Science.gov

Sample records for aerospace education laboratory

  1. Development and integration of modern laboratories in aerospace education

    NASA Technical Reports Server (NTRS)

    Desautel, D.; Hunter, N.; Mourtos, N.; Pernicka, H.

    1992-01-01

    This paper describes the development and integration of a suite of laboratories in an aerospace engineering program. The program's approach to undergraduate education is described as the source for the development of the supporting laboratories. Nine laboratories supporting instruction were developed and installed. The nine laboratories include most major flight-vehicle disciplines. The purpose and major equipments/experiments of each laboratory are briefly described, as is the integration of the laboratory with coursework. The laboratory education provided by this program successfully achieves its purpose of producing competitive aerospace engineering graduates and advancing the level of undergraduate education.

  2. Aerospace Community. Aerospace Education I.

    ERIC Educational Resources Information Center

    Mickey, V. V.

    This book, one in the series on Aerospace Education I, emphasizes the two sides of aerospace--military aerospace and civilian aerospace. Chapter 1 includes a brief discussion on the organization of Air Force bases and missile sites in relation to their missions. Chapter 2 examines the community services provided by Air Force bases. The topics…

  3. Aerospace Education - An Overview

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Discusses the surge of interest throughout the country in aerospace education and discusses what aerospace education is, the implications in career education and the relevance of aerospace education in the curriculum. (BR)

  4. Military Aerospace. Aerospace Education II.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is a revised publication in the series on Aerospace Education II. It describes the employment of aerospace forces, their methods of operation, and some of the weapons and equipment used in combat and combat support activities. The first chapter describes some of the national objectives and policies served by the Air Force in peace and…

  5. Aerospace Environment. Aerospace Education I.

    ERIC Educational Resources Information Center

    Savler, D. S.; Smith, J. C.

    This book is one in the series on Aerospace Education I. It briefly reviews current knowledge of the universe, the earth and its life-supporting atmosphere, and the arrangement of celestial bodies in outer space and their physical characteristics. Chapter 1 includes a brief survey of the aerospace environment. Chapters 2 and 3 examine the…

  6. Basic Aerospace Education Library

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Lists the most significant resource items on aerospace education which are presently available. Includes source books, bibliographies, directories, encyclopedias, dictionaries, audiovisuals, curriculum/planning guides, aerospace statistics, aerospace education statistics and newsletters. (BR)

  7. Aerospace - Aviation Education.

    ERIC Educational Resources Information Center

    Martin, Arthur I.; Jones, K. K.

    This document outlines the aerospace-aviation education program of the State of Texas. In this publication the course structures have been revised to fit the quarter system format of secondary schools in Texas. The four courses outlined here have been designed for students who will be consumers of aerospace products, spinoffs, and services or who…

  8. Aerospace Education. NSTA Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2008

    2008-01-01

    National Science Teachers Association (NSTA) has developed a new position statement, "Aerospace Education." NSTA believes that aerospace education is an important component of comprehensive preK-12 science education programs. This statement highlights key considerations that should be addressed when implementing a high quality aerospace education…

  9. Aerospace engineering educational program

    NASA Technical Reports Server (NTRS)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  10. The Aerospace Age. Aerospace Education I.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is written for use only in the Air Force ROTC program and cannot be purchased on the open market. The book describes the historical development of aerospace industry. The first chapter contains a brief review of the aerospace environment and the nature of technological changes brought by the aerospace revolution. The following chapter…

  11. Aerospace Education for the Melting Pot.

    ERIC Educational Resources Information Center

    Joels, Kerry M.

    1979-01-01

    Aerospace education is eminently suited to provide a framework for multicultural education. Effective programs accommodating minorities' frames of reference to the rapidly developing disciplines of aerospace studies have been developed. (RE)

  12. Aerospace Education and the Elementary Teacher

    ERIC Educational Resources Information Center

    Jones, Robert M.

    1978-01-01

    This articles attempts to stimulate otherwise reluctant school teachers to involve aerospace education in their content repertoire. Suggestions are made to aid the teacher in getting started with aerospace education. (MDR)

  13. The Aerospace Environment. Aerospace Education I. Instructor Handbook.

    ERIC Educational Resources Information Center

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This publication provides guidelines for teachers using the textbook entitled "Aerospace Environment," published in the Aerospace Education I series. Major categories included in each chapter are objectives, behavioral objectives, suggested outline, orientation, suggested key points, instructional aids, projects, and further reading. Background…

  14. Challenges in aerospace medicine education.

    PubMed

    Grenon, S Marlene; Saary, Joan

    2011-11-01

    Aerospace medicine training and research represents a dream for many and a challenge for most. In Canada, although some opportunities exist for the pursuit of education and research in the aerospace medicine field, they are limited despite the importance of this field for enabling safe human space exploration. In this commentary, we aim to identify some of the challenges facing individuals wishing to get involved in the field as well as the causal factors for these challenges. We also explore strategies to mitigate against these. PMID:22097645

  15. Aerospace Education Course Syllabus.

    ERIC Educational Resources Information Center

    Civil Air Patrol, Maxwell AFB, AL.

    This syllabus has been designed to provide the classroom teacher with a capsulized view and understanding of a one-year course at the high school level. This course is designed to be an integral part of the existing general educational program of the school and is general and introductory in nature, rather than inclusive. This syllabus is to be…

  16. Aerospace Resources for Science and Technology Education.

    ERIC Educational Resources Information Center

    Maley, Donald, Ed.; Smith, Kenneth L., Ed.

    This publication on Aerospace Programs is a special edition of "Technology Education" featuring descriptions of 15 select aerospace education programs from diverse localities spanning the full range of instructional levels. Following introductory material, the monograph contains the following largely unedited program descriptions: (1) summaries of…

  17. Aerospace Education Curriculum Guide (K-12).

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    GRADES OR AGES: K-12. SUBJECT MATTER: Aerospace education. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into two main sections, one each for primary and secondary levels. Each section is further subdivided into several parts. The guide is printed and staple bound with a paper cover. OBJECTIVES AND ACTIVITIES: Activities at each level…

  18. International Space Programs. Aerospace Education III.

    ERIC Educational Resources Information Center

    Bulmer, S. B.

    This book, one in the series on Aerospace Education III, is a collection of the diverse information available regarding the international space programs. The five goals listed for the book are: to examine the Soviet space program, to understand the future of Soviet space activity, to examine other national and international space programs, to…

  19. Theory of Aircraft Flight. Aerospace Education II.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This revised textbook, one in the Aerospace Education II series, provides answers to many questions related to airplanes and properties of air flight. The first chapter provides a description of aerodynamic forces and deals with concepts such as acceleration, velocity, and forces of flight. The second chapter is devoted to the discussion of…

  20. Aerospace Science Education, A Curriculum Guide.

    ERIC Educational Resources Information Center

    Hilburn, Paul

    This curriculum guide was developed by the Alaska State Department of Education for the purpose of aiding elementary and secondary school teachers in incorporating elements of aerospace science in the classroom. The section of the guide designed for elementary school teachers includes chapters under the headings: Aircraft, Airports, Weather,…

  1. Spacecraft and their Boosters. Aerospace Education I.

    ERIC Educational Resources Information Center

    Coard, E. A.

    This book, one in the series on Aerospace Education I, provides a description of some of the discoveries that spacecraft have made possible and of the experience that American astronauts have had in piloting spacecraft. The basic principles behind the operation of spacecraft and their boosters are explained. Descriptions are also included on…

  2. K-12 Aerospace Education Programs

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA, the United States Air Force Academy, the Air Force Space Command, the University of Colorado at Colorado Springs (UCCS), and the United States Space Foundation teamed to produce a dynamic and successful graduate course and in-service program for K-12 educators that has a positive impact on education trends across the nation. Since 1986, more than 10,000 educators from across the United States have participated in Space Discovery and Teaching with Space affecting nearly a million students in grades K-12. The programs are designed to prepare educators to use the excitement of space to motivate students in all curriculum subjects.

  3. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... education programs. (b) Appropriate commands are encouraged to provide assistance to...

  4. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... education programs. (b) Appropriate commands are encouraged to provide assistance to...

  5. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... education programs. (b) Appropriate commands are encouraged to provide assistance to...

  6. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... education programs. (b) Appropriate commands are encouraged to provide assistance to...

  7. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... education programs. (b) Appropriate commands are encouraged to provide assistance to...

  8. The aerospace energy systems laboratory: Hardware and software implementation

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Oneil-Rood, Nora

    1989-01-01

    For many years NASA Ames Research Center, Dryden Flight Research Facility has employed automation in the servicing of flight critical aircraft batteries. Recently a major upgrade to Dryden's computerized Battery Systems Laboratory was initiated to incorporate distributed processing and a centralized database. The new facility, called the Aerospace Energy Systems Laboratory (AESL), is being mechanized with iAPX86 and iAPX286 hardware running iRMX86. The hardware configuration and software structure for the AESL are described.

  9. An Assessment of the Effectiveness of Selected Aerospace Education Workshops in Tennessee

    ERIC Educational Resources Information Center

    Maupin, Pauline Hicks

    1976-01-01

    Data from questionnaires indicated that the Tennessee Aerospace Education Workshops were successful in reaching their stated goals, which included developing a greater awareness of aerospace education and helping teachers incorporate more aerospace education in classroom activities. (MLH)

  10. Current Trends in Aerospace Engineering Education on Taiwan.

    ERIC Educational Resources Information Center

    Hsieh, Sheng-Jii

    A proposal for current trends in Aerospace Engineering Education on Taiwan has been drawn from the suggestions made after a national conference of "Workshop on Aerospace Engineering Education Reform." This workshop was held in January 18-20, 1998, at the Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan,…

  11. State Aerospace Education Resource/Interest Survey Summary

    ERIC Educational Resources Information Center

    Schukert, Michael A.

    1974-01-01

    Study consisted of a six-item questionnaire sent to 155 district school superintendents, to advise Montana's secondary program planners of the availability and nationwide popularity of high school aerospace education offerings and to solicit input concerning interest in on-site capability of supporting a one and two semester aerospace elective in…

  12. The Aerospace Energy Systems Laboratory: A BITBUS networking application

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Oneill-Rood, Nora

    1989-01-01

    The NASA Ames-Dryden Flight Research Facility developed a computerized aircraft battery servicing facility called the Aerospace Energy Systems Laboratory (AESL). This system employs distributed processing with communications provided by a 2.4-megabit BITBUS local area network. Customized handlers provide real time status, remote command, and file transfer protocols between a central system running the iRMX-II operating system and ten slave stations running the iRMX-I operating system. The hardware configuration and software components required to implement this BITBUS application are required.

  13. Aerospace energy systems laboratory: Requirements and design approach

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    The NASA Ames-Dryden Flight Research Facility at Edwards, California, operates a mixed fleet of research aircraft employing nickel-cadmium (NiCd) batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has developed over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.

  14. Aviation/Aerospace Teacher Education Workshops: Program Development and Implementation.

    ERIC Educational Resources Information Center

    Green, Mavis F.

    1998-01-01

    Describes an aviation/aerospace teacher-education workshop that allows elementary school teachers to become familiar with aviation fundamentals and issues and with ways to incorporate aviation topics into their curricula. (JOW)

  15. Space Station Freedom - A resource for aerospace education

    NASA Technical Reports Server (NTRS)

    Brown, Robert W.

    1988-01-01

    The role of the International Space Station in future U.S. aerospace education efforts is discussed from a NASA perspective. The overall design concept and scientific and technological goals of the Space Station are reviewed, and particular attention is given to education projects such as the Davis Planetarium Student Space Station, the Starship McCullough, the Space Habitat, the working Space Station model in Austin, TX, the Challenger Center for Space Life Education, Space M+A+X, and the Space Science Student Involvement Program. Also examined are learning-theory aspects of aerospace education: child vs adult learners, educational objectives, teaching methods, and instructional materials.

  16. Software for aerospace education: A bibliography, 2nd edition

    NASA Technical Reports Server (NTRS)

    Vogt, Gregory L.; Roth, Susan Kies; Phelps, Malcom V.

    1990-01-01

    This is the second aerospace education software bibliography to be published by the NASA Educational Technology Branch in Washington, DC. Unlike many software bibliographies, this bibliography does not evaluate and grade software according to its quality and value to the classroom, nor does it make any endorsements or warrant scientific accuracy. Rather, it describes software, its subject, approach, and technical details. This bibliography is intended as a convenience to educators. The specific software included represents replies to more than 300 queries to software producers for aerospace education programs.

  17. Aircraft of Today. Aerospace Education I.

    ERIC Educational Resources Information Center

    Savler, D. S.

    This textbook gives a brief idea about the modern aircraft used in defense and for commercial purposes. Aerospace technology in its present form has developed along certain basic principles of aerodynamic forces. Different parts in an airplane have different functions to balance the aircraft in air, provide a thrust, and control the general…

  18. The aerospace technology laboratory (a perspective, then and now)

    NASA Technical Reports Server (NTRS)

    Connors, J. F.; Hoffman, R. G.

    1982-01-01

    The physical changes that have taken place in aerospace facilities since the Wright brothers' accomplishment 78 years ago are highlighted. For illustrative purposes some of the technical facilities and operations of the NASA Lewis Research Center are described. These simulation facilities were designed to support research and technology studies in aerospace propulsion.

  19. Human Requirements of Flight. Aviation and Spaceflight. Aerospace Education III.

    ERIC Educational Resources Information Center

    Coard, E. A.

    This book, one in the series on Aerospace Education III, deals with the general nature of human physiology during space flights. Chapter 1 begins with a brief discussion of the nature of the atmosphere. Other topics examined in this chapter include respiration and circulation, principles and problems of vision, noise and vibration, and…

  20. Defense of the United States. Aerospace Education III.

    ERIC Educational Resources Information Center

    Mickey, V. V.

    This publication, one in the series on Aerospace Education III, deals with the background of the defense system of the United States. Description of different wars in which this country was involved includes the development of new military organizations and different weapons. One chapter is devoted in its entirity to the organizational structure…

  1. Civil Aviation and Facilities. Aerospace Education II. Instructional Unit IV.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This publication accompanies the textbook entitled "Civil Aviation and Facilities," published in the Aerospace Education II series. It provides teacher guidelines with regard to objectives (traditional and behavioral), suggested outlines, orientation, suggested key points, suggestions for teaching, instructional aids, projects, and further reading…

  2. Propulsion Systems for Aircraft. Aerospace Education II. Instructional Unit II.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This curriculum guide accompanies another publication in the Aerospace Education II series entitled "Propulsion Systems for Aircraft." The guide includes specific guidelines for teachers on each chapter in the textbook. Suggestions are included for objectives (traditional and behavioral), suggested outline, orientation, suggested key points,…

  3. Aircraft of Today. [Aerospace Education I. Instructor Handbook.

    ERIC Educational Resources Information Center

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This publication is prepared to accompany the textbook entitled "Aircraft of Today," published in the Aerospace Education I series. The curriculum guide provides guidelines for teachers in terms of various concepts stressed in each chapter and suggested methodology for instruction. The subdivisions in the guidebook for each chapter include…

  4. Spacecraft and Their Boosters. Aerospace Education I. Instructor Handbook.

    ERIC Educational Resources Information Center

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This curriculum guide is prepared for the textbook entitled "Spacecraft and their Boosters," published in the Aerospace Education I series. Specific guidelines are provided for teachers on each chapter included in the textbook. The guidelines are organized in nine categories: objectives, behavioral objectives, textbook outline, orientation,…

  5. The Lincoln Laboratory-Aerospace Medical Research Laboratory digital speech test facility

    NASA Astrophysics Data System (ADS)

    Tierney, J.; Schecter, H.

    1984-05-01

    A narrowband digital speech communication test facility has been established and operates between Lincoln Laboratory and the Wright-Patterson Aerospace Medical Research Laboratory. Noise fields simulating the acoustic environments of E3A and F-15 aircraft are established and Air Force personnel use the link operating at 2400 bps with a vocoder designed at Lincoln Laboratory, and a commercial telephone line modem. The facility includes a digital signal processing computer which can introduce bit errors and delay into the transmit and receive data. Communication scenarios are used to exercise the vocoder-modem channel with the dynamics and vocabulary of typical operational exchanges. Answers to a standard questionnaire provide acceptability data for the 2400 bps JTIDS class 2 voice channel. For the tests run so far, the 2400 bps voice is acceptable in the sense of positive user response to the questionnaire. Further testing using error and delay simulations will follow. An F-15 to F-15 link will be simulated at AMRL using a pair of vocoders operating back-to-back and in separate noise chambers.

  6. Current research activities at the NASA-sponsored Illinois Computing Laboratory of Aerospace Systems and Software

    NASA Technical Reports Server (NTRS)

    Smith, Kathryn A.

    1994-01-01

    The Illinois Computing Laboratory of Aerospace Systems and Software (ICLASS) was established to: (1) pursue research in the areas of aerospace computing systems, software and applications of critical importance to NASA, and (2) to develop and maintain close contacts between researchers at ICLASS and at various NASA centers to stimulate interaction and cooperation, and facilitate technology transfer. Current ICLASS activities are in the areas of parallel architectures and algorithms, reliable and fault tolerant computing, real time systems, distributed systems, software engineering and artificial intelligence.

  7. Space architecture education as a part of aerospace engineering curriculum

    NASA Astrophysics Data System (ADS)

    Bannova, Olga; Bell, Larry

    2011-12-01

    Education is particularly important for new fields. In the case of space architecture, there are two core needs: educating the aerospace community about the architect's function and activity and design process within the enterprise; educating space architects and associated specialists about constraints, conditions, and priorities unique to human space systems. These needs can be addressed, respectively, by two key educational tools for the 21st century: introducing the space architecture discipline into the space system engineering curricula; developing space architecture as a distinct, complete training curriculum. New generations of professionals with a space architecture background can help shift professional focus from just engineering-driven transportation systems and "sortie" missions to permanent offworld human presence by offering their inherently integrative design approach to all types of space structures and facilities. Although architectural and engineering approaches share some similarities in solving problems, they also have significant differences. Architectural training teaches young professionals to operate at all scales from the "overall picture" down to the smallest details to provide directive intention - not just analysis - to design opportunities, to address the relationship between human behavior and the built environment, and to interact with many diverse fields and disciplines throughout the project lifecycle.

  8. Oklahoma Aerospace Intellectual Capital/Educational Recommendations: An Inquiry of Oklahoma Aerospace Executives

    ERIC Educational Resources Information Center

    Nelson, Erin M.

    2010-01-01

    Scope and Method of Study: The purpose of this qualitative study was to conduct detailed personal interviews with aerospace industry executives/managers from both the private and military sectors from across Oklahoma to determine their perceptions of intellectual capital needs of the industry. Interviews with industry executives regarding…

  9. Curriculum Development In Aerospace Education Teaching for Behavior, Skills and Values

    ERIC Educational Resources Information Center

    Jones, Robert M.; Steinbrink, John E.

    1977-01-01

    Traces contribution to teaching effectiveness and curriculum design, occurring since 1950, and presents a format for modifying the developments made in other disciplines to aerospace education. Included is an example of an inquiry lesson dealing with parachutes. (SL)

  10. Report of the Governor's Task Force on Aerospace-Aviation Education.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Office of General Aviation.

    The purpose of the Aerospace-Aviation Education Task Force was to study the problems and present recommendations for space and aviation education in California. Educational trends and the increasing rate of dropout occurrence reveal a need to introduce changes in the education and training of students. Many career opportunities exist in the field…

  11. Systemwide Aviation/Aerospace Education Program Review. Aviation/Aerospace Task Force's Report to the Oklahoma State Regents for Higher Education.

    ERIC Educational Resources Information Center

    Oklahoma State Regents for Higher Education, Oklahoma City.

    A program review was done of all aviation/aerospace-related higher education programs in Oklahoma. A team of nine experts reviewed statistics on the state's public and private programs, conducted a survey of institutions on industry status and projected training needs, and visited all 10 program locations. The project applied guidelines to…

  12. Managing the Occupational Education Laboratory.

    ERIC Educational Resources Information Center

    Storm, George

    This guide for occupational educators deals with laboratory and instructional management on an interdisciplinary basis within the broad field of occupational education. The principles discussed are intended to be applied at all levels and in all types of laboratories. The text suggests effective ways of organizing laboratories so that students can…

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 55: Career goals and educational preparation of aerospace engineering and science students: An international perspective

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1995-01-01

    Results are presented of a survey of aerospace engineering and science students conducted in India, Japan, Russia, the United Kingdom, and the United States. The similarities and differences among aerospace engineering and science students from the five countries are examined in the context of two general aspects of educational experience. First, the extent to which students differ regarding the factors that led to the choice of a career in aerospace, their current levels of satisfaction with that choice, and career-related goals and objectives is considered. Second, the importance of certain communications/information-use skills for professional use is examined, as well as the frequency of use and importance of specific information sources and products to meet students' educational needs. Overall, the students who participated in this research remain relatively happy with the choice of a career in aerospace engineering, despite pessimism in some quarters about the future of the industry. Regardless of national identity, aerospace engineering and science students appear to share a similar vision of the profession in terms of their career goals and aspirations. The data also indicate that aerospace engineering and science students are well aware of the importance of communications/information-use skills to professional success and that competency in these skills will help them to be productive members of their profession. Collectively, all of the students appear to use and value similar information sources and products, although some differences appear by country.

  14. The Laboratory in Professional Education.

    ERIC Educational Resources Information Center

    Kaplan, Harold N.

    1979-01-01

    The role of laboratory experience in professional education is discussed. Although laboratory experiments are often expensive and demanding on faculty time, they can offer a unique experience to the veterinary medicine student. (BH)

  15. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  16. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III. Instructional Unit II.

    ERIC Educational Resources Information Center

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This curriculum guide is prepared for the Aerospace Education III series publication entitled "Space Technology: Propulsion, Control and Guidance of Space Vehicles." It provides guidelines for each chapter. The guide includes objectives, behavioral objectives, suggested outline, orientation, suggested key points, suggestions for teaching,…

  17. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III.

    ERIC Educational Resources Information Center

    Savler, D. S.; Mackin, T. E.

    This book, one in the series on Aerospace Education III, includes a discussion of the essentials of propulsion, control, and guidance and the conditions of space travel. Chapter 1 provides a brief account of basic laws of celestial mechanics. Chapters 2, 3, and 4 are devoted to the chemical principles of propulsion. Included are the basics of…

  18. Integration of educational and scientific-technological areas during the process of education of aerospace engineers

    NASA Astrophysics Data System (ADS)

    Mayorova, Vera

    2011-09-01

    National priorities, defined by modern state of high-tech industries, demand adequate problem solving of training professionals possessing required modern qualifications. Modern tendencies of the development of aerospace technologies, harsh competition in the market of space services and expansion of international cooperation for implementation of space projects, demand sharp increase of the scientific/technical level and competitiveness of the developed projects. Especially important is to be able to solve technological problems, which in turn define the cost and quality attributes of the designed item, as well as the ability to utilize the most modern design principles. Training of highly efficient, creative professionals who are capable of generating and implementing new ideas is a very important factor driving not only the development of national economy and industry, but also enriching the human capital of the country. Moscow State Technical University named after N.E. Bauman developed and successfully implemented the project-oriented technology of professional training for aerospace industry. It assumes a multitude of forms, methodologies and organizational events, which allow preparing the specialists - on the basis of integration of scientific/technological and educational environment - who are adapted to the conditions of the intellectual market. The Youth Space Center of the University is the base where graduate and post-graduate students attend unique lectures as a part of the facultative course "Applied Cosmonautics", participate in annual International Youth Science School "Space Development: Theory and Practice" and develop innovative technical projects aimed at creation of real-life space hardware. Microsatellite technologies are being developed in Bauman University through various projects, which are implemented in a coordinated manner by way of accomplishing the following steps: development of small-size satellites by universities, using them as

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 45; The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 3 US Aerospace Engineering Educators Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports, present a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the American Institute of Aeronautics and Astronautics (AIAA) and identified themselves as educators.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 43: The role of information resource training in aerospace education. Expanded version

    NASA Technical Reports Server (NTRS)

    Lawrence, Barbara; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Holloway, Karen

    1994-01-01

    Information resource instruction for undergraduate aerospace engineering students has traditionally been limited to an occasional part of the education process--a written paper required in the capstone design course or a library tour. Efforts to encourage the use of aerospace literature and information resources have been made in the past decade, with a recent push from information and, especially, networking technology. This paper presents data from a survey of U.S. aerospace engineering students regarding their instruction in the use of information resources. We find that more than 25 percent of the students surveyed had no instruction in technical communications skills or the use of information resources. We consider the need for instruction in the use of information resources and technical communications skills and the opportunities presented for improvement.

  1. A qualitative inquiry of educational requirements of selected professions in the Oklahoma aerospace industry

    NASA Astrophysics Data System (ADS)

    Walker, Casey Jerry Kennon

    Interview of incumbents of intellectual capital positions at Boeing. The aerospace industry is a dynamic industry that requires continual skill updates to keep up with advancements in technology and operational trends within the industry. The purpose of this study was to examine intellectual capital requirements of selected professional positions within the Boeing Company in Oklahoma. Data obtained through interviews was used to determine if educational skills gaps existed. The findings of the study can be used to develop an aerospace educational pipeline based on collaborative relationships between industry and higher education to facilitate educational and training programs. Three broad research questions were used to address and support the findings of this study related to educational background, career progression, and gaps. A purposive sample of 10 professional positions was selected for interview using an interview guide containing 18 questions. Data was analyzed using manual coding techniques. Findings and conclusions. The study found that minimum education requirements for selected professional positions consisted of a bachelor's degree. Although the majority of participants identified a business degree as optimal, several participants indicated that an education background from multiple disciplines would provide the greatest benefit. Data from interviews showed educational degrees were not specialized enough and skills required to perform job functions were obtained through direct on the job experience or through corporate training. Indications from participant responses showed employees with a thorough knowledge of government acronyms had a decided advantage over those that did not. Recommendations included: expanding the study to multiple organizations by conducting a survey; expanding industry and academic partnerships; establishing a structured educational pipeline to fill critical positions; creating broad aerospace curricula degree programs tailored

  2. Laboratory Education in New Zealand

    ERIC Educational Resources Information Center

    Borrmann, Thomas

    2008-01-01

    Laboratory work is one of the main forms of teaching used in chemistry, physics, biology and medicine. For many years researchers and teachers have argued in favor of or against this form of education. Student opinion could be a valuable tool for teachers to demonstrate the validity of such expensive and work intensive forms of education as…

  3. Software for Aerospace Education. A Bibliography (Second Edition).

    ERIC Educational Resources Information Center

    Vogt, Gregory L.; And Others

    The software described in this bibliography represents programs made available to the National Aeronautics and Space Administration (NASA) Educational Technology Branch by software producers and vendors. More than 200 computer software programs and 12 laser videodisk programs are reviewed in terms of title, copyright, subject, application, type,…

  4. An Approach to Evaluate Precision and Inter-Laboratory Variability of Flammability Test Methods for Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Beeson, Harold D.

    2005-01-01

    Materials selection for spacecraft is based on conventional flammability or ignition sensitivity acceptance tests. Current procedures for determining the inter-laboratory repeatability and reproducibility of aerospace materials flammability tests are not considering the dependence of data variability on test conditions and consequently attempts to characterize the precision of these methods were not successful. The inter-laboratory data variability is determined with tests conducted under arbitrary conditions, which consequently may not provide sufficient information to enable adequate determination of a method's precision. For evaluating the precision of NASA's flammability test methods, the protocol recommended includes selecting critical parameters and determining the 50% failure point by considering the specific failure criteria of each method using the critical parameter as a variable. Upon performing inter-laboratory round robin testing using this approach, the laboratories' performance could be evaluated by comparing the repeatability of the 50% failure point and/or the repeatability of critical conditions where the probabilities of passing and failing are unity, i.e., the transition zone repeatability. When a sufficient amount of data has been acquired with this method, an adequate estimation of precision of aerospace materials flammability test methods will be possible.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 44: Becoming an aerospace engineer: Some thoughts on the career goals and educational preparation of AIAA student members

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Hecht, Laura M.

    1994-01-01

    Similarities and differences between undergraduate and graduate engineering students in the context of two general aspects of educational experience are described. Considered first is the extent to which students differ regarding the factors that led to the choice of a career in aerospace engineering, their current levels of satisfaction with that choice, and career-related goals and objectives. Second, the importance of certain information-use skills for professional success, and the frequency of use and importance of specific information sources and products to meet students' educational needs, are explored.

  6. A Study of Aerospace Education Workshops Which Utilize NASA Materials and Resource Personnel

    ERIC Educational Resources Information Center

    Helton, Robert Dale

    1974-01-01

    Reports findings from two questionnaires administered to participants of aerospace workshops which utilized the National Aeronautics and Space Administration (NASA) materials and resource personnel. The findings gave a broad picture of aerospace workshops across the United States. (BR)

  7. The role of education and training in absorptive capacity of international technology transfer in the aerospace sector

    NASA Astrophysics Data System (ADS)

    van der Heiden, Patrick; Pohl, Christine; Bin Mansor, Shuhaimi; van Genderen, John

    2015-07-01

    The role of education and training in the aerospace sector for establishing sufficient levels of absorptive capacity in newly industrialized countries is substantial and forms a fundamental part of a nation's ability to establish and cultivate absorptive capacity on a national or organization-specific level. Successful international technology transfer as well as absorption of aerospace technology and knowledge into recipient organizations, depends prodigiously on the types of policy adopted in education and training of all groups and individuals specifically outlined in this paper. The conducted literature review revealed surprisingly few papers that translate these vital issues from theoretical scrutiny into representations that have practical policy value. Through exploration of the seven key aspects of education and training, this paper provides a practical template for policy-makers and practitioners in Asian newly industrialized countries, which may be utilized as a prototype to coordinate relevant policy aspects of education and training in international technology transfer projects across a wide variety of actors and stakeholders in the aerospace realm. A pragmatic approach through tailored practical training for the identified groups and individuals identified in this paper may lead to an enhanced ability to establish and strengthen absorptive capacity in newly industrialized countries through the development of appropriate policy guidelines. The actual coordination between education and training efforts deserves increased research and subsequent translation into policies with practical content in the aerospace sector.

  8. Educational ultrasound nondestructive testing laboratory.

    PubMed

    Genis, Vladimir; Zagorski, Michael

    2008-09-01

    The ultrasound nondestructive evaluation (NDE) of materials course was developed for applied engineering technology students at Drexel University's Goodwin College of Professional Studies. This three-credit, hands-on laboratory course consists of two parts: the first part with an emphasis on the foundations of NDE, and the second part during which ultrasound NDE techniques are utilized in the evaluation of parts and materials. NDE applications are presented and applied through real-life problems, including calibration and use of the latest ultrasonic testing instrumentation. The students learn engineering and physical principles of measurements of sound velocity in different materials, attenuation coefficients, material thickness, and location and dimensions of discontinuities in various materials, such as holes, cracks, and flaws. The work in the laboratory enhances the fundamentals taught during classroom sessions. This course will ultimately result in improvements in the educational process ["The greater expectations," national panel report, http://www.greaterexpectations.org (last viewed February, 2008); R. M. Felder and R. Brent "The intellectual development of Science and Engineering Students. Part 2: Teaching to promote growth," J. Eng. Educ. 93, 279-291 (2004)] since industry is becoming increasingly reliant on the effective application of NDE technology and the demand on NDE specialists is increasing. NDE curriculum was designed to fulfill levels I and II NDE in theory and training requirements, according to American Society for Nondestructive Testing, OH, Recommended Practice No. SNT-TC-1A (2006). PMID:19045633

  9. Utilization of Educationally Oriented Microcomputer Based Laboratories

    ERIC Educational Resources Information Center

    Fitzpatrick, Michael J.; Howard, James A.

    1977-01-01

    Describes one approach to supplying engineering and computer science educators with an economical portable digital systems laboratory centered around microprocessors. Expansion of the microcomputer based laboratory concept to include Learning Resource Aided Instruction (LRAI) systems is explored. (Author)

  10. Roles, uses, and benefits of general aviation aircraft in aerospace engineering education

    NASA Technical Reports Server (NTRS)

    Odonoghue, Dennis P.; Mcknight, Robert C.

    1994-01-01

    Many colleges and universities throughout the United States offer outstanding programs in aerospace engineering. In addition to the fundamentals of aerodynamics, propulsion, flight dynamics, and air vehicle design, many of the best programs have in the past provided students the opportunity to design and fly airborne experiments on board various types of aircraft. Sadly, however, the number of institutions offering such 'airborne laboratories' has dwindled in recent years. As a result, opportunities for students to apply their classroom knowledge, analytical skills, and engineering judgement to the development and management of flight experiments on an actual aircraft are indeed rare. One major reason for the elimination of flight programs by some institutions, particularly the smaller colleges, is the prohibitive cost of operating and maintaining an aircraft as a flying laboratory. The purpose of this paper is to discuss simple, low-cost, relevant flight experiments that can be performed using readily available general aviation aircraft. This paper examines flight experiments that have been successfully conducted on board the NASA Lewis Research Center's T-34B aircraft, as part of the NASA/AIAA/University Flight Experiment Program for Students (NAUFEPS) and discusses how similar experiments could be inexpensively performed on other general aviation aircraft.

