Science.gov

Sample records for aerospace center dlr

  1. Ground-facilities at the DLR Institute of Aerospace Medicine for preparation of flight experiments

    NASA Astrophysics Data System (ADS)

    Hemmersbach, Ruth; Hendrik Anken, Ralf; Hauslage, Jens; von der Wiesche, Melanie; Baerwalde, Sven; Schuber, Marianne

    In order to investigate the influence of altered gravity on biological systems and to identify gravisensitive processes, various experimental platforms have been developed, which are useful to simulate weightlessness or are able to produce hypergravity. At the Institute of Aerospace Medicine, DLR Cologne, a broad spectrum of applications is offered to scientists: clinostats with one rotation axis and variable rotation speeds for cultivation of small objects (including aquatic organisms) in simulated weightlessness conditions, for online microscopic observations and for online kinetic measurements. Own research concentrates on comparative studies with other kinds of methods to simulate weightlessness, also available at the institute: Rotating Wall Vessel (RWV) for aquatic studies, Random Positioning Machine (RPM; manufactured by Dutch Space, Leiden, The Netherlands). Correspondingly, various centrifuge devices are available to study different test objects under hypergravity conditions -such as NIZEMI, a slow rotating centrifuge microscope, and MUSIC, a multi-sample centrifuge. Mainly for experiments with human test subjects (artificial gravity), but also for biological systems or for testing various kinds of (flight-) hardware, the SAHC, a short arm human centrifuge -loaned by ESA -was installed in Cologne and completes our experimental scenario. Furthermore, due to our specific tasks such as providing laboratories during the German Parabolic Flight Experiments starting from Cologne and being the Facility Responsible Center for BIOLAB, a science rack in the Columbus module aboard the ISS, scientists have the possibility for an optimal preparation of their flight experiments.

  2. Aerospace Communications at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    The Communications Division at the NASA Glenn Research Center in Cleveland Ohio has as its charter to provide NASA and the Nation with our expertise and services in innovative communications technologies that address future missions in Aerospace Technology, Spaceflight, Space Science, Earth Science, Life Science and Exploration.

  3. Aerospace Battery Activities at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.

    2006-01-01

    Goddard Space Flight Center has "pioneered" rechargeable secondary battery design, test, infusion and in-orbit battery management among NASA installations. Nickel cadmium batteries of various designs and sizes have been infused for LEO, GEO and Libration Point spacecraft. Nickel-Hydrogen batteries have currently been baselined for the majority of our missions. Li-Ion batteries from ABSL, JSB, SaFT and Lithion have been designed and tested for aerospace application.

  4. Ground stations for aeronautical and space laser communications at German Aerospace Center

    NASA Astrophysics Data System (ADS)

    Moll, Florian; Shrestha, Amita; Fuchs, Christian

    2015-10-01

    Free-space laser communications are subject of current research and development in many research and industrial bodies. Long distance air-ground and space-ground can be implemented in future communication networks as feeder, backbone and backhaul links for various air- and space-based scenarios. The Institute of Communications and Navigation of the German Aerospace Center (DLR) operates two ground stations to investigate the communication channel and system: the Optical Ground Station Oberpfaffenhofen and the Transportable Optical Ground Station. The first one is a fixed installation and operated as experimental station with focus on channel measurements and tests of new developments. Various measurement devices, communication receivers and optical setups may easily be installed for different objectives. The facility is described with its dome installation, telescope setup and infrastructure. Past and current deployment in several projects is described and selected measurement achievements presented. The second ground station is developed for semi-operational use and demonstration purposes. Based on experience with the experimental ground station, this one is developed with higher level of integration and system robustness. The focus application is the space-ground and air-ground downlink of payload data from Earth observation missions. Therefore, it is also designed to be easily transportable for worldwide deployment. The system is explained and main components are discussed. The characteristics of both ground stations are presented and discussed. Further advancements in the equipment and capability are also presented.

  5. Virtual Testbed Aerospace Operations Center (VT-AOC)

    NASA Astrophysics Data System (ADS)

    Dunaway, Bradley; Broadstock, Tom

    2003-09-01

    The Air Force is conducting research in new technologies for next-generation Aerospace Operations Centers (AOCs). The Virtual Testbed Aerospace Operations Center (VT-AOC) will support advanced research in information technologies that operate in or are closely tied to AOCs. The VT-AOC will provide a context for developing, demonstrating, and testing new processes and tools in a realistic environment. To generate the environment, the VT-AOC will incorporate multiple mixed-resolution simulations that are capable of driving existing and future AOC command and control (C2) systems. The VT-AOC will provide the capability to capture existing or proposed C2 processes and then evaluate them operating in conjunction with new technologies. The VT-AOC will also be capable of connecting with other facilities to support increasingly more complex experiments and demonstrations. Together, these capabilities support key initiatives such as Agile Research and Development/Science and Technology (R&D/S&T), Predictive Battlespace Awareness, and Effects-Based Operations.

  6. 48 CFR 1852.235-70 - Center for AeroSpace Information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Center for AeroSpace... SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of Provisions and Clauses 1852.235-70 Center for AeroSpace Information. As prescribed in 1835.070(a), insert...

  7. 48 CFR 1852.235-70 - Center for AeroSpace Information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Center for AeroSpace... SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of Provisions and Clauses 1852.235-70 Center for AeroSpace Information. As prescribed in 1835.070(a), insert...

  8. 48 CFR 1852.235-70 - Center for AeroSpace Information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Center for AeroSpace... SPACE ADMINISTRATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Texts of Provisions and Clauses 1852.235-70 Center for AeroSpace Information. As prescribed in 1835.070(a), insert...

  9. The Center for Aerospace Research: A NASA Center of Excellence at North Carolina Agricultural and Technical State University

    NASA Technical Reports Server (NTRS)

    Lai, Steven H.-Y.

    1992-01-01

    This report documents the efforts and outcomes of our research and educational programs at NASA-CORE in NCA&TSU. The goal of the center was to establish a quality aerospace research base and to develop an educational program to increase the participation of minority faculty and students in the areas of aerospace engineering. The major accomplishments of this center in the first year are summarized in terms of three different areas, namely, the center's research programs area, the center's educational programs area, and the center's management area. In the center's research programs area, we focus on developing capabilities needed to support the development of the aerospace plane and high speed civil transportation system technologies. In the educational programs area, we developed an aerospace engineering option program ready for university approval.

  10. Opportunities and challenges of international coordination efforts in space exploration - the DLR perspective

    NASA Astrophysics Data System (ADS)

    Boese, Andrea

    The German Aerospace Center and German Space Agency DLR has defined internationalisation one of the four pillars of its corporate strategy. Driven by global challenges, national space agencies like DLR are seeking partnerships to contribute to essential societal needs, such as human welfare, sustainability of life, economic development, security, culture and knowledge. All partnerships with both traditional and non-traditional partners must reflect a balanced approach between national requirements and needs of the international community. In view of the challenges emerging from this complexity, endeavours like space exploration must be built on mutual cooperation especially in a challenging political environment. Effective and efficient exploitation of existing expertise, human resources, facilities and infrastructures require consolidated actions of stakeholders, interest groups and authorities. This basic principle applies to any space exploration activity. DLR is among the agencies participating in the International Space Exploration Coordination Group (ISECG) from its beginning in 2007. The strategic goals of DLR regarding space exploration correspond to the purpose of ISECG as a forum to share objectives and plans to take concrete steps towards partnerships for a globally coordinated effort in space exploration. DLR contributes to ISECG publications especially the “Global Exploration Roadmap” and the “Benefits stemming from Space Exploration” to see those messages reflected that support cooperation with internal and external exploration stakeholders in science and technology and communication with those in politics and society. DLR provides input also to other groups engaging in space exploration. However, taking into account limited resources and expected results, the effectiveness of multiple coordination and planning mechanisms needs to be discussed.

  11. ADAS: Asiago-DLR Asteroid Survey

    NASA Astrophysics Data System (ADS)

    Barbieri, C.; Bertini, I.; Magrin, S.; Salvadori, L.; Calvani, M.; Claudi, R.; Pignata, G.; Hahn, G.; Mottola, S.; Hoffmann, M.

    The Asiago-DLR Asteroid Survey is the joint program among the Department of Astronomy and Astronomical Observatory of Padova and the DLR Berlin, dedicated to the search of asteroids. The Minor Planet Center has attributed to ADAS the survey code 209. The project is carried out since the end of December 2000 with the S67/92cm telescope at Asiago - Cima Ekar equipped with the SCAM-1 camera of DLR, in Time Delay Integration mode, in a strip from -5o to +15o around the celestial equator. The camera has a front illuminated Loral chip of 2048x2048 pixels of 15 mu m each, covering a field of 49'x49' with a resolution of 1.4'' pixel-1. This paper presents the main results obtained till March 15, 2002, when the telescope has been closed for a complete overhaul. ADAS will resume presumably at the end of June 2002.

  12. Organizational structure and operation of defense/aerospace information centers in the United States of America

    NASA Technical Reports Server (NTRS)

    Sauter, H. E.; Lushina, L. N.

    1983-01-01

    U.S. Government aerospace and defense information centers are addressed. DTIC and NASA are described in terms of their history, operational authority, information services provided, user community, sources of information collected, efforts under way to improve services, and external agreements regarding the exchange of documents and/or data bases. Contents show how DTIC and NASA provide aerospace/defense information services in support of U.S. research and development efforts. In a general introduction, the importance of scientific and technical information and the need for information centers to acquire, handle, and disseminate it are stressed.

  13. Meteorological regimes for the classification of aerospace air quality predictions for NASA-Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Sloan, J. C.

    1976-01-01

    A method is described for developing a statistical air quality assessment for the launch of an aerospace vehicle from the Kennedy Space Center in terms of existing climatological data sets. The procedure can be refined as developing meteorological conditions are identified for use with the NASA-Marshall Space Flight Center Rocket Exhaust Effluent Diffusion (REED) description. Classical climatological regimes for the long range analysis can be narrowed as the synoptic and mesoscale structure is identified. Only broad synoptic regimes are identified at this stage of analysis. As the statistical data matrix is developed, synoptic regimes will be refined in terms of the resulting eigenvectors as applicable to aerospace air quality predictions.

  14. Earth observation data payload ground segments at DLR for GMES

    NASA Astrophysics Data System (ADS)

    Schreier, Gunter; Dech, Stefan; Diedrich, Erhard; Maass, Holger; Mikusch, Eberhard

    2008-07-01

    The European Global Monitoring of Environment and Security (GMES) programme involves missions of the European Space Agency (ESA), EUMETSAT and also missions, originating from European national space agencies and private operators. These missions will be complemented by further missions from non-European operators to close gaps in data provision. The German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) is involved in national and private missions contributing to the fleet of GMES satellites. Apart from operating as one of the major Processing and Archiving Centers (PAC) for the ESA EO Missions, DFD is developing the data payload ground segment for the German national missions TerraSAR-X, TanDEM-X and EnMAP. DFD is also operations partner of European Space Imaging, receiving, processing and distributing submetric Ikonos data. Likewise, it is partner of EUROMAP, ensuring the European coverage for Indian Earth Observation satellites such as ResouceSat and CartoSat. A brief description of the missions, its ground segment and significance for GMES is given. Harmonizing the availability of data and products for European GMES users and managing the various data and information flows within a heterogeneous and distributed data payload ground segment is a challenging task.

  15. Evaluation of the Selective Dissemination of Information (SDI) Program for the Aerospace Materials Information Center.

    ERIC Educational Resources Information Center

    Scheffler, F. L.; March, J. F.

    The Aerospace Materials Information Center (AMIC) Selective Dissemination of Information (SDI) program was evaluated by an interview technique after one year of operation. The data base for the SDI consists of the periodic document index records input to the AMIC system. The users are 63 engineers, scientists, and technical administrators at the…

  16. Establishment of a NRT service at DLR for supporting sea ice and iceberg monitoring for the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Höppner, Kathrin; Eichler, Karolin; Diedrich, Erhard; Lehner, Susanne; Frost, Anja; Ressel, Rudolf

    2015-04-01

    The navigation of a ship through a defined area between South America and the Antarctic Peninsula will be facilitated by an uninterrupted monitoring of sea ice in near real time. To this end, DLR will develop an NRT processing chain over the next few years that will be installed at GARS O'Higgins, the DLR Antarctic station. At the northern tip of the Antarctic Peninsula, the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) has been running GARS O'Higgins since 1991, and has kept it manned year-round since 2010. High-resolution radar data provides the foundation for this project. The data is received at GARS O'Higgins and processed on location within a short period of time, thereby generating pertinent and reliable information products about sea ice coverage, iceberg recognition, wind fields and wave movements. Ultimately, this vital information will be distributed to customers as a service in near real time (NRT). The challenge lies in adapting the existing processors developed by DLR to the specific demands of the Antarctic region, and then further developing them as needed. Upon installation with the customer, special consideration should be given to achieve and maintain the near real time capacity of the product. This involves the optimization of the process chain and of the information format, which will be tailor-made for the customer. Currently, this is a R&D activity at DLR. It may be enlarged to an operational service in future. Initially, the potential of this service needs to be broadly demonstrated. If possible, the pilot users of the NRT service, as well as the secondary use of this data in demonstration pilot projects and case studies will be assessed. Aside from the acquisition of data from the German satellite TerraSAR-X, additional data from the Sentinel-1 and/or Radarsat-2 satellites will also be evaluated.

  17. An Overview of Aerospace Propulsion Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.

    2007-01-01

    NASA Glenn Research center is the recognized leader in aerospace propulsion research, advanced technology development and revolutionary system concepts committed to meeting the increasing demand for low noise, low emission, high performance, and light weight propulsion systems for affordable and safe aviation and space transportation needs. The technologies span a broad range of areas including air breathing, as well as rocket propulsion systems, for commercial and military aerospace applications and for space launch, as well as in-space propulsion applications. The scope of work includes fundamentals, components, processes, and system interactions. Technologies developed use both experimental and analytical approaches. The presentation provides an overview of the current research and technology development activities at NASA Glenn Research Center .

  18. NASA Engineering Safety Center NASA Aerospace Flight Battery Systems Working Group 2007 Proactive Task Status

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2007-01-01

    In 2007, the NASA Engineering Safety Center (NESC) chartered the NASA Aerospace Flight Battery Systems Working Group to bring forth and address critical battery-related performance/manufacturing issues for NASA and the aerospace community. A suite of tasks identifying and addressing issues related to Ni-H2 and Li-ion battery chemistries was submitted and selected for implementation. The current NESC funded are: (1) Wet Life of Ni-H2 Batteries (2) Binding Procurement (3) NASA Lithium-Ion Battery Guidelines (3a) Li-Ion Performance Assessment (3b) Li-Ion Guidelines Document (3b-i) Assessment of Applicability of Pouch Cells for Aerospace Missions (3b-ii) High Voltage Risk Assessment (3b-iii) Safe Charge Rates for Li-Ion Cells (4) Availability of Source Material for Li-Ion Cells (5) NASA Aerospace Battery Workshop This presentation provides a brief overview of the tasks in the 2007 plan and serves as an introduction to more detailed discussions on each of the specific tasks.

  19. Photogrammetric Tracking of Aerodynamic Surfaces and Aerospace Models at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Shortis, Mark R.; Robson, Stuart; Jones, Thomas W.; Goad, William K.; Lunsford, Charles B.

    2016-06-01

    Aerospace engineers require measurements of the shape of aerodynamic surfaces and the six degree of freedom (6DoF) position and orientation of aerospace models to analyse structural dynamics and aerodynamic forces. The measurement technique must be non-contact, accurate, reliable, have a high sample rate and preferably be non-intrusive. Close range photogrammetry based on multiple, synchronised, commercial-off-the-shelf digital cameras can supply surface shape and 6DoF data at 5-15Hz with customisable accuracies. This paper describes data acquisition systems designed and implemented at NASA Langley Research Center to capture surface shapes and 6DoF data. System calibration and data processing techniques are discussed. Examples of experiments and data outputs are described.

  20. Computerized structural sizing at NASA Langley Research Center. [low mass design for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.; Sobieszczanski-Sobieski, J.; Walz, J. E.; Bush, H. G.

    1978-01-01

    Programs at the NASA Langley Research Center associated with the development of computerized structural sizing technology are reviewed. Particular attention is given to (1) lightweight columns for space structure applications, (2) stiffened composite panels for aerospace structures, (3) thermal structures for high-speed aircraft and space vehicles, (4) structural sizing methodology for finite-element structural models, (5) the sizing of large complex structural systems in multidisciplinary environments. Improvements to computational efficiency are noted with reference to a reduced number of sizing variables, a reduced number of constraints, and improved sizing algorithms.

  1. Emissivity Measurements and Laboratory Intercalibration at PSF of Oxford University and PEL of DLR

    NASA Astrophysics Data System (ADS)

    Maturilli, A.; Bowles, N. E.; Thomas, I. R.; Helbert, J.

    2013-09-01

    Emissivity spectra of analogue materials are needed for the analysis of remote sensing emission spectra of airless surfaces. The increasing number of planetary missions to the Moon, Mercury, asteroids, and other minor bodies require appropriate laboratory set-ups to fulfill those requirements. Two independent groups, one at Oxford University and the other at the German Aerospace Center (DLR) in Berlin provide suitable chambers for emissivity measurements in vacuum. The Planetary Spectroscopy Facility (PSF) of the Oxford University favored a high vacuum, low to average sample temperatures, and a limited spectral range for measurements, mostly inspired from lunar and asteroids environment. At the Planetary Emissivity Laboratory (PEL) of DLR, the set-up allows measuring in low-moderate vacuum, for sample temperatures from low to very high (> 1000 K) and in an extended spectral range (1 to over 100μm), with Mercury being the principal driver of chamber design. To understand the influence of environment parameters on emissivity spectra, we measured a fine (0-25 μm) sample of volcanic dust from Iceland (PEL ID 00000240) under several environmental conditions at PSF, and for comparison under standard conditions at PEL.

  2. NASA-OAI Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center at Lewis Field

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Montegani, Francis J.

    2003-01-01

    During the summer of 2002, a IO-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA- ASEE Summer Faculty Fellowship Program, that operated for 38 years at Glenn. This year s program began officially on June 3, 2002 and continued through August 9, 2002. This report is intended primarily to summarize the research activities comprising the 2002 CFP Program at Glenn. Fifteen research summaries are included.

  3. Innovative Educational Aerospace Research at the Northeast High School Space Research Center

    NASA Technical Reports Server (NTRS)

    Luyet, Audra; Matarazzo, Anthony; Folta, David

    1997-01-01

    Northeast High Magnet School of Philadelphia, Pennsylvania is a proud sponsor of the Space Research Center (SPARC). SPARC, a model program of the Medical, Engineering, and Aerospace Magnet school, provides talented students the capability to successfully exercise full simulations of NASA manned missions. These simulations included low-Earth Shuttle missions and Apollo lunar missions in the past, and will focus on a planetary mission to Mars this year. At the end of each scholastic year, a simulated mission, lasting between one and eight days, is performed involving 75 students as specialists in seven teams The groups are comprised of Flight Management, Spacecraft Communications (SatCom), Computer Networking, Spacecraft Design and Engineering, Electronics, Rocketry, Robotics, and Medical teams in either the mission operations center or onboard the spacecraft. Software development activities are also required in support of these simulations The objective of this paper is to present the accomplishments, technology innovations, interactions, and an overview of SPARC with an emphasis on how the program's educational activities parallel NASA mission support and how this education is preparing student for the space frontier.

  4. Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Kankam, Mark D.

    2004-01-01

    During the summer of 2004, a 10-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA-ASEE Summer Faculty Fellowship Program that operated for 38 years at Glenn. The objectives of CFP parallel those of its companion, viz., (1) to further the professional knowledge of qualified engineering and science faculty,(2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants institutions, and (4) to contribute to the research objectives of Glenn. However, CFP, unlike the NASA program, permits faculty to be in residence for more than two summers and does not limit participation to United States citizens. Selected fellows spend 10 weeks at Glenn working on research problems in collaboration with NASA colleagues and participating in related activities of the NASA-ASEE program. This year's program began officially on June 1, 2004 and continued through August 7, 2004. Several fellows had program dates that differed from the official dates because university schedules vary and because some of the summer research projects warranted a time extension beyond the 10 weeks for satisfactory completion of the work. The stipend paid to the fellows was $1200 per week and a relocation allowance of $1000 was paid to those living outside a 50-mile radius of the Center. In post-program surveys from this and previous years, the faculty cited numerous instances where participation in the program has led to new courses, new research projects, new laboratory experiments, and grants from NASA to continue the work initiated during the summer. Many of the fellows mentioned amplifying material, both in

  5. An Aerospace Workshop

    ERIC Educational Resources Information Center

    Hill, Bill

    1972-01-01

    Describes the 16-day, 10,000 mile national tour of the nation's major aerospace research and development centers by 65 students enrolled in Central Washington State College's Summer Aerospace Workshop. (Author/MB)

  6. Planetary and Space Simulation Facilities PSI at DLR for Astrobiology

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Rettberg, P.; Panitz, C.; Reitz, G.

    2008-09-01

    Ground based experiments, conducted in the controlled planetary and space environment simulation facilities PSI at DLR, are used to investigate astrobiological questions and to complement the corresponding experiments in LEO, for example on free flying satellites or on space exposure platforms on the ISS. In-orbit exposure facilities can only accommodate a limited number of experiments for exposure to space parameters like high vacuum, intense radiation of galactic and solar origin and microgravity, sometimes also technically adapted to simulate extraterrestrial planetary conditions like those on Mars. Ground based experiments in carefully equipped and monitored simulation facilities allow the investigation of the effects of simulated single environmental parameters and selected combinations on a much wider variety of samples. In PSI at DLR, international science consortia performed astrobiological investigations and space experiment preparations, exposing organic compounds and a wide range of microorganisms, reaching from bacterial spores to complex microbial communities, lichens and even animals like tardigrades to simulated planetary or space environment parameters in pursuit of exobiological questions on the resistance to extreme environments and the origin and distribution of life. The Planetary and Space Simulation Facilities PSI of the Institute of Aerospace Medicine at DLR in Köln, Germany, providing high vacuum of controlled residual composition, ionizing radiation of a X-ray tube, polychromatic UV radiation in the range of 170-400 nm, VIS and IR or individual monochromatic UV wavelengths, and temperature regulation from -20°C to +80°C at the sample size individually or in selected combinations in 9 modular facilities of varying sizes are presented with selected experiments performed within.

  7. The DLR Project - Weather & Flying

    NASA Astrophysics Data System (ADS)

    Gerz, T.

    2009-09-01

    A project is introduced which aims at (a) providing timely, tailored and concise meteorological information especially for adverse weather as precisely as possible for air traffic control and management, airline operating centres, pilots, and airports, and (b) building automated flight control systems and evasion-manoeuvre methods to minimise the impact of adverse wind and wake conditions on the flight performance of an aircraft. Today ATM and ATC most of the time only react on adverse weather when the disruption has already happened or is just about to happen. A future air traffic management should pro-actively anticipate disruptive weather elements and their time scales well in advance to avoid or to mitigate the impact upon the traffic flow. But "weather” is not a technical problem that can be simply solved. Predicting the weather is a difficult and complex task and only possible within certain limits. It is therefore necessary to observe and forecast the changing state of the atmosphere as precisely and as rapidly as possible. Measures must be taken to minimise the impact of adverse weather or changing weather conditions on air traffic management and tactical manoeuvring, both on ground and onboard the aircraft. Weather and meteorological information (MET in short) is to be considered as an integral part of air traffic management. In 2008, DLR has initiated a major project "Wetter & Fliegen” (German for "Weather and Flying”) to address this inter¬disciplinary challenge. Its goal is to augment safety and efficiency of air transportation, thereby focusing on the two German hub airports in Frankfurt and München. This high-level goal shall be reached by two strands of work: a) The development of an Integrated Terminal Weather Systems (ITWS) for the air¬¬ports at Frankfurt and München to improve the detection and forecast of weather phenomena adversely affecting airport operations, including deep convection (thunderstorms, hail, wind), wake vortex, and

  8. HySens-DAIS/ROSIS Imaging Spectrometers at DLR

    NASA Astrophysics Data System (ADS)

    Mueller, Andreas A.; Hausold, Andrea; Strobl, Peter

    2002-01-01

    Airborne imaging spectroscopy has undergone a rapid development over the last decade. The number of research groups making use of this technology has increased by an order of a magnitude. Starting from the late 1980s at the DLR research center 'Oberpfaffenhofen' spectroscopic earth observation facilities have been continuously improved in order to be able to provide reliable imaging spectrometer data to the scientific community. At the current stage the integrated hyperspectral facilities at DLR Cluster for Applied Remote Sensing consists of the two imaging spectrometers DAIS 7915 and ROSIS, a laboratory calibration facility and the respective processing and archiving facilities. As an additional important factor in airborne remote sensing access to a DLR-own fleet of research aircraft (Dornier Do228, Cessna 208B Grand-Caravan, FALCON 20 E5 jet) is granted. Numerous imaging spectrometer campaigns have been carried out during the last years with flight activities all over Europe. Currently the two airborne imaging sensors are identified by the European Commission as a mayor research infrastructure and supported in a 3 year project. In the frame of this project hyperspectral data sets will be acquired over different test areas proposed by international research teams. In this paper the installation of the facility in an European research environment, the technical components as well as the currently ongoing research activities will be described. A list of already acquired data sets and the corresponding thematic applications is shown. An outlook to future improvements including new sensor initiatives is given.

  9. A research facility for habitation questions to be built at the German Aerospace Center in Cologne: future challenges of Space medicine

    PubMed Central

    Koch, B; Gerzer, R

    2008-01-01

    For long term habitation in space and for living on Moon and Mars, many questions still need to be resolved. Such habitation questions include prevention of and rehabilitation from negative effects of weightlessness that are, in many instances, comparable to problems of aging people on Earth as well as of patients during and recovery from long term stays in bed. Therefore the DLR Institute of Aerospace Medicine has designed a concept for a research facility that will make it possible to join space research directly with terrestrial applications. From a strategic point of view, one major emphasis of :envihab is to form a closely interrelated network of scientists and the industry and the public. The project has been in the planning phase for several years. After an international architectural contest, the winning concept was selected in 2007 by a Jury with ESA participation. PMID:19048099

  10. Experimental Investigation of the DLR-F6 Transport Configuration in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.; Rivers, Melissa B.; Goodliff, Scott L.; Rudnik, Ralf; Sitzmann, Martin

    2008-01-01

    An experimental aerodynamic investigation of the DLR (German Aerospace Center) F6 generic transport configuration has been conducted in the NASA NTF (National Transonic Facility) for CFD validation within the framework of the AIAA Drag Prediction Workshop. Force and moment, surface pressure, model deformation, and surface flow visualization data have been obtained at Reynolds numbers of both 3 million and 5 million. Flow-through nacelles and a side-of-body fairing were also investigated on this wing-body configuration. Reynolds number effects on trailing edge separation have been assessed, and the effectiveness of the side-of-body fairing in eliminating a known region of separated flow has been determined. Data obtained at a Reynolds number of 3 million are presented together for comparison with data from a previous wind tunnel investigation in the ONERA S2MA facility. New surface flow visualization capabilities have also been successfully explored and demonstrated in the NTF for the high pressure and moderately low temperature conditions required in this investigation. Images detailing wing surface flow characteristics are presented.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report No. 36: The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 1 NASA Langley Research Center Mail Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.

  12. Research and development of optical measurement techniques for aerospace propulsion research: A NASA Lewis Research Center perspective

    NASA Technical Reports Server (NTRS)

    Lesco, Daniel J.

    1991-01-01

    The applied research effort required to develop new nonintrusive measurement techniques capable of obtaining the data required by aerospace propulsion researchers and of operating in the harsh environments encountered in research and test facilities is discussed and illustrated through several ongoing projects at NASA's Lewis Research Center. Factors including length of development time, funding levels, and collaborative support from fluid-thermal researchers are cited. Progress in developing new instrumentation via a multi-path approach, including NASA research, grant, and government-sponsored research through mechanisms like the Small Business Innovative Research program, is also described.

  13. Knowledge Management tools integration within DLR's concurrent engineering facility

    NASA Astrophysics Data System (ADS)

    Lopez, R. P.; Soragavi, G.; Deshmukh, M.; Ludtke, D.

    The complexity of space endeavors has increased the need for Knowledge Management (KM) tools. The concept of KM involves not only the electronic storage of knowledge, but also the process of making this knowledge available, reusable and traceable. Establishing a KM concept within the Concurrent Engineering Facility (CEF) has been a research topic of the German Aerospace Centre (DLR). This paper presents the current KM tools of the CEF: the Software Platform for Organizing and Capturing Knowledge (S.P.O.C.K.), the data model Virtual Satellite (VirSat), and the Simulation Model Library (SimMoLib), and how their usage improved the Concurrent Engineering (CE) process. This paper also exposes the lessons learned from the introduction of KM practices into the CEF and elaborates a roadmap for the further development of KM in CE activities at DLR. The results of the application of the Knowledge Management tools have shown the potential of merging the three software platforms with their functionalities, as the next step towards the fully integration of KM practices into the CE process. VirSat will stay as the main software platform used within a CE study, and S.P.O.C.K. and SimMoLib will be integrated into VirSat. These tools will support the data model as a reference and documentation source, and as an access to simulation and calculation models. The use of KM tools in the CEF aims to become a basic practice during the CE process. The settlement of this practice will result in a much more extended knowledge and experience exchange within the Concurrent Engineering environment and, consequently, the outcome of the studies will comprise higher quality in the design of space systems.

  14. Parametric Studies for the Structural Pre-Design of Hypersonic Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Kopp, Alexander

    2012-07-01

    The Space Launcher Systems Analysis Group (SART) of the German Aerospace Center DLR is involved in various internal and multilateral hypersonic vehicle studies. Hypersonic transportation vehicles require structural analysis already in an early design phase to enable accurate structural mass estimations. A program for preliminary structural analysis of hypersonic transportation vehicles will be presented here. The program HySAP serves for rapid, parametric trade studies. The requirements will be derived and the program structure described in detail. Furthermore, first application cases for the program version will be discussed.

  15. Advances in robotics: The DLR experience

    SciTech Connect

    Hirzinger, G.; Fischer, M.; Brunner, B.; Koeppe, R.; Otter, M.; Grebenstein, M.; Schaefer, I.

    1999-11-01

    Key items in the development of a new smart robot generation are explained in light of DLR's recent activities in robotics research. These items are the design of articulated hands, ultra-lightweight links, and joint drive systems with integrated joint torque control, sensory feedback including real-time 3-D vision, learning and skill-transfer, modeling the environment using sensorfusion, and new sensor-based off-line programming techniques based on teaching by showing in a virtual environment.

  16. Geostationary satellite positioning by DLR/GSOC operations and management methods

    NASA Technical Reports Server (NTRS)

    Brittinger, Peter

    1994-01-01

    Starting with a short description of the GSOC (German Space Operations Center) and its role within the wider framework of the research institute DLR, this paper provides a review of the geostationary telecommunications satellites positioned by the GSOC. The paper then proceeds to describe the evolution of the operations and management structures and methods which have been effectively used to accomplish these missions.

  17. Providing radiometric traceability for the calibration home base of DLR by PTB

    SciTech Connect

    Taubert, D. R.; Hollandt, J.; Sperfeld, P.; Pape, S.; Hoepe, A.; Hauer, K.-O.; Gege, P.; Schwarzmaier, T.; Lenhard, K.; Baumgartner, A.

    2013-05-10

    A dedicated calibration technique was applied for the calibration of the spectral radiance transfer standard (RASTA) of the German Aerospace Center (DLR) at the Physikalisch-Technische Bundesanstalt (PTB), consisting of two independent but complementing calibration procedures to provide redundancy and smallest possible calibration uncertainties. Procedure I included two calibration steps: In a first step the optical radiation source of RASTA, an FEL lamp, was calibrated in terms of its spectral irradiance E{sub {lambda}}({lambda}) in the wavelength range from 350 nm to 2400 nm using the PTB Spectral Irradiance Calibration Equipment (SPICE), while in a second step the spectral radiance factor {beta}{sub 0 Degree-Sign :45 Degree-Sign }({lambda}) of the RASTA reflection standard was calibrated in a 0 Degree-Sign :45 Degree-Sign -viewing geometry in the wavelength range from 350 nm to 1700 nm at the robot-based gonioreflectometer facility of PTB. The achieved relative standard uncertainties (k= 1) range from 0.6 % to 3.2 % and 0.1 % to 0.6 % respectively. Procedure II was completely independent from procedure I and allowed to cover the entire spectral range of RASTA from 350 nm to 2500 nm. In the second procedure, the 0 Degree-Sign :45 Degree-Sign -viewing geometry spectral radiance L{sub {lambda},0 Degree-Sign :45 Degree-Sign }({lambda}) of RASTA was directly calibrated at the Spectral Radiance Comparator Facility (SRCF) of PTB. The relative uncertainties for this calibration procedure range from 0.8 % in the visible up to 7.5 % at 2500 nm (k= 1). In the overlapping spectral range of both calibration procedures the calculated spectral radiance L{sub {lambda},0 Degree-Sign :45 Degree-Sign ,calc}({lambda}) from procedure I is in good agreement with the direct measurement of procedure II, i.e. well within the combined expanded uncertainties (k= 2) of both procedures.

  18. Aerospace applications of SINDA/FLUINT at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Bellmore, Phillip E.; Andish, Kambiz K.; Keller, John R.

    1992-01-01

    SINDA/FLUINT has been found to be a versatile code for modeling aerospace systems involving single or two-phase fluid flow and all modes of heat transfer. Several applications of SINDA/FLUINT are described in this paper. SINDA/FLUINT is being used extensively to model the single phase water loops and the two-phase ammonia loops of the Space Station Freedom active thermal control system (ATCS). These models range from large integrated system models with multiple submodels to very detailed subsystem models. An integrated Space Station ATCS model has been created with ten submodels representing five water loops, three ammonia loops, a Freon loop and a thermal submodel representing the air loop. The model, which has approximately 800 FLUINT lumps and 300 thermal nodes, is used to determine the interaction between the multiple fluid loops which comprise the Space Station ATCS. Several detailed models of the flow-through radiator subsystem of the Space Station ATCS have been developed. One model, which has approximately 70 FLUINT lumps and 340 thermal nodes, provides a representation of the ATCS low temperature radiator array with two fluid loops connected only by conduction through the radiator face sheet. The detailed models are used to determine parameters such as radiator fluid return temperature, fin efficiency, flow distribution and total heat rejection for the baseline design as well as proposed alternate designs. SINDA/FLUINT has also been used as a design tool for several systems using pressurized gasses. One model examined the pressurization and depressurization of the Space Station airlock under a variety of operating conditions including convection with the side walls and internal cooling. Another model predicted the performance of a new generation of manned maneuvering units. This model included high pressure gas depressurization, internal heat transfer and supersonic thruster equations. The results of both models were used to size components, such as the

  19. Aerospace Community. Aerospace Education I.

    ERIC Educational Resources Information Center

    Mickey, V. V.

