements collected at Pasadena, CA, indicated that CMAQ-VBS better represented the diurnal profile and primary/secondary split of OA. CMAQ-VBS SOA underpredicted the average measured AMS oxygenated organic aerosol (OOA, a surrogate for SOA) concentration by a factor of 5.2, representing a considerable improvement to CMAQ-AE6 SOA predictions (factor of 24 lower than AMS). We use two new methods, one based on species ratios (SOA/ΔCO and SOA/Ox) and another on a simplified SOA parameterization, to apportion the SOA underprediction for CMAQ-VBS to slow photochemical oxidation (estimated as 1.5 ×  lower than observed at Pasadena using −log(NOx : NOy)), low intrinsic SOA formation efficiency (low by 1.6 to 2 ×  for Pasadena), and low emissions or excessive dispersion for the Pasadena site (estimated to be 1.6 to 2.3 ×  too low/excessive). The first and third factors are common to CMAQ-AE6, while the intrinsic SOA formation

  3. Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS

    NASA Astrophysics Data System (ADS)

    Woody, Matthew C.; Baker, Kirk R.; Hayes, Patrick L.; Jimenez, Jose L.; Koo, Bonyoung; Pye, Havala O. T.

    2016-03-01

    Community Multiscale Air Quality (CMAQ) model simulations utilizing the traditional organic aerosol (OA) treatment (CMAQ-AE6) and a volatility basis set (VBS) treatment for OA (CMAQ-VBS) were evaluated against measurements collected at routine monitoring networks (Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE)) and those collected during the 2010 California at the Nexus of Air Quality and Climate Change (CalNex) field campaign to examine important sources of OA in southern California. Traditionally, CMAQ treats primary organic aerosol (POA) as nonvolatile and uses a two-product framework to represent secondary organic aerosol (SOA) formation. CMAQ-VBS instead treats POA as semivolatile and lumps OA using volatility bins spaced an order of magnitude apart. The CMAQ-VBS approach underpredicted organic carbon (OC) at IMPROVE and CSN sites to a greater degree than CMAQ-AE6 due to the semivolatile POA treatment. However, comparisons to aerosol mass spectrometer (AMS) measurements collected at Pasadena, CA, indicated that CMAQ-VBS better represented the diurnal profile and primary/secondary split of OA. CMAQ-VBS SOA underpredicted the average measured AMS oxygenated organic aerosol (OOA, a surrogate for SOA) concentration by a factor of 5.2, representing a considerable improvement to CMAQ-AE6 SOA predictions (factor of 24 lower than AMS). We use two new methods, one based on species ratios (SOA/ΔCO and SOA/Ox) and another on a simplified SOA parameterization, to apportion the SOA underprediction for CMAQ-VBS to slow photochemical oxidation (estimated as 1.5 × lower than observed at Pasadena using -log(NOx : NOy)), low intrinsic SOA formation efficiency (low by 1.6 to 2 × for Pasadena), and low emissions or excessive dispersion for the Pasadena site (estimated to be 1.6 to 2.3 × too low/excessive). The first and third factors are common to CMAQ-AE6, while the intrinsic SOA formation efficiency for that model is

  4. SOA formation by biogenic and carbonyl compounds: data evaluation and application.

    PubMed

    Ervens, Barbara; Kreidenweis, Sonia M

    2007-06-01

    The organic fraction of atmospheric aerosols affects the physical and chemical properties of the particles and their role in the climate system. Current models greatly underpredict secondary organic aerosol (SOA) mass. Based on a compilation of literature studies that address SOA formation, we discuss different parameters that affect the SOA formation efficiency of biogenic compounds (alpha-pinene, isoprene) and aliphatic aldehydes (glyoxal, hexanal, octanal, hexadienal). Applying a simple model, we find that the estimated SOA mass after one week of aerosol processing under typical atmospheric conditions is increased by a few microg m(-3) (low NO(x) conditions). Acid-catalyzed reactions can create > 50% more SOA mass than processes under neutral conditions; however, other parameters such as the concentration ratio of organics/NO(x), relative humidity, and absorbing mass are more significant. The assumption of irreversible SOA formation not limited by equilibrium in the particle phase or by depletion of the precursor leads to unrealistically high SOA masses for some of the assumptions we made (surface vs volume controlled processes).

  5. Sensitivity analysis of simulated SOA loadings using a variance-based statistical approach

    NASA Astrophysics Data System (ADS)

    Shrivastava, Manish; Zhao, Chun; Easter, Richard C.; Qian, Yun; Zelenyuk, Alla; Fast, Jerome D.; Liu, Ying; Zhang, Qi; Guenther, Alex

    2016-06-01

    We investigate the sensitivity of secondary organic aerosol (SOA) loadings simulated by a regional chemical transport model to seven selected model parameters using a modified volatility basis-set (VBS) approach: four involving emissions of anthropogenic and biogenic volatile organic compounds, anthropogenic semivolatile and intermediate volatility organics (SIVOCs), and NOx; two involving dry deposition of SOA precursor gases, and one involving particle-phase transformation of SOA to low volatility. We adopt a quasi-Monte Carlo sampling approach to effectively sample the high-dimensional parameter space, and perform a 250 member ensemble of simulations using a regional model, accounting for some of the latest advances in SOA treatments based on our recent work. We then conduct a variance-based sensitivity analysis using the generalized linear model method to study the responses of simulated SOA loadings to the model parameters. Analysis of SOA variance from all 250 simulations shows that the volatility transformation parameter, which controls whether or not SOA that starts as semivolatile is rapidly transformed to nonvolatile SOA by particle-phase processes such as oligomerization and/or accretion, is the dominant contributor to variance of simulated surface-level daytime SOA (65% domain average contribution). We also split the simulations into two subsets of 125 each, depending on whether the volatility transformation is turned on/off. For each subset, the SOA variances are dominated by the parameters involving biogenic VOC and anthropogenic SIVOC emissions. Furthermore, biogenic VOC emissions have a larger contribution to SOA variance when the SOA transformation to nonvolatile is on, while anthropogenic SIVOC emissions have a larger contribution when the transformation is off. NOx contributes less than 4.3% to SOA variance, and this low contribution is mainly attributed to dominance of intermediate to high NOx conditions throughout the simulated domain. However

  6. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; Kroll, J. H.; Worsnop, D. R.; Thornton, J. A.

    2015-07-01

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO-HR-ToF-CIMS are highly correlated with, and explain at least 25-50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of

  7. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; Kroll, J. H.; Worsnop, D.; Thornton, J. A.

    2015-02-01

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25-50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of

  8. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  9. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...

    2015-07-16

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  10. Observation of viscosity transition in α-pinene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Järvinen, E.; Ignatius, K.; Nichman, L.; Kristensen, T. B.; Fuchs, C.; Höppel, N.; Corbin, J. C.; Craven, J.; Duplissy, J.; Ehrhart, S.; El Haddad, I.; Frege, C.; Gates, S. J.; Gordon, H.; Hoyle, C. R.; Jokinen, T.; Kallinger, P.; Kirkby, J.; Kiselev, A.; Naumann, K.-H.; Petäjä, T.; Pinterich, T.; Prevot, A. S. H.; Saathoff, H.; Schiebel, T.; Sengupta, K.; Simon, M.; Tröstl, J.; Virtanen, A.; Vochezer, P.; Vogt, S.; Wagner, A. C.; Wagner, R.; Williamson, C.; Winkler, P. M.; Yan, C.; Baltensperger, U.; Donahue, N. M.; Flagan, R. C.; Gallagher, M.; Hansel, A.; Kulmala, M.; Stratmann, F.; Worsnop, D. R.; Möhler, O.; Leisner, T.; Schnaiter, M.

    2015-10-01

    Under certain conditions, secondary organic aerosol (SOA) particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH) range for SOA to exist in these states. In the CLOUD experiment at CERN, we deployed a new in-situ optical method to detect the viscosity of α-pinene SOA particles and measured their transition from the amorphous viscous to liquid state. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical liquid particles during deliquescence. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to spherical shape was observed as the RH was increased to between 35 % at -10 °C and 80 % at -38 °C, confirming previous calculations of the viscosity transition conditions. Consequently, α-pinene SOA particles exist in a viscous state over a wide range of ambient conditions, including the cirrus region of the free troposphere. This has implications for the physical, chemical and ice-nucleation properties of SOA and SOA-coated particles in the atmosphere.

  11. Observation of viscosity transition in α-pinene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Järvinen, Emma; Ignatius, Karoliina; Nichman, Leonid; Kristensen, Thomas B.; Fuchs, Claudia; Hoyle, Christopher R.; Höppel, Niko; Corbin, Joel C.; Craven, Jill; Duplissy, Jonathan; Ehrhart, Sebastian; El Haddad, Imad; Frege, Carla; Gordon, Hamish; Jokinen, Tuija; Kallinger, Peter; Kirkby, Jasper; Kiselev, Alexei; Naumann, Karl-Heinz; Petäjä, Tuukka; Pinterich, Tamara; Prevot, Andre S. H.; Saathoff, Harald; Schiebel, Thea; Sengupta, Kamalika; Simon, Mario; Slowik, Jay G.; Tröstl, Jasmin; Virtanen, Annele; Vochezer, Paul; Vogt, Steffen; Wagner, Andrea C.; Wagner, Robert; Williamson, Christina; Winkler, Paul M.; Yan, Chao; Baltensperger, Urs; Donahue, Neil M.; Flagan, Rick C.; Gallagher, Martin; Hansel, Armin; Kulmala, Markku; Stratmann, Frank; Worsnop, Douglas R.; Möhler, Ottmar; Leisner, Thomas; Schnaiter, Martin

    2016-04-01

    Under certain conditions, secondary organic aerosol (SOA) particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH) range for SOA to exist in these states. In the Cosmics Leaving Outdoor Droplets (CLOUD) experiment at The European Organisation for Nuclear Research (CERN), we deployed a new in situ optical method to detect the viscous state of α-pinene SOA particles and measured their transition from the amorphous highly viscous state to states of lower viscosity. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical particles at relative humidities near the deliquescence point. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to a spherical shape was observed as the RH was increased to between 35 % at -10 °C and 80 % at -38 °C, confirming previous calculations of the viscosity-transition conditions. Consequently, α-pinene SOA particles exist in a viscous state over a wide range of ambient conditions, including the cirrus region of the free troposphere. This has implications for the physical, chemical, and ice-nucleation properties of SOA and SOA-coated particles in the atmosphere.

  12. A Combined Kinetic and Volatility Basis Set Approach to Model Secondary Organic Aerosol from Toluene and Diesel Exhaust/Meat Cooking Mixtures

    NASA Astrophysics Data System (ADS)

    Parikh, H. M.; Carlton, A. G.; Zhang, H.; Kamens, R.; Vizuete, W.

    2011-12-01

    Secondary organic aerosol (SOA) is simulated for 6 outdoor smog chamber experiments using a SOA model based on a kinetic chemical mechanism in conjunction with a volatility basis set (VBS) approach. The experiments include toluene, a non-SOA-forming hydrocarbon mixture, diesel exhaust or meat cooking emissions and NOx, and are performed under varying conditions of relative humidity. SOA formation from toluene is modeled using a condensed kinetic aromatic mechanism that includes partitioning of lumped semi-volatile products in particle organic-phase and incorporates particle aqueous-phase chemistry to describe uptake of glyoxal and methylglyoxal. Modeling using the kinetic mechanism alone, along with primary organic aerosol (POA) from diesel exhaust (DE) /meat cooking (MC) fails to simulate the rapid SOA formation at the beginning hours of the experiments. Inclusion of a VBS approach with the kinetic mechanism to characterize the emissions and chemistry of complex mixture of intermediate volatility organic compounds (IVOCs) from DE/MC, substantially improves SOA predictions when compared with observed data. The VBS model includes photochemical aging of IVOCs and evaporation of POA after dilution. The relative contribution of SOA mass from DE/MC is as high as 95% in the morning, but substantially decreases after mid-afternoon. For high humidity experiments, aqueous-phase SOA fraction dominates the total SOA mass at the end of the day (approximately 50%). In summary, the combined kinetic and VBS approach provides a new and improved framework to semi-explicitly model SOA from VOC precursors in conjunction with a VBS approach that can be used on complex emission mixtures comprised with hundreds of individual chemical species.

  13. Effects of diesel engine exhaust origin secondary organic aerosols on novel object recognition ability and maternal behavior in BALB/c mice.

    PubMed

    Win-Shwe, Tin-Tin; Fujitani, Yuji; Kyi-Tha-Thu, Chaw; Furuyama, Akiko; Michikawa, Takehiro; Tsukahara, Shinji; Nitta, Hiroshi; Hirano, Seishiro

    2014-10-30

    Epidemiological studies have reported an increased risk of cardiopulmonary and lung cancer mortality associated with increasing exposure to air pollution. Ambient particulate matter consists of primary particles emitted directly from diesel engine vehicles and secondary organic aerosols (SOAs) are formed by oxidative reaction of the ultrafine particle components of diesel exhaust (DE) in the atmosphere. However, little is known about the relationship between exposure to SOA and central nervous system functions. Recently, we have reported that an acute single intranasal instillation of SOA may induce inflammatory response in lung, but not in brain of adult mice. To clarify the whole body exposure effects of SOA on central nervous system functions, we first created inhalation chambers for diesel exhaust origin secondary organic aerosols (DE-SOAs) produced by oxidation of diesel exhaust particles caused by adding ozone. Male BALB/c mice were exposed to clean air (control), DE and DE-SOA in inhalation chambers for one or three months (5 h/day, 5 days/week) and were examined for memory function using a novel object recognition test and for memory function-related gene expressions in the hippocampus by real-time RT-PCR. Moreover, female mice exposed to DE-SOA for one month were mated and maternal behaviors and the related gene expressions in the hypothalamus examined. Novel object recognition ability and N-methyl-D-aspartate (NMDA) receptor expression in the hippocampus were affected in male mice exposed to DE-SOA. Furthermore, a tendency to decrease maternal performance and significantly decreased expression levels of estrogen receptor (ER)-α, and oxytocin receptor were found in DE-SOA exposed dams compared with the control. This is the first study of this type and our results suggest that the constituents of DE-SOA may be associated with memory function and maternal performance based on the impaired gene expressions in the hippocampus and hypothalamus, respectively.