  11. Innovative Educational Aerospace Research at the Northeast High School Space Research Center

    NASA Technical Reports Server (NTRS)

    Luyet, Audra; Matarazzo, Anthony; Folta, David

    1997-01-01

    Northeast High Magnet School of Philadelphia, Pennsylvania is a proud sponsor of the Space Research Center (SPARC). SPARC, a model program of the Medical, Engineering, and Aerospace Magnet school, provides talented students the capability to successfully exercise full simulations of NASA manned missions. These simulations included low-Earth Shuttle missions and Apollo lunar missions in the past, and will focus on a planetary mission to Mars this year. At the end of each scholastic year, a simulated mission, lasting between one and eight days, is performed involving 75 students as specialists in seven teams The groups are comprised of Flight Management, Spacecraft Communications (SatCom), Computer Networking, Spacecraft Design and Engineering, Electronics, Rocketry, Robotics, and Medical teams in either the mission operations center or onboard the spacecraft. Software development activities are also required in support of these simulations The objective of this paper is to present the accomplishments, technology innovations, interactions, and an overview of SPARC with an emphasis on how the program's educational activities parallel NASA mission support and how this education is preparing student for the space frontier.

  12. Regional Educational Laboratories: 1980. A Descriptive Account.

    ERIC Educational Resources Information Center

    Salmon-Cox, Leslie

    This report was prompted by a request from the National Institute of Education (NIE), which in turn stemmed from internal discussion about what to do about the fact that some regions of the country are unserved, or only partially served, by existing educational laboratories. This report was directed to be a description of current laboratories'…

  13. Aerospace bibliography, seventh edition

    NASA Technical Reports Server (NTRS)

    Blashfield, J. F. (Compiler)

    1983-01-01

    Space travel, planetary probes, applications satellites, manned spaceflight, the impacts of space exploration, future space activities, astronomy, exobiology, aeronautics, energy, space and the humanities, and aerospace education are covered.

  14. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Michaud, Vince

    2015-01-01

    NASA Aerospace Medicine overview - Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.

  15. Laboratory test methods for evaluating the fire response of aerospace materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.

    1979-01-01

    The test methods which were developed or evaluated were intended to serve as means of comparing materials on the basis of specific responses under specific sets of test conditions, using apparatus, facilities, and personnel that would be within the capabilities of perhaps the majority of laboratories. Priority was given to test methods which showed promise of addressing the pre-ignition state of a potential fire. These test methods were intended to indicate which materials may present more hazard than others under specific test conditions. These test methods are discussed and arranged according to the stage of a fire to which they are most relevant. Some observations of material performance which resulted from this work are also discussed.

  16. Education and the physician's office laboratory.

    PubMed

    Fischer, P M; Addison, L A; Koneman, E W; Crowley, J

    1986-03-21

    The field of physicians' office laboratory testing has witnessed an increase in test volume and advances in technology, but little attention to educational issues. If this field is to continue to grow and to perform high-quality testing, primary care physicians will need to be trained in the role of laboratory director. Office staff will require "in the office" continuing education. Formal technician and technologist training will need to focus some attention on office test procedures. The development of these new educational programs will require the cooperative efforts of primary care physician educators, pathologists, allied health faculty, and the diagnostic equipment industry. PMID:3951080

  17. Mandatory Continuing Education for Clinical Laboratory Personnel.

    ERIC Educational Resources Information Center

    Fisher, Fran; Pankowski, Mary L.

    1992-01-01

    Rapid changes make mandatory continuing education (MCE) for clinical laboratory professionals imperative. Recent well-designed studies refute arguments of ineffectiveness by showing how (MCE) alters professional practice. Problems other professions have had with licensure can be avoided. (SK)

  18. Preservice laboratory education strengthening enhances sustainable laboratory workforce in Ethiopia

    PubMed Central

    2013-01-01

    Background There is a severe healthcare workforce shortage in sub Saharan Africa, which threatens achieving the Millennium Development Goals and attaining an AIDS-free generation. The strength of a healthcare system depends on the skills, competencies, values and availability of its workforce. A well-trained and competent laboratory technologist ensures accurate and reliable results for use in prevention, diagnosis, care and treatment of diseases. Methods An assessment of existing preservice education of five medical laboratory schools, followed by remedial intervention and monitoring was conducted. The remedial interventions included 1) standardizing curriculum and implementation; 2) training faculty staff on pedagogical methods and quality management systems; 3) providing teaching materials; and 4) procuring equipment for teaching laboratories to provide practical skills to complement didactic education. Results A total of 2,230 undergraduate students from the five universities benefitted from the standardized curriculum. University of Gondar accounted for 252 of 2,230 (11.3%) of the students, Addis Ababa University for 663 (29.7%), Jimma University for 649 (29.1%), Haramaya University for 429 (19.2%) and Hawassa University for 237 (10.6%) of the students. Together the universities graduated 388 and 312 laboratory technologists in 2010/2011 and 2011/2012 academic year, respectively. Practical hands-on training and experience with well-equipped laboratories enhanced and ensured skilled, confident and competent laboratory technologists upon graduation. Conclusions Strengthening preservice laboratory education is feasible in resource-limited settings, and emphasizing its merits (ample local capacity, country ownership and sustainability) provides a valuable source of competent laboratory technologists to relieve an overstretched healthcare system. PMID:24164781

  19. Sandia National Laboratories Education Outreach Activities

    SciTech Connect

    Dawes, William R. Jr.

    1999-08-26

    The US Department of Energy and its national laboratories are a major employer of scientists and engineers and consequently have a strong interest in the development and training of a qualified pool of employment candidates. For many years the DOE and its national laboratories have supported education activities devoted to increasing the number and quality of science and engineering graduates. This is part of the DOE mission because of the critical national need for scientists and engineers and the recognized deficiencies in the education system for science and mathematics training. Though funding support for such activities has waxed and waned, strong education programs have survived in spite of budget pressures. This paper reviews a few of the education programs presently supported at Sandia by the Science and Technology Outreach Department. The US DOE Defense Programs Office and Sandia National Laboratories provide financial support for these education activities.

  20. Developing a Remote Laboratory for Engineering Education

    ERIC Educational Resources Information Center

    Fabregas, E.; Farias, G.; Dormido-Canto, S.; Dormido, S.; Esquembre, F.

    2011-01-01

    New information technologies provide great opportunities for education. One such opportunity is the use of remote control laboratories for teaching students about control systems. This paper describes the creation of interactive remote laboratories (RLs). Two main software tools are used: Simulink and Easy Java Simulations (EJS). The first is a…

  1. The Learning Laboratory in Adult Basic Education.

    ERIC Educational Resources Information Center

    Miller, James

    A review is provided of the learning laboratory concept as it is being implemented in the Ohio Adult Basic Education Program. Seating, scheduling, budgeting, and related details are considered first, followed by laboratory coordinators and supportive staff members, the use of programed instruction, selection of programed materials, student…

  2. A History of Educational Facilities Laboratories (EFL)

    ERIC Educational Resources Information Center

    Marks, Judy

    2009-01-01

    The Educational Facilities Laboratories (EFL), an independent research organization established by the Ford Foundation, opened its doors in 1958 under the direction of Harold B. Gores, a distinguished educator. Its purpose was to help schools and colleges maximize the quality and utility of their facilities, stimulate research, and disseminate…

  3. Higher Education's Effectiveness in Preparing Students for Professional Practice: Perspectives from the Aerospace and Banking Industries.

    ERIC Educational Resources Information Center

    Hansen, Ronald E.

    The congruence of expectations of industrial managers concerning the preparation of college graduates and what university professional schools are attempting to provide was explored. The focus was the aerospace and banking industries. Interviews were conducted with 24 senior executives from 13 corporations to determine what industry requires of…

  4. Accommodation of Nontraditional Aerospace Degree Aspirants

    ERIC Educational Resources Information Center

    Schukert, Michael A.

    1977-01-01

    Presents results of a national survey of institutions offering college level aerospace studies. Primary survey concern is the availability of nontraditional aerospace education programs; however, information pertaining to institution characteristics, program characteristics, and staffing are also included. (SL)

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 40: Technical communications in aerospace education: A study of AIAA student members

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.; Pinelli, Thomas E.; Barclay, Rebecca O.

    1994-01-01

    This paper describes the preliminary analysis of a survey of the American Institute of Aeronautics and Astronautics (AIAA) student members. In the paper we examine (1) the demographic characteristics of the students, (2) factors that affected their career decisions, (3) their career goals and aspirations, and (4) their training in technical communication and techniques for finding and using aerospace scientific and technical information (STI). We determine that aerospace engineering students receive training in technical communication skills and the use of STI. While those in the aerospace industry think that more training is needed, we believe the students receive the appropriate amount of training. We think that the differences between the amount of training students receive and the perception of training needs is related partially to the characteristics of the students and partially to the structure of the aerospace STI dissemination system. Overall, we conclude that the students' technical communication training and knowledge of STI, while limited by external forces, makes it difficult for students to achieve their career goals.

  6. Investigations for a Mobile Environmental Education Laboratory.

    ERIC Educational Resources Information Center

    Childress, Ronald B.

    Envirpnmental investigations in this compilation were developed in conjunction with the establishment of a mobile environmental education laboratory, a demonstration project of the Kingsport (Tennessee) City School System. The 50 activities are divided into five categories: basic resources, environmental problems, living organisms, community…

  7. Aerospace Technology.

    ERIC Educational Resources Information Center

    Paschke, Jean; And Others

    1991-01-01

    Describes the Sauk Rapids (Minnesota) High School aviation and aerospace curriculum that was developed by Curtis Olson and the space program developed by Gerald Mayall at Philadelphia's Northeast High School. Both were developed in conjunction with NASA. (JOW)

  8. Aerospace Bibliography. Seventh Edition.

    ERIC Educational Resources Information Center

    Blashfield, Jean F., Comp.

    Provided for teachers and the general adult reader is an annotated and graded list of books and reference materials dealing with aerospace subjects. Only non-fiction books and pamphlets that need to be purchased from commercial or government sources are included. Free industrial materials and educational aids are not included because they tend to…

  9. Aerospace at Saint Francis.

    ERIC Educational Resources Information Center

    Aviation/Space, 1980

    1980-01-01

    Discusses an aviation/aerospace program as a science elective for 11th and 12th year students. This program is multi-faceted and addresses the needs of a wide variety of students. Its main objective is to present aviation and space sciences which will provide a good base for higher education in these areas. (SK)

  10. Distance Education with a Computerized Astronomy Laboratory

    NASA Astrophysics Data System (ADS)

    Connors, Martin

    1992-12-01

    Distance Education is the presentation of an educational curriculum through self-study materials supplemented by regular contact with an instructor. As such it is suitable for offering educational opportunities to students in widely dispersed locations typical of Canada. Since 1989 Athabasca University has offered Science 280, Introduction to Astronomy and Astrophysics, as a broad introduction to Astronomy at a pre-calculus level. The course includes a computer-based laboratory (observing simulation) set done in students' homes. The laboratory allows simulation of naked eye astronomical observations, starting with the motions of the sun and moon. The logical jump to motions not apparently centered on Earth (planetary retrograde motion and periods) seems to present difficulty to students. Stellar proper motions are made observable by the use of long observing intervals of up to 30000 years. The distribution of nearby stars in space is studied through use of stellar color and the assumption that all stars are on the Main Sequence. The erroneous results which this engenders are not recognized as such by most students, who happily submit reports with red stars at .02 parsec distance. Star counts enable rough determination of Galactic structure. Widespread availability of PC-compatible computers has enabled distance education to bring astronomical education, including an 'observational' component, to Canadians who otherwise would not have access to it.

  11. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    This abstract describes the content of a presentation for ground rounds at Mt. Sinai School of Medicine. The presentation contains three sections. The first describes the history of aerospace medicine beginning with early flights with animals. The second section of the presentation describes current programs and planning for future missions. The third section describes the medical challenges of exploration missions.

  12. Regional Educational Laboratory Electronic Network Phase 2 System

    NASA Technical Reports Server (NTRS)

    Cradler, John

    1995-01-01

    The Far West Laboratory in collaboration with the other regional educational laboratories is establishing a regionally coordinated telecommunication network to electronically interconnect each of the ten regional laboratories with educators and education stakeholders from the school to the state level. For the national distributed information database, each lab is working with mid-level networks to establish a common interface for networking throughout the country and include topics of importance to education reform as assessment and technology planning.

  13. Economic Education Laboratory: Initiating a Meaningful Economic Learning through Laboratory

    ERIC Educational Resources Information Center

    Noviani, Leny; Soetjipto, Budi Eko; Sabandi, Muhammad

    2015-01-01

    Laboratory is considered as one of the resources in supporting the learning process. The laboratory can be used as facilities to deepen the concepts, learning methods and enriching students' knowledge and skills. Learning process by utilizing the laboratory facilities can help lecturers and students in grasping the concept easily, constructing the…

  14. Aeronautical Engineering and Aerospace Engineering: A Learner-Centered Teaching Perspective in Higher Education

    ERIC Educational Resources Information Center

    Gohardani, Omid; Gohardani, Amir S.; Dokter, Erin; Macario, Kyla

    2014-01-01

    Teaching in the 21st century requires a modern teaching practice coherent with the evolutions of the Information Age. Interestingly, teaching practices have stretched beyond an art form and into the realm of science. Following these scientific trails, one can argue that one of the greatest challenges educators currently face is to maintain student…

  15. Aerospace gerontology

    NASA Technical Reports Server (NTRS)

    Comfort, A.

    1982-01-01

    The relevancy of gerontology and geriatrics to the discipline of aerospace medicine is examined. It is noted that since the shuttle program gives the facility to fly passengers, including specially qualified older persons, it is essential to examine response to acceleration, weightlessness, and re-entry over the whole adult lifespan, not only its second quartile. The physiological responses of the older person to weightlessness and the return to Earth gravity are reviewed. The importance of the use of the weightless environment to solve critical problems in the fields of fundamental gerontology and geriatrics is also stressed.

  16. 'Dry Laboratories' in Science Education; Computer-Based Practical Work.

    ERIC Educational Resources Information Center

    Kirschner, Paul; Huisman, Willibrord

    1998-01-01

    Identifies the problems associated with the use of dry laboratories in science education, presents design considerations for the use of such practicals in science education, and presents examples of innovative nontraditional practicals. Contains 23 references. (DDR)

  17. Aerospace/Aviation Science Occupations.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Occupational Education.

    The guide was developed to provide secondary students the opportunity to study aviation and aerospace education from the conceptual and career approach coupled with general education specifically related to science. Unit plans were prepared to motivate, develop skills, and offer counseling to the students of aviation science and occupational…

  18. Aerospace engineers: We're tomorrow-minded people

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1981-01-01

    Brief job-related autobiographical sketches of engineers working on NASA aerospace projects are presented. Career and educational guidance is offered to students thinking about entering the aerospace field.

  19. Aerospace Technicians: We're Tomorrow-Minded People

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1981-01-01

    Brief job-related autobiographical sketches of technicians working on NASA aerospace projects are presented. Career and educational guidance is offered to students thinking about entering the field of aerospace technology.

  20. Directory of Credit-Granting Policies in Medical Laboratory Education.

    ERIC Educational Resources Information Center

    National Committee for Careers in Medical Technology, Bethesda, MD.

    Ways now exist for medical laboratory workers to advance up the educational career ladder, gaining credit for prior training and/or experience. A total of 369 Certified Medical Laboratory Assistant Schools, colleges with Associate Degree Medical Laboratory Technicians programs, schools of Medical Technology, and colleges with baccalaureate Medical…

  1. A Program of Research and Education in Aerospace Structures at the Joint Institute for Advancement of Flight Sciences

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.

    2000-01-01

    The objectives of the cooperative effort with NASA was to conduct research related to aerospace structures and to increase the quality and quantity of highly trained engineers knowledgeable about aerospace structures. The program has successfully met the objectives and has been of significant benefit to NASA LARC, the GWU and the nation. The program was initiated with 3 students in 1994 under the direction of Dr. Robert Tolson as the Principal Investigator. Since initiation, 14 students have been involved in the program, resulting in 11 MS degrees with 2 more expected in 2000. The 11 MS theses and projects are listed. For technology transfer purposes some research is not reported in thesis form. Graduates from the program have been hired at aerospace and other companies across the nation, providing GWU and LARC with important industry and government contacts.

  2. NASA Elementary Aerospace Activities Free to Members

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1978

    1978-01-01

    Describes the contents of Elementary School Aerospace Activities: A Resource for Teachers. Activities examine a variety of topics in aerospace education and are intended to be used with children ages 5-11. The book is available from the Government Printing Office (GPO) for $3.00. (CP)

  3. 41st Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor)

    2012-01-01

    The proceedings of the 41st Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held in Pasadena Hilton, Pasadena, California on May 16-18, 2012. Lockheed Martin Space Systems cosponsored the symposium. Technology areas covered include gimbals and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and Mars Science Laboratory mechanisms.

  4. Teachers, Aerospace, Involvement: The Ingredients for Attitude Change

    ERIC Educational Resources Information Center

    Leonard, Rex; Bell, Michael L.

    1975-01-01

    Describes a two week workshop which concentrated on involving teachers in action oriented aerospace activities and sharing ideas and materials for the application of aerospace concepts in the classroom. Research was also done to see if participants' attitudes toward aerospace education could be positively influenced to enhance personal teaching…

  5. Investigative Learning: A Plan for Laboratory Education.

    ERIC Educational Resources Information Center

    Kosinski, Robert J.

    This project originated with the desire to offer general biology students a laboratory experience which emphasizes scientific thinking rather than a review of lecture content. To create investigative laboratories without many of the practical problems of their implementation, this project uses a combination of "methods modules" for wetlabs and…

  6. 35th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Doty, Laura W. (Technical Monitor)

    2001-01-01

    The proceedings of the 35th Aerospace Mechanisms Symposium are reported. Ames Research Center hosted the conference, which was held at the Four Points Sheraton, Sunnyvale, California, on May 9-11, 2001. The symposium was sponsored by the Mechanisms Education Association. Technology areas covered included bearings and tribology; pointing, solar array, and deployment mechanisms; and other mechanisms for spacecraft and large space structures.

  7. Aerospace for the Very Young.

    ERIC Educational Resources Information Center

    2003

    This packet includes games and activities concerning aerospace education for the very young. It is designed to develop and strengthen basic concepts and skills in a non-threatening atmosphere of fun. Activities include: (1) "The Sun, Our Nearest Star"; (2) "Twinkle, Twinkle, Little Star, How I Wonder Where You Are"; (3) "Shadows"; (4) "The Earth…

  8. Teachers' Perceptions of Modular Technology Education Laboratories

    ERIC Educational Resources Information Center

    Harris, Kara S.

    2005-01-01

    The purpose of this study was to examine teachers' perceptions concerning the modular technology approach to teaching technology education in Georgia. The study addressed the following basic research question: What do teachers in Georgia perceive to be the main advantages and drawbacks to teaching technology education in a modular environment…

  9. National Aerospace Laboratory News (Japan)

    NASA Technical Reports Server (NTRS)

    Takeda, J.

    1982-01-01

    Tests carried out in November 1981 on the stationary flap of STOL test planes at Kakuda Labs are described. Acoustic pressure, outer plate temperature of the fore flap, and acceleration, strain, and temperature of the outer plate of the main flap were measured. High load turbine inlet distortion experiments were also performed. Results of these experiments are discussed.

  10. Conservation Plan, Seaman Outdoor Laboratory for Environmental Education.

    ERIC Educational Resources Information Center

    Topeka Unified School District 345, KS.

    This guide focuses on the conservation plan for an outdoor laboratory. Although the plan focuses specifically on Seaman Outdoor Education Laboratory, the concepts could be applied to any natural area including parks, farms, and school grounds. Along with an introduction and justification, the guide includes the conservation plan that serves as the…

  11. A Guide for Establishing a Learning Laboratory; Adult Basic Education.

    ERIC Educational Resources Information Center

    White Plains Public Schools, NY.

    A guide designed to assist educators with the implementation of a learning laboratory in programs providing academic instruction for adults is presented. The underlying premises involving the training of teachers to work effectively in the learning laboratory and the classroom include: (1) Responsibility for the training rests with the learning…

  12. NAROM- a national Laboratory for space education

    NASA Astrophysics Data System (ADS)

    Hansen, Arne Hjalmar; Østbø, Morten

    2002-07-01

    Despite a considerable growth in space related industry and scientific research over the past few decades, space related education has largely been neglected in our country. NAROM - the National Centre for Space Related Education - was formed last year to organize space related educational activities, to promote recruitment, to promote appreciation for the benefits of space activities, and to stimulate interest for science in general. This year, nine students from Narvik Engineering College have participated in the Hotel Payload Project (HPP) at Andøya Rocket Range. They have thus played an active and essential role in an ongoing engineering project.

  13. The Future Direction of Regional Educational Laboratories in Contributing to Urban School Improvement. Laboratory Policy Paper.

    ERIC Educational Resources Information Center

    McKenzie, Floretta Dukes

    This paper examines the current and future roles of organizations such as education laboratories in serving the changing needs of urban education. Concerns for greater effectiveness in support services stem from the growing need to effectively deal with some of the complex, lingering issues which to data have been only marginally addressed. Urban…

  14. Requirements for Remote RF Laboratory Applications: An Educators' Perspective

    ERIC Educational Resources Information Center

    Cagiltay, N. E.; Aydin, E.; Oktem, R.; Kara, A.; Alexandru, M.; Reiner, B.

    2009-01-01

    This paper discusses the results of a study of the requirements for developing a remote RF laboratory. This study draws on the perspectives of educators in university electrical engineering departments and in technical colleges, on the teaching of the radio frequency (RF) domain. The study investigates how these educators would like the technical…

  15. A New Resource for College Distance Education Astronomy Laboratory Exercises

    ERIC Educational Resources Information Center

    Vogt, Nicole P.; Cook, Stephen P.; Muise, Amy Smith

    2013-01-01

    This article introduces a set of distance education astronomy laboratory exercises for use by college students and instructors and discusses first usage results. This General Astronomy Education Source exercise set contains eight two-week projects designed to guide students through both core content and mathematical applications of general…

  16. An Aerospace Workshop

    ERIC Educational Resources Information Center

    Hill, Bill

    1972-01-01

    Describes the 16-day, 10,000 mile national tour of the nation's major aerospace research and development centers by 65 students enrolled in Central Washington State College's Summer Aerospace Workshop. (Author/MB)

  17. The Microcomputer as an Educational Laboratory Workstation.

    ERIC Educational Resources Information Center

    Ciociolo, James M.

    1983-01-01

    Describes laboratory workstations which provide direct connection for monitoring and control of analytical instruments such as pH meters, spectrophotometers, temperature, and chromatographic instruments. This is accomplished through analog/digital and digital/analog converters for analog signals and input/output devices for on/off signals.…

  18. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    ERIC Educational Resources Information Center

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  19. Engineering Education Problems. The Laboratory Equipment Factor.

    ERIC Educational Resources Information Center

    National Society of Professional Engineers, Washington, DC.

    Presented is a pilot study focusing attention on problems of deteriorating physical plants and inadequate/obsolete equipment contributing to the current crisis in engineering education. Data are reported from a survey instrument (included in an appendix) from 26 colleges/universities, representing 168 programs out of a national total of 1212…

  20. Scientific equity: experiments in laboratory education in Ghana.

    PubMed

    Osseo-Asare, Abena Dove

    2013-12-01

    During the 1960s the Ministry of Education in Ghana created a network of school laboratories to increase scientific literacy among young citizens. The ministry stocked these "Science Centres" with imported beakers, Bunsen burners, and books. Education officials and university scientists worked with teachers to create lesson plans on water, air, plants, and other topics. The government hoped that scientifically minded schoolchildren would be better prepared to staff the industries of the future. The adoption of laboratory norms represented a desire for scientific equity, rather than a condition of cultural mimicry. Interviews with ministry officials and science educators, alongside letters and reports, indicate how students and teachers appropriated the laboratories in the small West African nation. Their experiences in mobilizing resources from across Ghana and around the world provide a metaphor for ongoing efforts to establish access to scientific goods in Africa. PMID:24783491

  1. Observations on Emerging Relationships between Regional Educational Laboratories and State Departments of Education.

    ERIC Educational Resources Information Center

    Svenson, Elwin V.

    This study examines the emerging relationships between the Regional Educational Laboratories (RELs) created by the Elementary and Secondary Education Act of 1965 and various other educational agencies with which RELs work. A major purpose of the investigation was to identify those factors that encourage or obstruct the development of effective…

  2. Urban Laboratory + City Problems + High School Students = Educational Success

    ERIC Educational Resources Information Center

    Deutschman, Harold; And Others

    1973-01-01

    Discusses a six-week course in urban problem solving conducted by Newark College Engineering for high ability inner-city students in the summer of 1971 and 1972. Indicates that the experiment in mixing urban laboratories, city problems, and high school juniors is an educational success. (CC)

  3. National Directory of Continuing Education for Health Laboratory Personnel.

    ERIC Educational Resources Information Center

    Center for Disease Control (DHEW/PHS), Atlanta, GA.

    Continuing education activities available to laboratory technologists and personnel are listed in this directory. Workshops, seminars, short courses, and night classes intended to help the working technologist update his professional knowledge and keep abreast of new developments are listed by states. Courses offered at various colleges and…

  4. Scitech: An Open Learning Programme for Educational Laboratory Technicians.

    ERIC Educational Resources Information Center

    Harper, Mike

    1985-01-01

    Describes the development and operation of a program which develops and presents training materials to school laboratory technicians through distance education techniques. Coordinated at Canterbury College of Technology, where it originated, the project has become a consortium with four additional members. (MBR)

  5. Continuing Education: Upgrading the Skills of Laboratory Personnel

    ERIC Educational Resources Information Center

    Romeo, Joan; Johnson, Dallas

    1977-01-01

    Community and junior colleges are in a prime position to spearhead much-needed continuing education courses for the retraining of medical laboratory technicians in outlying areas and small towns. Programs currently underway combine short courses, bench refreshers, and self-instructional materials; similar programs are planned by a number of…

  6. Pre-Employment Laboratory Education. Clothing/Fashion Design Guidebook.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Instructional Materials Center.

    This guidebook is designed for use in teaching students enrolled in preemployment laboratory education (PELE) clothing/fashion design programs. The first of two major sections includes an overview for teachers on planning, conducting, and evaluating a PELE clothing/fashion design program. Specific topics discussed in section 1 include (1)…

  7. Teachers' Use of Agricultural Laboratories in Secondary Agricultural Education

    ERIC Educational Resources Information Center

    Shoulders, Catherine W.; Myers, Brian E.

    2012-01-01

    Trends in the agriculture industry require students to have the ability to solve problems associated with scientific content. Agricultural laboratories are considered a main component of secondary agricultural education, and are well suited to provide students with opportunities to develop problem-solving skills through experiential learning. This…

  8. An Education Program to Reduce Unnecessary Laboratory Tests by Residents.

    ERIC Educational Resources Information Center

    Dowling, Patrick T.; And Others

    1989-01-01

    A program at an inner-city community health center involving 20 family practice residents provided an educational intervention concerning the use of laboratory tests based on quality of care, not cost containment. During the program, the use of thyroid stimulating hormone test declined, while complete blood counts ordered did not. (MSE)

  9. The Educational Facilities Laboratories (EFL): A History. Revised.

    ERIC Educational Resources Information Center

    Marks, Judy

    This publication presents information on the history, operations, and accomplishments of the Educational Facilities Laboratories (EFL), a nonprofit corporation established to help schools and colleges maximize the quality and utility of their facilities, stimulate research, and disseminate information to facility planners. Included are…

  10. Providing Quality Laboratories to Long-Distance Educational Programs.

    ERIC Educational Resources Information Center

    Gammon, Tammy; Sutton, John

    2003-01-01

    North Carolina State University (UNC) has been on the forefront of long-distance education by offering a Bachelor of Science in Engineering with a Mechatronics Concentration at its remote campus located at UNC Asheville. The program demonstrates that long-distance laboratories are feasible and should not be a stumbling block to offering…

  11. Formative Evaluation of PREL's Regional Educational Laboratory Products and Services.

    ERIC Educational Resources Information Center

    Pacific Resources for Education and Learning, Honolulu, HI.

    A formative evaluation was conducted to determine the types and amount of dissemination and services the Pacific Regional Educational Laboratory (REL) provided to its constituency in the first 9 months of 1999. The evaluation also studied how recipients of REL products and services perceived the usefulness and quality of the products and services…

  12. Pre-Employment Laboratory Education. Child Care Guidebook.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Instructional Materials Center.

    This guidebook is designed for use in teaching students enrolled in secondary pre-employment laboratory education (PELE) child care programs. The first of two major sections includes an overview for teachers in planning, conducting, and evaluating a child care program. Specific topics discussed in section 1 include (1) the school-operated center,…

  13. Pre-Employment Laboratory Education. Food Service Guidebook.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Instructional Materials Center.

    This guidebook is designed for use in teaching students enrolled in preemployment laboratory education (PELE) food service programs. The first of two major sections includes an overview for teachers on planning, conducting, and evaluating a PELE food service program. Specific topics discussed in section 1 include (1) facilities and equipment, (2)…

  14. Occupational Education for Meat Inspection and Laboratory Animal Caretaker Jobs.

    ERIC Educational Resources Information Center

    Mayer, Leon Albert

    To determine educational requirements and opportunities for employment, 60 representatives of animal laboratories and meat inspection agencies were interviewed in a 30-county area in northern Illinois. The chi-square test, analysis of variance test, and Pearson product moment correlation were utilized to conclude that: (1) Substantial…

  15. ISS National Laboratory Education Project: Enhancing and Innovating the ISS as an Educational Venue

    NASA Technical Reports Server (NTRS)

    Melvin, Leland D.

    2011-01-01

    The vision is to develop the ISS National Laboratory Education Project (ISS NLE) as a national resource for Science, Technology, Engineering and Mathematics (STEM) education, utilizing the unique educational venue of the International Space Station per the NASA Congressional Authorization Act of 2005. The ISS NLE will serve as an educational resource which enables educational activities onboard the ISS and in the classroom. The ISS NLE will be accessible to educators and students from kindergarten to post-doctoral studies, at primary and secondary schools, colleges and universities. Additionally, the ISS NLE will provide ISS-related STEM education opportunities and resources for learners of all ages via informal educational institutions and venues Though U.S. Congressional direction emphasized the involvement of U.S. students, many ISS-based educational activities have international student and educator participation Over 31 million students around the world have participated in several ISS-related education activities.

  16. Supercomputing in Aerospace

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Yee, Helen

    1987-01-01

    Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics.

  17. Aerospace Applications of Microprocessors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An assessment of the state of microprocessor applications is presented. Current and future requirements and associated technological advances which allow effective exploitation in aerospace applications are discussed.

  18. Simulation-based medical education in clinical skills laboratory.

    PubMed

    Akaike, Masashi; Fukutomi, Miki; Nagamune, Masami; Fujimoto, Akiko; Tsuji, Akiko; Ishida, Kazuko; Iwata, Takashi

    2012-01-01

    Clinical skills laboratories have been established in medical institutions as facilities for simulation-based medical education (SBME). SBME is believed to be superior to the traditional style of medical education from the viewpoint of the active and adult learning theories. SBME can provide a learning cycle of debriefing and feedback for learners as well as evaluation of procedures and competency. SBME offers both learners and patients a safe environment for practice and error. In a full-environment simulation, learners can obtain not only technical skills but also non-technical skills, such as leadership, team work, communication, situation awareness, decision-making, and awareness of personal limitations. SBME is also effective for integration of clinical medicine and basic medicine. In addition, technology-enhanced simulation training is associated with beneficial effects for outcomes of knowledge, skills, behaviors, and patient-related outcomes. To perform SBME, effectively, not only simulators including high-fidelity mannequin-type simulators or virtual-reality simulators but also full-time faculties and instructors as professionals of SBME are essential in a clinical skills laboratory for SBME. Clinical skills laboratory is expected to become an integrated medical education center to achieve continuing professional development, integrated learning of basic and clinical medicine, and citizens' participation and cooperation in medical education. PMID:22449990

  19. 38th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2006-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 38th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 38th AMs, hosted by the NASA Langley Research Center in Williamsburg, Virginia, was held May 17-19, 2006. During these three days, 34 papers were presented. Topics included gimbals, tribology, actuators, aircraft mechanisms, deployment mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  20. 37th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2004-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is reporting problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 37th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 37th AMS, hosted by the Johnson Space Center (JSC) in Galveston, Texas, was held May 19, 20 and 21, 2004. During these three days, 34 papers were presented. Topics included deployment mechanisms, tribology, actuators, pointing and optical mechanisms, Space Station and Mars Rover mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  1. 39th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, E. A. (Compiler)

    2008-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA Marshall Space Flight Center (MSFC) and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 39th symposium, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 39th AMS was held in Huntsville, Alabama, May 7-9, 2008. During these 3 days, 34 papers were presented. Topics included gimbals and positioning mechanisms, tribology, actuators, deployment mechanisms, release mechanisms, and sensors. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  2. Regional Educational Laboratories 2002 Annual Report: Improving the Lives of Children through Education Research & Development.

