Science.gov

Sample records for aerospace engineering mae

  1. Aerospace engineering educational program

    NASA Technical Reports Server (NTRS)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  2. Job Prospects for Aerospace Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1987-01-01

    Discusses the recent trends in job opportunities for aerospace engineers. Mentions some of the political, technological, and economic factors affecting the overall employment picture. Includes a description of the job prospects created by the general upswing of the large commercial aircraft market. (TW)

  3. Cognitive engineering in aerospace applications

    NASA Technical Reports Server (NTRS)

    Woods, David D.

    1993-01-01

    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.

  4. iSTEM: The Aerospace Engineering Challenge

    ERIC Educational Resources Information Center

    English, Lyn D.; King, Donna T.; Hudson, Peter; Dawes, Les

    2014-01-01

    The authors developed The Paper Plane Challenge as one of a three-part response to The Aerospace Engineering Challenge. The Aerospace Engineering Challenge was the second of three multi-part activities that they had developed with the teachers during the year. Their aim was to introduce students to the exciting world of engineering, where they…

  5. Probability and Statistics in Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Howell, L. W.

    1998-01-01

    This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

  6. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  7. High-Fidelity Simulation in Biomedical and Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2005-01-01

    Contents include the following: Introduction / Background. Modeling and Simulation Challenges in Aerospace Engineering. Modeling and Simulation Challenges in Biomedical Engineering. Digital Astronaut. Project Columbia. Summary and Discussion.

  8. Aerospace engineers: We're tomorrow-minded people

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1981-01-01

    Brief job-related autobiographical sketches of engineers working on NASA aerospace projects are presented. Career and educational guidance is offered to students thinking about entering the aerospace field.

  9. Summary of aerospace and nuclear engineering activities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.

  10. Science, Engineering, Mathematics and Aerospace Academy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Science, Engineering, Mathematics and Aerospace Academy (SEMAA) was established in September, 1993, by Cuyahoga Community College and the NASA Lewis Research Center. Funding for SEMAA was provided by NASA Headquarters' Office of Equal Employment Opportunities. SEMAA brought together five preexisting youth programs at Cuyahoga Community College. All the programs shared the common goals of 1) Increasing the participation of underrepresented/underserved groups in science, mathematics and engineering and technology careers. 2) Increasing "success" rates of all students interested in science and mathematics. 3) Developing partnerships to recognize and support students interested in these fields. 4) Supporting continued success of highly successful students. The framework for each preexisting program allowed SEMAA to have a student population ranging from kindergarten through the twelfth-grade. This connectivness was the foundation for the many decisions which would make SEMAA a truly innovative program.

  11. Current Trends in Aerospace Engineering Education on Taiwan.

    ERIC Educational Resources Information Center

    Hsieh, Sheng-Jii

    A proposal for current trends in Aerospace Engineering Education on Taiwan has been drawn from the suggestions made after a national conference of "Workshop on Aerospace Engineering Education Reform." This workshop was held in January 18-20, 1998, at the Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan,…

  12. Science, Engineering, Mathematics and Aerospace Academy

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an annual report on the Science, Engineering, Mathematics, and Aerospace Academy (SEMAA), which is run as a collaborative effort of NASA Lewis Research Center, and Cuyahgoga Community College. The purpose of SEMA is to increase the percentage of African Americans, and Hispanics in the fields of science and technology. The SEMAA program reaches from kindergarden, to grade 12, involving the family of under-served minorities in the education of the children. The year being reported (i.e., 1996-1997) saw considerable achievement. The program served over 1,939 students, and 120 parents were involved in various seminars. The report goes on to review the program and its implementation for each grade level. It also summarizes the participation, by gender and ethnicity.

  13. Critical Systems Engineering Accelerator: Aerospace Demonstrator

    NASA Astrophysics Data System (ADS)

    Moreno, Ricardo; Fernandez, Gonzalo; Regada, Raul; Basanta, Luis; Alana, Elena; Del Carmen Lomba, Maria

    2014-08-01

    Nowadays, the complexity and functionality of space systems is increasing more and more. Safety critical systems have to guarantee strong safety and dependability constraints. This paper presents CRYSTAL (Critical sYSTem engineering AcceLeration), a cross-domain ARTEMIS project for increasing the efficiency of the embedded software development in the industry through the definition of an integrated tool chain. CRYSTAL involves four major application domains: Aerospace, Automotive, Rail and Medical Healthcare. The impact in the Space Domain will be evaluated through a demonstrator implemented using CRYSTAL framework: the Low Level Software for an Avionics Control Unit, capable to run Application SW for autonomous navigation, image acquisition control, data compression and/or data handling. Finally, the results achieved will be evaluated taking into account the ECSS (European Committee for Space Standardization) standards and procedures.