  14. Effects of Diesel Engine Exhaust Origin Secondary Organic Aerosols on Novel Object Recognition Ability and Maternal Behavior in BALB/C Mice

    PubMed Central

    Win-Shwe, Tin-Tin; Fujitani, Yuji; Kyi-Tha-Thu, Chaw; Furuyama, Akiko; Michikawa, Takehiro; Tsukahara, Shinji; Nitta, Hiroshi; Hirano, Seishiro

    2014-01-01

    Epidemiological studies have reported an increased risk of cardiopulmonary and lung cancer mortality associated with increasing exposure to air pollution. Ambient particulate matter consists of primary particles emitted directly from diesel engine vehicles and secondary organic aerosols (SOAs) are formed by oxidative reaction of the ultrafine particle components of diesel exhaust (DE) in the atmosphere. However, little is known about the relationship between exposure to SOA and central nervous system functions. Recently, we have reported that an acute single intranasal instillation of SOA may induce inflammatory response in lung, but not in brain of adult mice. To clarify the whole body exposure effects of SOA on central nervous system functions, we first created inhalation chambers for diesel exhaust origin secondary organic aerosols (DE-SOAs) produced by oxidation of diesel exhaust particles caused by adding ozone. Male BALB/c mice were exposed to clean air (control), DE and DE-SOA in inhalation chambers for one or three months (5 h/day, 5 days/week) and were examined for memory function using a novel object recognition test and for memory function-related gene expressions in the hippocampus by real-time RT-PCR. Moreover, female mice exposed to DE-SOA for one month were mated and maternal behaviors and the related gene expressions in the hypothalamus examined. Novel object recognition ability and N-methyl-d-aspartate (NMDA) receptor expression in the hippocampus were affected in male mice exposed to DE-SOA. Furthermore, a tendency to decrease maternal performance and significantly decreased expression levels of estrogen receptor (ER)-α, and oxytocin receptor were found in DE-SOA exposed dams compared with the control. This is the first study of this type and our results suggest that the constituents of DE-SOA may be associated with memory function and maternal performance based on the impaired gene expressions in the hippocampus and hypothalamus, respectively

  15. Chamber studies to simulate secondary organic aerosol formation from the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Daumit, K. E.; Carrasquillo, A. J.; Cross, E. S.; Hunter, J. F.; Bahreini, R.; Middlebrook, A. M.; De Gouw, J. A.; Williams, L. R.; Worsnop, D. R.; Kroll, J. H.

    2011-12-01

    Because atmospheric organic species are generally emitted from a large number of sources, over wide spatial and temporal scales, it is generally challenging to ascribe ambient organic aerosol (OA) to the oxidation of specific secondary organic aerosol (SOA) precursors. However, the Deepwater Horizon (DWH) oil spill (April 20-July 15, 2010), provided the unique circumstance of a large, well-defined source of gas-phase organics introduced into a relatively clean atmosphere. Here we describe a laboratory simulation of SOA formation downwind of the DWH spill, via the oxidation of South Louisiana-light (SL) crude oil by OH radicals in an environmental chamber. Intermediate and semi-volatile fractions of the SL crude oil are vaporized and oxidized by gas-phase OH radicals (formed from the photolysis of HONO). The chemical composition is monitored as a function of OH exposure. When OH exposures are approximately matched, laboratory-generated SOA and OA measured downwind of the oil spill exhibit extremely similar aerosol mass spectra, in strong support of the hypothesis that the OA measured downwind of the DWH oil spill was secondary in nature. More generally, this agreement indicates that in cases when SOA precursors are well-constrained, chamber experiments can reasonably reproduce key properties of ambient OA. Results of chamber studies on sub-fractions of the SL crude oil, aimed at identifying the classes of oil components most responsible for SOA formation, will be discussed.

  16. Constraining the properties of hydrocarbon oxidation products via SOA studies at high loadings

    NASA Astrophysics Data System (ADS)

    Hunter, J. F.; Carrasquillo, A. J.; Daumit, K. E.; Franklin, J. P.; Boulanger, K.; Cross, E. S.; Worsnop, D. R.; Kroll, J. H.

    2013-12-01

    The oxidation processes that lead to the formation of secondary organic aerosol (SOA) generate products with a spectrum of vapor pressures. In accordance with absorptive partitioning theory, only a fraction of these components will condense under typical experimental and atmospheric conditions at low to medium organic aerosol concentration (Coa). The more volatile products may go on to form additional aerosol or other oxidation products by serving as precursors in further oxidation chemistry. They may also serve as sinks for airborne organic carbon if they are lost to environmental surfaces prior to reaction. As Coa is increased, more volatile oxidation products will partition to the condensed phase, where they can be measured using conventional aerosol techniques. In the limit of very high Coa, the aerosol yield plateaus somewhere at or below an organic carbon yield of 100%. At a carbon yield of 100%, all of the carbon from the precursor is found in the condensed phase, with yields below 100% indicating that some carbon is still in the gas phase. This limit gives the yield of condensable carbon for a given precursor, and thereby the branching between pathways yielding condensable versus strictly gas-phase products. Experiments have been performed in which the Coa is systematically increased in order to approach this limit for various precursors. The precursors have been chosen across a variety of parent vapor pressures and structures, allowing the influence of these properties on the limiting yield to be assessed. The influence of ';trapping,' wherein products that are primarily condensed see their overall reaction rate decreased is also discussed. The primary effect of trapping on these experiments is that as Coa is increased, more volatile components are trapped in the condensed phase, leading to overall less oxidized and younger generation aerosol. The chemistry of the organic aerosol is evaluated using aerosol mass spectrometry, enabling the oxygen to carbon

  17. Real-Time Secondary Aerosol Formation Measurements using a Photooxidation Reactor (PAM) and AMS in Urban Air and Biomass Smoke

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Cubison, M.; Hayes, P. L.; Brune, W. H.; Hu, W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Bon, D.; Graus, M.; Warneke, C.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Sullivan, A. P.; Jimenez, J. L.

    2011-12-01

    Recent field studies reveal large formation of secondary organic aerosol (SOA) under urban polluted ambient conditions, while SOA formation in biomass burning smoke appears to be variable but sometimes substantial. To study this formation in real-time, a Potential Aerosol Mass (PAM) photooxidation reactor was deployed with submicron aerosol size and chemical composition measurements during two studies: FLAME-3, a biomass-burning study at USDA Fire Sciences Laboratory in Missoula in 2009, MT and CalNex-LA in Pasadena, CA in 2010. A high-resolution aerosol mass spectrometer (HR-AMS) and a scanning mobility particle sizer (SMPS) alternated sampling unprocessed and PAM-processed aerosol. The PAM reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent aging of ~2 weeks in 5 minutes of processing. The OH intensity was also scanned every 20 min. in both field studies. Results show the value of PAM-AMS as a tool for in-situ evaluation of changes in OA concentration and composition due to SOA formation and POA oxidation. In FLAME-3, net SOA formation was variable among smokes from different biomasses; however, OA oxidation was always observed. The average SOA enhancement factor was 1.7 +/- 0.5 of the initial POA. Reactive VOCs such as toluene, monoterpenes, and acetaldehyde, as measured from a PIT-MS, decreased with increased PAM processing; however, formic acid, acetone, and some unidentified OVOCs increased after significant exposure to high oxidant levels suggesting multigenerational chemistry. Results from CalNex-LA show enhancement of SOA and inorganic aerosol from gas-phase precursors. This enhanced OA mass increase from PAM processing is maximum at night and correlates with trimethylbenzene concentrations, which indicates the dominance of short-lived SOA precursors in the LA Basin. A traditional SOA model with mostly aromatic precursors underpredicts the amount of SOA formed by about an order-of-magnitude, which

  18. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    DOE PAGES

    Allen, H. M.; Draper, D. C.; Ayres, B. R.; ...

    2015-09-25

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 μm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3more » and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. In addition, calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3− is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO3− and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning.« less

  19. Source contributions to organic aerosol in the eastern United States

    NASA Astrophysics Data System (ADS)

    Lane, Timothy Edward

    Organic aerosols (OA) and elemental carbon (EC) are important components of atmospheric particulate matter (PM), potentially posing health hazards and contributing to global climate change. Secondary organic aerosol (SOA) is formed when condensable products from the oxidation of volatile organic compounds (VOCs) in the gas phase partition into the aerosol phase. Implementation of effective control strategies for organic PM2.5 (organic particles with diameters less than 2.5 mum) requires the quantification of the contribution of each source to the ambient OA and EC concentrations. The overall goal of this work is to determine which sources contribute the most to the organic aerosol concentrations across the eastern US. First, a source-resolved model is developed to predict the contribution of eight different sources to primary organic aerosol concentrations. Primary organic aerosol (OA) and elemental carbon (EC) concentrations are tracked for eight different sources: gasoline vehicles, non-road diesel vehicles, on-road diesel vehicles, biomass burning, wood burning, natural gas combustion, road dust, and all other sources. The results of the source-resolved model are compared to the results of chemical mass balance (CMB) models for Pittsburgh and multiple urban/rural sites from the Southeastern Aerosol Research and Characterization (SEARCH) network. Significant discrepancies exist between the source-resolved model and the CMB model predictions for several of the sources. There is strong evidence that the organic PM emissions from natural gas combustion are overestimated. Other similarities and discrepancies between the source-resolved model and the CMB model for primary OA and EC are discussed along with problems in the current emission inventory for certain sources. Next, the importance of isoprene as a source of SOA is determined using PMCAMx to predict the isoprene SOA concentration across the eastern US. Isoprene, the most abundant non-methane hydrocarbon

  20. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of α-Pinene

    SciTech Connect

    Song, Chen; Zaveri, Rahul A.; Alexander, M. Lizabeth; Thornton, Joel A.; Madronich, Sasha; Ortega, John V.; Zelenyuk, Alla; Yu, Xiao-Ying; Laskin, Alexander; Maughan, A. D.

    2007-10-16

    Semi-empirical secondary organic aerosol (SOA) models typically assume a well-mixed organic aerosol phase even in the presence of hydrophobic primary organic aerosols (POA). This assumption significantly enhances the modeled SOA yields as additional organic mass is made available to absorb greater amounts of oxidized secondary organic gases than otherwise. We investigate the applicability of this critical assumption by measuring SOA yields from ozonolysis of α-pinene (a major biogenic SOA precursor) in a smog chamber in the absence and in the presence of dioctyl phthalate (DOP) and lubricating oil seed aerosol. These particles serve as surrogates for urban hydrophobic POA. The results show that these POA did not enhance the SOA yields. If these results are found to apply to other biogenic SOA precursors, then the semi-empirical models used in many global models would predict significantly less biogenic SOA mass and display reduced sensitivity to anthropogenic POA emissions than previously thought.

  1. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2013-09-01

    The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter after three hours of oxidation inside the chamber at typical atmospheric oxidant levels. Therefore, the contribution of light duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photo-oxidizing exhaust from newer (LEV1 and LEV2) vehicles was only modestly lower (38%) than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions in non-methane organic gas emissions. These data suggest that a complex and non-linear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the time scale of these experiments, the mixture of organic vapors emitted by newer vehicles appear to be more efficient (higher yielding) in producing SOA than

  2. Secondary organic aerosol formation initiated from reactions between ozone and surface-sorbed squalene

    NASA Astrophysics Data System (ADS)

    Wang, Chunyi; Waring, Michael S.

    2014-02-01

    Previous research has shown that ozone reactions on surface-sorbed D-limonene can promote gas phase secondary organic aerosol (SOA) formation indoors. In this work, we conducted 13 steady state chamber experiments to measure the SOA formation entirely initiated by ozone reactions with squalene sorbed to glass, at chamber ozone of 57-500 ppb for two relative humidity (RH) conditions of 21% and 51%, in the absence of seed particles. Squalene is a nonvolatile compound that is a component of human skin oil and prevalent on indoor surfaces and in settled dust due to desquamation. The size distributions, mass and number secondary emission rates (SER), aerosol mass fractions (AMF), and aerosol number fractions (ANF) of formed SOA were quantified. The surface AMF and ANF are defined as the change in SOA mass or number formed, respectively, per ozone mass consumed by ozone-squalene reactions. All experiments but one exhibited nucleation and mass formation. Mass formation was relatively small in magnitude and increased with ozone, most notably for the RH = 51% experiments. The surface AMF was a function of the chamber aerosol concentration, and a multi-product model was fit using the 'volatility basis set' framework. Number formation was relatively strong at low ozone and low RH conditions. Though we cannot extrapolate our results because experiments were conducted at high air exchange rates, we speculate that this process may enhance particle number more than mass concentrations indoors.

  3. Sampling, characterization, and remote sensing of aerosols formed in the atmospheric hydrolysis of uranium hexafluoride

    SciTech Connect

    Bostick, W.D.; McCulla, W.H.; Pickrell, P.W.

    1984-05-01

    When gaseous uranium hexafluoride (UF/sub 6/) is released into the atmosphere, it rapidly reacts with ambient moisture to form an aerosol of uranyl fluoride (UO/sub 2/F/sub 2/) and hydrogen fluoride (HF). As part of our Safety Analysis program, we have performed several experimental releases of HF/sub 6/ in contained volumes in order to investigate techniques for sampling and characterizing the aerosol materials. The aggregate particle morphology and size distribution have been found to be dependent upon several conditions, including the temperature of the UF/sub 6/ at the time of its release, the relative humidity of the air into which it is released, and the elapsed time after the release. Aerosol composition and settling rate have been investigated using stationary samplers for the separate collection of UO/sub 2/F/sub 2/ and HF and via laser spectroscopic remote sensing (Mie scatter and infrared spectroscopy). 25 refs., 16 figs., 5 tabs.

  4. Effect of Slow Aging Reactions on Optical Properties of Secondary Organic Aerosol Prepared by Oxidation of Selected Monoterpenes

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S. A.; Bones, D. L.; Henricksen, D. K.; Mang, S. A.; Bateman, A. P.; Pan, X.; Nguyen, T. B.; Gonsior, M.; Cooper, W.; Laskin, J.; Laskin, A.

    2009-05-01

    Organic particulate matter (PM) has a major impact on atmospheric chemistry, climate, and human health. Secondary organic aerosol (SOA) accounts for a rather significant fraction of organic PM; this includes SOA produced by oxidation of biogenically emitted monoterpenes. Once such SOA is formed, it is believed to undergo slow aging processes, which may have large effects on the physical and chemical properties of the particles. This presentation focuses on the effect of slow chemical aging on optical properties of SOA formed from the ozone-induced oxidation of limonene, myrcene, and other selected monoterpenes. Several complementary techniques including high resolution electrospray ionization mass spectrometry, FTIR spectroscopy, UV/vis spectroscopy, NMR spectroscopy, 3D-fluorescence spectroscopy, and photodissociation spectroscopy are used to probe the aging-induced changes in physical properties and chemical composition of laboratory generated SOA. Limonene SOA appears to undergo a dramatic change in its absorption spectrum on a time scale of hours; it develops strong visible bands in the 400-500 nm region, and becomes fluorescent. This transformation is catalyzed by ammonium sulfate and certain amino acids. This rather unusual aging process can potentially contribute to the formation of brown carbon in biogenic SOA.

  5. Photochemical aging of secondary organic aerosols: effects on hygroscopic growth and CCN activation

    NASA Astrophysics Data System (ADS)

    Buchholz, A.; Mentel, Th. F.; Tillmann, R.; Schlosser, E.; Mildenberger, K.; Clauss, T.; Henning, S.; Kiselev, A.; Stratmann, F.