    ERIC Educational Resources Information Center

    Northeast and Islands Regional Educational Lab. at Brown Univ., Providence, RI.

    This report, the second annual report of the Regional Educational Laboratory (REL) system's current 5-year contract, shows the progress laboratories have made in meeting regional challenges and establishing national leadership in critical areas. The report also illustrates who the labs are using research and development to gain knowledge about how…

  3. Promising Practices in Mathematics & Science Education: A Collection of Promising Educational Programs & Practices from the Laboratory Network Program.

    ERIC Educational Resources Information Center

    Office of Educational Research and Improvement (ED), Washington, DC.

    This volume of 66 promising practices in mathematics and science education developed by the 10 regional educational laboratories funded by the U.S. Department of Education's Office of Educational Research and Improvement. The laboratories' collection of programs emerged from a broad-based search, nomination, and review process reaching educators…

  4. Virtual-reality-based educational laboratories in fiber optic engineering

    NASA Astrophysics Data System (ADS)

    Hayes, Dana; Turczynski, Craig; Rice, Jonny; Kozhevnikov, Michael

    2014-07-01

    Researchers and educators have observed great potential in virtual reality (VR) technology as an educational tool due to its ability to engage and spark interest in students, thus providing them with a deeper form of knowledge about a subject. The focus of this project is to develop an interactive VR educational module, Laser Diode Characteristics and Coupling to Fibers, to integrate into a fiber optics laboratory course. The developed module features a virtual laboratory populated with realistic models of optical devices in which students can set up and perform an optical experiment dealing with laser diode characteristics and fiber coupling. The module contains three increasingly complex levels for students to navigate through, with a short built-in quiz after each level to measure the student's understanding of the subject. Seventeen undergraduate students learned fiber coupling concepts using the designed computer simulation in a non-immersive desktop virtual environment (VE) condition. The analysis of students' responses on the updated pre- and post tests show statistically significant improvement of the scores for the post-test as compared to the pre-test. In addition, the students' survey responses suggest that they found the module very useful and engaging. The conducted study clearly demonstrated the feasibility of the proposed instructional technology for engineering education, where both the model of instruction and the enabling technology are equally important, in providing a better learning environment to improve students' conceptual understanding as compared to other instructional approaches.

  5. Informal Physics Education: Outreach from a National Laboratory

    NASA Astrophysics Data System (ADS)

    Sanchez, Jose; Dixon, Patricia; Hughes, Roxanne

    2012-02-01

    This presentation highlights strategies for K-20 teaching and learning about materials research in informal settings. The National High Magnetic Field Laboratory's Center for Integrating Research & Learning is in a unique position to conduct programs that reach K-20 students and teachers. As part of a national laboratory the Center provides the infrastructure around which informal education programs are implemented, including the nationally-recognized programming as well as facilitating scientists' educational outreach in the community. Research Experiences for Undergraduates, focuses on encouraging women and other underrepresented groups to pursue STEM careers reaching approximately 200 students many of whom have pursued careers in research as well as academia. The Research Experiences for Teachers program has provided internships for over 150 teachers; the Center also reaches over 10,000 students each year through school and community outreach. Success of informal education programs relies heavily on establishing strong mentoring relationships between scientists and K-20 students and teachers. The Center's success at maintaining diverse programming that transforms how materials education is presented beyond the traditional classroom is the focus for this presentation.

  6. International Space Station: National Laboratory Education Concept Development Report

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The International Space Station (ISS) program has brought together 16 spacefaring nations in an effort to build a permanent base for human explorers in low-Earth orbit, the first stop past Earth in humanity's path into space. The ISS is a remarkably capable spacecraft, by significant margins the largest and most complex space vehicle ever built. Planned for completion in 2010, the ISS will provide a home for laboratories equipped with a wide array of resources to develop and test the technologies needed for future generations of space exploration. The resources of the only permanent base in space clearly have the potential to find application in areas beyond the research required to enable future exploration missions. In response to Congressional direction in the 2005 National Aeronautics and Space Administration (NASA) Authorization Act, NASA has begun to examine the value of these unique capabilities to other national priorities, particularly education. In early 2006, NASA invited education experts from other Federal agencies to participate in a Task Force charged with developing concepts for using the ISS for educational purposes. Senior representatives from the education offices of the Department of Defense, Department of Education, Department of Energy, National Institutes of Health, and National Science Foundation agreed to take part in the Task Force and have graciously contributed their time and energy to produce a plan that lays out a conceptual framework for potential utilization of the ISS for educational activities sponsored by Federal agencies as well as other future users.

  7. Heart-Lung Interactions in Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Guy, Harold J. B.; Prisk, Gordon Kim

    1991-01-01

    Few of the heart-lung interactions that are discussed have been studied in any detail in the aerospace environment, but is seems that many such interactions must occur in the setting of altered accelerative loadings and pressure breathing. That few investigations are in progress suggests that clinical and academic laboratory investigators and aerospace organizations are further apart than during the pioneering work on pressure breathing and acceleration tolerance in the 1940s. The purpose is to reintroduce some of the perennial problems of aviation physiology as well as some newer aerospace concerns that may be of interest. Many possible heart-lung interactions are pondered, by necessity often drawing on data from within the aviation field, collected before the modern understanding of these interactions developed, or on recent laboratory data that may not be strictly applicable. In the field of zero-gravity effects, speculation inevitably outruns the sparse available data.

  8. Regional Educational Laboratory Recompetition: Review Panel Papers, Commissioned Policy Papers, and Factual Information about the Program.

    ERIC Educational Resources Information Center

    Office of Educational Research and Improvement (ED), Washington, DC.

    This document is a compilation of separate papers concerning the planned 1990 recompetition for the nine Regional Educational Laboratories, sponsored by the Office of Educational Research and Improvement (OERI) of the U.S. Department of Education, as follows: (1) "Report of the Laboratory Review Panel on the 1987 Review of Laboratories" (October…

  9. Cognitive engineering in aerospace applications

    NASA Technical Reports Server (NTRS)

    Woods, David D.

    1993-01-01

    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.

  10. The Relationship of Skilled Aerospace Manufacturing Workforce Performance to Training

    ERIC Educational Resources Information Center

    Malsberry, Suzanne

    2014-01-01

    A major economic driver, the aerospace industry contributes to exports and higher wage jobs, which the United States requires to maintain robust economic health. Despite the investment in vocational educational training programs, insufficient workers have been available to aerospace companies. The purpose of this study was to investigate the…

  11. A RESOURCE BOOK OF AEROSPACE ACTIVITIES, K-6.

    ERIC Educational Resources Information Center

    Lincoln Public Schools, NE.

    THIS RESOURCE BOOK OF ACTIVITIES WAS WRITTEN FOR TEACHERS OF GRADES K-6, TO HELP THEM INTEGRATE AEROSPACE SCIENCE WITH THE REGULAR LEARNING EXPERIENCES OF THE CLASSROOM. SUGGESTIONS ARE MADE FOR INTRODUCING AEROSPACE CONCEPTS INTO THE VARIOUS SUBJECT FIELDS SUCH AS LANGUAGE ARTS, MATHEMATICS, PHYSICAL EDUCATION, SOCIAL STUDIES, AND OTHERS. SUBJECT…

  12. Recent Science Education Initiatives at the Princeton Plasma Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Zwicker, Andrew; Dominguez, Arturo; Gershman, Sophia; Guilbert, Nick; Merali, Aliya; Ortiz, Deedee

    2013-10-01

    An integrated approach to program development and implementation has significantly enhanced a variety of Science Education initiatives for students and teachers. This approach involves combining the efforts of PPPL scientists, educators, research and education fellows, and collaborating non-profit organizations to provide meaningful educational experiences for students and teachers. Our undergraduate internship program continues to have outstanding success, with 72% of our participants going to graduate school and 45% concentrating in plasma physics. New partnerships have allowed us to increase the number of underrepresented students participating in mentored research opportunities. The number of participants in our Young Women's Conference increases significantly each year. Our Plasma Camp workshop, now in its 15th year, recruits outstanding teachers from around the country to create new plasma-centered curricula. Student research in the Science Education Laboratory concentrates on the development of a high-fidelity plasma speaker, a particle dropper for a dusty plasma experiment, microplasmas along liquid surfaces for a variety of applications, an Internet-controlled DC glow discharge source for students, and a Planeterrella for demonstrating the aurora and other space weather phenomenon for the general public.

  13. Evaluating Aerospace Workshops.

    ERIC Educational Resources Information Center

    Leonard, Rex L.

    1978-01-01

    Declining enrollments in aerospace teacher workshops suggest the need for evaluation and cost effectiveness measurements. A major purpose of this article is to illustrate some typical evaluation methodologies, including the semantic differential. (MA)

  14. Ninteenth Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings of the 19th Aerospace Mechanisms Symposium are reported. Technological areas covered include space lubrication, bearings, aerodynamic devices, spacecraft/Shuttle latches, deployment, positioning, and pointing. Devices for spacecraft docking and manipulator and teleoperator mechanisms are also described.

  15. Aerospace materials for nonaerospace applications

    NASA Technical Reports Server (NTRS)

    Johnston, R. L.; Dawn, F. S.

    1974-01-01

    Many of the flame-resistant nonmetallic materials that were developed for the Apollo and Skylab programs are discussed for commercial and military applications. Interchanges of information are taking place with the government agencies, industries, and educational institutions, which are interested in applications of fire-safe nonmetallic materials. These materials are particularly applicable to the design of aircraft, mass transit interiors, residential and public building constructions, nursing homes and hospitals, and to other fields of fire safety applications. Figures 22, 23 and 24 show the potential nonaerospace applications of flame-resistant aerospace materials are shown.

  16. Risk communication strategy development using the aerospace systems engineering process

    NASA Technical Reports Server (NTRS)

    Dawson, S.; Sklar, M.

    2004-01-01

    This paper explains the goals and challenges of NASA's risk communication efforts and how the Aerospace Systems Engineering Process (ASEP) was used to map the risk communication strategy used at the Jet Propulsion Laboratory to achieve these goals.

  17. Aerospace Concepts at the Elementary Level

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Presents materials compiled to assist the elementary teacher in preparing teaching units in aerospace education. Suggests specific and general objectives and lists important concepts and questions pertaining to areas such as: history of flight, weather and flying, airplanes, jets, rockets, space travel, and the solar system. (MLH)

  18. Environmentally regulated aerospace coatings

    NASA Technical Reports Server (NTRS)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  19. Knowledge-based diagnosis for aerospace systems

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.

    1988-01-01

    The need for automated diagnosis in aerospace systems and the approach of using knowledge-based systems are examined. Research issues in knowledge-based diagnosis which are important for aerospace applications are treated along with a review of recent relevant research developments in Artificial Intelligence. The design and operation of some existing knowledge-based diagnosis systems are described. The systems described and compared include the LES expert system for liquid oxygen loading at NASA Kennedy Space Center, the FAITH diagnosis system developed at the Jet Propulsion Laboratory, the PES procedural expert system developed at SRI International, the CSRL approach developed at Ohio State University, the StarPlan system developed by Ford Aerospace, the IDM integrated diagnostic model, and the DRAPhys diagnostic system developed at NASA Langley Research Center.

  20. Initiating a secondary education apprenticeship program for the clinical laboratory.

    PubMed

    Grau, Adam

    2003-01-01

    The shortage of medical laboratory professionals entering the work field has prompted the clinical laboratory at North Memorial Medical Center to take a proactive stance. Working together with Minnesota School District 287 and North Memorial's education and human resources departments, we have created a high school-age program to teach young students. The focus of this program will be the science behind health care. The state has chosen our program to be the template for the statewide model. Labs in the state will follow this template when starting their new programs. This is the first apprenticeship program in the state of Minnesota for a health-care laboratory. The new program will bring students to our lab and teach them practical skills. These skills will include client services skills (phone etiquette, critical thinking) and technical skills (computer skills, EKGs, testing a patient's blood sugar). More important, it will expose high school students to a career in science--a career option that they might not have been familiar with. This article presents the steps we have completed to introduce this new program. PMID:12701571

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 56: Technical Communications in Engineering and Science: The Practices Within a Government Defense Laboratory

    NASA Technical Reports Server (NTRS)

    VonSeggern, Marilyn; Jourdain, Janet M.; Pinelli, Thomas E.

    1996-01-01

    Research in recent decades has identified the varied information needs of engineers versus scientists. While most of that research looked at the differences among organizations, we surveyed engineers and scientists within a single Air Force research and development laboratory about their information gathering, usage, and production practices. The results of the Phillips Laboratory survey confirm prior assumptions about distinctions between engineering and science. Because military employees responded at a much higher rate than civilian staff, the survey also became an opportunity to profile a little-known segment of the engineer/scientist population. In addition to the effect Phillips Laboratory's stated mission may have on member engineers and scientists, other factors causing variations in technical communication and information-related activities are identified.

  2. Tried and True: Tested Ideas for Teaching and Learning from the Regional Educational Laboratories.

    ERIC Educational Resources Information Center

    Levinson, Luna; Stonehill, Robert

    This collection of 16 tested ideas for improving teaching and learning evolved from the work of the 1995 Proven Laboratory Practices Task Force charged with identifying and collecting the best and most useful work from the Regional Educational Laboratories. The Regional Educational Laboratory program is the largest research and development…

  3. The Laboratory. Guides for the Improvement of Instruction in Higher Education, No. 9.

    ERIC Educational Resources Information Center

    Alexander, Lawrence T.; And Others

    This guide for the improvement of instruction in higher education is designed to aid the educator in planning and conducting laboratory instruction. The examples used refer primarily to science laboratories. Topics discussed include: deciding whether or not to use the laboratory method (with a discussion of discovery learning or the processes of…

  4. Moving Research to Practice in America's Schools. Annual Report of the Regional Educational Laboratories, 1997.

    ERIC Educational Resources Information Center

    Office of Educational Research and Improvement (ED), Washington, DC.

    The network of 10 Regional Educational Laboratories works to ensure that those involved in educational improvement at the local, state, and regional levels have access to the best available information from research and practice. This report highlights major 1997 accomplishments of the Regional Educational Laboratory Program supported by contracts…

  5. Frontier Aerospace Opportunities

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2014-01-01

    Discussion and suggested applications of the many ongoing technology opportunities for aerospace products and missions, resulting in often revolutionary capabilities. The, at this point largely unexamined, plethora of possibilities going forward, a subset of which is discussed, could literally reinvent aerospace but requires triage of many possibilities. Such initial upfront homework would lengthen the Research and Development (R&D) time frame but could greatly enhance the affordability and performance of the evolved products and capabilities. Structural nanotubes and exotic energetics along with some unique systems approaches are particularly compelling.

  6. Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  7. Educational Activities At The Nuclear Engineering Teaching Laboratory

    NASA Astrophysics Data System (ADS)

    Tipping, Tracy N.

    2011-06-01

    The Nuclear Engineering Teaching Laboratory (NETL) at the University of Texas at Austin performs a wide variety of educational activities for students at various levels. Regular on-site courses in the areas of health physics, radiochemistry, and reactor operations are offered for university credit. Along with on-site courses, access to the reactor facility via a remote console connection allows students in an off-site classroom to conduct experiments via a "virtual" control console. In addition to the regularly scheduled courses, other programs, such as the Nuclear Regulatory Commission Summer Nuclear Engineering Institute and Office of Naval Research partnerships with Historically Black Colleges and Universities, provide access to the facility for students from other universities both domestic and foreign. And NETL hosts professional development programs such as training programs for Nuclear Regulatory Commission personnel and International Atomic Energy Agency fellowships.

  8. Nanotechnology research for aerospace applications

    NASA Astrophysics Data System (ADS)

    Agee, Forrest J.; Lozano, Karen; Gutierrez, Jose M.; Chipara, Mircea; Thapa, Ram; Chow, Alice

    2009-04-01

    Nanotechnology is impacting the future of the military and aerospace. The increasing demands for high performance and property-specific applications are forcing the scientific world to take novel approaches in developing programs and accelerating output. CONTACT or Consortium for Nanomaterials for Aerospace Commerce and Technology is a cooperative nanotechnology research program in Texas building on an infrastructure that promotes collaboration between universities and transitioning to industry. The participants of the program include the US Air Force Research Laboratory (AFRL), five campuses of the University of Texas (Brownsville, Pan American, Arlington, Austin, and Dallas), the University of Houston, and Rice University. Through the various partnerships between the intellectual centers and the interactions with AFRL and CONTACT's industrial associates, the program represents a model that addresses the needs of the changing and competitive technological world. Into the second year, CONTACT has expanded to twelve projects that cover four areas of research: Adaptive Coatings and Surface Engineering, Nano Energetics, Electromagnetic Sensors, and Power Generation and Storage. This paper provides an overview of the CONTACT program and its projects including the research and development of new electrorheological fluids with nanoladen suspensions and composites and the potential applications.

  9. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The following areas of NASA's responsibilities are examined: (1) the Space Transportation System (STS) operations and evolving program elements; (2) establishment of the Space Station program organization and issuance of requests for proposals to the aerospace industry; and (3) NASA's aircraft operations, including research and development flight programs for two advanced X-type aircraft.

  10. Educating Laboratory Science Learners at a Distance Using Interactive Television

    ERIC Educational Resources Information Center

    Reddy, Christopher

    2014-01-01

    Laboratory science classes offered to students learning at a distance require a methodology that allows for the completion of tactile activities. Literature describes three different methods of solving the distance laboratory dilemma: kit-based laboratory experience, computer-based laboratory experience, and campus-based laboratory experience,…

  11. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    SciTech Connect

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  12. Appalachia Educational Laboratory: Annual Report, December 1, 1990 through November 30, 1991.

    ERIC Educational Resources Information Center

    Appalachia Educational Lab., Charleston, WV.

    This two-part report focuses on progress made by the Appalachia Educational Laboratory (AEL) during the first year of a 5-year contract. AEL's mandate is to work with educators in ongoing research and development-based efforts to improve education and educational opportunities in Kentucky, Tennessee, Virginia, and West Virginia. Part I: "Overview…

  13. Evaluation of the Regional Educational Laboratories. Interim Report. NCEE 2013-4014

    ERIC Educational Resources Information Center

    Carlson, Elaine; Scott, Jenna; Zhang, Xiaodong; Gutmann, Babette; Sinclair, Beth

    2013-01-01

    The Regional Educational Laboratories (RELs) are a networked system of 10 organizations that serve the educational needs of 10 designated regions across the United States and its territories. The U.S. Department of Education (ED) is authorized by the Education Sciences Reform Act (ESRA) to award contracts to 10 RELs to support applied research,…

  14. Air Navigation. Aerospace Education II.

    ERIC Educational Resources Information Center

    Gromling, F. C.; Mackin, T. E.

    This book, which can be used only in the Air Force ROTC program, elucidates ideas about air navigation techniques. The book is divided into two main parts. The first part describes the earth's surface and different components of navigation. A chapter on charts provides ideas about different kinds of charts and a variety of symbols used in…

  15. A Model Plan for a Career Education Curriculum Laboratory. Final Report.

    ERIC Educational Resources Information Center

    Koenig, John H.

    To develop a model plan for a career education curriculum laboratory, a 2-phase study was conducted with phase one concentrating upon the state-of-the-art of curriculum development in Vocational Education Curriculum Laboratories and the production, nationally, of vocational instructional materials, and phase two starting with the study of the…

  16. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  17. Materials for aerospace

    SciTech Connect

    Steinberg, M.A.

    1986-10-01

    Early last year the US Office of Science and Technology put forward an agenda for American aerospace activity in the coming decades. The plan established goals for subsonic, supersonic and transatmospheric hypersonic flight. Those goals, together with Reagan Administration's programs for a space station and the Strategic Defense Initiative, serve as a driving force for extensive improvements in the materials that enable airplanes and spacecraft to function efficiently. The development of materials, together with advances in the technology of fabricating parts, will play a key role in aerospace systems of the future. Among the materials developments projected for the year 2000 are new composites and alloys for structural members; superalloys, ceramics and glass composites for propulsion systems, and carbon-carbon composites (carbon fibers in a carbon matrix) for high-temperature applications in places where resistance to heat and ablation is critical. 5 figures.

  18. Trends in aerospace structures

    NASA Technical Reports Server (NTRS)

    Card, M. F.

    1978-01-01

    Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.

  19. Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Rouse, Doris J.

    1984-01-01

    The objective of the Research Triangle Institute Technology Transfer Team is to assist NASA in achieving widespread utilization of aerospace technology in terrestrial applications. Widespread utilization implies that the application of NASA technology is to benefit a significant sector of the economy and population of the Nation. This objective is best attained by stimulating the introduction of new or improved commercially available devices incorporating aerospace technology. A methodology is presented for the team's activities as an active transfer agent linking NASA Field Centers, industry associations, user groups, and the medical community. This methodology is designed to: (1) identify priority technology requirements in industry and medicine, (2) identify applicable NASA technology that represents an opportunity for a successful solution and commercial product, (3) obtain the early participation of industry in the transfer process, and (4) successfully develop a new product based on NASA technology.

  20. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  1. AI aerospace components

    SciTech Connect

    Heindel, T.A.; Murphy, T.B.; Rasmussen, A.N.; Mcfarland, R.Z.; Montgomery, R.E.; Pohle, G.E.; Heard, A.E.; Atkinson, D.J.; Wedlake, W.E.; Anderson, J.M. Mitre Corp., Houston, TX Unisys Corp., Houston, TX Rockwell International Corp., El Segundo, CA NASA, Kennedy Space Center, Cocoa Beach, FL JPL, Pasadena, CA Lockheed Missiles and Space Co., Inc., Austin, TX McDonnell Douglas Electronic Systems Co., McLean, VA )

    1991-10-01

    An evaluation is made of the application of novel, AI-capabilities-related technologies to aerospace systems. Attention is given to expert-system shells for Space Shuttle Orbiter mission control, manpower and processing cost reductions at the NASA Kennedy Space Center's 'firing rooms' for liftoff monitoring, the automation of planetary exploration systems such as semiautonomous mobile robots, and AI for battlefield staff-related functions.

  2. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report from the Aerospace Safety Advisory Panel (ASAP) contains findings, recommendations, and supporting material concerning safety issues with the space station program, the space shuttle program, aeronautics research, and other NASA programs. Section two presents findings and recommendations, section three presents supporting information, and appendices contain data about the panel membership, the NASA response to the March 1993 ASAP report, and a chronology of the panel's activities during the past year.

  3. Unmanned Aerospace Vehicle Workshop

    SciTech Connect

    Vitko, J. Jr.

    1995-04-01

    The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

  4. The Availability and Use of Science Laboratories at Secondary Education Level

    ERIC Educational Resources Information Center

    Raju, T. J. M. S.; Suryanarayana, N. V. S.

    2011-01-01

    This study focuses on the availability and use of Science Laboratories at the secondary education level in Visakhapatnam District of Andhra Pradesh, India. It is commented that most of the schools do not possess well equipped laboratories and even when equipment is available some science teachers are not utilizing the laboratory facilities.…

  5. Proceedings of the NASA Aerospace Technology Symposium 2002

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Fink, Mary M. (Editor); Schaaf, Michaela M. (Editor)

    2002-01-01

    Reports are presented from the NASA Aerospace Technology Symposium 2002 on the following: Geo-Referenced Altitude Hold For Latex Ballons; NASA Spaceport Research: Opportunities For space Grant and EPSCoR Involvement; Numerical Simulation Of The Combustion Of Fuel Droplets: Applications, Aircraft/Spacecraft Flight Control, Guidance Navigation; Expertise In System Dynamics and Control, Control Theory and Aerospace Education Ooutreach Opportunities; and Technology For The Improvement Of General Aviation Security: A Needs Assessmemt.

  6. NASA-UVA light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1990-01-01

    The objective of the Light Aerospace Alloy and Structures Technology Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. Individual technical objectives are established for each project. Efforts aim to produce basic understanding of material behavior, monolithic and composite alloys, processing methods, solid and mechanics analyses, measurement advances, and a pool of educated graduate students. Progress is reported for 11 areas of study.

  7. Engineering in the 21st century. [aerospace technology prospects

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1978-01-01

    A description is presented of the nature of the aerospace technology system that might be expected by the 21st century from a reasonable evolution of the current resources and capabilities. An aerospace employment outlook is provided. The years 1977 and 1978 seem to be marking the beginning of a period of stability and moderate growth in the aerospace industry. Aerospace research and development employment increased to 70,000 in 1977 and is now occupying a near-constant 18% share of the total research and development work force. The changing job environment is considered along with the future of aerospace education. It is found that one trend is toward a more interdisciplinary education. Most trend setters in engineering education recognize that the really challenging engineering problems invariably require the judicious exercise of several disciplines for their solution. Some future trends in aerospace technology are discussed. By the year 2000 space technology will have achieved major advances in four areas, including management of information, transportation, space structures, and energy.

  8. 43rd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A.

    2016-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Sponsored and organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 43rd symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 43rd AMS was held in Santa Clara, California on May 4, 5 and 6, 2016. During these three days, 42 papers were presented. Topics included payload and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and mechanism testing. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The high quality of this symposium is a result of the work of many people, and their efforts are gratefully acknowledged. This extends to the voluntary members of the symposium organizing committee representing the eight NASA field centers, LMSSC, and the European Space Agency. Appreciation is also extended to the session chairs, the authors, and particularly the personnel at ARC responsible for the symposium arrangements and the publication of these proceedings. A sincere thank you also goes to the symposium executive committee who is responsible for the year-to-year management of the AMS, including paper processing and preparation of the program. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  10. Aerospace structures supportability

    NASA Astrophysics Data System (ADS)

    Smith, Howard Wesley

    1989-04-01

    This paper is about supportability in its general sense, with emphasis on aerospace structures. Reliability and maintainability (R&M) are described and defined from the standpoint of both structural analysis. Accessability, inspectability, and replaceability are described as design attributes. Reliability and probability of failure are shown to be in the domain of the analysis. Availability and replaceability are traditional logistic responsibilities which are influenced by supportability engineers. The USAF R&M 2000 process is described, and the R&M 1988 Workshop at Wright-Patterson Air Force Base is also included in the description.

  11. Limitless Horizons: Careers in Aerospace.

    ERIC Educational Resources Information Center

    Lewis, Mary H.

    This is a manual for acquainting students with pertinent information relating to career choices in aerospace science, engineering, and technology. The first chapter presents information about the aerospace industry by describing disciplines typical of this industry. The National Aeronautics and Space Administration's (NASA) classification system…

  12. Limitless Horizons. Careers in Aerospace

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1980-01-01

    A manual is presented for use by counselors in career guidance programs. Pertinent information is provided on choices open in aerospace sciences, engineering, and technology. Accredited institutions awarding degrees in pertinent areas are listed as well as additional sources of aerospace career information. NASA's role and fields of interest are emphasized.

  13. Aerospace Activities and Language Development

    ERIC Educational Resources Information Center

    Jones, Robert M.; Piper, Martha

    1975-01-01

    Describes how science activities can be used to stimulate language development in the elementary grades. Two aerospace activities are described involving liquid nitrogen and the launching of a weather balloon which integrate aerospace interests into the development of language skills. (BR)

  14. Optical Characterization of Window Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken K.; Clark, Natalie; Humphreys, William M., Jr.

    2013-01-01

    An optical metrology laboratory has been developed to characterize the optical properties of optical window materials to be used for aerospace applications. Several optical measurement systems have been selected and developed to measure spectral transmittance, haze, clarity, birefringence, striae, wavefront quality, and wedge. In addition to silica based glasses, several optical lightweight polymer materials and transparent ceramics have been investigated in the laboratory. The measurement systems and selected empirical results for non-silica materials are described. These measurements will be used to form the basis of acceptance criteria for selection of window materials for future aerospace vehicle and habitat designs.

  15. Sandia National Laboratories and higher education in New Mexico: Summary report

    SciTech Connect

    Not Available

    1988-05-01

    Sandia National Laboratories interacts extensively with colleges and universities in New Mexico. This report summarizes several of these relationships in employee education, research contracts, loaned equipment, temporary employment and other areas. 8 tabs.

  16. The Challenges Associated with Laboratory-Based Distance Education

    ERIC Educational Resources Information Center

    Elliott, Stephen J.; Kukula, Eric P.

    2007-01-01

    Distance education as a stand-alone approach has grown tremendously in the past 10 years. The other form of distance education, often called hybrid, supplements traditional classroom instruction with online resources. The instructors deliver classroom lectures, but homework, assignments, and supplemental material may be retrieved online.…

  17. SEED: A Suite of Instructional Laboratories for Computer Security Education

    ERIC Educational Resources Information Center

    Du, Wenliang; Wang, Ronghua

    2008-01-01

    The security and assurance of our computing infrastructure has become a national priority. To address this priority, higher education has gradually incorporated the principles of computer and information security into the mainstream undergraduate and graduate computer science curricula. To achieve effective education, learning security principles…

  18. Structuring Historic Site-Based History Laboratories for Teacher Education

    ERIC Educational Resources Information Center

    Baron, Christine

    2014-01-01

    Providing training for pre-service teachers at historic sites necessitates a reorientation for historic site-based teacher education programs away from strict content learning towards programs that emphasize the modeling of disciplinary problem solving and transfer learning. Outlined here is a History Lab model for teacher education that uses the…

  19. Policy Statement on Future Competitions for Regional Educational Laboratories and Educational Research and Development Centers under Section 405(f) of the General Education Provisions Act.

    ERIC Educational Resources Information Center

    National Inst. of Education (ED), Washington, DC.

    A National Institute of Education (NIE) policy statement is presented regarding competition for future funding of regional educational laboratories and research and development (R&D) centers with appropriations available for Section 405(f) of the General Education Provisions Act (GEPA). Attention is also directed to continuing eligibility of the…

  20. The Advancement in Using Remote Laboratories in Electrical Engineering Education: A Review

    ERIC Educational Resources Information Center

    Almarshoud, A. F.

    2011-01-01

    The rapid development in Internet technology and its big popularity has led some universities around the world to incorporate web-based learning in some of their programmes. The present paper introduces a comprehensive survey of the publications about using remote laboratories in electrical engineering education. Remote laboratories are web-based,…

  1. The TriLab, a Novel ICT Based Triple Access Mode Laboratory Education Model

    ERIC Educational Resources Information Center

    Abdulwahed, Mahmoud; Nagy, Zoltan K.

    2011-01-01

    This paper introduces a novel model of laboratory education, namely the TriLab. The model is based on recent advances in ICT and implements a three access modes to the laboratory experience (virtual, hands-on and remote) in one software package. A review of the three modes is provided with highlights of advantages and disadvantages of each mode.…

  2. Students' Assessment of Interactive Distance Experimentation in Nuclear Reactor Physics Laboratory Education

    ERIC Educational Resources Information Center

    Malkawi, Salaheddin; Al-Araidah, Omar

    2013-01-01

    Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of…

  3. A Model for Evaluating the Effectiveness of Remote Engineering Laboratories and Simulations in Education

    ERIC Educational Resources Information Center

    Nickerson, Jeffrey V.; Corter, James E.; Esche, Sven K.; Chassapis, Constantin

    2007-01-01

    Economic pressures on universities and the emergence of new technologies have spurred the creation of new systems for delivering engineering laboratories in education, in particular simulations and remote-access laboratory systems. Advocates of simulation argue that physical labs needlessly consume university space and students' time. However,…

  4. E-Laboratory Design and Implementation for Enhanced Science, Technology and Engineering Education

    ERIC Educational Resources Information Center

    Morton, William; Uhomoibhi, James

    2011-01-01

    Purpose: This paper aims to report on the design and implementation of an e-laboratory for enhanced science, technology and engineering education studies. Design/methodology/approach: The paper assesses a computer-based e-laboratory, designed for new entrants to science, technology and engineering programmes of study in further and higher…

  5. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    ERIC Educational Resources Information Center

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  6. Development of a Laboratory Course in Nonmajors General Biology for Distance Education

    ERIC Educational Resources Information Center

    Mickle, James E.; Aune, Patricia M.

    2008-01-01

    For distance-education students, the requirement for a laboratory course can present a significant hurdle to completing degree requirements. To better serve these nontraditional students, the authors developed a distance version of the laboratory course to provide a hands-on experience similar to that of on-campus students. In order to make the…

  7. The laboratory in science education: Foundations for the twenty-first century

    NASA Astrophysics Data System (ADS)

    Hofstein, Avi; Lunetta, Vincent N.