  14. Design search and optimization in aerospace engineering.

    PubMed

    Keane, A J; Scanlan, J P

    2007-10-15

    In this paper, we take a design-led perspective on the use of computational tools in the aerospace sector. We briefly review the current state-of-the-art in design search and optimization (DSO) as applied to problems from aerospace engineering, focusing on those problems that make heavy use of computational fluid dynamics (CFD). This ranges over issues of representation, optimization problem formulation and computational modelling. We then follow this with a multi-objective, multi-disciplinary example of DSO applied to civil aircraft wing design, an area where this kind of approach is becoming essential for companies to maintain their competitive edge. Our example considers the structure and weight of a transonic civil transport wing, its aerodynamic performance at cruise speed and its manufacturing costs. The goals are low drag and cost while holding weight and structural performance at acceptable levels. The constraints and performance metrics are modelled by a linked series of analysis codes, the most expensive of which is a CFD analysis of the aerodynamics using an Euler code with coupled boundary layer model. Structural strength and weight are assessed using semi-empirical schemes based on typical airframe company practice. Costing is carried out using a newly developed generative approach based on a hierarchical decomposition of the key structural elements of a typical machined and bolted wing-box assembly. To carry out the DSO process in the face of multiple competing goals, a recently developed multi-objective probability of improvement formulation is invoked along with stochastic process response surface models (Krigs). This approach both mitigates the significant run times involved in CFD computation and also provides an elegant way of balancing competing goals while still allowing the deployment of the whole range of single objective optimizers commonly available to design teams. PMID:17519198

  15. Risk communication strategy development using the aerospace systems engineering process

    NASA Technical Reports Server (NTRS)

    Dawson, S.; Sklar, M.

    2004-01-01

    This paper explains the goals and challenges of NASA's risk communication efforts and how the Aerospace Systems Engineering Process (ASEP) was used to map the risk communication strategy used at the Jet Propulsion Laboratory to achieve these goals.

  16. Aerospace engineering curriculum for the 21st century

    NASA Technical Reports Server (NTRS)

    Simitses, George J.

    1995-01-01

    The second year of the study was devoted to completing the information-gathering phase of this redesign effort, using the conclusions from that activity to prepare the initial structure for the new curriculum, publicizing activities to a wider engineering forum, and preparing the department faculty (Aerospace Engineering and Engineering Mechanics at University of Cincinnati) for the roles they will play in the curriculum redesign and implementation. These activities are summarized briefly in this progress report. Attached is a paper resulting from the data acquisition of this effort, 'Educating Aerospace Engineers for the Twenty-First Century: Results of a Survey.'

  17. Impact of knowledge-based software engineering on aerospace systems

    NASA Technical Reports Server (NTRS)

    Peyton, Liem; Gersh, Mark A.; Swietek, Gregg

    1991-01-01

    The emergence of knowledge engineering as a software technology will dramatically alter the use of software by expanding application areas across a wide spectrum of industries. The engineering and management of large aerospace software systems could benefit from a knowledge engineering approach. An understanding of this technology can potentially make significant improvements to the current practice of software engineering, and provide new insights into future development and support practices.

  18. Engineering in the 21st century. [aerospace technology prospects

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1978-01-01

    A description is presented of the nature of the aerospace technology system that might be expected by the 21st century from a reasonable evolution of the current resources and capabilities. An aerospace employment outlook is provided. The years 1977 and 1978 seem to be marking the beginning of a period of stability and moderate growth in the aerospace industry. Aerospace research and development employment increased to 70,000 in 1977 and is now occupying a near-constant 18% share of the total research and development work force. The changing job environment is considered along with the future of aerospace education. It is found that one trend is toward a more interdisciplinary education. Most trend setters in engineering education recognize that the really challenging engineering problems invariably require the judicious exercise of several disciplines for their solution. Some future trends in aerospace technology are discussed. By the year 2000 space technology will have achieved major advances in four areas, including management of information, transportation, space structures, and energy.

  19. Explosion welding and cutting in aerospace engineering

    NASA Astrophysics Data System (ADS)

    Volgin, L. A.; Koroteev, A. Ia.; Malakovich, A. P.; Petushkov, V. G.; Sitalo, V. G.; Novikov, V. K.