    2009-04-01

    Plant emitted volatile organic carbons (VOCs) are a major precursor of secondary organic aerosols (SOA), an important constituent of atmospheric aerosols. The precursors are oxidized via ozonolysis, photooxidation, or by NO3 and form aerosol particles. Due to further oxidation of the organic matter the composition of the SOA may age with time. This will also change the hygroscopic growth (HG) and cloud condensation nuclei (CCN) activation of the particles. In this study we generated and aged SOA in the SAPHIR chamber at the Research Centre Juelich under near atmospheric conditions: natural sunlight, low precursor and O3 concentrations, and long reaction times. As precursor we used a mixture of 5 monoterpenes (MT) or 5 MT with 2 sesquiterpenes which had been identified as major constituents of plant emissions in previous experiments. Concentrations ranged between 4 and 100 ppb MT and the total reaction time was 36h. HG was measured at RH=10-97% by a Hygroscopic Tandem Differential Analyser (HTDMA, FZ Juelich) and at RH=97-99% by the Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile, IfT Leipzig). The agreement between HTDMA and LACIS-mobile data was generally good. CCN properties were measured with a continuous flow CCN Counter from DMT. SOA particles generated on a sunny day were more hygroscopic and had a lower activation diameter (Dcrit) than SOA formed under cloudy conditions. With aging it became more hygroscopic and Dcrit decreased. Sunlight enhanced this effect. But the change in HG and Dcrit due to aging was less than the difference between SOA generated under different conditions (i.e. sunny or cloudy). We did not observe a dependence of the HG on the precursor concentration.

  6. Secondary Organic Aerosol Production from Cloud Processing of Glycolaldehyde

    NASA Astrophysics Data System (ADS)

    Perri, M. J.; Seitzinger, S.; Turpin, B. J.

    2008-12-01

    Organic particulate matter (PM) formed in the atmosphere (secondary organic aerosol; SOA) is a substantial yet poorly understood contributor to atmospheric PM. Cloud processing is a newly recognized SOA formation pathway. This study investigates the potential for aqueous glycolaldehyde oxidation to produce low volatility products that are retained in the particle phase upon cloud droplet evaporation, increasing PM concentrations aloft. To our knowledge, this is the first confirmation that aqueous oxidation of glycolaldehyde via the hydroxyl radical forms glyoxal and glycolic acid, as previously assumed. Subsequent reactions form formic acid, glyoxylic acid, and oxalic acid as expected. Unexpected products include malonic acid, succinic acid, and higher molecular weight compounds, including oligomers. Predictions of aerosol yields based on these bulk aqueous experiments are presented. Due to (1) the large source strength of glycolaldehyde from precursors such as isoprene and ethene, (2) its water solubility, and (3) the aqueous formation of low volatility products, we predict that cloud processing of glycolaldehyde is an important source of SOA and that incorporation of this SOA formation pathway in chemical transport models will help explain the current under- prediction of organic PM concentrations.

  7. Water uptake is independent of the inferred composition of secondary aerosols derived from multiple biogenic VOCs

    NASA Astrophysics Data System (ADS)

    Alfarra, M. R.; Good, N.; Wyche, K. P.; Hamilton, J. F.; Monks, P. S.; Lewis, A. C.; McFiggans, G.

    2013-12-01

    We demonstrate that the water uptake properties derived from sub- and super-saturated measurements of chamber-generated biogenic secondary organic aerosol (SOA) particles are independent of their degree of oxidation, determined using both online and offline methods. SOA particles are formed from the photooxidation of five structurally different biogenic VOCs, representing a broad range of emitted species and their corresponding range of chemical reactivity: α-pinene, β-caryophyllene, limonene, myrcene and linalool. The fractional contribution of mass fragment 44 to the total organic signal (f44) is used to characterise the extent of oxidation of the formed SOA as measured online by an aerosol mass spectrometer. Results illustrate that the values of f44 are dependent on the precursor, the extent of photochemical ageing as well as on the initial experimental conditions. SOA generated from a single biogenic precursor should therefore not be used as a general proxy for biogenic SOA. Similarly, the generated SOA particles exhibit a range of hygroscopic properties, depending on the precursor, its initial mixing ratio and photochemical ageing. The activation behaviour of the formed SOA particles show no temporal trends with photochemical ageing. The average κ values derived from the HTDMA and CCNc are generally found to cover the same range for each precursor under two different initial mixing ratio conditions. A positive correlation is observed between the hygroscopicity of particles of a single size and f44 for α-pinene, β-caryophyllene, linalool and myrcene, but not for limonene SOA. The investigation of the generality of this relationship reveals that α-pinene, limonene, linalool and myrcene are all able to generate particles with similar hygroscopicity (κHTDMA ~0.1) despite f44 exhibiting a relatively wide range of values (~4 to 11%). Similarly, κCCN is found to be independent of f44. The same findings are also true when sub- and super-saturated water uptake

  8. Water uptake is independent of the inferred composition of secondary aerosols derived from multiple biogenic VOCs

    NASA Astrophysics Data System (ADS)

    Alfarra, M. R.; Good, N.; Wyche, K. P.; Hamilton, J. F.; Monks, P. S.; Lewis, A. C.; McFiggans, G. B.

    2013-04-01

    We demonstrate that the water uptake properties derived from sub- and super-saturated measurements of chamber-generated biogenic secondary organic aerosol (SOA) particles are independent of their degree of oxidation determined using both online and offline methods. SOA particles are formed from the photooxidation of five structurally different biogenic VOCs representing a broad range of emitted species and their corresponding range of chemical reactivity: α-pinene, β-caryophyllene, limonene, myrcene and linalool. The fractional contribution of mass fragment 44 to the total organic signal (f44) is used to characterise the extent of oxidation of the formed SOA as measured online by an aerosol mass spectrometer. Results illustrate that the values of f44 are dependent on the precursor, the extent of photochemical ageing as well as on the initial experimental conditions. SOA generated from a single biogenic precursor should therefore not be used as a general proxy for biogenic SOA. Similarly, the generated SOA particles exhibit a range of hygroscopic properties depending on the precursor, its initial mixing ratio and photochemical ageing. The activation behaviour of the formed SOA particles show no temporal trends with photochemical ageing. The average κ values derived from the HTDMA and CCNc are generally found to cover the same range for each precursor under two different initial mixing ratio conditions. A positive correlation is observed between the hygroscopicity of particles of a single size and f44 for α-pinene, β-caryophyllene, linalool and myrcene, but not for limonene SOA. The investigation of the generality of this relationship reveal that α-pinene, limonene, linalool and myrcene are all able to generate particles with similar hygroscopicity (κHTDMA ~0.1) despite f44 exhibiting a relatively wide range of values (~4 to 11%). Similarly, κCCN is found to be independent of f44. The same findings are also true when sub- and super-saturated water uptake

  9. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-08-01

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.

  10. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    DOE PAGES

    Zheng, Y.; Unger, N.; Hodzic, A.; ...

    2015-08-28

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution ofmore » US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  11. Organosulfate formation in biogenic secondary organic aerosol.

    PubMed

    Surratt, Jason D; Gómez-González, Yadian; Chan, Arthur W H; Vermeylen, Reinhilde; Shahgholi, Mona; Kleindienst, Tadeusz E; Edney, Edward O; Offenberg, John H; Lewandowski, Michael; Jaoui, Mohammed; Maenhaut, Willy; Claeys, Magda; Flagan, Richard C; Seinfeld, John H

    2008-09-11

    Organosulfates of isoprene, alpha-pinene, and beta-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive series of laboratory photooxidation (i.e., OH-initiated oxidation) and nighttime oxidation (i.e., NO3-initiated oxidation under dark conditions) experiments using nine monoterpenes (alpha-pinene, beta-pinene, d-limonene, l-limonene, alpha-terpinene, gamma-terpinene, terpinolene, Delta(3)-carene, and beta-phellandrene) and three monoterpenes (alpha-pinene, d-limonene, and l-limonene), respectively. Organosulfates were characterized using liquid chromatographic techniques coupled to electrospray ionization combined with both linear ion trap and high-resolution time-of-flight mass spectrometry. Organosulfates are formed only when monoterpenes are oxidized in the presence of acidified sulfate seed aerosol, a result consistent with prior work. Archived laboratory-generated isoprene SOA and ambient filter samples collected from the southeastern U.S. were reexamined for organosulfates. By comparing the tandem mass spectrometric and accurate mass measurements collected for both the laboratory-generated and ambient aerosol, previously uncharacterized ambient organic aerosol components are found to be organosulfates of isoprene, alpha-pinene, beta-pinene, and limonene-like monoterpenes (e.g., myrcene), demonstrating the ubiquity of organosulfate formation in ambient SOA. Several of the organosulfates of isoprene and of the monoterpenes characterized in this study are ambient tracer compounds for the occurrence of biogenic SOA formation under acidic conditions. Furthermore, the nighttime oxidation experiments conducted under highly acidic conditions reveal a viable mechanism for the formation of previously identified nitrooxy organosulfates found in ambient nighttime aerosol samples. We estimate

  12. On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk water-soluble organic carbon

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolu; Liu, Jiumeng; Parker, Eric T.; Hayes, Patrick L.; Jimenez, Jose L.; de Gouw, Joost A.; Flynn, James H.; Grossberg, Nicole; Lefer, Barry L.; Weber, Rodney J.

    2012-09-01

    The partitioning of semi-volatile compounds between the gas and particle phase influences the mass, size and chemical composition of the secondary organic aerosols (SOA) formed. Here we investigate the partitioning of water-soluble organic carbon (WSOC) and the formation of SOA in Los Angeles (LA), California and Atlanta, Georgia; urban regions where anthropogenic volatile organic compound (VOC) emissions are dominated by vehicles, but are contrasted by an additional large source of biogenic VOCs exclusive to Atlanta. In Atlanta, evidence for WSOC partitioning to aerosol water is observed throughout the day, but is most prevalent in the morning. During drier periods (RH < 70%), the WSOC partitioning coefficient (Fp) was in proportion to the organic mass, suggesting that both particle water and organic aerosol (OA) can serve as an absorbing phase. In contrast, despite the higher average RH, in LA the aerosol water was not an important absorbing phase, instead, Fp was correlated with OA mass. Particle water concentrations from thermodynamic predictions based on measured inorganic aerosol components do not indicate significant differences in aerosol hygroscopicity. The observed different WSOC partitioning behaviors may be attributed to the contrasting VOC mixture between the two cities. In addition, different OA composition may also play a role, as Atlanta OA is expected to have a substantially more aged regional character. These results are consistent with our companion studies that find similar partitioning differences for formic acid and additional contrasts in SOA optical properties. The findings provide direct evidence for SOA formation through an equilibrium partitioning process.

  13. On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk water-soluble organic carbon

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolu; Liu, Jiumeng; Parker, Eric T.; Hayes, Patrick L.; Jimenez, Jose L.; Gouw, Joost A.; Flynn, James H.; Grossberg, Nicole; Lefer, Barry L.; Weber, Rodney J.

    2011-11-01

    The partitioning of semi-volatile compounds between the gas and particle phase influences the mass, size and chemical composition of the secondary organic aerosols (SOA) formed. Here we investigate the partitioning of water-soluble organic carbon (WSOC) and the formation of SOA in Los Angeles (LA), California and Atlanta, Georgia; urban regions where anthropogenic volatile organic compound (VOC) emissions are dominated by vehicles, but are contrasted by an additional large source of biogenic VOCs exclusive to Atlanta. In Atlanta, evidence for WSOC partitioning to aerosol water is observed throughout the day, but is most prevalent in the morning. During drier periods (RH < 70%), the WSOC partitioning coefficient (Fp) was in proportion to the organic mass, suggesting that both particle water and organic aerosol (OA) can serve as an absorbing phase. In contrast, despite the higher average RH, in LA the aerosol water was not an important absorbing phase, instead, Fp was correlated with OA mass. Particle water concentrations from thermodynamic predictions based on measured inorganic aerosol components do not indicate significant differences in aerosol hygroscopicity. The observed different WSOC partitioning behaviors may be attributed to the contrasting VOC mixture between the two cities. In addition, different OA composition may also play a role, as Atlanta OA is expected to have a substantially more aged regional character. These results are consistent with our companion studies that find similar partitioning differences for formic acid and additional contrasts in SOA optical properties. The findings provide direct evidence for SOA formation through an equilibrium partitioning process.

  14. Model Representation of Secondary Organic Aerosol in CMAQ v4.7

    EPA Science Inventory

    Numerous scientific upgrades to the representation of secondary organic aerosol (SOA) are incorporated into the Community Multiscale Air Quality (CMAQ) modeling system. Additions include several recently identified SOA precursors: benzene, isoprene, and sesquiterpenes; and pathwa...

  15. Investigation of the Correlation between Odd Oxygen and Secondary Organic Aerosol in Mexico City and Houston

    EPA Science Inventory

    Many recent models underpredict secondary organic aerosol (SOA) particulate matter(PM) concentrations in polluted regions, indicating serious deficiencies in the models' chemical mechanisms and/or missing SOA precursors. Since tropospheric photochemical ozone production is much b...

  16. Effective Henry's Law constant measurements for glyoxal in model aerosols containing sulfate

    NASA Astrophysics Data System (ADS)

    Kampf, C. J.; Waxman, E.; Slowik, J. G.; Dommen, J.; Prevot, A. S.; Noziere, B.; Hoffmann, T.; Volkamer, R.

    2011-12-01

    Traditional models represent secondary organic aerosol (SOA) formation based on the gas-phase oxidation of a limited set of precursor molecules. However, these models tend to under-estimate the amounts and degree of oxygenation of actual SOA, indicating missing processes. One such source that has become increasingly important in recent years is glyoxal (CHOCHO, the smallest alpha-dicarbonyl). Unlike traditional SOA precursors, glyoxal forms SOA by partitioning to the aqueous phase according to Henry's Law. This work presents an analysis of Henry's Law constants for glyoxal uptake to laboratory-generated aerosols in a dynamically coupled gas-aerosol system. We combine CU LED-CE-DOAS measurements of gas-phase glyoxal with online HR-Tof-AMS and time-resolved HPLC ESI MS/MS particle-phase measurements to characterize the time resolved evolution of glyoxal partitioning, and relate molecular-specific measurements to AMS mass spectra. The experiments were performed in the simulation chamber facility at PSI, Switzerland, and investigate ammonium sulfate (AS), and mixed AS / fulvic acid seed aerosols under relative humidity conditions ranging from 50 to 85% RH. The Henry's Law and effective Henry's Law constants are compared with other values reported in the literature.

  17. Effective Henry's Law constant measurements for glyoxal in model aerosols containing sulfate

    NASA Astrophysics Data System (ADS)

    Kampf, C.; Waxman, E.; Slowik, J.; Dommen, J.; Prevot, A.; Baltensperger, U.; Noziere, B.; Hoffmann, T.; Volkamer, R.