    2004-01-01

    The laboratory has been given a central and distinctive role in science education, and science educators have suggested that rich benefits in learning accrue from using laboratory activities. Twenty years have been elapsed since we published a frequently cited, critical review of the research on the school science laboratory (Hofstein & Lunetta, Rev. Educ. Res. 52(2), 201-217, 1982). Twenty years later, we are living in an era of dramatic new technology resources and new standards in science education in which learning by inquiry has been given renewed central status. Methodologies for research and assessment that have developed in the last 20 years can help researchers seeking to understand how science laboratory resources are used, how students' work in the laboratory is assessed, and how science laboratory activities can be used by teachers to enhance intended learning outcomes. In that context, we take another look at the school laboratory in the light of contemporary practices and scholarship. This analysis examines scholarship that has emerged in the past 20 years in the context of earlier scholarship, contemporary goals for science learning, current models of how students construct knowledge, and information about how teachers and students engage in science laboratory activities.

  8. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Aerospace Safety Advisory Panel (ASAP) provided oversight on the safety aspects of many NASA programs. In addition, ASAP undertook three special studies. At the request of the Administrator, the panel assessed the requirements for an assured crew return vehicle (ACRV) for the space station and reviewed the organization of the safety and mission quality function within NASA. At the behest of Congress, the panel formed an independent, ad hoc working group to examine the safety and reliability of the space shuttle main engine. Section 2 presents findings and recommendations. Section 3 consists of information in support of these findings and recommendations. Appendices A, B, C, and D, respectively, cover the panel membership, the NASA response to the findings and recommendations in the March 1992 report, a chronology of the panel's activities during the reporting period, and the entire ACRV study report.

  9. Aerospace in the future

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1980-01-01

    National research and technology trends are introduced in the environment of accelerating change. NASA and the federal budget are discussed. The U.S. energy dependence on foreign oil, the increasing oil costs, and the U.S. petroleum use by class are presented. The $10 billion aerospace industry positive contribution to the U.S. balance of trade of 1979 is given as an indicator of the positive contribution of NASA in research to industry. The research work of the NASA Lewis Research Center in the areas of space, aeronautics, and energy is discussed as a team effort of government, the areas of space, aeronautics, and energy is discussed as a team effort of government, industry, universities, and business to maintain U.S. world leadership in advanced technology.

  10. Aerospace Human Factors

    NASA Technical Reports Server (NTRS)

    Jordan, Kevin

    1999-01-01

    The following contains the final report on the activities related to the Cooperative Agreement between the human factors research group at NASA Ames Research Center and the Psychology Department at San Jose State University. The participating NASA Ames division has been, as the organization has changed, the Aerospace Human Factors Research Division (ASHFRD and Code FL), the Flight Management and Human Factors Research Division (Code AF), and the Human Factors Research and Technology Division (Code IH). The inclusive dates for the report are November 1, 1984 to January 31, 1999. Throughout the years, approximately 170 persons worked on the cooperative agreements in one capacity or another. The Cooperative Agreement provided for research personnel to collaborate with senior scientists in ongoing NASA ARC research. Finally, many post-MA/MS and post-doctoral personnel contributed to the projects. It is worth noting that 10 former cooperative agreement personnel were hired into civil service positions directly from the agreements.

  11. Aerospace and military

    SciTech Connect

    Adam, J.A.; Esch, K

    1990-01-01

    This article reviews military and aerospace developments of 1989. The Voyager spacecraft returned astounding imagery from Neptune, sophisticated sensors were launched to explore Venus and Jupiter, and another craft went into earth orbit to explore cosmic rays, while a huge telescope is to be launched early in 1990. The U.S. space shuttle redesign was completed and access to space has become no longer purely a governmental enterprise. In the military realm, events within the Soviet bloc, such as the Berlin Wall's destruction, have popularized arms control. Several big treaties could be signed within the year. Massive troop, equipment, and budget reductions are being considered, along with a halt or delay of major new weapons systems. For new missions, the U.S. military is retreating to its role of a century ago - patrolling the nation's borders, this time against narcotics traffickers.

  12. Dynamics of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.

  13. NAROM - a national laboratory for space education and student rockets

    NASA Astrophysics Data System (ADS)

    Hansen, Arne Hjalmar; Larsen, May Aimee; Østbø, Morten

    2001-08-01

    Despite a considerable growth in space related industry and scientific research over the past few decades, space related education has largely been neglected in our country. NAROM - the National Centre for Space Related Education - was formed last year to organize space related educational activities, to promote recruitment, to promote appreciation for the benefits of space activities, and to stimulate interest for science in general. This year, nine students from Narvik Engineering College have participated in the Hotel Payload Project (HPP) at Anøya Rocket Range. They have thus played an active and essential role in an ongoing engineering project.

  14. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a 5-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASAs safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are "one deep." The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting "brain drain" could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has little flexibility to begin long lead-time items for upgrades or contingency planning.

  15. E-Learning in Engineering Education: Design of a Collaborative Advanced Remote Access Laboratory

    ERIC Educational Resources Information Center

    Chandra A. P., Jagadeesh; Samuel, R. D. Sudhaker

    2010-01-01

    Attaining excellence in technical education is a worthy challenge to any life goal. Distance learning opportunities make these goals easier to reach with added quality. Distance learning in engineering education is possible only through successful implementations of remote laboratories in a learning-by-doing environment. This paper presents one…

  16. The Impact of Federal Legislation on Education in the Clinical Laboratory Sciences.

    ERIC Educational Resources Information Center

    Davis, Brenta G.

    Educational programs in the clinical laboratory sciences are responsible for producing professionals who can function in new environments. In addition, it is the responsibility of all individuals in the profession, regardless of professional role/function to assume the role of educator to prepare students in a way that is appropriate and useful to…

  17. A User Assessment of Workspaces in Selected Music Education Computer Laboratories.

    ERIC Educational Resources Information Center

    Badolato, Michael Jeremy

    A study of 120 students selected from the user populations of four music education computer laboratories was conducted to determine the applicability of current ergonomic and environmental design guidelines in satisfying the needs of users of educational computing workspaces. Eleven categories of workspace factors were organized into a…

  18. Evaluation of the Regional Educational Laboratories. Final Report. NCEE 2015-4008

    ERIC Educational Resources Information Center

    Carison, Elaine; Bitterman, Amy; Zhang, Xiaodong; Lee, Hyunshik; Gutmann, Babette; Wills, Kerri; Sinclair, Beth

    2015-01-01

    This report is the second from the congressionally-mandated evaluation of the Regional Educational Laboratory (REL) program authorized by the Education Sciences Reform Act (P.L. 107-279). For this report, 8 (out of 24) impact study reports produced by the RELs under their 2006-2011 contracts and published by IES were rated by expert panels for…

  19. The Impact of Educational R & D Centers and Laboratories: An Analysis of Effective Organizational Strategies.

    ERIC Educational Resources Information Center

    Baldridge, J. Victor; Johnson, Rudolph

    The purpose of this research was to study the link between effective management strategies and the impact of educational research and development. The 19 R & D Centers and Regional Laboratories of the United States Office of Education were selected as the focal organizations for analysis. Using document analysis and interviews, the researchers…

  20. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  1. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  2. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  3. Education programs at the DOE national laboratories: Benefits to teachers and students

    SciTech Connect

    Bardeen, M.G.

    1991-03-01

    In 1980, when Fermilab began supporting precollege education programs, it was not at all clear that a research laboratory was an appropriate setting for major precollege education programs. Participants have given us the answer, Yes '' Programs for students and teachers work at national laboratories because it is not business as usual. Participants come to a world class research laboratory for a unique opportunity to witness science conducted at the frontier of human understanding. They gain invaluable experience being in an environment where science is done. We have shown that teachers, in particular, respond positively to being treated as professionals and peers by researchers. Benefits to teachers and students from participating in a national laboratory's education programs may be broadly categorized as either changed attitudes toward science or new knowledge about science and science teaching and will be described.

  4. NVQs/SVQs for Laboratory Technicians Working in Education.

    ERIC Educational Resources Information Center

    Holyfield, James

    1998-01-01

    Shares background information on the National Vocational Qualification (NVQ) and Scottish Vocational Qualification (SVQ) assessment systems which were developed from the United Kingdom's national standards for laboratory technicians working in schools and colleges. Offers recommendations for individuals or institutions that are preparing to…

  5. An Analysis of Inservice Education Practices for Hospital Laboratory Personnel.

    ERIC Educational Resources Information Center

    Bonke, Barbara A.; And Others

    1988-01-01

    A study looked at inservice practices in clinical laboratories and at managers' perceptions of the impact and cost effectiveness of those activities. Findings indicate that most do not have an inservice budget and that new employee orientation, policy and procedure discussion, and instrumentation instruction are most effective. (JOW)

  6. Implementation of Artificial Intelligence Assessment in Engineering Laboratory Education

    ERIC Educational Resources Information Center

    Samarakou, Maria; Fylladitakis, Emmanouil D.; Prentakis, Pantelis; Athineos, Spyros

    2014-01-01

    In laboratory courses, the assessment of exercises and assignments typically is treated as a simple, quantifiable approach. This approach however rarely includes qualitative factors, especially if the grading is being automatically performed by the system, and provides little to no feedback for the students to reflect on their work. The role of…

  7. Open Guided Inquiry Laboratory in Physics Teacher Education

    ERIC Educational Resources Information Center

    Nivalainen, Ville; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2013-01-01

    This study has investigated the use of an open guided inquiry laboratory course in which a group of pre-service teachers planned and implemented practical work for school purposes. A total of 32 pre-service teachers (physics, mathematics, and chemistry majors) participated in the study. Each participant wrote a reflective essay after completing…

  8. A Comparison of the Perceptions of Laboratory Directors and Medical Technology Educators Toward Career-Entry Competencies for Associate and Baccalaureate Degree Laboratory Technology Graduates.

    ERIC Educational Resources Information Center

    Buccelli, Pamela

    A study compared the perceptions of Pennsylvania laboratory directors and medical technology educators relative to career-entry competencies for associate degree medical laboratory technicians (MLTs) and baccalaureate medical technology (MT) graduates. A 55-item competency questionnaire was administered to 265 hospital laboratory directors and 40…

  9. The Application of System Dynamics to the Integration of National Laboratory Research and K-12 Education

    SciTech Connect

    Mills, James Ignatius; Zounar Harbour, Elda D

    2001-08-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is dedicated to finding solutions to problems related to the environment, energy, economic competitiveness, and national security. In an effort to attract and retain the expertise needed to accomplish these challenges, the INEEL is developing a program of broad educational opportunities that makes continuing education readily available to all laboratory employees, beginning in the K–12 environment and progressing through post-graduate education and beyond. One of the most innovative educational approaches being implemented at the laboratory is the application of STELLA© dynamic learning environments, which facilitate captivating K–12 introductions to the complex energy and environmental challenges faced by global societies. These simulations are integrated into lesson plans developed by teachers in collaboration with INEEL scientists and engineers. This approach results in an enjoyable and involved learning experience, and an especially positive introduction to the application of science to emerging problems of great social and environmental consequence.

  10. From Laboratories to Classrooms: Involving Scientists in Science Education

    NASA Astrophysics Data System (ADS)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  11. Aerospace management techniques: Commercial and governmental applications

    NASA Technical Reports Server (NTRS)

    Milliken, J. G.; Morrison, E. J.

    1971-01-01

    A guidebook for managers and administrators is presented as a source of useful information on new management methods in business, industry, and government. The major topics discussed include: actual and potential applications of aerospace management techniques to commercial and governmental organizations; aerospace management techniques and their use within the aerospace sector; and the aerospace sector's application of innovative management techniques.

  12. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Annual Report of the Aerospace Safety Advisory Panel (ASAP) presents results of activities during calendar year 2001. The year was marked by significant achievements in the Space Shuttle and International Space Station (ISS) programs and encouraging accomplishments by the Aerospace Technology Enterprise. Unfortunately, there were also disquieting mishaps with the X-43, a LearJet, and a wind tunnel. Each mishap was analyzed in an orderly process to ascertain causes and derive lessons learned. Both these accomplishments and the responses to the mishaps led the Panel to conclude that safety and risk management is currently being well served within NASA. NASA's operations evidence high levels of safety consciousness and sincere efforts to place safety foremost. Nevertheless, the Panel's safety concerns have never been greater. This dichotomy has arisen because the focus of most NASA programs has been directed toward program survival rather than effective life cycle planning. Last year's Annual Report focused on the need for NASA to adopt a realistically long planning horizon for the aging Space Shuttle so that safety would not erode. NASA's response to the report concurred with this finding. Nevertheless, there has been a greater emphasis on current operations to the apparent detriment of long-term planning. Budget cutbacks and shifts in priorities have severely limited the resources available to the Space Shuttle and ISS for application to risk-reduction and life-extension efforts. As a result, funds originally intended for long-term safety-related activities have been used for operations. Thus, while safety continues to be well served at present, the basis for future safety has eroded. Section II of this report develops this theme in more detail and presents several important, overarching findings and recommendations that apply to many if not all of NASA's programs. Section III of the report presents other significant findings, recommendations and supporting

  13. REGENERATIVE SITE LEARNING LABORATORY: A SITE INTERVENTION FOR SUSTAINABILITY EDUCATION

    EPA Science Inventory

    The project will indicate strategies that can be used to mitigate the negative impact of an existing developed site on a watershed and natural habitats. Additionally, the project design will inspire interest in ecological sustainability in an educational context. The project ...

  14. Norwegian Aerospace Activities: an Overview

    NASA Technical Reports Server (NTRS)

    Arnesen, T. (Editor); Rosenberg, G. (Editor)

    1986-01-01

    Excerpts from a Governmental Investigation concerning Norwegian participation in the European Space Organization (ESA) is presented. The implications and advantages of such a move and a suggestion for the reorganization of Norwegian Aerospace activity is given.

  15. The FASST Aerospace Student Forum

    ERIC Educational Resources Information Center

    David, Leonard

    1976-01-01

    Describes a three-day Forum for the Advancement of Students in Science and Technology (FASST), at which students from 20 colleges and universities and six Soviet students discussed the application of aerospace technology to the problems of society. (MLH)

  16. AeroSpace Days 2013

    NASA Video Gallery

    At the eighth annual AeroSpace Days, first mom in space, Astronaut AnnaFisher, and Sen. Louise Lucas, interacted with students from Mack BennJr. Elementary School in Suffolk, Va. through NASA’s...

  17. Heat transfer in aerospace propulsion

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

    1988-01-01

    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

  18. Ball Aerospace AMSD Progress Update

    NASA Technical Reports Server (NTRS)

    Blair, Mark; Brown, Robert; Chaney, David; Lightsey, Paul; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The current status of the Advanced Mirror System Demonstrator program being performed by Ball Aerospace is presented. The hexagonal low-areal density Beryllium mirror blank has been fabricated and undergoing polishing at the time of this presentation.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 6: Aerospace knowledge diffusion in the academic community: A report of phase 3 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    Descriptive and analytical data regarding the flow of aerospace-based scientific and technical information (STI) in the academic community are presented. An overview is provided of the Federal Aerospace Knowledge Diffusion Research Project, illustrating a five-year program on aerospace knowledge diffusion. Preliminary results are presented of the project's research concerning the information-seeking habits, practices, and attitudes of U.S. aerospace engineering and science students and faculty. The type and amount of education and training in the use of information sources are examined. The use and importance ascribed to various information products by U.S. aerospace faculty and students including computer and other information technology is assessed. An evaluation of NASA technical reports is presented and it is concluded that NASA technical reports are rated high in terms of quality and comprehensiveness, citing Engineering Index and IAA as the most frequently used materials by faculty and students.

  20. 32nd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Walker, S. W. (Compiler); Boesiger, Edward A. (Compiler)

    1998-01-01

    The proceedings of the 32nd Aerospace Mechanism Symposium are reported. NASA John F. Kennedy Space Center (KSC) hosted the symposium that was held at the Hilton Oceanfront Hotel in Cocoa Beach, Florida on May 13-15, 1998. The symposium was cosponsored by Lockheed Martin Missiles and Space and the Aerospace Mechanisms Symposium Committee. During these days, 28 papers were presented. Topics included robotics, deployment mechanisms, bearing, actuators, scanners, boom and antenna release, and test equipment.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 33: Technical communications practices and the use of information technologies as reported by Dutch and US aerospace engineers

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA ARC (U.S.), and NASA LaRC (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions concerning four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  2. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Aerospace Safety Advisory Panel (ASAP) monitored NASA's activities and provided feedback to the NASA Administrator, other NASA officials and Congress throughout the year. Particular attention was paid to the Space Shuttle, its launch processing and planned and potential safety improvements. The Panel monitored Space Shuttle processing at the Kennedy Space Center (KSC) and will continue to follow it as personnel reductions are implemented. There is particular concern that upgrades in hardware, software, and operations with the potential for significant risk reduction not be overlooked due to the extraordinary budget pressures facing the agency. The authorization of all of the Space Shuttle Main Engine (SSME) Block II components portends future Space Shuttle operations at lower risk levels and with greater margins for handling unplanned ascent events. Throughout the year, the Panel attempted to monitor the safety activities related to the Russian involvement in both space and aeronautics programs. This proved difficult as the working relationships between NASA and the Russians were still being defined as the year unfolded. NASA's concern for the unique safety problems inherent in a multi-national endeavor appears appropriate. Actions are underway or contemplated which should be capable of identifying and rectifying problem areas. The balance of this report presents 'Findings and Recommendations' (Section 2), 'Information in Support of Findings and Recommendations' (Section 3) and Appendices describing Panel membership, the NASA response to the March 1994 ASAP report, and a chronology of the panel's activities during the reporting period (Section 4).

  3. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  4. Aerospace Safety Advisory Panel

    NASA Astrophysics Data System (ADS)

    1989-03-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  5. [Undergraduate education of laboratory medicine in Hirosaki University School of Medicine].

    PubMed

    Shoji, Masaru; Yasujima, Minoru

    2003-11-01

    The Department of Laboratory Medicine is responsible for the several undergraduate educational programs in Hirosaki University School of Medicine. We describe here how these programs are taken place. The staffs of the department participate in premedical lectures for the first grade students under the name of "21st century education" to introduce the medical english, human science, health and disease. As an early clinical exposure, the first grade medical students spend half day to make rotational visit to major clinical departments in the University Hospital once a week. We show them how each section of the Department of Clinical Laboratory works. At Year 4 during preclinical courses, 15 credit lectures of laboratory medicine based on clinical core are provided by our staffs and invited lecturers. Year 4 students can also choose one of elective research courses. This year, 5 students studied three topics of diagnostic testing and derivative research in the setting of an academic clinical laboratory. The core clerkship in laboratory medicine includes the necessary skills for acquiring a blood sampling and performing core laboratory examination. Emphasis is placed on interpretation of the data as well as the sampling and examination. We have played some role in the introduction of tutorial learning methods into preclinical courses in the year of 2003. Although we need supply of directors manpower, we hope that all of the students can acquire quality of the generally permissive six year of medical school and prepare postgraduate educational programs through our education courses. PMID:14679792

  6. Students' assessment of interactive distance experimentation in nuclear reactor physics laboratory education

    NASA Astrophysics Data System (ADS)

    Malkawi, Salaheddin; Al-Araidah, Omar

    2013-10-01

    Laboratory experiments develop students' skills in dealing with laboratory instruments and physical processes with the objective of reinforcing the understanding of the investigated subject. In nuclear engineering, where research reactors play a vital role in the practical education of students, the high cost and long construction time of research reactors limit their accessibility to few educational programmes around the world. The concept of the Internet Reactor Laboratory (IRL) was introduced earlier as a new approach that utilises distance education in nuclear reactor physics laboratory education. This paper presents an initial assessment of the implementation of the IRL between the PULSTAR research reactor at North Carolina State University in the USA and the Department of Nuclear Engineering at Jordan University of Science and Technology (JUST) in Jordan. The IRL was implemented in teaching the Nuclear Reactor laboratory course for two semesters. Feedback from surveyed students verifies that the outcomes attained from using IRL in experimentation are comparable to that attainable from other on-campus laboratories performed by the students.

  7. A Plasma Science Education Laboratory for K-16 Students and Teachers

    NASA Astrophysics Data System (ADS)

    Post Zwicker, Andrew; Hulse, R. A.; Gershman, Sophia

    2002-11-01

    In the Summer 2002, a major new science education laboratory was created at PPPL. The new laboratory significantly increasing our educational opportunities for teachers and students at all levels, both locally and nationally, especially for those that are underrepresented in math, science, and technology. Recent collaborations include partnerships with The Lewis School, a private school of grades 6-12 for "learning different" students (redesigning their physics and physical science curricula), Douglass College (programs designed for undergraduate and high school women interested in math, science, or engineering) and the science museum The Franklin Institute (creating teacher and student plasma workshops for their educational programs). The Plasma Science Education Laboratory is more than 3600 sq. ft. and is designed as a laboratory and a classroom, with the general lab space easily changed depending upon the type of use. The flexible layout allows for a unique combination of curricula design and direct plasma education. Small rooms are set aside for advanced projects. Other activities in the laboratory include research with small plasma sources, typically a DC glow discharge, that pairs an advanced high school student with an undergraduate physics major. Research topics include high speed video imagery and analysis of classroom plasmas (Jacob's ladder, plasma ball), investigations of plasmas that mimic biological systems, creation of new plasma sources for classroom use.

  8. The 2004 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Super NiCd(TradeMark) Energy Storage for Gravity Probe-B Relativity Mission; Hubble Space Telescope 2004 Battery Update; The Development of Hermetically Sealed Aerospace Nickel-Metal Hydride Cell; Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System; Cell Equalization of Lithium-Ion Cells; The Long-Term Performance of Small-Cell Batteries Without Cell-Balancing Electronics; Identification and Treatment of Lithium Battery Cell Imbalance under Flight Conditions; Battery Control Boards for Li-Ion Batteries on Mars Exploration Rovers; Cell Over Voltage Protection and Balancing Circuit of the Lithium-Ion Battery; Lithium-Ion Battery Electronics for Aerospace Applications; Lithium-Ion Cell Charge Control Unit; Lithium Ion Battery Cell Bypass Circuit Test Results at the U.S. Naval Research Laboratory; High Capacity Battery Cell By-Pass Switches: High Current Pulse Testing of Lithium-Ion; Battery By-Pass Switches to Verify Their Ability to Withstand Short-Circuits; Incorporation of Physics-Based, Spatially-Resolved Battery Models into System Simulations; A Monte Carlo Model for Li-Ion Battery Life Projections; Thermal Behavior of Large Lithium-Ion Cells; Thermal Imaging of Aerospace Battery Cells; High Rate Designed 50 Ah Li-Ion Cell for LEO Applications; Evaluation of Corrosion Behavior in Aerospace Lithium-Ion Cells; Performance of AEA 80 Ah Battery Under GEO Profile; LEO Li-Ion Battery Testing; A Review of the Feasibility Investigation of Commercial Laminated Lithium-Ion Polymer Cells for Space Applications; Lithium-Ion Verification Test Program; Panasonic Small Cell Testing for AHPS; Lithium-Ion Small Cell Battery Shorting Study; Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-Time Profiles; Update on Development of Lithium-Ion Cells for Space Applications at JAXA; Foreign Comparative Technology: Launch Vehicle Battery Cell Testing; 20V, 40 Ah Lithium Ion Polymer

  9. Evaluation of the Use of Remote Laboratories for Secondary School Science Education

    NASA Astrophysics Data System (ADS)

    Lowe, David; Newcombe, Peter; Stumpers, Ben

    2013-06-01

    Laboratory experimentation is generally considered central to science-based education. Allowing students to "experience" science through various forms of carefully designed practical work, including experimentation, is often claimed to support their learning and motivate their engagement while fulfilling specific curriculum requirements. However, logistical constraints (most especially related to funding) place significant limitations on the ability of schools to provide and maintain high-quality science laboratory experiences and equipment. One potential solution that has recently been the subject of growing interest is the use of remotely accessible laboratories to either supplant, or more commonly to supplement, conventional hands-on laboratories. Remote laboratories allow students and teachers to use high-speed networks, coupled with cameras, sensors, and controllers, to carry out experiments on real physical laboratory apparatus that is located remotely from the student. Research has shown that when used appropriately this can bring a range of potential benefits, including the ability to share resources across multiple institutions, support access to facilities that would otherwise be inaccessible for cost or technical reasons, and provide augmentation of the experimental experience. Whilst there has been considerable work on evaluating the use of remote laboratories within tertiary education, consideration of their role within secondary school science education is much more limited. This paper describes trials of the use of remote laboratories within secondary schools, reporting on the student and teacher reactions to their interactions with the laboratories. The paper concludes that remote laboratories can be highly beneficial, but considerable care must be taken to ensure that their design and delivery address a number of critical issues identified in this paper.

  10. Live streaming video for medical education: a laboratory model.

    PubMed

    Gandsas, Alejandro; McIntire, Katherine; Palli, Guillermo; Park, Adrian

    2002-10-01

    At the University of Kentucky (UK), we applied streaming video technology to develop a webcast model that will allow institutions to broadcast live and prerecorded surgeries, conferences, and courses in real time over networks (the Internet or an intranet). We successfully broadcast a prerecorded laparoscopic paraesophageal hernia repair to domestic and international clients by using desktop computers equipped with off-the-shelf, streaming-enabled software and standard hardware and operating systems. A web-based user interface made accessing the educational material as simple as a mouse click and allowed clients to participate in the broadcast event via an embedded e-mail/chat module. Three client computers (two connected to the Internet and a third connected to the UK intranet) requested and displayed the surgical film by means of seven common network connection configurations. Significantly, no difference in image resolution was detected with the use of a connection speed faster than 128 kilobytes per second (kbps). At this connection speed, an average bandwidth of 32.7 kbps was used, and although a 15-second delay was experienced from the time of data request to data display, the surgical film streamed continuously from beginning to end at a mean rate of 14.4 frames per second (fps). The clients easily identified all anatomic structures in full color motion, clearly followed all steps of the surgical procedure, and successfully asked questions and made comments by using the e-mail/chat module while viewing the surgery. With minimal financial investment, we have created an interactive virtual classroom with the potential to attract a global audience. Our webcast model represents a simple and practical method for institutions to supplement undergraduate and graduate surgical education and offer continuing medical education credits in a way that is convenient for clients (surgeons, students, residents, others). In the future, physicians may access streaming webcast

  11. 78 FR 36793 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space..., Public Law 92-463, as amended, the National Aeronautics and Space Administration announce a forthcoming...., Local Time. ADDRESSES: NASA's Marshall Space Flight Center, Educator Resource Center, U.S....

  12. Educational technology transfer in newly independent states: developing a medical multimedia laboratory in Lithuania.

    PubMed

    Maskaliunas, R; Jankauskas, R; Ramanauskas, J; Locatis, C

    1995-03-01

    This paper discusses the development of an interactive multimedia computer laboratory within the Vilnius University Medical Faculty involving transfer of hardware and courseware developed in the USA. The contexts in which the laboratory was developed are described and factors helping and hindering successful technology transfer are identified. The future of the laboratory and its potential role in international distance education and information access are discussed. While this paper does not focus on international distance education in the traditional sense of offering courses or training from one or more source institutions to individuals off-site, it has implications for providing education internationally, especially in the Baltic and other newly independent states of the former USSR. PMID:7560767

  13. A New Center for Science Education at UC Berkeley's Space Sciences Laboratory

    NASA Astrophysics Data System (ADS)

    Hawkins, I.

    1998-01-01

    The Space Sciences Laboratory at UC Berkeley has established a new Center for Science Education through the Laboratory's Senior Fellow program. The Center has a two-fold mission: (1) science education research through collaborations with UCB Graduate School of Education faculty, and (2) education and outreach projects that bring NASA research to the K-14 and general public communities. The Center is the host of two major education and outreach programs funded by NASA - The Sun-Earth Connection Education Forum (SECEF) and the Science Education Gateway (SEGway) Project. The SECEF - a collaborative between UC Berkeley and NASA's Goddard Space Flight Center - is one of four Forums that have been funded through the Office of Space Science as part of their Education Ecosystem. SEGway is a partnership between science research centers, science museums, and teachers, for the purpose of developing Internet-based, inquiry activities for the K-12 classroom that tap NASA remote sensing data. We will describe the Center for Science Education's history and vision, as well as summarize our core programs.

  14. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a five-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASA's safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are 'one deep.' The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting 'brain drain' could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. The major NASA programs are also limited in their ability to plan property for the future. This is of particular concern for the Space Shuttle and ISS because these programs are scheduled to operate well into the next century. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has

  15. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This annual report is based on the activities of the Aerospace Safety Advisory Panel in calendar year 2000. During this year, the construction of the International Space Station (ISS) moved into high gear. The launch of the Russian Service Module was followed by three Space Shuttle construction and logistics flights and the deployment of the Expedition One crew. Continuous habitation of the ISS has begun. To date, both the ISS and Space Shuttle programs have met or exceeded most of their flight objectives. In spite of the intensity of these efforts, it is clear that safety was always placed ahead of cost and schedule. This safety consciousness permitted the Panel to devote more of its efforts to examining the long-term picture. With ISS construction accelerating, demands on the Space Shuttle will increase. While Russian Soyuz and Progress spacecraft will make some flights, the Space Shuttle remains the primary vehicle to sustain the ISS and all other U.S. activities that require humans in space. Development of a next generation, human-rated vehicle has slowed due to a variety of technological problems and the absence of an approach that can accomplish the task significantly better than the Space Shuttle. Moreover, even if a viable design were currently available, the realities of funding and development cycles suggest that it would take many years to bring it to fruition. Thus, it is inescapable that for the foreseeable future the Space Shuttle will be the only human-rated vehicle available to the U.S. space program for support of the ISS and other missions requiring humans. Use of the Space Shuttle will extend well beyond current planning, and is likely to continue for the life of the ISS.

  16. Open Guided Inquiry Laboratory in Physics Teacher Education

    NASA Astrophysics Data System (ADS)

    Nivalainen, Ville; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2013-04-01

    This study has investigated the use of an open guided inquiry laboratory course in which a group of pre-service teachers planned and implemented practical work for school purposes. A total of 32 pre-service teachers (physics, mathematics, and chemistry majors) participated in the study. Each participant wrote a reflective essay after completing the course, and three pre-service teachers were interviewed four times during the course. The results show that the use of an open guided inquiry environment provides support for pre-service teachers to discover the limits of their understanding of subject matter knowledge, allowing them to construct knowledge in a different kind of environment from any they had possessed previously, and helping them to understand the possibilities of practical work in teaching. In the course of developing their competence in these aspects, pre-service teachers also gain an understanding of various aspects of teachers' knowledge.

  17. Effectiveness of Educational Laboratories and Centers: A System For the Evaluation of Educational Research and Development Products. Final Report.

    ERIC Educational Resources Information Center

    Dunn, James A.; And Others

    A system was designed and pilot tested for the evaluation of the products of educational research and development centers and laboratories. The products developed were: (1) a detailed specification of the evaluation procedure; (2) an empirically derived, validated, and reliable product taxonomy; (3) criteria for evaluation; and (4) the forms,…

  18. Development of Distant Learning Laboratory and Creation of Educational Materials

    NASA Technical Reports Server (NTRS)

    Considine, Michelle

    1995-01-01

    The Office of Education's fundamental goal is to disseminate information, mostly that which relates to science and technology. In this attempt, as I have observed, the office has many programs bringing both students and teachers to NASA Langley to expose them to the facilities and to teach them some about the scientific theory and about available modern technology. As a way of expanding the audience that can be reached, as the expense of bringing people in is limiting, Marchelle Canright has proposed establishing a center dedicated to researching and producing distant learning videos. Although distant learning through telecommunications is not a new concept, as many universities, colleges, and precollege level schools offer televised courses, the research in this field has been limited. Many of the standing distant learning broadcasts are simply recordings of teachers in classrooms giving lectures to their own students; they are not aimed at the television audience. In some cases the videos are produced without a Live-lecture atmosphere, but are still only classroom lectures. In either case, however, the full range of capabilities of video production are not being fully utilized. Methods for best relaying educational material have not been explored. Possibilities for including computerized images and video clips for the purpose of showing diagrams and processes, as well as examples in fitting cases, may add considerably to the educational value of these videos. Also, through Internet and satellite links, it is possible for remote students to interact with the teachers during televised sessions. These possibilities might, also, add to the effectiveness of distant learning programs. Ms. Canright's proposed center will be dedicated to researching these possibilities and eventually spreading the results to distant learning program managers. This is the project I was involved in over the summer. As implied, the center is still at the foundation stages. Ms. Canright has

  19. Aerospace engineering curriculum for the 21st century

    NASA Technical Reports Server (NTRS)

    Simitses, George J.

    1995-01-01

    The second year of the study was devoted to completing the information-gathering phase of this redesign effort, using the conclusions from that activity to prepare the initial structure for the new curriculum, publicizing activities to a wider engineering forum, and preparing the department faculty (Aerospace Engineering and Engineering Mechanics at University of Cincinnati) for the roles they will play in the curriculum redesign and implementation. These activities are summarized briefly in this progress report. Attached is a paper resulting from the data acquisition of this effort, 'Educating Aerospace Engineers for the Twenty-First Century: Results of a Survey.'

  20. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Each item is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1996.