    This book, one in the series on Aerospace Education I, emphasizes the two sides of aerospace--military aerospace and civilian aerospace. Chapter 1 includes a brief discussion on the organization of Air Force bases and missile sites in relation to their missions. Chapter 2 examines the community services provided by Air Force bases. The topics…

  20. Optimization of supersonic axisymmetric nozzles with a center body for aerospace propulsion

    NASA Astrophysics Data System (ADS)

    Davidenko, D. M.; Eude, Y.; Falempin, F.

    2011-10-01

    This study is aimed at optimization of axisymmetric nozzles with a center body, which are suitable for thrust engines having an annular duct. To determine the flow conditions and nozzle dimensions, the Vinci rocket engine is chosen as a prototype. The nozzle contours are described by 2nd and 3rd order analytical functions and specified by a set of geometrical parameters. A direct optimization method is used to design maximum thrust nozzle contours. During optimization, the flow of multispecies reactive gas is simulated by an Euler code. Several optimized contours have been obtained for the center body diameter ranging from 0.2 to 0.4 m. For these contours, Navier-Stokes (NS) simulations have been performed to take into account viscous effects assuming adiabatic and cooled wall conditions. The paper presents an analysis of factors influencing the nozzle thrust.

  1. Selected Research and Development Topics on Aerospace Communications at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Romanofsky, Robert R.; Nessel, James A.

    2014-01-01

    This presentation discusses some of the efforts on communications RD that have been performed or are currently underway at NASA Glenn Research Center. The primary purpose of this presentation is to outline some RD topics to serve as talking points for a Technical Interchange Meeting with the Ohio State University. The meeting is scheduled to take place at The ElectroScience Laboratory of the Ohio State University on February 24, 2014.

  2. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Michaud, Vince

    2015-01-01

    NASA Aerospace Medicine overview - Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.

  3. Curriculum in aerospace science and technology in cooperation with NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Garner-Gilchrist, Cathine

    1988-01-01

    A curriculum was written to show teachers how to best use the many resources that are available at the Teacher Resource Center (TRC). This curriculum packet was written using teaching units that teachers in both the elementary and middle schools can use to help students better understand some of the research that has been conducted at NASA and will be conducted in the future. The units are written with certain standards. Each unit contains: (1) specific objectives, using the Virginia standards of learning; (2) the materials that are available from the TRC; (3) many activities that teachers can use in a variety of ways; and (4) specific strategies for measuring the objectives to determine if the students mastered the knowledge, concepts or skills that were taught. The curriculum packet contains specific units on several topics. They are: (1) Careers in Aerospece Science and Technology; (2) The History of Flight; (3) The History of Satellites; (4) The History of the Manned Space Projects and the Future of the Future of the Space Program; (5) The Solar System; and (6) The History of Rockets.

  4. [AVIATION MEDICINE: THEORETICAL CONCEPTS AND FOCAL FUNDAMENTAL AND PRACTICAL ISSUES (for the 80th anniversary of the Research Test Center of Aerospace Medicine and Military Ergonomics)].

    PubMed

    Zhdanko, I M; Pisarev, A A; Vorona, A A; Lapa, V V; Khomenko, M N

    2015-01-01

    The article discloses postulates of theoretical concepts that make the methodological basis for addressing the real-world aviation medicine challenges of humanizing aviator's environment, labor content and means, and health and performance maintenance. Under consideration are focal fundamental and practical issues arising with the technological progress in aviation and dealt with at the AF CRI Research Test Center of Aerospace Medicine and Military Ergonomics. PMID:26087580

  5. Some contributions to energetics by the Lewis Research Center and a review of their potential non-aerospace applications

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Gutstein, M. U.

    1972-01-01

    The primary technology areas are aerospace propulsion, power and materials. As examples in these technologies, the programs in the fields of cryogenics and liquid metals are reviewed and potential non-aerospace applications for the results of these programs are discussed. These include such possibilities as: hydrogen as a non-polluting industrial fuel; more efficient central power stations; and powerplants for advanced ground transportation.

  6. A solarized Brayton engine based on turbo-charger technology and the DLR receiver

    SciTech Connect

    Gallup, D.R.; Kesseli, J.B.

    1994-06-01

    Northern Research and Engineering Corp. (NREC) is currently under contract to Sandia National Laboratories to solarize a 30 kWe Brayton engine that is based on turbo-charger technology. This program is also supported by the German Aerospace Research Establishment (DLR), which is supplying the solar receiver through an agreement with the International Energy Agency/SolarPACES. The engine is a low pressure, highly recuperated engine. The turbo-machinery is built up from commercial turbo-chargers, which ensures low cost and high reliability. A combustor will be included in the system to allow for full power production during cloud transients. Current estimates are that the engine/alternator thermal-to-electric efficiency will be 30+%. The solar receiver to be supplied by DLR will be an advanced version of their VOBREC volumetric receiver. This receiver has a parabolic quartz window and ceramic foam absorber. The estimated efficiency of the receiver is 90+%. Sandia has developed an economic model to estimate the levelized energy cost (LEC) of energy produced by dish/engine systems. The model includes both the operating characteristics of the dishes and engines as well as a detailed economic model. The results of the analysis indicate that the dish/Brayton systems compare favorably with dish/Stirling systems.

  7. :Envihab- The New Research Facility for Human Spaceflight and Terrestrial Applications at DLR, Cologne, Germany

    NASA Astrophysics Data System (ADS)

    Koch, Bernhard; Rabbow, Elke; Gerzer, Rupert

    2013-02-01

    A modularly designed research facility of the Institute of Aerospace Medicine which will in part be open to the public to be visited and experienced, :envihab will be inaugurated on the DLR Cologne-Porz premises in July 2013. Its purpose is to study complex problems presented by a closed life-support system (:envihab = environmental habitat) and the interactions between humans and the environment. It is expected that :envihab will significantly contribute to the solution of increasingly pertinent environmental problems on Earth. It will deliver industry-relevant results of scientific progress together with its economic advantages, and will encourage public debate about important future-oriented questions regarding human life. At the same time, :envihab will demonstrate a unique new concept of displaying to the public the fascinating world of science in an authentic environment. It is our hope that :envihab will provide lasting inspiration for young researchers in industry and science.

  8. Military Aerospace. Aerospace Education II.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is a revised publication in the series on Aerospace Education II. It describes the employment of aerospace forces, their methods of operation, and some of the weapons and equipment used in combat and combat support activities. The first chapter describes some of the national objectives and policies served by the Air Force in peace and…

  9. Aerospace Environment. Aerospace Education I.

    ERIC Educational Resources Information Center

    Savler, D. S.; Smith, J. C.

    This book is one in the series on Aerospace Education I. It briefly reviews current knowledge of the universe, the earth and its life-supporting atmosphere, and the arrangement of celestial bodies in outer space and their physical characteristics. Chapter 1 includes a brief survey of the aerospace environment. Chapters 2 and 3 examine the…

  10. Aerospace Technology.

    ERIC Educational Resources Information Center

    Paschke, Jean; And Others

    1991-01-01

    Describes the Sauk Rapids (Minnesota) High School aviation and aerospace curriculum that was developed by Curtis Olson and the space program developed by Gerald Mayall at Philadelphia's Northeast High School. Both were developed in conjunction with NASA. (JOW)

  11. Planetary and Space Simulation Facilities (PSI) at DLR

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Rabbow, E.; Rettberg, P.; Kloss, M.; Reitz, G.; Horneck, G.

    2010-05-01

    The Planetary and Space Simulation facilities at DLR offer the possibility to expose biological and physical samples individually or integrated into space hardware to defined and controlled space conditions like ultra high vacuum, low temperature and extraterrestrial UV radiation. An x-ray facility stands for the simulation of the ionizing component at the disposal. All of the simulation facilities are required for the preparation of space experiments: - for testing of the newly developed space hardware - for investigating the effect of different space parameters on biological systems as a preparation for the flight experiment - for performing the 'Experiment Verification Tests' (EVT) for the specification of the test parameters - and 'Experiment Sequence Tests' (EST) by simulating sample assemblies, exposure to selected space parameters, and sample disassembly. To test the compatibility of the different biological and chemical systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed among many others for the ESA facilities of the ongoing missions EXPOSE-R and EXPOSE-E on board of the International Space Station ISS . Several experiment verification tests EVTs and an experiment sequence test EST have been conducted in the carefully equipped and monitored planetary and space simulation facilities PSI of the Institute of Aerospace Medicine at DLR in Cologne, Germany. These ground based pre-flight studies allowed the investigation of a much wider variety of samples and the selection of the most promising organisms for the flight experiment. EXPOSE-E had been attached to the outer balcony of the European Columbus module of the ISS in February 2008 and stayed for 1,5 years in space; EXPOSE-R has been attached to the Russian Svezda module of the ISS in spring 2009 and mission duration will be approx. 1,5 years. The missions will give new insights into the survivability of terrestrial

  12. Futurepath: The Story of Research and Technology at NASA Lewis Research Center. Structures for Flight Propulsion, ARC Sprayed Monotape, National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.

  13. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    This abstract describes the content of a presentation for ground rounds at Mt. Sinai School of Medicine. The presentation contains three sections. The first describes the history of aerospace medicine beginning with early flights with animals. The second section of the presentation describes current programs and planning for future missions. The third section describes the medical challenges of exploration missions.

  14. Lightning Protection Guidelines for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Goodloe, C. C.

    1999-01-01

    This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.

  15. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  16. The 28th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Rohn, Douglas A. (Compiler)

    1994-01-01

    The proceedings of the 28th Aerospace Mechanisms Symposium, which was hosted by the NASA Lewis Research Center and held at the Cleveland Marriott Society Center on May 18, 19, and 20, 1994, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft.

  17. AI aerospace components

    SciTech Connect

    Heindel, T.A.; Murphy, T.B.; Rasmussen, A.N.; Mcfarland, R.Z.; Montgomery, R.E.; Pohle, G.E.; Heard, A.E.; Atkinson, D.J.; Wedlake, W.E.; Anderson, J.M. Mitre Corp., Houston, TX Unisys Corp., Houston, TX Rockwell International Corp., El Segundo, CA NASA, Kennedy Space Center, Cocoa Beach, FL JPL, Pasadena, CA Lockheed Missiles and Space Co., Inc., Austin, TX McDonnell Douglas Electronic Systems Co., McLean, VA )

    1991-10-01

    An evaluation is made of the application of novel, AI-capabilities-related technologies to aerospace systems. Attention is given to expert-system shells for Space Shuttle Orbiter mission control, manpower and processing cost reductions at the NASA Kennedy Space Center's 'firing rooms' for liftoff monitoring, the automation of planetary exploration systems such as semiautonomous mobile robots, and AI for battlefield staff-related functions.

  18. 32nd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Walker, S. W. (Compiler); Boesiger, Edward A. (Compiler)

    1998-01-01

    The proceedings of the 32nd Aerospace Mechanism Symposium are reported. NASA John F. Kennedy Space Center (KSC) hosted the symposium that was held at the Hilton Oceanfront Hotel in Cocoa Beach, Florida on May 13-15, 1998. The symposium was cosponsored by Lockheed Martin Missiles and Space and the Aerospace Mechanisms Symposium Committee. During these days, 28 papers were presented. Topics included robotics, deployment mechanisms, bearing, actuators, scanners, boom and antenna release, and test equipment.

  19. Heat transfer in aerospace propulsion

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

    1988-01-01

    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

  20. Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Rouse, Doris J.

    1984-01-01

    The objective of the Research Triangle Institute Technology Transfer Team is to assist NASA in achieving widespread utilization of aerospace technology in terrestrial applications. Widespread utilization implies that the application of NASA technology is to benefit a significant sector of the economy and population of the Nation. This objective is best attained by stimulating the introduction of new or improved commercially available devices incorporating aerospace technology. A methodology is presented for the team's activities as an active transfer agent linking NASA Field Centers, industry associations, user groups, and the medical community. This methodology is designed to: (1) identify priority technology requirements in industry and medicine, (2) identify applicable NASA technology that represents an opportunity for a successful solution and commercial product, (3) obtain the early participation of industry in the transfer process, and (4) successfully develop a new product based on NASA technology.

  1. Aerospace gerontology

    NASA Technical Reports Server (NTRS)

    Comfort, A.

    1982-01-01

    The relevancy of gerontology and geriatrics to the discipline of aerospace medicine is examined. It is noted that since the shuttle program gives the facility to fly passengers, including specially qualified older persons, it is essential to examine response to acceleration, weightlessness, and re-entry over the whole adult lifespan, not only its second quartile. The physiological responses of the older person to weightlessness and the return to Earth gravity are reviewed. The importance of the use of the weightless environment to solve critical problems in the fields of fundamental gerontology and geriatrics is also stressed.

  2. Basic Aerospace Education Library

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Lists the most significant resource items on aerospace education which are presently available. Includes source books, bibliographies, directories, encyclopedias, dictionaries, audiovisuals, curriculum/planning guides, aerospace statistics, aerospace education statistics and newsletters. (BR)

  3. Aerospace Education - An Overview

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Discusses the surge of interest throughout the country in aerospace education and discusses what aerospace education is, the implications in career education and the relevance of aerospace education in the curriculum. (BR)

  4. DLR-EnviHab - A closed environmental Habitat

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Koch, B.; Rettberg, P.; Horneck, G.; Graef, P.; Gerzer, R.

    Closed habitats intended for different purposes like confinement studies, life in extreme environments (Antarctica) and as simulation testbeds for complex closed life support systems have been built and achieved different degrees of closure. Those that were built in preparation of space missions oriented themselves on the need of a crew of astronauts during a long term mission in Space, on Mars or Moon. At DLR in Cologne, a modular approach is followed to build a closed environmental habitat for scientific and medical studies, the DLR-EnviHab. This modular structure of the EnviHab is designed to include humans as integral part in a bioregenerative life support system, and allows a step-wise realization of the project, ensuring useful results for a wide field of scientific research during each phase. The DLR-EnviHab provides a platform for international and interdisciplinary research and the development of innovative solutions for cultivation and habitation on Earth as well as for long term space or planetary missions. By the inclusion of humans as integral component of the system, medical research areas including physiological and psychological health and rehabilitation as well as environmental research and monitoring and modelling of coupled and controlled systems are addressed in EnviHab. Results of the research conducted in the individual and combined EnviHab modules will also contribute to most urgent issues like water(recycling) management, food management, pollution/waste management and atmosphere(air) management. In addition, EnviHab contributes to public education and outreach with the open visible and partly accessible structure, an exhibition and an explanatory module.

  5. Journey in Aeronautical Research: A Career at NASA Langley Research Center. No. 12; Monographs in Aerospace History

    NASA Technical Reports Server (NTRS)

    Phillips, W. Hewitt

    1998-01-01

    An autobiography, of a noted aeronautical engineer, W. Hewitt Phillips, whose career spanned 58 years (1940-1998) at NASA Langley is presented. This work covers his early years to the Sputnik launch. His interests have been in research in aeronautics and in the related problems of spaceflight. After an introduction, his early life through the college years is reviewed, and his early interest in model airplanes is described. The first assignment for the National Advisory Committee for Aeronautics (NACA), which would later become NASA, was with the Flight Research Division. His early work involved "Flying Qualities", i.e., the stability and control characteristics of an airplane. The next chapter describes his early analytical studies. His work during World War II in the design of military airplanes, and the other effects of the war on research activities, is covered in the next two chapters. This research was involved in such innovations and refinements as the swept wing, the flettner tabs, servo tabs, spring tabs and whirlerons. The rest of the work covers the research which Mr. Hewitt was involved in, after the war until the Sputnik launch. These areas include unsteady lift, measurements of turbulence in the atmosphere, gust alleviation, and lateral response to random turbulence. He was also involved in several investigations of airplane accidents. The last two chapters cover the administration of the Langley Research Center, and the dawn of the Space Age. A complete bibliography of reports written by Mr. Hewitt, is included.

  6. Aerospace Power Technology for Potential Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.

    2012-01-01

    Aerospace technology that is being developed for space and aeronautical applications has great potential for providing technical advances for terrestrial power systems. Some recent accomplishments arising from activities being pursued at the National Aeronautics and Space Administration (NASA) Centers is described in this paper. Possible terrestrial applications of the new aerospace technology are also discussed.

  7. The 29th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Editor)

    1995-01-01

    The proceedings of the 29th Aerospace Mechanisms Symposium, which was hosted by NASA Johnson Space Center and held at the South Shore Harbour Conference Facility on May 17-19, 1995, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft.

  8. The 26th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The proceedings of the 26th Aerospace Mechanisms Symposium, which was held at the Goddard Space Flight Center on May 13, 14, and 15, 1992 are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors and other mechanisms for large space structures.

  9. The Aerospace Age. Aerospace Education I.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is written for use only in the Air Force ROTC program and cannot be purchased on the open market. The book describes the historical development of aerospace industry. The first chapter contains a brief review of the aerospace environment and the nature of technological changes brought by the aerospace revolution. The following chapter…

  10. 35th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Doty, Laura W. (Technical Monitor)

    2001-01-01

    The proceedings of the 35th Aerospace Mechanisms Symposium are reported. Ames Research Center hosted the conference, which was held at the Four Points Sheraton, Sunnyvale, California, on May 9-11, 2001. The symposium was sponsored by the Mechanisms Education Association. Technology areas covered included bearings and tribology; pointing, solar array, and deployment mechanisms; and other mechanisms for spacecraft and large space structures.

  11. 33rd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Litty, Edward C. (Compiler); Sevilla, Donald R. (Compiler)

    1999-01-01

    The proceedings of the 33rd Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held at the Pasadena Conference and Exhibition Center, Pasadena, California, on May 19-21, 1999. Lockheed Martin Missiles and Space cosponsored the symposium. Technology areas covered include bearings and tribology; pointing, solar array and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  12. Aerospace laser communications technology as enabler for worldwide quantum key distribution

    NASA Astrophysics Data System (ADS)

    Moll, Florian; Weinfurter, Harald; Rau, Markus; Schmidt, Christopher; Melén, Gwen; Vogl, Tobias; Nauerth, Sebastian; Fuchs, Christian

    2016-04-01

    A worldwide growing interest in fast and secure data communications pushes technology development along two lines. While fast communications can be realized using laser communications in fiber and free-space, inherently secure communications can be achieved using quantum key distribution (QKD). By combining both technologies in a single device, many synergies can be exploited, therefore reducing size, weight and power of future systems. In recent experiments we demonstrated quantum communications over large distances as well as between an aircraft and a ground station which proved the feasibility of QKD between moving partners. Satellites thus may be used as trusted nodes in combination with QKD receiver stations on ground, thereby enabling fast and secure communications on a global scale. We discuss the previous experiment with emphasis on necessary developments to be done and corresponding ongoing research work of German Aerospace Center (DLR) and Ludwig Maximilians University Munich (LMU). DLR is performing research on satellite and ground terminals for the high-rate laser communication component, which are enabling technologies for the QKD link. We describe the concept and hardware of three generations of OSIRIS (Optical High Speed Infrared Link System) laser communication terminals for low Earth orbiting satellites. The first type applies laser beam pointing solely based on classical satellite control, the second uses an optical feedback to the satellite bus and the third, currently being in design phase, comprises of a special coarse pointing assembly to control beam direction independent of satellite orientation. Ongoing work also targets optical terminals for CubeSats. A further increase of beam pointing accuracy can be achieved with a fine pointing assembly. Two ground stations will be available for future testing, an advanced stationary ground station and a transportable ground station. In parallel the LMU QKD source size will be reduced by more than an

  13. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    NASA Astrophysics Data System (ADS)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  14. Experimenting with concentrated sunlight using the DLR solar furnace

    SciTech Connect

    Neumann, A.; Groer, U.

    1996-10-01

    The high flux solar furnace that is operated by the Deutsche Forschungsanstalt fuer Luft- und Raumfahrt (DLR) at Cologne was inaugurated in June 1994 and we are now able to look back onto one year of successful operation. The solar furnace project was founded by the government of the State Northrhine Westfalia within the Study Group AG Solar. The optical design is a two-stage off-axis configuration which uses a flat 52 m{sup 2} heliostat and a concentrator composed of 147 spherical mirror facets. The heliostat redirects the solar light onto the concentrator which focuses the beam out of the optical axis of the system into the laboratory building. At high insolation levels (>800W/m{sup 2}) it is possible to collect a total power of 20 kW with peak flux densities of 4 MW/m{sup 2}. Sixteen different experiment campaigns were carried out during this first year of operation. The main research fields for these experiments were material science, component development and solar chemistry. The furnace also has its own research program leading to develop sophisticated measurement techniques like remote infrared temperature sensing and flux mapping. Another future goal to be realized within the next five years is the improvement of the performance of the furnace itself. 6 refs., 9 figs., 1 tab.

  15. Aerospace in the future

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1980-01-01

    National research and technology trends are introduced in the environment of accelerating change. NASA and the federal budget are discussed. The U.S. energy dependence on foreign oil, the increasing oil costs, and the U.S. petroleum use by class are presented. The $10 billion aerospace industry positive contribution to the U.S. balance of trade of 1979 is given as an indicator of the positive contribution of NASA in research to industry. The research work of the NASA Lewis Research Center in the areas of space, aeronautics, and energy is discussed as a team effort of government, the areas of space, aeronautics, and energy is discussed as a team effort of government, industry, universities, and business to maintain U.S. world leadership in advanced technology.

  16. Aerospace Human Factors

    NASA Technical Reports Server (NTRS)

    Jordan, Kevin

    1999-01-01

    The following contains the final report on the activities related to the Cooperative Agreement between the human factors research group at NASA Ames Research Center and the Psychology Department at San Jose State University. The participating NASA Ames division has been, as the organization has changed, the Aerospace Human Factors Research Division (ASHFRD and Code FL), the Flight Management and Human Factors Research Division (Code AF), and the Human Factors Research and Technology Division (Code IH). The inclusive dates for the report are November 1, 1984 to January 31, 1999. Throughout the years, approximately 170 persons worked on the cooperative agreements in one capacity or another. The Cooperative Agreement provided for research personnel to collaborate with senior scientists in ongoing NASA ARC research. Finally, many post-MA/MS and post-doctoral personnel contributed to the projects. It is worth noting that 10 former cooperative agreement personnel were hired into civil service positions directly from the agreements.

  17. The development of aerospace polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1983-01-01

    Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.

  18. The 1990 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Kennedy, Lewis M. (Compiler)

    1991-01-01

    This document contains the proceedings of the 21st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on December 4-6, 1990. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers as well as participation in like kind from the European Space Agency member nations. The subjects covered included nickel-cadmium, nickel-hydrogen, silver-zinc, lithium based chemistries, and advanced technologies as they relate to high reliability operations in aerospace applications.

  19. 75 FR 6407 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... Flight Center Launch Abort System Responsibilities; and Marshall Space Flight Center Industrial Safety... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Wednesday, February 24, 2010, 12:30 p.m. to 2:30...

  20. 30th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Bradley, Obie H., Jr. (Compiler); Rogers, John F. (Compiler)

    1996-01-01

    The proceedings of the 30th Aerospace Mechanisms Symposium are reported. NASA Langley Research Center hosted the proceedings held at the Radisson Hotel in Hampton, Virginia on May 15-17, 1996, and Lockheed Martin Missiles and Space Company, Inc. co-sponsored the symposium. Technological areas covered include bearings and tribology; pointing, solar array, and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  1. The 2000 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, J. C. (Compiler)

    2001-01-01

    This document contains the proceedings of the 33nd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 14-16, 2000. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, lithium-ion, lithium-sulfur, and silver-zinc technologies.

  2. Novel Wiring Technologies for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  3. NASA Ames aerospace systems directorate research

    NASA Technical Reports Server (NTRS)

    Albers, James A.

    1991-01-01

    The Aerospace Systems Directorate is one of four research directorates at the NASA Ames Research Center. The Directorate conducts research and technology development for advanced aircraft and aircraft systems in intelligent computational systems and human-machine systems for aeronautics and space. The Directorate manages research and aircraft technology development projects, and operates and maintains major wind tunnels and flight simulation facilities. The Aerospace Systems Directorate's research and technology as it relates to NASA agency goals and specific strategic thrusts are discussed.

  4. The 1999 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, J. C. (Compiler)

    2000-01-01

    This document contains the proceedings of the 32nd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 16-18, 1999. The workshop was attended by scientists and engineers from various agencies of the US Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, nickel-cadmium, lithium-ion, and silver-zinc technologies.

  5. The 2001 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeff C. (Compiler)

    2002-01-01

    This document contains the proceedings of the 34th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center, November 27-29, 2001. The workshop was attended by scientists and engineers from various agencies of the US Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind. The subjects covered included nickel-hydrogen, nickel-cadmium, lithium-ion, and silver-zinc technologies.

  6. ATHENA: Remote Sensing Science Center for Cultural Heritage in Cyprus

    NASA Astrophysics Data System (ADS)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriakos; Cuca, Branka; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2016-04-01

    The Cultural Heritage (CH) sector, especially those of monuments and sites has always been facing a number of challenges from environmental pressure, pollution, human intervention from tourism to destruction by terrorism.Within this context, CH professionals are seeking to improve currently used methodologies, in order to better understand, protect and valorise the common European past and common identity. "ATHENA" H2020-TWINN-2015 project will seek to improve and expand the capabilities of the Cyprus University of Technology, involving professionals dealing with remote sensing technologies for supporting CH sector from the National Research Center of Italy (CNR) and German Aerospace Centre (DLR). The ATHENA centre will be devoted to the development, introduction and systematic use of advanced remote sensing science and technologies in the field of archaeology, built cultural heritage, their multi-temporal analysis and interpretation and the distant monitoring of their natural and anthropogenic environment in the area of Eastern Mediterranean.

  7. Assessment of the Unstructured Grid Software TetrUSS for Drag Prediction of the DLR-F4 Configuration

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.; Frink, Neal T.

    2002-01-01

    An application of the NASA unstructured grid software system TetrUSS is presented for the prediction of aerodynamic drag on a transport configuration. The paper briefly describes the underlying methodology and summarizes the results obtained on the DLR-F4 transport configuration recently presented in the first AIAA computational fluid dynamics (CFD) Drag Prediction Workshop. TetrUSS is a suite of loosely coupled unstructured grid CFD codes developed at the NASA Langley Research Center. The meshing approach is based on the advancing-front and the advancing-layers procedures. The flow solver employs a cell-centered, finite volume scheme for solving the Reynolds Averaged Navier-Stokes equations on tetrahedral grids. For the present computations, flow in the viscous sublayer has been modeled with an analytical wall function. The emphasis of the paper is placed on the practicality of the methodology for accurately predicting aerodynamic drag data.

  8. Cognitive engineering in aerospace applications

    NASA Technical Reports Server (NTRS)

    Woods, David D.

    1993-01-01

    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.

  9. Supercomputing in Aerospace

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Yee, Helen

    1987-01-01

    Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics.

  10. Aerospace Applications of Microprocessors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An assessment of the state of microprocessor applications is presented. Current and future requirements and associated technological advances which allow effective exploitation in aerospace applications are discussed.

  11. 38th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2006-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 38th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 38th AMs, hosted by the NASA Langley Research Center in Williamsburg, Virginia, was held May 17-19, 2006. During these three days, 34 papers were presented. Topics included gimbals, tribology, actuators, aircraft mechanisms, deployment mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  12. 37th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2004-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is reporting problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 37th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 37th AMS, hosted by the Johnson Space Center (JSC) in Galveston, Texas, was held May 19, 20 and 21, 2004. During these three days, 34 papers were presented. Topics included deployment mechanisms, tribology, actuators, pointing and optical mechanisms, Space Station and Mars Rover mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  13. 39th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, E. A. (Compiler)

    2008-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA Marshall Space Flight Center (MSFC) and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 39th symposium, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 39th AMS was held in Huntsville, Alabama, May 7-9, 2008. During these 3 days, 34 papers were presented. Topics included gimbals and positioning mechanisms, tribology, actuators, deployment mechanisms, release mechanisms, and sensors. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  14. 34th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2000-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. The National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for organizing the AMS. Now in its 34th year, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 34th AMS, hosted by the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland, was held May 10, 11 and 12, 2000. During these three days, 34 papers were presented. Topics included deployment mechanisms, bearings, actuators, pointing and optical mechanisms, Space Station mechanisms, release mechanisms, and test equipment. Hardware displays during the vendor fair gave attendees an opportunity to meet with developers of current and future mechanism components.

  15. Aerospace - Aviation Education.

    ERIC Educational Resources Information Center

    Martin, Arthur I.; Jones, K. K.

    This document outlines the aerospace-aviation education program of the State of Texas. In this publication the course structures have been revised to fit the quarter system format of secondary schools in Texas. The four courses outlined here have been designed for students who will be consumers of aerospace products, spinoffs, and services or who…

  16. The aerospace technology laboratory (a perspective, then and now)

    NASA Technical Reports Server (NTRS)

    Connors, J. F.; Hoffman, R. G.

    1982-01-01

    The physical changes that have taken place in aerospace facilities since the Wright brothers' accomplishment 78 years ago are highlighted. For illustrative purposes some of the technical facilities and operations of the NASA Lewis Research Center are described. These simulation facilities were designed to support research and technology studies in aerospace propulsion.

  17. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Aerospace Safety Advisory Panel (ASAP) monitored NASA's activities and provided feedback to the NASA Administrator, other NASA officials and Congress throughout the year. Particular attention was paid to the Space Shuttle, its launch processing and planned and potential safety improvements. The Panel monitored Space Shuttle processing at the Kennedy Space Center (KSC) and will continue to follow it as personnel reductions are implemented. There is particular concern that upgrades in hardware, software, and operations with the potential for significant risk reduction not be overlooked due to the extraordinary budget pressures facing the agency. The authorization of all of the Space Shuttle Main Engine (SSME) Block II components portends future Space Shuttle operations at lower risk levels and with greater margins for handling unplanned ascent events. Throughout the year, the Panel attempted to monitor the safety activities related to the Russian involvement in both space and aeronautics programs. This proved difficult as the working relationships between NASA and the Russians were still being defined as the year unfolded. NASA's concern for the unique safety problems inherent in a multi-national endeavor appears appropriate. Actions are underway or contemplated which should be capable of identifying and rectifying problem areas. The balance of this report presents 'Findings and Recommendations' (Section 2), 'Information in Support of Findings and Recommendations' (Section 3) and Appendices describing Panel membership, the NASA response to the March 1994 ASAP report, and a chronology of the panel's activities during the reporting period (Section 4).

  18. Control Center Technology Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Conference papers and presentations are compiled and cover evolving architectures and technologies applicable to flight control centers. Advances by NASA Centers and the aerospace industry are presented.

  19. Knowledge-based diagnosis for aerospace systems

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.

    1988-01-01

    The need for automated diagnosis in aerospace systems and the approach of using knowledge-based systems are examined. Research issues in knowledge-based diagnosis which are important for aerospace applications are treated along with a review of recent relevant research developments in Artificial Intelligence. The design and operation of some existing knowledge-based diagnosis systems are described. The systems described and compared include the LES expert system for liquid oxygen loading at NASA Kennedy Space Center, the FAITH diagnosis system developed at the Jet Propulsion Laboratory, the PES procedural expert system developed at SRI International, the CSRL approach developed at Ohio State University, the StarPlan system developed by Ford Aerospace, the IDM integrated diagnostic model, and the DRAPhys diagnostic system developed at NASA Langley Research Center.

  20. Space robotics--DLR's telerobotic concepts, lightweight arms and articulated hands.

    PubMed

    Hirzinger, G; Brunner, B; Landzettel, K; Sporer, N; Butterfass, J; Schedl, M

    2003-01-01

    The paper briefly outlines DLR's experience with real space robot missions (ROTEX and ETS VII). It then discusses forthcoming projects, e.g., free-flying systems in low or geostationary orbit and robot systems around the space station ISS, where the telerobotic system MARCO might represent a common baseline. Finally it describes our efforts in developing a new generation of "mechatronic" ultra-light weight arms with multifingered hands. The third arm generation is operable now (approaching present-day technical limits). In a similar way DLR's four-fingered hand II was a big step towards higher reliability and yet better performance. Artificial robonauts for space are a central goal now for the Europeans as well as for NASA, and the first verification tests of DLR's joint components are supposed to fly already end of 93 on the space station. PMID:12703511

  1. Aerospace Medical Support in Russia

    NASA Technical Reports Server (NTRS)

    Castleberry, Tara; Chamberlin, Blake; Cole, Richard; Dowell, Gene; Savage, Scott

    2011-01-01

    This slide presentation reviews the role of the flight surgeon in support of aerospace medical support operations at the Gagarin Cosmonaut Training Center (GCTC), also known as Star City, in Russia. The flight surgeon in this role is the medical advocate for non-russian astronauts, and also provides medical care for illness and injury for astronauts, family members, and guests as well as civil servants and contractors. The flight surgeon also provides support for hazardous training. There are various photos of the area, and the office, and some of the equipment that is used.

  2. Energy Storage for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.

    2001-01-01

    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.

  3. Evaluating Aerospace Workshops.

    ERIC Educational Resources Information Center

    Leonard, Rex L.

    1978-01-01

    Declining enrollments in aerospace teacher workshops suggest the need for evaluation and cost effectiveness measurements. A major purpose of this article is to illustrate some typical evaluation methodologies, including the semantic differential. (MA)

  4. Aerospace bibliography, seventh edition

    NASA Technical Reports Server (NTRS)

    Blashfield, J. F. (Compiler)

    1983-01-01

    Space travel, planetary probes, applications satellites, manned spaceflight, the impacts of space exploration, future space activities, astronomy, exobiology, aeronautics, energy, space and the humanities, and aerospace education are covered.

  5. Ninteenth Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings of the 19th Aerospace Mechanisms Symposium are reported. Technological areas covered include space lubrication, bearings, aerodynamic devices, spacecraft/Shuttle latches, deployment, positioning, and pointing. Devices for spacecraft docking and manipulator and teleoperator mechanisms are also described.

  6. 78 FR 1265 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space..., Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a forthcoming.... local time ADDRESSES: Kennedy Space Center, Headquarters Building, Room 3372. FOR FURTHER...

  7. The 1993 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1994-01-01

    This document contains the proceedings of the 26th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on 16-18 Nov. 1993. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-cadmium, nickel-hydrogen, nickel-metal hydride, and lithium based technologies, as well as advanced technologies including various bipolar designs.

  8. The 1998 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1999-01-01

    This document contains the proceedings of the 31st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on October 27-29, 1998. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, silver-hydrogen, nickel-metal hydride, and lithium-based technologies, as well as results from destructive physical analyses on various cell chemistries.

  9. Aerospace Applications of Integer and Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  10. Aerospace applications on integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  11. Aerospace applications of integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  12. The 1992 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1993-01-01

    This document contains the proceedings of the 23rd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 15-19, 1992. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-cadmium, nickel-hydrogen, nickel-metal hydride, and lithium based technologies, as well as advanced technologies including sodium-sulfur and various bipolar designs.

  13. The 1997 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1998-01-01

    This document contains the proceedings of the 30th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 18-20, 1997. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-cadmium, nickel-hydrogen, nickel-metal hydride, lithium, lithium-ion, and silver-zinc technologies, as well as various aspects of nickel electrode design.