    2012-04-01

    Traditional models represent secondary organic aerosol (SOA) formation based on the gas-phase oxidation of a limited set of precursor molecules. However, these models tend to under-estimate the amounts and degree of oxygenation of actual SOA, indicating missing processes. One such source that has become increasingly important in recent years is glyoxal (CHOCHO, the smallest alpha-dicarbonyl). Unlike traditional SOA precursors, glyoxal forms SOA by partitioning to the aqueous phase according to Henry's Law. This work presents an analysis of Henry's Law constants for glyoxal uptake to laboratory-generated aerosols in a dynamically coupled gas-aerosol system. We combine CU LED-CE-DOAS measurements of gas-phase glyoxal with online HR-Tof-AMS and time-resolved HPLC ESI MS/MS particle-phase measurements to characterize the time resolved evolution of glyoxal partitioning, and relate molecular-specific measurements to AMS mass spectra. The experiments were performed in the simulation chamber facility at PSI, Switzerland, and investigate ammonium sulfate (AS), and mixed AS / fulvic acid seed aerosols under relative humidity conditions ranging from 50 to 85% RH. The Henry's Law and effective Henry's Law constants are compared with other values reported in the literature.

  18. Uncertainties in SOA simulations due to meteorological uncertainties in Mexico City during MILAGRO-2006 field campaign

    NASA Astrophysics Data System (ADS)

    Bei, N.; Li, G.; Molina, L. T.

    2013-05-01

    The purpose of the present study is to investigate the uncertainties in simulating secondary organic aerosol (SOA) in Mexico City metropolitan area (MCMA) due to meteorological initial uncertainties using the WRF-CHEM model through ensemble simulations. The simulated periods (24 and 29 March 2006) represent two typical meteorological episodes ("Convection-South" and "Convection-North", respectively) in the Mexico City basin during the MILAGRO-2006 field campaign. The organic aerosols are simulated using a non-traditional SOA model including the volatility basis-set modeling method and the contributions from glyoxal and methylglyoxal. Model results demonstrate that uncertainties in meteorological initial conditions have significant impacts on SOA simulations, including the peak time concentrations, the horizontal distributions, and the temporal variations. The ensemble spread of the simulated peak SOA at T0 can reach up to 4.0 μg m-3 during the daytime, which is around 35% of the ensemble mean. Both the basin wide wind speed and the convergence area affect the magnitude and the location of the simulated SOA concentrations inside the Mexico City basin. The wind speed, especially during the previous midnight and the following early morning, influences the magnitude of the peak SOA concentration through ventilation. The surface horizontal convergence zone generally determines the area with high SOA concentrations. The magnitude of the ensemble spreads may vary with different meteorological episodes but the ratio of the ensemble spread to mean does not change significantly.

  19. Uncertainties in SOA simulations due to meteorological uncertainties in Mexico City during MILAGRO-2006 field campaign

    NASA Astrophysics Data System (ADS)

    Bei, N.; Li, G.; Molina, L. T.

    2012-12-01

    The purpose of the present study is to investigate the uncertainties in simulating secondary organic aerosol (SOA) in Mexico City metropolitan area (MCMA) due to meteorological initial uncertainties using the WRF-CHEM model through ensemble simulations. The simulated periods (24 and 29 March 2006) represent two typical meteorological episodes ("Convection-South" and "Convection-North", respectively) in the Mexico City basin during the MILAGRO-2006 field campaign. The organic aerosols are simulated using a non-traditional SOA model including the volatility basis-set modeling method and the contributions from glyoxal and methylglyoxal. Model results demonstrate that uncertainties in meteorological initial conditions have significant impacts on SOA simulations, including the peak time concentrations, the horizontal distributions, and the temporal variations. The ensemble spread of the simulated peak SOA at T0 can reach up to 4.0 μg m-3 during the daytime, which is around 35% of the ensemble mean. Both the basin wide wind speed and the convergence area affect the magnitude and the location of the simulated SOA concentrations inside the Mexico City basin. The wind speed, especially during the previous midnight and the following early morning, influences the magnitude of the peak SOA concentration through ventilation. The surface horizontal convergence zone generally determines the area with high SOA concentrations. The magnitude of the ensemble spreads may vary with different meteorological episodes but the ratio of the ensemble spread to mean does not change significantly.

  20. Uncertainties in SOA simulations due to meteorological uncertainties in Mexico City during MILAGRO-2006 field campaign

    NASA Astrophysics Data System (ADS)

    Bei, N.; Li, G.; Molina, L. T.

    2012-07-01

    The purpose of the present study is to investigate the uncertainties in simulating secondary organic aerosol (SOA) in Mexico City metropolitan area (MCMA) due to meteorological initial uncertainties using the WRF-CHEM model through ensemble simulations. The simulated periods (24 and 29 March 2006) represent two typical meteorological episodes ("Convection-South" and "Convection-North", respectively) in the Mexico City basin during the MILAGRO-2006 field campaign. The organic aerosols are simulated using a non-traditional SOA model including the volatility basis-set modeling method and the contributions from glyoxal and methylglyoxal. Model results demonstrate that uncertainties in meteorological initial conditions have significant impacts on SOA simulations, including the peak time concentrations, the horizontal distributions, and the temporal variations. The ensemble spread of the simulated peak SOA at T0 can reach up to 4.0 µg m-3 during the daytime, which is around 35% of the ensemble mean. Both the basin wide wind speed and the convergence area affect the magnitude and the location of the simulated SOA concentrations inside the Mexico City basin. The wind speed, especially during the previous midnight and the following early morning, influences the magnitude of the peak SOA concentration through ventilation. The surface horizontal convergence zone generally determines the area with high SOA concentrations. The magnitude of the ensemble spreads may vary with different meteorological episodes but has same significance compared to the ensemble mean.

  1. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

    NASA Astrophysics Data System (ADS)

    Joutsensaari, J.; Yli-Pirilä, P.; Korhonen, H.; Arola, A.; Blande, J. D.; Heijari, J.; Kivimäenpää, M.; Mikkonen, S.; Hao, L.; Miettinen, P.; Lyytikäinen-Saarenmaa, P.; Faiola, C. L.; Laaksonen, A.; Holopainen, J. K.

    2015-11-01

    Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOAs) and will be greatly influenced by increasing temperature. Global warming is predicted to not only increase emissions of reactive biogenic volatile organic compounds (BVOCs) from vegetation directly but also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOCs. Thus, climate change factors could substantially accelerate the formation of biogenic SOAs in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global-scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions respectively from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10-50 fold, resulting in 200-1000-fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global-scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10 % of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480 %) and cloud condensation nuclei concentrations (45 %). Satellite observations indicated a 2-fold increase in aerosol optical depth over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus

  2. Biotic stress accelerates formation of climate-relevant aerosols in boreal forests

    NASA Astrophysics Data System (ADS)

    Joutsensaari, J.; Yli-Pirilä, P.; Korhonen, H.; Arola, A.; Blande, J. D.; Heijari, J.; Kivimäenpää, M.; Mikkonen, S.; Hao, L.; Miettinen, P.; Lyytikäinen-Saarenmaa, P.; Faiola, C. L.; Laaksonen, A.; Holopainen, J. K.

    2015-04-01

    Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOA) and will be greatly influenced by increasing temperature. Global warming is predicted to increase emissions of reactive biogenic volatile organic compounds (BVOC) from vegetation directly, but will also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOC. Thus, climate change factors could substantially accelerate the formation of biogenic SOA in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions, respectively, from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10-50 fold resulting in 200-1000 fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10% of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480%) and cloud condensation nuclei concentrations (45%). Satellite observations indicated a two-fold increase in aerosol optical depth (AOD) over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus

  3. Critical factors determining the variation in SOA yields from terpene ozonolysis: a combined experimental and computational study.

    PubMed

    Donahue, Neil M; Hartz, Kara E Huff; Chuong, Bao; Presto, Albert A; Stanier, Charles O; Rosenhørn, Thomas; Robinson, Allen L; Pandis, Spyros N

    2005-01-01

    A substantial fraction of the total ultrafine particulate mass is comprised of organic compounds. Of this fraction, a significant subfraction is secondary organic aerosol (SOA), meaning that the compounds are a by-product of chemistry in the atmosphere. However, our understanding of the kinetics and mechanisms leading to and following SOA formation is in its infancy. We lack a clear description of critical phenomena; we often don't know the key, rate limiting steps in SOA formation mechanisms. We know almost nothing about aerosol yields past the first generation of oxidation products. Most importantly, we know very little about the derivatives in these mechanisms; we do not understand how changing conditions, be they precursor levels, oxidant concentrations, co-reagent concentrations (i.e., the VOC/NOx ratio) or temperature will influence the yields of SOA. In this paper we explore the connections between fundamental details of physical chemistry and the multitude of steps associated with SOA formation, including the initial gas-phase reaction mechanisms leading to condensible products, the phase partitioning itself, and the continued oxidation of the condensed-phase organic products. We show that SOA yields in the alpha-pinene + ozone are highly sensitive to NOx, and that SOA yields from beta-caryophylene + ozone appear to increase with continued ozone exposure, even as aerosol hygroscopicity increases as well. We suggest that SOA yields are likely to increase substantially through several generations of oxidative processing of the semi-volatile products.

  4. FT-IR quantification of the carbonyl functional group in aqueous-phase secondary organic aerosol from phenols

    NASA Astrophysics Data System (ADS)

    George, Kathryn M.; Ruthenburg, Travis C.; Smith, Jeremy; Yu, Lu; Zhang, Qi; Anastasio, Cort; Dillner, Ann M.

    2015-01-01

    Recent findings suggest that secondary organic aerosols (SOA) formed from aqueous-phase reactions of some organic species, including phenols, contribute significantly to particulate mass in the atmosphere. In this study, we employ a Fourier transform infrared (FT-IR) spectroscopic technique to identify and quantify the functional group makeup of phenolic SOA. Solutions containing an oxidant (hydroxyl radical or 3,4-dimethoxybenzaldehyde) and either one phenol (phenol, guaiacol, or syringol) or a mixture of phenols mimicking softwood or hardwood emissions were illuminated to make SOA, atomized, and collected on a filter. We produced laboratory standards of relevant organic compounds in order to develop calibrations for four functional groups: carbonyls (Cdbnd O), saturated C-H, unsaturated C-H and O-H. We analyzed the SOA samples with transmission FT-IR to identify and determine the amounts of the four functional groups. The carbonyl functional group accounts for 3-12% of the SOA sample mass in single phenolic SOA samples and 9-14% of the SOA sample mass in mixture samples. No carbonyl functional groups are present in the initial reactants. Varying amounts of each of the other functional groups are observed. Comparing carbonyls measured by FT-IR (which could include aldehydes, ketones, esters, and carboxylic acids) with eight small carboxylic acids measured by ion chromatography indicates that the acids only account for an average of 20% of the total carbonyl reported by FT-IR.

  5. Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity

    DOE PAGES

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; ...

    2015-07-24

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OSc), and mass yield. The OA oxidation state generally increased duringmore » photo-oxidation, and the final OA OSc ranged from -0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  6. Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide

    NASA Astrophysics Data System (ADS)

    Bar-Nun, A.; Kleinfeld, I.; Ganor, E.

    1988-07-01

    The shapes and sizes of photochemically produced aerosol particles of polyacetylene, polyethylene, and polyhydrogen cyanide were studied experimentally. All of the single particles were found to be perfectly spherical and semiliquid. However, they aggregate readily, with a sticking coefficient near unity, to form nonspherical particles, which could give rise to the observed polarization from Titan's and Jupiter's upper haze layers. The absorbance of polyacetylene was remeasured and corrected, and it is now much closer to that of polyethylene. The measured real and imaginary indices of refraction of the two materials make them both suitable material for Titan's and Jupiter's upper haze layers. However, the larger abundance and higher rate of polymerization of acetylene would make it the dominant aerosol-forming material in both atmospheres.

  7. Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide

    SciTech Connect

    Bar-Nun, A.; Kleinfeld, I.; Ganor, E.

    1988-07-20

    The shapes and sizes of photochemically produced aerosol particles of polyacetylene, polyethylene, and polyhydrogen cyanide were studied experimentally. All of the single particles were found to be perfectly spherical and semiliquid. However, they aggregate readily, with a sticking coefficient near unity, to form nonspherical particles, which could give rise to the observed polarization from Titan's and Jupiter's upper haze layers. The absorbance of polyacetylene was remeasured and corrected, and it is now much closer to that of polyethylene. The measured real and imaginary indices of refraction of the two materials make them both suitable material for Titan's and Jupiter's upper haze layers. However, the larger abundance and higher rate of polymerization of acetylene would make it the dominant aerosol-forming material in both atmospheres. copyright American Geophysical Union 1988

  8. Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Hu, Q.; Deng, W.; Zhang, Y.; Ding, X.; Fu, X.; Bernard, F.; Zhang, Z.; Lü, S.; He, Q.; Bi, X.; Chen, J.; Sun, Y.; Yu, J.; Peng, P.; Sheng, G.; Fu, J.

    2016-01-01

    Sulfur dioxide (SO2) can enhance the formation of secondary aerosols from biogenic volatile organic compounds (VOCs), but its influence on secondary aerosol formation from anthropogenic VOCs, particularly complex mixtures like vehicle exhaust, remains uncertain. Gasoline vehicle exhaust (GVE) and SO2, a typical pollutant from coal burning, are directly co-introduced into a smog chamber, in this study, to investigate the formation of secondary organic aerosols (SOA) and sulfate aerosols through photooxidation. New particle formation was enhanced, while substantial sulfate was formed through the oxidation of SO2 in the presence of high concentration of SO2. Homogenous oxidation by OH radicals contributed a negligible fraction to the conversion of SO2 to sulfate, and instead the oxidation by stabilized Criegee intermediates (sCIs), formed from alkenes in the exhaust reacting with ozone, dominated the conversion of SO2. After 5 h of photochemical aging, GVE's SOA production factor revealed an increase by 60-200 % in the presence of high concentration of SO2. The increase could principally be attributed to acid-catalyzed SOA formation as evidenced by the strong positive linear correlation (R2 = 0.97) between the SOA production factor and in situ particle acidity calculated by the AIM-II model. A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) resolved OA's relatively lower oxygen-to-carbon (O : C) (0.44 ± 0.02) and higher hydrogen-to-carbon (H : C) (1.40 ± 0.03) molar ratios for the GVE / SO2 mixture, with a significantly lower estimated average carbon oxidation state (OSc) of -0.51 ± 0.06 than -0.19 ± 0.08 for GVE alone. The relative higher mass loading of OA in the experiments with SO2 might be a significant explanation for the lower SOA oxidation degree.

  9. Formation of secondary aerosols from gasoline vehicle exhausts when mixing with SO2

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, X.; Hu, Q.; Deng, W.; Zhang, Y.; Ding, X.; Fu, X.; Bernard, F.; Zhang, Z.; Lü, S.; He, Q.; Bi, X.; Chen, J.; Sun, Y.; Yu, J.; Peng, P.; Sheng, G.; Fu, J.