  1. Robert A. Millikan Award Lecture (August 2002): Global Study of the Role of the Laboratory in Physics Education.

    ERIC Educational Resources Information Center

    George, Simon

    2003-01-01

    Presents the lecture given by the Millikan Award winner on a global study of the role of the laboratory in physics education. Discusses physics education in India, Malaysia, Great Britain, and the United States. (NB)

  2. An e-learning platform for Aerospace Medicine

    PubMed Central

    Bamidis, P D; Konstantinidis, S; Papadelis, C L; Perantoni, E; Styliadis, C; Kourtidou-Papadeli, C; Kourtidou-Papadeli, C; Pappas, C

    2008-01-01

    The appeal of online education and distance learning as an educational alternative is ever increasing. To support and accommodate the over-specialized knowledge available by different experts, information technology can be employed to develop virtual distributed pools of autonomous specialized educational modules and provide the mechanisms for retrieving and sharing them. New educational standards such as SCORM and Healthcare LOM enhance this process of sharing by offering qualities like interoperability, accessibility, and reusability, so that learning material remains credible, up-to-date and tracks changes and developments of medical techniques and standards through time. Given that only a few e-learning courses exist in aerospace medicine the material of which may be exchanged among teachers, the aim of this paper is to illustrate the procedure of creating a SCORM compliant course that incorporates notions of recent advances in social web technologies. The course is in accordance with main educational and technological details and is specific to pulmonary disorders in aerospace medicine. As new educational trends place much emphasis in continuing medical education, the expansion of a general practitioner's knowledge in topics such as aviation and aerospace pulmonary disorders for crew and passengers becomes a societal requirement. PMID:19048088

  3. National Aerospace Professional Societies and Associations and Organizations

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur J., Jr.

    2000-01-01

    This session will highlight several highly recognized National Technical and Professional Aerospace Societies, Associations and Organizations that are dedicated to the advancement of the theories, practices and unique applications of Science, Engineering and related Aerospace Activities ongoing in the United States. The emphasis will be on at least three (3) Aerospace Organizations, while reference many others. This paper will provide a wealth of educational references, information, opportunities and services available through many of the National and Local Chapter Affiliates, associated with the respective associations. Again, all experience and knowledge levels (K-12) will benefit from this information and reference material. Reference materials and other points of contact will be made available to all attendees.

  4. The advancement in using remote laboratories in electrical engineering education: a review

    NASA Astrophysics Data System (ADS)

    Almarshoud, A. F.

    2011-10-01

    The rapid development in Internet technology and its big popularity has led some universities around the world to incorporate web-based learning in some of their programmes. The present paper introduces a comprehensive survey of the publications about using remote laboratories in electrical engineering education. Remote laboratories are web-based, real-time laboratories that enable students to measure and control the measurements remotely in their own time. The survey highlights the features of many recent remote laboratories and demonstrates the software and networking technologies used. The paper provides a comprehensive overview on several aspects related to remote laboratories development. The paper concentrates on the publications appearing during the last decade. The review is arranged according to the area of specialisation, then chronologically.

  5. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report presents the results of the Aerospace Safety Advisory Panel (ASAP) activities during 2002. The format of the report has been modified to capture a long-term perspective. Section II is new and highlights the Panel's view of NASA's safety progress during the year. Section III contains the pivotal safety issues facing NASA in the coming year. Section IV includes the program area findings and recommendations. The Panel has been asked by the Administrator to perform several special studies this year, and the resulting white papers appear in Appendix C. The year has been filled with significant achievements for NASA in both successful Space Shuttle operations and International Space Station (ISS) construction. Throughout the year, safety has been first and foremost in spite of many changes throughout the Agency. The relocation of the Orbiter Major Modifications (OMMs) from California to Kennedy Space Center (KSC) appears very successful. The transition of responsibilities for program management of the Space Shuttle and ISS programs from Johnson Space Center (JSC) to NASA Headquarters went smoothly. The decision to extend the life of the Space Shuttle as the primary NASA vehicle for access to space is viewed by the Panel as a prudent one. With the appropriate investments in safety improvements, in maintenance, in preserving appropriate inventories of spare parts, and in infrastructure, the Space Shuttle can provide safe and reliable support for the ISS for the foreseeable future. Indications of an aging Space Shuttle fleet occurred on more than one occasion this year. Several flaws went undetected in the early prelaunch tests and inspections. In all but one case, the problems were found prior to launch. These incidents were all handled properly and with safety as the guiding principle. Indeed, launches were postponed until the problems were fully understood and mitigating action could be taken. These incidents do, however, indicate the need to analyze the

  6. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During 1997, the Aerospace Safety Advisory Panel (ASAP) continued its safety reviews of NASA's human space flight and aeronautics programs. Efforts were focused on those areas that the Panel believed held the greatest potential to impact safety. Continuing safe Space Shuttle operations and progress in the manufacture and testing of primary components for the International Space Station (ISS) were noteworthy. The Panel has continued to monitor the safety implications of the transition of Space Shuttle operations to the United Space Alliance (USA). One area being watched closely relates to the staffing levels and skill mix in both NASA and USA. Therefore, a section of this report is devoted to personnel and other related issues that are a result of this change in NASA's way of doing business for the Space Shuttle. Attention will continue to be paid to this important topic in subsequent reports. Even though the Panel's activities for 1997 were extensive, fewer specific recommendations were formulated than has been the case in recent years. This is indicative of the current generally good state of safety of NASA programs. The Panel does, however, have several longer term concerns that have yet to develop to the level of a specific recommendation. These are covered in the introductory material for each topic area in Section 11. In another departure from past submissions, this report does not contain individual findings and recommendations for the aeronautics programs. While the Panel devoted its usual efforts to examining NASA's aeronautic centers and programs, no specific recommendations were identified for inclusion in this report. In lieu of recommendations, a summary of the Panel's observations of NASA's safety efforts in aeronautics and future Panel areas of emphasis is provided. With profound sadness the Panel notes the passing of our Chairman, Paul M. Johnstone, on December 17, 1997, and our Staff Assistant, Ms. Patricia M. Harman, on October 5, 1997. Other

  7. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    ERIC Educational Resources Information Center

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  8. A Laboratory Facility Dedicated to Educational R&D, Volume 1.

    ERIC Educational Resources Information Center

    Hein, William H., Jr., Ed.

    This volume contains working papers that document the planning, constructing, equipping, and operating of a laboratory facility dedicated to educational research and development (R&D). There are three volumes in the complete set. Volume 1 contains the technical substance of activity and sets forth the technical substance of the twelve working…

  9. Consumer Education Outreach Project: A Community Approach Utilizing an Off-Campus Laboratory.

    ERIC Educational Resources Information Center

    Parker, Janet M.

    A consumer education outreach project used a community, off-campus laboratory approach with fifty-seven girls and ten boys from high schools in the Santa Barbara area in the development of a program to better prepare students to meet the challenges of everyday living. The assumption made was that motivation to learn would increase in…

  10. Gamification in Science Education: Gamifying Learning of Microscopic Processes in the Laboratory

    ERIC Educational Resources Information Center

    Fleischmann, Katja; Ariel, Ellen

    2016-01-01

    Understanding and trouble-shooting microscopic processes involved in laboratory tests are often challenging for students in science education because of the inability to visualize the different steps and the various errors that may influence test outcome. The effectiveness of gamification or the use of game design elements and game-mechanics were…

  11. Child Development Laboratory Schools as Generators of Knowledge in Early Childhood Education: New Models and Approaches

    ERIC Educational Resources Information Center

    McBride, Brent A.; Groves, Melissa; Barbour, Nancy; Horm, Diane; Stremmel, Andrew; Lash, Martha; Bersani, Carol; Ratekin, Cynthia; Moran, James; Elicker, James; Toussaint, Susan

    2012-01-01

    Research Findings: University-based child development laboratory programs have a long and rich history of supporting teaching, research, and outreach activities in the child development/early childhood education fields. Although these programs were originally developed in order to conduct research on children and families to inform policy and…

  12. Improvement of Social Science Education via the Development of a Social Science Laboratory. Final Report.

    ERIC Educational Resources Information Center

    Gustafson, Jerry W.

    A 3-year project to establish a college-level interdisciplinary computer center/scientific laboratory for the social sciences is described. The purpose of the project was to improve education in empirical and behavioral research methods. The center consists of computing facilities, a survey research facility, a simulation/gaming facility, and a…

  13. PROJECTS IN IMAGINATIVE NATURE EDUCATION, SURVEY REPORT AND OUTDOOR LABORATORY PLAN.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    THIS PLAN SUGGESTS HOW THE MID HUDSON-CATSKILLS MUSEUM CAN WORK CREATIVELY WITH COOPERATING SCHOOL DISTRICTS TO STRENGTHEN THEIR CURRICULUMS THROUGH OUTDOOR EDUCATION. THE RESULT OF THIS COOPERATIVE ENDEAVOR IS TO BE AN OUTDOOR LABORATORY CALLED "GATEWAY CENTER" LOCATED NEAR NEW PALTZ, NEW YORK. PART 1 CONTAINS (1) BACKGROUND INFORMATION, (2)…

  14. Evaluation of the Use of Remote Laboratories for Secondary School Science Education

    ERIC Educational Resources Information Center

    Lowe, David; Newcombe, Peter; Stumpers, Ben

    2013-01-01

    Laboratory experimentation is generally considered central to science-based education. Allowing students to "experience" science through various forms of carefully designed practical work, including experimentation, is often claimed to support their learning and motivate their engagement while fulfilling specific curriculum requirements. However,…

  15. Health Services: Clinical. Medical Laboratory Aide. Instructor's Manual. Competency-Based Education.

    ERIC Educational Resources Information Center

    Cave, Julie; And Others

    This instructors manual consists of materials for use in presenting a course in the occupational area of medical laboratory aide. Included in the first part of the guide are a program master sequence; a master listing of instructional materials, equipment, and supplies; an overview of the competency-based vocational education (CBVE) system; and…

  16. The Critical Professional Skills of Teaching: A Laboratory Approach to Teacher Education and Program Verification.

    ERIC Educational Resources Information Center

    Peterson, Daniel L.; And Others

    This paper describes a pilot project that investigated two key elements of the Teaching Skills Laboratory Network. The first of these was the use of a performance assessment instrument, and the second was the development of a teacher education database. In order to provide a contextual perspective, the discussion of these two items is prefaced by…

  17. A New Species of Science Education: Harnessing the Power of Interactive Technology to Teach Laboratory Science

    ERIC Educational Resources Information Center

    Reddy, Christopher

    2014-01-01

    Interactive television is a type of distance education that uses streaming audio and video technology for real-time student-teacher interaction. Here, I discuss the design and logistics for developing a high school laboratory-based science course taught to students at a distance using interactive technologies. The goal is to share a successful…

  18. Medical Laboratory Technician--Microbiology, 10-3. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, the second of three courses in the medical laboratory technician field adapted from military curriculum materials for use in vocational and technical education, was designed as a refresher course for student self-study and evaluation. It is suitable for use by advanced students or beginning students participating in a supervised…

  19. Pre-Employment Laboratory Education. Home Furnishings/Interior Design Guidebook.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Instructional Materials Center.

    This guidebook is designed for use in teaching students enrolled in pre-employment laboratory education (PELE) home furnishing/interior design programs. The first of two major sections includes an overview for teachers on planning, conducting, and evaluating a home furnishings/interior design program. Specific topics discussed in section 1 include…

  20. A Comparative Study of Two Laboratory Approaches in a General Education College Physical Science Course.

    ERIC Educational Resources Information Center

    Schellenberg, John Patrick

    The purpose of this study was to determine the relative effectiveness of two laboratory approaches in a general education physical science course: (1) the experimental method called the contemporary topics, and (2) the control method called the standard topics. The criterion instruments were an investigator-constructed subject content test, the…

  1. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)

    1997-01-01

    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  2. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Clark-Ingram, M.; Hessler, S. L.

    1997-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  3. Optical Information Processing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Current research in optical processing is reviewed. Its role in future aerospace systems is determined. The development of optical devices and components demonstrates that system concepts can be implemented in practical aerospace configurations.

  4. Pathways and Challenges to Innovation in Aerospace

    NASA Technical Reports Server (NTRS)

    Terrile, Richard J.

    2010-01-01

    This paper explores impediments to innovation in aerospace and suggests how successful pathways from other industries can be adopted to facilitate greater innovation. Because of its nature, space exploration would seem to be a ripe field of technical innovation. However, engineering can also be a frustratingly conservative endeavor when the realities of cost and risk are included. Impediments like the "find the fault" engineering culture, the treatment of technical risk as almost always evaluated in terms of negative impact, the difficult to account for expansive Moore's Law growth when making predictions, and the stove-piped structural organization of most large aerospace companies and federally funded research laboratories tend to inhibit cross-cutting technical innovation. One successful example of a multi-use cross cutting application that can scale with Moore's Law is the Evolutionary Computational Methods (ECM) technique developed at the Jet Propulsion Lab for automated spectral retrieval. Future innovations like computational engineering and automated design optimization can potentially redefine space exploration, but will require learning lessons from successful innovators.

  5. [Aerospace radiobiology: 35 years (1960-1995)].

    PubMed

    Ushakov, I B; Davydov, B I

    1996-01-01

    The paper gives a brief history of the birth and development of aerospace radiobiology at the Institute of Aviation and Space Medicine. It covers from the first radiobiological investigations in space to the insurance of radiation safety for helicopter air crews who took part in cleaning-up operations of consequences of the Chernobyl accident. The workers of the Radiobiological Laboratory have performed some research theoretical and practical tasks in the interests of aviation and space, civil and military medicine: the impact of gravitation and radiation on genetic structures has been studied, a radiation safety system for vehicles of different use has been developed, new principles in the standardization of EMF for radiofrequency and microwave bands have been proposed, the new radioprotective agent indralin (B, B-190) has been discovered, which is accepted for supply and used in rotary wing aircraft pilots during liquidation works at the Chernobyl atomic power station. New experimental data on the combined effects of radiation and non-radiation flight factors have been obtained. Basically new data on the mechanism of action of ionizing and non-ionizing radiation on the brain have been also gained, a system for assessing the health and rehabilitation of pilots that cleaned-up the Chernobyl accident has been developed. Professor Pavel Petrovich Saksonov, RF Honoured Scientist, has the honour to create a school of aerospace radiobiology. PMID:8963185

  6. Improving Pre-Service Elementary Teachers' Education via a Laboratory Course on Air Pollution: One University's Experience

    ERIC Educational Resources Information Center

    Mandrikas, Achilleas; Parkosidis, Ioannis; Psomiadis, Ploutarchos; Stoumpa, Artemisia; Chalkidis, Anthimos; Mavrikaki, Evangelia; Skordoulis, Constantine

    2013-01-01

    This paper describes the structure of the "Air Pollution Course", an environmental science laboratory course developed at the Science Education Laboratory of the Faculty of Primary Education, University of Athens, as well as the findings resulting from its implementation by pre-service elementary teachers. The course proposed in this study deals…

  7. NASA-UVA light aerospace alloy and structures technology program (LA(sup 2)ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1992-01-01

    The general objective of the Light Aerospace Alloy and Structures Technology (LA(sup 2)ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with Langley researchers. Specific technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanics analyses, measurement advances, and critically, a pool of educated graduate students for aerospace technologies. Four research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  8. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1996-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. Three research areas are being actively investigated, including: (1) Mechanical and environmental degradation mechanisms in advanced light metals, (2) Aerospace materials science, and (3) Mechanics of materials for light aerospace structures.

  9. Aerospace Training. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Aerospace is an economic powerhouse that generates jobs and fuels our economy. Washington's community and technical colleges produce the world-class employees needed to keep it that way. With about 1,250 aerospace-related firms employing more than 94,000 workers, Washington has the largest concentration of aerospace expertise in the nation. To…

  10. A study of divergent TA teaching styles in inquiry-based laboratory education

    NASA Astrophysics Data System (ADS)

    Little, James H.

    This dissertation is a study of the divergent behaviors evidenced by different TAs teaching inquiry based physics laboratories with minimal preparation on how to use techniques such as Socratic dialogue, wait time, and time management. The revised physics laboratory curricula, a four semester laboratory sequence, were studied over the course of two years and one of the laboratory manuals was rewritten and new techniques of TA training developed in order to align TA behavior with the ideals of inquiry based education. This revision was only partially successful, aiding TAs dramatically in improving their time management skills and use of their time, however not yielding dramatic improvements in their use of Socratic dialogue or leading questions.

  11. Job Prospects for Aerospace Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1987-01-01

    Discusses the recent trends in job opportunities for aerospace engineers. Mentions some of the political, technological, and economic factors affecting the overall employment picture. Includes a description of the job prospects created by the general upswing of the large commercial aircraft market. (TW)

  12. Careers in the Aerospace Industry.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Office of General Aviation.

    The document briefly presents career information in the field of aerospace industry. Employment exists in three areas: (1) professional and technical occupations in research and development (engineers, scientists, and technicians); (2) administrative, clerical, and related occupations (engineers, scientists, technicians, clerks, secretaries,…

  13. Technology utilization. [aerospace technology transfer

    NASA Technical Reports Server (NTRS)

    Kubokawa, C. C.

    1978-01-01

    NASA developed technologies were used to tackle problems associated with safety, transportation, industry, manufacturing, construction and state and local governments. Aerospace programs were responsible for more innovations for the benefit of mankind than those brought about by either major wars, or peacetime programs. Briefly outlined are some innovations for manned space flight, satellite surveillance applications, and pollution monitoring techniques.

  14. Graphical simulation for aerospace manufacturing

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Bien, Christopher

    1994-01-01

    Simulation software has become a key technological enabler for integrating flexible manufacturing systems and streamlining the overall aerospace manufacturing process. In particular, robot simulation and offline programming software is being credited for reducing down time and labor cost, while boosting quality and significantly increasing productivity.

  15. Ball Aerospace Actuator Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Kingsbury, Lana; Lightsey, Paul; Quigley, Phil; Rutkowski, Joel; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The ambient testing characterizing step size and repeatability for the Ball Aerospace Cryogenic Nano-Positioner actuators for the AMSD (Advanced Mirror System Demonstrator) program has been completed and are presented. Current cryogenic testing is underway. Earlier cryogenic test results for a pre-cursor engineering model are presented.

  16. Aerospace applications of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-01-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  17. 33rd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Litty, Edward C. (Compiler); Sevilla, Donald R. (Compiler)

    1999-01-01

    The proceedings of the 33rd Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held at the Pasadena Conference and Exhibition Center, Pasadena, California, on May 19-21, 1999. Lockheed Martin Missiles and Space cosponsored the symposium. Technology areas covered include bearings and tribology; pointing, solar array and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  19. Develop virtual joint laboratory for education like distance engineering system for robotic applications

    NASA Astrophysics Data System (ADS)

    Latinovic, T. S.; Deaconu, S. I.; Latinović, M. T.; Malešević, N.; Barz, C.

    2015-06-01

    This paper work with a new system that provides distance learning and online training engineers. The purpose of this paper is to develop and provide web-based system for the handling and control of remote devices via the Internet. Remote devices are currently the industry or mobile robots [13]. For future product development machine in the factory will be included in the system. This article also discusses the current use of virtual reality tools in the fields of science and engineering education. One programming tool in particular, virtual reality modeling language (VRML) is presented in the light of its applications and capabilities in the development of computer visualization tool for education. One contribution of this paper is to present the software tools and examples that can encourage educators to develop a virtual reality model to improve teaching in their discipline. [12] This paper aims to introduce a software platform, called VALIP where users can build, share, and manipulate 3D content in cooperation with the interaction processes in a 3D context, while participating hardware and software devices can be physical and / or logical distributed and connected together via the Internet. VALIP the integration of virtual laboratories to appropriate partners; therefore, allowing access to all laboratories in any of the partners in the project. VALIP provides advanced laboratory for training and research within robotics and production engineering, and thus, provides a great laboratory facilities with only having to invest a limited amount of resources at the local level to the partner site.

  20. Fatigue crack propagation in aerospace aluminum alloys

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Piascik, R. S.; Dicus, D. L.; Newman, J. C., Jr.

    1990-01-01

    This paper reviews fracture mechanics based, damage tolerant characterizations and predictions of fatigue crack growth in aerospace aluminum alloys. The results of laboratory experimentation and modeling are summarized in the areas of: (1) fatigue crack closure, (2) the wide range crack growth rate response of conventional aluminum alloys, (3) the fatigue behavior of advanced monolithic aluminum alloys and metal matrix composites, (4) the short crack problem, (5) environmental fatigue, and (6) variable amplitude loading. Remaining uncertainties and necessary research are identified. This work provides a foundation for the development of fatigue resistant alloys and composites, next generation life prediction codes for new structural designs and extreme environments, and to counter the problem of aging components.

  1. Langley Aerospace Research Summer Scholars. Part 2

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  2. Aerospace Flywheel Technology Development for IPACS Applications

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry L.; Jansen, Ralph H.; Fausz, Jerry; Bauer, Robert D.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) are cooperating under a space act agreement to sponsor the research and development of aerospace flywheel technologies to address mutual future mission needs. Flywheel technology offers significantly enhanced capability or is an enabling technology. Generally these missions are for energy storage and/or integrated power and attitude control systems (IPACS) for mid-to-large satellites in low earth orbit. These missions require significant energy storage as well as a CMG or reaction wheel function for attitude control. A summary description of the NASA and AFRL flywheel technology development programs is provided, followed by specific descriptions of the development plans for integrated flywheel system tests for IPACS applications utilizing both fixed and actuated flywheel units. These flywheel system development tests will be conducted at facilities at AFRL and NASA Glenn Research Center and include participation by industry participants Honeywell and Lockheed Martin.

  3. A Simple Laboratory Scale Model of Iceberg Dynamics and its Role in Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Burton, J. C.; MacAyeal, D. R.; Nakamura, N.

    2011-12-01

    Lab-scale models of geophysical phenomena have a long history in research and education. For example, at the University of Chicago, Dave Fultz developed laboratory-scale models of atmospheric flows. The results from his laboratory were so stimulating that similar laboratories were subsequently established at a number of other institutions. Today, the Dave Fultz Memorial Laboratory for Hydrodynamics (http://geosci.uchicago.edu/~nnn/LAB/) teaches general circulation of the atmosphere and oceans to hundreds of students each year. Following this tradition, we have constructed a lab model of iceberg-capsize dynamics for use in the Fultz Laboratory, which focuses on the interface between glaciology and physical oceanography. The experiment consists of a 2.5 meter long wave tank containing water and plastic "icebergs". The motion of the icebergs is tracked using digital video. Movies can be found at: http://geosci.uchicago.edu/research/glaciology_files/tsunamigenesis_research.shtml. We have had 3 successful undergraduate interns with backgrounds in mathematics, engineering, and geosciences perform experiments, analyze data, and interpret results. In addition to iceberg dynamics, the wave-tank has served as a teaching tool in undergraduate classes studying dam-breaking and tsunami run-up. Motivated by the relatively inexpensive cost of our apparatus (~1K-2K dollars) and positive experiences of undergraduate students, we hope to serve as a model for undergraduate research and education that other universities may follow.

  4. Lightning Protection Guidelines for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Goodloe, C. C.

    1999-01-01

    This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.

  5. New environmental regulation for the aerospace industry: The aerospace NESHAP

    SciTech Connect

    Bauer, J.P.; Gampper, B.P.; Baker, J.M.

    1997-12-31

    40 CFR Part 63, Subpart GG, the National Emission Standard for Hazardous Air Pollutants for Aerospace Manufacturing and Rework Facilities, commonly referred to as the Aerospace NESHAP, was issued on September 1, 1995 and requires compliance by September 1, 1998. The regulation affects any facility that manufactures or reworks commercial, civil, or military aircraft vehicles or components and is a major source of Hazardous Air Pollutants (HAPs). The regulation targets reducing Volatile Organic Compound (VOC) and Hazardous Air Pollutant (HAP) emissions to the atmosphere. Processes affected by the new regulation include aircraft painting, paint stripping, chemical milling masking, solvent cleaning, and spray gun cleaning. Regulatory requirements affecting these processes are summarized, and different compliance options compared in terms of cost-effectiveness and industry acceptance. Strategies to reduce compliance costs and minimize recordkeeping burdens are also presented.

  6. Undergraduate performance in a domestic animal laboratory taught via distance education.

    PubMed

    Bing, J; Pratt-Phillips, S; Gillen, L-A; Farin, C E

    2011-01-01

    The objective of this study was to determine if laboratory modules of an undergraduate animal anatomy course offered in distance education (DistEd) format were as effective as face-to-face (F2F) format in helping students learn. Students (n = 159) completed an anatomy pretest as well as a presurvey to assess prior DistEd experience. Alternating each week, laboratory topics were presented either as F2F or as virtual DistEd laboratories. Two laboratory examinations were administered and included material from both laboratory formats (DistEd and F2F). Questions from the pretest were also included and used to generate the posttest scores. At the end of the semester, students completed a postsurvey to determine if DistEd was a viable alternative to F2F. Student grades on each examination were compared using an ANOVA model that included main effects of presentation method (DistEd, F2F), semester (fall, spring), and their interaction. Learning was evaluated based on the performances of students on pre- and posttests using unpaired t-tests. There was an increase (P < 0.0001) in anatomy post- vs. pretest scores for both semesters, indicative of student learning, although there was no effect of presentation method (F2F or DistEd). On exam 1, students achieved greater scores in fall 2008 (P < 0.0001) on material presented via DistEd compared with that presented as F2F. However, in spring 2009 students scored better on material presented as F2F. There was no effect of presentation method on exam 2 scores for either semester. Based on the postsurvey, 79.3% of students in fall 2008 and 52% of students from spring 2009 agreed that DistEd laboratories were a viable alternative to F2F laboratories. The results of this study support the conclusion that anatomy material can be taught effectively by distance education methods. PMID:20833763

  7. Pre-Service Teachers' Beliefs about Using Vee Diagrams as a Report Schema in Science Education Laboratories

    ERIC Educational Resources Information Center

    Meric, Gursoy

    2014-01-01

    The purpose of this study is to investigate pre-service teachers' beliefs and thoughts about using Vee Diagrams or Vee Maps in science education laboratories. The study's sample consists of 54 students (42 girls and 12 boys) from the elementary school education department in the science education division of Canakkale Onsekiz Mart…

  8. Presented by REL Pacific at McREL: A Summary of Cross-Regional Educational Laboratory Studies. Research Digest

    ERIC Educational Resources Information Center

    Regional Educational Laboratory Pacific, 2013

    2013-01-01

    REL Pacific at McREL, 1 of 10 Regional Educational Laboratories (RELs) funded by the Institute of Education Sciences (IES), serves educators in American Samoa, the Commonwealth of the Northern Mariana Islands, the Federated States of Micronesia (Chuuk, Kosrae, Pohnpei, and Yap), Guam, Hawai'i, the Republic of the Marshall Islands, and the…

  9. Science, Engineering, Mathematics and Aerospace Academy

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an annual report on the Science, Engineering, Mathematics, and Aerospace Academy (SEMAA), which is run as a collaborative effort of NASA Lewis Research Center, and Cuyahgoga Community College. The purpose of SEMA is to increase the percentage of African Americans, and Hispanics in the fields of science and technology. The SEMAA program reaches from kindergarden, to grade 12, involving the family of under-served minorities in the education of the children. The year being reported (i.e., 1996-1997) saw considerable achievement. The program served over 1,939 students, and 120 parents were involved in various seminars. The report goes on to review the program and its implementation for each grade level. It also summarizes the participation, by gender and ethnicity.

  10. NASA 20th Century Explorer . . . Into the Sea of Space. A Guide to Careers in Aero-Space Technology.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This pamphlet lists career opportunities in aerospace technology announced by the Boards of the U. S. Civil Service for the National Aeronautics and Space Administration (NASA). Information given includes (1) the work of the NASA, (2) technical and administrative specialties in aerospace technology, (3) educational and experience requirements, and…

  11. The 2nd NASA Aerospace Pyrotechnic Systems Workshop

    NASA Technical Reports Server (NTRS)

    St.Cyr, William W. (Compiler)

    1994-01-01

    This NASA Conference Publication contains the proceedings of the Second NASA Aerospace Pyrotechnics Systems Workshop held at Sandia National Laboratories, Albuquerque, New Mexico, February 8-9, 1994. The papers are grouped by sessions: (1) Session 1 - Laser Initiation and Laser Systems; (2) Session 2 - Electric Initiation; (3) Session 3 - Mechanisms & Explosively Actuated Devices; (4) Session 4 - Analytical Methods and Studies; and (5) Session 5 - Miscellaneous. A sixth session, a panel discussion and open forum, concluded the workshop.

  12. Mole Patrol: Education and medical surveillance for melanoma at the Lawrence Livermore National Laboratory

    SciTech Connect

    Wald, P.H. California Univ., San Francisco, CA . School of Medicine); Schneider, J.S. California Univ., San Francisco, CA . Dept. of Dermatology)

    1989-01-01

    In March of 1984, the Health Services Department at Lawrence Livermore National Laboratory began an aggressive early intervention program aimed at early detection and effective treatment of malignant melanoma. This program utilized a multimedia campaign using a three-pronged approach of employee, management and local provider education; self-examination and mole counting; and an on-site melanoma clinic for dermatological examination and treatment. 16 refs., 7 figs.

  13. Adding Vectors across the North: Development of Laboratory Component of Distance Education Physics Course

    NASA Astrophysics Data System (ADS)

    Spencer, V. K.; Solie, D. J.

    2010-12-01

    Bush Physics for the 21st Century (BP21) is a distance education physics course offered through the Interior Aleutians Campus of the University of Alaska Fairbanks. It provides an opportunity for rural Alaskan high school and community college students, many of whom have no other access to advanced science courses, to earn university science credit. The curriculum is mathematically rigorous and includes a laboratory component to prepare students who wish to pursue science and technology careers. The laboratory component has been developed during the past 3 years. Students learn lab safety, basic laboratory technique, experiment components and group collaboration. Experiments have place-based themes and involve skills that translate to rural Alaska when possible. Preliminary data on the general effectiveness of the labs have been analyzed and used to improve the course.

  14. 34th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2000-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. The National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for organizing the AMS. Now in its 34th year, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 34th AMS, hosted by the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland, was held May 10, 11 and 12, 2000. During these three days, 34 papers were presented. Topics included deployment mechanisms, bearings, actuators, pointing and optical mechanisms, Space Station mechanisms, release mechanisms, and test equipment. Hardware displays during the vendor fair gave attendees an opportunity to meet with developers of current and future mechanism components.

  15. Lattice Structures For Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Del Olmo, E.; Grande, E.; Samartin, C. R.; Bezdenejnykh, M.; Torres, J.; Blanco, N.; Frovel, M.; Canas, J.

    2012-07-01

    The way of mass reduction improving performances in the aerospace structures is a constant and relevant challenge in the space business. The designs, materials and manufacturing processes are permanently in evolution to explore and get mass optimization solutions at low cost. In the framework of ICARO project, EADS CASA ESPACIO (ECE) has designed, manufactured and tested a technology demonstrator which shows that lattice type of grid structures is a promising weight saving solution for replacing some traditional metallic and composite structures for space applications. A virtual testing methodology was used in order to support the design of a high modulus CFRP cylindrical lattice technology demonstrator. The manufacturing process, based on composite Automatic Fiber Placement (AFP) technology developed by ECE, allows obtaining high quality low weight lattice structures potentially applicable to a wide range of aerospace structures. Launcher payload adaptors, satellite platforms, antenna towers or instrument supports are some promising candidates.

  16. Third Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Cross, D. R. (Editor); Caruso, S. V. (Editor); Clark-Ingram, M. (Editor)

    1999-01-01

    The elimination of CFC's, Halons, TCA, other ozone depleting chemicals, and specific hazardous materials is well underway. The phaseout of these chemicals has mandated changes and new developments in aerospace materials and processes. We are beyond discovery and initiation of these new developments and are now in the implementation phase. This conference provided a forum for materials and processes engineers, scientists, and managers to describe, review, and critically assess the evolving replacement and clean propulsion technologies from the standpoint of their significance, application, impact on aerospace systems, and utilization by the research and development community. The use of these new technologies, their selection and qualification, their implementation, and the needs and plans for further developments are presented.

  17. Outreach/education interface for Cryosphere models using the Virtual Ice Sheet Laboratory

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Halkides, D. J.; Romero, V.; Cheng, D. L.; Perez, G.