  14. NSWC Crane Aerospace Cell Test History Database

    NASA Technical Reports Server (NTRS)

    Brown, Harry; Moore, Bruce

    1994-01-01

    The Aerospace Cell Test History Database was developed to provide project engineers and scientists ready access to the data obtained from testing of aerospace cell designs at Naval Surface Warfare Center, Crane Division. The database is intended for use by all aerospace engineers and scientists involved in the design of power systems for satellites. Specifically, the database will provide a tool for project engineers to review the progress of their test at Crane and to have ready access to data for evaluation. Additionally, the database will provide a history of test results that designers can draw upon to answer questions about cell performance under certain test conditions and aid in selection of a cell for a satellite battery. Viewgraphs are included.

  15. Environmentally regulated aerospace coatings

    NASA Technical Reports Server (NTRS)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  16. Advanced Materials and Coatings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2004-01-01

    In the application area of aerospace tribology, researchers and developers must guarantee the highest degree of reliability for materials, components, and systems. Even a small tribological failure can lead to catastrophic results. The absence of the required knowledge of tribology, as Professor H.P. Jost has said, can act as a severe brake in aerospace vehicle systems-and indeed has already done so. Materials and coatings must be able to withstand the aerospace environments that they encounter, such as vacuum terrestrial, ascent, and descent environments; be resistant to the degrading effects of air, water vapor, sand, foreign substances, and radiation during a lengthy service; be able to withstand the loads, stresses, and temperatures encountered form acceleration and vibration during operation; and be able to support reliable tribological operations in harsh environments throughout the mission of the vehicle. This presentation id divided into two sections: surface properties and technology practice related to aerospace tribology. The first section is concerned with the fundamental properties of the surfaces of solid-film lubricants and related materials and coatings, including carbon nanotubes. The second is devoted to applications. Case studies are used to review some aspects of real problems related to aerospace systems to help engineers and scientists to understand the tribological issues and failures. The nature of each problem is analyzed, and the tribological properties are examined. All the fundamental studies and case studies were conducted at the NASA Glenn Research Center.

  17. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report presents the results of the Aerospace Safety Advisory Panel (ASAP) activities during 2002. The format of the report has been modified to capture a long-term perspective. Section II is new and highlights the Panel's view of NASA's safety progress during the year. Section III contains the pivotal safety issues facing NASA in the coming year. Section IV includes the program area findings and recommendations. The Panel has been asked by the Administrator to perform several special studies this year, and the resulting white papers appear in Appendix C. The year has been filled with significant achievements for NASA in both successful Space Shuttle operations and International Space Station (ISS) construction. Throughout the year, safety has been first and foremost in spite of many changes throughout the Agency. The relocation of the Orbiter Major Modifications (OMMs) from California to Kennedy Space Center (KSC) appears very successful. The transition of responsibilities for program management of the Space Shuttle and ISS programs from Johnson Space Center (JSC) to NASA Headquarters went smoothly. The decision to extend the life of the Space Shuttle as the primary NASA vehicle for access to space is viewed by the Panel as a prudent one. With the appropriate investments in safety improvements, in maintenance, in preserving appropriate inventories of spare parts, and in infrastructure, the Space Shuttle can provide safe and reliable support for the ISS for the foreseeable future. Indications of an aging Space Shuttle fleet occurred on more than one occasion this year. Several flaws went undetected in the early prelaunch tests and inspections. In all but one case, the problems were found prior to launch. These incidents were all handled properly and with safety as the guiding principle. Indeed, launches were postponed until the problems were fully understood and mitigating action could be taken. These incidents do, however, indicate the need to analyze the

  18. Aerospace engineering educational program

    NASA Technical Reports Server (NTRS)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  19. Frontier Aerospace Opportunities

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2014-01-01

    Discussion and suggested applications of the many ongoing technology opportunities for aerospace products and missions, resulting in often revolutionary capabilities. The, at this point largely unexamined, plethora of possibilities going forward, a subset of which is discussed, could literally reinvent aerospace but requires triage of many possibilities. Such initial upfront homework would lengthen the Research and Development (R&D) time frame but could greatly enhance the affordability and performance of the evolved products and capabilities. Structural nanotubes and exotic energetics along with some unique systems approaches are particularly compelling.

  20. Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  1. Nanotechnology research for aerospace applications

    NASA Astrophysics Data System (ADS)

    Agee, Forrest J.; Lozano, Karen; Gutierrez, Jose M.; Chipara, Mircea; Thapa, Ram; Chow, Alice

    2009-04-01

    Nanotechnology is impacting the future of the military and aerospace. The increasing demands for high performance and property-specific applications are forcing the scientific world to take novel approaches in developing programs and accelerating output. CONTACT or Consortium for Nanomaterials for Aerospace Commerce and Technology is a cooperative nanotechnology research program in Texas building on an infrastructure that promotes collaboration between universities and transitioning to industry. The participants of the program include the US Air Force Research Laboratory (AFRL), five campuses of the University of Texas (Brownsville, Pan American, Arlington, Austin, and Dallas), the University of Houston, and Rice University. Through the various partnerships between the intellectual centers and the interactions with AFRL and CONTACT's industrial associates, the program represents a model that addresses the needs of the changing and competitive technological world. Into the second year, CONTACT has expanded to twelve projects that cover four areas of research: Adaptive Coatings and Surface Engineering, Nano Energetics, Electromagnetic Sensors, and Power Generation and Storage. This paper provides an overview of the CONTACT program and its projects including the research and development of new electrorheological fluids with nanoladen suspensions and composites and the potential applications.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  3. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During 1997, the Aerospace Safety Advisory Panel (ASAP) continued its safety reviews of NASA's human space flight and aeronautics programs. Efforts were focused on those areas that the Panel believed held the greatest potential to impact safety. Continuing safe Space Shuttle operations and progress in the manufacture and testing of primary components for the International Space Station (ISS) were noteworthy. The Panel has continued to monitor the safety implications of the transition of Space Shuttle operations to the United Space Alliance (USA). One area being watched closely relates to the staffing levels and skill mix in both NASA and USA. Therefore, a section of this report is devoted to personnel and other related issues that are a result of this change in NASA's way of doing business for the Space Shuttle. Attention will continue to be paid to this important topic in subsequent reports. Even though the Panel's activities for 1997 were extensive, fewer specific recommendations were formulated than has been the case in recent years. This is indicative of the current generally good state of safety of NASA programs. The Panel does, however, have several longer term concerns that have yet to develop to the level of a specific recommendation. These are covered in the introductory material for each topic area in Section 11. In another departure from past submissions, this report does not contain individual findings and recommendations for the aeronautics programs. While the Panel devoted its usual efforts to examining NASA's aeronautic centers and programs, no specific recommendations were identified for inclusion in this report. In lieu of recommendations, a summary of the Panel's observations of NASA's safety efforts in aeronautics and future Panel areas of emphasis is provided. With profound sadness the Panel notes the passing of our Chairman, Paul M. Johnstone, on December 17, 1997, and our Staff Assistant, Ms. Patricia M. Harman, on October 5, 1997. Other

  4. Comparative Study of Impedance Eduction Methods. Part 1; DLR Tests and Methodology

    NASA Technical Reports Server (NTRS)

    Busse-Gerstengarbe, Stefan; Bake, Friedrich; Enghardt, Lars; Jones, Michael G.

    2013-01-01

    The absorption efficiency of acoustic liners used in aircraft engines is characterized by the acoustic impedance. World wide, many grazing ow test rigs and eduction methods are available that provide values for that impedance. However, a direct comparison and assessment of the data of the di erent rigs and methods is often not possible because test objects and test conditions are quite di erent. Only a few papers provide a direct comparison. Therefore, this paper together with a companion paper, present data measured with a reference test object under similar conditions in the DLR and NASA grazing ow test rigs. Additionally, by applying the in-house methods Liner Impedance Non-Uniform ow Solving algorithm (LINUS, DLR) and Convected Helmhholtz Equation approach (CHE, NASA) on the data sets, similarities and differences due to underlying theory are identi ed and discussed.

  5. Aerospace Education. NSTA Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2008

    2008-01-01

    National Science Teachers Association (NSTA) has developed a new position statement, "Aerospace Education." NSTA believes that aerospace education is an important component of comprehensive preK-12 science education programs. This statement highlights key considerations that should be addressed when implementing a high quality aerospace education…

  6. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The following areas of NASA's responsibilities are examined: (1) the Space Transportation System (STS) operations and evolving program elements; (2) establishment of the Space Station program organization and issuance of requests for proposals to the aerospace industry; and (3) NASA's aircraft operations, including research and development flight programs for two advanced X-type aircraft.

  7. Aerospace Bibliography. Seventh Edition.

    ERIC Educational Resources Information Center

    Blashfield, Jean F., Comp.

    Provided for teachers and the general adult reader is an annotated and graded list of books and reference materials dealing with aerospace subjects. Only non-fiction books and pamphlets that need to be purchased from commercial or government sources are included. Free industrial materials and educational aids are not included because they tend to…

  8. Aerospace at Saint Francis.

    ERIC Educational Resources Information Center

    Aviation/Space, 1980

    1980-01-01

    Discusses an aviation/aerospace program as a science elective for 11th and 12th year students. This program is multi-faceted and addresses the needs of a wide variety of students. Its main objective is to present aviation and space sciences which will provide a good base for higher education in these areas. (SK)

  9. Examination of metals from aerospace-related activity in surface water samples from sites surrounding the Kennedy Space Center (KSC), Florida.

    PubMed

    Bowden, John A; Cantu, Theresa M; Scheidt, Douglas M; Lowers, Russell H; Nocito, Brian A; Young, Vaneica Y; Guillette, Louis J

    2014-05-01

    Metal contamination from Space Shuttle launch activity was examined using inductively coupled plasma-atomic emission spectroscopy in a two-tier study sampling surface water collected from several sites at the Kennedy Space Center (KSC) and associated Merritt Island National Wildlife Refuge in east central Florida. The primary study examined both temporal changes in baseline metal concentrations (19 metals) in surface water (1996 to 2009, 11 sites) samples collected at specific long-term monitoring sites and metal deposition directly associated with Space Shuttle launch activity at two Launch Complexes (LC39A and LC39B). A secondary study examined metal concentrations at additional sites and increased the amount of elements measured to 48 elements. Our examination places a heavy focus on those metals commonly associated with launch operations (e.g., Al, Fe, Mn, and Zn), but a brief discussion of other metals (As, Cu, Mo, Ni, and Pb) is also included. While no observable accumulation of metals occurred during the time period of the study, the data obtained postlaunch demonstrated a dramatic increase for Al, Fe, Mn, and Zn. Comparing overall trends between the primary and secondary baseline surface water concentrations, elevated concentrations were generally observed at sampling stations located near the launch complexes and from sites isolated from major water systems. While there could be several natural and anthropogenic sources for metal deposition at KSC, the data in this report indicate that shuttle launch events are a significant source. PMID:24738662

  10. Nondestructive Evaluation for Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Cramer, Elliott; Perey, Daniel

    2015-01-01

    Nondestructive evaluation (NDE) techniques are important for enabling NASA's missions in space exploration and aeronautics. The expanded and continued use of composite materials for aerospace components and vehicles leads to a need for advanced NDE techniques capable of quantitatively characterizing damage in composites. Quantitative damage detection techniques help to ensure safety, reliability and durability of space and aeronautic vehicles. This presentation will give a broad outline of NASA's range of technical work and an overview of the NDE research performed in the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center. The presentation will focus on ongoing research in the development of NDE techniques for composite materials and structures, including development of automated data processing tools to turn NDE data into quantitative location and sizing results. Composites focused NDE research in the areas of ultrasonics, thermography, X-ray computed tomography, and NDE modeling will be discussed.

  11. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  12. Materials for aerospace

    SciTech Connect

    Steinberg, M.A.

    1986-10-01

    Early last year the US Office of Science and Technology put forward an agenda for American aerospace activity in the coming decades. The plan established goals for subsonic, supersonic and transatmospheric hypersonic flight. Those goals, together with Reagan Administration's programs for a space station and the Strategic Defense Initiative, serve as a driving force for extensive improvements in the materials that enable airplanes and spacecraft to function efficiently. The development of materials, together with advances in the technology of fabricating parts, will play a key role in aerospace systems of the future. Among the materials developments projected for the year 2000 are new composites and alloys for structural members; superalloys, ceramics and glass composites for propulsion systems, and carbon-carbon composites (carbon fibers in a carbon matrix) for high-temperature applications in places where resistance to heat and ablation is critical. 5 figures.

  13. Trends in aerospace structures

    NASA Technical Reports Server (NTRS)

    Card, M. F.

    1978-01-01

    Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.

  14. Prototype Interoperability Document between NASA-JSC and DLR-GSOC Describing the CCSDS SM and C Mission Operations Prototype

    NASA Technical Reports Server (NTRS)

    Lucord, Steve A.; Gully, Sylvain

    2009-01-01

    The purpose of the PROTOTYPE INTEROPERABILITY DOCUMENT is to document the design and interfaces for the service providers and consumers of a Mission Operations prototype between JSC-OTF and DLR-GSOC. The primary goal is to test the interoperability sections of the CCSDS Spacecraft Monitor & Control (SM&C) Mission Operations (MO) specifications between both control centers. An additional goal is to provide feedback to the Spacecraft Monitor and Control (SM&C) working group through the Review Item Disposition (RID) process. This Prototype is considered a proof of concept and should increase the knowledge base of the CCSDS SM&C Mission Operations standards. No operational capabilities will be provided. The CCSDS Mission Operations (MO) initiative was previously called Spacecraft Monitor and Control (SM&C). The specifications have been renamed to better reflect the scope and overall objectives. The working group retains the name Spacecraft Monitor and Control working group and is under the Mission Operations and Information Services Area (MOIMS) of CCSDS. This document will refer to the specifications as SM&C Mission Operations, Mission Operations or just MO.

  15. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  16. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report from the Aerospace Safety Advisory Panel (ASAP) contains findings, recommendations, and supporting material concerning safety issues with the space station program, the space shuttle program, aeronautics research, and other NASA programs. Section two presents findings and recommendations, section three presents supporting information, and appendices contain data about the panel membership, the NASA response to the March 1993 ASAP report, and a chronology of the panel's activities during the past year.

  17. Unmanned Aerospace Vehicle Workshop

    SciTech Connect

    Vitko, J. Jr.

    1995-04-01

    The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

  18. Flammability, odor, offgassing, thermal vacuum stability, and compatibility with aerospace fluids of wire insulations

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Johnson, Harry

    1994-01-01

    The NASA Lewis Research Center requested NASA Johnson Space Center White Sands Test Facility to conduct flammability, odor, offgassing, thermal vacuum stability, and compatibility tests with aerospace fluids of several wire insulations.

  19. 78 FR 36793 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space..., Public Law 92-463, as amended, the National Aeronautics and Space Administration announce a forthcoming...., Local Time. ADDRESSES: NASA's Marshall Space Flight Center, Educator Resource Center, U.S....

  20. 43rd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A.

    2016-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Sponsored and organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 43rd symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 43rd AMS was held in Santa Clara, California on May 4, 5 and 6, 2016. During these three days, 42 papers were presented. Topics included payload and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and mechanism testing. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The high quality of this symposium is a result of the work of many people, and their efforts are gratefully acknowledged. This extends to the voluntary members of the symposium organizing committee representing the eight NASA field centers, LMSSC, and the European Space Agency. Appreciation is also extended to the session chairs, the authors, and particularly the personnel at ARC responsible for the symposium arrangements and the publication of these proceedings. A sincere thank you also goes to the symposium executive committee who is responsible for the year-to-year management of the AMS, including paper processing and preparation of the program. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

  1. Conceptual design for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Gratzer, Louis B.

    1989-01-01

    The designers of aircraft and more recently, aerospace vehicles have always struggled with the problems of evolving their designs to produce a machine which would perform its assigned task(s) in some optimum fashion. Almost invariably this involved dealing with more variables and constraints than could be handled in any computationally feasible way. With the advent of the electronic digital computer, the possibilities for introducing more variable and constraints into the initial design process led to greater expectations for improvement in vehicle (system) efficiency. The creation of the large scale systems necessary to achieve optimum designs has, for many reason, proved to be difficult. From a technical standpoint, significant problems arise in the development of satisfactory algorithms for processing of data from the various technical disciplines in a way that would be compatible with the complex optimization function. Also, the creation of effective optimization routines for multi-variable and constraint situations which could lead to consistent results has lagged. The current capability for carrying out the conceptual design of an aircraft on an interdisciplinary bases was evaluated to determine the need for extending this capability, and if necessary, to recommend means by which this could be carried out. Based on a review of available documentation and individual consultations, it appears that there is extensive interest at Langley Research Center as well as in the aerospace community in providing a higher level of capability that meets the technical challenges. By implication, the current design capability is inadequate and it does not operate in a way that allows the various technical disciplines to participate and cooperately interact in the design process. Based on this assessment, it was concluded that substantial effort should be devoted to developing a computer-based conceptual design system that would provide the capability needed for the near

  2. Oil spill experiment using airborne DLR ESAR off the coast of Diu, India.

    PubMed

    Sasamal, S K; Rao, M V

    2015-05-15

    Oil spill experiment results in the coastal waters of Diu, India, with an airborne DLR ESAR sensor are discussed with reference to the SAR frequency, polarization and viewing angle. The SAR data acquired in the quad polarization of the L band and dual polarization of the C band over two spills are studied. A higher oil and water contrast is observed in the L-VV polarization than in the C-HH mode. Oil spill discrimination is possible over a wider view angle of the airborne SAR sensor data in L band than in C band. This study has also analyzed the spread and drift of oil in coastal waters. PMID:25813716

  3. X-38 NASA/DLR/ESA-Dassault Aviation Integrated Aerodynamic and Aerothermodynamic Activities

    NASA Technical Reports Server (NTRS)

    Labbe, Steve G.; Perez, Leo F.; Fitzgerald, Steve; Longo, Jose; Rapuc, Marc; Molina, Rafael; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The characterization of the aeroshape selected for the X-38 [Crew Return Vehicle (CRV) demonstrator] is presently being performed as a cooperative endeavour between NASA, DLR (through its TETRA Program), and European Space Agency (ESA) with Dassault Aviation integrating the aerodynamic and aerothermodynamic activities. The methodologies selected for characterizing the aerodynamic and aerothermodynamic environment of the X-38 are presented. Also, the implications for related disciplines such as Guidance Navigation and Control (GN&C) with its corresponding Flight Control System (FCS), Structural, and Thermal Protection System (TPS) design are discussed. An attempt is made at defining the additional activities required to support the design of a derived operational CRV.

  4. IT Data Mining Tool Uses in Aerospace

    NASA Technical Reports Server (NTRS)

    Monroe, Gilena A.; Freeman, Kenneth; Jones, Kevin L.

    2012-01-01

    Data mining has a broad spectrum of uses throughout the realms of aerospace and information technology. Each of these areas has useful methods for processing, distributing, and storing its corresponding data. This paper focuses on ways to leverage the data mining tools and resources used in NASA's information technology area to meet the similar data mining needs of aviation and aerospace domains. This paper details the searching, alerting, reporting, and application functionalities of the Splunk system, used by NASA's Security Operations Center (SOC), and their potential shared solutions to address aircraft and spacecraft flight and ground systems data mining requirements. This paper also touches on capacity and security requirements when addressing sizeable amounts of data across a large data infrastructure.

  5. Aerospace Applications of Optimization under Uncertainty

    NASA Technical Reports Server (NTRS)

    Padula, Sharon; Gumbert, Clyde; Li, Wu

    2003-01-01

    The Multidisciplinary Optimization (MDO) Branch at NASA Langley Research Center develops new methods and investigates opportunities for applying optimization to aerospace vehicle design. This paper describes MDO Branch experiences with three applications of optimization under uncertainty: (1) improved impact dynamics for airframes, (2) transonic airfoil optimization for low drag, and (3) coupled aerodynamic/structures optimization of a 3-D wing. For each case, a brief overview of the problem and references to previous publications are provided. The three cases are aerospace examples of the challenges and opportunities presented by optimization under uncertainty. The present paper will illustrate a variety of needs for this technology, summarize promising methods, and uncover fruitful areas for new research.

  6. Aerospace Applications of Optimization under Uncertainty

    NASA Technical Reports Server (NTRS)

    Padula, Sharon; Gumbert, Clyde; Li, Wu

    2006-01-01

    The Multidisciplinary Optimization (MDO) Branch at NASA Langley Research Center develops new methods and investigates opportunities for applying optimization to aerospace vehicle design. This paper describes MDO Branch experiences with three applications of optimization under uncertainty: (1) improved impact dynamics for airframes, (2) transonic airfoil optimization for low drag, and (3) coupled aerodynamic/structures optimization of a 3-D wing. For each case, a brief overview of the problem and references to previous publications are provided. The three cases are aerospace examples of the challenges and opportunities presented by optimization under uncertainty. The present paper will illustrate a variety of needs for this technology, summarize promising methods, and uncover fruitful areas for new research.

  7. Aerospace structures supportability

    NASA Astrophysics Data System (ADS)

    Smith, Howard Wesley

    1989-04-01

    This paper is about supportability in its general sense, with emphasis on aerospace structures. Reliability and maintainability (R&M) are described and defined from the standpoint of both structural analysis. Accessability, inspectability, and replaceability are described as design attributes. Reliability and probability of failure are shown to be in the domain of the analysis. Availability and replaceability are traditional logistic responsibilities which are influenced by supportability engineers. The USAF R&M 2000 process is described, and the R&M 1988 Workshop at Wright-Patterson Air Force Base is also included in the description.

  8. The Aerospace Environment. Aerospace Education I. Instructor Handbook.

    ERIC Educational Resources Information Center

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This publication provides guidelines for teachers using the textbook entitled "Aerospace Environment," published in the Aerospace Education I series. Major categories included in each chapter are objectives, behavioral objectives, suggested outline, orientation, suggested key points, instructional aids, projects, and further reading. Background…

  9. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 1, Part 2

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume I: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements of the program's operations.

  10. Support System Effects on the DLR-F6 Transport Configuration in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Hunter, Craig A.; Gatlin, Gregory M.

    2009-01-01

    An experimental investigation of the DLR-F6 generic transport configuration was conducted in the NASA NTF for use in the Drag Prediction Workshop. As data from this experimental investigation was collected, a large difference in drag values was seen between the NTF test and an ONERA test that was conducted several years ago. After much investigation, it was determined that this difference was likely due to a sting effect correction applied to the ONERA data which NTF does not use. This insight led to the present work. In this study, a computational assessment has been undertaken to investigate model support system interference effects on the DLR-F6 transport configuration. The configurations computed during this investigation were the isolated wing-body, the wing-body with the full support system (blade and sting), the wing-body with just the blade, and the wing-body with just the sting. The results from this investigation show the same trends that ONERA saw when they conducted a similar experimental investigation in the S2MA tunnel. Computational results suggest that the blade contributed an interference type of effect, the sting contributed a general blockage effect, and the full support system combined these effects.

  11. Testing of DLR C/C-SiC for HIFiRE 8 Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael

    2013-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a C/C and a C/C-SiC material system fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for HIFiRE 8, a joint Australia / AFRL hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kPa. Flat panels of the DLR C/C and the C/C-SiC were tested in the NASA Langley Direct Connect Rig (DCR) at Mach 5 and Mach 6 enthalpy for several minutes. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used in some of the tests to increase the surface temperature of the C/C-SiC panel for approximately 350degF. The final C/C-SiC panel was tested for 3 cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  12. Validation of modelled forest biomass in Germany using BETHY/DLR

    NASA Astrophysics Data System (ADS)

    Tum, M.; Buchhorn, M.; Günther, K. P.; Haller, B. C.

    2011-07-01

    We present a new approach to the validation of modelled forest Net Primary Productivity (NPP), using empirical data on the mean annual increment, or MAI, in above-ground forest stock. The dynamic biomass model BETHY/DLR is used to estimate the NPP of forest areas in Germany, driven by remote sensing data from VEGETATION, meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF), and additional tree coverage information from the MODIS Vegetation Continuous Field (VCF). The output of BETHY/DLR, Gross Primary Productivity (GPP), is converted to NPP by subtracting the cumulative plant maintenance and growth respiration, and then validated against MAI data derived from German forestry inventories. Validation is conducted for 2000 and 2001 by converting modelled NPP to stem volume at a regional level. Our analysis shows that the presented method fills an important gap in methods for validating modelled NPP against empirically derived data. In addition, we examine theoretical energy potentials calculated from the modelled and validated NPP, assuming sustainable forest management and using species-specific tree heating values. Such estimated forest biomass energy potentials play an important role in the sustainable energy debate.

  13. Validation of modelled forest biomass in Germany using BETHY/DLR

    NASA Astrophysics Data System (ADS)

    Tum, M.; Buchhorn, M.; Günther, K. P.; Haller, B. C.

    2011-11-01

    We present a new approach to the validation of modelled forest Net Primary Productivity (NPP), using empirical data on the mean annual increment, or MAI, in above-ground forest stock. The soil-vegetation-atmosphere-transfer model BETHY/DLR is used, with a particular focus on a detailed parameterization of photosynthesis, to estimate the NPP of forest areas in Germany, driven by remote sensing data from VEGETATION, meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF), and additional tree coverage information from the MODIS Vegetation Continuous Field (VCF). The output of BETHY/DLR, Gross Primary Productivity (GPP), is converted to NPP by subtracting the cumulative plant maintenance and growth respiration, and then validated against MAI data that was calculated from German forestry inventories. Validation is conducted for 2000 and 2001 by converting modelled NPP to stem volume at a regional level. Our analysis shows that the presented method fills an important gap in methods for validating modelled NPP against empirically derived data. In addition, we examine theoretical energy potentials calculated from the modelled and validated NPP, assuming sustainable forest management and using species-specific tree heating values. Such estimated forest biomass energy potentials play an important role in the sustainable energy debate.

  14. Nondeterministic Approaches and Their Potential for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2001-01-01

    This document contains the proceedings of the Training Workshop on Nondeterministic Approaches and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, May 30-3 1, 2001. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in nondeterministic approaches, uncertainty management methodologies, reliability assessment and risk management techniques, and to identify their potential for future aerospace systems.

  15. Limitless Horizons: Careers in Aerospace.

    ERIC Educational Resources Information Center

    Lewis, Mary H.

    This is a manual for acquainting students with pertinent information relating to career choices in aerospace science, engineering, and technology. The first chapter presents information about the aerospace industry by describing disciplines typical of this industry. The National Aeronautics and Space Administration's (NASA) classification system…

  16. Limitless Horizons. Careers in Aerospace

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1980-01-01

    A manual is presented for use by counselors in career guidance programs. Pertinent information is provided on choices open in aerospace sciences, engineering, and technology. Accredited institutions awarding degrees in pertinent areas are listed as well as additional sources of aerospace career information. NASA's role and fields of interest are emphasized.

  17. Aerospace Activities and Language Development

    ERIC Educational Resources Information Center

    Jones, Robert M.; Piper, Martha

    1975-01-01

    Describes how science activities can be used to stimulate language development in the elementary grades. Two aerospace activities are described involving liquid nitrogen and the launching of a weather balloon which integrate aerospace interests into the development of language skills. (BR)

  18. Aerospace Technology Innovation. Volume 10

    NASA Technical Reports Server (NTRS)

    Turner, Janelle (Editor); Cousins, Liz (Editor); Bennett, Evonne (Editor); Vendette, Joel (Editor); West, Kenyon (Editor)

    2002-01-01

    Whether finding new applications for existing NASA technologies or developing unique marketing strategies to demonstrate them, NASA's offices are committed to identifying unique partnering opportunities. Through their efforts NASA leverages resources through joint research and development, and gains new insight into the core areas relevant to all NASA field centers. One of the most satisfying aspects of my job comes when I learn of a mission-driven technology that can be spun-off to touch the lives of everyday people. NASA's New Partnerships in Medical Diagnostic Imaging is one such initiative. Not only does it promise to provide greater dividends for the country's investment in aerospace research, but also to enhance the American quality of life. This issue of Innovation highlights the new NASA-sponsored initiative in medical imaging. Early in 2001, NASA announced the launch of the New Partnerships in Medical Diagnostic Imaging initiative to promote the partnership and commercialization of NASA technologies in the medical imaging industry. NASA and the medical imaging industry share a number of crosscutting technologies in areas such as high-performance detectors and image-processing tools. Many of the opportunities for joint development and technology transfer to the medical imaging market also hold the promise for future spin back to NASA.

  19. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Aerospace Safety Advisory Panel (ASAP) provided oversight on the safety aspects of many NASA programs. In addition, ASAP undertook three special studies. At the request of the Administrator, the panel assessed the requirements for an assured crew return vehicle (ACRV) for the space station and reviewed the organization of the safety and mission quality function within NASA. At the behest of Congress, the panel formed an independent, ad hoc working group to examine the safety and reliability of the space shuttle main engine. Section 2 presents findings and recommendations. Section 3 consists of information in support of these findings and recommendations. Appendices A, B, C, and D, respectively, cover the panel membership, the NASA response to the findings and recommendations in the March 1992 report, a chronology of the panel's activities during the reporting period, and the entire ACRV study report.

  20. Aerospace and military

    SciTech Connect

    Adam, J.A.; Esch, K

    1990-01-01

    This article reviews military and aerospace developments of 1989. The Voyager spacecraft returned astounding imagery from Neptune, sophisticated sensors were launched to explore Venus and Jupiter, and another craft went into earth orbit to explore cosmic rays, while a huge telescope is to be launched early in 1990. The U.S. space shuttle redesign was completed and access to space has become no longer purely a governmental enterprise. In the military realm, events within the Soviet bloc, such as the Berlin Wall's destruction, have popularized arms control. Several big treaties could be signed within the year. Massive troop, equipment, and budget reductions are being considered, along with a halt or delay of major new weapons systems. For new missions, the U.S. military is retreating to its role of a century ago - patrolling the nation's borders, this time against narcotics traffickers.

  1. Dynamics of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.

  2. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a 5-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASAs safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are "one deep." The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting "brain drain" could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has little flexibility to begin long lead-time items for upgrades or contingency planning.

  3. A DLR small satellite mission for the investigation of hot spots, vegetation and clouds

    NASA Astrophysics Data System (ADS)

    Brieβ, K.; Jahn, H.; Röser, H. P.

    1996-11-01

    Starting from their FIRES proposal [1]the DLR makes a new approach in the design of a small satellite mission dedicated to hot spot detection and evaluation: the BIRD mission. The new approach is characterized by a strict design-to-cost philosophy. A two-channel infrared sensor system in combination with a Wide-Angle Optoelectronic Stereo Scanner (WAOSS) shall be the payload of a small satellite (80kg) considered for piggyback launch. So the launch is not a main cost driver as for other small satellite missions with dedicated launchers. The paper describes the mission objectives, the scientific payload, the spacecraft bus, and the mission architecture of a small satellite mission dedicated to the investigation of hot spots (forest fires, volcanic activities, burning oil wells or coal seams), of vegetation condition and changes and of clouds. The paper represents some results of a phase A study and of the progressing phase B.

  4. 20th Aerospace Mechanisms Symposium. Revised

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The proceedings of the 20th Aerospace Mechanisms Symposium, hosted by the NASA Lewis Research Center, Cleveland, Ohio, on May 7-9, 1986, is documented herein. During the 3 days, 23 technical papers were presented by experts from the United States and Western Europe. A panel discussion by an International group of experts on future directions In mechanisms was also presented; this discussion, however, is not documented herein. The technical topics addressed included deployable structures, electromagnetic devices, tribology, thermal/mechanical/hydraulic actuators, latching devices, positioning mechanisms, robotic manipulators, and computerized mechanisms synthesis.

  5. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  6. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  7. Aerospace management techniques: Commercial and governmental applications

    NASA Technical Reports Server (NTRS)

    Milliken, J. G.; Morrison, E. J.

    1971-01-01

    A guidebook for managers and administrators is presented as a source of useful information on new management methods in business, industry, and government. The major topics discussed include: actual and potential applications of aerospace management techniques to commercial and governmental organizations; aerospace management techniques and their use within the aerospace sector; and the aerospace sector's application of innovative management techniques.

  8. German Data Center for the Solar Dynamics Observatory: A model for the PLATO mission?

    NASA Astrophysics Data System (ADS)

    Burston, R.; Gizon, L.; Saidi, Y.; Solanki, S. K.

    2008-12-01

    The German Data Center for the Solar Dynamics Observatory (GDC-SDO), hosted by the Max Planck Institute for Solar System Research in Germany, will provide access to SDO data for the German solar physics community. The GDC-SDO will make available all the relevant Helioseismic and Magnetic Imager (HMI) data for helioseismology and smaller se- lected Atmospheric Imaging Assembly (AIA) data sets. This project commenced in August 2007 and is funded by the German Aerospace Center (Deutsches zentrum fuer Luft- und Raumfahrt or DLR) until December 2012. An important component of the GDC-SDO is the Data Record Management System (DRMS), developed in collaboration with the Stan- ford/Lockheed Joint Science Operations Center (JSOC). The PEGASUS workflow manage- ment system will be used to implement GDC-SDO data analysis pipelines. This makes use of the CONDOR High Throughput Computing Project for optimal job scheduling and also the GLOBUS Toolkit to enable grid technologies. Additional information about the GDC-SDO can be found at http://www.mps.mpg.de/projects/seismo/GDC1/index.html. Here, we sug- gest a similar structure and philosophy should be ideal for the PLATO mission, which looks for planetary transits and stellar oscillations and is being studied by ESA for an M-Mission slot in Cosmic Vision.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  10. 78 FR 77501 - NASA Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... SPACE ADMINISTRATION NASA Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY: In accordance with the Federal Advisory...:00 p.m., Local Time. ] ADDRESSES: NASA Johnson Space Center, Room 966, NASA Parkway, Building...

  11. 76 FR 23339 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ...: 76 FR 19147, Notice Number 11-030, April 6, 2011. SUMMARY: The National Aeronautics and Space... to the STS-134 Space Shuttle launch now set for April 29, 2011 at the Kennedy Space Center, the ASAP... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and...

  12. 76 FR 26316 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ...: 76 FR 23339, Notice Number 11-043, dated April 26, 2011; and 76 FR 19147, Notice Number 11-030, dated... take place on May 24, 2011, at the Kennedy Space Center, FL. Correction: Date and time of ASAP public... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and...

  13. 76 FR 36937 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ..., Public Law 92-463, as amended, the National Aeronautics and Space Administration announce a forthcoming... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space...: Goddard Space Flight Center, 8800 Greenbelt Road, Bldg 8, Room N303, Greenbelt, MD 20771-0001 FOR...

  14. 77 FR 58413 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space..., Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a forthcoming.... local time. ADDRESSES: NASA Johnson Space Center, NASA Parkway, Building 1, Room 966, Houston, TX...

  15. 78 FR 15976 - Aerospace Safety Advisory Panel; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting. AGENCY: National Aeronautics and Space..., Public Law 92-463, as amended, the National Aeronautics and Space Administration announce a forthcoming...., Local Time. ADDRESSES: NASA Goddard Space Flight Center, 8800 Greenbelt Road, Bldg 8, Room...