    2015-09-01

    Sulfur dioxide (SO2) can enhance the formation of secondary aerosols from biogenic volatile organic compounds (VOCs), but its influence on secondary aerosol formation from anthropogenic VOCs, particularly complex mixtures like vehicle exhausts, is still poorly understood. Here we directly co-introduced gasoline vehicles exhausts (GVE) and SO2, a typical pollutant from coal burning, into a smog chamber to investigate the formation of secondary organic aerosols (SOA) and sulfate aerosols through photooxidation. In the presence of high concentration of SO2, new particle formation was enhanced while substantial sulfate was formed through the oxidation of SO2. The homogenous oxidation by OH radicals contributed a negligible fraction to the conversion of SO2 to sulfate, and instead the oxidation by stabilized Criegee intermediates (sCIs), formed from alkenes in the exhaust reacting with ozone, dominated the conversion of SO2. After 5 h of photochemical aging, GVE's SOA production factor revealed an increase by 60-200 % in the presence of high concentration of SO2. This increase could largely be attributed to acid-catalyzed SOA formation, which was evidenced by the strong positive linear correlation (R2 = 0.97) between the SOA production factor and in-situ particle acidity calculated by AIM-II model. A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) resolved OA's relatively lower oxygen-to-carbon (O : C) and higher hydrogen-to-carbon (H : C) molar ratios for the GVE/SO2 mixture, with a much lower estimated average carbon oxidation state (OSc) of -0.51 ± 0.06 than that of -0.19 ± 0.08 for GVE alone. The relative higher mass loading of OA in the experiments with SO2 might be the major reason for the lower oxidation degree of SOA.

  10. Fungal spores overwhelm biogenic organic aerosols in a midlatitudinal forest

    NASA Astrophysics Data System (ADS)

    Zhu, Chunmao; Kawamura, Kimitaka; Fukuda, Yasuro; Mochida, Michihiro; Iwamoto, Yoko

    2016-06-01

    Both primary biological aerosol particles (PBAPs) and oxidation products of biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosols (OAs) in forested regions. However, little is known about their relative importance in diurnal timescales. Here, we report biomarkers of PBAP and secondary organic aerosols (SOAs) for their diurnal variability in a temperate coniferous forest in Wakayama, Japan. Tracers of fungal spores, trehalose, arabitol and mannitol, showed significantly higher levels in nighttime than daytime (p < 0.05), resulting from the nocturnal sporulation under near-saturated relative humidity. On the contrary, BVOC oxidation products showed higher levels in daytime than nighttime, indicating substantial photochemical SOA formation. Using tracer-based methods, we estimated that fungal spores account for 45 % of organic carbon (OC) in nighttime and 22 % in daytime, whereas BVOC oxidation products account for 15 and 19 %, respectively. To our knowledge, we present for the first time highly time-resolved results that fungal spores overwhelmed BVOC oxidation products in contributing to OA especially in nighttime. This study emphasizes the importance of both PBAPs and SOAs in forming forest organic aerosols.

  11. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2014-08-01

    Aerosol particles were characterized by an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) along with various collocated instruments in Beijing, China to investigate the aerosol composition and sources during the Chinese Spring Festival, 2013. Three fireworks (FW) events exerting significant and short-term impacts on fine particles (PM2.5) were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW showed major impacts on non-refractory potassium, chloride, sulfate, and organics in PM1, of which the FW organics appeared to be mainly secondary with its mass spectrum resembling to that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated PM1 accounting for 63-82% during the nine PEs observed. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than that during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impacts of reduced anthropogenic emissions on aerosol chemistry in the city. The primary species showed ubiquitous reductions during the holiday period with the largest reduction for cooking OA (69%), nitrogen monoxide (54%), and coal combustion OA (28%). The secondary sulfate, however, remained minor change, and the SOA and the total PM2.5 even slightly increased. These results have significant implications that controlling local primary source emissions, e.g., cooking and traffic activities, might have limited effects on improving air quality during PEs when SPM that is formed over regional scales dominates aerosol particle composition.

  12. Tracking Changes in Absorptivity, Stiffness, and Organic Chemical Composition in Laboratory Generated HULIS SOA using Atomic Force Microscopy and X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; Lemire, A.; Kong, W.

    2014-12-01

    Light absorbing organic compounds are among the many products of aqueous phase secondary organic aerosol formation. Once formed, these compounds can alter the optical and material properties of SOA in ways that impact their ability to scatter and absorb solar radiation, deliquesce and evaporate quickly during cloud cycling, and react with gas phase species such as oxidants. To quantify these effects, we have characterized the changes in UV-visible absorption, stiffness, and particle shape that occur when aqueous SOA is exposed to repeated wet-dry cycles and photooxidation. Material properties were measured with Atomic Force Microscopy of atomized laboratory generated SOA; this material was created by combining glyoxal, methylglyoxal, or glycolaldehyde with ammonium sulfate, glycine, or methylamine in solution and either spray drying or evaporating the bulk solution. In addition to optical and material properties, changes in organic functional groups were tracked using scanning transmission x-ray microscopy (STXM) of the near carbon edge x-ray absorption fine structure (NEXAFS). Photooxidation experiments of the same aqueous SOA revealed concomitant changes in the organic functional groups and light absorption spectra, along with measurable changes in particle stiffness.

  13. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

    NASA Astrophysics Data System (ADS)

    Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.

    2015-12-01

    Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plumes of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) project, an intensive campaign was launched in the greater Paris region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind of the Paris region. Two mechanisms of secondary OA (SOA) formation are used, both including SOA formation from oxidation and chemical aging of primary semivolatile and intermediate volatility organic compounds (SI-SOA) in the volatility basis set (VBS) framework. As for SOA formed from traditional VOC (volatile organic compound) precursors (traditional SOA), one applies chemical aging in the VBS framework adopting different SOA yields for high- and low-NOx environments, while another applies a single-step oxidation scheme without chemical aging. Two emission inventories are used for discussion of emission uncertainties. The slopes of the airborne OA levels versus Ox (i.e., O3 + NO2) show SOA formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. The simulated slopes were overestimated slightly by factors of 1.1, 1.7 and 1.3 with respect to those observed for the three airborne measurements, when the most realistic "high-NOx" yields for traditional SOA formation in the VBS scheme are used in the model. In addition, these slopes are relatively stable from one day to another, which suggests that they are characteristic for the given megacity plume environment. The configuration with increased primary

  14. Phase, composition and growth mechanism for secondary organic aerosol from the ozonolysis of α-cedrene

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Wingen, L. M.; Perraud, V.; Finlayson-Pitts, B. J.

    2015-12-01

    Sesquiterpenes are an important class of biogenic volatile organic compounds (BVOCs) and have a high secondary organic aerosol (SOA) forming potential. However, SOA formation from sesquiterpene oxidation has received less attention compared to other BVOCs such as monoterpenes, and the underlying mechanisms remain poorly understood. In this work, we present a comprehensive experimental investigation of the ozonolysis of α-cedrene both in a glass flow reactor (27-44 s reaction times) and in static Teflon chambers (30-60 min reaction times). The SOA was collected by impaction or filters, followed by analysis using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and electrospray ionization mass spectrometry (ESI-MS), or measured on line using direct analysis in real time (DART-MS) and aerosol mass spectrometry (AMS). The slow evaporation of 2-ethylhexyl nitrate that was incorporated into the SOA during its formation and growth gives an estimated diffusion coefficient of 3 × 10-15 cm2 s-1 and shows that SOA is a highly viscous semi-solid. Possible structures of four newly observed low molecular weight (MW ≤ 300 Da) reaction products with higher oxygen content than those previously reported were identified. High molecular weight (HMW) products formed in the early stages of the oxidation have structures consistent with aldol condensation products, peroxyhemiacetals, and esters. The size-dependent distributions of HMW products in the SOA, as well as the effects of stabilized Criegee intermediate (SCI) scavengers on HMW products and particle formation, confirm that HMW products and reactions of Criegee intermediates play a crucial role in early stages of particle formation. Our studies provide new insights into mechanisms of SOA formation and growth in α-cedrene ozonolysis and the important role of sesquiterpenes in new particle formation as suggested by field measurements.

  15. Phase, composition, and growth mechanism for secondary organic aerosol from the ozonolysis of α-cedrene

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Wingen, Lisa M.; Perraud, Véronique; Finlayson-Pitts, Barbara J.

    2016-03-01

    Sesquiterpenes are an important class of biogenic volatile organic compounds (BVOCs) and have a high secondary organic aerosol (SOA) forming potential. However, SOA formation from sesquiterpene oxidation has received less attention compared to other BVOCs such as monoterpenes, and the underlying mechanisms remain poorly understood. In this work, we present a comprehensive experimental investigation of the ozonolysis of α-cedrene both in a glass flow reactor (27-44 s reaction times) and in static Teflon chambers (30-60 min reaction times). The SOA was collected by impaction or filters, followed by analysis using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and electrospray ionization mass spectrometry (ESI-MS), or measured online using direct analysis in real-time mass spectrometry (DART-MS) and aerosol mass spectrometry (AMS). The slow evaporation of 2-ethylhexyl nitrate that was incorporated into the SOA during its formation and growth gives an estimated diffusion coefficient of 3 × 10-15 cm2 s-1 and shows that SOA is a highly viscous semisolid. Possible structures of four newly observed low molecular weight (MW ≤ 300 Da) reaction products with higher oxygen content than those previously reported were identified. High molecular weight (HMW) products formed in the early stages of the oxidation have structures consistent with aldol condensation products, peroxyhemiacetals, and esters. The size-dependent distributions of HMW products in the SOA, as well as the effects of stabilized Criegee intermediate (SCI) scavengers on HMW products and particle formation, confirm that HMW products and reactions of SCI play a crucial role in early stages of particle formation. Our studies provide new insights into mechanisms of SOA formation and growth in α-cedrene ozonolysis and the important role of sesquiterpenes in new particle formation as suggested by field measurements.

  16. Evaluation of New and Proposed Organic Aerosol Sources and Mechanisms using the Aerosol Modeling Testbed. MILAGRO, CARES, CalNex, BEACHON, and GVAX

    SciTech Connect

    Hodzic, Alma; Jimenez, Jose L.

    2015-04-09

    This work investigated the formation and evolution of organic aerosols (OA) arising from anthropogenic and biogenic sources in a framework that combined state-of-the-science process and regional modeling, and their evaluation against advanced and emerging field measurements. Although OA are the dominant constituents of submicron particles, our understanding of their atmospheric lifecycle is limited, and current models fail to describe the observed amounts and properties of chemically formed secondary organic aerosols (SOA), leaving large uncertainties on the effects of SOA on climate. Our work has provided novel modeling constraints on sources, formation, aging and removal of SOA by investigating in particular (i) the contribution of trash burning emissions to OA levels in a megacity, (ii) the contribution of glyoxal to SOA formation in aqueous particles in California during CARES/CalNex and over the continental U.S., (iii) SOA formation and regional growth over a pine forest in Colorado and its sensitivity to anthropogenic NOx levels during BEACHON, and the sensitivity of SOA to (iv) the sunlight exposure during its atmospheric lifetime, and to (v) changes in solubility and removal of organic vapors in the urban plume (MILAGRO, Mexico City), and over the continental U.S.. We have also developed a parameterization of water solubility for condensable organic gases produced from major anthropogenic and biogenic precursors based on explicit chemical modeling, and made it available to the wider community. This work used for the first time constraints from the explicit model GECKO-A to improve SOA representation in 3D regional models such as WRF-Chem.

  17. Nonequilibrium Atmospheric Secondary Organic Aerosol Formation and Growth

    SciTech Connect

    Perraud, Veronique M.; Bruns, Emily A.; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Alexander, M. L.; Zelenyuk, Alla; Imre, D.; Chang, W. L.; Dabdub, Donald; Pankow, James F.; Finlayson-Pitts, Barbara J.

    2012-02-21

    Airborne particles play a critical role in air quality, human health effects, visibility and climate. Secondary organic aerosols (SOA) account for a significant portion of total airborne particles. They are formed in reactions of organic gases that produce low volatility and semi-volatile organic compounds (SVOCs). Current atmospheric models assume that SOA are liquids into which SVOCs undergo equilibrium partitioning and grow the particles. However a large discrepancy between model predictions and field measurements of SOA is commonly observed. We report here laboratory studies of the oxidation of a-pinene by ozone and nitrate radicals and show that particle composition is actually consistent with a kinetically determined growth mechanism, and not with equilibrium partitioning between the gas phase and liquid particles. If this is indeed a general phenomenon in air, the formulation of atmospheric SOA models will have to be revised to reflect this new paradigm. This will have significant impacts on quantifying the role of SOA in air quality, visibility, and climate.

  18. Evaporation Kinetics of Laboratory Generated Secondary Organic Aerosols at Elevated Relative Humidity

    SciTech Connect

    Wilson, Jacqueline M.; Imre, D.; Beranek, Josef; Shrivastava, ManishKumar B.; Zelenyuk, Alla

    2015-01-06

    Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semi-solid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on SOA particles generated, evaporated, and aged at 0%, 50% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30% to 70% of the particle mass evaporates in 2 hours, followed by a much slower evaporation rate. Evaporation kinetics at 0% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses, with aging at elevated RH leading to more significant effect. In all cases, SOA evaporation is nearly size-independent, providing direct evidence that oligomers play a crucial role in determining the evaporation kinetics.

  19. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles.

    PubMed

    Russell, Lynn M; Bahadur, Ranjit; Ziemann, Paul J

    2011-03-01

    Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA.

  20. Characterization of secondary organic aerosol generated from ozonolysis of α-pinene mixtures

    NASA Astrophysics Data System (ADS)

    Amin, Hardik S.; Hatfield, Meagan L.; Huff Hartz, Kara E.

    2013-03-01

    In the atmosphere, multiple volatile organic compounds (VOCs) co-exist, and they can be oxidized concurrently and generate secondary organic aerosol (SOA). In this work, SOA is formed by the oxidation (in presence of excess ozone) of mixtures containing α-pinene and other VOCs. The VOC mixtures were made so their composition approached a commercially-available α-pinene-based essential oil, Siberian fir needle oil. The SOA products were sampled using filters, solvent extracted and analyzed by gas chromatography/mass spectrometry with trimethylsilyl derivatization. The individual product yields for SOA generated from α-pinene changed upon the addition of other VOCs. An increase in concentration of non-reactive VOCs (bornyl acetate, camphene, and borneol) lead to a decrease in individual product yields of characteristic α-pinene SOA products. Although these experiments were carried out under higher VOC and ozone concentrations in comparison to the atmosphere, this work suggests that the role of non-reactive VOCs should be explored in SOA products formation.