    2014-12-01

    In the past decade, great strides have been made in the development of models capable of projecting the future evolution of glaciers and the polar ice sheets in a changing climate. These models are now capable of replicating some of the trends apparent in satellite observations. However, because this field is just now maturing, very few efforts have been dedicated to adapting these capabilities to education. Technologies that have been used in outreach efforts in Atmospheric and Oceanic sciences still have not been extended to Cryospheric Science. We present a cutting-edge, technologically driven virtual laboratory, geared towards outreach and k-12 education, dedicated to the polar ice sheets on Antarctica and Greenland, and their role as major contributors to sea level rise in coming decades. VISL (Virtual Ice Sheet Laboratory) relies on state-of-the art Web GL rendering of polar ice sheets, Android/iPhone and web portability using Javascript, as well as C++ simulations (back-end) based on the Ice Sheet System Model, the NASA model for simulating the evolution of polar ice sheets. Using VISL, educators and students can have an immersive experience into the world of polar ice sheets, while at the same exercising the capabilities of a state-of-the-art climate model, all of it embedded into an education experience that follows the new STEM standards for education.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  18. Magnetic Gearboxes for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Alvarez-Valenzuela, Marco A.; Sanchez-Garcia-Casarrubios, Juan; Cristache, Christian; Valiente-Blanco, Ignacio

    2014-01-01

    Magnetic gearboxes are contactless mechanisms for torque-speed conversion. They present no wear, no friction and no fatigue. They need no lubricant and can be customized for other mechanical properties as stiffness or damping. Additionally, they can protect structures and mechanisms against overloads, limitting the transmitted torque. In this work, spur, planetary and "magdrive" or "harmonic drive" configurations are compared considering their use in aerospace applications. The most recent test data are summarized to provide some useful help for the design engineer.

  19. Soft impacts on aerospace structures

    NASA Astrophysics Data System (ADS)

    Abrate, Serge

    2016-02-01

    This article provides an overview of the literature dealing with three types of soft impacts of concern for the aerospace applications, namely impacts of rain drops, hailstones and birds against aircraft. It describes the physics of the problem as it has become better understood through experiments, analyses, and numerical simulations. Some emphasis has been placed on the material models and the numerical approaches used in modeling these three types of projectiles.

  20. 30th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Bradley, Obie H., Jr. (Compiler); Rogers, John F. (Compiler)

    1996-01-01

    The proceedings of the 30th Aerospace Mechanisms Symposium are reported. NASA Langley Research Center hosted the proceedings held at the Radisson Hotel in Hampton, Virginia on May 15-17, 1996, and Lockheed Martin Missiles and Space Company, Inc. co-sponsored the symposium. Technological areas covered include bearings and tribology; pointing, solar array, and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  1. KIBO Industry, innovates in aerospace

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on industry KIBO is postulated in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo entomocole industry is the first production company in Europe to human food, it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and in the universities of Angers, Nantes, Lille.

  2. KIBO Industry, innovates in aerospace

    NASA Astrophysics Data System (ADS)

    Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on this postulate KIBO in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo industry is the first entomocole production company creat in Europe to human food; it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and various universities in France.

  3. Ball Aerospace Hybrid Space Cryocoolers

    NASA Astrophysics Data System (ADS)

    Gully, W.; Glaister, D. S.; Hendershott, P.; Kotsubo, V.; Lock, J. S.; Marquardt, E.

    2008-03-01

    This paper describes the design, development, testing, and performance at Ball Aerospace of a long-life hybrid (combination of Stirling and Joule-Thomson [J-T] thermodynamic cycles) space cryocooler. Hybrid coolers are synergistic combinations of two thermodynamic cycles that combine advantages of each cycle to yield overall improved performance. Hybrid cooler performance advantages include: 1) load leveling of large heat loads; 2) remote cryogenic cooling with very low to negligible induced vibration and jitter; 3) very low redundant (off state) cooler penalties; 4) high power efficiency, especially at low temperatures; and 5) simplified system integration with capability to cross gimbals and no need for thermal straps or switches. Ball Aerospace is currently developing several different hybrid cooler systems. The 35 K hybrid cooler provides 2.0 W at 35 K and 8.5 W at 85 K with an emphasis on load leveling of high transient heat loads and remote, low vibration cooling. The 10 K hybrid cooler provides 200 mW at 10 K, 700 mW at 15 K, and 10.7 W at 85 K with an emphasis on power efficiency. In addition, Ball Aerospace built and tested a complete hybrid cooler that met the requirements of the JWST Mid-Infrared Instrument (MIRI) cooler including providing 80 mW at 6 K and 100 mW at 18 K for a total system (28 V) power of 310 W.

  4. Los Alamos National Laboratory Science Education Programs. Progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Gill, D.H.

    1995-02-01

    During the 1994 summer institute NTEP teachers worked in coordination with LANL and the Los Alamos Middle School and Mountain Elementary School to gain experience in communicating on-line, to gain further information from the Internet and in using electronic Bulletin Board Systems (BBSs) to exchange ideas with other teachers. To build on their telecommunications skills, NTEP teachers participated in the International Telecommunications In Education Conference (Tel*ED `94) at the Albuquerque Convention Center on November 11 & 12, 1994. They attended the multimedia keynote address, various workshops highlighting many aspects of educational telecommunications skills, and the Telecomm Rodeo sponsored by Los Alamos National Laboratory. The Rodeo featured many presentations by Laboratory personnel and educational institutions on ways in which telecommunications technologies can be use din the classroom. Many were of the `hands-on` type, so that teachers were able to try out methods and equipment and evaluate their usefulness in their own schools and classrooms. Some of the presentations featured were the Geonet educational BBS system, the Supercomputing Challenge, and the Sunrise Project, all sponsored by LANL; the `CU-seeMe` live video software, various simulation software packages, networking help, and many other interesting and useful exhibits.

  5. NASA-universities relationships in aero/space engineering: A review of NASA's program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    NASA is concerned about the health of aerospace engineering departments at U.S. universities. The number of advanced degrees in aerospace engineering has declined. There is concern that universities' facilities, research equipment, and instrumentation may be aging or outmoded and therefore affect the quality of research and education. NASA requested that the National Research Council's Aeronautics and Space Engineering Board (ASEB) review NASA's support of universities and make recommendations to improve the program's effectiveness.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 49: Becoming an aerospace engineer: A cross-gender comparison

    NASA Technical Reports Server (NTRS)

    Hecht, Laura M.; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    We conducted a mail (self-reported) survey of 4300 student members of the American Institute of Aeronautics and Astronautics (AIAA) during the spring of 1993 as a Phase 3 activity of the NASA/DoD Aerospace Knowledge Diffusion Research Project. The survey was designed to explore students' career goals and aspirations, communications skills training, and their use of information sources, products, and services. We received 1723 completed questionnaires for an adjusted response rate of 42%. In this article, we compare the responses of female and male aerospace engineering students in the context of two general aspects of their educational experience. First, we explore the extent to which women and men differ in regard to factors that lead to the choice to study aerospace engineering, their current level of satisfaction with that choice, and their career-related goals and aspirations. Second, we examine students' responses to questions about communications skills training and the helpfulness of that training, and their use of and the importance to them of selected information sources, products, and services. The cross-gender comparison revealed more similarities than differences. Female students appear to be more satisfied than their male counterparts with the decision to major in aerospace engineering. Both female and male student respondents consider communications skills important for professional success, but females place a higher value than males do on oral communications skills. Women students also place a higher value than men do on the roles of other students and faculty members in satisfying their needs for information.

  7. Evaluating the effectiveness of a laboratory-based professional development program for science educators.

    PubMed

    Amolins, Michael W; Ezrailson, Cathy M; Pearce, David A; Elliott, Amy J; Vitiello, Peter F

    2015-12-01

    The process of developing effective science educators has been a long-standing objective of the broader education community. Numerous studies have recommended not only depth in a teacher's subject area but also a breadth of professional development grounded in constructivist principles, allowing for successful student-centered and inquiry-based instruction. Few programs, however, have addressed the integration of the scientific research laboratory into the science classroom as a viable approach to professional development. Additionally, while occasional laboratory training programs have emerged in recent years, many lack a component for translating acquired skills into reformed classroom instruction. Given the rapid development and demand for knowledgeable employees and an informed population from the biotech and medical industries in recent years, it would appear to be particularly advantageous for the physiology and broader science education communities to consider this issue. The goal of this study was to examine the effectiveness of a laboratory-based professional development program focused on the integration of reformed teaching principles into the classrooms of secondary teachers. This was measured through the program's ability to instill in its participants elevated academic success while gaining fulfillment in the classroom. The findings demonstrated a significant improvement in the use of student-centered instruction and other reformed methods by program participants as well as improved self-efficacy, confidence, and job satisfaction. Also revealed was a reluctance to refashion established classroom protocols. The combination of these outcomes allowed for construction of an experiential framework for professional development in applied science education that supports an atmosphere of reformed teaching in the classroom. PMID:26628658

  8. The Need for an Aerospace Pharmacy Residency

    NASA Technical Reports Server (NTRS)

    Bayuse, T.; Schuyler, C.; Bayuse, Tina M.

    2007-01-01

    This viewgraph poster presentation reviews the rationale for a call for a new program in residency for aerospace pharmacy. Aerospace medicine provides a unique twist on traditional medicine, and a specialty has evolved to meet the training for physicians, and it is becoming important to develop such a program for training in pharmacy designed for aerospace. The reasons for this specialist training are outlined and the challenges of developing a program are reviewed.

  9. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  10. Office laboratory procedures, office economics, patient and parent education, and urinary tract infection.

    PubMed

    Ey, J L; Aldous, M B; Duncan, B; Williams, R L

    1995-12-01

    This section updates the reader on four important areas of office practice: office laboratory procedures, office economics, patient and parent education, and urinary tract infections. Dr. Michael Aldous reviews the recent literature about office laboratory procedures, including the continued impact of the Clinical Laboratory Improvement Ammendments, what is new in the diagnosis of streptococcal pharyngitis, urinalysis improvements, the diagnosis of anemia, and which patients should undergo cholesterol screening. Dr. Rickey Williams discusses the literature on office economics, including new technology for billing and charting, whether pediatricians should bill for telephone calls, and the latest information on health care policy and the changes offices are facing with the growing managed care market. Dr. Burris Duncan reviews patient and parent education, including new apporaches to infant colic, sleep positioning for the prevention of sudden infant death, the need for the hepatitis B vaccine (which has been slowly implemented), and finally ways that pediatricians can help with parenting. Dr. John Ey discusses the recent literature on urinary tract infections in children, including better ways of making the diagnosis, whether there are any new treatment approaches for urinary tract infections, useful investigational studies for evaluating the urinary system, and how best to follow up children with infected urinary tracts. We hope that this review will help the practicing pediatrician to better care for patients and provide each of you with a greater satisfaction in delivering health care in an office setting. PMID:8776028

  11. Resource Management and Contingencies in Aerospace Concurrent Engineering

    NASA Technical Reports Server (NTRS)

    Karpati, Gabe; Hyde, Tupper; Peabody, Hume; Garrison, Matthew

    2012-01-01

    significant concern in designing complex systems implementing new technologies is that while knowledge about the system is acquired incrementally, substantial financial commitments, even make-or-break decisions, must be made upfront, essentially in the unknown. One practice that helps in dealing with this dichotomy is the smart embedding of contingencies and margins in the design to serve as buffers against surprises. This issue presents itself in full force in the aerospace industry, where unprecedented systems are formulated and committed to as a matter of routine. As more and more aerospace mission concepts are generated by concurrent design laboratories, it is imperative that such laboratories apply well thought-out contingency and margin structures to their designs. The first part of this publication provides an overview of resource management techniques and standards used in the aerospace industry. That is followed by a thought provoking treatise on margin policies. The expose presents the actual flight telemetry data recorded by the thermal discipline during several recent NASA Goddard Space Flight Center missions. The margins actually achieved in flight are compared against pre-flight predictions, and the appropriateness and the ramifications of having designed with rigid margins to bounding stacked worst case conditions are assessed. The second half of the paper examines the particular issues associated with the application of contingencies and margins in the concurrent engineering environment. In closure, a discipline-by-discipline disclosure of the contingency and margin policies in use at the Integrated Design Center at NASA s Goddard Space Flight Center is made.

  12. Unification - An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Scientific and Technical Information (STI) represents the results of large investments in research and development (R&D) and the expertise of a nation and is a valuable resource. For more than four decades, NASA and its predecessor organizations have developed and managed the preeminent aerospace information system. NASA obtains foreign materials through its international exchange relationships, continually increasing the comprehensiveness of the NASA Aerospace Database (NAD). The NAD is de facto the international aerospace database. This paper reviews current NASA goals and activities with a view toward maintaining compatibility among international aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  13. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  14. Aerospace Activities in the Elementary School

    ERIC Educational Resources Information Center

    Jones, Robert M.; Wiggins, Kenneth E.

    1974-01-01

    Describes 17 activities which are aerospace oriented and yet provide an interdisciplinary approach to learning. Some of the activities described involve paper airplanes, parachutes, model rockets, etc. (BR)

  15. An Overview of Science Education and Outreach Activities at the Princeton Plasma Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Delooper, J.

    2005-10-01

    As a Department of Energy Laboratory, the Princeton Plasma Physics Laboratory (PPPL) has an energetic science education program and outreach effort. This overview describes the components of the programs and evaluates this effort during the last several years. The primary goal is to inform the public regarding the fusion and plasma research at PPPL and to excite students so that they can appreciate science and technology. The public's interest in science can be raised by news media publicity, tours, summer research experiences, in-classroom presentations, plasma expos, teacher workshops, printed and web-based materials. The ultimate result of this effort is a better-informed public, as well as an increase in the number of women and minorities who choose science as a vocation. Measuring the results is difficult, but current metrics are reviewed. The science education and outreach programs are supported by a dedicated core group of individuals and supplemented by PPPL staff, friends and family members who help with various outreach and educational activities. Supported by U. S. DOE Contract DE-AC02-76CH03073/ab

  16. Managing complexity of aerospace systems

    NASA Astrophysics Data System (ADS)

    Tamaskar, Shashank

    Growing complexity of modern aerospace systems has exposed the limits of conventional systems engineering tools and challenged our ability to design them in a timely and cost effective manner. According to the US Government Accountability Office (GAO), in 2009 nearly half of the defense acquisition programs are expecting 25% or more increase in unit acquisition cost. Increase in technical complexity has been identified as one of the primary drivers behind cost-schedule overruns. Thus to assure the affordability of future aerospace systems, it is increasingly important to develop tools and capabilities for managing their complexity. We propose an approach for managing the complexity of aerospace systems to address this pertinent problem. To this end, we develop a measure that improves upon the state-of-the-art metrics and incorporates key aspects of system complexity. We address the problem of system decomposition by presenting an algorithm for module identification that generates modules to minimize integration complexity. We demonstrate the framework on diverse spacecraft and show the impact of design decisions on integration cost. The measure and the algorithm together help the designer track and manage complexity in different phases of system design. We next investigate how complexity can be used as a decision metric in the model-based design (MBD) paradigm. We propose a framework for complexity enabled design space exploration that introduces the idea of using complexity as a non-traditional design objective. We also incorporate complexity with the component based design paradigm (a sub-field of MBD) and demonstrate it on several case studies. The approach for managing complexity is a small but significant contribution to the vast field of complexity management. We envision our approach being used in concert with a suite of complexity metrics to provide an ability to measure and track complexity through different stages of design and development. This will not

  17. Cybersecurity for aerospace autonomous systems

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  18. Aerospace Medical Support in Russia

    NASA Technical Reports Server (NTRS)

    Castleberry, Tara; Chamberlin, Blake; Cole, Richard; Dowell, Gene; Savage, Scott

    2011-01-01

    This slide presentation reviews the role of the flight surgeon in support of aerospace medical support operations at the Gagarin Cosmonaut Training Center (GCTC), also known as Star City, in Russia. The flight surgeon in this role is the medical advocate for non-russian astronauts, and also provides medical care for illness and injury for astronauts, family members, and guests as well as civil servants and contractors. The flight surgeon also provides support for hazardous training. There are various photos of the area, and the office, and some of the equipment that is used.

  19. Aerospace Payloads Leak Test Methodology

    NASA Technical Reports Server (NTRS)

    Lvovsky, Oleg; Grayson, Cynthia M.

    2010-01-01

    Pressurized and sealed aerospace payloads can leak on orbit. When dealing with toxic or hazardous materials, requirements for fluid and gas leakage rates have to be properly established, and most importantly, reliably verified using the best Nondestructive Test (NDT) method available. Such verification can be implemented through application of various leak test methods that will be the subject of this paper, with a purpose to show what approach to payload leakage rate requirement verification is taken by the National Aeronautics and Space Administration (NASA). The scope of this paper will be mostly a detailed description of 14 leak test methods recommended.

  20. National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    Piland, William M.

    1987-01-01

    An account is given of the technology development management objectives thus far planned for the DOD/NASA National Aero-Space Plane (NASP). The technology required by NASP will first be developed in ground-based facilities and then integrated during the design and construction of the X-30 experimental aircraft. Five airframe and three powerplant manufacturers are currently engaged in an 18-month effort encompassing design studies and tradeoff analyses. The first flight of the X-30 is scheduled for early 1993.

  1. Pre-Service Science Teachers' Views on Laboratory Applications in Science Education: The Effect of a Two-Semester Course

    ERIC Educational Resources Information Center

    Harman, Gonca; Cokelez, Aytekin; Dal, Burckin; Alper, Umut

    2016-01-01

    The aim of this study was to examine pre-service science teachers' views about laboratory applications in science education and how their views changed through laboratory applications that were carried out for two semesters. 63 (52 females, 11 males) pre-service teachers participated in the study. The study was carried out by using pre-test and…

  2. The Challenges of Blending a Face-to-Face Laboratory Experience with a Televised Distance Education Course

    ERIC Educational Resources Information Center

    LeDrew, June; Cummings-Vickaryous, Bonnie

    2010-01-01

    This article describes the practical challenges faced by instructors who must blend a face-to-face laboratory experience into a distance education course. This issue is discussed in the context of an ongoing kinesiology and health course that includes a mandatory physical activity laboratory experience. The challenges that have arisen around this…

  3. Integrating Environmental Management in Chemical Engineering Education by Introducing an Environmental Management System in the Student's Laboratory

    ERIC Educational Resources Information Center

    Montanes, Maria T.; Palomares, Antonio E.

    2008-01-01

    In this work we show how specific challenges related to sustainable development can be integrated into chemical engineering education by introducing an environmental management system in the laboratory where the students perform their experimental lessons. It is shown how the system has been developed and implemented in the laboratory, what role…

  4. The Center for Aerospace Research: A NASA Center of Excellence at North Carolina Agricultural and Technical State University

    NASA Technical Reports Server (NTRS)

    Lai, Steven H.-Y.

    1992-01-01

    This report documents the efforts and outcomes of our research and educational programs at NASA-CORE in NCA&TSU. The goal of the center was to establish a quality aerospace research base and to develop an educational program to increase the participation of minority faculty and students in the areas of aerospace engineering. The major accomplishments of this center in the first year are summarized in terms of three different areas, namely, the center's research programs area, the center's educational programs area, and the center's management area. In the center's research programs area, we focus on developing capabilities needed to support the development of the aerospace plane and high speed civil transportation system technologies. In the educational programs area, we developed an aerospace engineering option program ready for university approval.

  5. Evaluation Report on the Activities of the Appalachia Educational Laboratory Regional Exchange. October, 1976 to November, 1977.

    ERIC Educational Resources Information Center

    Love, George H.; And Others

    This report covers the activities of the Appalachia Educational Laboratory (AEL) Regional Exchange (Rx) from October 1976 to November 1977, the first 14 months of the Rx existence. Four different activities are described and are briefly evaluated: (1) the Advisory Committee; (2) the subcontracts with eight state departments of education to improve…

  6. Emulation-Based Virtual Laboratories: A Low-Cost Alternative to Physical Experiments in Control Engineering Education

    ERIC Educational Resources Information Center

    Goodwin, G. C.; Medioli, A. M.; Sher, W.; Vlacic, L. B.; Welsh, J. S.

    2011-01-01

    This paper argues the case for emulation-based virtual laboratories in control engineering education. It demonstrates that such emulation experiments can give students an industrially relevant educational experience at relatively low cost. The paper also describes a particular emulation-based system that has been developed with the aim of giving…

  7. WeFiLab: A Web-Based WiFi Laboratory Platform for Wireless Networking Education

    ERIC Educational Resources Information Center

    Cui, Lin; Tso, Fung Po; Yao, Di; Jia, Weijia

    2012-01-01

    Remote access to physical laboratories for education has received significant attention from both researchers and educators as it provides access at reduced cost in sharing manner of real devices and gives students practical training. With the rapid growing of wireless technologies, it has become an essential of learning to have the hand-on…

  8. Education and Training in the Care and Use of Laboratory Animals: A Guide for Developing Institutional Programs.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Inst. of Lab. Animal Resources.

    The Committee on Education Programs in Laboratory Animal Science (EPLAS) has prepared this guide to aid institutions in implementing an education and training program that will meet the expectations of the Public Health Service (PHS). This guide was designed to fulfill several purposes. First, it is intended to assist institutional officials and…

  9. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXXIII - Technical communications practices and the use of information technologies as reported by Dutch and U.S. aerospace engineers

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA Ames Research Center (U.S.), and the NASA Langley Research Center (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions about four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  10. A Comprehensive Approach to Partnering Scientists with Education and Outreach Activities at a National Laboratory

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.

    2002-12-01

    With the establishment of an Office of Education and Outreach (EO) in 2000 and the adoption of a five-year EO strategic plan in 2001, the University Corporation for Atmospheric Research (UCAR) committed to augment the involvement of AGU scientists and their partners in education and public outreach activities that represent the full spectrum of research in the atmospheric and related sciences. In 2002, a comprehensive program is underway which invites scientists from UCAR, the National Center for Atmospheric Research (NCAR), and UCAR Office of Programs (UOP) into partnership with EO through volunteer orientation workshops, program specific training, skill-building in pedagogy, access to classroom resources, and program and instructor evaluation. Scientists contribute in one or several of the following roles: program partners who bridge research to education through collaborative grant proposals; science content advisors for publications, web sites, exhibits, and informal science events; science mentors for high school and undergraduate students; NCAR Mesa Laboratory tour guides; scientists in the schools; science education ambassadors to local and national community events; science speakers for EO programs, conferences, and meetings of local organization; and science wizards offering demonstrations at public events for children and families. This new EO initiative seeks to match the expertise and specific interests of scientists with appropriate activities, while also serving as a communications conduit through which ideas for new activities and resources can be seeded and eventually developed into viable, fully funded programs.

  11. 76 FR 58776 - U.S. Aerospace Supplier & Investment Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    .... 10:30-11:00 Coffee Break-- Networking. 11:00-12:30 Presentations: Canada's Aerospace Market, Quebec's... aerospace sub-markets was often in the top 5. Industry estimates expected Canada's aerospace sector...

  12. Proceedings of the 36th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Oswald, Fred B. (Compiler)

    2002-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 36th year, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 36th AMS, hosted by the Glenn Research Center (GRC) in Cleveland, Ohio, was held May 15, 16, and 17, 2002. During these three days, 32 papers were presented. Topics included deployment mechanisms, tribology, actuators, pointing and optical mechanisms, International Space Station mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  13. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships and 10 or 12 week fellowships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Approximately 150 interns are selected to participate in this program and begin arriving the second week in May. Each intern is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1995.

  14. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships and 10 or 12 week fellowships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Approximately 200 interns are selected to participate in this program and begin arriving the second week in May. Each intern is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1994.

  15. Ultrasonic Characterization of Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  16. Education Through Aerospace Components. (Spanish Title: Educación Através de Elementos Aeroespaciales.) Educação Através de Elementos Aeroespaciais

    NASA Astrophysics Data System (ADS)

    Barbosa Loureda, Oswaldo; Sobral de Araújo, Jéssyca B.

    2008-12-01

    Education is a field that needs development. For such purposes, there are various methods and tools that suggest ideas in favor of the improvement of the Brazilian people in the pedagogical, psychological and cultural aspects. Teaching is an act that demands a lot of care and responsibility; the behavior and performance of an individual in the society is the result of way that people was educated. However, the area of hard sciences demands a special attention, because the acquired knowledge is essential for the personal development of the individual and the technological future of the country. As an alternative or complementary tool for education it is suggested the use of aerospace element, since they show a vast amount of subjects qualitatively dealing with abilities of great importance for the future professional life of the students. A new Race happens, however this time the goal is not the Moon, but knowledge. El área educacional es un campo que necesita desarrollo. Para esto se dispone de diversos métodos y medios que pueden implantar ideas en pro del avance del pueblo brasilero en los aspectos pedagógicos, psicológicos y culturales. Alfabetizar es un acto que exige mucho cuidado y responsabilidad; el comportamento y desempeño de un individuo en la sociedad es el resultado de la manera en que fue educado. En particular, el área de ciencias exactas exige especial atención, pues los conocimientos adquiridos son imprescindibles para el desarrollo personal del individuo y también para el futuro tecnológico del País. Como medio alternativo o complementar de enseñanza se sugiere el uso de elementos aeroespaciales, debido a que compreende una vasta cantidad de disciplinas cualitativamente involucradas en la adquisición de habilidades de gran importancia para su vida profesional futura. Una nueva Carrera está em marcha, sin embargo esta vez la meta no es la Luna, sino el conocimiento. A área educacional é um campo que necessita de desenvolvimento. Para

  17. Theory of Aircraft Flight. Aerospace Education II.

    ERIC Educational Resources Information Center

    Glascoff, W. G., III

    The textbook provides answers to many questions related to airplanes and properties of air flight. The first chapter provides a description of aerodynamic forces and deals with concepts such as acceleration, velocity, and forces of flight. The second chapter is devoted to the discussion of properties of the atmosphere. How different…

  18. Propulsion Systems for Aircraft. Aerospace Education II.

    ERIC Educational Resources Information Center

    Mackin, T. E.

    The main part of the book centers on the discussion of the engines in an airplane. After describing the terms and concepts of power, jets, and rockets, the author describes the reciprocating engines. The description of diesel engines helps to explain why these are not used in airplanes. The discussion of the carburetor is followed by a discussion…

  19. Propulsion Systems for Aircraft. Aerospace Education II.

    ERIC Educational Resources Information Center

    Mackin, T. E.

    This is a revised text used for the Air Force ROTC program. The main part of the book centers on the discussion of the engines in an airplane. After describing the terms and concepts of power, jets, and rockets, the author describes reciprocating engines. The description of diesel engines helps to explain why these are not used in airplanes. The…

  20. Civil Aviation and Facilities. Aerospace Education II.

    ERIC Educational Resources Information Center

    Callaway, R. O.; Elmer, James D.

    This is a revised textbook for use in the Air Force ROTC training program. The main theme of the book is concerned with the kinds of civil aviation facilities and many intricacies involved in their use. The first chapter traces the development of civil aviation and the formation of organizations to control aviation systems. The second chapter…

  1. Civil Aviation and Facilities. Aerospace Education II.

    ERIC Educational Resources Information Center

    Orser, N. A.; Glascoff, W. G., III

    This book, which is to be used only in the Air Force ROTC training program, deals with the kinds of civil aviation facilities and the intricacies and procedures of the use of flying. The first chapter traces the development of civil aviation and the formation of organizations to control aviation systems. The second chapter describes varieties of…

  2. Optical Information Processing for Aerospace Applications 2

    NASA Technical Reports Server (NTRS)

    Stermer, R. L. (Compiler)

    1984-01-01

    Current research in optical processing, and determination of its role in future aerospace systems was reviewed. It is shown that optical processing offers significant potential for aircraft and spacecraft control, pattern recognition, and robotics. It is demonstrated that the development of optical devices and components can be implemented in practical aerospace configurations.

  3. High Flight. Aerospace Activities, K-12.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  4. The 42nd Aerospace Mechanism Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor); Hakun, Claef (Editor)

    2014-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development, and flight certification of new mechanisms.

  5. Aerospace Power Technology for Potential Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.

    2012-01-01

    Aerospace technology that is being developed for space and aeronautical applications has great potential for providing technical advances for terrestrial power systems. Some recent accomplishments arising from activities being pursued at the National Aeronautics and Space Administration (NASA) Centers is described in this paper. Possible terrestrial applications of the new aerospace technology are also discussed.

  6. The 29th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Editor)

    1995-01-01

    The proceedings of the 29th Aerospace Mechanisms Symposium, which was hosted by NASA Johnson Space Center and held at the South Shore Harbour Conference Facility on May 17-19, 1995, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft.

  7. The 28th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Rohn, Douglas A. (Compiler)

    1994-01-01

    The proceedings of the 28th Aerospace Mechanisms Symposium, which was hosted by the NASA Lewis Research Center and held at the Cleveland Marriott Society Center on May 18, 19, and 20, 1994, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft.

  8. The 26th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The proceedings of the 26th Aerospace Mechanisms Symposium, which was held at the Goddard Space Flight Center on May 13, 14, and 15, 1992 are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors and other mechanisms for large space structures.

  9. The 27th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Mancini, Ron (Compiler)

    1993-01-01

    The proceedings of the 27th Aerospace Mechanisms Symposium, which was held at ARC, Moffett Field, California, on 12-14 May 1993, are reported. Technological areas covered include the following: actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, robotic mechanisms, and other mechanisms for large space structures.

  10. iSTEM: The Aerospace Engineering Challenge

    ERIC Educational Resources Information Center

    English, Lyn D.; King, Donna T.; Hudson, Peter; Dawes, Les

    2014-01-01

    The authors developed The Paper Plane Challenge as one of a three-part response to The Aerospace Engineering Challenge. The Aerospace Engineering Challenge was the second of three multi-part activities that they had developed with the teachers during the year. Their aim was to introduce students to the exciting world of engineering, where they…

  11. Evaluating the effectiveness of a laboratory-based professional development program for science educators

    NASA Astrophysics Data System (ADS)

    Amolins, Michael Wayne

    The development of effective science educators has been a long-standing goal of the American education system. Numerous studies have suggested a breadth of professional development programs that have sought to utilize constructivist principles in order to orchestrate movement toward student-led, inquiry-based instruction. Very few, however, have addressed a missing link between the modern scientific laboratory and the traditional science classroom. While several laboratory-based training programs have begun to emerge in recent years, the skills necessary to translate this information into the classroom are rarely addressed. The result is that participants are often left without an outlet or the confidence to integrate these into their lessons. The purpose of this study was to examine the effectiveness of a laboratory-based professional development program focused on classroom integration and reformed science teaching principles. This was measured by the ability to invigorate its seven participants in order to achieve higher levels of success and fulfillment in the classroom. These participants all taught at public high schools in South Dakota, including both rural and urban locations, and taught a variety of courses. Participants were selected for this study through their participation in the Sanford Research/USD Science Educator Research Fellowship Program. Through the use of previously collected data acquired by Sanford Research, this study attempted to detail the convergence of three assessments in order to demonstrate the growth and development of its participants. First, pre- and post-program surveys were completed in order to display the personal and professional growth of its participants. Second, pre- and post-program classroom observations employing the Reformed Teaching Observation Protocol allowed for the assessment of pedagogical modifications being integrated by each participant, as well as the success of such modifications in constructively

  12. The Role of the National Laboratory in Improving Secondary Science Education

    SciTech Connect

    White,K.; Morris, M.; Stegman, M.

    2008-10-20

    While the role of science, technology, engineering, and mathematics (STEM) teachers in our education system is obvious, their role in our economic and national security system is less so. Our nation relies upon innovation and creativity applied in a way that generates new technologies for industry, health care, and the protection of our national assets and citizens. Often, it is our science teachers who generate the excitement that leads students to pursue science careers. While academia provides these teachers with the tools to educate, the rigors of a science and technology curriculum, coupled with the requisite teaching courses, often limit teacher exposure to an authentic research environment. As the single largest funding agency for the physical sciences, the US Department of Energy's (DOE) Office of Science plays an important role in filling this void. For STEM teachers, the DOE Academies Creating Teacher Scientists program (ACTS) bridges the worlds of research and education. The ACTS program at Brookhaven National Laboratory (BNL), one of several across the country, exemplifies the value of this program for participating teachers. Outcomes of the work at BNL as evidenced by the balance of this report, include the following: (1) Teachers have developed long-term relationships with the Laboratory through participation in ongoing research, and this experience has both built enthusiasm for and enriched the content knowledge of the participants. (2) Teachers have modified the way they teach and are more likely to engage students in authentic research and include more inquiry-based activities. (3) Teachers have reported their students are more interested in becoming involved in science through classes, extra-curricular clubs, and community involvement. (4) Teachers have established leadership roles within their peer groups, both in their own districts and in the broader teaching community. National laboratories are making an important contribution to the science

  13. The gross anatomy laboratory: a novel venue for critical thinking and interdisciplinary teaching in dental education.

    PubMed

    Rowland, Kevin C; Joy, Anita

    2015-03-01

    Reports on the status of dental education have concluded that there is a need for various types of curricular reform, making recommendations that include better integration of basic, behavioral, and clinical sciences, increased case-based teaching, emphasis on student-driven learning, and creation of lifelong learners. Dental schools faced with decreasing contact hours, increasing teaching material, and technological advancements have experimented with alternate curricular strategies. At Southern Illinois University School of Dental Medicine, curricular changes have begun with a series of integrated biomedical sciences courses. During the process of planning and implementing the integrated courses, a novel venue-the gross anatomy laboratory-was used to introduce all Year 1 students to critical thinking, self-directed learning, and the scientific method. The venture included student-driven documentation of anatomical variations encountered in the laboratory using robust scientific methods, thorough literature review, and subsequent presentation of findings in peer review settings. Students responded positively, with over 75% agreeing the experience intellectually challenged them. This article describes the process of re-envisioning the gross anatomy laboratory as an effective venue for small group-based, student-driven projects that focus on key pedagogical concepts to encourage the development of lifelong learners. PMID:25729023

  14. [Education of clinical laboratory medicine in the premedical course of Fukushima Medical University].