  16. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Annual Report of the Aerospace Safety Advisory Panel (ASAP) presents results of activities during calendar year 2001. The year was marked by significant achievements in the Space Shuttle and International Space Station (ISS) programs and encouraging accomplishments by the Aerospace Technology Enterprise. Unfortunately, there were also disquieting mishaps with the X-43, a LearJet, and a wind tunnel. Each mishap was analyzed in an orderly process to ascertain causes and derive lessons learned. Both these accomplishments and the responses to the mishaps led the Panel to conclude that safety and risk management is currently being well served within NASA. NASA's operations evidence high levels of safety consciousness and sincere efforts to place safety foremost. Nevertheless, the Panel's safety concerns have never been greater. This dichotomy has arisen because the focus of most NASA programs has been directed toward program survival rather than effective life cycle planning. Last year's Annual Report focused on the need for NASA to adopt a realistically long planning horizon for the aging Space Shuttle so that safety would not erode. NASA's response to the report concurred with this finding. Nevertheless, there has been a greater emphasis on current operations to the apparent detriment of long-term planning. Budget cutbacks and shifts in priorities have severely limited the resources available to the Space Shuttle and ISS for application to risk-reduction and life-extension efforts. As a result, funds originally intended for long-term safety-related activities have been used for operations. Thus, while safety continues to be well served at present, the basis for future safety has eroded. Section II of this report develops this theme in more detail and presents several important, overarching findings and recommendations that apply to many if not all of NASA's programs. Section III of the report presents other significant findings, recommendations and supporting

  17. FK-DLR properties of a quantum multi-type Bose-gas with a repulsive interaction

    SciTech Connect

    Suhov, Y.; Stuhl, I.

    2014-08-01

    The paper extends earlier results from Suhov and Kelbert [“FK-DLR states of a quantum Bose-gas with a hardcore interaction,” http://arxiv.org/abs/arXiv:1304.0782 ] and Suhov et al. [“Shift-invariance for FK-DLR states of a 2D quantum Bose-gas,” http://arxiv.org/abs/arXiv:1304.4177 ] about infinite-volume quantum bosonic states (FK-DLR states) to the case of multi-type particles with non-negative interactions. (An example is a quantum Widom–Rowlinson model.) Following the strategy from Suhov and Kelbert and Suhov et al., we establish that, for the values of fugacity zϵ(0, 1) and inverse temperature β > 0, finite-volume Gibbs states form a compact family in the thermodynamic limit. Next, in dimension two we show that any limit-point state (an FK-DLR state in the terminology adopted in Suhov and Kelbert and Suhov et al.) is translation-invariant.

  18. Norwegian Aerospace Activities: an Overview

    NASA Technical Reports Server (NTRS)

    Arnesen, T. (Editor); Rosenberg, G. (Editor)

    1986-01-01

    Excerpts from a Governmental Investigation concerning Norwegian participation in the European Space Organization (ESA) is presented. The implications and advantages of such a move and a suggestion for the reorganization of Norwegian Aerospace activity is given.

  19. The FASST Aerospace Student Forum

    ERIC Educational Resources Information Center

    David, Leonard

    1976-01-01

    Describes a three-day Forum for the Advancement of Students in Science and Technology (FASST), at which students from 20 colleges and universities and six Soviet students discussed the application of aerospace technology to the problems of society. (MLH)

  20. AeroSpace Days 2013

    NASA Video Gallery

    At the eighth annual AeroSpace Days, first mom in space, Astronaut AnnaFisher, and Sen. Louise Lucas, interacted with students from Mack BennJr. Elementary School in Suffolk, Va. through NASA’s...

  1. Ball Aerospace AMSD Progress Update

    NASA Technical Reports Server (NTRS)

    Blair, Mark; Brown, Robert; Chaney, David; Lightsey, Paul; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The current status of the Advanced Mirror System Demonstrator program being performed by Ball Aerospace is presented. The hexagonal low-areal density Beryllium mirror blank has been fabricated and undergoing polishing at the time of this presentation.

  2. CORBASec Used to Secure Distributed Aerospace Propulsion Simulations

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2003-01-01

    The NASA Glenn Research Center and its industry partners are developing a Common Object Request Broker (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines. It was developed by Glenn and is being managed by the NASA Ames Research Center as the lead center reporting directly to NASA Headquarters' Aerospace Technology Enterprise. Glenn is an active domain member of the Object Management Group: an open membership, not-for-profit consortium that produces and manages computer industry specifications (i.e., CORBA) for interoperable enterprise applications. When NPSS is deployed, it will assemble a distributed aerospace propulsion simulation scenario from proprietary analytical CORBA servers and execute them with security afforded by the CORBASec implementation. The NPSS CORBASec test bed was initially developed with the TPBroker Security Service product (Hitachi Computer Products (America), Inc., Waltham, MA) using the Object Request Broker (ORB), which is based on the TPBroker Basic Object Adaptor, and using NPSS software across different firewall products. The test bed has been migrated to the Portable Object Adaptor architecture using the Hitachi Security Service product based on the VisiBroker 4.x ORB (Borland, Scotts Valley, CA) and on the Orbix 2000 ORB (Dublin, Ireland, with U.S. headquarters in Waltham, MA). Glenn, GE Aircraft Engines, and Pratt & Whitney Aircraft are the initial industry partners contributing to the NPSS CORBASec test bed. The test bed uses Security SecurID (RSA Security Inc., Bedford, MA) two-factor token-based authentication together with Hitachi Security Service digital-certificate-based authentication to validate the various NPSS users. The test

  3. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  4. Aerospace Safety Advisory Panel

    NASA Astrophysics Data System (ADS)

    1989-03-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  5. Space Station Freedom - A resource for aerospace education

    NASA Technical Reports Server (NTRS)

    Brown, Robert W.

    1988-01-01

    The role of the International Space Station in future U.S. aerospace education efforts is discussed from a NASA perspective. The overall design concept and scientific and technological goals of the Space Station are reviewed, and particular attention is given to education projects such as the Davis Planetarium Student Space Station, the Starship McCullough, the Space Habitat, the working Space Station model in Austin, TX, the Challenger Center for Space Life Education, Space M+A+X, and the Space Science Student Involvement Program. Also examined are learning-theory aspects of aerospace education: child vs adult learners, educational objectives, teaching methods, and instructional materials.

  6. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Each item is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1996.

  7. NASA-OAI Collaborative Aerospace Research and Fellowship Program

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Kankam, Mark D.

    2003-01-01

    During the summer of 2003, a IO-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). The objectives of CFP are: (1) to further the professional knowledge of qualified engineering and science faculty, (2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants' institutions, and (4) to contribute to the research objectives of Glenn. This report is intended primarily to summarize the research activities comprising the 2003 CFP Program at Glenn.

  8. Mobile Computing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Swietek, Gregory E. (Technical Monitor)

    1994-01-01

    The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  10. Verification and Validation of Neural Networks for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale; Nelson, Stacy; Schumman, Johann; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: 1) Overview of Adaptive Systems; and 2) V&V Processes/Methods.

  11. Verification and Validation of Neural Networks for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale; Nelson, Stacy; Schumann, Johann

    2002-01-01

    The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: Overview of Adaptive Systems and V&V Processes/Methods.

  12. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a five-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASA's safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are 'one deep.' The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting 'brain drain' could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. The major NASA programs are also limited in their ability to plan property for the future. This is of particular concern for the Space Shuttle and ISS because these programs are scheduled to operate well into the next century. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has

  13. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This annual report is based on the activities of the Aerospace Safety Advisory Panel in calendar year 2000. During this year, the construction of the International Space Station (ISS) moved into high gear. The launch of the Russian Service Module was followed by three Space Shuttle construction and logistics flights and the deployment of the Expedition One crew. Continuous habitation of the ISS has begun. To date, both the ISS and Space Shuttle programs have met or exceeded most of their flight objectives. In spite of the intensity of these efforts, it is clear that safety was always placed ahead of cost and schedule. This safety consciousness permitted the Panel to devote more of its efforts to examining the long-term picture. With ISS construction accelerating, demands on the Space Shuttle will increase. While Russian Soyuz and Progress spacecraft will make some flights, the Space Shuttle remains the primary vehicle to sustain the ISS and all other U.S. activities that require humans in space. Development of a next generation, human-rated vehicle has slowed due to a variety of technological problems and the absence of an approach that can accomplish the task significantly better than the Space Shuttle. Moreover, even if a viable design were currently available, the realities of funding and development cycles suggest that it would take many years to bring it to fruition. Thus, it is inescapable that for the foreseeable future the Space Shuttle will be the only human-rated vehicle available to the U.S. space program for support of the ISS and other missions requiring humans. Use of the Space Shuttle will extend well beyond current planning, and is likely to continue for the life of the ISS.

  14. NASA's activities in the conservation of strategic aerospace materials

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1980-01-01

    The United States imports 50-100 percent of certain metals critical to the aerospace industry, namely, cobalt, columbium, chromium, and tantalum. In an effort to reduce this dependence on foreign sources, NASA is planning a program called Conservation of Strategic Aerospace Materials (COSAM), which will provide technology minimizing strategic metal content in the components of aerospace structures such as aircraft engines. With a proposed starting date of October 1981, the program will consist of strategic element substitution, process technology development, and alternate materials research. NASA's two-fold pre-COSAM studies center on, first, substitution research involving nickel-base and cobalt-base superalloys (Waspaloy, Udimet-700, MAE-M247, Rene 150, HA-188) used in turbine disks, low-pressure blades, turbine blades, and combustors; and, second, alternate materials research devoted initially to investigating possible structural applications of the intermetallic alloys nickel aluminide and iron aluminide.

  15. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 2/Part 2

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume II Appendix A to Part 2 - Volume I.

  16. A comparison of two stochastic model updating methods using the DLR AIRMOD test structure

    NASA Astrophysics Data System (ADS)

    Govers, Y.; Haddad Khodaparast, H.; Link, M.; Mottershead, J. E.

    2015-02-01

    The problem of stochastic model updating is addressed by means of the application of two methods (covariance and interval model updating) to the DLR AIRMOD structure which is repeatedly disassembled and reassembled to provide a database of modal variability due to uncertainty in joint and support stiffnesses and masses of cables and screws. The covariance method is based on an assumption of small uncertainty and implemented at each step of an iterative approach by forward propagation of uncertain parameters using a multivariate normal distribution. The interval approach is based on a Kriging meta-model, thereby providing a very efficient surrogate to replace the expensive full finite element model. This allows a mapping from multiple output measurements to define a hypercube bounded by intervals of parameter uncertainty. It is shown that the measured data is fully enclosed by the hyper-ellipses and hypercubes of the covariance and interval methods respectively. As expected, the interval method is found to be more conservative than the covariance approach but still provides useful estimates without restriction by any assumption of probability distribution.

  17. Transient Simulation of the DLR M3.1 Testbench: Methods and First Results

    NASA Astrophysics Data System (ADS)

    Manfletti, C.; Sender, J.

    2009-01-01

    Analysis of transient phases in liquid rocket engines play a major role in the design of the engines, as well as in the configuration and tailoring of the transient phases themselves. Testing of existing as well as future rocket engines, must therefore consider transient aspects, such as pre-cooling, priming, as well as ignition both experimentally as well as numerically. The flow behaviour within the various engine components is strongly dictated by the existing pressure and temperature fields. Ideally the flow through the engine feed lines is a one phase-flow. This is however not necessarily the case and a two-phase flow may lead to drastic changes in the behaviour. The application of the program TLRE to the simulation of the DLR test bench M3.1 is presented. The focus lies on the two-phase flow associated phenomena and the numerical resolution of these phenomena with the implementation of the lumped parameter method (LPM). A brief introduction of the relevant LPM characteristics is given. This is followed by a description of the relevant and observed two-phase flow phenomena and regimes and the numerical solution method. In conclusion both the main results of the work performed so far, which highlights the importance of the measurement system and how this needs to be taken into account during analysis processes, and a future roadmap for subsequent program evolution and applications are outlined.

  18. Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Rouse, D. J.; Brown, J. N., Jr.; Cleland, John; Lehrman, Stephen; Trachtman, Lawrence; Wallace, Robert; Winfield, Daniel; Court, Nancy; Maggin, Bernard; Barnett, Reed

    1987-01-01

    Highlights are presented for the Research Triangle Institute (RTI) Applications Team activities over the past quarter. Progress in fulfilling the requirements of the contract is summarized, along with the status of the eight add-on tasks. New problem statements are presented. Transfer activities for ongoing projects with the NASA Centers are included.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 29: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  1. Challenges in aerospace medicine education.

    PubMed

    Grenon, S Marlene; Saary, Joan

    2011-11-01

    Aerospace medicine training and research represents a dream for many and a challenge for most. In Canada, although some opportunities exist for the pursuit of education and research in the aerospace medicine field, they are limited despite the importance of this field for enabling safe human space exploration. In this commentary, we aim to identify some of the challenges facing individuals wishing to get involved in the field as well as the causal factors for these challenges. We also explore strategies to mitigate against these. PMID:22097645

  2. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)

    1997-01-01

    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  3. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Clark-Ingram, M.; Hessler, S. L.

    1997-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  4. Chemical Microsensor Development for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Chen, Liangyu; Biaggi-Labiosa, Azlin M.

    2013-01-01

    Numerous aerospace applications, including low-false-alarm fire detection, environmental monitoring, fuel leak detection, and engine emission monitoring, would benefit greatly from robust and low weight, cost, and power consumption chemical microsensors. NASA Glenn Research Center has been working to develop a variety of chemical microsensors with these attributes to address the aforementioned applications. Chemical microsensors using different material platforms and sensing mechanisms have been produced. Approaches using electrochemical cells, resistors, and Schottky diode platforms, combined with nano-based materials, high temperature solid electrolytes, and room temperature polymer electrolytes have been realized to enable different types of microsensors. By understanding the application needs and chemical gas species to be detected, sensing materials and unique microfabrication processes were selected and applied. The chemical microsensors were designed utilizing simple structures and the least number of microfabrication processes possible, while maintaining high yield and low cost. In this presentation, an overview of carbon dioxide (CO2), oxygen (O2), and hydrogen/hydrocarbons (H2/CxHy) microsensors and their fabrication, testing results, and applications will be described. Particular challenges associated with improving the H2/CxHy microsensor contact wire-bonding pad will be discussed. These microsensors represent our research approach and serve as major tools as we expand our sensor development toolbox. Our ultimate goal is to develop robust chemical microsensor systems for aerospace and commercial applications.

  5. Aerospace Education for the Melting Pot.

    ERIC Educational Resources Information Center

    Joels, Kerry M.

    1979-01-01

    Aerospace education is eminently suited to provide a framework for multicultural education. Effective programs accommodating minorities' frames of reference to the rapidly developing disciplines of aerospace studies have been developed. (RE)

  6. Aerospace Education and the Elementary Teacher

    ERIC Educational Resources Information Center

    Jones, Robert M.

    1978-01-01

    This articles attempts to stimulate otherwise reluctant school teachers to involve aerospace education in their content repertoire. Suggestions are made to aid the teacher in getting started with aerospace education. (MDR)

  7. Accommodation of Nontraditional Aerospace Degree Aspirants

    ERIC Educational Resources Information Center

    Schukert, Michael A.

    1977-01-01

    Presents results of a national survey of institutions offering college level aerospace studies. Primary survey concern is the availability of nontraditional aerospace education programs; however, information pertaining to institution characteristics, program characteristics, and staffing are also included. (SL)

  8. Optical Information Processing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Current research in optical processing is reviewed. Its role in future aerospace systems is determined. The development of optical devices and components demonstrates that system concepts can be implemented in practical aerospace configurations.

  9. Bioregenerative Life Support System Research as part of the DLR EDEN Initiative

    NASA Astrophysics Data System (ADS)

    Bamsey, Matthew; Schubert, Daniel; Zabel, Paul; Poulet, Lucie; Zeidler, Conrad

    In 2011, the DLR Institute of Space Systems launched a research initiative called EDEN - Evolution and Design of Environmentally-closed Nutrition-Sources. The research initiative focuses on bioregenerative life support systems, especially greenhouse modules, and technologies for future crewed vehicles. The EDEN initiative comprises several projects with respect to space research, ground testing and spin-offs. In 2014, EDEN’s new laboratory officially opened. This new biological cleanroom laboratory comprises several plant growth chambers incorporating a number of novel controlled environment agriculture technologies. This laboratory will be the nucleus for a variety of plant cultivation experiments within closed environments. The utilized technologies are being advanced using the pull of space technology and include such items as stacked growth systems, PAR-specific LEDs, intracanopy lighting, aeroponic nutrient delivery systems and ion-selective nutrient sensors. The driver of maximizing biomass output per unit volume and energy has much application in future bioregenerative life support systems but can also provide benefit terrestrially. The EDEN laboratory also includes several specially constructed chambers for advancing models addressing the interaction between bioregenerative and physical-chemical life support systems. The EDEN team is presently developing designs for containerized greenhouse modules. One module is planned for deployment to the German Antarctic Station, Neumayer III. The shipping container based system will provide supplementation to the overwintering crew’s diet, provide psychological benefit while at the same time advancing the technology and operational readiness of harsh environment plant production systems. In addition to hardware development, the EDEN team has participated in several early phase designs such as for the ESA Greenhouse Module for Space System and for large-scale vertical farming. These studies often utilize the

  10. Comparison of USGS and DLR topographic models of Comet Borrelly and photometric applications

    USGS Publications Warehouse

    Kirk, R.L.; Howington-Kraus, E.; Soderblom, L.A.; Giese, B.; Oberst, J.

    2004-01-01

    Stereo analysis of images obtained during the 2001 flyby of Comet Borrelly by NASA's Deep Space 1 (DS1) probe allows us to quantify the shape and photometric behavior of the nucleus. The shape is complex, with planar facets corresponding to the dark, mottled regions of the surface whereas the bright, smooth regions are convexly curved. The photometric as well as textural differences between these regions can be explained in terms of topography (roughness) at and below the image resolution, without invoking significant variations in single-particle properties; the material on Borrelly's surface could be quite uniform. A statistical comparison of the digital elevation models (DEMs) produced from the three highest-resolution images independently at the USGS and DLR shows that their difference standard deviation is 120 m, consistent with a matching error of 0.20 pixel (similar to reported matching accuracies for many other stereo datasets). The DEMs also show some systematic differences attributable to manual versus automatic matching. Disk-resolved photometric modeling of the nucleus using the DEM shows that bright, smooth terrains on Borrelly are similar in roughness (Hapke roughness ?? = 20??) to C-type asteroid Mathilde but slightly brighter and more backscattering (single-scattering albedo w = 0.056, Henyey-Greenstein phase parameter g = -0.32). The dark, mottled terrain is photometrically consistent with the same particles but with roughnesses as large as 60??. Intrinsically darker material is inconsistent with the phase behavior of these regions. Many local radiance variations are clearly related to topography, and others are consistent with a topographic explanation; one need not invoke albedo variations greater than a few tens of percent to explain the appearance of Borrelly. Published by Elsevier Inc.

  11. High-Lift OVERFLOW Analysis of the DLR-F11 Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.; Sclafani, Anthony J.

    2014-01-01

    In response to the 2nd AIAA CFD High Lift Prediction Workshop, the DLR-F11 wind tunnel model is analyzed using the Reynolds-averaged Navier-Stokes flow solver OVERFLOW. A series of overset grids for a bracket-off landing configuration is constructed and analyzed as part of a general grid refinement study. This high Reynolds number (15.1 million) analysis is done at multiple angles-of-attack to evaluate grid resolution effects at operational lift levels as well as near stall. A quadratic constitutive relation recently added to OVERFLOW for improved solution accuracy is utilized for side-of-body separation issues at low angles-of-attack and outboard wing separation at stall angles. The outboard wing separation occurs when the slat brackets are added to the landing configuration and is a source of discrepancy between the predictions and experimental data. A detailed flow field analysis is performed at low Reynolds number (1.35 million) after pressure tube bundles are added to the bracket-on medium grid system with the intent of better understanding bracket/bundle wake interaction with the wing's boundary layer. Localized grid refinement behind each slat bracket and pressure tube bundle coupled with a time accurate analysis are exercised in an attempt to improve stall prediction capability. The results are inconclusive and suggest the simulation is missing a key element such as boundary layer transition. The computed lift curve is under-predicted through the linear range and over-predicted near stall, and the solution from the most complete configuration analyzed shows outboard wing separation occurring behind slat bracket 6 where the experiment shows it behind bracket 5. These results are consistent with most other participants of this workshop.

  12. Target selection and comparison of mission design for space debris removal by DLR's advanced study group

    NASA Astrophysics Data System (ADS)

    van der Pas, Niels; Lousada, Joao; Terhes, Claudia; Bernabeu, Marc; Bauer, Waldemar

    2014-09-01

    Space debris is a growing problem. Models show that the Kessler syndrome, the exponential growth of debris due to collisions, has become unavoidable unless an active debris removal program is initiated. The debris population in LEO with inclination between 60° and 95° is considered as the most critical zone. In order to stabilize the debris population in orbit, especially in LEO, 5 to 10 objects will need to be removed every year. The unique circumstances of such a mission could require that several objects are removed with a single launch. This will require a mission to rendezvous with a multitude of objects orbiting on different altitudes, inclinations and planes. Removal models have assumed that the top priority targets will be removed first. However this will lead to a suboptimal mission design and increase the ΔV-budget. Since there is a multitude of targets to choose from, the targets can be selected for an optimal mission design. In order to select a group of targets for a removal mission the orbital parameters and political constraints should also be taken into account. Within this paper a number of the target selection criteria are presented. The possible mission targets and their order of retrieval is dependent on the mission architecture. A comparison between several global mission architectures is given. Under consideration are 3 global missions of which a number of parameters are varied. The first mission launches multiple separate deorbit kits. The second launches a mother craft with deorbit kits. The third launches an orbital tug which pulls the debris in a lower orbit, after which a deorbit kit performs the final deorbit burn. A RoM mass and cost comparison is presented. The research described in this paper has been conducted as part of an active debris removal study by the Advanced Study Group (ASG). The ASG is an interdisciplinary student group working at the DLR, analyzing existing technologies and developing new ideas into preliminary

  13. Aerospace Training. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Aerospace is an economic powerhouse that generates jobs and fuels our economy. Washington's community and technical colleges produce the world-class employees needed to keep it that way. With about 1,250 aerospace-related firms employing more than 94,000 workers, Washington has the largest concentration of aerospace expertise in the nation. To…

  14. Job Prospects for Aerospace Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1987-01-01

    Discusses the recent trends in job opportunities for aerospace engineers. Mentions some of the political, technological, and economic factors affecting the overall employment picture. Includes a description of the job prospects created by the general upswing of the large commercial aircraft market. (TW)

  15. 41st Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor)

    2012-01-01

    The proceedings of the 41st Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held in Pasadena Hilton, Pasadena, California on May 16-18, 2012. Lockheed Martin Space Systems cosponsored the symposium. Technology areas covered include gimbals and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and Mars Science Laboratory mechanisms.

  16. Careers in the Aerospace Industry.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Office of General Aviation.

    The document briefly presents career information in the field of aerospace industry. Employment exists in three areas: (1) professional and technical occupations in research and development (engineers, scientists, and technicians); (2) administrative, clerical, and related occupations (engineers, scientists, technicians, clerks, secretaries,…

  17. Technology utilization. [aerospace technology transfer

    NASA Technical Reports Server (NTRS)

    Kubokawa, C. C.

    1978-01-01

    NASA developed technologies were used to tackle problems associated with safety, transportation, industry, manufacturing, construction and state and local governments. Aerospace programs were responsible for more innovations for the benefit of mankind than those brought about by either major wars, or peacetime programs. Briefly outlined are some innovations for manned space flight, satellite surveillance applications, and pollution monitoring techniques.

  18. Graphical simulation for aerospace manufacturing

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Bien, Christopher

    1994-01-01

    Simulation software has become a key technological enabler for integrating flexible manufacturing systems and streamlining the overall aerospace manufacturing process. In particular, robot simulation and offline programming software is being credited for reducing down time and labor cost, while boosting quality and significantly increasing productivity.

  19. Ball Aerospace Actuator Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Kingsbury, Lana; Lightsey, Paul; Quigley, Phil; Rutkowski, Joel; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The ambient testing characterizing step size and repeatability for the Ball Aerospace Cryogenic Nano-Positioner actuators for the AMSD (Advanced Mirror System Demonstrator) program has been completed and are presented. Current cryogenic testing is underway. Earlier cryogenic test results for a pre-cursor engineering model are presented.

  20. Aerospace applications of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-01-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  1. Aerospace for the Very Young.

    ERIC Educational Resources Information Center

    2003

    This packet includes games and activities concerning aerospace education for the very young. It is designed to develop and strengthen basic concepts and skills in a non-threatening atmosphere of fun. Activities include: (1) "The Sun, Our Nearest Star"; (2) "Twinkle, Twinkle, Little Star, How I Wonder Where You Are"; (3) "Shadows"; (4) "The Earth…

  2. Aerospace/Aviation Science Occupations.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Occupational Education.

    The guide was developed to provide secondary students the opportunity to study aviation and aerospace education from the conceptual and career approach coupled with general education specifically related to science. Unit plans were prepared to motivate, develop skills, and offer counseling to the students of aviation science and occupational…

  3. Science, Engineering, Mathematics and Aerospace Academy

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an annual report on the Science, Engineering, Mathematics, and Aerospace Academy (SEMAA), which is run as a collaborative effort of NASA Lewis Research Center, and Cuyahgoga Community College. The purpose of SEMA is to increase the percentage of African Americans, and Hispanics in the fields of science and technology. The SEMAA program reaches from kindergarden, to grade 12, involving the family of under-served minorities in the education of the children. The year being reported (i.e., 1996-1997) saw considerable achievement. The program served over 1,939 students, and 120 parents were involved in various seminars. The report goes on to review the program and its implementation for each grade level. It also summarizes the participation, by gender and ethnicity.

  4. Science, Engineering, Mathematics and Aerospace Academy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Science, Engineering, Mathematics and Aerospace Academy (SEMAA) was established in September, 1993, by Cuyahoga Community College and the NASA Lewis Research Center. Funding for SEMAA was provided by NASA Headquarters' Office of Equal Employment Opportunities. SEMAA brought together five preexisting youth programs at Cuyahoga Community College. All the programs shared the common goals of 1) Increasing the participation of underrepresented/underserved groups in science, mathematics and engineering and technology careers. 2) Increasing "success" rates of all students interested in science and mathematics. 3) Developing partnerships to recognize and support students interested in these fields. 4) Supporting continued success of highly successful students. The framework for each preexisting program allowed SEMAA to have a student population ranging from kindergarten through the twelfth-grade. This connectivness was the foundation for the many decisions which would make SEMAA a truly innovative program.

  5. Aerospace Flywheel Technology Development for IPACS Applications

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry L.; Jansen, Ralph H.; Fausz, Jerry; Bauer, Robert D.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) are cooperating under a space act agreement to sponsor the research and development of aerospace flywheel technologies to address mutual future mission needs. Flywheel technology offers significantly enhanced capability or is an enabling technology. Generally these missions are for energy storage and/or integrated power and attitude control systems (IPACS) for mid-to-large satellites in low earth orbit. These missions require significant energy storage as well as a CMG or reaction wheel function for attitude control. A summary description of the NASA and AFRL flywheel technology development programs is provided, followed by specific descriptions of the development plans for integrated flywheel system tests for IPACS applications utilizing both fixed and actuated flywheel units. These flywheel system development tests will be conducted at facilities at AFRL and NASA Glenn Research Center and include participation by industry participants Honeywell and Lockheed Martin.

  6. Solid Modeling Aerospace Research Tool (SMART) user's guide, version 2.0

    NASA Technical Reports Server (NTRS)

    Mcmillin, Mark L.; Spangler, Jan L.; Dahmen, Stephen M.; Rehder, John J.

    1993-01-01

    The Solid Modeling Aerospace Research Tool (SMART) software package is used in the conceptual design of aerospace vehicles. It provides a highly interactive and dynamic capability for generating geometries with Bezier cubic patches. Features include automatic generation of commonly used aerospace constructs (e.g., wings and multilobed tanks); cross-section skinning; wireframe and shaded presentation; area, volume, inertia, and center-of-gravity calculations; and interfaces to various aerodynamic and structural analysis programs. A comprehensive description of SMART and how to use it is provided.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 18: A comparison of the technical communication practices of aerospace engineers and scientists in India and the United States

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.

  8. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An assessment of NASA's safety performance for 1983 affirms that NASA Headquarters and Center management teams continue to hold the safety of manned flight to be their prime concern, and that essential effort and resources are allocated for maintaining safety in all of the development and operational programs. Those conclusions most worthy of NASA management concentration are given along with recommendations for action concerning; product quality and utility; space shuttle main engine; landing gear; logistics and management; orbiter structural loads, landing speed, and pitch control; the shuttle processing contractor; and the safety of flight operations. It appears that much needs to be done before the Space Transportation System can achieve the reliability necessary for safe, high rate, low cost operations.

  9. Recent GRC Aerospace Technologies Applicable to Terrestrial Energy Systems

    NASA Technical Reports Server (NTRS)

    Kankam, David; Lyons, Valerie J.; Hoberecht, Mark A.; Tacina, Robert R.; Hepp, Aloysius F.

    2000-01-01

    This paper is an overview of a wide range of recent aerospace technologies under development at the NASA Glenn Research Center, in collaboration with other NASA centers, government agencies, industry and academia. The focused areas are space solar power, advanced power management and distribution systems, Stirling cycle conversion systems, fuel cells, advanced thin film photovoltaics and batteries, and combustion technologies. The aerospace-related objectives of the technologies are generation of space power, development of cost-effective and reliable, high performance power systems, cryogenic applications, energy storage, and reduction in gas-turbine emissions, with attendant clean jet engines. The terrestrial energy applications of the technologies include augmentation of bulk power in ground power distribution systems, and generation of residential, commercial and remote power, as well as promotion of pollution-free environment via reduction in combustion emissions.

  10. New environmental regulation for the aerospace industry: The aerospace NESHAP

    SciTech Connect

    Bauer, J.P.; Gampper, B.P.; Baker, J.M.

    1997-12-31

    40 CFR Part 63, Subpart GG, the National Emission Standard for Hazardous Air Pollutants for Aerospace Manufacturing and Rework Facilities, commonly referred to as the Aerospace NESHAP, was issued on September 1, 1995 and requires compliance by September 1, 1998. The regulation affects any facility that manufactures or reworks commercial, civil, or military aircraft vehicles or components and is a major source of Hazardous Air Pollutants (HAPs). The regulation targets reducing Volatile Organic Compound (VOC) and Hazardous Air Pollutant (HAP) emissions to the atmosphere. Processes affected by the new regulation include aircraft painting, paint stripping, chemical milling masking, solvent cleaning, and spray gun cleaning. Regulatory requirements affecting these processes are summarized, and different compliance options compared in terms of cost-effectiveness and industry acceptance. Strategies to reduce compliance costs and minimize recordkeeping burdens are also presented.

  11. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  12. The aerospace energy systems laboratory: Hardware and software implementation

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Oneil-Rood, Nora

    1989-01-01

    For many years NASA Ames Research Center, Dryden Flight Research Facility has employed automation in the servicing of flight critical aircraft batteries. Recently a major upgrade to Dryden's computerized Battery Systems Laboratory was initiated to incorporate distributed processing and a centralized database. The new facility, called the Aerospace Energy Systems Laboratory (AESL), is being mechanized with iAPX86 and iAPX286 hardware running iRMX86. The hardware configuration and software structure for the AESL are described.

  13. The 1994 27th Annual NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1995-01-01

    The proceedings of the 27th Annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 15-17, 1994 are presented. The workshop was attended by representatives from various government agencies, as well as contractors and manufacturers, both U.S. and abroad. The subjects covered included: (1) nickel-cadium; (2) nickel-hydrogen, (3) nickel-metal hydride, and (4) lithium based technologies, as well as flight and ground test data.

  14. Local and national impact of aerospace research and technology

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1981-01-01

    An overview of work at the NASA Lewis Research Center in the areas of aeronautics space, and energy is presented. Local and national impact of the work is discussed. Some aspects of the U.S. research and technology base, the aerospace industry, and foreign competition are discussed. In conclusion, U.S. research and technology programs are cited as vital to U.S. economic health.

  15. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXXIII - Technical communications practices and the use of information technologies as reported by Dutch and U.S. aerospace engineers

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA Ames Research Center (U.S.), and the NASA Langley Research Center (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions about four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  16. Emerging aerospace technologies

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F., Jr.; Milov, L. A.

    1985-01-01

    The United States Government has a long history of promoting the advancement of technology to strengthen the economy and national defense. An example is NASA, which was formed in 1958 to establish and maintain U.S. space technology leadership. This leadership has resulted in technological benefits to many fields and the establishment of new commercial industries, such as satellite communications. Currently, NASA's leading technology development at Ames Research Center includes the Tilt Rotor XV-15, which provides the versatility of a helicopter with the speed of a turboprop aircraft; the Numerical Aerodynamic Simulator, which is pushing the state of the art in advanced computational mathematics and computer simulation; and the Advanced Automation and Robotics programs, which will improve all areas of space development as well as life on Earth. Private industry is involved in maintaining technological leadership through NASA's Commercial Use of Space Program, which provides for synergistic relationships among government, industry, and academia. The plan for a space station by 1992 has framed much of NASA's future goals and has provided new areas of opportunity for both domestic space technology and leadership improvement of life on Earth.

  17. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Two pilot studies were conducted that investigated the technical communications practices of U.S. and European aerospace engineers and scientists. Both studies had the same five objectives: (1) solicit opinions regarding the importance of technical communications; (2) determine the use and production of technical communications; (3) seek views about the appropriate content of an undergraduate course in technical communications; (4) determine use of libraries, information centers, and online database; (5) determine use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected aerospace engineers and scientists, with a slightly modified version sent to European colleagues. Their responses to selected questions are presented in this paper.

  18. Resource Management and Contingencies in Aerospace Concurrent Engineering

    NASA Technical Reports Server (NTRS)

    Karpati, Gabe; Hyde, Tupper; Peabody, Hume; Garrison, Matthew

    2012-01-01

    significant concern in designing complex systems implementing new technologies is that while knowledge about the system is acquired incrementally, substantial financial commitments, even make-or-break decisions, must be made upfront, essentially in the unknown. One practice that helps in dealing with this dichotomy is the smart embedding of contingencies and margins in the design to serve as buffers against surprises. This issue presents itself in full force in the aerospace industry, where unprecedented systems are formulated and committed to as a matter of routine. As more and more aerospace mission concepts are generated by concurrent design laboratories, it is imperative that such laboratories apply well thought-out contingency and margin structures to their designs. The first part of this publication provides an overview of resource management techniques and standards used in the aerospace industry. That is followed by a thought provoking treatise on margin policies. The expose presents the actual flight telemetry data recorded by the thermal discipline during several recent NASA Goddard Space Flight Center missions. The margins actually achieved in flight are compared against pre-flight predictions, and the appropriateness and the ramifications of having designed with rigid margins to bounding stacked worst case conditions are assessed. The second half of the paper examines the particular issues associated with the application of contingencies and margins in the concurrent engineering environment. In closure, a discipline-by-discipline disclosure of the contingency and margin policies in use at the Integrated Design Center at NASA s Goddard Space Flight Center is made.