  1. Soot aggregate restructuring due to coatings of secondary organic aerosol derived from aromatic precursors.

    PubMed

    Schnitzler, Elijah G; Dutt, Ashneil; Charbonneau, André M; Olfert, Jason S; Jäger, Wolfgang

    2014-12-16

    Restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) derived from hydroxyl radical-initiated oxidation of toluene, p-xylene, ethylbenzene, and benzene was investigated in a series of photo-oxidation (smog) chamber experiments. Soot aggregates were generated by combustion of ethylene using a McKenna burner, treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to low vapor pressure products of aromatic hydrocarbon oxidation, which formed SOA coatings. Aggregate restructuring began once a threshold coating mass was reached, and the degree of the subsequent restructuring increased with mass growth factor. Although significantly compacted, fully processed aggregates were not spherical, with a mass-mobility exponent of 2.78, so additional SOA was required to fill indentations between collapsed branches of the restructured aggregates before the dynamic shape factor of coated particles approached 1. Trends in diameter growth factor, effective density, and dynamic shape factor with increasing mass growth factor indicate distinct stages in soot aggregate processing by SOA coatings. The final degree and coating mass dependence of soot restructuring were found to be the same for SOA coatings from all four aromatic precursors, indicating that the surface tensions of the SOA coatings are similar.

  2. Light extinction by Secondary Organic Aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-07-01

    Broadband optical cavity spectrometers are maturing as a technology for trace gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulphate particles the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  3. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-11-01

    Broadband optical cavity spectrometers are maturing as a technology for trace-gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulfate particles, the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using the Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  4. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest

    NASA Astrophysics Data System (ADS)

    Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A.

    2015-04-01

    We conducted simultaneous measurements of concentrations and above-canopy fluxes of isoprene and α-pinene, along with their oxidation products in aerosols in a Larix kaempferi (Japanese larch) forest in summer 2012. Vertical profiles of isoprene showed the maximum concentration near the forest floor with a peak around noon, whereas oxidation products of isoprene, i.e., methacrolein (MACR) and methyl vinyl ketone (MVK), showed higher concentrations near the canopy level of the forest. The vertical profile suggests large emissions of isoprene near the forest floor, likely due to Dryopteris crassirhizoma (a fern species), and the subsequent reaction within the canopy. The concentrations of α-pinene also showed highest values near the forest floor with maximums in the early morning and late afternoon. The vertical profiles of α-pinene suggest its large emissions from soil and litter in addition to emissions from L. kaempferi leaves at the forest site. Isoprene and its oxidation products in aerosols exhibited similar diurnal variations within the forest canopy, providing evidence for secondary organic aerosol (SOA) formation via oxidation of isoprene most likely emitted from the forest floor. Although high abundance of α-pinene was observed in the morning, its oxidation products in aerosols showed peaks in daytime, due to a time lag between the emission and atmospheric reactions of α-pinene to form SOA. Positive matrix factorization (PMF) analysis indicated that anthropogenic influence is the most important factor contributing to the elevated concentrations of molecular oxidation products of isoprene- (> 64%) and α-pinene-derived SOA (> 57%). The combination of the measured fluxes and vertical profiles of biogenic volatile organic compounds (BVOCs) suggests that the inflow of anthropogenic precursors/aerosols likely enhanced the formation of both isoprene- and α-pinene-SOA within the forest canopy even when the BVOC flux was relatively low. This study highlights

  5. EFFECT OF ACIDITY ON SECONDARY ORGANIC AEROSOL FORMATION FROM ISOPRENE

    EPA Science Inventory

    The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is c...

  6. Secondary organic aerosol formation of primary, secondary and tertiary Amines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amines have been widely identified in ambient aerosol in both urban and rural environments and they are potential precursors for formation of nitrogen-containing secondary organic aerosols (SOA). However, the role of amines in SOA formation has not been well studied. In this wrok, we use UC-Riversid...

  7. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  8. Broadband optical extinction measurements and complex refractive indices in the ultraviolet spectral region for biogenic secondary organic aerosol exposed to ammonia

    NASA Astrophysics Data System (ADS)

    Flores, J.; Washenfelder, R. A.; Lee, H.; Segev, L.; Nizkorodov, S.; Brown, S. S.; Rudich, Y.

    2013-12-01

    The interaction between aerosols and sunlight plays an important role in the radiative balance of Earth's atmosphere. Aerosols can both scatter and absorb solar radiation causing surface cooling and heating of the atmosphere. These interactions depend on the optical properties of the aerosols (i.e., complex refractive index). Secondary organic aerosol (SOA) account for a significant fraction of the tropospheric aerosol. However, their chemical, physical, and optical properties, especially as they are processed in the atmosphere (aging), are still poorly understood. In this study, SOA formed by the ozonolysis of various biogenic volatile organic compound (BVOC) precursors (α-pinene, limonene, and α-humulene) were exposed to humid air containing various concentrations of gaseous ammonia which has been shown to cause the biogenic SOA to ';brown' on filters. The extent of absorption of the SOA in the aerosol phase cause by the exposure to gaseous ammonia was measured by a newly developed instrument to measure aerosol extinction as a function of wavelength using Broadband Cavity Enhanced Spectroscopy (BBCES) with a broadband light source. Size-selected measurements of the humid SOA exposed to NH3 for about 1.5 hours were used to derive complex refractive indices (RI) as a function of wavelength in the UV spectral region (from 360 - 420nm). The imaginary part of the refractive index did not exceed 0.05 in the 360 - 420 nm range for SOA formed from the three BVOCs even at high concentrations of NH3 (>1ppm), allowing to place an upper limit of k = 0.05. Furthermore, the small k values are consistent with bulk UV-VIS measurements. However, for the α-pinene SOA, the real part of the RI slightly increased from n = 1.49 to n = 1.55 with negligible spectral dependence. For limonene and α-humulene the real part remind constant within error calculations. Based on these observations, reactive uptake of gaseous ammonia is not expected to significantly affect absorption and

  9. Sources, Properties, Aging, and Anthropogenic Influences on OA and SOA over the Southeast US and the Amazon duing SOAS, DC3, SEAC4RS, and GoAmazon

    EPA Science Inventory

    The SE US and the Amazon have large sources of biogenic VOCs, varying anthropogenic pollution impacts, and often poor organic aerosol (OA) model performance. Recent results on the sources, properties, aging, and impact of anthropogenic pollution on OA and secondary OA (SOA) over ...

  10. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2015-04-01

    The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+), m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.

  11. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    DOE PAGES

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2015-04-01

    The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- andmore » post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+), m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.« less

  12. Formation of Secondary Organic Aerosol from Non-traditional Intermediate Volatility Organic Compounds

    NASA Astrophysics Data System (ADS)

    Donahue, N. M.; Presto, A. A.; Robinson, A. L.; Kroll, J. H.; Worsnop, D. R.

    2009-04-01

    Secondary organic aerosol (SOA) formation from 'traditional' precursors such as monoterpenes and alkylbenzenes has received substantial attention for the past decade. These traditional sources have relatively high emissions into the atmosphere, but they are also relatively volatile. As a consequence, the oxidation products from those precursors must be more than one million times less volatile in order to form SOA. We have recently begun to investigate the role of 'nontraditional' SOA precursors with much lower volatility than the traditional precursors. These intermediate volatility organic compounds (IVOC) are typically co-emitted with traditional primary organic aerosol (POA) sources at elevated temperatures, including biomass burning and internal combustion processes. While their emissions are much lower than the traditional precursors, the volatility reduction required of the reaction products is much less drastic, making high-yield SOA formation much more likely. Here we describe the formation of SOA from two precursors in the CMU environmental chamber - heptadecane and pentacosane - under high- and low-NOx conditions. Analysis of the resulting SOA with a high-resolution aerosol mass spectrometer coupled to a thermodenuder allows us to asses the oxidation state and volatility distribution of the condensible products, revealing a high degree of oxidation under high-NOx conditions where most of the organics remain in the vapor phase for at least 2 generations of oxidation chemistry, but a lower (though progressive) degree of oxidation under other conditions. These results will be place in context using a two-dimensional volatility basis set that incorporates both the volatility distribution and oxidation state of complex organic mixtures.

  13. Online Measurements and Modeling of Isoprene Photo-oxidation Products: Insights from the Laboratory and SOAS Field Campaign

    NASA Astrophysics Data System (ADS)

    D'Ambro, E.; Lopez-Hilfiker, F.; Mohr, C.; Gaston, C.; Lee, B. H.; Liu, J.; Lutz, A.; Hallquist, M.; Shilling, J.; Gold, A.; Zhang, Z.; Surratt, J. D.; Thornton, J. A.; Schobesberger, S.

    2015-12-01

    Isoprene, the most abundant non-methane volatile organic compound emitted globally, has the potential to produce large quantities of secondary organic aerosol (SOA) with implications for climate, air quality, and human health. However, much remains unknown about the mechanisms and processes that lead to isoprene derived SOA. We present measurements and modeling of a suite of newly detected compounds from isoprene oxidation from laboratory studies at the Pacific Northwest National Laboratory (PNNL) as well as in the atmosphere from the Southern Oxidant and Aerosol Study (SOAS) field campaign. Measurements were made with a high resolution time of flight chemical ionization mass spectrometer utilizing iodide adduct ionization coupled to the Filter Inlet for Gas and AEROsol (FIGAERO) for the simultaneous sampling of the gas and aerosol phases. In the PNNL chamber, isoprene photo-oxidation with dry neutral seed and IEPOX multiphase chemistry on aqueous particles was investigated at a variety of atmospherically relevant conditions. Isoprene photo-oxidation under high HO2 produced unexpectedly substantial SOA at a yield similar to but from a distinctly different mechanism than that from IEPOX uptake. The high HO2 chemistry also resulted in di hydroxy di hydroperoxides as a dominant component of the aerosol. By utilizing the same instrument and ion chemistry during both field and chamber experiments, together with an MCM-based model, we assess the degree to which the different mechanisms are operable in the atmosphere and relevant aerosol chemical and physical properties of the SOA such as volatility and oligomer content.

  14. Black Carbon Aging from SOA Coatings and Coagulation with Diesel BC Emissions during SAAS at the PNNL Environmental Chamber

    NASA Astrophysics Data System (ADS)

    Aiken, A. C.; Liu, S.; Dubey, M. K.; Zaveri, R. A.; Shilling, J. E.; Gourihar, K.; Pekour, M. S.; Subramanian, R.; Zelenyuk, A.; Wilson, J. M.; Mazzoleni, C.; China, S.; Sharma, N.

    2014-12-01

    Black carbon (BC) is considered to be potentially the 2nd most important global warming factor behind CO2 (Bond et al., 2013). Uncertainties exist due to BC morphology and mixing state on the extent of the warming that it causes, e.g. Cappa et al., 2012. Core-shell BC is expected to enhance absorption by up to a factor of 2, but has yet to be observed to this extent from ambient data. Experiments were conducted during the Soot Aerosol Aging Study (SAAS) Laboratory Campaign at Pactific Northwest National Laboratory's Environmental Chamber in the winter of 2013-2014 to investigate the relationship between coatings and enhancements from diesel emissions. Direct on-line measurements were made with the single particle soot photometer (SP2) from fresh and aged BC from coating and coagulation experiments with secondary organic aerosol (SOA) formed in the chamber. BC measurements are coupled with photoactoustic measurements spanning the visible region to probe BC enhancements when mixed with SOA. Here we focus on the enhancements at 781 nm, that are tracked throughout SOA growth on BC, as determined from SP2 coating thicknesses. Thermal denuder (TD) experiments are conducted and enhancements are calculated from two different methods that agree well with each other, confirming the observed results. BC measurements are also compared with co-located measurements from SPLAT-II and filter analysis using SEM and TEM. BC coagulated with SOA produces minimal absorption enhancement values, whereas coatings are observed to have significant enhancement values at 300 degrees C, e.g. 1.3 for thickly coated BC. BC particles were coagulated with SOA in the chamber since this morphology has been observed in wildfire emissions (Sedlacek et al., 2012). Since we did not observe appreciable enhancements for the coagulated BC, we expect that ambient emissions dominated by this particle type to have enhancements due to other sources, such as brown carbon (BrC) that is often co-emitted (Saleh et

  15. How Important Is Organic Aerosol Hygroscopicity to Aerosol Indirect Forcing?

    SciTech Connect

    Liu, Xiaohong; Wang, Jian

    2010-12-07

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation and yield of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR Community Atmospheric Model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (“κ” value) of POA and SOA. Our model simulation indicates that in the present-day condition changing “κ” value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S=0.1% by 40-60% over the POA source regions, while changing “κ” value of SOA by ±50% (from 0.14 to 0.07 and 0.21) changes the CCN within 30%. Changes in the in-cloud droplet number concentrations (CDNC) are within 20% in most locations on the globe with the above changes in “κ” value of POA and SOA. Global annual mean anthropogenic aerosol indirect forcing (AIF) between present-day (PD) and pre-industrial (PI) conditions change by 0.4 W m-2 with the control run of -1.3 W m-2. AIF reduces with the increase hygroscopicity of organic aerosol, indicating the important role of natural organic aerosol in buffering the relative change of CDNC from PI to PD.

  16. Modelling of Criegee Intermediates using the 3-D global model, STOCHEM-CRI and investigating their global impacts on Secondary Organic Aerosol formation

    NASA Astrophysics Data System (ADS)

    Khan, M. Anwar H.; Cooke, Michael; Utembe, Steve; Archibald, Alexander; Derwent, Richard; Jenkin, Mike; Lyons, Kyle; Kent, Adam; Percival, Carl; Shallcross, Dudley E.

    2016-04-01

    Gas phase reactions of ozone with unsaturated compounds form stabilized Criegee intermediates (sCI) which play an important role in controlling the budgets of many tropospheric species including OH, organic acids and secondary organic aerosols (SOA). Recently sCI has been proposed to play a significant role in atmospheric sulfate and nitrate chemistry by forming sulfuric acid (promoter of aerosol formation) and nitrate radical (a powerful oxidizing agent). sCI can also undergo association reactions with water, alcohols, and carboxylic acids to form hydroperoxides and with aldehydes and ketones to form secondary ozonides. The products from these reactions are low volatility compounds which can contribute to the formation of SOA. The importance of plant emitted alkenes (isoprene, monoterpenes, sesquiterpenes) in the production of SOA through sCI formation have already been investigated in laboratory studies. However, the SOA formation from these reactions are absent in current global models. Thus, the formation of SOA has been incorporated in the global model, STOCHEM-CRI, a 3-D global chemistry transport model and the role of CI chemistry in controlling atmospheric composition and climate, and the influence of water vapor has been discussed in the study.

  17. Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation

    NASA Astrophysics Data System (ADS)

    Valorso, R.; Aumont, B.; Camredon, M.; Raventos-Duran, T.; Mouchel-Vallon, C.; Ng, N. L.; Seinfeld, J. H.; Lee-Taylor, J.; Madronich, S.