    PubMed

    Yoshida, Hiroshi

    2003-11-01

    Education of clinical laboratory medicine in the medical course of Fukushima Medical University School of Medicine is described. It include lectures (90 min, 15 times) for the 4th grade students and practices for the 5th grade students (one week/2 w, 16 times) and for the 6th grade students (one week/2 w, 4-5 times). In the practice course of 5th grade students, subjects concerning preanalytical issues have been employed to understand the importance. Specimens for practices are taken from every student, which include urines for urinalysis, feces for occult blood test, bloods for Wright-Giemsa staining and cell morphology and coagulation tests, and pharyngeal fluids for Gram staining. In the 6th grade course, residual specimens from anonymous patients are used, and ECG examination is performed by the permission of patients. Through the experiences of sample collections and practices of elementary laboratory tests, students are expected to realize anxiety and pain of patients, to understand the importance of preanalytical variables and to master fundamental laboratory techniques as physicians. PMID:14679797

  15. Visualization in aerospace research with a large wall display system

    NASA Astrophysics Data System (ADS)

    Matsuo, Yuichi

    2002-05-01

    National Aerospace Laboratory of Japan has built a large- scale visualization system with a large wall-type display. The system has been operational since April 2001 and comprises a 4.6x1.5-meter (15x5-foot) rear projection screen with 3 BARCO 812 high-resolution CRT projectors. The reason we adopted the 3-gun CRT projectors is support for stereoscopic viewing, ease with color/luminosity matching and accuracy of edge-blending. The system is driven by a new SGI Onyx 3400 server of distributed shared-memory architecture with 32 CPUs, 64Gbytes memory, 1.5TBytes FC RAID disk and 6 IR3 graphics pipelines. Software is another important issue for us to make full use of the system. We have introduced some applications available in a multi- projector environment such as AVS/MPE, EnSight Gold and COVISE, and been developing some software tools that create volumetric images with using SGI graphics libraries. The system is mainly used for visualization fo computational fluid dynamics (CFD) simulation sin aerospace research. Visualized CFD results are of our help for designing an improved configuration of aerospace vehicles and analyzing their aerodynamic performances. These days we also use it for various collaborations among researchers.

  16. An Overview of Science Education and Outreach Activities at the Princeton Plasma Physics Laboratory

    SciTech Connect

    J. DeLooper; A. DeMeo; P. Lucas; A. Post-Zwicker; C. Phillips; C. Ritter; J. Morgan; P. Wieser; A. Percival; E. Starkman; G. Czechowicz

    2000-11-07

    The U. S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has an energetic science education program and outreach effort. This overview describes the components of the programs and evaluates the changes that have occurred in this effort during the last several years. Efforts have been expanded to reach more students, as well as the public in general. The primary goal is to inform the public regarding the fusion and plasma research at PPPL and to excite students so that they can appreciate science and technology. A student's interest in science can be raised by tours, summer research experiences, in-classroom presentations, plasma expos, teacher workshops and web-based materials. The ultimate result of this effort is a better-informed public, as well as an increase in the number of women and minorities who choose science as a vocation. Measuring the results is difficult, but current metrics are reviewed. The science education and outreach programs are supported by a de dicated core group of individuals and supplemented by other members of the PPPL staff and consultants who perform various outreach and educational activities.

  17. Nondestructive Evaluation for Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Cramer, Elliott; Perey, Daniel

    2015-01-01

    Nondestructive evaluation (NDE) techniques are important for enabling NASA's missions in space exploration and aeronautics. The expanded and continued use of composite materials for aerospace components and vehicles leads to a need for advanced NDE techniques capable of quantitatively characterizing damage in composites. Quantitative damage detection techniques help to ensure safety, reliability and durability of space and aeronautic vehicles. This presentation will give a broad outline of NASA's range of technical work and an overview of the NDE research performed in the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center. The presentation will focus on ongoing research in the development of NDE techniques for composite materials and structures, including development of automated data processing tools to turn NDE data into quantitative location and sizing results. Composites focused NDE research in the areas of ultrasonics, thermography, X-ray computed tomography, and NDE modeling will be discussed.

  18. Energy Storage for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.

    2001-01-01

    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.

  19. Automated design of aerospace structures

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Mccomb, H. G.

    1974-01-01

    The current state-of-the-art in structural analysis of aerospace vehicles is characterized, automated design technology is discussed, and an indication is given of the future direction of research in analysis and automated design. Representative computer programs for analysis typical of those in routine use in vehicle design activities are described, and results are shown for some selected analysis problems. Recent and planned advances in analysis capability are indicated. Techniques used to automate the more routine aspects of structural design are discussed, and some recently developed automated design computer programs are described. Finally, discussion is presented of early accomplishments in interdisciplinary automated design systems, and some indication of the future thrust of research in this field is given.

  20. ASAP Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the First Quarterly Report for the newly reconstituted Aerospace Safety Advisory Panel (ASAP). The NASA Administrator rechartered the Panel on November 18,2003, to provide an independent, vigilant, and long-term oversight of NASA's safety policies and programs well beyond Return to Flight of the Space Shuttle. The charter was revised to be consistent with the original intent of Congress in enacting the statute establishing ASAP in 1967 to focus on NASA's safety and quality systems, including industrial and systems safety, risk-management and trend analysis, and the management of these activities.The charter also was revised to provide more timely feedback to NASA by requiring quarterly rather than annual reports, and by requiring ASAP to perform special assessments with immediate feedback to NASA. ASAP was positioned to help institutionalize the safety culture of NASA in the post- Stafford-Covey Return to Flight environment.

  1. Biomimetic optical sensor for aerospace applications

    NASA Astrophysics Data System (ADS)

    Frost, Susan A.; Gorospe, George E.; Wright, Cameron H. G.; Barrett, Steven F.

    2015-05-01

    We report on a fiber optic sensor based on the physiological aspects of the eye and vision-related neural layers of the common housefly (Musca domestica) that has been developed and built for aerospace applications. The intent of the research is to reproduce select features from the fly's vision system that are desirable in image processing, including high functionality in low-light and low-contrast environments, sensitivity to motion, compact size, lightweight, and low power and computation requirements. The fly uses a combination of overlapping photoreceptor responses that are well approximated by Gaussian distributions and neural superposition to detect image features, such as object motion, to a much higher degree than just the photoreceptor density would imply. The Gaussian overlap in the biomimetic sensor comes from the front-end optical design, and the neural superposition is accomplished by subsequently combining the signals using analog electronics. The fly eye sensor is being developed to perform real-time tracking of a target on a flexible aircraft wing experiencing bending and torsion loads during flight. We report on results of laboratory experiments using the fly eye sensor to sense a target moving across its field of view.

  2. Novel Nanolaminates for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Volz, Martin; Mazuruk, consty

    2006-01-01

    Nanolaminate manufacturing (NLM) is a new way of developing materials whose properties can far exceed those of homogeneous materials. Traditional alloys, composites and bulk laminates tend to average the properties of the materials from which they were made. With nanostructured materials, the high density of interfaces between dissimilar materials results in novel material properties. For example, materials made -from alternating nanoscale layers of metals and oxides have exhibited thermal conductivities far below those of the oxides themselves. Also, metallic nanolaminates can have peak strengths 100 times lager than the bulk constituent metals. Recent work at MSFC has focused on the development of nickel/aluminum oxide (Ni/Al2O3)) nanolaminates. Ni/Al2O3 nanolaminates are expected to have better strength, creep and fatigue resistance, oxygen compatibility, and corrosion resistance than the traditional metal-matrix composites of this material, which has been used in a variety of aerospace applications. A chemical vapor deposition (CW) system has been developed and optimized for the deposition of nanolaminates. Nanolaminates with layer thicknesses between 10 and 300 nm have been successfully grown and characterization has included scanning electron microscopy (SEM) and atomic force microscopy (AFM) Nanolaminates have a large variety of potential applications. They can be tailored to have both very small and anisotropic thermal conductivities and are promising as thermal coatings for both rock$ engine components and aerobraking structures. They also have the potential to be used in aerospace applications where strength at high temperatures, corrosion resistance or resistance to hydrogen embrittlement is important. Both CVD and magnetron sputtering facilities are available for the deposition of nanolayered materials. Characterization equipment includes SEM, AFM, X-ray diffraction, transmission electron microscopy, optical profilometry, and mechanical tensile pull

  3. Conceptual design for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Gratzer, Louis B.

    1989-01-01

    The designers of aircraft and more recently, aerospace vehicles have always struggled with the problems of evolving their designs to produce a machine which would perform its assigned task(s) in some optimum fashion. Almost invariably this involved dealing with more variables and constraints than could be handled in any computationally feasible way. With the advent of the electronic digital computer, the possibilities for introducing more variable and constraints into the initial design process led to greater expectations for improvement in vehicle (system) efficiency. The creation of the large scale systems necessary to achieve optimum designs has, for many reason, proved to be difficult. From a technical standpoint, significant problems arise in the development of satisfactory algorithms for processing of data from the various technical disciplines in a way that would be compatible with the complex optimization function. Also, the creation of effective optimization routines for multi-variable and constraint situations which could lead to consistent results has lagged. The current capability for carrying out the conceptual design of an aircraft on an interdisciplinary bases was evaluated to determine the need for extending this capability, and if necessary, to recommend means by which this could be carried out. Based on a review of available documentation and individual consultations, it appears that there is extensive interest at Langley Research Center as well as in the aerospace community in providing a higher level of capability that meets the technical challenges. By implication, the current design capability is inadequate and it does not operate in a way that allows the various technical disciplines to participate and cooperately interact in the design process. Based on this assessment, it was concluded that substantial effort should be devoted to developing a computer-based conceptual design system that would provide the capability needed for the near

  4. [A Perspective on Innovation for Efficient Medical Practice in View of Undergraduate and Postgraduate Education and Training in Laboratory Medicine].

    PubMed

    Kawai, Tadashi

    2015-10-01

    Continuous advances in medical laboratory technology have driven major changes in the practice of laboratory medicine over the past two decades. The importance of the overall quality of a medical laboratory has been ever-increasing in order to improve and ensure the quality and safety of clinical practice by physicians in any type of medical facility. Laboratory physicians and professional staff should challenge themselves more than ever in various ways to cooperate and contribute with practicing physicians for the appropriate utilization of laboratory testing. This will certainly lead to a decrease in inappropriate or unnecessary laboratory testing, resulting in reducing medical costs. In addition, not only postgraduate, but also undergraduate medical education/training systems must be markedly innovated, considering recent rapid progress in electronic information and communication technologies. PMID:26897851

  5. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1992-01-01

    The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  6. The development of aerospace polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1983-01-01

    Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.

  7. The 1990 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Kennedy, Lewis M. (Compiler)

    1991-01-01

    This document contains the proceedings of the 21st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on December 4-6, 1990. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers as well as participation in like kind from the European Space Agency member nations. The subjects covered included nickel-cadmium, nickel-hydrogen, silver-zinc, lithium based chemistries, and advanced technologies as they relate to high reliability operations in aerospace applications.

  8. Aerospace nickel-cadmium cell separator qualifications program

    NASA Technical Reports Server (NTRS)

    Francis, R. W.; Haag, R. L.

    1986-01-01

    The present space qualified nylon separator, Pellon 2505 ML, is no longer available for aerospace nickel-cadmium (NiCd) cells. As a result of this anticipated unavailability, a joint Government program between the Air Force Space Division and the Naval Research Laboratory was established. Four cell types were procured with both the old qualified and the new unqualified separators. Acceptance, characterization, and life cycling tests are to be performed at the Naval Weapons Support Center, Crane, Ind. (NWSC/Crane). The scheduling and current status of this program are discussed and the progress of testing and available results are projected.

  9. Educating Medical Laboratory Technologists: Revisiting Our Assumptions in the Current Economic and Health-Care Environment

    PubMed Central

    Linder, Regina

    2012-01-01

    Health care occupies a distinct niche in an economy struggling to recover from recession. Professions related to the care of patients are thought to be relatively resistant to downturns, and thus become attractive to students typically drawn to more lucrative pursuits. Currently, a higher profile for clinical laboratory technology among college students and those considering career change results in larger and better prepared applicant pools. However, after decades of contraction marked by closing of programs, prospective students encounter an educational system without the capacity or vigor to meet their needs. Here discussed are some principles and proposals to allow universities, partnering with health-care providers, government agencies, and other stake-holders to develop new programs, or reenergize existing ones to serve our students and patients. Principles include academic rigor in biomedical and clinical science, multiple points of entry for students, flexibility in format, cost effectiveness, career ladders and robust partnerships. PMID:23653802

  10. Education: a microfluidic platform for university-level analytical chemistry laboratories.

    PubMed

    Greener, Jesse; Tumarkin, Ethan; Debono, Michael; Dicks, Andrew P; Kumacheva, Eugenia

    2012-02-21

    We demonstrate continuous flow acid-base titration reactions as an educational microfluidic platform for undergraduate and graduate analytical chemistry courses. A series of equations were developed for controlling and predicting the results of acid-base neutralisation reactions conducted in a microfluidic format, including the combinations of (i) a strong base and a strong acid, (ii) a strong base and a weak acid, and (iii) a strong base and a multiprotic acid. Microfluidic titrations yielded excellent repeatability. The small experimental footprint is advantageous in crowded teaching laboratories, and it offers limited waste and exposure to potentially hazardous acids and bases. This platform will help promote the utilisation of microfluidics at an earlier stage of students' careers. PMID:22237720

  11. VISL: A Virtual Ice Sheet Laboratory For Outreach and K-12 Education

    NASA Astrophysics Data System (ADS)

    Halkides, D. J.; Larour, E. Y.; Cheng, D. L.; Perez, G.; Romero, V.; Saks, O.

    2014-12-01

    We present a prototype Virtual Ice Sheet Laboratory (VISL) geared to K-12 classrooms and the general public, with the goal of improving climate literacy, especially in regards to the crucial role of the polar ice sheets in Earth's climate and sea level. VISL will allow users to perform guided experiments using the Ice Sheet System Model (ISSM), a state-of-the-art ice flow model developed at NASA's Jet Propulsion Laboratory and UC Irvine that simulates the near-term evolution of the ice sheets on Greenland and Antarctica. VISL users will access ISSM via a graphical interface that can be launched from a web browser on a computer, tablet or smart phone. Users select climate conditions and run time by moving graphic sliders then watch how a given region evolves in time under those conditions. Lesson plans will include conceptual background, instructions for table top experiments related to the concepts addressed in a given lesson, and a guide for performing model experiments and interpreting their results. Activities with different degrees of complexity will aim for consistency with NGSS Physical Science criteria for different grade bands (K-2, 3-5, 6-8, and 9-12), although they will not be labeled as such to encourage a broad user base. Activities will emphasize the development of physical intuition and critical thinking skills, understanding conceptual and computational models, as well as observation recording, concept articulation, hypothesis formulation and testing, and mathematical analysis. At our present phase of development, we seek input from the greater science education and outreach communities regarding VISL's planned content, as well as additional features and topic areas that educators and students would find useful.

  12. VISL: A Virtual Ice Sheet Laboratory For Outreach and K-12 Education

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Halkides, D. J.; Larour, E. Y.; Moore, J.; Dunn, S.; Perez, G.

    2015-12-01

    We present an update on our developing Virtual Ice Sheet Laboratory (VISL). Geared to K-12 classrooms and the general public, VISL's main goal is to improve climate literacy, especially in regards to the crucial role of the polar ice sheets in Earth's climate and sea level. VISL will allow users to perform guided experiments using the Ice Sheet System Model (ISSM), a state-of-the-art ice flow model developed at NASA's Jet Propulsion Laboratory and UC Irvine that simulates the near-term evolution of the ice sheets on Greenland and Antarctica. VISL users will access ISSM via a graphical interface that can be launched from a web browser on a computer, tablet or smart phone. Users select climate conditions and run time by moving graphic sliders then watch how a given region evolves in time under those conditions. Lesson plans will include conceptual background, instructions for table top experiments related to the concepts addressed in a given lesson, and a guide for performing model experiments and interpreting their results. Activities with different degrees of complexity will aim for consistency with NGSS Physical Science criteria for different grade bands (K-2, 3-5, 6-8, and 9-12), although they will not be labeled as such to encourage a broad user base. Activities will emphasize the development of physical intuition and critical thinking skills, understanding conceptual and computational models, as well as observation recording, concept articulation, hypothesis formulation and testing, and mathematical analysis. At our present phase of development, we seek input from the greater science education and outreach communities regarding VISL's planned content, as well as additional features and topic areas that educators and students would find useful.

  13. The Culture of Visual Representations in Spectroscopic Education and Laboratory Instruction

    NASA Astrophysics Data System (ADS)

    Hentschel, Klaus

    This study on spectroscopic training mainly from 1860-1914 drawing on archival documentation at the Massachusetts Institute of Technology and Wellesley College reveals a conspicuous emphasis on drawing skills and consultation of spectral maps, besides textbooks. This culture of visual representations liberated science education from a philologically dominated pedagogy in the late 19th century. Student notebooks are ladened with sketches from laboratory observations, lantern-slide projections, or posters. I describe the various didactic techniques used to facilitate visualization and memorization of specific spectroscopic Gestalten and show how these graphic resources were used to train the difficult skill of classifying stellar spectra. In its heyday, spectroscopy was firmly integrated in the curriculum to become an important part of the practical training not only of scientists but also of liberal arts students, even finding its way into vocational schools and Gymnasia. Within the framework of this Anschauungsunterricht I identify the teaching traditions and link them to the laboratory exercises by Kohlrausch, Pickering, Lockyer and Weinhold.

  14. Outreach and Education in the Life Sciences A Case Study of the U.S. Department of Energy National Laboratories

    SciTech Connect

    Weller, Richard E.; Burbank, Roberta L.; Mahy, Heidi A.

    2010-03-15

    This project was intended to assess the impact of the U.S. Department of Energy’s National Nuclear Security Agency (DOE/NNSA) -sponsored education and outreach activities on the Biological Weapons Convention (BWC) in DOE national laboratories. Key activities focused on a series of pilot education and outreach workshops conducted at ten national laboratories. These workshops were designed to increase awareness of the BWC, familiarize scientists with dual-use concerns related to biological research, and promote the concept of individual responsibility and accountability

  15. Emerging technologies in education and training: applications for the laboratory animal science community.

    PubMed

    Ketelhut, Diane Jass; Niemi, Steven M

    2007-01-01

    This article examines several new and exciting communication technologies. Many of the technologies were developed by the entertainment industry; however, other industries are adopting and modifying them for their own needs. These new technologies allow people to collaborate across distance and time and to learn in simulated work contexts. The article explores the potential utility of these technologies for advancing laboratory animal care and use through better education and training. Descriptions include emerging technologies such as augmented reality and multi-user virtual environments, which offer new approaches with different capabilities. Augmented reality interfaces, characterized by the use of handheld computers to infuse the virtual world into the real one, result in deeply immersive simulations. In these simulations, users can access virtual resources and communicate with real and virtual participants. Multi-user virtual environments enable multiple participants to simultaneously access computer-based three-dimensional virtual spaces, called "worlds," and to interact with digital tools. They allow for authentic experiences that promote collaboration, mentoring, and communication. Because individuals may learn or train differently, it is advantageous to combine the capabilities of these technologies and applications with more traditional methods to increase the number of students who are served by using current methods alone. The use of these technologies in animal care and use programs can create detailed training and education environments that allow students to learn the procedures more effectively, teachers to assess their progress more objectively, and researchers to gain insights into animal care. PMID:17420537

  16. Sociology of scientific knowledge and science education part 2: Laboratory life under the microscope

    NASA Astrophysics Data System (ADS)

    Slezak, Peter

    1994-10-01

    This article is the second of two that examine some of the claims of contemporary sociology of scientific knowledge (SSK) and the bearing of these claims upon the rationale and practice of science teaching. In the present article the celebrated work Laboratory Life of Latour and Woolgar is critically examined. Its radical, iconoclastic view of science is shown to be not merely without foundation but an extravagant deconstructionist nihilism according to which all science is fiction and the world is said to be socially constructed by negotiation. On this view, the success of a theory is not due to its intellectual merits or explanatory plausibility but to the capacity of its proponents to “extract compliance” from others. If warranted, such views pose a revolutionary challenge to the entire Western tradition of science and the goals of science education which must be misguided and unrealizable in principle. Fortunately, there is little reason to take these views seriously, though their widespread popularity is cause for concern among science educators.

  17. Tested Studies for Laboratory Teaching. Proceedings of the Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (15th, Toronto, Ontario, Canada, June 8-12, 1993). Volume 15.

    ERIC Educational Resources Information Center

    Goldman, Corey A., Ed.

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume contains 18 papers: "Human DNA Fingerprinting by Polymerase Chain Reaction" (M. V.…

  18. Tested Studies for Laboratory Teaching. Proceedings of the Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (14th, Las Vegas, Nevada, June 2-6, 1992). Volume 14.

    ERIC Educational Resources Information Center

    Goldman, Corey A., Ed.

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve undergraduate biology laboratory experiences by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume contains 11 papers: "A Practical Guide to the Use of Cellular Slime Molds for…

  19. Tested Studies for Laboratory Teaching. Proceedings. Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (11th, Fredericton, New Brunswick, Canada, June 12-16, 1989). Volume 11.

    ERIC Educational Resources Information Center

    Goldman, Corey A., Ed.

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume contains 10 papers: "Investigating Fungi Which Cause Rot and Decay" (J. A Johnson);…

  20. Tested Studies for Laboratory Teaching. Proceedings of the Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (13th, Laramie, Wyoming, June 11-15, 1991). Volume 13.

    ERIC Educational Resources Information Center

    Goldman, Corey A., Ed.

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume contains 10 papers: "Testing Issues of Foraging and Flocking Behavior" (C. C.…

  1. Tested Studies for Laboratory Teaching. Proceedings of the Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (5th, Clemson, South Carolina, June 13-17, 1983).

    ERIC Educational Resources Information Center

    Goldman, Corey A., Ed.; And Others

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume contains eight papers: "Bacterial Transformation" (M. J. Ernest & N. J. Rosenbaum);…

  2. Tested Studies for Laboratory Teaching. Proceedings of the Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (16th, Atlanta, Georgia, June 7-11, 1994). Volume 16.

    ERIC Educational Resources Information Center

    Goldman, Corey A., Ed.

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume contains 17 papers on the topics of cell and molecular biology, genetics, and…

  3. Tested Studies for Laboratory Teaching. Proceedings of the Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (12th, Springfield, Missouri, June 4-8, 1990). Volume 12.

    ERIC Educational Resources Information Center

    Goldman, Corey A., Ed.

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume includes 13 papers: "Non-Radioactive DNA Hybridization Experiments for the…

  4. Unification - An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  5. Fire response test methods for aerospace materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.

    1978-01-01

    Fire response methods which may be suitable for materials intended for aircraft and aerospace applications are presented. They address ignitability, smolder susceptibility, oxygen requirement, flash fire propensity, fire spread, heat release, fire containment, smoke evolution, and toxic gas evolution.

  6. Aerospace Medicine and Biology: Cumulative index, 1979

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This publication is a cumulative index to the abstracts contained in the Supplements 190 through 201 of 'Aerospace Medicine and Biology: A Continuing Bibliography.' It includes three indexes-subject, personal author, and corporate source.

  7. Fred Haise Honored at Aerospace Appreciation Night

    NASA Video Gallery

    Retired NASA astronaut and test pilot Fred Haise was honored recently by the Lancaster, Calif., Jethawks baseball team at its Aerospace Appreciation Night. Best known as one of the Apollo 13 crew, ...

  8. New insulation constructions for aerospace wiring applications

    NASA Technical Reports Server (NTRS)

    Slenski, George

    1994-01-01

    Outlined in this presentation is the background to insulation constructions for aerospace wiring applications, the Air Force wiring policy, the purpose and contract requirements of new insulation constructions, the test plan, and the test results.

  9. Unification: An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1991-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace business. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a view toward developing a scenario for establishing an international aerospace data base, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  10. Additive Manufacturing of Aerospace Propulsion Components

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  11. The 11th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Mechanical devices and drives developed for aerospace applications are described. Satellite flywheels, magnetic bearings, a missile umbilical system, a cartridge firing device, and an oiler for satellite bearing lubrication are among the topics discussed.

  12. The 20th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Numerous topics related to aerospace mechanisms were discussed. Deployable structures, electromagnetic devices, tribology, hydraulic actuators, positioning mechanisms, electric motors, communication satellite instruments, redundancy, lubricants, bearings, space stations, rotating joints, and teleoperators are among the topics covered.

  13. The 11th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Various mechanisms in aerospace engineering were presented at this conference. Specifications, design, and use of spacecraft and missile components are discussed, such as tail assemblies, radiometers, magnetormeters, pins, reaction wheels, ball bearings, actuators, mirrors, nutation dampers, airfoils, solar arrays, etc.

  14. The 25th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Twenty-two papers are documented regarding aeronautical and spacecraft hardware. Technological areas include actuators, latches, cryogenic mechanisms, vacuum tribology, bearings, robotics, ground support equipment for aerospace applications, and other mechanisms.

  15. Unification: An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.; Carroll, Bonnie C.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  16. The 24th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The proceedings of the symposium are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, and other mechanisms for large space structures.

  17. The 12th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mechanisms developed for various aerospace applications are discussed. Specific topics covered include: boom release mechanisms, separation on space shuttle orbiter/Boeing 747 aircraft, payload handling, spaceborne platform support, and deployment of spaceborne antennas and telescopes.

  18. Elements of a collaborative systems model within the aerospace industry

    NASA Astrophysics Data System (ADS)

    Westphalen, Bailee R.

    2000-10-01

    Scope and method of study. The purpose of this study was to determine the components of current aerospace collaborative efforts. There were 44 participants from two selected groups surveyed for this study. Nineteen were from the Oklahoma Air National Guard based in Oklahoma City representing the aviation group. Twenty-five participants were from the NASA Johnson Space Center in Houston representing the aerospace group. The surveys for the aviation group were completed in reference to planning missions necessary to their operations. The surveys for the aerospace group were completed in reference to a well-defined and focused goal from a current mission. A questionnaire was developed to survey active participants of collaborative systems in order to consider various components found within the literature. Results were analyzed and aggregated through a database along with content analysis of open-ended question comments from respondents. Findings and conclusions. This study found and determined elements of a collaborative systems model in the aerospace industry. The elements were (1) purpose or mission for the group or team; (2) commitment or dedication to the challenge; (3) group or team meetings and discussions; (4) constraints of deadlines and budgets; (5) tools and resources for project and simulations; (6) significant contributors to the collaboration; (7) decision-making formats; (8) reviews of project; (9) participants education and employment longevity; (10) cross functionality of team or group members; (11) training on the job plus teambuilding; (12) other key elements identified relevant by the respondents but not included in the model such as communication and teamwork; (13) individual and group accountability; (14) conflict, learning, and performance; along with (15) intraorganizational coordination. These elements supported and allowed multiple individuals working together to solve a common problem or to develop innovation that could not have been

  19. Probability and Statistics in Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Howell, L. W.

    1998-01-01

    This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

  20. The 2000 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, J. C. (Compiler)

    2001-01-01

    This document contains the proceedings of the 33nd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 14-16, 2000. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, lithium-ion, lithium-sulfur, and silver-zinc technologies.

  1. Novel Wiring Technologies for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  2. NASA Ames aerospace systems directorate research

    NASA Technical Reports Server (NTRS)

    Albers, James A.

    1991-01-01

    The Aerospace Systems Directorate is one of four research directorates at the NASA Ames Research Center. The Directorate conducts research and technology development for advanced aircraft and aircraft systems in intelligent computational systems and human-machine systems for aeronautics and space. The Directorate manages research and aircraft technology development projects, and operates and maintains major wind tunnels and flight simulation facilities. The Aerospace Systems Directorate's research and technology as it relates to NASA agency goals and specific strategic thrusts are discussed.

  3. The 1999 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, J. C. (Compiler)

    2000-01-01

    This document contains the proceedings of the 32nd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 16-18, 1999. The workshop was attended by scientists and engineers from various agencies of the US Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, nickel-cadmium, lithium-ion, and silver-zinc technologies.

  4. The 2001 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeff C. (Compiler)

    2002-01-01

    This document contains the proceedings of the 34th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center, November 27-29, 2001. The workshop was attended by scientists and engineers from various agencies of the US Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind. The subjects covered included nickel-hydrogen, nickel-cadmium, lithium-ion, and silver-zinc technologies.

  5. Crew factors in the aerospace workplace

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Foushee, H. C.

    1990-01-01

    The effects of technological change in the aerospace workplace on pilot performance are discussed. Attention is given to individual and physiological problems, crew and interpersonal problems, environmental and task problems, organization and management problems, training and intervention problems. A philosophy and conceptual framework for conducting research on these problems are presented and two aerospace studies are examined which investigated: (1) the effect of leader personality on crew effectiveness and (2) the working undersea habitat known as Aquarius.

  6. Aerospace Technology Innovation. Volume 10

    NASA Technical Reports Server (NTRS)

    Turner, Janelle (Editor); Cousins, Liz (Editor); Bennett, Evonne (Editor); Vendette, Joel (Editor); West, Kenyon (Editor)

    2002-01-01

    Whether finding new applications for existing NASA technologies or developing unique marketing strategies to demonstrate them, NASA's offices are committed to identifying unique partnering opportunities. Through their efforts NASA leverages resources through joint research and development, and gains new insight into the core areas relevant to all NASA field centers. One of the most satisfying aspects of my job comes when I learn of a mission-driven technology that can be spun-off to touch the lives of everyday people. NASA's New Partnerships in Medical Diagnostic Imaging is one such initiative. Not only does it promise to provide greater dividends for the country's investment in aerospace research, but also to enhance the American quality of life. This issue of Innovation highlights the new NASA-sponsored initiative in medical imaging. Early in 2001, NASA announced the launch of the New Partnerships in Medical Diagnostic Imaging initiative to promote the partnership and commercialization of NASA technologies in the medical imaging industry. NASA and the medical imaging industry share a number of crosscutting technologies in areas such as high-performance detectors and image-processing tools. Many of the opportunities for joint development and technology transfer to the medical imaging market also hold the promise for future spin back to NASA.

  7. Graphite Nanoreinforcements for Aerospace Nanocomposites

    NASA Technical Reports Server (NTRS)

    Drzal, Lawrence T.

    2005-01-01

    New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.

  8. Materials Selection for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  9. Aerospace Sponsored Research. Progress report, 1 October 1990-30 September 1991

    SciTech Connect

    Not Available

    1991-12-01

    The structure and mission of The Aerospace Corporation's research and development program is coordinated with, and complementary to, that of the Air Force laboratories and other organizations actively working in space-system-related technology. This report presents brief summaries of the results and progress achieved by the Aerospace Sponsored Research program during the period 1 Oct. 1990 through 30 Sep. 1991. The following areas are discussed: electronics and optics; materials properties and processing; space and atmospheric environment; space communication and navigation; surveillance from space; spacecraft and launch vehicle design and operation; spacecraft survivability; and systems architecture, planning, and analysis. Separate abstracts have been prepared for articles in this report.

  10. CONTACT: sensors for aerospace and Fano-resonance photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Agee, Forrest J.; Zhou, Weidong; Chow, Alice

    2010-04-01

    CONTACT or Consortium for Nanomaterials for Aerospace Commerce and Technology is a cooperative program between the Air Force Research Laboratory and seven Texas universities focused on four research areas in aerospace. This paper summarizes recent developments in one of those areas, sensors, for eventual use in aircraft and spacecraft. We report direct measurement of spectrally selective absorption properties of PbSe and PbS colloidal quantum dots (CQDs) in Si nanomembrane photonic crystal cavities on flexible plastic polyethylene terephthalate (PET) substrates. The interaction of CQD absorption with photonic crystal Fano resonances is presented both analytically and experimentally for use in wavelength selective sensors.

  11. Education and training of personnel in space simulation

    NASA Technical Reports Server (NTRS)

    Rempt, R. D.

    1982-01-01

    The training program and procedures developed and implemented at the space simulation laboratory at Martin Marietta Aerospace in Denver are discussed. The training of technicians and professionals as well as preparation for instructors is covered. Training manuals and their compilation are reported as applicable to the specific needs of the laboratory. The development of a space simulation course as part of the Martin Marietta Continuing Education Night School approaching space simulation from an academic viewpoint is presented. Finally, public relations tours of the facility as an informational/educational tool are discussed.