  19. The technical communication practices of Russian and U.S. aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  20. Lattice Structures For Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Del Olmo, E.; Grande, E.; Samartin, C. R.; Bezdenejnykh, M.; Torres, J.; Blanco, N.; Frovel, M.; Canas, J.

    2012-07-01

    The way of mass reduction improving performances in the aerospace structures is a constant and relevant challenge in the space business. The designs, materials and manufacturing processes are permanently in evolution to explore and get mass optimization solutions at low cost. In the framework of ICARO project, EADS CASA ESPACIO (ECE) has designed, manufactured and tested a technology demonstrator which shows that lattice type of grid structures is a promising weight saving solution for replacing some traditional metallic and composite structures for space applications. A virtual testing methodology was used in order to support the design of a high modulus CFRP cylindrical lattice technology demonstrator. The manufacturing process, based on composite Automatic Fiber Placement (AFP) technology developed by ECE, allows obtaining high quality low weight lattice structures potentially applicable to a wide range of aerospace structures. Launcher payload adaptors, satellite platforms, antenna towers or instrument supports are some promising candidates.

  1. Third Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Cross, D. R. (Editor); Caruso, S. V. (Editor); Clark-Ingram, M. (Editor)

    1999-01-01

    The elimination of CFC's, Halons, TCA, other ozone depleting chemicals, and specific hazardous materials is well underway. The phaseout of these chemicals has mandated changes and new developments in aerospace materials and processes. We are beyond discovery and initiation of these new developments and are now in the implementation phase. This conference provided a forum for materials and processes engineers, scientists, and managers to describe, review, and critically assess the evolving replacement and clean propulsion technologies from the standpoint of their significance, application, impact on aerospace systems, and utilization by the research and development community. The use of these new technologies, their selection and qualification, their implementation, and the needs and plans for further developments are presented.

  2. Volcanic Ash Cloud Observations with the DLR-Falcon over Europe during Airspace Closure

    NASA Astrophysics Data System (ADS)

    Schumann, Ulrich; Weinzierl, Bernadett; Reitebuch, Oliver; Minikin, Andreas; Schlager, Hans; Rahm, Stephan; Scheibe, Monika; Lichtenstern, Michael; Forster, Caroline

    2010-05-01

    At the time of the EGU conference, the volcano ash plume originating from the Eyjafjallajökull volcano eruption in Iceland was probed during 9 flights with the DLR Falcon research aircraft in the region between Germany and Iceland at 1-11 km altitudes between April 19 and May 3, 2010. The Falcon was instrumented with a downward looking, scanning 2-µm-Wind-Lidar (aerosol backscattering and horizontal wind, 100 m vertical resolution), and several in-situ instruments. The particle instrumentation, including wing station probes (PCASP, FSSP-300) cover particle number and size from 5 nm to some tens of µm. Further in-situ instruments measured O3, CO, SO2, H2O, and standard meteorological parameters. Flight planning was based on numerical weather forecasts, trajectory-based particle-dispersion models, satellite observations and ground based Lidar observations, from many sources. During the flight on April 19, 2010, layers of volcanic ash were detected first by Lidar and then probed in-situ. The horizontal and vertical distribution of the volcanic ash layers over Eastern Germany was highly variable at that time. Calculations with the particle dispersion model FLEXPART indicate that the volcanic ash plumes measured by the Falcon had an age of 4-5 days. The concentrations of large particles measured in the volcanic aerosol layers are comparable to concentrations measured typically in fresh (age < 2 days) Saharan dust plumes. An estimation of the particle mass concentration in the elevated volcanic ash plume probed as part of a vertical profile over Leipzig at about 4 km altitude yields 60 µg/m3 (possibly 100 µg/m3), with an uncertainty of factor two. Of the total mass only less than 10 percent was residing in the particle size range below 2.5 µm. This emphasizes the need for adequate instrumentation to fully capture the size distribution of volcanic ash. During April 29-May 3, a sequence of flights has been performed between Germany, Scotland, and Iceland. Lidar

  3. Magnetic Gearboxes for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Alvarez-Valenzuela, Marco A.; Sanchez-Garcia-Casarrubios, Juan; Cristache, Christian; Valiente-Blanco, Ignacio

    2014-01-01

    Magnetic gearboxes are contactless mechanisms for torque-speed conversion. They present no wear, no friction and no fatigue. They need no lubricant and can be customized for other mechanical properties as stiffness or damping. Additionally, they can protect structures and mechanisms against overloads, limitting the transmitted torque. In this work, spur, planetary and "magdrive" or "harmonic drive" configurations are compared considering their use in aerospace applications. The most recent test data are summarized to provide some useful help for the design engineer.

  4. Soft impacts on aerospace structures

    NASA Astrophysics Data System (ADS)

    Abrate, Serge

    2016-02-01

    This article provides an overview of the literature dealing with three types of soft impacts of concern for the aerospace applications, namely impacts of rain drops, hailstones and birds against aircraft. It describes the physics of the problem as it has become better understood through experiments, analyses, and numerical simulations. Some emphasis has been placed on the material models and the numerical approaches used in modeling these three types of projectiles.

  5. KIBO Industry, innovates in aerospace

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on industry KIBO is postulated in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo entomocole industry is the first production company in Europe to human food, it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and in the universities of Angers, Nantes, Lille.

  6. KIBO Industry, innovates in aerospace

    NASA Astrophysics Data System (ADS)

    Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on this postulate KIBO in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo industry is the first entomocole production company creat in Europe to human food; it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and various universities in France.

  7. Ball Aerospace Hybrid Space Cryocoolers

    NASA Astrophysics Data System (ADS)

    Gully, W.; Glaister, D. S.; Hendershott, P.; Kotsubo, V.; Lock, J. S.; Marquardt, E.

    2008-03-01

    This paper describes the design, development, testing, and performance at Ball Aerospace of a long-life hybrid (combination of Stirling and Joule-Thomson [J-T] thermodynamic cycles) space cryocooler. Hybrid coolers are synergistic combinations of two thermodynamic cycles that combine advantages of each cycle to yield overall improved performance. Hybrid cooler performance advantages include: 1) load leveling of large heat loads; 2) remote cryogenic cooling with very low to negligible induced vibration and jitter; 3) very low redundant (off state) cooler penalties; 4) high power efficiency, especially at low temperatures; and 5) simplified system integration with capability to cross gimbals and no need for thermal straps or switches. Ball Aerospace is currently developing several different hybrid cooler systems. The 35 K hybrid cooler provides 2.0 W at 35 K and 8.5 W at 85 K with an emphasis on load leveling of high transient heat loads and remote, low vibration cooling. The 10 K hybrid cooler provides 200 mW at 10 K, 700 mW at 15 K, and 10.7 W at 85 K with an emphasis on power efficiency. In addition, Ball Aerospace built and tested a complete hybrid cooler that met the requirements of the JWST Mid-Infrared Instrument (MIRI) cooler including providing 80 mW at 6 K and 100 mW at 18 K for a total system (28 V) power of 310 W.

  8. Aerospace Threaded Fastener Strength in Combined Shear and Tension Loading

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.; Wingate, R. J.

    2012-01-01

    A test program was initiated by Marshall Space Flight Center and sponsored by the NASA Engineering and Safety Center to characterize the failure behavior of a typical high-strength aerospace threaded fastener under a range of shear to tension loading ratios for both a nut and an insert configuration where the shear plane passes through the body and threads, respectively. The testing was performed with a customized test fixture designed to test a bolt with a single shear plane at a discrete range of loading angles. The results provide data to compare against existing combined loading failure criteria and to quantify the bolt strength when the shear plane passes through the threads.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: A comparison of the technical communications practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.

  10. The Need for an Aerospace Pharmacy Residency

    NASA Technical Reports Server (NTRS)

    Bayuse, T.; Schuyler, C.; Bayuse, Tina M.

    2007-01-01

    This viewgraph poster presentation reviews the rationale for a call for a new program in residency for aerospace pharmacy. Aerospace medicine provides a unique twist on traditional medicine, and a specialty has evolved to meet the training for physicians, and it is becoming important to develop such a program for training in pharmacy designed for aerospace. The reasons for this specialist training are outlined and the challenges of developing a program are reviewed.

  11. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  12. Unification - An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Scientific and Technical Information (STI) represents the results of large investments in research and development (R&D) and the expertise of a nation and is a valuable resource. For more than four decades, NASA and its predecessor organizations have developed and managed the preeminent aerospace information system. NASA obtains foreign materials through its international exchange relationships, continually increasing the comprehensiveness of the NASA Aerospace Database (NAD). The NAD is de facto the international aerospace database. This paper reviews current NASA goals and activities with a view toward maintaining compatibility among international aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  13. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  14. Aerospace Activities in the Elementary School

    ERIC Educational Resources Information Center

    Jones, Robert M.; Wiggins, Kenneth E.

    1974-01-01

    Describes 17 activities which are aerospace oriented and yet provide an interdisciplinary approach to learning. Some of the activities described involve paper airplanes, parachutes, model rockets, etc. (BR)

  15. Proceedings of the 36th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Oswald, Fred B. (Compiler)

    2002-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 36th year, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 36th AMS, hosted by the Glenn Research Center (GRC) in Cleveland, Ohio, was held May 15, 16, and 17, 2002. During these three days, 32 papers were presented. Topics included deployment mechanisms, tribology, actuators, pointing and optical mechanisms, International Space Station mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  16. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships and 10 or 12 week fellowships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Approximately 150 interns are selected to participate in this program and begin arriving the second week in May. Each intern is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1995.

  17. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships and 10 or 12 week fellowships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Approximately 200 interns are selected to participate in this program and begin arriving the second week in May. Each intern is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1994.

  18. Managing complexity of aerospace systems

    NASA Astrophysics Data System (ADS)

    Tamaskar, Shashank

    Growing complexity of modern aerospace systems has exposed the limits of conventional systems engineering tools and challenged our ability to design them in a timely and cost effective manner. According to the US Government Accountability Office (GAO), in 2009 nearly half of the defense acquisition programs are expecting 25% or more increase in unit acquisition cost. Increase in technical complexity has been identified as one of the primary drivers behind cost-schedule overruns. Thus to assure the affordability of future aerospace systems, it is increasingly important to develop tools and capabilities for managing their complexity. We propose an approach for managing the complexity of aerospace systems to address this pertinent problem. To this end, we develop a measure that improves upon the state-of-the-art metrics and incorporates key aspects of system complexity. We address the problem of system decomposition by presenting an algorithm for module identification that generates modules to minimize integration complexity. We demonstrate the framework on diverse spacecraft and show the impact of design decisions on integration cost. The measure and the algorithm together help the designer track and manage complexity in different phases of system design. We next investigate how complexity can be used as a decision metric in the model-based design (MBD) paradigm. We propose a framework for complexity enabled design space exploration that introduces the idea of using complexity as a non-traditional design objective. We also incorporate complexity with the component based design paradigm (a sub-field of MBD) and demonstrate it on several case studies. The approach for managing complexity is a small but significant contribution to the vast field of complexity management. We envision our approach being used in concert with a suite of complexity metrics to provide an ability to measure and track complexity through different stages of design and development. This will not

  19. Cybersecurity for aerospace autonomous systems

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  20. Aerospace materials for nonaerospace applications

    NASA Technical Reports Server (NTRS)

    Johnston, R. L.; Dawn, F. S.

    1974-01-01

    Many of the flame-resistant nonmetallic materials that were developed for the Apollo and Skylab programs are discussed for commercial and military applications. Interchanges of information are taking place with the government agencies, industries, and educational institutions, which are interested in applications of fire-safe nonmetallic materials. These materials are particularly applicable to the design of aircraft, mass transit interiors, residential and public building constructions, nursing homes and hospitals, and to other fields of fire safety applications. Figures 22, 23 and 24 show the potential nonaerospace applications of flame-resistant aerospace materials are shown.

  1. Aerospace Payloads Leak Test Methodology

    NASA Technical Reports Server (NTRS)

    Lvovsky, Oleg; Grayson, Cynthia M.

    2010-01-01

    Pressurized and sealed aerospace payloads can leak on orbit. When dealing with toxic or hazardous materials, requirements for fluid and gas leakage rates have to be properly established, and most importantly, reliably verified using the best Nondestructive Test (NDT) method available. Such verification can be implemented through application of various leak test methods that will be the subject of this paper, with a purpose to show what approach to payload leakage rate requirement verification is taken by the National Aeronautics and Space Administration (NASA). The scope of this paper will be mostly a detailed description of 14 leak test methods recommended.

  2. National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    Piland, William M.

    1987-01-01

    An account is given of the technology development management objectives thus far planned for the DOD/NASA National Aero-Space Plane (NASP). The technology required by NASP will first be developed in ground-based facilities and then integrated during the design and construction of the X-30 experimental aircraft. Five airframe and three powerplant manufacturers are currently engaged in an 18-month effort encompassing design studies and tradeoff analyses. The first flight of the X-30 is scheduled for early 1993.

  3. Cosmos, an international center for advanced studies

    NASA Technical Reports Server (NTRS)

    Ryzhov, Iurii; Alifanov, Oleg; Sadin, Stanley; Coleman, Paul

    1990-01-01

    The concept of Cosmos, a Soviet operating center for aerospace activities, is presented. The main Cosmos participants are the Institute for Aerospace Education, the Institute for Research and Commercial Development, and the Department of Space Policy and Socio-Economic Studies. Cosmos sponsors a number of educational programs, basic research, and studies of the social impact of space-related technologies.

  4. 76 FR 58776 - U.S. Aerospace Supplier & Investment Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    .... 10:30-11:00 Coffee Break-- Networking. 11:00-12:30 Presentations: Canada's Aerospace Market, Quebec's... aerospace sub-markets was often in the top 5. Industry estimates expected Canada's aerospace sector...

  5. Ultrasonic Characterization of Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  6. Technology Applications Team: Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Highlights of the Research Triangle Institute (RTI) Applications Team activities over the past quarter are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. The authors gratefully acknowledge the contributions of many individuals to the RTI Technology Applications Team program. The time and effort contributed by managers, engineers, and scientists throughout NASA were essential to program success. Most important to the program has been a productive working relationship with the NASA Field Center Technology Utilization (TU) Offices. The RTI Team continues to strive for improved effectiveness as a resource to these offices. Industry managers, technical staff, medical researchers, and clinicians have been cooperative and open in their participation. The RTI Team looks forward to continuing expansion of its interaction with U.S. industry to facilitate the transfer of aerospace technology to the private sector.

  7. Optical Information Processing for Aerospace Applications 2

    NASA Technical Reports Server (NTRS)

    Stermer, R. L. (Compiler)

    1984-01-01

    Current research in optical processing, and determination of its role in future aerospace systems was reviewed. It is shown that optical processing offers significant potential for aircraft and spacecraft control, pattern recognition, and robotics. It is demonstrated that the development of optical devices and components can be implemented in practical aerospace configurations.

  8. High Flight. Aerospace Activities, K-12.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  9. The 42nd Aerospace Mechanism Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor); Hakun, Claef (Editor)

    2014-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development, and flight certification of new mechanisms.

  10. NASA Elementary Aerospace Activities Free to Members

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1978

    1978-01-01

    Describes the contents of Elementary School Aerospace Activities: A Resource for Teachers. Activities examine a variety of topics in aerospace education and are intended to be used with children ages 5-11. The book is available from the Government Printing Office (GPO) for $3.00. (CP)

  11. Aerospace Resources for Science and Technology Education.

    ERIC Educational Resources Information Center

    Maley, Donald, Ed.; Smith, Kenneth L., Ed.

    This publication on Aerospace Programs is a special edition of "Technology Education" featuring descriptions of 15 select aerospace education programs from diverse localities spanning the full range of instructional levels. Following introductory material, the monograph contains the following largely unedited program descriptions: (1) summaries of…

  12. The 27th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Mancini, Ron (Compiler)

    1993-01-01

    The proceedings of the 27th Aerospace Mechanisms Symposium, which was held at ARC, Moffett Field, California, on 12-14 May 1993, are reported. Technological areas covered include the following: actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, robotic mechanisms, and other mechanisms for large space structures.

  13. iSTEM: The Aerospace Engineering Challenge

    ERIC Educational Resources Information Center

    English, Lyn D.; King, Donna T.; Hudson, Peter; Dawes, Les

    2014-01-01

    The authors developed The Paper Plane Challenge as one of a three-part response to The Aerospace Engineering Challenge. The Aerospace Engineering Challenge was the second of three multi-part activities that they had developed with the teachers during the year. Their aim was to introduce students to the exciting world of engineering, where they…

  14. Validation of numerical prediction of dynamic derivatives: The DLR-F12 and the Transcruiser test cases

    NASA Astrophysics Data System (ADS)

    Mialon, Bruno; Khrabrov, Alex; Khelil, Saloua Ben; Huebner, Andreas; Da Ronch, Andrea; Badcock, Ken; Cavagna, Luca; Eliasson, Peter; Zhang, Mengmeng; Ricci, Sergio; Jouhaud, Jean-Christophe; Rogé, Gilbert; Hitzel, Stephan; Lahuta, Martin

    2011-11-01

    The dynamic derivatives are widely used in linear aerodynamic models in order to determine the flying qualities of an aircraft: the ability to predict them reliably, quickly and sufficiently early in the design process is vital in order to avoid late and costly component redesigns. This paper describes experimental and computational research dealing with the determination of dynamic derivatives carried out within the FP6 European project SimSAC. Numerical and experimental results are compared for two aircraft configurations: a generic civil transport aircraft, wing-fuselage-tail configuration called the DLR-F12 and a generic Transonic CRuiser, which is a canard configuration. Static and dynamic wind tunnel tests have been carried out for both configurations and are briefly described within this paper. The data generated for both the DLR-F12 and TCR configurations include force and pressure coefficients obtained during small amplitude pitch, roll and yaw oscillations while the data for the TCR configuration also include large amplitude oscillations, in order to investigate the dynamic effects on nonlinear aerodynamic characteristics. In addition, dynamic derivatives have been determined for both configurations with a large panel of tools, from linear aerodynamic (Vortex Lattice Methods) to CFD. This work confirms that an increase in fidelity level enables the dynamic derivatives to be calculated more accurately. Linear aerodynamics tools are shown to give satisfactory results but are very sensitive to the geometry/mesh input data. Although all the quasi-steady CFD approaches give comparable results (robustness) for steady dynamic derivatives, they do not allow the prediction of unsteady components for the dynamic derivatives (angular derivatives with respect to time): this can be done with either a fully unsteady approach i.e. with a time-marching scheme or with frequency domain solvers, both of which provide comparable results for the DLR-F12 test case. As far as

  15. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  16. Testing of DLR C/C-SiC and C/C for HIFiRE 8 Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael K.

    2014-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for use as lightweight hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a carbon/carbon (C/C) and a carbon/carbon-silicon carbide (C/C-SiC) material fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for Hypersonic International Flight Research Experimentation (HIFiRE) 8, a joint Australia / Air Force Research Laboratory hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kilopascals. Flat panels of the DLR C/C and C/C-SiC materials were installed downstream of a hydrogen-fueled, dual-mode scramjet combustor and tested for several minutes at conditions simulating flight at Mach 5 and Mach 6. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used during some of the tests to reduce heat loss from the back surface and thus increase the heated surface temperature of the C/C-SiC panel approximately 177 C (350 F). The final C/C-SiC panel was tested for three cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  17. Aerospace Engineering Systems and the Advanced Design Technologies Testbed Experience

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: 1) Physics-based analysis tools for filling the design space database; 2) Distributed computational resources to reduce response time and cost; 3) Web-based technologies to relieve machine-dependence; and 4) Artificial intelligence technologies to accelerate processes and reduce process variability. The Advanced Design Technologies Testbed (ADTT) activity at NASA Ames Research Center was initiated to study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities are reported.

  18. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1992-01-01

    The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  19. Automated design of aerospace structures

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Mccomb, H. G.

    1974-01-01

    The current state-of-the-art in structural analysis of aerospace vehicles is characterized, automated design technology is discussed, and an indication is given of the future direction of research in analysis and automated design. Representative computer programs for analysis typical of those in routine use in vehicle design activities are described, and results are shown for some selected analysis problems. Recent and planned advances in analysis capability are indicated. Techniques used to automate the more routine aspects of structural design are discussed, and some recently developed automated design computer programs are described. Finally, discussion is presented of early accomplishments in interdisciplinary automated design systems, and some indication of the future thrust of research in this field is given.

  20. ASAP Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the First Quarterly Report for the newly reconstituted Aerospace Safety Advisory Panel (ASAP). The NASA Administrator rechartered the Panel on November 18,2003, to provide an independent, vigilant, and long-term oversight of NASA's safety policies and programs well beyond Return to Flight of the Space Shuttle. The charter was revised to be consistent with the original intent of Congress in enacting the statute establishing ASAP in 1967 to focus on NASA's safety and quality systems, including industrial and systems safety, risk-management and trend analysis, and the management of these activities.The charter also was revised to provide more timely feedback to NASA by requiring quarterly rather than annual reports, and by requiring ASAP to perform special assessments with immediate feedback to NASA. ASAP was positioned to help institutionalize the safety culture of NASA in the post- Stafford-Covey Return to Flight environment.

  1. Novel Nanolaminates for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Volz, Martin; Mazuruk, consty

    2006-01-01

    Nanolaminate manufacturing (NLM) is a new way of developing materials whose properties can far exceed those of homogeneous materials. Traditional alloys, composites and bulk laminates tend to average the properties of the materials from which they were made. With nanostructured materials, the high density of interfaces between dissimilar materials results in novel material properties. For example, materials made -from alternating nanoscale layers of metals and oxides have exhibited thermal conductivities far below those of the oxides themselves. Also, metallic nanolaminates can have peak strengths 100 times lager than the bulk constituent metals. Recent work at MSFC has focused on the development of nickel/aluminum oxide (Ni/Al2O3)) nanolaminates. Ni/Al2O3 nanolaminates are expected to have better strength, creep and fatigue resistance, oxygen compatibility, and corrosion resistance than the traditional metal-matrix composites of this material, which has been used in a variety of aerospace applications. A chemical vapor deposition (CW) system has been developed and optimized for the deposition of nanolaminates. Nanolaminates with layer thicknesses between 10 and 300 nm have been successfully grown and characterization has included scanning electron microscopy (SEM) and atomic force microscopy (AFM) Nanolaminates have a large variety of potential applications. They can be tailored to have both very small and anisotropic thermal conductivities and are promising as thermal coatings for both rock$ engine components and aerobraking structures. They also have the potential to be used in aerospace applications where strength at high temperatures, corrosion resistance or resistance to hydrogen embrittlement is important. Both CVD and magnetron sputtering facilities are available for the deposition of nanolayered materials. Characterization equipment includes SEM, AFM, X-ray diffraction, transmission electron microscopy, optical profilometry, and mechanical tensile pull

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 12: An initial investigation into the production and use of Scientific and Technical Information (STI) at five NASA centers: Results of a telephone survey

    NASA Technical Reports Server (NTRS)

    Glassman, Nanci A.; Pinelli, Thomas E.

    1992-01-01

    A study was conducted to provide NASA management with an 'initial' look at the production and use of scientific and technical information (STI) at five NASA centers (Ames, Goddard, Langley, Lewis, and Marshall). The 550 respondents who were interviewed by telephone held favorable views regarding the NASA STI system. About 65 percent of the respondents stated that it is either very or somewhat important for them to publish their work through the NASA STI system. About 10 percent of those respondents encountered problems using the NASA STI system services for publication. The most frequently reported problem was 'the process is too time consuming' (8.6 percent). Overall, those respondents using the NASA STI system to publish their work rated the system as excellent (24.6 percent) or good (37.6 percent). About 79 percent of the respondents stated that it is either very or somewhat important for them to use the NASA STI system to access information. The most frequently reported problems were 'the time and effort it takes to locate and obtain information through the system' (14.4 percent). Overall, about 83 percent of the respondents stated that the NASA STI system is important to performing their work. Overall, about 73 percent of the respondents stated that the NASA STI system meets their information needs.

  3. Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Miller, Charles G.

    1998-01-01

    Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamics and physical processes, is the genesis for the design and development of advanced space transportation vehicles and provides crucial information to other disciplines such as structures, materials, propulsion, avionics, and guidance, navigation and control. Sources of aerothermodynamic information are ground-based facilities, Computational Fluid Dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this aerothermodynamic triad provides the optimum aerothermodynamic design to safely satisfy mission requirements while reducing design conservatism, risk and cost. The iterative aerothermodynamic process for initial screening/assessment of aerospace vehicle concepts, optimization of aerolines to achieve/exceed mission requirements, and benchmark studies for final design and establishment of the flight data book are reviewed. Aerothermodynamic methodology centered on synergism between ground-based testing and CFD predictions is discussed for various flow regimes encountered by a vehicle entering the Earth s atmosphere from low Earth orbit. An overview of the resources/infrastructure required to provide accurate/creditable aerothermodynamic information in a timely manner is presented. Impacts on Langley s aerothermodynamic capabilities due to recent programmatic changes such as Center reorganization, downsizing, outsourcing, industry (as opposed to NASA) led programs, and so forth are discussed. Sample applications of these capabilities to high Agency priority, fast-paced programs such as Reusable Launch Vehicle (RLV)/X-33 Phases I and 11, X-34, Hyper-X and X-38 are presented and lessons learned discussed. Lastly, enhancements in ground-based testing/CFD capabilities necessary to partially/fully satisfy future requirements are addressed.

  4. Nonlinear analyses of composite aerospace structures in sonic fatigue

    NASA Technical Reports Server (NTRS)

    Mei, Chuh

    1993-01-01

    This report summarizes the semiannual research progress, accomplishments, and future plans performed under the NASA Langley Research Center Grant No. NAG-1-1358. The primary research effort of this project is the development of analytical methods for the prediction of nonlinear random response of composite aerospace structures subjected to combined acoustic and thermal loads. The progress, accomplishments, and future plates on four sonic fatigue research topics are described. The sonic fatigue design and passive control of random response of shape memory alloy hybrid composites presented in section 4, which is suited especially for HSCT, is a new initiative.

  5. Aerospace nickel-cadmium cell separator qualifications program

    NASA Technical Reports Server (NTRS)

    Francis, R. W.; Haag, R. L.

    1986-01-01

    The present space qualified nylon separator, Pellon 2505 ML, is no longer available for aerospace nickel-cadmium (NiCd) cells. As a result of this anticipated unavailability, a joint Government program between the Air Force Space Division and the Naval Research Laboratory was established. Four cell types were procured with both the old qualified and the new unqualified separators. Acceptance, characterization, and life cycling tests are to be performed at the Naval Weapons Support Center, Crane, Ind. (NWSC/Crane). The scheduling and current status of this program are discussed and the progress of testing and available results are projected.

  6. Transonic Drag Prediction on a DLR-F6 Transport Configuration Using Unstructured Grid Solvers

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Frink, N. T.; Mavriplis, D. J.; Rausch, R. D.; Milholen, W. E.

    2004-01-01

    A second international AIAA Drag Prediction Workshop (DPW-II) was organized and held in Orlando Florida on June 21-22, 2003. The primary purpose was to inves- tigate the code-to-code uncertainty. address the sensitivity of the drag prediction to grid size and quantify the uncertainty in predicting nacelle/pylon drag increments at a transonic cruise condition. This paper presents an in-depth analysis of the DPW-II computational results from three state-of-the-art unstructured grid Navier-Stokes flow solvers exercised on similar families of tetrahedral grids. The flow solvers are USM3D - a tetrahedral cell-centered upwind solver. FUN3D - a tetrahedral node-centered upwind solver, and NSU3D - a general element node-centered central-differenced solver. For the wingbody, the total drag predicted for a constant-lift transonic cruise condition showed a decrease in code-to-code variation with grid refinement as expected. For the same flight condition, the wing/body/nacelle/pylon total drag and the nacelle/pylon drag increment predicted showed an increase in code-to-code variation with grid refinement. Although the range in total drag for the wingbody fine grids was only 5 counts, a code-to-code comparison of surface pressures and surface restricted streamlines indicated that the three solvers were not all converging to the same flow solutions- different shock locations and separation patterns were evident. Similarly, the wing/body/nacelle/pylon solutions did not appear to be converging to the same flow solutions. Overall, grid refinement did not consistently improve the correlation with experimental data for either the wingbody or the wing/body/nacelle pylon configuration. Although the absolute values of total drag predicted by two of the solvers for the medium and fine grids did not compare well with the experiment, the incremental drag predictions were within plus or minus 3 counts of the experimental data. The correlation with experimental incremental drag was not

  7. Elements of a collaborative systems model within the aerospace industry

    NASA Astrophysics Data System (ADS)

    Westphalen, Bailee R.

    2000-10-01

    Scope and method of study. The purpose of this study was to determine the components of current aerospace collaborative efforts. There were 44 participants from two selected groups surveyed for this study. Nineteen were from the Oklahoma Air National Guard based in Oklahoma City representing the aviation group. Twenty-five participants were from the NASA Johnson Space Center in Houston representing the aerospace group. The surveys for the aviation group were completed in reference to planning missions necessary to their operations. The surveys for the aerospace group were completed in reference to a well-defined and focused goal from a current mission. A questionnaire was developed to survey active participants of collaborative systems in order to consider various components found within the literature. Results were analyzed and aggregated through a database along with content analysis of open-ended question comments from respondents. Findings and conclusions. This study found and determined elements of a collaborative systems model in the aerospace industry. The elements were (1) purpose or mission for the group or team; (2) commitment or dedication to the challenge; (3) group or team meetings and discussions; (4) constraints of deadlines and budgets; (5) tools and resources for project and simulations; (6) significant contributors to the collaboration; (7) decision-making formats; (8) reviews of project; (9) participants education and employment longevity; (10) cross functionality of team or group members; (11) training on the job plus teambuilding; (12) other key elements identified relevant by the respondents but not included in the model such as communication and teamwork; (13) individual and group accountability; (14) conflict, learning, and performance; along with (15) intraorganizational coordination. These elements supported and allowed multiple individuals working together to solve a common problem or to develop innovation that could not have been

  8. Effects of Cryogenic Treatment on the Residual Stress and Mechanical Properties of an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Chen, Po; Malone, Tina; Bod, Robert; Torres, Pablo

    2000-01-01

    Investigators at Marshall Space Flight Center (MSFC) are studying the potential benefits of cryogenic treatment for aerospace Aluminum (Al) alloys. This paper reports the effects of cryogenic treatment on residual stress, tensile strength, hardness, fatigue life, and stress corrosion cracking (SCC) resistance.

  9. Effects of Cryogenic Treatment on the Residual Stress and Mechanical Properties of an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Chen, P.; Malone, T.; Bond, R.; Torres, P.

    2001-01-01

    Investigators at Marshall Space Flight Center (MSFC) are studying the potential benefits of cryogenic treatment for aerospace Aluminum (Al) alloys. This paper reports the effects of cryogenic treatment on residual stress, tensile strength, hardness, fatigue life, and stress corrosion cracking (SCC) resistance.

  10. Unification - An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  11. Fire response test methods for aerospace materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.

    1978-01-01

    Fire response methods which may be suitable for materials intended for aircraft and aerospace applications are presented. They address ignitability, smolder susceptibility, oxygen requirement, flash fire propensity, fire spread, heat release, fire containment, smoke evolution, and toxic gas evolution.

  12. Aerospace Medicine and Biology: Cumulative index, 1979

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This publication is a cumulative index to the abstracts contained in the Supplements 190 through 201 of 'Aerospace Medicine and Biology: A Continuing Bibliography.' It includes three indexes-subject, personal author, and corporate source.

  13. Fred Haise Honored at Aerospace Appreciation Night

    NASA Video Gallery

    Retired NASA astronaut and test pilot Fred Haise was honored recently by the Lancaster, Calif., Jethawks baseball team at its Aerospace Appreciation Night. Best known as one of the Apollo 13 crew, ...

  14. New insulation constructions for aerospace wiring applications

    NASA Technical Reports Server (NTRS)

    Slenski, George

    1994-01-01

    Outlined in this presentation is the background to insulation constructions for aerospace wiring applications, the Air Force wiring policy, the purpose and contract requirements of new insulation constructions, the test plan, and the test results.

  15. Unification: An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1991-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace business. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a view toward developing a scenario for establishing an international aerospace data base, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  16. Additive Manufacturing of Aerospace Propulsion Components

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  17. The 11th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Mechanical devices and drives developed for aerospace applications are described. Satellite flywheels, magnetic bearings, a missile umbilical system, a cartridge firing device, and an oiler for satellite bearing lubrication are among the topics discussed.

  18. The 20th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Numerous topics related to aerospace mechanisms were discussed. Deployable structures, electromagnetic devices, tribology, hydraulic actuators, positioning mechanisms, electric motors, communication satellite instruments, redundancy, lubricants, bearings, space stations, rotating joints, and teleoperators are among the topics covered.

  19. The 11th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Various mechanisms in aerospace engineering were presented at this conference. Specifications, design, and use of spacecraft and missile components are discussed, such as tail assemblies, radiometers, magnetormeters, pins, reaction wheels, ball bearings, actuators, mirrors, nutation dampers, airfoils, solar arrays, etc.

  20. The 25th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Twenty-two papers are documented regarding aeronautical and spacecraft hardware. Technological areas include actuators, latches, cryogenic mechanisms, vacuum tribology, bearings, robotics, ground support equipment for aerospace applications, and other mechanisms.

  1. Unification: An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.; Carroll, Bonnie C.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  2. The 24th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The proceedings of the symposium are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, and other mechanisms for large space structures.

  3. The 12th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mechanisms developed for various aerospace applications are discussed. Specific topics covered include: boom release mechanisms, separation on space shuttle orbiter/Boeing 747 aircraft, payload handling, spaceborne platform support, and deployment of spaceborne antennas and telescopes.

  4. Probability and Statistics in Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Howell, L. W.

    1998-01-01

    This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

  5. Crew factors in the aerospace workplace

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Foushee, H. C.

    1990-01-01

    The effects of technological change in the aerospace workplace on pilot performance are discussed. Attention is given to individual and physiological problems, crew and interpersonal problems, environmental and task problems, organization and management problems, training and intervention problems. A philosophy and conceptual framework for conducting research on these problems are presented and two aerospace studies are examined which investigated: (1) the effect of leader personality on crew effectiveness and (2) the working undersea habitat known as Aquarius.