    2011-07-01

    The sensitivity of the formation of secondary organic aerosol (SOA) to the estimated vapour pressures of the condensable oxidation products is explored. A highly detailed reaction scheme was generated for α-pinene photooxidation using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). Vapour pressures (Pvap) were estimated with three commonly used structure activity relationships. The values of Pvap were compared for the set of secondary species generated by GECKO-A to describe α-pinene oxidation. Discrepancies in the predicted vapour pressures were found to increase with the number of functional groups borne by the species. For semi-volatile organic compounds (i.e. organic species of interest for SOA formation), differences in the predicted Pvap range between a factor of 5 to 200 on average. The simulated SOA concentrations were compared to SOA observations in the Caltech chamber during three experiments performed under a range of NOx conditions. While the model captures the qualitative features of SOA formation for the chamber experiments, SOA concentrations are systematically overestimated. For the conditions simulated, the modelled SOA speciation appears to be rather insensitive to the Pvap estimation method.

  18. Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation

    NASA Astrophysics Data System (ADS)

    Valorso, R.; Aumont, B.; Camredon, M.; Raventos-Duran, T.; Mouchel-Vallon, C.; Ng, N. L.; Seinfeld, J. H.; Lee-Taylor, J.; Madronich, S.

    2011-03-01

    The sensitivity of the formation of secondary organic aerosol (SOA) to the estimated vapour pressures of the condensable oxidation products is explored. A highly detailed reaction scheme was generated for α-pinene photooxidation using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). Vapour pressures (Pvap) were estimated with three commonly used structure activity relationships. The values of Pvap were compared for the set of secondary species generated by GECKO-A to describe α-pinene oxidation. Discrepancies in the predicted vapour pressures were found to increase with the number of functional groups borne by the species. For semi-volatile organic compounds (i.e. organic species of interest for SOA formation), differences in the predicted Pvap range between a factor of 5 to 200 in average. The simulated SOA concentrations were compared to SOA observations in the Caltech chamber during three experiments performed under a range of NOx conditions. While the model captures the qualitative features of SOA formation for the chamber experiments, SOA concentrations are systematically overestimated. For the conditions simulated, the modelled SOA speciation appears to be rather insensitive to the Pvap estimation method.

  19. Investigation of the formation of benzoyl peroxide, benzoic anhydride, and other potential aerosol products from gas-phase reactions of benzoylperoxy radicals

    NASA Astrophysics Data System (ADS)

    Strollo, Christen M.; Ziemann, Paul J.

    2016-04-01

    The secondary organic aerosol (SOA) products of the reaction of benzaldehyde with Cl atoms and with OH radicals in air in the absence of NOx were investigated in an environmental chamber in order to better understand the possible role of organic peroxy radical self-reactions in SOA formation. SOA products and authentic standards were analyzed using mass spectrometry and liquid chromatography, and results show that the yields of benzoyl peroxide (C6H5C(O)OO(O)CC6H5) and benzoic anhydride (C6H5C(O)O(O)CC6H5), two potential products from the gas-phase self-reaction of benzoylperoxy radicals (C6H5C(O)OO·), were less than 0.1%. This is in contrast to results of recent studies that have shown that the gas-phase self-reactions of β-nitrooxyperoxy radicals formed from reactions of isoprene with NO3 radicals form dialkyl peroxides that contribute significantly to gas-phase and SOA products. Such reactions have also been proposed to explain the gas-phase formation of extremely low volatility dimers from autooxidation of terpenes. The results obtained here indicate that, at least for benzoylperoxy radicals, the self-reactions form only benzoyloxy radicals. Analyses of SOA composition and volatility were inconclusive, but it appears that the SOA may consist primarily of oligomers formed through heterogeneous/multiphase reactions possibly involving some combination of phenol, benzaldehyde, benzoic acid, and peroxybenzoic acid.

  20. [Study on transformation mechanism of SOA from biogenic VOC under UV-B condition].

    PubMed

    Li, Ying-Ying; Li, Xiang; Chen, Jian-Min

    2011-12-01

    A laboratory study was carried out to investigate the biogenic volatile organic compounds (BVOC) in a lab-made glass chamber. The secondary organic aerosol (SOA) products can be detected under the UV photooxidation of BVOC. Pelargonium x Citrenella was chosen as the target plant in this research because it can release a large amount of BVOCs. The predominant 7 alkene and ketol compounds were detected by using solid phase microextraction (SPME) sampling and gas chromatography/mass spectrometry (GC/MS) analysis. The photochemical experiment indicated that these BVOC can be rapidly oxidized into SOA under UV-B irradiation. A tandem differential mobility analyzer (TDMA) was used to measure the size distribution and the hygroscopicity of the SOA. The particle diameter was in the range of 50 nm to 320 nm. The high hygroscopicity of SOA was also obtained and the size increased from 1.05 to 1.11 during the wet experiment.

  1. High-NOx Photooxidation of n-Dodecane: Temperature Dependence of SOA Formation.

    PubMed

    Lamkaddam, Houssni; Gratien, Aline; Pangui, Edouard; Cazaunau, Mathieu; Picquet-Varrault, Bénédicte; Doussin, Jean-François

    2017-01-03

    The temperature and concentration dependence of secondary organic aerosol (SOA) yields has been investigated for the first time for the photooxidation of n-dodecane (C12H26) in the presence of NOx in the CESAM chamber (French acronym for "Chamber for Atmospheric Multiphase Experimental Simulation"). Experiments were performed with and without seed aerosol between 283 and 304.5 K. In order to quantify the SOA yields, a new parametrization is proposed to account for organic vapor loss to the chamber walls. Deposition processes were found to impact the aerosol yields by a factor from 1.3 to 1.8 between the lowest and the highest value. As with other photooxidation systems, experiments performed without seed and at low concentration of oxidant showed a lower SOA yield than other seeded experiments. Temperature did not significantly influence SOA formation in this study. This unforeseen behavior indicates that the SOA is dominated by sufficiently low volatility products for which a change in their partitioning due to temperature would not significantly affect the condensed quantities.

  2. A quantification method for heat-decomposable methylglyoxal oligomers and its application on 1,3,5-trimethylbenzene SOA

    NASA Astrophysics Data System (ADS)

    Rodigast, Maria; Mutzel, Anke; Herrmann, Hartmut

    2017-03-01

    Methylglyoxal forms oligomeric compounds in the atmospheric aqueous particle phase, which could establish a significant contribution to the formation of aqueous secondary organic aerosol (aqSOA). Thus far, no suitable method for the quantification of methylglyoxal oligomers is available despite the great effort spent for structure elucidation. In the present study a simplified method was developed to quantify heat-decomposable methylglyoxal oligomers as a sum parameter. The method is based on the thermal decomposition of oligomers into methylglyoxal monomers. Formed methylglyoxal monomers were detected using PFBHA (o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride) derivatisation and gas chromatography-mass spectrometry (GC/MS) analysis. The method development was focused on the heating time (varied between 15 and 48 h), pH during the heating process (pH = 1-7), and heating temperature (50, 100 °C). The optimised values of these method parameters are presented. The developed method was applied to quantify heat-decomposable methylglyoxal oligomers formed during the OH-radical oxidation of 1,3,5-trimethylbenzene (TMB) in the Leipzig aerosol chamber (LEipziger AerosolKammer, LEAK). Oligomer formation was investigated as a function of seed particle acidity and relative humidity. A fraction of heat-decomposable methylglyoxal oligomers of up to 8 % in the produced organic particle mass was found, highlighting the importance of those oligomers formed solely by methylglyoxal for SOA formation. Overall, the present study provides a new and suitable method for quantification of heat-decomposable methylglyoxal oligomers in the aqueous particle phase.

  3. Hybrid III-V/silicon SOA for photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Kaspar, P.; Brenot, R.; Le Liepvre, A.; Accard, A.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Duan, G.-H.; Olivier, S.; Jany, Christophe; Kopp, C.; Menezo, S.

    2014-11-01

    Silicon photonics has reached a considerable level of maturity, and the complexity of photonic integrated circuits (PIC) is steadily increasing. As the number of components in a PIC grows, loss management becomes more and more important. Integrated semiconductor optical amplifiers (SOA) will be crucial components in future photonic systems for loss compensation. In addition, there are specific applications, where SOAs can play a key role beyond mere loss compensation, such as modulated reflective SOAs in carrier distributed passive optical networks or optical gates in packet switching. It is, therefore, highly desirable to find a generic integration platform that includes the possibility of integrating SOAs on silicon. Various methods are currently being developed to integrate light emitters on silicon-on-insulator (SOI) waveguide circuits. Many of them use III-V materials for the hybrid integration on SOI. Various types of lasers have been demonstrated by several groups around the globe. In some of the integration approaches, SOAs can be implemented using essentially the same technology as for lasers. In this paper we will focus on SOA devices based on a hybrid integration approach where III-V material is bonded on SOI and a vertical optical mode transfer is used to couple light between SOI waveguides and guides formed in bonded III-V semiconductor layers. In contrast to evanescent coupling schemes, this mode transfer allows for a higher confinement factor in the gain material and thus for efficient light amplification over short propagation distances. We will outline the fabrication process of our hybrid components and present some of the most interesting results from a fabricated and packaged hybrid SOA.

  4. Organosulfate Formation in Biogenic Secondary Organic Aerosol

    EPA Science Inventory

    Organosulfates of isoprene, α-pinene, and β-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive seri...

  5. Heterogeneous ice nucleation and phase transition of viscous α-pinene secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Virtanen, Annele; Stratmann, Frank

    2016-04-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate deposition ice nucleation and thus influence cirrus cloud properties. Global model simulations of monoterpene SOA particles suggest that viscous biogenic SOA are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle (INP) budget. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles at the CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (Ignatius et al., 2015, Järvinen et al., 2015). In the CLOUD chamber, the SOA particles were produced from the ozone initiated oxidation of α-pinene at temperatures in the range from -38 to -10° C at 5-15 % relative humidity with respect to water (RHw) to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. As the RHw was increased to between 35 % at -10° C and 80 % at -38° C, a transition to spherical shape was observed with a new in-situ optical method. This transition confirms previous modelling of the viscosity transition conditions. The ice nucleation ability of SOA particles was investigated with a new continuous flow diffusion chamber SPIN (Spectrometer for Ice Nuclei) for different SOA particle sizes. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA in the deposition mode for ice saturation ratios between 1.3 and 1.4, significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -36.5 and -38.3° C ranged from 6 to 20 % and did not depend on the particle surface area. References Ignatius, K. et al., Heterogeneous ice

  6. Transformation of logwood combustion emissions in a smog chamber: formation of secondary organic aerosol and changes in the primary organic aerosol upon daytime and nighttime aging

    NASA Astrophysics Data System (ADS)

    Tiitta, Petri; Leskinen, Ari; Hao, Liqing; Yli-Pirilä, Pasi; Kortelainen, Miika; Grigonyte, Julija; Tissari, Jarkko; Lamberg, Heikki; Hartikainen, Anni; Kuuspalo, Kari; Kortelainen, Aki-Matti; Virtanen, Annele; Lehtinen, Kari E. J.; Komppula, Mika; Pieber, Simone; Prévôt, André S. H.; Onasch, Timothy B.; Worsnop, Douglas R.; Czech, Hendryk; Zimmermann, Ralf; Jokiniemi, Jorma; Sippula, Olli

    2016-10-01

    Organic aerosols (OA) derived from small-scale wood combustion emissions are not well represented by current emissions inventories and models, although they contribute substantially to the atmospheric particulate matter (PM) levels. In this work, a 29 m3 smog chamber in the ILMARI facility of the University of Eastern Finland was utilized to investigate the formation of secondary organic aerosol (SOA) from a small-scale modern masonry heater commonly used in northern Europe. Emissions were oxidatively aged in the smog chamber for a variety of dark (i.e., O3 and NO3) and UV (i.e., OH) conditions, with OH concentration levels of (0.5-5) × 106 molecules cm-3, achieving equivalent atmospheric aging of up to 18 h. An aerosol mass spectrometer characterized the direct OA emissions and the SOA formed from the combustion of three wood species (birch, beech and spruce) using two ignition processes (fast ignition with a VOC-to-NOx ratio of 3 and slow ignition with a ratio of 5).Dark and UV aging increased the SOA mass fraction with average SOA productions 2.0 times the initial OA mass loadings. SOA enhancement was found to be higher for the slow ignition compared with fast ignition conditions. Positive matrix factorization (PMF) was used to separate SOA, primary organic aerosol (POA) and their subgroups from the total OA mass spectra. PMF analysis identified two POA and three SOA factors that correlated with the three major oxidizers: ozone, the nitrate radical and the OH radical. Organonitrates (ONs) were observed to be emitted directly from the wood combustion and additionally formed during oxidation via NO3 radicals (dark aging), suggesting small-scale wood combustion may be a significant ON source. POA was oxidized after the ozone addition, forming aged POA, and after 7 h of aging more than 75 % of the original POA was transformed. This process may involve evaporation and homogeneous gas-phase oxidation as well as heterogeneous oxidation of particulate organic matter

  7. Formation and Processing of Secondary Organic Aerosol from Catechol as a Model for Atmospheric HULIS

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Krüger, Heinz-Ulrich; Grothe, Hinrich; Zetzsch, Cornelius

    2010-05-01

    A particular fraction of the secondary organic aerosol (SOA) termed HUmic Like Substances (HULIS) attracted attention only recently in atmospheric aerosol, initiating a discourse about their aromaticity and other properties, such as reactivity and hygroscopicity. A major portion of HULIS originates from volatile organic compounds, which are formed by abiotic oxidation reactions involving mainly OH radicals, ozone, nitrogen oxides and possibly halogens. Subsequently, the particles provide surface for heterogeneous reactions with atmospheric trace gases. Thus, aerosol smog-chamber studies with appropriate precursors are needed to generate SOA with HULIS qualities in situ inside the smog chamber and study their possible interactions. Catechol and guaiacol were chosen as aromatic precursors for synthetic HULIS production. The SOA was produced in a 700 L aerosol smog chamber, equipped with a solar simulator. SOA formation from each precursor was investigated at simulated environmental conditions (humidity, light, and presence of oxidizers) and characterized with respect to HULIS properties by particle classifiers, Fourier Transform IR spectroscopy (by long-path absorption and attenuated total reflection), UV/VIS spectroscopy, high-resolution mass-spectroscopy and temperature-programmed-desorption mass-spectrometry. High-resolution imaging was obtained using Field Emission Gun Scanning Electron Microscopy (FEGSEM). After HULIS formation the aerosol particles were exposed to atmospheric halogen species to study their processing with those trace gases, released by sea salt-activation. Those investigations show that aromatic precursors like catechol and guaiacol are suitable to form synthetic HULIS for laboratory-scale measurements with physical and chemical properties described in literature. However, sunlight and relative humidity play a major role in particle production and composition of functional groups, which are the anchor points for heterogeneous atmospheric

  8. Dense nanocrystalline yttrium iron garnet films formed at room temperature by aerosol deposition

    SciTech Connect

    Johnson, Scooter D. Glaser, Evan R.; Cheng, Shu-Fan; Hite, Jennifer

    2016-04-15

    Highlights: • We deposit yttrium iron garnet films at room temperature using aerosol deposition. • Films are 96% of theoretical density for yttrium iron garnet. • We report magnetic and structural properties post-deposition and post-annealing. • Low-temperature annealing decreases the FMR linewidth. • We discuss features of the FMR spectra at each anneal temperature. - Abstract: We have employed aerosol deposition to form polycrystalline yttrium iron garnet (YIG) films on sapphire at room temperature that are 90–96% dense. We characterize the structural and dynamic magnetic properties of the dense films using scanning electron microscopy, X-ray diffraction, and ferromagnetic resonance techniques. We find that the as-deposited films are pure single-phase YIG formed of compact polycrystallites ∼20 nm in size. The ferromagnetic resonance mode occurs at 2829 G with a linewidth of 308 G. We perform a series of successive anneals up to 1000 °C on a film to explore heat treatment on the ferromagnetic resonance linewidth. We find the narrowest linewidth of 98 G occurs after a 750 °C anneal.