  12. A Hands-On, Interdisciplinary Laboratory Program and Educational Model to Strengthen a Radar Curriculum for Broad Distribution

    ERIC Educational Resources Information Center

    Yeary, Mark; Yu, Tian-You; Palmer, Robert; Biggerstaff, Michael; Fink, L. Dee; Ahem, Carolyn; Tarp, Keli Pirtle

    2007-01-01

    This paper describes the details of a National Science Foundation multi-year educational project at the University of Oklahoma (OU). The goal of this comprehensive active-learning and hands-on laboratory program is to develop an interdisciplinary program, in which engineering, geoscience, and meteorology students participate, which forms a…

  13. A Low-Cost Computer-Controlled Arduino-Based Educational Laboratory System for Teaching the Fundamentals of Photovoltaic Cells

    ERIC Educational Resources Information Center

    Zachariadou, K.; Yiasemides, K.; Trougkakos, N.

    2012-01-01

    We present a low-cost, fully computer-controlled, Arduino-based, educational laboratory (SolarInsight) to be used in undergraduate university courses concerned with electrical engineering and physics. The major goal of the system is to provide students with the necessary instrumentation, software tools and methodology in order to learn fundamental…

  14. Expanding Distance Education in the Spatial Sciences through Virtual Learning Entities and a Virtual GIS Computer Laboratory

    ERIC Educational Resources Information Center

    Grunwald, S.; Ramasundaram, V.; Bruland, G. L.; Jesseman, D. K.

    2007-01-01

    In this article we describe the implementation of an emerging virtual learning environment to teach GIS and spatial sciences to distance education graduate students. We discuss the benefits and constraints of our mixed architecture with the main focus on the innovative hybrid architecture of the virtual GIS computer laboratory. Criteria that were…

  15. Medical Laboratory Technician--Hematology, Serology, Blood Banking & Immunohematology, 10-4. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, the third of three courses in the medical laboratory technician field adapted from military curriculum materials for use in vocational and technical education, was designed as a refresher course for student self-study and evaluation. It is suitable for use by advanced students or beginning students participating in a supervised…

  16. Medical Laboratory Technician--Chemical Chemistry & Urinalysis, 10-2. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This publication, the last of three course materials in the medical laboratory technician field adapted from the Military Curriculum Materials for Use in Technical and Vocational Education series, was designed as a refresher course for student self-study and evaluation. It can be used by advanced students or beginning students participating in a…

  17. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1994-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100 C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changed suddenly.

  18. Come Fly with Me! Exploring Science 7-9 through Aviation/Aerospace Concepts.

    ERIC Educational Resources Information Center

    Housel, David C.; Housel, Doreen K. M.

    This guide contains 67 activities dealing with various aerospace/aviation education concepts. The activities are presented in units related to physical science, earth science, and life science. In addition, there is a section related to student involvement in the space shuttle programs. The physical science unit (activities 1-23) focuses on the…

  19. Come Fly with Me! Exploring Science K-6 through Aviation/Aerospace Concepts.

    ERIC Educational Resources Information Center

    Housel, David C.; Housel, Doreen K. M.

    This guide contains 95 activities dealing with various aerospace/aviation education concepts. The activities are presented in units for kindergarten through sixth grade organized around a central theme at each grade level. The themes follow a sequence from grade to grade. Beginning with the introduction of basic inquiry process skills in…

  20. Mars Navigator: An Interactive Multimedia Program about Mars, Aerospace Engineering, Astronomy, and the JPL Mars Missions. [CD-ROM

    ERIC Educational Resources Information Center

    Gramoll, Kurt

    This CD-ROM introduces basic astronomy and aerospace engineering by examining the Jet Propulsion Laboratory's (JPL) Mars Pathfinder and Mars Global Surveyor missions to Mars. It contains numerous animations and narrations in addition to detailed graphics and text. Six interactive laboratories are included to help understand topics such as the…

  1. A Proposal by the Student National Education Association and the Southwestern Cooperative Educational Laboratory. A Student Teacher Live-In Indian Project.

    ERIC Educational Resources Information Center

    National Student Education Association, Washington, DC.

    A live-in project for 10 prospective teachers at the Canoncito Navajo Reservation (Laguna, N. Mex.), commencing in February 1969 with participant recruitment by reservation representatives and the Southwestern Cooperative Educational Laboratory (SWCEL), is designed to determine the contribution of the student teachers to the Indian community and…

  2. Mobile Computing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Swietek, Gregory E. (Technical Monitor)

    1994-01-01

    The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the

  3. The Educational Potential of Computer Networking. Interactive Technology Laboratory Report #16.

    ERIC Educational Resources Information Center

    Riel, Margaret M.

    The educational potential of computer networks will be realized only when educators stop focusing on technical connections and start asking how educational activities that are supported on computer networks can make a significant contribution to education. Computer networks can contribute to accomplishing educational goals in language arts (by…

  4. A Virtual Embedded Microcontroller Laboratory for Undergraduate Education: Development and Evaluation

    ERIC Educational Resources Information Center

    Richardson, Jeffrey J.; Adamo-Villani, Nicoletta

    2010-01-01

    Laboratory instruction is a major component of the engineering and technology undergraduate curricula. Traditional laboratory instruction is hampered by several factors including limited access to resources by students and high laboratory maintenance cost. A photorealistic 3D computer-simulated laboratory for undergraduate instruction in…

  5. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    SciTech Connect

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  6. Laboratory Earth: Connecting Everything to Everything Else Online for Pre-college Educators

    NASA Astrophysics Data System (ADS)

    Gosselin, D.; Bonnstetter, R.; Yendra, S.; Slater, T.

    2007-12-01

    The Laboratory Earth professional development series, which has been funded by NASA, consists of three, three- credit hour, graduate level, distance-delivered, online courses designed for K- 8 (and above) educators. Currently, we have delivered two module-based courses, Laboratory Earth I: Earth and its Systems and Laboratory Earth II: Earth's Natural Resource Systems. A third course tentatively titled, Laboratory Earth: Earth's Changing Environments, is under development. Our objectives are to deliver a high quality professional development experience, improve participant's ability to understand and apply Earth system science concepts in their classroom, and to increase teacher's sense of belonging to a community. Each course consists of four modules that engage students using multiple strategies to meet a variety of learning styles. To document learning, content questions are used to focus the student on the concepts they will be learning throughout the course. These questions are also used to assess the progress the student has made toward learning the concepts from the beginning to the end of the course. Analysis of the responses to the content questions from Lab Earth I demonstrates significant knowledge gains from the beginning to the end of the course. Preliminary data also suggests that the extent of learning is higher in the 8-week version than it is in the 16-week version of the course. An implicit goal of the courses is to help participants focus on learning, not grades. Unfortunately, grades have to be issued. Our grading strategy has evolved to a system that uses the ability of students to master course content along with active participation and the on-time, quality completion of the grading elements in the course. Course content mastery can be demonstrated in a variety of ways and it is up to the student to choose the method that they would like to use. Methods include writing essays, creating presentations, preparing an oral journal, and developing

  7. High-Temperature Strain Sensing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.

  8. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1991-01-01

    The general objective of the Light Aerospace Alloy and Structures Technology (LA2ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures in close collaboration with Langley researchers. Specific technical objectives are established for each research project. Relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanic analyses, measurement advances, and a pool of educated graduate students are sought.

  9. The Effectiveness of Clinician Education on the Adequate Completion of Laboratory Test Request Forms at a Tertiary Hospital

    PubMed Central

    Osegbe, ID; Afolabi, O; Onyenekwu, CP

    2016-01-01

    Background: Inadequately completed laboratory test request forms contribute to preanalytical errors and limit the advice of pathologists when interpreting laboratory test results. Educating clinicians about this has been proposed by several studies as a strategy to reduce the occurrence. Aim: We aimed to determine the effectiveness of such education on the prevalence of adequately completed laboratory test request forms. Subjects and Methods: This was a quasi-experimental study conducted at the chemical pathology laboratory of the Lagos University Teaching Hospital, Nigeria. Incoming laboratory request forms were audited for a period of 1 month looking out for eight data variables. Subsequently, intensive clinician education was undertaken via seminars, publications, and orientation programs on 670 clinicians for 6 weeks duration. After that, a repeat audit for the same data variables was conducted for another period of 1 month. A Z-test of significance for the comparison of independent proportions was conducted for form errors pre- and post-intervention. Results: Error rates for missing variables pre- and post-clinician education were: Name pre = 0 (0%), post = 0 (0%); age pre = 330 (21.6%), post = 28 (1.9%), P < 0.001; gender pre = 64 (4.2%), post = 53 (3.6%), P = 0.37; hospital number pre = 848 (55.6%), post = 524 (35.3%), P < 0.001; clinician name pre = 165 (10.8%), post = 64 (4.3%), P < 0.001; ward/clinic pre = 311 (20.4%), post = 235 (15.8%), P < 0.01; clinical diagnosis pre = 220 (14.4%), post = 33 (2.2%), P < 0.001; specimen type pre = 169 (11.1%), post = 116 (7.8%), P < 0.01, respectively. Conclusion: There was an improvement in the inadequate completion of laboratory request forms after clinicians were educated on proper completion using various interactive media, showing that it is an effective strategy. However, further studies are required to identify which educational strategy is most effective in reducing error rates in laboratory test request forms

  10. Advanced Materials and Coatings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2004-01-01

    In the application area of aerospace tribology, researchers and developers must guarantee the highest degree of reliability for materials, components, and systems. Even a small tribological failure can lead to catastrophic results. The absence of the required knowledge of tribology, as Professor H.P. Jost has said, can act as a severe brake in aerospace vehicle systems-and indeed has already done so. Materials and coatings must be able to withstand the aerospace environments that they encounter, such as vacuum terrestrial, ascent, and descent environments; be resistant to the degrading effects of air, water vapor, sand, foreign substances, and radiation during a lengthy service; be able to withstand the loads, stresses, and temperatures encountered form acceleration and vibration during operation; and be able to support reliable tribological operations in harsh environments throughout the mission of the vehicle. This presentation id divided into two sections: surface properties and technology practice related to aerospace tribology. The first section is concerned with the fundamental properties of the surfaces of solid-film lubricants and related materials and coatings, including carbon nanotubes. The second is devoted to applications. Case studies are used to review some aspects of real problems related to aerospace systems to help engineers and scientists to understand the tribological issues and failures. The nature of each problem is analyzed, and the tribological properties are examined. All the fundamental studies and case studies were conducted at the NASA Glenn Research Center.

  11. Organizational Structures and Operational Practices of Selected Educational R & D Centers and Educational Laboratories and of Selected Centers, Laboratories, and Institutes on One University Campus.

    ERIC Educational Resources Information Center

    Lins, L. Joseph

    This study investigates and analyzes the organizational structures, institutional ties, and operational practices of selected extramurally-supported centers, laboratories, and institutes. The primary goal is to provide one type of data, some experiences, and judgments on the basis of which an assessment might be made of the conditions of the…

  12. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Here, we report on progress achieved between July I and December 31, 1996. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report are summarized as follows. Three research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures.

  13. Wireless Sensing Opportunities for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2007-01-01

    Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  14. Combustion Processes in the Aerospace Environment

    NASA Technical Reports Server (NTRS)

    Huggett, Clayton

    1969-01-01

    The aerospace environment introduces new and enhanced fire hazards because the special atmosphere employed may increase the frequency and intensity of fires, because the confinement associated with aerospace systems adversely affects the dynamics of fire development and control, and because the hostile external environments limit fire control and rescue operations. Oxygen enriched atmospheres contribute to the fire hazard in aerospace systems by extending the list of combustible fuels, increasing the probability of ignition, and increasing the rates of fire spread and energy release. A system for classifying atmospheres according to the degree of fire hazard, based on the heat capacity of the atmosphere per mole of oxygen, is suggested. A brief exploration of the dynamics of chamber fires shows that such fires will exhibit an exponential growth rate and may grow to dangerous size in a very short time. Relatively small quantities of fuel and oxygen can produce a catastrophic fire in a closed chamber.

  15. NSWC Crane Aerospace Cell Test History Database

    NASA Technical Reports Server (NTRS)

    Brown, Harry; Moore, Bruce

    1994-01-01

    The Aerospace Cell Test History Database was developed to provide project engineers and scientists ready access to the data obtained from testing of aerospace cell designs at Naval Surface Warfare Center, Crane Division. The database is intended for use by all aerospace engineers and scientists involved in the design of power systems for satellites. Specifically, the database will provide a tool for project engineers to review the progress of their test at Crane and to have ready access to data for evaluation. Additionally, the database will provide a history of test results that designers can draw upon to answer questions about cell performance under certain test conditions and aid in selection of a cell for a satellite battery. Viewgraphs are included.

  16. Sealed aerospace metal-hydride batteries

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  17. Directory of aerospace safety specialized information sources

    NASA Technical Reports Server (NTRS)

    Fullerton, E. A.; Rubens, L. S.

    1973-01-01

    A directory is presented to make available to the aerospace safety community a handbook of organizations and experts in specific, well-defined areas of safety technology. It is designed for the safety specialist as an aid for locating both information sources and individual points of contact (experts) in engineering related fields. The file covers sources of data in aerospace design, tests, as well as information in hazard and failure cause identification, accident analysis, materials characteristics, and other related subject areas. These 171 organizations and their staff members, hopefully, should provide technical information in the form of documentation, data and consulting expertise. These will be sources that have assembled and collated their information, so that it will be useful in the solution of engineering problems. One of the goals of the project in the United States that have and are willing to share data of value to the aerospace safety community.

  18. Conservation of Strategic Aerospace Materials (COSAM)

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    Research efforts to reduce the dependence of the aerospace industry on strategic metals, such as cobalt (Co), columbium (Cb), tantalum (Ta), and chromium (Cr), by providing the materials technology needed to minimize the strategic metal content of critical aerospace components for gas turbine engines are addressed. Thrusts in three technology areas are identified: near term activities in the area of strategic element substitution; intermediate-range activities in the area of materials processing; and long term, high risk activities in the area of 'new classes' of high temprature metallic materials. Specifically, the role of cobalt in nickel-base and cobalt-base superalloys vital to the aerospace industry is examined along with the mechanical and physical properties of intermetallics that will contain a minimum of the stragetic metals.

  19. Aerospace applications of advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Langenbeck, S. L.

    1993-01-01

    Advanced metallic materials within the Al-base family are being developed for applications on current and future aerospace vehicles. These advanced materials offer significant improvements in density, strength, stiffness, fracture resistance, and/or higher use temperature which translates into improved vehicle performance. Aerospace applications of advanced metallic materials include space structures, fighters, military and commercial transport aircraft, and missiles. Structural design requirements, including not only static and durability/damage tolerance criteria but also environmental considerations, drive material selections. Often trade-offs must be made regarding strength, fracture resistance, cost, reliability, and maintainability in order to select the optimum material for a specific application. These trade studies not only include various metallic materials but also many times include advanced composite materials. Details of material comparisons, aerospace applications, and material trades will be presented.

  20. Common Cause Failure Modeling: Aerospace Versus Nuclear

    NASA Technical Reports Server (NTRS)

    Stott, James E.; Britton, Paul; Ring, Robert W.; Hark, Frank; Hatfield, G. Spencer

    2010-01-01

    Aggregate nuclear plant failure data is used to produce generic common-cause factors that are specifically for use in the common-cause failure models of NUREG/CR-5485. Furthermore, the models presented in NUREG/CR-5485 are specifically designed to incorporate two significantly distinct assumptions about the methods of surveillance testing from whence this aggregate failure data came. What are the implications of using these NUREG generic factors to model the common-cause failures of aerospace systems? Herein, the implications of using the NUREG generic factors in the modeling of aerospace systems are investigated in detail and strong recommendations for modeling the common-cause failures of aerospace systems are given.

  1. Aerospace manpower transfer to small business enterprises

    NASA Technical Reports Server (NTRS)

    Green, M. K.

    1972-01-01

    The feasibility of a program to effect transfer of aerospace professional people from the ranks of the unemployed into gainful employment in the small business community was investigated. The effectiveness of accomplishing transfer of technology from the aerospace effort into the private sector through migration of people rather than products or hardware alone was also studied. Two basic methodologies were developed. One involves the matching of ex-aerospace professionals and small companies according to their mutual needs. A training and indoctrination program is aimed at familiarizing the professional with the small company environment, and a program of follow-up counseling is defined. The second methodology incorporates efforts to inform and arouse interest among the nonaerospace business community toward affirmative action programs that will serve mutual self-interests of the individuals, companies, and communities involved.

  2. Machine intelligence and autonomy for aerospace systems

    NASA Technical Reports Server (NTRS)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  3. Educational Technology Research: Substituting Closed-Circuit Television for the Science Laboratory.

    ERIC Educational Resources Information Center

    Menis, Yosef

    1982-01-01

    Suggests a practical approach for coping with training students in laboratory skill through the use of videotaped (VTR) materials and discusses the technical advantages of using VTR as opposed to laboratory research. Six references are provided. (MER)

  4. NASA's educational programs

    NASA Technical Reports Server (NTRS)

    Brown, Robert W.

    1990-01-01

    The educational programs of NASA's Educational Affairs Division are examined. The problem of declining numbers of science and engineering students is reviewed. The various NASA educational programs are described, including programs at the elementary and secondary school levels, teacher education programs, and undergraduate, graduate, and university faculty programs. The coordination of aerospace education activities and future plans for increasing NASA educational programs are considered.

  5. The comprehensive aerospace index (CASI): Tracking the economic performance of the aerospace industry

    NASA Astrophysics Data System (ADS)

    Mattedi, Adriana Prest; Mantegna, Rosario Nunzio; Ramos, Fernando Manuel; Rosa, Reinaldo Roberto

    2008-12-01

    In this paper, we described the Comprehensive AeroSpace Index (CASI), a financial index aimed at representing the economic performance of the aerospace industry. CASI is build upon a data set of approximately 20 years of daily close prices set, from January 1987 to June 2007, from a comprehensive sample of leading aerospace-related companies with stocks negotiated on the New York Exchange (NYSE) and on the over-the-counter (OTC) markets. We also introduced the sub-indices CASI-AERO, for aeronautical segment, and CASI-SAT, for satellite segment, and considered the relation between them. These three indices are compared to others aerospace indices and to more traditional general financial indices like DJIA, S&P500 and Nasdaq. Our results have shown that the CASI is an index that describes very well the aerospace sector behavior, since it is able to reflect the aeronautical segment comportment as well as the satellite one. Therefore, in this sense, it can be considered as a representative index of the aerospace sector. Moreover, the creation of two sub-indices, the CASI-AERO and the CASI-SAT, allows to elucidate capital movements within the aerospace sector, particularly those of speculative nature, like the dot.com bubble and crash of 1998-2001.

  6. Aerospace NESHAP: A collaborative approach to implementation

    SciTech Connect

    McAfee, M.; Lee, A.; Williamson, C.; Willenberg, J.

    1998-12-31

    The purpose of the Aerospace National Emission Standard for Hazardous Air Pollutants (NESHAP) is to minimize emissions of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from major sources who manufacture or rework aerospace vehicles or components. The NESHAP requires emission reductions through implementation of work practices, application of slower evaporating solvents and coatings with low-HAP and low-VOC content, usage of high transfer efficiency spray equipment, and installation of high capture efficiency exhaust filtration for coatings containing metals. The rule also requires extensive monitoring, recordkeeping, and self-reporting to track compliance. For existing sources the rule becomes effective September 1,1998. Over the past year the Puget Sound Air Pollution Control Agency (PSAPCA) has worked with the Boeing Company and EPA to identify the requirements of the aerospace NESHAP, understand what it means in everyday practice, and develop an enforcement strategy for ensuring compliance. A workshop was held with aerospace manufacturers, local regulators, and EPA to discuss implementation of the rule. Issues regarding compliance efforts and determinations were openly discussed. Subsequent to the workshop, PSAPCA and the Boeing Company participated in several mock inspections to review facility compliance efforts before the rule became effective. Collaborative efforts also ensued to develop operating permit monitoring requirements. Aerospace NESHAP requirements were incorporated into these permits. There are still questions regarding compliance determinations that must be further discussed and resolved. But by using the collaborative approach and having regulators and sources working together, there is a process to work out answers and approaches that will lead to an increased mutual understanding of the aerospace NESHAP and eventual compliance with the standard.

  7. The 1993 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1994-01-01

    This document contains the proceedings of the 26th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on 16-18 Nov. 1993. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-cadmium, nickel-hydrogen, nickel-metal hydride, and lithium based technologies, as well as advanced technologies including various bipolar designs.

  8. Aerospace Environmental Technology Conference: Exectutive summary

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The papers from this conference are being published in a separate volume as NASA CP-3298.

  9. The Aerospace Vehicle Interactive Design system

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.

    1981-01-01

    The aerospace vehicle interactive design (AVID) is a computer aided design that was developed for the conceptual and preliminary design of aerospace vehicles. The AVID system evolved from the application of several design approaches in an advanced concepts environment in which both mission requirements and vehicle configurations are continually changing. The basic AVID software facilitates the integration of independent analysis programs into a design system where the programs can be executed individually for analysis or executed in groups for design iterations and parametric studies. Programs integrated into an AVID system for launch vehicle design include geometry, aerodynamics, propulsion, flight performance, mass properties, and economics.

  10. Metal Matrix Composite Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)

    2001-01-01

    Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.

  11. The 1998 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1999-01-01

    This document contains the proceedings of the 31st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on October 27-29, 1998. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, silver-hydrogen, nickel-metal hydride, and lithium-based technologies, as well as results from destructive physical analyses on various cell chemistries.

  12. Aerospace Applications of Integer and Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  13. Aerospace applications on integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  14. Aerospace applications of integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  15. Second Conference on NDE for Aerospace Requirements

    NASA Technical Reports Server (NTRS)

    Woodis, Kenneth W. (Compiler); Bryson, Craig C. (Compiler); Workman, Gary L. (Compiler)

    1990-01-01

    Nondestructive evaluation and inspection procedures must constantly improve rapidly in order to keep pace with corresponding advances being made in aerospace material and systems. In response to this need, the 1989 Conference was organized to provide a forum for discussion between the materials scientists, systems designers, and NDE engineers who produce current and future aerospace systems. It is anticipated that problems in current systems can be resolved more quickly and that new materials and structures can be designed and manufactured in such a way as to be more easily inspected and to perform reliably over the life cycle of the system.

  16. The 1992 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1993-01-01

    This document contains the proceedings of the 23rd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 15-19, 1992. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-cadmium, nickel-hydrogen, nickel-metal hydride, and lithium based technologies, as well as advanced technologies including sodium-sulfur and various bipolar designs.

  17. The 1997 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1998-01-01

    This document contains the proceedings of the 30th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 18-20, 1997. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-cadmium, nickel-hydrogen, nickel-metal hydride, lithium, lithium-ion, and silver-zinc technologies, as well as various aspects of nickel electrode design.

  18. NASA aerospace database subject scope: An overview

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Outlined here is the subject scope of the NASA Aerospace Database, a publicly available subset of the NASA Scientific and Technical (STI) Database. Topics of interest to NASA are outlined and placed within the framework of the following broad aerospace subject categories: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences, and general. A brief discussion of the subject scope is given for each broad area, followed by a similar explanation of each of the narrower subject fields that follow. The subject category code is listed for each entry.

  19. Instruction and information on used energy-related laboratory equipment grants for educational institutions of higher learning

    SciTech Connect

    Not Available

    1980-02-01

    The USDOE, in accordance with its responsibility to encourage research and development in the energy area, awards grants of used energy-related laboratory equipment to universities and colleges and other nonprofit educational institutions of higher learning in the US for use in energy-oriented educational programs in the life, physical, and environmental sciences and engineering. This booklet gives information on eligibility and procedure, typical equipment, and institutional costs, along with a proposal guide and terms and conditions of a grant. Appendixes give addresses as to where to review equipment lists and where to mail proposals for used equipment grants. (RWR)

  20. Reach and its Impact: NASA and US Aerospace Communities

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J.

    2011-01-01

    REACH is a European law that threatens to impact materials used within the US aerospace communities, including NASA. The presentation briefly covers REACH and generally, its perceived impacts to NASA and the aerospace community within the US.

  1. 76 FR 1600 - U.S. Aerospace Supplier & Investment Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... Sector Panel: Deloitte Touche, AIAC, Minister of Transport, NRC. 10:30-11:00 Coffee break-- Networking... 2009 Canada was the United States' 6th largest aerospace export market, and in many aerospace...

  2. NASA Education Activities on the International Space Station: A National Laboratory for Inspiring, Engaging, Educating and Employing the Next Generation

    NASA Technical Reports Server (NTRS)

    Severance, Mark T.; Tate-Brown, Judy; McArthur, Cynthia L.

    2010-01-01

    The International Space Station (ISS) National Lab Education Project has been created as a part of the ISS National Lab effort mandated by the U.S. Congress The project seeks to expand ISS education of activities so that they reach a larger number of students with clear educational metrics of accomplishments. This paper provides an overview of several recent ISS educational payloads and activities. The expected outcomes of the project, consistent with those of the NASA Office of Education, are also described. NASA performs numerous education activities as part of its ISS program. These cover the gamut from formal to informal educational opportunities in grades Kindergarten to grade 12, Higher Education (undergraduate and graduate University) and informal educational venues (museums, science centers, exhibits). Projects within the portfolio consist of experiments performed onboard the ISS using onboard resources which require no upmass, payloads flown to ISS or integrated into ISS cargo vehicles, and ground based activities that follow or complement onboard activities. Examples include ground based control group experiments, flight or experiment following lesson plans, ground based activities involving direct interaction with ISS or ground based activities considering ISS resources in their solution set. These projects range from totally NASA funded to projects which partner with external entities. These external agencies can be: other federal, state or local government agencies, commercial entities, universities, professional organizations or non-profit organizations. This paper will describe the recent ISS education activities and discuss the approach, outcomes and metrics associated with the projects.

  3. NASA-UVa light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1991-01-01

    The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.

  4. Actively Controlled Shaft Seals for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.; Wolff, Paul

    1995-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  5. 77 FR 38090 - Aerospace Safety Advisory Panel; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting. AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, July 20, 2012, 11:30 a.m. to 12:30 p.m. EDT... FURTHER INFORMATION CONTACT: Ms. Harmony Myers, Aerospace Safety Advisory Panel Executive...

  6. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Beall, H. C.; Beadles, R. L.; Brown, J. N., Jr.; Clingman, W. H.; Courtney, M. W.; Rouse, D. J.; Scearce, R. W.

    1979-01-01

    Medical products utilizing and incorporating aerospace technology were studied. A bipolar donor-recipient model for medical transfer is presented. The model is designed to: (1) identify medical problems and aerospace technology which constitute opportunities for successful medical products; (2) obtain early participation of industry in the transfer process; and (3) obtain acceptance by medical community of new medical products based on aerospace technology.

  7. 76 FR 62455 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, October 21, 2011, 12:30 to 2 p.m. Central.... FOR FURTHER INFORMATION CONTACT: Ms. Susan Burch, Aerospace Safety Advisory Panel...

  8. 77 FR 1955 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, January 27, 2012, Time 11 a.m.-12:30 p.m... CONTACT: Ms. Susan Burch, Aerospace Safety Advisory Panel Administrative Officer, National Aeronautics...

  9. 76 FR 65750 - Aerospace Safety Advisory Panel; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Charter Renewal AGENCY: National Aeronautics and... Aerospace Safety Advisory Panel. SUMMARY: Pursuant to sections 14(b)(1) and 9(c) of the Federal Advisory... of the NASA Aerospace Safety Advisory Panel is in the public interest in connection with...

  10. Teaching Democratic Theories of Education in El Salvador: Is the Laboratory Open?

    ERIC Educational Resources Information Center

    Roth, Jeffrey

    A philosophy of education course focused on concepts of democratic education was taught to primary and secondary school teachers working in a private bilingual school in San Salvador (El Salvador). The teachers' school was an "International School" serving children of the wealthy and the educated who lived nearby. The course was designed so that…

  11. Use of Cognitive Laboratories and Recorded Interviews in the National Household Education Survey. Technical Report.

    ERIC Educational Resources Information Center

    Nolin, Mary Jo; Chandler, Kathryn

    The National Household Education Survey (NHES) is a data collection system of the National Center for Education Statistics which has as its mission the collection and publication of data on the condition of education in the United States. The NHES provides descriptive data through a random digit dialed telephone survey of the noninstitutionalized…

  12. Proceedings of the 40th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Littlefield, Alan C.; Mueller, Robert P.; Boesiger, Edward A. (Editor)

    2010-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 40th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 40th AMS, hosted by the Kennedy Space Center (KSC) in Cocoa Beach, Florida, was held May 12, 13 and 14, 2010. During these three days, 38 papers were presented. Topics included gimbals and positioning mechanisms, CubeSats, actuators, Mars rovers, and Space Station mechanisms. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration

  13. NASA-UVA light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Thornton, Earl A.; Stoner, Glenn E.; Swanson, Robert E.; Wawner, Franklin E., Jr.; Wert, John A.

    1989-01-01

    The report on progress achieved in accomplishing of the NASA-UVA Light Aerospace Alloy and Structures Technology Program is presented. The objective is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys and associated thermal gradient structures in close collaboration with researchers. The efforts will produce basic understanding of material behavior, new monolithic and composite alloys, processing methods, solid and fluid mechanics analyses, measurement advances, and a pool of educated graduate students. The presented accomplishments include: research on corrosion fatigue of Al-Li-Cu alloy 2090; research on the strengthening effect of small In additions to Al-Li-Cu alloys; research on localized corrosion of Al-Li alloys; research on stress corrosion cracking of Al-Li-Cu alloys; research on fiber-matrix reaction studies (Ti-1100 and Ti-15-3 matrices containing SCS-6, SCS-9, and SCS-10 fibers); and research on methods for quantifying non-random particle distribution in materials that has led to generation of a set of computer programs that can detect and characterize clusters in particles.

  14. Using performance tasks employing IOM patient safety competencies to introduce quality improvement processes in medical laboratory science education.

    PubMed

    Golemboski, Karen; Otto, Catherine N; Morris, Susan

    2013-01-01

    In order to contribute to improved healthcare quality through patient-centered care, laboratory professionals at all levels of practice must be able to recognize the connection between non-analytical factors and laboratory analysis, in the context of patient outcomes and quality improvement. These practices require qualities such as critical thinking (CT), teamwork skills, and familiarity with the quality improvement process, which will be essential for the development of evidence-based laboratory science practice. Performance tasks (PT) are an educational strategy which can be used to teach and assess CT and teamwork, while introducing Medical Laboratory Science (MLS) students at both baccalaureate and advanced-practice levels to the concepts of quality improvement processes and patient outcomes research. PT presents students with complex, realistic scenarios which require the incorporation of subject-specific knowledge with competencies such as effective team communication, patient-centered care, and successful use of information technology. A PT with assessment rubric was designed for use in a baccalaureate-level MLS program to teach and assess CT and teamwork competency. The results indicated that, even when students were able to integrate subject-specific knowledge in creative ways, their understanding of teamwork and quality improvement was limited. This indicates the need to intentionally teach skills such as collaboration and quality system design. PT represent one of many strategies that may be used in MLS education to develop essential professional competencies, encourage expert practice, and facilitate quality improvement. PMID:24432515

  15. NASA's Software Bank (Heath Tecna Aerospace)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Heath Tecna Aerospace used a COSMIC program, "Analysis of Filament Reinforced Metal Shell Pressure Vessels," to predict stresses in motorcase walls in a composite hybrid rocket and calculate the ideal geometry for the domes at either end of the filament-wound pressure vessel. The COSMIC program predictions were confirmed in testing.

  16. The 17th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The proceedings of the Aerospace Mechanisms Symposium are reported. Technological areas covered include space lubrication, aerodynamic devices, spacecraft/Shuttle latches, deployment, positioning, and pointing. Devices for spacecraft tether, magnetic bearing suspension, explosive welding, and a deployable/retractable mast are also described.

  17. Atmospheric statistics for aerospace vehicle operations

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Batts, G. W.

    1993-01-01

    Statistical analysis of atmospheric variables was performed for the Shuttle Transportation System (STS) design trade studies and the establishment of launch commit criteria. Atmospheric constraint statistics have been developed for the NASP test flight, the Advanced Launch System, and the National Launch System. The concepts and analysis techniques discussed in the paper are applicable to the design and operations of any future aerospace vehicle.

  18. The 31st Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Foster, C. L. (Compiler); Boesiger, E. A. (Compiler)

    1997-01-01

    The proceedings of the 31st Aerospace Mechanisms Symposium are reported. Topics covered include: robotics, deployment mechanisms, bearings, actuators, scanners, boom and antenna release, and test equipment. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms.

  19. Using Aerospace Technology To Design Orthopedic Implants

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Mraz, P. J.; Davy, D. T.

    1996-01-01

    Technology originally developed to optimize designs of composite-material aerospace structural components used to develop method for optimizing designs of orthopedic implants. Development effort focused on designing knee implants, long-term goal to develop method for optimizing designs of orthopedic implants in general.

  20. Thermoplastic Composite Materials for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Casula, G.; Lenzi, F.; Vitiello, C.

    2008-08-01

    Mechanical and thermo-physical properties of composites materials with thermoplastic matrix (PEEK/IM7, TPI/IM7 and PPS/IM7) used for aerospace applications have been analyzed as function of two different process techniques: compression molding and fiber placement process "hot gas assisted."