  6. Aerospace medicine at Brooks AFB, TX: hail and farewell.

    PubMed

    Nunneley, Sarah A; Webb, James T

    2011-05-01

    With the impending termination of USAF operations at Brooks Air Force Base (AFB) in San Antonio, TX, it is time to consider its historic role in Aerospace Medicine. The base was established in 1917 as a flight training center for the U.S. Army Air Service and in 1926 became home to its School of Aviation Medicine. The school moved to San Antonio's Randolph Field in 1931, but in 1959 it returned to Brooks where it occupied new facilities to support its role as a national center for U.S. Air Force aerospace medicine, including teaching, clinical medicine, and research. The mission was then expanded to encompass support of U.S. military and civilian space programs. With the abrupt termination of the military space program in 1969, research at Brooks focused on clinical aviation medicine and support of advanced military aircraft while continuing close cooperation with NASA in support of orbital spaceflight and the journey to the Moon. Reorganization in the 1990s assigned all research functions at Brooks to the Human Systems Division and its successors, leaving to USAFSAM the missions related to clinical work and teaching. In 2002 the USAF and the city of San Antonio implemented shared operation of Brooks as a "City-Base" in the hope of deflecting threatened closure. Nevertheless, under continuing pressure to consolidate military facilities in the United States, the 2005 Base Closure and Realignment Commission ordered Brooks closed by 2011, with its aerospace medicine functions relocated to new facilities at Wright-Patterson AFB in Dayton, OH. PMID:21614874

  7. Graphite Nanoreinforcements for Aerospace Nanocomposites

    NASA Technical Reports Server (NTRS)

    Drzal, Lawrence T.

    2005-01-01

    New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.

  8. Materials Selection for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  9. Analysis and Perspective from the Complex Aerospace Systems Exchange (CASE) 2013

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Parker, Peter A.; Detweiler, Kurt N.; McGowan, Anna-Maria R.; Dress, David A.; Kimmel, William M.

    2014-01-01

    NASA Langley Research Center embedded four rapporteurs at the Complex Aerospace Systems Exchange (CASE) held in August 2013 with the objective to capture the essence of the conference presentations and discussions. CASE was established to provide a discussion forum among chief engineers, program managers, and systems engineers on challenges in the engineering of complex aerospace systems. The meeting consists of invited presentations and panels from industry, academia, and government followed by discussions among attendees. This report presents the major and reoccurring themes captured throughout the meeting and provides analysis and insights to further the CASE mission.

  10. Advanced Learning Technologies and Learning Networks and Their Impact on Future Aerospace Workforce

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    This document contains the proceedings of the training workshop on Advanced Learning Technologies and Learning Networks and their impact on Future Aerospace Workforce. The workshop was held at the Peninsula Workforce Development Center, Hampton, Virginia, April 2 3, 2003. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to: 1) provide broad overviews of the diverse activities related to advanced learning technologies and learning environments, and 2) identify future directions for research that have high potential for aerospace workforce development. Eighteen half-hour overviewtype presentations were made at the workshop.

  11. Current research activities at the NASA-sponsored Illinois Computing Laboratory of Aerospace Systems and Software

    NASA Technical Reports Server (NTRS)

    Smith, Kathryn A.

    1994-01-01

    The Illinois Computing Laboratory of Aerospace Systems and Software (ICLASS) was established to: (1) pursue research in the areas of aerospace computing systems, software and applications of critical importance to NASA, and (2) to develop and maintain close contacts between researchers at ICLASS and at various NASA centers to stimulate interaction and cooperation, and facilitate technology transfer. Current ICLASS activities are in the areas of parallel architectures and algorithms, reliable and fault tolerant computing, real time systems, distributed systems, software engineering and artificial intelligence.

  12. Linear-array systems for aerospace NDE

    SciTech Connect

    Smith, Robert A.; Willsher, Stephen J.; Bending, Jamie M.

    1999-12-02

    Rapid large-area inspection of composite structures for impact damage and multi-layered aluminum skins for corrosion has been a recognized priority for several years in both military and civil aerospace applications. Approaches to this requirement have followed two clearly different routes: the development of novel large-area inspection systems, and the enhancement of current ultrasonic or eddy-current methods to reduce inspection times. Ultrasonic inspection is possible with standard flaw detection equipment but the addition of a linear ultrasonic array could reduce inspection times considerably. In order to investigate their potential, 9-element and 17-element linear ultrasonic arrays for composites, and 64-element arrays for aluminum skins, have been developed to DERA specifications for use with the ANDSCAN area scanning system. A 5 m{sup 2} composite wing surface has been scanned with a scan resolution of approximately 3 mm in 6 hours. With subsequent software and hardware improvements all four composite wing surfaces (top/bottom, left/right) of a military fighter aircraft can potentially be inspected in less than a day. Array technology has been very widely used in the medical ultrasound field although rarely above 10 MHz, whereas lap-joint inspection requires a pulse center-frequency of 12 to 20 MHz in order to resolve the separate interfaces in the lap joint. A 128 mm-long multi-element array of 5 mmx2 mm ultrasonic elements for use with the ANDSCAN scanning software was produced to a DERA specification by an NDT manufacturer with experience in the medical imaging field. This paper analyses the performance of the transducers that have been produced and evaluates their use in scanning systems of different configurations.

  13. Linear-array systems for aerospace NDE

    NASA Astrophysics Data System (ADS)

    Smith, Robert A.; Willsher, Stephen J.; Bending, Jamie M.

    1999-12-01

    Rapid large-area inspection of composite structures for impact damage and multi-layered aluminum skins for corrosion has been a recognized priority for several years in both military and civil aerospace applications. Approaches to this requirement have followed two clearly different routes: the development of novel large-area inspection systems, and the enhancement of current ultrasonic or eddy-current methods to reduce inspection times. Ultrasonic inspection is possible with standard flaw detection equipment but the addition of a linear ultrasonic array could reduce inspection times considerably. In order to investigate their potential, 9-element and 17-element linear ultrasonic arrays for composites, and 64-element arrays for aluminum skins, have been developed to DERA specifications for use with the ANDSCAN® area scanning system. A 5 m2 composite wing surface has been scanned with a scan resolution of approximately 3 mm in 6 hours. With subsequent software and hardware improvements all four composite wing surfaces (top/bottom, left/right) of a military fighter aircraft can potentially be inspected in less than a day. Array technology has been very widely used in the medical ultrasound field although rarely above 10 MHz, whereas lap-joint inspection requires a pulse center-frequency of 12 to 20 MHz in order to resolve the separate interfaces in the lap joint. A 128 mm-long multi-element array of 5 mm×2 mm ultrasonic elements for use with the ANDSCAN® scanning software was produced to a DERA specification by an NDT manufacturer with experience in the medical imaging field. This paper analyses the performance of the transducers that have been produced and evaluates their use in scanning systems of different configurations.

  14. Ames Research Center publications: A continuing bibliography, 1978

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This bibliography lists formal NASA publications, journal articles, books, chapters of books, patents and contractor reports issued by Ames Research Center which were indexed by Scientific and Technical Aerospace Abstracts, Limited Scientific and Technical Aerospace Abstracts, and International Aerospace Abstracts in 1978. Citations are arranged by directorate, type of publication and NASA accession numbers. Subject, personal author, corporate source, contract number, and report/accession number indexes are provided.

  15. Ames Research Center publications: A continuing bibliography, 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This bibliography lists formal NASA publications, journal articles, books, chapters of books, patents, contractor reports, and computer programs that were issued by Ames Research Center and indexed by Scientific and Technical Aerospace Reports, Limited Scientific and Technical Aerospace Reports, International Aerospace Abstracts, and Computer Program Abstracts in 1980. Citations are arranged by directorate, type of publication, and NASA accession numbers. Subject, personal author, corporate source, contract number, and report/accession number indexes are provided.

  16. The 1979 Ames Research Center Publications: A continuing bibliography

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This bibliography lists formal NASA publications, journal articles, books, chapters of books, patents, and contractor reports issued by Ames Research Center which were indexed by Scientific and Technical Aerospace Reports, Limited Scientific and Technical Aerospace Reports, and International Aerospace Abstracts in 1979. Citations are arranged by directorate, type of publication, and NASA accession numbers. Subject, Personal Author, Corporate Source, Contract Number, and Report/Accession Number Indexes are provided.

  17. Langley aerospace test highlights, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The role of the NASA Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests that were performed during calendar year 1989 in the NASA Langley Research Center test facilities are highlighted. Both the broad range of the research and technology activities at the NASA Langley Research Center are illustrated along with the contributions of this work toward maintaining United States leadership in aeronautics and space research. Other highlights of Langley research and technology for 1989 are described in Research and Technology 1989 - Langley Research Center.

  18. Temporal multiparameter airborne DLR E-SAR images for crop monitoring: summary of the CLEOPATRA campaign 1992

    NASA Astrophysics Data System (ADS)

    Schmullius, Christiane C.; Nithack, Juergen

    1997-01-01

    From May 11 to July 31, 1992 the Cloud Experiment OberPfaffenhofen And Transports took place as a field experimental contribution to the global energy and water cycle experiment. The DLR Institute of Radio Frequency Technology participated with its experimental SAR system E- SAR. Multitemporal X-, C- and L-band data from 8 dates and three ERS-1 images between May 20 and July 30, 1992 are analyzed in regard to the influence of changing plant backscatter constituents and to investigate the impact of increasing ground cover in the different wavelength on soil moisture mapping. Backscatter curves of four crops are shown, which indicate the possibility for crop monitoring and preferred times for crop classification. Detection of soil moisture changes is only possible with L-band and only under grain crops. Maximum likelihood and isocluster classifications were applied on several single- and multifrequency, mono- and multitemporal channel combinations. The overall classification accuracies were higher than with supervised methods. Maximum likelihood classification allowed identification of ten crop types with accuracies of up to 84 percent, when a temporal multifrequency data set was used.

  19. Internal computational fluid mechanics on supercomputers for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Andersen, Bernhard H.; Benson, Thomas J.

    1987-01-01

    The accurate calculation of three-dimensional internal flowfields for application towards aerospace propulsion systems requires computational resources available only on supercomputers. A survey is presented of three-dimensional calculations of hypersonic, transonic, and subsonic internal flowfields conducted at the Lewis Research Center. A steady state Parabolized Navier-Stokes (PNS) solution of flow in a Mach 5.0, mixed compression inlet, a Navier-Stokes solution of flow in the vicinity of a terminal shock, and a PNS solution of flow in a diffusing S-bend with vortex generators are presented and discussed. All of these calculations were performed on either the NAS Cray-2 or the Lewis Research Center Cray XMP.

  20. Langley aerospace test highlights, 1985

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Significant tests which were performed during calendar year 1985 in Langley test facilities, are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research, are illustrated. Other highlights of Langley research and technology for 1985 are described in Research and Technology-1985 Annual Report of the Langley Research Center.

  1. Lightweight acoustic treatments for aerospace applications

    NASA Astrophysics Data System (ADS)

    Naify, Christina Jeanne

    2011-12-01

    Increase in the use of composites for aerospace applications has the benefit of decreased structural weight, but at the cost of decreased acoustic performance. Stiff, lightweight structures (such as composites) are traditionally not ideal for acoustic insulation applications because of high transmission loss at low frequencies. A need has thus arisen for effective sound insulation materials for aerospace and automotive applications with low weight addition. Current approaches, such as the addition of mass law dominated materials (foams) also perform poorly when scaled to small thickness and low density. In this dissertation, methods which reduce sound transmission without adding significant weight are investigated. The methods presented are intended to be integrated into currently used lightweight structures such as honeycomb sandwich panels and to cover a wide range of frequencies. Layering gasses of differing acoustic impedances on a panel substantially reduced the amount of sound energy transmitted through the panel with respect to the panel alone or an equivalent-thickness single species gas layer. The additional transmission loss derives from successive impedance mismatches at the interfaces between gas layers and the resulting inefficient energy transfer. Attachment of additional gas layers increased the transmission loss (TL) by as much as 17 dB at high (>1 kHz) frequencies. The location and ordering of the gasses with respect to the panel were important factors in determining the magnitude of the total TL. Theoretical analysis using a transfer matrix method was used to calculate the frequency dependence of sound transmission for the different configurations tested. The method accurately predicted the relative increases in TL observed with the addition of different gas layer configurations. To address low-frequency sound insulation, membrane-type locally resonant acoustic materials (LRAM) were fabricated, characterized, and analyzed to understand their

  2. Wireless Sensing Opportunities for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2007-01-01

    Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  3. Combustion Processes in the Aerospace Environment

    NASA Technical Reports Server (NTRS)

    Huggett, Clayton

    1969-01-01

    The aerospace environment introduces new and enhanced fire hazards because the special atmosphere employed may increase the frequency and intensity of fires, because the confinement associated with aerospace systems adversely affects the dynamics of fire development and control, and because the hostile external environments limit fire control and rescue operations. Oxygen enriched atmospheres contribute to the fire hazard in aerospace systems by extending the list of combustible fuels, increasing the probability of ignition, and increasing the rates of fire spread and energy release. A system for classifying atmospheres according to the degree of fire hazard, based on the heat capacity of the atmosphere per mole of oxygen, is suggested. A brief exploration of the dynamics of chamber fires shows that such fires will exhibit an exponential growth rate and may grow to dangerous size in a very short time. Relatively small quantities of fuel and oxygen can produce a catastrophic fire in a closed chamber.

  4. Heart-Lung Interactions in Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Guy, Harold J. B.; Prisk, Gordon Kim

    1991-01-01

    Few of the heart-lung interactions that are discussed have been studied in any detail in the aerospace environment, but is seems that many such interactions must occur in the setting of altered accelerative loadings and pressure breathing. That few investigations are in progress suggests that clinical and academic laboratory investigators and aerospace organizations are further apart than during the pioneering work on pressure breathing and acceleration tolerance in the 1940s. The purpose is to reintroduce some of the perennial problems of aviation physiology as well as some newer aerospace concerns that may be of interest. Many possible heart-lung interactions are pondered, by necessity often drawing on data from within the aviation field, collected before the modern understanding of these interactions developed, or on recent laboratory data that may not be strictly applicable. In the field of zero-gravity effects, speculation inevitably outruns the sparse available data.

  5. Sealed aerospace metal-hydride batteries

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  6. Directory of aerospace safety specialized information sources

    NASA Technical Reports Server (NTRS)

    Fullerton, E. A.; Rubens, L. S.

    1973-01-01

    A directory is presented to make available to the aerospace safety community a handbook of organizations and experts in specific, well-defined areas of safety technology. It is designed for the safety specialist as an aid for locating both information sources and individual points of contact (experts) in engineering related fields. The file covers sources of data in aerospace design, tests, as well as information in hazard and failure cause identification, accident analysis, materials characteristics, and other related subject areas. These 171 organizations and their staff members, hopefully, should provide technical information in the form of documentation, data and consulting expertise. These will be sources that have assembled and collated their information, so that it will be useful in the solution of engineering problems. One of the goals of the project in the United States that have and are willing to share data of value to the aerospace safety community.

  7. Conservation of Strategic Aerospace Materials (COSAM)

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    Research efforts to reduce the dependence of the aerospace industry on strategic metals, such as cobalt (Co), columbium (Cb), tantalum (Ta), and chromium (Cr), by providing the materials technology needed to minimize the strategic metal content of critical aerospace components for gas turbine engines are addressed. Thrusts in three technology areas are identified: near term activities in the area of strategic element substitution; intermediate-range activities in the area of materials processing; and long term, high risk activities in the area of 'new classes' of high temprature metallic materials. Specifically, the role of cobalt in nickel-base and cobalt-base superalloys vital to the aerospace industry is examined along with the mechanical and physical properties of intermetallics that will contain a minimum of the stragetic metals.

  8. Aerospace applications of advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Langenbeck, S. L.

    1993-01-01

    Advanced metallic materials within the Al-base family are being developed for applications on current and future aerospace vehicles. These advanced materials offer significant improvements in density, strength, stiffness, fracture resistance, and/or higher use temperature which translates into improved vehicle performance. Aerospace applications of advanced metallic materials include space structures, fighters, military and commercial transport aircraft, and missiles. Structural design requirements, including not only static and durability/damage tolerance criteria but also environmental considerations, drive material selections. Often trade-offs must be made regarding strength, fracture resistance, cost, reliability, and maintainability in order to select the optimum material for a specific application. These trade studies not only include various metallic materials but also many times include advanced composite materials. Details of material comparisons, aerospace applications, and material trades will be presented.

  9. Common Cause Failure Modeling: Aerospace Versus Nuclear

    NASA Technical Reports Server (NTRS)

    Stott, James E.; Britton, Paul; Ring, Robert W.; Hark, Frank; Hatfield, G. Spencer

    2010-01-01

    Aggregate nuclear plant failure data is used to produce generic common-cause factors that are specifically for use in the common-cause failure models of NUREG/CR-5485. Furthermore, the models presented in NUREG/CR-5485 are specifically designed to incorporate two significantly distinct assumptions about the methods of surveillance testing from whence this aggregate failure data came. What are the implications of using these NUREG generic factors to model the common-cause failures of aerospace systems? Herein, the implications of using the NUREG generic factors in the modeling of aerospace systems are investigated in detail and strong recommendations for modeling the common-cause failures of aerospace systems are given.

  10. Aerospace manpower transfer to small business enterprises

    NASA Technical Reports Server (NTRS)

    Green, M. K.

    1972-01-01

    The feasibility of a program to effect transfer of aerospace professional people from the ranks of the unemployed into gainful employment in the small business community was investigated. The effectiveness of accomplishing transfer of technology from the aerospace effort into the private sector through migration of people rather than products or hardware alone was also studied. Two basic methodologies were developed. One involves the matching of ex-aerospace professionals and small companies according to their mutual needs. A training and indoctrination program is aimed at familiarizing the professional with the small company environment, and a program of follow-up counseling is defined. The second methodology incorporates efforts to inform and arouse interest among the nonaerospace business community toward affirmative action programs that will serve mutual self-interests of the individuals, companies, and communities involved.

  11. Machine intelligence and autonomy for aerospace systems

    NASA Technical Reports Server (NTRS)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  12. Small satellites for big science: the challenges of high-density design in the DLR Kompaktsatellit AsteroidFinder/SSB

    NASA Astrophysics Data System (ADS)

    Thimo Grundmann, Jan

    The design of small satellites requires a paradigm shift in the thinking of satellite designers as well as mission scientists, payload users, and programme management -in brief, everyone involved. In a conventional approach, spacecraft design evolves in a mostly linear fashion from mission requirements by well-defined procedures through a series of reviews into a design space that is essentially not limited by constraints other than programmatic. The mission defines a pallet of instruments, their needs then shape the spacecraft bus, and the integrated spacecraft is finally mated to a dedicated launch, to be placed into an orbit carefully custom-tailored by mission analysis and continuously trimmed by on-board propulsion. Components are manufactured to spec, one-off plus spares, and painstaking testing has to iron out the many space firsts and compromises made in an arduous and protracted design process. Small satellite design reverses this comfortable line of thinking. It begins with hard, and not just programmatic constraints on most of the essential parameters that define a satellite. Launch as a secondary payload is the choice, not just for budgetary reasons, but due to the lack of viable dedicated launchers. It requires a small stowed envelope and a tightly limited mass budget. This results in limited surface area for solar panels and radiators. Small project volume enables a high flight cadence which makes re-use of designs and components desirable and feasible, in a self-catalyzing cycle. Re-use and constraints force the system perspective on every participant in a quick succession of sometimes diverging but generally converging iterations that lends itself to the Concurrent Engineering approach. There is simply no space left in a small satellite project for boxes to think in. To exploit the technological convergence that has created powerful and miniaturized science instruments and satellite components, the DLR research and development programme has

  13. The comprehensive aerospace index (CASI): Tracking the economic performance of the aerospace industry

    NASA Astrophysics Data System (ADS)

    Mattedi, Adriana Prest; Mantegna, Rosario Nunzio; Ramos, Fernando Manuel; Rosa, Reinaldo Roberto

    2008-12-01

    In this paper, we described the Comprehensive AeroSpace Index (CASI), a financial index aimed at representing the economic performance of the aerospace industry. CASI is build upon a data set of approximately 20 years of daily close prices set, from January 1987 to June 2007, from a comprehensive sample of leading aerospace-related companies with stocks negotiated on the New York Exchange (NYSE) and on the over-the-counter (OTC) markets. We also introduced the sub-indices CASI-AERO, for aeronautical segment, and CASI-SAT, for satellite segment, and considered the relation between them. These three indices are compared to others aerospace indices and to more traditional general financial indices like DJIA, S&P500 and Nasdaq. Our results have shown that the CASI is an index that describes very well the aerospace sector behavior, since it is able to reflect the aeronautical segment comportment as well as the satellite one. Therefore, in this sense, it can be considered as a representative index of the aerospace sector. Moreover, the creation of two sub-indices, the CASI-AERO and the CASI-SAT, allows to elucidate capital movements within the aerospace sector, particularly those of speculative nature, like the dot.com bubble and crash of 1998-2001.

  14. Aerospace NESHAP: A collaborative approach to implementation

    SciTech Connect

    McAfee, M.; Lee, A.; Williamson, C.; Willenberg, J.

    1998-12-31

    The purpose of the Aerospace National Emission Standard for Hazardous Air Pollutants (NESHAP) is to minimize emissions of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from major sources who manufacture or rework aerospace vehicles or components. The NESHAP requires emission reductions through implementation of work practices, application of slower evaporating solvents and coatings with low-HAP and low-VOC content, usage of high transfer efficiency spray equipment, and installation of high capture efficiency exhaust filtration for coatings containing metals. The rule also requires extensive monitoring, recordkeeping, and self-reporting to track compliance. For existing sources the rule becomes effective September 1,1998. Over the past year the Puget Sound Air Pollution Control Agency (PSAPCA) has worked with the Boeing Company and EPA to identify the requirements of the aerospace NESHAP, understand what it means in everyday practice, and develop an enforcement strategy for ensuring compliance. A workshop was held with aerospace manufacturers, local regulators, and EPA to discuss implementation of the rule. Issues regarding compliance efforts and determinations were openly discussed. Subsequent to the workshop, PSAPCA and the Boeing Company participated in several mock inspections to review facility compliance efforts before the rule became effective. Collaborative efforts also ensued to develop operating permit monitoring requirements. Aerospace NESHAP requirements were incorporated into these permits. There are still questions regarding compliance determinations that must be further discussed and resolved. But by using the collaborative approach and having regulators and sources working together, there is a process to work out answers and approaches that will lead to an increased mutual understanding of the aerospace NESHAP and eventual compliance with the standard.

  15. Bibliography of Lewis Research Center Technical Publications announced in 1991

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific engineering work performed and managed by the Lewis Research Center in 1991. All the publications were announced in the 1991 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  16. Bibliography of Lewis Research Center technical publications announced in 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This compilation of abstracts describes and indexes over 800 technical publications that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1983. Announced in the 1983 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts), the documents cited include research reports, journal articles, conference presentations, patents and patent applications, and theses.

  17. Bibliography of Lewis Research Center technical publications announced in 1982

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1982 is described. All the publications were announced in the 1982 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  18. Bibliography of Lewis Research Center technical publications announced in 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This compilation of abstracts describes and indexes over 780 research reports, journal articles, conference presentations, patents and patent applications, and theses resulting from the scientific and engineering work performed and managed by the Lewis Research Center in 1980. All the publications were announced in Scientific and Technical Aerospace Reports and/or International Aerospace Abstracts.

  19. Aerospace Environmental Technology Conference: Exectutive summary

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The papers from this conference are being published in a separate volume as NASA CP-3298.

  20. The Aerospace Vehicle Interactive Design system

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.

    1981-01-01

    The aerospace vehicle interactive design (AVID) is a computer aided design that was developed for the conceptual and preliminary design of aerospace vehicles. The AVID system evolved from the application of several design approaches in an advanced concepts environment in which both mission requirements and vehicle configurations are continually changing. The basic AVID software facilitates the integration of independent analysis programs into a design system where the programs can be executed individually for analysis or executed in groups for design iterations and parametric studies. Programs integrated into an AVID system for launch vehicle design include geometry, aerodynamics, propulsion, flight performance, mass properties, and economics.

  1. Metal Matrix Composite Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)

    2001-01-01

    Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.

  2. Second Conference on NDE for Aerospace Requirements

    NASA Technical Reports Server (NTRS)

    Woodis, Kenneth W. (Compiler); Bryson, Craig C. (Compiler); Workman, Gary L. (Compiler)

    1990-01-01

    Nondestructive evaluation and inspection procedures must constantly improve rapidly in order to keep pace with corresponding advances being made in aerospace material and systems. In response to this need, the 1989 Conference was organized to provide a forum for discussion between the materials scientists, systems designers, and NDE engineers who produce current and future aerospace systems. It is anticipated that problems in current systems can be resolved more quickly and that new materials and structures can be designed and manufactured in such a way as to be more easily inspected and to perform reliably over the life cycle of the system.

  3. NASA aerospace database subject scope: An overview

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Outlined here is the subject scope of the NASA Aerospace Database, a publicly available subset of the NASA Scientific and Technical (STI) Database. Topics of interest to NASA are outlined and placed within the framework of the following broad aerospace subject categories: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences, and general. A brief discussion of the subject scope is given for each broad area, followed by a similar explanation of each of the narrower subject fields that follow. The subject category code is listed for each entry.

  4. Proceedings of the 40th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Littlefield, Alan C.; Mueller, Robert P.; Boesiger, Edward A. (Editor)

    2010-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 40th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 40th AMS, hosted by the Kennedy Space Center (KSC) in Cocoa Beach, Florida, was held May 12, 13 and 14, 2010. During these three days, 38 papers were presented. Topics included gimbals and positioning mechanisms, CubeSats, actuators, Mars rovers, and Space Station mechanisms. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration

  5. Reach and its Impact: NASA and US Aerospace Communities

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J.

    2011-01-01

    REACH is a European law that threatens to impact materials used within the US aerospace communities, including NASA. The presentation briefly covers REACH and generally, its perceived impacts to NASA and the aerospace community within the US.

  6. Aerospace engineers: We're tomorrow-minded people

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1981-01-01

    Brief job-related autobiographical sketches of engineers working on NASA aerospace projects are presented. Career and educational guidance is offered to students thinking about entering the aerospace field.

  7. 76 FR 1600 - U.S. Aerospace Supplier & Investment Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... Sector Panel: Deloitte Touche, AIAC, Minister of Transport, NRC. 10:30-11:00 Coffee break-- Networking... 2009 Canada was the United States' 6th largest aerospace export market, and in many aerospace...

  8. Aerospace Technicians: We're Tomorrow-Minded People

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1981-01-01

    Brief job-related autobiographical sketches of technicians working on NASA aerospace projects are presented. Career and educational guidance is offered to students thinking about entering the field of aerospace technology.

  9. Langley aerospace test highlights, 1988

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1988 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  10. Langley aerospace test highlights - 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. This report highlights some of the significant tests which were performed during calendar year 1986 in Langley test facilities, a number of which are unique in the world. The report illustrates both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  11. NASA-UVa light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1991-01-01

    The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.

  12. Green Aerospace Fuels from Nonpetroleum Sources

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Kulis, Michael J.; DeLaRee, Ana B.; Zubrin, Robert; Berggren, Mark; Hensel, Joseph D.; Kimble, Michael C.

    2011-01-01

    Efforts to produce green aerospace propellants from nonpetroleum sources are outlined. The paper begins with an overview of feedstock processing and relevant small molecule or C1 chemistry. Gas-to-liquid technologies, notably Fischer-Tropsch (FT) processing of synthesis gas (CO and H2), are being optimized to enhance the fraction of product stream relevant to aviation (and other transportation) fuels at the NASA Glenn Research Center (GRC). Efforts to produce optimized catalysts are described. Given the high cost of space launch, the recycling of human metabolic and plastic wastes to reduce the need to transport consumables to orbit to support the crew of a space station has long been recognized as a high priority. If the much larger costs of transporting consumables to the Moon or beyond are taken into account, the importance of developing waste recycling systems becomes still more imperative. One promising way to transform organic waste products into useful gases is steam reformation; this well-known technology is currently being optimized by a Colorado company for exploration and planetary surface operations. Reduction of terrestrial waste streams while producing energy and/or valuable raw materials is an opportunity being realized by a new generation of visionary entrepreneurs. A technology that has successfully demonstrated production of fuels and related chemicals from waste plastics developed in Northeast Ohio is described. Technologies being developed by a Massachusetts company to remove sulfur impurities are highlighted. Common issues and concerns for nonpetroleum fuel production are emphasized. Energy utilization is a concern for production of fuels whether a terrestrial operation or on the lunar (or Martian) surface; the term green relates to not only mitigating excess carbon release but also to the efficiency of grid-energy usage. For space exploration, energy efficiency can be an essential concern. Other issues of great concern include minimizing

  13. 77 FR 38090 - Aerospace Safety Advisory Panel; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting. AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, July 20, 2012, 11:30 a.m. to 12:30 p.m. EDT... FURTHER INFORMATION CONTACT: Ms. Harmony Myers, Aerospace Safety Advisory Panel Executive...

  14. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Beall, H. C.; Beadles, R. L.; Brown, J. N., Jr.; Clingman, W. H.; Courtney, M. W.; Rouse, D. J.; Scearce, R. W.

    1979-01-01

    Medical products utilizing and incorporating aerospace technology were studied. A bipolar donor-recipient model for medical transfer is presented. The model is designed to: (1) identify medical problems and aerospace technology which constitute opportunities for successful medical products; (2) obtain early participation of industry in the transfer process; and (3) obtain acceptance by medical community of new medical products based on aerospace technology.

  15. Teachers, Aerospace, Involvement: The Ingredients for Attitude Change

    ERIC Educational Resources Information Center

    Leonard, Rex; Bell, Michael L.

    1975-01-01

    Describes a two week workshop which concentrated on involving teachers in action oriented aerospace activities and sharing ideas and materials for the application of aerospace concepts in the classroom. Research was also done to see if participants' attitudes toward aerospace education could be positively influenced to enhance personal teaching…

  16. 76 FR 62455 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, October 21, 2011, 12:30 to 2 p.m. Central.... FOR FURTHER INFORMATION CONTACT: Ms. Susan Burch, Aerospace Safety Advisory Panel...

  17. 77 FR 1955 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, January 27, 2012, Time 11 a.m.-12:30 p.m... CONTACT: Ms. Susan Burch, Aerospace Safety Advisory Panel Administrative Officer, National Aeronautics...

  18. 76 FR 65750 - Aerospace Safety Advisory Panel; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Charter Renewal AGENCY: National Aeronautics and... Aerospace Safety Advisory Panel. SUMMARY: Pursuant to sections 14(b)(1) and 9(c) of the Federal Advisory... of the NASA Aerospace Safety Advisory Panel is in the public interest in connection with...

  19. Aerospace Concepts at the Elementary Level

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Presents materials compiled to assist the elementary teacher in preparing teaching units in aerospace education. Suggests specific and general objectives and lists important concepts and questions pertaining to areas such as: history of flight, weather and flying, airplanes, jets, rockets, space travel, and the solar system. (MLH)

  20. Aircraft of Today. Aerospace Education I.

    ERIC Educational Resources Information Center

    Savler, D. S.

    This textbook gives a brief idea about the modern aircraft used in defense and for commercial purposes. Aerospace technology in its present form has developed along certain basic principles of aerodynamic forces. Different parts in an airplane have different functions to balance the aircraft in air, provide a thrust, and control the general…

  1. NASA's Software Bank (Heath Tecna Aerospace)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Heath Tecna Aerospace used a COSMIC program, "Analysis of Filament Reinforced Metal Shell Pressure Vessels," to predict stresses in motorcase walls in a composite hybrid rocket and calculate the ideal geometry for the domes at either end of the filament-wound pressure vessel. The COSMIC program predictions were confirmed in testing.

  2. The 17th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The proceedings of the Aerospace Mechanisms Symposium are reported. Technological areas covered include space lubrication, aerodynamic devices, spacecraft/Shuttle latches, deployment, positioning, and pointing. Devices for spacecraft tether, magnetic bearing suspension, explosive welding, and a deployable/retractable mast are also described.

  3. Atmospheric statistics for aerospace vehicle operations

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Batts, G. W.

    1993-01-01

    Statistical analysis of atmospheric variables was performed for the Shuttle Transportation System (STS) design trade studies and the establishment of launch commit criteria. Atmospheric constraint statistics have been developed for the NASP test flight, the Advanced Launch System, and the National Launch System. The concepts and analysis techniques discussed in the paper are applicable to the design and operations of any future aerospace vehicle.

  4. The 31st Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Foster, C. L. (Compiler); Boesiger, E. A. (Compiler)

    1997-01-01

    The proceedings of the 31st Aerospace Mechanisms Symposium are reported. Topics covered include: robotics, deployment mechanisms, bearings, actuators, scanners, boom and antenna release, and test equipment. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms.

  5. Using Aerospace Technology To Design Orthopedic Implants

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Mraz, P. J.; Davy, D. T.

    1996-01-01

    Technology originally developed to optimize designs of composite-material aerospace structural components used to develop method for optimizing designs of orthopedic implants. Development effort focused on designing knee implants, long-term goal to develop method for optimizing designs of orthopedic implants in general.

  6. Aerospace Education Curriculum Guide (K-12).

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    GRADES OR AGES: K-12. SUBJECT MATTER: Aerospace education. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into two main sections, one each for primary and secondary levels. Each section is further subdivided into several parts. The guide is printed and staple bound with a paper cover. OBJECTIVES AND ACTIVITIES: Activities at each level…

  7. International Space Programs. Aerospace Education III.

    ERIC Educational Resources Information Center

    Bulmer, S. B.

    This book, one in the series on Aerospace Education III, is a collection of the diverse information available regarding the international space programs. The five goals listed for the book are: to examine the Soviet space program, to understand the future of Soviet space activity, to examine other national and international space programs, to…

  8. Thermoplastic Composite Materials for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Casula, G.; Lenzi, F.; Vitiello, C.

    2008-08-01

    Mechanical and thermo-physical properties of composites materials with thermoplastic matrix (PEEK/IM7, TPI/IM7 and PPS/IM7) used for aerospace applications have been analyzed as function of two different process techniques: compression molding and fiber placement process "hot gas assisted."

  9. The 21st Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1987-01-01

    During the symposium technical topics addressed included deployable structures, electromagnetic devices, tribology, actuators, latching devices, positioning mechanisms, robotic manipulators, and automated mechanisms synthesis. A summary of the 20th Aerospace Mechanisms Symposium panel discussions is included as an appendix. However, panel discussions on robotics for space and large space structures which were held are not presented herein.

  10. The 18th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics concerning aerospace mechanisms, their functional performance, and design specifications are presented. Discussed subjects include the design and development of release mechanisms, actuators, linear driver/rate controllers, antenna and appendage deployment systems, position control systems, and tracking mechanisms for antennas and solar arrays. Engine design, spaceborne experiments, and large space structure technology are also examined.

  11. Aerospace Medicine and Biology: 1983 cumulative index

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This publication is a cumulative index to the abstracts contained in the Supplements 242 through 253 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes six indexes--subject, personal author, corporate source, contract number, report number, and accession number.