  9. Cloud droplet activity changes of soot aerosol upon smog chamber ageing

    NASA Astrophysics Data System (ADS)

    Wittbom, C.; Pagels, J. H.; Rissler, J.; Eriksson, A. C.; Carlsson, J. E.; Roldin, P.; Nordin, E. Z.; Nilsson, P. T.; Swietlicki, E.; Svenningsson, B.

    2014-04-01

    Particles containing soot, or black carbon, are generally considered to contribute to global warming. However, large uncertainties remain in the net climate forcing resulting from anthropogenic emissions of black carbon (BC), to a large extent due to the fact that BC is co-emitted with gases and primary particles, both organic and inorganic, and subject to atmospheric ageing processes. In this study, diesel exhaust particles and particles from a flame soot generator spiked with light aromatic secondary organic aerosol (SOA) precursors were processed by UV-radiation in a 6 m3 Teflon chamber in the presence of NOx. The time-dependent changes of the soot nanoparticle properties were characterised using a Cloud Condensation Nuclei Counter, an Aerosol Particle Mass Analyzer and a Soot Particle Aerosol Mass Spectrometer. The results show that freshly emitted soot particles do not activate into cloud droplets at supersaturations ≤ 2%, i.e. the black carbon core coated with primary organic aerosol (POA) from the exhaust is limited in hygroscopicity. Before the onset of UV radiation it is unlikely that any substantial SOA formation is taking place. An immediate change in cloud-activation properties occurs at the onset of UV exposure. This change in hygroscopicity is likely attributed to SOA formed from intermediate volatile organic compounds (IVOC) in the diesel engine exhaust. The change of cloud condensation nuclei (CCN) properties at the onset of UV radiation implies that the lifetime of soot particles in the atmosphere is affected by the access to sunlight, which differs between latitudes. The ageing of soot particles progressively enhances their ability to act as cloud condensation nuclei, due to changes in: (I) organic fraction of the particle, (II) chemical properties of this fraction (POA or SOA), (III) particle size, and (IV) particle morphology. Applying κ-Köhler theory, using a κSOA value of 0.13 (derived from independent input parameters describing the

  10. Secondary organic aerosol production from aqueous reactions of atmospheric phenols with an organic triplet excited state.

    PubMed

    Smith, Jeremy D; Sio, Vicky; Yu, Lu; Zhang, Qi; Anastasio, Cort

    2014-01-21

    Condensed-phase chemistry plays a significant role in the formation and evolution of atmospheric organic aerosols. Past studies of the aqueous photoformation of secondary organic aerosol (SOA) have largely focused on hydroxyl radical oxidation, but here we show that triplet excited states of organic compounds ((3)C*) can also be important aqueous oxidants. We studied the aqueous photoreactions of three phenols (phenol, guaiacol, and syringol) with the aromatic carbonyl 3,4-dimethoxybenzaldehyde (DMB); all of these species are emitted by biomass burning. Under simulated sunlight, DMB forms a triplet excited state that rapidly oxidizes phenols to form low-volatility SOA. Rate constants for these reactions are fast and increase with decreasing pH and increasing methoxy substitution of the phenols. Mass yields of aqueous SOA are near 100% for all three phenols. For typical ambient conditions in areas with biomass combustion, the aqueous oxidation of phenols by (3)C* is faster than by hydroxyl radical, although rates depend strongly on pH, oxidant concentrations, and the identity of the phenol. Our results suggest that (3)C* can be the dominant aqueous oxidant of phenols in areas impacted by biomass combustion and that this is a significant pathway for forming SOA.

  11. Molecular Characterization of Organosulfur Compounds in Biodiesel and Diesel Fuel Secondary Organic Aerosol.

    PubMed

    Blair, Sandra L; MacMillan, Amanda C; Drozd, Greg T; Goldstein, Allen H; Chu, Rosalie K; Paša-Tolić, Ljiljana; Shaw, Jared B; Tolić, Nikola; Lin, Peng; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey A

    2017-01-03

    Secondary organic aerosol (SOA), formed in the photooxidation of diesel fuel, biodiesel fuel, and 20% biodiesel fuel/80% diesel fuel mixture, are prepared under high-NOx conditions in the presence and absence of sulfur dioxide (SO2), ammonia (NH3), and relative humidity (RH). The composition of condensed-phase organic compounds in SOA is measured using several complementary techniques including aerosol mass spectrometry (AMS), high-resolution nanospray desorption electrospray ionization mass spectrometry (nano-DESI/HRMS), and ultrahigh resolution and mass accuracy 21T Fourier transform ion cyclotron resonance mass spectrometry (21T FT-ICR MS). Results demonstrate that sulfuric acid and condensed organosulfur species formed in photooxidation experiments with SO2 are present in the SOA particles. Fewer organosulfur species are formed in the high humidity experiments, performed at RH 90%, in comparison with experiments done under dry conditions. There is a strong overlap of organosulfur species observed in this study with previous field and chamber studies of SOA. Many MS peaks of organosulfates (R-OS(O)2OH) previously designated as biogenic or of unknown origin in field studies might have originated from anthropogenic sources, such as photooxidation of hydrocarbons present in diesel and biodiesel fuel.

  12. Secondary organic aerosol from polycyclic aromatic hydrocarbons in Southeast Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Ying, Qi

    2012-08-01

    Recent chamber studies show that low-volatility gas phase precursors such as polycyclic aromatic hydrocarbons (PAHs) can be a significant source of secondary organic aerosol (SOA). In this work, formation of SOA from the photo-oxidation products of PAHs is added to the SOA modeling framework of the Community Multiscale Air Quality (CMAQ) model to determine the regional distribution of SOA products from PAHs (PAH-SOA) and the contributions from sources in Southeast Texas during the Texas Air Quality Study 2006 (TexAQS 2006). Results show that PAHs released from anthropogenic sources can produce SOA mass as much as 10% of that from the traditional light aromatics or approximately 4% of total anthropogenic SOA. In areas under the influence of wildfire emissions, the amount of PAH-SOA can be as much as 50% of the SOA from light aromatics. A source-oriented modeling framework is adopted to determine the major sources of PAH-SOA by tracking the emitted PAHs and their oxidation products in the gas and aerosol phases from different sources separately. Among the eight sources (vehicles, solvent utilization, residential wood, industries, natural gas combustion, coal combustion, wildfire and other sources) that are tracked in the model, wildfire, vehicles, solvent and industries are the major sources of PAH-SOA. Coal and natural gas combustion appear to be less important in terms of their contributions to PAH-SOA.

  13. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  14. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE PAGES

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; ...

    2016-03-08

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed formore » semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected) compared to daytime (average 0.9 µg m−3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of

  15. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    NASA Astrophysics Data System (ADS)

    Pye, Havala O. T.; Murphy, Benjamin N.; Xu, Lu; Ng, Nga L.; Carlton, Annmarie G.; Guo, Hongyu; Weber, Rodney; Vasilakos, Petros; Wyat Appel, K.; Hapsari Budisulistiorini, Sri; Surratt, Jason D.; Nenes, Athanasios; Hu, Weiwei; Jimenez, Jose L.; Isaacman-VanWertz, Gabriel; Misztal, Pawel K.; Goldstein, Allen H.

    2017-01-01

    Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM / OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM / OC ratios in the SE US are often between 1.8 and 2.2, organic aerosol experiences both mixing with inorganic water and separation from it. Regional chemical transport model simulations including inorganic water (but excluding water uptake by organic compounds) in the partitioning medium for secondary organic aerosol (SOA) when RH > SRH led to increased SOA concentrations, particularly at night. Water uptake to the organic phase resulted in even greater SOA concentrations as a result of a positive feedback in which water uptake increased SOA, which further increased aerosol water and organic aerosol. Aerosol properties, such as the OM / OC and hygroscopicity parameter (κorg), were captured well by the model compared with measurements during the Southern Oxidant and Aerosol Study (SOAS) 2013. Organic nitrates from monoterpene oxidation were predicted to be the least water-soluble semivolatile species in the model, but most biogenically derived semivolatile species in the Community Multiscale Air Quality (CMAQ) model were highly water soluble and expected to contribute to water-soluble organic carbon (WSOC). Organic aerosol and SOA precursors were abundant at night, but additional improvements in daytime organic aerosol are needed to close the model-measurement gap. When taking into account deviations from ideality, including both inorganic (when RH > SRH) and organic water in the organic partitioning medium reduced the mean bias in SOA for routine monitoring networks and improved model performance compared to observations from SOAS. Property updates from

  16. Secondary organic aerosol formation from ozone reactions with single terpenoids and terpenoid mixtures

    NASA Astrophysics Data System (ADS)

    Waring, Michael S.; Wells, J. Raymond; Siegel, Jeffrey A.

    2011-08-01

    Ozone reacts with indoor-emitted terpenoids to form secondary organic aerosol (SOA). Most SOA research has focused on ozone reactions with single terpenoids or with consumer products, and this paper reports the results from an investigation of SOA formation from ozone reactions with both single terpenoids and mixtures of D-limonene, α-pinene, and α-terpineol. Transient experiments were conducted at low (25 ppb) and high (100 ppb) initial concentrations of ozone. The three terpenoids were tested singly and in combinations in a manner that controlled for their different reaction rates with ozone. The SOA formation was assessed by examining the evolution in time of the resulting number size-distributions and estimates of the mass concentrations. The results suggest that at higher ozone and terpenoid concentrations, SOA number formation follows a linear trend as a function of the initial rate of reaction. This finding was valid for both single terpenoids and mixtures. Generally speaking, higher ozone and terpenoid concentrations also led to larger geometric mean diameters and smaller geometric standard deviations of fitted lognormal distributions of the formed SOA. By assuming a density, mass concentrations were also assessed and did not follow as consistent of a trend. At low ozone concentration conditions, reactions with only D-limonene yielded the largest number concentrations of any experiment, even more than experiments with mixtures containing D-limonene and much higher overall terpenoid concentrations. This finding was not seen for high ozone concentrations. These experiments demonstrate quantifiable trends for SOA forming reactions of ozone and mixtures, and this work provides a framework for expanding these results to more complex mixtures and consumer products.

  17. Assessing the influence of secondary organic versus primary carbonaceous aerosols on long-range atmospheric polycyclic aromatic hydrocarbon transport.

    PubMed

    Friedman, C L; Pierce, J R; Selin, N E

    2014-03-18

    We use the chemical transport model GEOS-Chem to evaluate the hypothesis that atmospheric polycyclic aromatic hydrocarbons (PAHs) are trapped in secondary organic aerosol (SOA) as it forms. We test the ability of three different partitioning configurations within the model to reproduce observed total concentrations in the midlatitudes and the Arctic as well as midlatitude gas-particle phase distributions. The configurations tested are (1) the GEOS-Chem default configuration, which uses instantaneous equilibrium partitioning to divide PAHs among the gas phase, a primary organic matter (OM) phase (absorptive), and a black carbon (BC) phase (adsorptive), (2) an SOA configuration in which PAHs are trapped in SOA when emitted and slowly evaporate from SOA thereafter, and (3) a configuration in which PAHs are trapped in primary OM/BC upon emission and subsequently slowly evaporate. We also test the influence of changing the fraction of PAHs available for particle-phase oxidation. Trapping PAHs in SOA particles upon formation and protecting against particle-phase oxidation (2) better simulates observed remote concentrations compared to our default configuration (1). However, simulating adsorptive partitioning to BC is required to reproduce the magnitude and seasonal pattern of gas-particle phase distributions. Thus, the last configuration (3) results in the best agreement between observed and simulated concentration/phase distribution data. The importance of BC rather than SOA to PAH transport is consistent with strong observational evidence that PAHs and BC are coemitted.

  18. Physico-chemical characterization of SOA derived from catechol and guaiacol - a model substance for the aromatic fraction of atmospheric HULIS

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Krüger, H.-U.; Grothe, H.; Schmitt-Kopplin, P.; Whitmore, K.; Zetzsch, C.

    2011-01-01

    Secondary organic aerosol (SOA) was produced from the aromatic precursors catechol and guaiacol by reaction with ozone in the presence and absence of simulated sunlight and humidity and investigated for its properties as a proxy for HUmic-LIke Substances (HULIS). Beside a small particle size, a relatively low molecular weight and typical optical features in the UV/VIS spectral range, HULIS contain a typical aromatic and/or olefinic chemical structure and highly oxidized functional groups within a high chemical diversity. Various methods were used to characterize the secondary organic aerosols obtained: Fourier transform infrared spectroscopy (FTIR) demonstrated the formation of several carbonyl containing functional groups as well as structural and functional differences between aerosols formed at different environmental conditions. UV/VIS spectroscopy of filter samples showed that the particulate matter absorbs far into the visible range up to more than 500 nm. Ultrahigh resolved mass spectroscopy (ICR-FT/MS) determined O/C-ratios between 0.3 and 1 and observed m/z ratios between 200 and 450 to be most abundant. Temperature-programmed-pyrolysis mass spectroscopy (TPP-MS) identified carboxylic acids and lactones/esters as major functional groups. Particle sizing using a condensation-nucleus-counter and differential-mobility-particle-sizer (CNC/DMPS) monitored the formation of small particles during the SOA formation process. Particle imaging, using field-emission-gun scanning electron microscopy (FEG-SEM), showed spherical particles, forming clusters and chains. We conclude that catechol and guaiacol are appropriate precursors for studies of the processing of aromatic SOA with atmospheric HULIS properties on the laboratory scale.

  19. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

    NASA Astrophysics Data System (ADS)

    Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.

    2015-03-01

    Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plume of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI project, an intensive campaign was launched in the Greater Paris Region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind the Paris region. Slopes of the plume OA levels vs. Ox (= O3 + NO2) show secondary OA (SOA) formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. Simulated and observed slopes are in good agreement, when the most realistic "h