  12. Theory of Aircraft Flight. Aerospace Education II.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This revised textbook, one in the Aerospace Education II series, provides answers to many questions related to airplanes and properties of air flight. The first chapter provides a description of aerodynamic forces and deals with concepts such as acceleration, velocity, and forces of flight. The second chapter is devoted to the discussion of…

  13. Aerospace Science Education, A Curriculum Guide.

    ERIC Educational Resources Information Center

    Hilburn, Paul

    This curriculum guide was developed by the Alaska State Department of Education for the purpose of aiding elementary and secondary school teachers in incorporating elements of aerospace science in the classroom. The section of the guide designed for elementary school teachers includes chapters under the headings: Aircraft, Airports, Weather,…

  14. Advanced lightweight alloys for aerospace applications

    NASA Astrophysics Data System (ADS)

    Frazier, William E.; Lee, Eui W.; Donnellan, Mary E.; Thompson, James J.

    1989-05-01

    The design requirements of the next generation of advanced aerospace vehicles and propulsion systems necessitate the development of structural materials with properties vastly superior to those which are currently achievable. Recognizing that each class of materials possesses its own unique set of advantages and disadvantages, the designers of tomorrow's aircraft must choose wisely from the plethora of available alloys.

  15. Aerospace Management, Volume 5 Number 1.

    ERIC Educational Resources Information Center

    Kaprielyan, S. Peter

    Presented are articles and reports dealing with aspects of the aerospace programs of the National Aeronautics and Space Administration (NASA). Of major concern are the technological and managerial challenges within the space station and space shuttle programs. Other reports are given on: (1) medical experiments, (2) satellites, (3) international…

  16. Spacecraft and their Boosters. Aerospace Education I.

    ERIC Educational Resources Information Center

    Coard, E. A.

    This book, one in the series on Aerospace Education I, provides a description of some of the discoveries that spacecraft have made possible and of the experience that American astronauts have had in piloting spacecraft. The basic principles behind the operation of spacecraft and their boosters are explained. Descriptions are also included on…

  17. The 15th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technological areas covered include: aerospace propulsion; aerodynamic devices; crew safety; space vehicle control; spacecraft deployment, positioning, and pointing; deployable antennas/reflectors; and large space structures. Devices for payload deployment, payload retention, and crew extravehicular activities on the space shuttle orbiter are also described.

  18. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  19. Trajectory optimization for the National Aerospace Plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1993-01-01

    The objective of this second phase research is to investigate the optimal ascent trajectory for the National Aerospace Plane (NASP) from runway take-off to orbital insertion and address the unique problems associated with the hypersonic flight trajectory optimization. The trajectory optimization problem for an aerospace plane is a highly challenging problem because of the complexity involved. Previous work has been successful in obtaining sub-optimal trajectories by using energy-state approximation and time-scale decomposition techniques. But it is known that the energy-state approximation is not valid in certain portions of the trajectory. This research aims at employing full dynamics of the aerospace plane and emphasizing direct trajectory optimization methods. The major accomplishments of this research include the first-time development of an inverse dynamics approach in trajectory optimization which enables us to generate optimal trajectories for the aerospace plane efficiently and reliably, and general analytical solutions to constrained hypersonic trajectories that has wide application in trajectory optimization as well as in guidance and flight dynamics. Optimal trajectories in abort landing and ascent augmented with rocket propulsion and thrust vectoring control were also investigated. Motivated by this study, a new global trajectory optimization tool using continuous simulated annealing and a nonlinear predictive feedback guidance law have been under investigation and some promising results have been obtained, which may well lead to more significant development and application in the near future.

  20. Aerospace Technology Innovation. Volume 9

    NASA Technical Reports Server (NTRS)

    Turner, Janelle (Editor); Cousins, Liz (Editor)

    2001-01-01

    Commercializing technology is a daunting task. Of every 11 new product ideas, only one will successfully make it to the marketplace. Fully 46% of new product investment becomes sunk in cost. Yet, a few good companies consistently attain an 80% technology commercialization success rate and have lead the way in establishing best practices. The NASA Incubator program consists of nine incubators, each residing near a NASA research center. The purpose of the incubators is to use the best practices is to use the best practices of technology commercialization to help early stage businesses successfully launch new products that incorporate NASA technology.

  1. Nontoxic Resins Advance Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 2008 NASA Commercial Invention of the Year, PETI-330, is a polyimide matrix resin that performs well at high temperatures and is easily processed into composites in a simple, short curing cycle. Invented by scientists at Langley Research Center, PETI-330 is now licensed to Ube Industries, based in Japan with its American headquarters in New York. In addition to being durable and lightweight, the resin is also nontoxic, which makes it safe for workers to handle. PETI-330 was created specifically for heat-resistant composites formed with resin transfer molding and resin infusion, which formerly could only be used with low temperature resin systems.

  2. Langley aerospace test highlights, 1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during the calender year 1987 in Langley test facilites are illustrated. Both the broad range of the research and technology activities at Langley and the contributions of this work toward maintaining the U.S. leadership in aeronautic and space research are illustrated.

  3. Aerospace Nickel-cadmium Cell Verification

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Strawn, D. Michael; Hall, Stephen W.

    2001-01-01

    During the early years of satellites, NASA successfully flew "NASA-Standard" nickel-cadmium (Ni-Cd) cells manufactured by GE/Gates/SAFF on a variety of spacecraft. In 1992 a NASA Battery Review Board determined that the strategy of a NASA Standard Cell and Battery Specification and the accompanying NASA control of a standard manufacturing control document (MCD) for Ni-Cd cells and batteries was unwarranted. As a result of that determination, standards were abandoned and the use of cells other than the NASA Standard was required. In order to gain insight into the performance and characteristics of the various aerospace Ni-Cd products available, tasks were initiated within the NASA Aerospace Flight Battery Systems Program that involved the procurement and testing of representative aerospace Ni-Cd cell designs. A standard set of test conditions was established in order to provide similar information about the products from various vendors. The objective of this testing was to provide independent verification of representative commercial flight cells available in the marketplace today. This paper will provide a summary of the verification tests run on cells from various manufacturers: Sanyo 35 Ampere-hour (Ali) standard and 35 Ali advanced Ni-Cd cells, SAFr 50 Ah Ni-Cd cells and Eagle-Picher 21 Ali Magnum and 21 Ali Super Ni-CdTM cells from Eagle-Picher were put through a full evaluation. A limited number of 18 and 55 Ali cells from Acme Electric were also tested to provide an initial evaluation of the Acme aerospace cell designs. Additionally, 35 Ali aerospace design Ni-MH cells from Sanyo were evaluated under the standard conditions established for this program. Ile test program is essentially complete. The cell design parameters, the verification test plan and the details of the test result will be discussed.

  4. Aerospace Meteorology Lessons Learned Relative to Aerospace Vehicle Design and Operations

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Anderson, B. Jeffrey

    2004-01-01

    Aerospace Meteorology came into being in the 1950s as the development of rockets for military and civilian usage grew in the United States. The term was coined to identify those involved in the development of natural environment models, design/operational requirements, and environment measurement systems to support the needs of aerospace vehicles, both launch vehicles and spacecraft. It encompassed the atmospheric environment of the Earth, including Earth orbit environments. Several groups within the United States were active in this area, including the Department of Defense, National Aeronautics and Space Administration, and a few of the aerospace industry groups. Some aerospace meteorology efforts were similar to those being undertaken relative to aviation interests. As part of the aerospace meteorology activities a number of lessons learned resulted that produced follow on efforts which benefited from these experiences, thus leading to the rather efficient and technologically current descriptions of terrestrial environment design requirements, prelaunch monitoring systems, and forecast capabilities available to support the development and operations of aerospace vehicles.

  5. Making aerospace technology work for the automotive industry - Introduction

    NASA Technical Reports Server (NTRS)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  6. Rapid Model Fabrication and Testing for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    2000-01-01

    Advanced methods for rapid fabrication and instrumentation of hypersonic wind tunnel models are being developed and evaluated at NASA Langley Research Center. Rapid aeroheating model fabrication and measurement techniques using investment casting of ceramic test models and thermographic phosphors are reviewed. More accurate model casting techniques for fabrication of benchmark metal and ceramic test models are being developed using a combination of rapid prototype patterns and investment casting. White light optical scanning is used for coordinate measurements to evaluate the fabrication process and verify model accuracy to +/- 0.002 inches. Higher-temperature (<210C) luminescent coatings are also being developed for simultaneous pressure and temperature mapping, providing global pressure as well as global aeroheating measurements. Together these techniques will provide a more rapid and complete experimental aerodynamic and aerothermodynamic database for future aerospace vehicles.

  7. Total quality management - It works for aerospace information services

    NASA Technical Reports Server (NTRS)

    Erwin, James; Eberline, Carl; Colquitt, Wanda

    1993-01-01

    Today we are in the midst of information and 'total quality' revolutions. At the NASA STI Program's Center for AeroSpace Information (CASI), we are focused on using continuous improvements techniques to enrich today's services and products and to ensure that tomorrow's technology supports the TQM-based improvement of future STI program products and services. The Continuous Improvements Program at CASI is the foundation for Total Quality Management in products and services. The focus is customer-driven; its goal, to identify processes and procedures that can be improved and new technologies that can be integrated with the processes to gain efficiencies, provide effectiveness, and promote customer satisfaction. This Program seeks to establish quality through an iterative defect prevention approach that is based on the incorporation of standards and measurements into the processing cycle.

  8. Internal fluid mechanics research on supercomputers for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.

    1988-01-01

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.

  9. An Overview of the NASA Aerospace Flight Battery Systems Program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2003-01-01

    The NASA Aerospace Flight Battery Systems Program is an agency-wide effort aimed at ensuring the quality, safety, reliability and performance of flight battery systems for NASA applications. The program provides for the validation of primary and secondary cell and battery level technology advances to ensure their availability and readiness for use in NASA missions. It serves to bridge the gap between the development of technology advances and the realization and incorporation of these advances into mission applications. The program is led by the Glenn Research Center and involves funded task activities at each of the NASA mission centers and JPL. The overall products are safe, reliable, high quality batteries for mission applications. The products are defined along three product lines: 1. Battery Systems Technology - Elements of this task area cover the systems aspects of battery operation and generally apply across chemistries. This includes the development of guidelines documents, the establishment and maintenance of a central battery database that serves a central repository for battery characterization and verification test data from tests performed under the support of this program, the NASA Battery Workshop, and general test facility support. 2. Secondary Battery Technology - l h s task area focuses on the validation of battery technology for nickel-cadmium, nickel-hydrogen, nickel-metal-hydride and lithium-ion secondary battery systems. Standardized test regimes are used to validate the quality of a cell lot or cell design for flight applications. In this area, efforts are now concentrated on the validation and verification of lithium-ion battery technology for aerospace applications. 3. Primary Battery Technology - The safety and reliability aspects for primary lithium battery systems that are used in manned operations on the Shuttle and International Space Station are addressed in the primary battery technology task area. An overview of the task areas

  10. Langley aerospace test highlights, 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The role of NASA-Langley is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests are highlighted which were performed during 1990 in the NASA-Langley test facilities, a number of which are unique in the world. Both the broad range of the research and technology activities at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research are illustrated. Other highlights of Langley research and technology for 1990 are described in Research and Technology 1990 Langley Research Center.

  11. Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2002-01-01

    This document contains the proceedings of the Training Workshop on Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, March 5 - 6, 2002. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in hierarchical approach to material modeling from continuum to atomistics; applications of multiscale modeling to advanced and improved material synthesis; defects, dislocations, and material deformation; fracture and friction; thin-film growth; characterization at nano and micro scales; and, verification and validation of numerical simulations, and to identify their potential for future aerospace systems.

  12. Center for Advanced Computational Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    2000-01-01

    The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

  13. Terrestrial Environment (Climatic) Criteria Guidelines for use in Aerospace Vehicle Development. 2008 Revision

    NASA Technical Reports Server (NTRS)

    Johnson, D. L. (Editor)

    2008-01-01

    This document provides guidelines for the terrestrial environment that are specifically applicable in the development of design requirements/specifications for NASA aerospace vehicles, payloads, and associated ground support equipment. The primary geographic areas encompassed are the John F. Kennedy Space Center, FL; Vandenberg AFB, CA; Edwards AFB, CA; Michoud Assembly Facility, New Orleans, LA; John C. Stennis Space Center, MS; Lyndon B. Johnson Space Center, Houston, TX; George C. Marshall Space Flight Center, Huntsville, AL; and the White Sands Missile Range, NM. This document presents the latest available information on the terrestrial environment applicable to the design and operations of aerospace vehicles and supersedes information presented in NASA-HDBK-1001 and TM X-64589, TM X-64757, TM-78118, TM-82473, and TM-4511. Information is included on winds, atmospheric thermodynamic models, radiation, humidity, precipitation, severe weather, sea state, lightning, atmospheric chemistry, seismic criteria, and a model to predict atmospheric dispersion of aerospace engine exhaust cloud rise and growth. In addition, a section has been included to provide information on the general distribution of natural environmental extremes in the conterminous United States, and world-wide, that may be needed to specify design criteria in the transportation of space vehicle subsystems and components. A section on atmospheric attenuation has been added since measurements by sensors on certain Earth orbital experiment missions are influenced by the Earth s atmosphere. There is also a section on mission analysis, prelaunch monitoring, and flight evaluation as related to the terrestrial environment inputs. The information in these guidelines is recommended for use in the development of aerospace vehicle and related equipment design and associated operational criteria, unless otherwise stated in contract work specifications. The terrestrial environmental data in these guidelines are

  14. Multi-Segment Hemodynamic and Volume Assessment With Impedance Plethysmography: Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Montgomery, Leslie D.; Webbon, Bruce W. (Technical Monitor)

    1995-01-01

    Definition of multi-segmental circulatory and volume changes in the human body provides an understanding of the physiologic responses to various aerospace conditions. We have developed instrumentation and testing procedures at NASA Ames Research Center that may be useful in biomedical research and clinical diagnosis. Specialized two, four, and six channel impedance systems will be described that have been used to measure calf, thigh, thoracic, arm, and cerebral hemodynamic and volume changes during various experimental investigations.

  15. Space benefits: The secondary application of aerospace technology in other sectors of the economy

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A benefits briefing notebook is presented for the NASA Technology Utilization Office in which 515 applications of NASA aerospace technology to other sections of the economy are described. An overview of technology transfer is given. Benefit cases are cited in 19 categories along with pertinent information, such as communication link, DRI transfer example file, and individual case number. General, organization, geographic, and field center indexes are provided.

  16. Thermographic Inspection of Aerospace Tankage

    NASA Technical Reports Server (NTRS)

    Bouvier, Carl; Russell, Samuel; Walker, James; Wilkerson, Chuck

    2003-01-01

    Thermography has been shown to be the ideal technical and economic inspection method for two applications - post-machining evaluations and for field inspections of damage and repair. For most manufacturing applications ultrasonic inspections are already available and established. There is no question about the detectability or cost when inspecting hardware out of the autoclave. But when the part is too large to bring to the scanning inspection system or you do not want to remove the hardware from its current setup then a more portable or field applicable inspection is required. This paper will describe two applications of thermography on composite inspections. The NASA NDE Team and Lockheed Martin conducted the work at NASA s George C. Marshall Space Flight Center (MSFC). The first application was inspecting machined hardware. The technique and example data will be presented along with the advantages of thermography. Examples of drilling holes and trimming the edges will be discussed. The second application will be the evaluation of damage in a composite part and the subsequent repair of the region will be presented. The technique, data, and benefits of this application will also be presented along with the follow-up inspection of the post- repaired hardware.

  17. NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.

  18. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Astrophysics Data System (ADS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-03-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  19. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  20. The 1992 NASA Langley Measurement Technology Conference: Measurement Technology for Aerospace Applications in High-Temperature Environments

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Editor); Antcliff, Richard R. (Editor)

    1992-01-01

    An intensive 2-day conference to discuss the current status of measurement technology in the areas of temperature/heat flux, stress/strain, pressure, and flowfield diagnostics for high temperature aerospace applications was held at Langley Research Center, Hampton, Virginia, on April 22 and 23, 1993. Complete texts of the papers presented at the Conference are included in these proceedings.

  1. Servant Leadership: How does NASA Serve the Interests of Humankind in Aerospace Exploration and the Role STEM Plays in it?

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2013-01-01

    This presentation provides a description of technology efforts illustrative of NASA Glenn Research Center Core competencies and which exemplifies how NASA serves the interest of humankind in aerospace exploration. Examples are provided as talking points to illustrate the role that career paths in science, technology, engineering and mathematics (STEM) plays in the aforementioned endeavor.

  2. Terrestrial Environment (Climatic) Criteria Guidelines for Use in Aerospace Vehicle Development, 1993 Revision

    NASA Technical Reports Server (NTRS)

    Johnson, D. L. (Editor)

    1993-01-01

    Guidelines on terrestrial environment data specifically applicable in the development of design requirements/specifications for NASA aerospace vehicles and associated equipment development are provided. The primary geographic areas encompassed are the John F. Kennedy Space Center, FL; Vandenberg AFB, CA; Edwards AFB, CA; Michoud Assembly Facility, New Orleans, LA; John C. Stennis Space Center, MS; Lyndon B. Johnson Space Center, Houston, TX; and the White Sands Missile Range, NM. In addition, a section was included to provide information on the general distribution of natural environmental extremes in the conterminous United States that may be needed to specify design criteria in the transportation of space vehicle subsystems and components. A summary of climatic extremes for worldwide operational needs is also included. Although not considered as a specific vehicle design criterion, a section on atmospheric attenuation was added since sensors on certain Earth orbital experiment missions are influenced by the Earth's atmosphere. The latest available information on probable climatic extremes is presented and supersedes information presented in TM X-64589, TM X-64757, TM X-78118, and TM-82473. Information is included on atmospheric chemistry, seismic criteria, and on a mathematical model to predict atmospheric dispersion of aerospace engine exhaust cloud rise and growth. There is also a section on atmospheric cloud phenomena. The information is recommended for use in the development of aerospace vehicle and associated equipment design and operational criteria, unless otherwise stated in contract work specifications. The environmental data are primarily limited to information below 90 km.

  3. Automation technology for aerospace power management

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1982-01-01

    The growing size and complexity of spacecraft power systems coupled with limited space/ground communications necessitate increasingly automated onboard control systems. Research in computer science, particularly artificial intelligence has developed methods and techniques for constructing man-machine systems with problem-solving expertise in limited domains which may contribute to the automation of power systems. Since these systems perform tasks which are typically performed by human experts they have become known as Expert Systems. A review of the current state of the art in expert systems technology is presented, and potential applications in power systems management are considered. It is concluded that expert systems appear to have significant potential for improving the productivity of operations personnel in aerospace applications, and in automating the control of many aerospace systems.

  4. Sputtering and ion plating for aerospace applications

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3 dimensional coverage are the primary attributes of this technology.

  5. NASA Aerospace Flight Battery Systems Program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; O'Donnell, Patricia M.

    1990-01-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance and reliability of batteries for space power systems. The program plan has been modified in the past year to reflect changes in the agency's approach to battery related problems that are affecting flight programs. Primary attention in the Battery Program is being devoted to the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs. As part of a unified Battery Program, the development of a nickel-hydrogen standard and primary cell issues are also being pursued to provide high-performance NASA Standards and space qualified state-of-the-art primary cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  6. NASA aerospace flight battery systems program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Odonnell, Patricia M.

    1990-01-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance and reliability of batteries for space power systems. The program plan has been modified in the past year to reflect changes in the agency's approach to battery related problems that are affecting flight programs. Primary attention in the Battery Program is being devoted to the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs. As part of a unified Battery Program, the development of a nickel-hydrogen standard and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art primary cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  7. Explosion welding and cutting in aerospace engineering

    NASA Astrophysics Data System (ADS)

    Volgin, L. A.; Koroteev, A. Ia.; Malakovich, A. P.; Petushkov, V. G.; Sitalo, V. G.; Novikov, V. K.

    The paper presents the results of works of the E.O. Paton Electric Welding Institute and other Soviet organizations on the development of technology for explosion-welding of multilayer transition pieces and pipes used in the manufacture of aerospace products. Equipment and accessories used for this technology are described; in particular, a powerful explosion chamber of a tubular structure for up to 200 kg of explosives is presented. Information is also given about linear explosion separation devices.

  8. Integration of pyrotechnics into aerospace systems

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Schimmel, Morry L.

    1993-01-01

    The application of pyrotechnics to aerospace systems has been resisted because normal engineering methods cannot be used in design and evaluation. Commonly used approaches for energy sources, such as electrical, hydraulic and pneumatic, do not apply to explosive and pyrotechnic devices. This paper introduces the unique characteristics of pyrotechnic devices, describes how functional evaluations can be conducted, and demonstrates an engineering approach for pyrotechnic integration. Logic is presented that allows evaluation of two basic types of pyrotechnic systems to demonstrate functional margin.

  9. Developing IVHM Requirements for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Rajamani, Ravi; Saxena, Abhinav; Kramer, Frank; Augustin, Mike; Schroeder, John B.; Goebel, Kai; Shao, Ginger; Roychoudhury, Indranil; Lin, Wei

    2013-01-01

    The term Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable sustainable and safe operation of components and subsystems within aerospace platforms. However, very little guidance exists for the systems engineering aspects of design with IVHM in mind. It is probably because of this that designers have to use knowledge picked up exclusively by experience rather than by established process. This motivated a group of leading IVHM practitioners within the aerospace industry under the aegis of SAE's HM-1 technical committee to author a document that hopes to give working engineers and program managers clear guidance on all the elements of IVHM that they need to consider before designing a system. This proposed recommended practice (ARP6883 [1]) will describe all the steps of requirements generation and management as it applies to IVHM systems, and demonstrate these with a "real-world" example related to designing a landing gear system. The team hopes that this paper and presentation will help start a dialog with the larger aerospace community and that the feedback can be used to improve the ARP and subsequently the practice of IVHM from a systems engineering point-of-view.

  10. Bearing and gear steels for aerospace applications

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1990-01-01

    Research in metallurgy and processing for bearing and gear steels has resulted in improvements in rolling-element bearing and gear life for aerospace application by a factor of approximately 200 over that obtained in the early 1940's. The selection and specification of a bearing or gear steel is dependent on the integration of multiple metallurgical and physical variables. For most aerospace bearings, through-hardened VIM-VAR AISI M-50 steel is the material of preference. For gears, the preferential material is case-carburized VAR AISI 9310. However, the VAR processing for this material is being replaced by VIM-VAR processing. Since case-carburized VIM-VAR M-50NiL incorporates the desirable qualities of both the AISI M-50 and AISI 9310 materials, optimal life and reliability can be achieved in both bearings and gears with a single steel. Hence, this material offers the promise of a common steel for both bearings and gears for future aerospace applications.

  11. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1:] The value of Scientific and Technical Information (STI), its relationship to Research and Development (R&D), and its use by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Myron; Barclay, Rebecca O.; Oliu, Walter E.

    1990-01-01

    The relationship between scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace R&D process is examined. Data are presented from studies of the role of STI in the performance and management of R&D activities and the behavior of engineers when using and seeking information. Consideration is given to the information sources used to solve technical problems, the production and use of technical communications, and the use of libraries, technical information centers, and on-line data bases.

  12. Aerospace Communications Security Technologies Demonstrated

    NASA Technical Reports Server (NTRS)

    Griner, James H.; Martzaklis, Konstantinos S.

    2003-01-01

    In light of the events of September 11, 2001, NASA senior management requested an investigation of technologies and concepts to enhance aviation security. The investigation was to focus on near-term technologies that could be demonstrated within 90 days and implemented in less than 2 years. In response to this request, an internal NASA Glenn Research Center Communications, Navigation, and Surveillance Aviation Security Tiger Team was assembled. The 2-year plan developed by the team included an investigation of multiple aviation security concepts, multiple aircraft platforms, and extensively leveraged datalink communications technologies. It incorporated industry partners from NASA's Graphical Weather-in-the-Cockpit research, which is within NASA's Aviation Safety Program. Two concepts from the plan were selected for demonstration: remote "black box," and cockpit/cabin surveillance. The remote "black box" concept involves real-time downlinking of aircraft parameters for remote monitoring and archiving of aircraft data, which would assure access to the data following the loss or inaccessibility of an aircraft. The cockpit/cabin surveillance concept involves remote audio and/or visual surveillance of cockpit and cabin activity, which would allow immediate response to any security breach and would serve as a possible deterrent to such breaches. The datalink selected for the demonstrations was VDL Mode 2 (VHF digital link), the first digital datalink for air-ground communications designed for aircraft use. VDL Mode 2 is beginning to be implemented through the deployment of ground stations and aircraft avionics installations, with the goal of being operational in 2 years. The first demonstration was performed December 3, 2001, onboard the LearJet 25 at Glenn. NASA worked with Honeywell, Inc., for the broadcast VDL Mode 2 datalink capability and with actual Boeing 757 aircraft data. This demonstration used a cockpitmounted camera for video surveillance and a coupling to

  13. Materials Control for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Ferguson, Michael

    2005-01-01

    control system founded at MSFC and supported by the other NASA Centers. This system is a data bank of all materials used in space flight operations. These materials are rated for several characteristics that are common concerns in high altitude or deep space usage: Odor, off gassing, material fluid compatibility, toxicity, corrosion susceptibility, stress corrosion susceptibility, etc.

  14. Center for Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Advanced Space Propulsion (CASP) is part of the University of Tennessee-Calspan Center for Aerospace Research (CAR). It was formed in 1985 to take advantage of the extensive research faculty and staff of the University of Tennessee and Calspan Corporation. It is also one of sixteen NASA sponsored Centers established to facilitate the Commercial Development of Space. Based on investigators' qualifications in propulsion system development, and matching industries' strong intent, the Center focused its efforts in the following technical areas: advanced chemical propulsion, electric propulsion, AI/Expert systems, fluids management in microgravity, and propulsion materials processing. This annual report focuses its discussion in these technical areas.

  15. Case-Based Capture and Reuse of Aerospace Design Rationale

    NASA Technical Reports Server (NTRS)

    Leake, David B.

    1998-01-01

    The goal of this project is to apply artificial intelligence techniques to facilitate capture and reuse of aerospace design rationale. The project applies case-based reasoning (CBR) and concept mapping (CMAP) tools to the task of capturing, organizing, and interactively accessing experiences or "cases" encapsulating the methods and rationale underlying expert aerospace design. As stipulated in the award, Indiana University and Ames personnel are collaborating on performance of research and determining the direction of research, to assure that the project focuses on high-value tasks. In the first five months of the project, we have made two visits to Ames Research Center to consult with our NASA collaborators, to learn about the advanced aerospace design tools being developed there, and to identify specific needs for intelligent design support. These meetings identified a number of task areas for applying CBR and concept mapping technology. We jointly selected a first task area to focus on: Acquiring the convergence criteria that experts use to guide the selection of useful data from a set of numerical simulations of high-lift systems. During the first funding period, we developed two software systems. First, we have adapted a CBR system developed at Indiana University into a prototype case-based reasoning shell to capture and retrieve information about design experiences, with the sample task of capturing and reusing experts' intuitive criteria for determining convergence (work conducted at Indiana University). Second, we have also adapted and refined existing concept mapping tools that will be used to clarify and capture the rationale underlying those experiences, to facilitate understanding of the expert's reasoning and guide future reuse of captured information (work conducted at the University of West Florida). The tools we have developed are designed to be the basis for a general framework for facilitating tasks within systems developed by the Advanced Design

  16. The 2004 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Super NiCd(TradeMark) Energy Storage for Gravity Probe-B Relativity Mission; Hubble Space Telescope 2004 Battery Update; The Development of Hermetically Sealed Aerospace Nickel-Metal Hydride Cell; Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System; Cell Equalization of Lithium-Ion Cells; The Long-Term Performance of Small-Cell Batteries Without Cell-Balancing Electronics; Identification and Treatment of Lithium Battery Cell Imbalance under Flight Conditions; Battery Control Boards for Li-Ion Batteries on Mars Exploration Rovers; Cell Over Voltage Protection and Balancing Circuit of the Lithium-Ion Battery; Lithium-Ion Battery Electronics for Aerospace Applications; Lithium-Ion Cell Charge Control Unit; Lithium Ion Battery Cell Bypass Circuit Test Results at the U.S. Naval Research Laboratory; High Capacity Battery Cell By-Pass Switches: High Current Pulse Testing of Lithium-Ion; Battery By-Pass Switches to Verify Their Ability to Withstand Short-Circuits; Incorporation of Physics-Based, Spatially-Resolved Battery Models into System Simulations; A Monte Carlo Model for Li-Ion Battery Life Projections; Thermal Behavior of Large Lithium-Ion Cells; Thermal Imaging of Aerospace Battery Cells; High Rate Designed 50 Ah Li-Ion Cell for LEO Applications; Evaluation of Corrosion Behavior in Aerospace Lithium-Ion Cells; Performance of AEA 80 Ah Battery Under GEO Profile; LEO Li-Ion Battery Testing; A Review of the Feasibility Investigation of Commercial Laminated Lithium-Ion Polymer Cells for Space Applications; Lithium-Ion Verification Test Program; Panasonic Small Cell Testing for AHPS; Lithium-Ion Small Cell Battery Shorting Study; Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-Time Profiles; Update on Development of Lithium-Ion Cells for Space Applications at JAXA; Foreign Comparative Technology: Launch Vehicle Battery Cell Testing; 20V, 40 Ah Lithium Ion Polymer

  17. Access to Japanese aerospace-related scientific and technical information: The NASA Aerospace Database

    NASA Technical Reports Server (NTRS)

    Hoetker, Glenn P.; Lahr, Thomas F.

    1993-01-01

    With Japan's growing R&D strength in aerospace-related fields, it is increasingly important for U.S. researchers to be aware of Japanese advances. However, several factors make it difficult to do so. After reviewing the diffusion of aerospace STI in Japan, four factors which make it difficult for U.S. researchers to gather this information are discussed: language, the human network, information scatter, and document acquisition. NASA activities to alleviate these difficulties are described, beginning with a general overview of the NASA STI Program. The effects of the new National Level Agreement between NASA and NASDA are discussed.

  18. Investigation of long term storage effects on aerospace nickel-cadmium cell performance

    NASA Technical Reports Server (NTRS)

    Yi, T. Y.

    1986-01-01

    A study on evaluation of the long term storage effects on aerospace nickel-cadmium cells currently being performed at NASA/Goddard Space Flight Center (GSFC) is described. A number of cells of 6 Ah and 12 Ah capacities which were stored in shorted condition for 8 to 9 years at the GSFC were selected for this study. These cells will undergo electrical acceptance testing the the GSFC, and life cycling at the NASA Battery Test Facility at the Naval Weapons Facility at the Naval Weapons Support Center (NWSC) in Crane, Indiana; in addition, some cells from the study will undergo destructive analyses.

  19. Investigation of long term storage effects on aerospace nickel-cadmium cell performance

    NASA Astrophysics Data System (ADS)

    Yi, T. Y.

    1986-09-01

    A study on evaluation of the long term storage effects on aerospace nickel-cadmium cells currently being performed at NASA/Goddard Space Flight Center (GSFC) is described. A number of cells of 6 Ah and 12 Ah capacities which were stored in shorted condition for 8 to 9 years at the GSFC were selected for this study. These cells will undergo electrical acceptance testing the the GSFC, and life cycling at the NASA Battery Test Facility at the Naval Weapons Facility at the Naval Weapons Support Center (NWSC) in Crane, Indiana; in addition, some cells from the study will undergo destructive analyses.

  20. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 1, Part 3

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume I: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries of the program's operations.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 7:Summary report to phase 2 respondents including frequency distributions

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.

    1991-01-01

    Phase 2 of the four phase NASA/DoD Aerospace Knowledge Diffusion Research Project was undertaken to study the transfer of scientific and technical information (STI) from government to the aerospace industry and the role of librarians and technical information specialists in the transfer process. Data was collected through a self-administered mailback questionnaire. Libraries identified as holding substantial aerospace or aeronautical technical report collections were selected to receive the questionnaires. Within each library, the person responsible for the technical report was requested to answer the questionnaire. Questionnaires were returned from approx. 68 pct. of the libraries. The respondents indicated that scientists and engineer are not aware of the services available from libraries/technical information centers and that scientists and engineers also under-utilized their services. The respondents also indicated they should be more involved in the process.

  2. Index of aerospace mechanisms symposia proceedings 1-19

    NASA Technical Reports Server (NTRS)

    Rinaldo, A.; Wilson, J.

    1986-01-01

    This index, organized in five sections (by symposium, by title, by author, by subject, and by project), brings together information on the first 19 Aerospace Mechanisms symposia. Key words are included, cross-referencing all the symposia, and the eighteenth and nineteenth symposia are cross-indexed by project. The Aerospace Mechanisms symposia are devoted to discussions of design, fabrication, test, and operational use of aerospace mechanisms; this is the first index that compiles information on symposia held from 1966 through 1985.

  3. An international aerospace information system - A cooperative opportunity

    NASA Technical Reports Server (NTRS)

    Blados, Walter R.; Cotter, Gladys A.

    1992-01-01

    This paper presents for consideration new possibilities for uniting the various aerospace database efforts toward a cooperative international aerospace database initiative that can optimize the cost-benefit equation for all members. The development of astronautics and aeronautics in individual nations has led to initiatives for national aerospace databases. Technological developments in information technology and science, as well as the reality of scarce resources, makes it necessary to reconsider the mutually beneficial possibilities offered by cooperation and international resource sharing.

  4. Introduction: Aims and Requirements of Future Aerospace Vehicles. Chapter 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, Pedro I.; Smeltzer, Stanley S., III; McConnaughey, Paul (Technical Monitor)

    2001-01-01

    The goals and system-level requirements for the next generation aerospace vehicles emphasize safety, reliability, low-cost, and robustness rather than performance. Technologies, including new materials, design and analysis approaches, manufacturing and testing methods, operations and maintenance, and multidisciplinary systems-level vehicle development are key to increasing the safety and reducing the cost of aerospace launch systems. This chapter identifies the goals and needs of the next generation or advanced aerospace vehicle systems.

  5. Certification Processes for Safety-Critical and Mission-Critical Aerospace Software

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy

    2003-01-01

    This document is a quick reference guide with an overview of the processes required to certify safety-critical and mission-critical flight software at selected NASA centers and the FAA. Researchers and software developers can use this guide to jumpstart their understanding of how to get new or enhanced software onboard an aircraft or spacecraft. The introduction contains aerospace industry definitions of safety and safety-critical software, as well as, the current rationale for certification of safety-critical software. The Standards for Safety-Critical Aerospace Software section lists and describes current standards including NASA standards and RTCA DO-178B. The Mission-Critical versus Safety-Critical software section explains the difference between two important classes of software: safety-critical software involving the potential for loss of life due to software failure and mission-critical software involving the potential for aborting a mission due to software failure. The DO-178B Safety-critical Certification Requirements section describes special processes and methods required to obtain a safety-critical certification for aerospace software flying on vehicles under auspices of the FAA. The final two sections give an overview of the certification process used at Dryden Flight Research Center and the approval process at the Jet Propulsion Lab (JPL).

  6. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1994. These results were presented at the Fifth Annual NASA LA2ST Grant Review Meeting held at the Langley Research Center in July of 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, lightweight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.

  7. High-Fidelity Simulation in Biomedical and Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2005-01-01

    Contents include the following: Introduction / Background. Modeling and Simulation Challenges in Aerospace Engineering. Modeling and Simulation Challenges in Biomedical Engineering. Digital Astronaut. Project Columbia. Summary and Discussion.

  8. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 2, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This report contains the Appendices to the findings from the first year of the program's operations.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 39: The role of computer networks in aerospace engineering

    NASA Technical Reports Server (NTRS)

    Bishop, Ann P.; Pinelli, Thomas E.

    1994-01-01

    This paper presents selected results from an empirical investigation into the use of computer networks in aerospace engineering. Such networks allow aerospace engineers to communicate with people and access remote resources through electronic mail, file transfer, and remote log-in. The study drew its subjects from private sector, government and academic organizations in the U.S. aerospace industry. Data presented here were gathered in a mail survey, conducted in Spring 1993, that was distributed to aerospace engineers performing a wide variety of jobs. Results from the mail survey provide a snapshot of the current use of computer networks in the aerospace industry, suggest factors associated with the use of networks, and identify perceived impacts of networks on aerospace engineering work and communication.

  10. Analysis of fatigue, fatique-crack propagation, and fracture data. [design of metallic aerospace structural components

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Feddersen, C. E.; Davies, K. B.; Rice, R. C.

    1973-01-01

    Analytical methods have been developed for consolidation of fatigue, fatigue-crack propagation, and fracture data for use in design of metallic aerospace structural components. To evaluate these methods, a comprehensive file of data on 2024 and 7075 aluminums, Ti-6A1-4V, and 300M and D6Ac steels was established. Data were obtained from both published literature and unpublished reports furnished by aerospace companies. Fatigue and fatigue-crack-propagation analyses were restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Fracture toughness data were from tests of center-cracked tension panels, part-through crack specimens, and compact-tension specimens.

  11. Discovery of the Kalman filter as a practical tool for aerospace and industry

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Schmidt, S. F.

    1985-01-01

    The sequence of events which led the researchers at Ames Research Center to the early discovery of the Kalman filter shortly after its introduction into the literature is recounted. The scientific breakthroughs and reformulations that were necessary to transform Kalman's work into a useful tool for a specific aerospace application are described. The resulting extended Kalman filter, as it is now known, is often still referred to simply as the Kalman filter. As the filter's use gained in popularity in the scientific community, the problems of implementation on small spaceborne and airborne computers led to a square-root formulation of the filter to overcome numerical difficulties associated with computer word length. The work that led to this new formulation is also discussed, including the first airborne computer implementation and flight test. Since then the applications of the extended and square-root formulations of the Kalman filter have grown rapidly throughout the aerospace industry.

  12. Spectroscopic Challenges in the Modelling and Diagnostics of High Temperature Air Plasma Radiation for Aerospace Applications

    SciTech Connect

    Laux, Christophe O.

    2007-04-06

    State-of-the-art spectroscopic models of the radiative transitions of interest for Earth re-entry and ground-based diagnostic facilities for aerospace applications are reviewed. The spectral range considered extends from the vacuum ultraviolet to the mid-infrared range (80 nm to 5.5 {mu}m). The modeling results are compared with absolute intensity measurements of the ultraviolet-visible-infrared emission of a well-characterized high-temperature air plasma produced with a 50 kW inductively coupled radio-frequency plasma torch, and with high-resolution absorption spectra from the Center for Astrophysics in the vacuum ultraviolet. The Spectroscopic data required to better model the spectral features of interest for aerospace applications are discussed.

  13. Chemical Gas Sensors for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  14. Oklahoma Aerospace Intellectual Capital/Educational Recommendations: An Inquiry of Oklahoma Aerospace Executives

    ERIC Educational Resources Information Center

    Nelson, Erin M.

    2010-01-01

    Scope and Method of Study: The purpose of this qualitative study was to conduct detailed personal interviews with aerospace industry executives/managers from both the private and military sectors from across Oklahoma to determine their perceptions of intellectual capital needs of the industry. Interviews with industry executives regarding…

  15. National Aerospace Plane Thermal Development. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning thermal properties of the National Aerospace Plane (NASP). Analysis of thermal stress, and methods for determining thermal effects on the plane's supersonic structure are discussed. The citations also review temperature extremes that the vehicle is likely to encounter. (Contains 50-250 citations and includes a subject term index and title list.)

  16. National Aerospace Plane Thermal Development. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The bibliography contains citations concerning thermal properties of the National Aerospace Plane (NASP). Analysis of thermal stress, and methods for determining thermal effects on the plane's supersonic structure are discussed. The citations also review temperature extremes that the vehicle is likely to encounter.

  17. Northrop Grumman Aerospace Systems cryocooler overview

    NASA Astrophysics Data System (ADS)

    Raab, J.; Tward, E.

    2010-09-01

    Mechanical long life cryocoolers are an enabling technology used to cool a wide variety of detectors in space applications. These coolers provide cooling over a range of temperatures from 2 K to 200 K, cooling powers from tens of mW to tens of watts. Typical applications are missile warning, Earth and climate sciences, astronomy and cryogenic propellant management. Northrop Grumman Aerospace Systems (NGAS) has delivered many of the US flight cooler systems and has 12 long life pulse tube and Stirling coolers on orbit with two having over 11 years of continuous operation. This paper will provide an overview of the NGAS cryocooler capabilities.

  18. The ARM unpiloted aerospace vehicle (UAV) program

    SciTech Connect

    Sowle, D.

    1995-09-01

    Unmanned aerospace vehicles (UAVs) are an important complement to the DOE`s Atmospheric Radiation Measurement (ARM) Program. ARM is primarily a ground-based program designed to extensively quantify the radiometric and meteorological properties of an atmospheric column. There is a need for airborne measurements of radiative profiles, especially flux at the tropopause, cloud properties, and upper troposphere water vapor. There is also a need for multi-day measurements at the tropopause; for example, in the tropics, at 20 km for over 24 hours. UAVs offer the greatest potential for long endurance at high altitudes and may be less expensive than piloted flights. 2 figs.

  19. Infrared signature studies of aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Mahulikar, Shripad P.; Sonawane, Hemant R.; Arvind Rao, G.

    2007-10-01

    Infrared (IR) emissions from aircraft are used to detect, track, and lock-on to the target. MAN Portable Air Defence Systems (MANPADS) have emerged as a major cause of aircraft and helicopter loss. Therefore, IR signature studies are important to counter this threat for survivability enhancement, and are an important aspect of stealth technology. This paper reviews contemporary developments in this discipline, with particular emphasis on IR signature prediction from aerospace vehicles. The role of atmosphere in IR signature analysis, and relation between IR signature level and target susceptibility are illustrated. Also, IR signature suppression systems and countermeasure techniques are discussed, to highlight their effectiveness and implications in terms of penalties.

  20. National Aero-Space Plane (NASP) program

    NASA Technical Reports Server (NTRS)

    Tank, Ming H.

    1991-01-01

    A program to develop the technology for reusable airbreathing hypersonic/transatmospheric vehicles is addressed. Information on the following topics is presented in viewgraph form: (1) the National Aerospace Plane (NASP) program schedule; (2) the NASP program organization; (3) competitive strategy; (4) propulsion options; (5) wind tunnel data available for NASP; (6) ground track of envelope expansion; and (7) altitude vs. Mach number. A NASP/Space Shuttle comparison, NASP configuration matrix, and the propulsion concept of a high speed scramjet are also briefly addressed.

  1. Computational composite mechanics for aerospace propulsion structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1986-01-01

    Specialty methods are presented for the computational simulation of specific composite behavior. These methods encompass all aspects of composite mechanics, impact, progressive fracture and component specific simulation. Some of these methods are structured to computationally simulate, in parallel, the composite behavior and history from the initial fabrication through several missions and even to fracture. Select methods and typical results obtained from such simulations are described in detail in order to demonstrate the effectiveness of computationally simulating (1) complex composite structural behavior in general and (2) specific aerospace propulsion structural components in particular.

  2. Computational composite mechanics for aerospace propulsion structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1987-01-01

    Specialty methods are presented for the computational simulation of specific composite behavior. These methods encompass all aspects of composite mechanics, impact, progressive fracture and component specific simulation. Some of these methods are structured to computationally simulate, in parallel, the composite behavior and history from the initial frabrication through several missions and even to fracture. Select methods and typical results obtained from such simulations are described in detail in order to demonstrate the effectiveness of computationally simulating: (1) complex composite structural behavior in general, and (2) specific aerospace propulsion structural components in particular.

  3. Interdisciplinary optimum design. [of aerospace structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.

  4. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    Actively controlled mechanical seals have recently been developed for industrial use. This study investigates the feasibility of using such seals for aerospace applications. In a noncontacting mechanical seal, the film thickness depends on the geometry of the seal interface. The amount of coning, which is a measure of the radial convergence or divergence of the seal interface, has a primary effect on the film thickness. Active control of the film thickness is established by controlling the coning with a piezoelectric material. A mathematical model has been formulated to predict the performance of an actively controlled mechanical seal.

  5. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    The main objective is to determine the feasibility of utilizing controllable mechanical seals for aerospace applications. A potential application was selected as a demonstration case: the buffer gas seal in a LOX (liquid oxygen) turbopump. Currently, floating ring seals are used in this application. Their replacement with controllable mechanical seals would result in substantially reduced leakage rates. This would reduce the required amount of stored buffer gas, and therefore increase the vehicle payload. For such an application, a suitable controllable mechanical seal was designed and analyzed.

  6. Structural Optimization of Conceptual Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn Andrew

    2008-01-01

    Aerospace vehicle structures must be optimized for mass to maximize the mission payload. During the conceptual design phase, structures must be optimized to accurately predict the mass of the design. Analysis methods that are used in sizing members should allow for the selection of a variety of metallic and composite materials and user-defined geometry constraints. Rapid vehicle structural analysis is often necessary to improve the fidelity and the results that are obtained during the preliminary design. Recent experiences are highlighted that utilize the Collier Research Corporation's Hypersizer toolset to optimize structural concepts.

  7. Fiber optic smart structures for aerospace applications

    NASA Astrophysics Data System (ADS)

    Udd, Eric

    Fiber optic smart structures as applied to aerospace platforms are reviewed. Emphasis is placed on advantages of these structures which include weight saving for equivalent performance, immunity to electromagnetic interference, the ability to multiplex a number of fiber optic sensors along a single line, the inherent high bandwidth of fiber optic sensors and the data links supporting them, the ability to perform in extremely hostile environments at high temperatures, vibration, and shock loadings. It is concluded that fiber optic smart structures have a considerable potential to enhance the value of future aircraft and spacecraft through improved reliability, maintainability, and flight performance augmentation.

  8. CAD/CAM in packaging aerospace electronics

    NASA Astrophysics Data System (ADS)

    Gargione, F.

    1980-04-01

    It is noted that hard-wired, welded circuits hold an important place in aerospace systems because they allow short production runs to be prepared quickly. However, the electronic system designs are very complicated and demanding to work on manually. The article describes a design process which saves time and effort without reducing the designer's freedom. It is shown that the CAD/CAM equipment produces all the drawings and extracts from the data needed to generate NC tapes for drilling and welding boards. In addition, it produces the artwork for etching the boards. Discussion covers the advance the system represents in cost effectiveness, versatility, and reliability.

  9. Knowledge-based simulation for aerospace systems

    NASA Technical Reports Server (NTRS)

    Will, Ralph W.; Sliwa, Nancy E.; Harrison, F. Wallace, Jr.

    1988-01-01

    Knowledge-based techniques, which offer many features that are desirable in the simulation and development of aerospace vehicle operations, exhibit many similarities to traditional simulation packages. The eventual solution of these systems' current symbolic processing/numeric processing interface problem will lead to continuous and discrete-event simulation capabilities in a single language, such as TS-PROLOG. Qualitative, totally-symbolic simulation methods are noted to possess several intrinsic characteristics that are especially revelatory of the system being simulated, and capable of insuring that all possible behaviors are considered.

  10. An Assessment of the Effectiveness of Selected Aerospace Education Workshops in Tennessee

    ERIC Educational Resources Information Center

    Maupin, Pauline Hicks

    1976-01-01

    Data from questionnaires indicated that the Tennessee Aerospace Education Workshops were successful in reaching their stated goals, which included developing a greater awareness of aerospace education and helping teachers incorporate more aerospace education in classroom activities. (MLH)

  11. Pathways and Challenges to Innovation in Aerospace

    NASA Technical Reports Server (NTRS)

    Terrile, Richard J.

    2010-01-01

    This paper explores impediments to innovation in aerospace and suggests how successful pathways from other industries can be adopted to facilitate greater innovation. Because of its nature, space exploration would seem to be a ripe field of technical innovation. However, engineering can also be a frustratingly conservative endeavor when the realities of cost and risk are included. Impediments like the "find the fault" engineering culture, the treatment of technical risk as almost always evaluated in terms of negative impact, the difficult to account for expansive Moore's Law growth when making predictions, and the stove-piped structural organization of most large aerospace companies and federally funded research laboratories tend to inhibit cross-cutting technical innovation. One successful example of a multi-use cross cutting application that can scale with Moore's Law is the Evolutionary Computational Methods (ECM) technique developed at the Jet Propulsion Lab for automated spectral retrieval. Future innovations like computational engineering and automated design optimization can potentially redefine space exploration, but will require learning lessons from successful innovators.

  12. Managing human fallibility in critical aerospace situations

    NASA Astrophysics Data System (ADS)

    Tew, Larry

    2014-11-01

    Human fallibility is pervasive in the aerospace industry with over 50% of errors attributed to human error. Consider the benefits to any organization if those errors were significantly reduced. Aerospace manufacturing involves high value, high profile systems with significant complexity and often repetitive build, assembly, and test operations. In spite of extensive analysis, planning, training, and detailed procedures, human factors can cause unexpected errors. Handling such errors involves extensive cause and corrective action analysis and invariably schedule slips and cost growth. We will discuss success stories, including those associated with electro-optical systems, where very significant reductions in human fallibility errors were achieved after receiving adapted and specialized training. In the eyes of company and customer leadership, the steps used to achieve these results lead to in a major culture change in both the workforce and the supporting management organization. This approach has proven effective in other industries like medicine, firefighting, law enforcement, and aviation. The roadmap to success and the steps to minimize human error are known. They can be used by any organization willing to accept human fallibility and take a proactive approach to incorporate the steps needed to manage and minimize error.

  13. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Choi, Jachoon; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Birtcher, Craig R.

    1990-01-01

    High- and low-frequency methods to analyze various radiation elements located on aerospace vehicles with combinations of conducting, nonconducting, and energy absorbing surfaces and interfaces. The focus was on developing fundamental concepts, techniques, and algorithms which would remove some of the present limitations in predicting radiation characteristics of antennas on complex aerospace vehicles. In order to accomplish this, the following subjects were examined: (1) the development of techniques for rigorous analysis of surface discontinuities of metallic and nonmetallic surfaces using the equivalent surface impedance concept and Green's function; (2) the effects of anisotropic material on antenna radiation patterns through the use of an equivalent surface impedance concept which is incorporated into the existing numerical electromagnetics computer codes; and (3) the fundamental concepts of precipitation static (P-Static), such as formulations and analytical models. A computer code was used to model the P-Static process on a simple structure. Measurement techniques were also developed to characterized the electrical properties at microwave frequencies. Samples of typical materials used in airframes were tested and the results are included.

  14. [Aerospace radiobiology: 35 years (1960-1995)].

    PubMed

    Ushakov, I B; Davydov, B I

    1996-01-01

    The paper gives a brief history of the birth and development of aerospace radiobiology at the Institute of Aviation and Space Medicine. It covers from the first radiobiological investigations in space to the insurance of radiation safety for helicopter air crews who took part in cleaning-up operations of consequences of the Chernobyl accident. The workers of the Radiobiological Laboratory have performed some research theoretical and practical tasks in the interests of aviation and space, civil and military medicine: the impact of gravitation and radiation on genetic structures has been studied, a radiation safety system for vehicles of different use has been developed, new principles in the standardization of EMF for radiofrequency and microwave bands have been proposed, the new radioprotective agent indralin (B, B-190) has been discovered, which is accepted for supply and used in rotary wing aircraft pilots during liquidation works at the Chernobyl atomic power station. New experimental data on the combined effects of radiation and non-radiation flight factors have been obtained. Basically new data on the mechanism of action of ionizing and non-ionizing radiation on the brain have been also gained, a system for assessing the health and rehabilitation of pilots that cleaned-up the Chernobyl accident has been developed. Professor Pavel Petrovich Saksonov, RF Honoured Scientist, has the honour to create a school of aerospace radiobiology. PMID:8963185

  15. NASA aerospace pyrotechnically actuated systems: Program plan

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1992-01-01

    The NASA Aerospace Pyrotechnically Actuated Systems (PAS) Program, a focused technology program, is being initiated to enhance the reliability, safety, and performance of pyrotechnically actuated systems. In broad terms, this Program Plan presents the approach that helps to resolve concerns raised by the NASA/DOD/DOE Aerospace Pyrotechnic Steering Committee. This Plan reflects key efforts needed in PAS technology. The resources committed to implement the Program will be identified in the Program Implementation Plan (PIP). A top level schedule is included along with major Program milestones and products. Responsibilities are defined in the PIP. The Plan identifies the goals and detailed objectives which define how those goals are to be accomplished. The Program will improve NASA's capabilities to design, develop, manufacture, and test pyrotechnically actuated systems for NASA's programs. Program benefits include the following: advanced pyrotechnic systems technology developed for NASA programs; hands-on pyrotechnic systems expertise; quick response capability to investigate and resolve pyrotechnic problems; enhanced communications and intercenter support among the technical staff; and government-industry PAS technical interchange. The PAS Program produces useful products that are of a broad-based technology nature rather than activities intended to meet specific technology objectives for individual programs. Serious problems have occurred with pyrotechnic devices although near perfect performance is demanded by users. The lack of a program to address those problems in the past is considered a serious omission. The nature of problems experienced as revealed by a survey are discussed and the origin of the program is explained.

  16. Lithium-Ion Batteries for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Halpert, G.; Marsh, R. A.; James, R.

    1999-01-01

    This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented.

  17. Summary of aerospace and nuclear engineering activities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.

  18. Hybrid techniques for complex aerospace electromagnetics problems

    NASA Technical Reports Server (NTRS)

    Aberle, Jim

    1993-01-01

    Important aerospace electromagnetics problems include the evaluation of antenna performance on aircraft and the prediction and control of the aircraft's electromagnetic signature. Due to the ever increasing complexity and expense of aircraft design, aerospace engineers have become increasingly dependent on computer solutions. Traditionally, computational electromagnetics (CEM) has relied primarily on four disparate techniques: the method of moments (MoM), the finite-difference time-domain (FDTD) technique, the finite element method (FEM), and high frequency asymptotic techniques (HFAT) such as ray tracing. Each of these techniques has distinct advantages and disadvantages, and no single technique is capable of accurately solving all problems of interest on computers that are available now or will be available in the foreseeable future. As a result, new approaches that overcome the deficiencies of traditional techniques are beginning to attract a great deal of interest in the CEM community. Among these new approaches are hybrid methods which combine two or more of these techniques into a coherent model. During the ASEE Summer Faculty Fellowship Program a hybrid FEM/MoM computer code was developed and applied to a geometry containing features found on many modern aircraft.

  19. Research Opportunities in Advanced Aerospace Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  20. Comments on a military transatmospheric aerospace plane

    SciTech Connect

    Chase, R.L.

    1997-01-01

    The conceptual design of a military transatmospheric aerospace plane candidate involves the selection of the mission(s), operating environment, operational concept, payload definition, specific design choices, and a close look at the technology base. A broad range of missions and concepts were reviewed prior to the selection of the mission and concepts presented in this paper. The mission selected was CONUS based global strike. The flight profile selected was a boost-glide-skip unrefuled global range trajectory. Two concepts were selected. The first was a rocket-powered design and the second was a combined air-breathing and rocket powered design. The rocket-powered configuration is a high lift-to-drag ratio modified lifting body. The rocket engine is an advanced dual fuel linear aero-spike. The air-breathing powered configuration is a modified waverider configuration. The engine for the air-breather is a rocket based combined cycle engine. Performance and technology readiness comparisons are presented for the two concepts. The paper closes with a discussion of lessons learned about military transatmospheric aerospace planes over the past twenty years. {copyright} {ital 1997 American Institute of Physics.}

  1. The Relationship of Skilled Aerospace Manufacturing Workforce Performance to Training

    ERIC Educational Resources Information Center

    Malsberry, Suzanne

    2014-01-01

    A major economic driver, the aerospace industry contributes to exports and higher wage jobs, which the United States requires to maintain robust economic health. Despite the investment in vocational educational training programs, insufficient workers have been available to aerospace companies. The purpose of this study was to investigate the…

  2. 5th Conference on Aerospace Materials, Processes, and Environmental Technology

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Editor); Stanley, D. Cross (Editor)

    2003-01-01

    Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.

  3. 77 FR 25502 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, May 25, 2012, 10:00-11:00 a.m. CST... Safety Advisory Panel Executive Director, National Aeronautics and Space Administration, Washington,...

  4. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... education programs. (b) Appropriate commands are encouraged to provide assistance to...

  5. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... education programs. (b) Appropriate commands are encouraged to provide assistance to...

  6. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... education programs. (b) Appropriate commands are encouraged to provide assistance to...

  7. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... education programs. (b) Appropriate commands are encouraged to provide assistance to...

  8. State Aerospace Education Resource/Interest Survey Summary

    ERIC Educational Resources Information Center

    Schukert, Michael A.

    1974-01-01

    Study consisted of a six-item questionnaire sent to 155 district school superintendents, to advise Montana's secondary program planners of the availability and nationwide popularity of high school aerospace education offerings and to solicit input concerning interest in on-site capability of supporting a one and two semester aerospace elective in…

  9. A RESOURCE BOOK OF AEROSPACE ACTIVITIES, K-6.

    ERIC Educational Resources Information Center

    Lincoln Public Schools, NE.

    THIS RESOURCE BOOK OF ACTIVITIES WAS WRITTEN FOR TEACHERS OF GRADES K-6, TO HELP THEM INTEGRATE AEROSPACE SCIENCE WITH THE REGULAR LEARNING EXPERIENCES OF THE CLASSROOM. SUGGESTIONS ARE MADE FOR INTRODUCING AEROSPACE CONCEPTS INTO THE VARIOUS SUBJECT FIELDS SUCH AS LANGUAGE ARTS, MATHEMATICS, PHYSICAL EDUCATION, SOCIAL STUDIES, AND OTHERS. SUBJECT…

  10. Leak Detection and Location Technology Assessment for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Coffey, Neil C.; Madaras, Eric I.

    2008-01-01

    Micro Meteoroid and Orbital Debris (MMOD) and other impacts can cause leaks in the International Space Station and other aerospace vehicles. The early detection and location of leaks is paramount to astronaut safety. Therefore this document surveys the state of the art in leak detection and location technology for aerospace vehicles.

  11. Aerospace Technology Curriculum Guide. Invest in Success. Vo. Ed. #260.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This document contains standards for an articulated secondary and postsecondary curriculum in aerospace technology. The curriculum standards can be used to ensure that vocational programs meet the needs of local business and industry. The first part of the document contains a task list and student performance standards for the aerospace technology…

  12. Current Trends in Aerospace Engineering Education on Taiwan.

    ERIC Educational Resources Information Center

    Hsieh, Sheng-Jii

    A proposal for current trends in Aerospace Engineering Education on Taiwan has been drawn from the suggestions made after a national conference of "Workshop on Aerospace Engineering Education Reform." This workshop was held in January 18-20, 1998, at the Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan,…

  13. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... education programs. (b) Appropriate commands are encouraged to provide assistance to...

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 10: The NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    The role of the NASA/DOD Aerospace Knowledge DIffusion Research Project in helping to maintain U.S. competitiveness is addressed. The phases of the project are examined in terms of the focus, emphasis, subjects, methods, and desired outcomes. The importance of the project to aerospace R&D is emphasized.

  15. Technical communications in aerospace - An analysis of the practices reported by U.S. and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    The flow of scientific and technical information (STI) at the individual, organizational, national, and international levels is studied. The responses of U.S and European aerospace engineers and scientists to questionnaires concerning technical communications in aerospace are examined. Particular attention is given to the means used to communicate information and the social system of the aerospace knowledge diffusion process. Demographic data about the survey respondents are provided. The methods used to communicate technical data and the sources utilized to solve technical problems are described. The importance of technical writing skills and the use of computer technology in the aerospace field are discussed. The derived data are useful for R&D and information managers in order to improve access to and utilization of aerospace STI.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 19: Computer and information technology and aerospace knowledge diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.; Bishop, Ann P.

    1992-01-01

    To remain a world leader in aerospace, the US must improve and maintain the professional competency of its engineers and scientists, increase the research and development (R&D) knowledge base, improve productivity, and maximize the integration of recent technological developments into the R&D process. How well these objectives are met, and at what cost, depends on a variety of factors, but largely on the ability of US aerospace engineers and scientists to acquire and process the results of federally funded R&D. The Federal Government's commitment to high speed computing and networking systems presupposes that computer and information technology will play a major role in the aerospace knowledge diffusion process. However, we know little about information technology needs, uses, and problems within the aerospace knowledge diffusion process. The use of computer and information technology by US aerospace engineers and scientists in academia, government, and industry is reported.

  17. Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2004-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  18. Total quality management: It works for aerospace information services

    NASA Technical Reports Server (NTRS)

    Erwin, James; Eberline, Carl; Colquitt, Wanda

    1993-01-01

    Today we are in the midst of information and 'total quality' revolutions. At the NASA STI Program's Center for AeroSpace Information (CASI), we are focused on using continuous improvements techniques to enrich today's services and products and to ensure that tomorrow's technology supports the TQM-based improvement of future STI program products and services. The Continuous Improvements Program at CASI is the foundation for Total Quality Management in products and services. The focus is customer-driven; its goal, to identify processes and procedures that can be improved and new technologies that can be integrated with the processes to gain efficiencies, provide effectiveness, and promote customer satisfaction. This Program seeks to establish quality through an iterative defect prevention approach that is based on the incorporation of standards and measurements into the processing cycle. Four projects are described that utilize cross-functional, problem-solving teams for identifying requirements and defining tasks and task standards, management participation, attention to critical processes, and measurable long-term goals. The implementation of these projects provides the customer with measurably improved access to information that is provided through several channels: the NASA STI Database, document requests for microfiche and hardcopy, and the Centralized Help Desk.

  19. Ford Aerospace High-G Test Series II and III

    SciTech Connect

    Beshears, D.L.

    1987-03-01

    A series of tests is being conducted on electronic and optical components and assemblies to determine how well they operate after periods of constant high acceleration. This testing is being performed for the Ford Aerospace and Communications Corporation in support of the Air Force Space and Technology Center Sagittar Program. This final report documents the second and third series of tests which consisted of 47 test runs. The tests included the evaluation of some packaging techniques in an effort to extend the load capacity of a Panasonic lithium battery. Other tests conducted in Series II consisted of accelerating two receiver units (one with a gallium arsenide lens and the other with a zinc sulfide lens) to various G levels up to 120,281 G's. The qualification target for each of these units is 120,000 G's. In Test Series III, it was possible to further extend the Panasonic lithium battery life by not only encapsulating the battery in Castolite plastic, but also enclosing the entire assembly in an aluminum housing. The other components tested in Test Series III included two receiver units (one with a germanium lens and the other a 19-mm Kodak zinc sulfide lens), a 40-mm hybrid controller, a zinc sulfide lens assembly, an Altus lithium battery, a germanium filter, and two detectors. The qualification target for the 2 batteries and the 40-mm hybrid controller is 120,000 G's, while the qualification target for each of the other components tested in Series III is 140,000 G's.

  20. Bibliography of Lewis Research Center technical publications announced in 1985

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1985. All the publications were announced in the 1985 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  1. Bibliography of Lewis Research Center technical publications announced in 1993

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  2. Bibliography of Lewis Research Center technical publications announced in 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1984. All the publications were announced in the 1984 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  3. Bibliography of Lewis Research Center technical publications announced in 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1981 are indexed and abstracted. All the publications were announced in the 1981 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patent applications, and theses. A total of 384 technical publications is listed.

  4. Bibliography of Lewis Research Center technical publications announced in 1988

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography contains abstracts of the technical reports that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1988. Subject, author, and corporate source indexes are also included. All the publications were announced in the 1988 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  5. Bibliography of Lewis Research Center Technical Publications announced in 1979

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This compilation of over 1100 abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1979. All the publications were announced in the 1979 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Research reports, journal articles, conference presentations, patents and patent applications, and theses are included. Subject, author, corporate source, contract number, and report number indexes are provided.

  6. Bibliography of Lewis Research Center technical publications announced in 1977

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This compilation of abstracts describes and indexes over 780 technical reports resulting from the scientific and engineering work performed and managed by the Lewis Research Center in 1977. All the publications were announced in the 1977 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Documents cited include research reports, journal articles, conference presentations, patents and patent applications, and theses.

  7. Bibliography of Lewis Research Center technical publications announced in 1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1987. All the publications were announced in the 1987 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  8. Bibliography of Lewis Research Center technical publications announced in 1992

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1992. All the publications were announced in the 1992 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  9. Bibliography of Lewis Research Center technical publications announced in 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1989. All the publications were announced in the 1989 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  10. Bibliography of Lewis Research Center technical publications announced in 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1990. All the publications were announced in the 1990 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  11. Bibliography of Lewis Research Center technical publications announced in 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1986. All the publications were announced in the 1986 issues of Scientific and Technical Aerospace Reports (STAR) and/or International Aerospace Abstracts (IAA). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  12. High Performance Fortran for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush; Zima, Hans; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    This paper focuses on the use of High Performance Fortran (HPF) for important classes of algorithms employed in aerospace applications. HPF is a set of Fortran extensions designed to provide users with a high-level interface for programming data parallel scientific applications, while delegating to the compiler/runtime system the task of generating explicitly parallel message-passing programs. We begin by providing a short overview of the HPF language. This is followed by a detailed discussion of the efficient use of HPF for applications involving multiple structured grids such as multiblock and adaptive mesh refinement (AMR) codes as well as unstructured grid codes. We focus on the data structures and computational structures used in these codes and on the high-level strategies that can be expressed in HPF to optimally exploit the parallelism in these algorithms.

  13. Analytical prediction of aerospace vehicle vibration environments

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Piersol, A. G.

    1981-01-01

    Considerable attention has been given recently to the formulation and validation of analytical models for the prediction of aerospace vehicle vibration response to acoustic and fluctuating pressures. This paper summarizes the development of such analytical models for two applications, (1) structural vibrations of the Space Shuttle orbiter vehicle due to broadband rocket noise and aerodynamic boundary layer turbulence, and (2) structural vibrations of general aviation aircraft due to discrete frequency propeller and reciprocating engine exhaust noise. In both cases, the spatial exterior excitations are convected pressure fields which are described on the basis of measured cross spectra (coherence and phase) information. Structural modal data are obtained from analytical predictions, and structural responses to appropriate excitation fields are calculated. The results are compared with test data, and the strengths and weaknesses of the analytical models are assessed.

  14. Development of Sensors for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro

    2005-01-01

    Advances in technology have led to the availability of smaller and more accurate sensors. Computer power to process large amounts of data is no longer the prevailing issue; thus multiple and redundant sensors can be used to obtain more accurate and comprehensive measurements in a space vehicle. The successful integration and commercialization of micro- and nanotechnology for aerospace applications require that a close and interactive relationship be developed between the technology provider and the end user early in the project. Close coordination between the developers and the end users is critical since qualification for flight is time-consuming and expensive. The successful integration of micro- and nanotechnology into space vehicles requires a coordinated effort throughout the design, development, installation, and integration processes

  15. An adaptive guidance algorithm for aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Bradt, J. E.; Hardtla, J. W.; Cramer, E. J.

    The specifications for proposed space transportation systems are placing more emphasis on developing reusable avionics subsystems which have the capability to respond to vehicle evolution and diverse missions while at the same time reducing the cost of ground support for mission planning, contingency response and verification and validation. An innovative approach to meeting these goals is to specify the guidance problem as a multi-point boundary value problen and solve that problem using modern control theory and nonlinear constrained optimization techniques. This approach has been implemented as Gamma Guidance (Hardtla, 1978) and has been successfully flown in the Inertial Upper Stage. The adaptive guidance algorithm described in this paper is a generalized formulation of Gamma Guidance. The basic equations are presented and then applied to four diverse aerospace vehicles to demonstrate the feasibility of using a reusable, explicit, adaptive guidance algorithm for diverse applications and vehicles.

  16. Fatigue crack propagation in aerospace aluminum alloys

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Piascik, R. S.; Dicus, D. L.; Newman, J. C., Jr.

    1990-01-01

    This paper reviews fracture mechanics based, damage tolerant characterizations and predictions of fatigue crack growth in aerospace aluminum alloys. The results of laboratory experimentation and modeling are summarized in the areas of: (1) fatigue crack closure, (2) the wide range crack growth rate response of conventional aluminum alloys, (3) the fatigue behavior of advanced monolithic aluminum alloys and metal matrix composites, (4) the short crack problem, (5) environmental fatigue, and (6) variable amplitude loading. Remaining uncertainties and necessary research are identified. This work provides a foundation for the development of fatigue resistant alloys and composites, next generation life prediction codes for new structural designs and extreme environments, and to counter the problem of aging components.

  17. Computational Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Sharpe, Lonnie, Jr.; Shen, Ji Yao

    1994-01-01

    The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years of the project. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed. A theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modelling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide a embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes.

  18. Physics in Aerospace and Military Applications

    NASA Astrophysics Data System (ADS)

    Tat, Hong

    2006-12-01

    Aerospace, which includes both commercial and military applications, provides a wide variety of challenging opportunities in physics. I have worked primarily in the area of sensors with projects including airport baggage scanners and defect detection for the Space Shuttle. In my current role on the Army's Future Combat Systems, we use physical models to predict battlefield sensor performance. This talk will focus on the physical principles involved in modeling electro-optical sensor performance, including the fundamental concept of minimum resolvable contrast and minimum resolvable temperature curves. I will also touch upon my experiences at Boeing and give an overview of the range of physics-related projects at Boeing. Approved for Public Release, Distribution Unlimited, TACOM 15 SEP 2006, case 06-188

  19. Langley Aerospace Research Summer Scholars. Part 2

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  20. Analytical prediction of aerospace vehicle vibration environments

    NASA Astrophysics Data System (ADS)

    Wilby, J. F.; Piersol, A. G.

    1981-09-01

    Considerable attention has been given recently to the formulation and validation of analytical models for the prediction of aerospace vehicle vibration response to acoustic and fluctuating pressures. This paper summarizes the development of such analytical models for two applications, (1) structural vibrations of the Space Shuttle orbiter vehicle due to broadband rocket noise and aerodynamic boundary layer turbulence, and (2) structural vibrations of general aviation aircraft due to discrete frequency propeller and reciprocating engine exhaust noise. In both cases, the spatial exterior excitations are convected pressure fields which are described on the basis of measured cross spectra (coherence and phase) information. Structural modal data are obtained from analytical predictions, and structural responses to appropriate excitation fields are calculated. The results are compared with test data, and the strengths and weaknesses of the analytical models are assessed.