    The paper presents the results of works of the E.O. Paton Electric Welding Institute and other Soviet organizations on the development of technology for explosion-welding of multilayer transition pieces and pipes used in the manufacture of aerospace products. Equipment and accessories used for this technology are described; in particular, a powerful explosion chamber of a tubular structure for up to 200 kg of explosives is presented. Information is also given about linear explosion separation devices.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 39: The role of computer networks in aerospace engineering

    NASA Technical Reports Server (NTRS)

    Bishop, Ann P.; Pinelli, Thomas E.

    1994-01-01

    This paper presents selected results from an empirical investigation into the use of computer networks in aerospace engineering. Such networks allow aerospace engineers to communicate with people and access remote resources through electronic mail, file transfer, and remote log-in. The study drew its subjects from private sector, government and academic organizations in the U.S. aerospace industry. Data presented here were gathered in a mail survey, conducted in Spring 1993, that was distributed to aerospace engineers performing a wide variety of jobs. Results from the mail survey provide a snapshot of the current use of computer networks in the aerospace industry, suggest factors associated with the use of networks, and identify perceived impacts of networks on aerospace engineering work and communication.

  1. High-End Computing Challenges in Aerospace Design and Engineering

    NASA Technical Reports Server (NTRS)

    Bailey, F. Ronald

    2004-01-01

    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  2. Engineers as Information Processors: A Survey of US Aerospace Engineering Faculty and Students.

    ERIC Educational Resources Information Center

    Holland, Maurita Peterson; And Others

    1991-01-01

    Reports on survey results from 275 faculty and 640 students, predominantly in the aerospace engineering field, concerning their behaviors about the appropriation and dissemination of information. Indicates that, as information processors, aerospace faculty and students are "information naive." Raises questions about the efficacy of existing…

  3. Technical communications in aerospace - An analysis of the practices reported by U.S. and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    The flow of scientific and technical information (STI) at the individual, organizational, national, and international levels is studied. The responses of U.S and European aerospace engineers and scientists to questionnaires concerning technical communications in aerospace are examined. Particular attention is given to the means used to communicate information and the social system of the aerospace knowledge diffusion process. Demographic data about the survey respondents are provided. The methods used to communicate technical data and the sources utilized to solve technical problems are described. The importance of technical writing skills and the use of computer technology in the aerospace field are discussed. The derived data are useful for R&D and information managers in order to improve access to and utilization of aerospace STI.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  5. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    2000-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  6. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Astrophysics Data System (ADS)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  7. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  8. Resource Management and Contingencies in Aerospace Concurrent Engineering

    NASA Technical Reports Server (NTRS)

    Karpati, Gabe; Hyde, Tupper; Peabody, Hume; Garrison, Matthew

    2012-01-01

    significant concern in designing complex systems implementing new technologies is that while knowledge about the system is acquired incrementally, substantial financial commitments, even make-or-break decisions, must be made upfront, essentially in the unknown. One practice that helps in dealing with this dichotomy is the smart embedding of contingencies and margins in the design to serve as buffers against surprises. This issue presents itself in full force in the aerospace industry, where unprecedented systems are formulated and committed to as a matter of routine. As more and more aerospace mission concepts are generated by concurrent design laboratories, it is imperative that such laboratories apply well thought-out contingency and margin structures to their designs. The first part of this publication provides an overview of resource management techniques and standards used in the aerospace industry. That is followed by a thought provoking treatise on margin policies. The expose presents the actual flight telemetry data recorded by the thermal discipline during several recent NASA Goddard Space Flight Center missions. The margins actually achieved in flight are compared against pre-flight predictions, and the appropriateness and the ramifications of having designed with rigid margins to bounding stacked worst case conditions are assessed. The second half of the paper examines the particular issues associated with the application of contingencies and margins in the concurrent engineering environment. In closure, a discipline-by-discipline disclosure of the contingency and margin policies in use at the Integrated Design Center at NASA s Goddard Space Flight Center is made.

  9. Review of aerospace engineering cost modelling: The genetic causal approach

    NASA Astrophysics Data System (ADS)

    Curran, R.; Raghunathan, S.; Price, M.

    2004-11-01

    The primary intention of this paper is to review the current state of the art in engineering cost modelling as applied to aerospace. This is a topic of current interest and in addressing the literature, the presented work also sets out some of the recognised definitions of cost that relate to the engineering domain. The paper does not attempt to address the higher-level financial sector but rather focuses on the costing issues directly relevant to the engineering process, primarily those of design and manufacture. This is of more contemporary interest as there is now a shift towards the analysis of the influence of cost, as defined in more engineering related terms; in an attempt to link into integrated product and process development (IPPD) within a concurrent engineering environment. Consequently, the cost definitions are reviewed in the context of the nature of cost as applicable to the engineering process stages: from bidding through to design, to manufacture, to procurement and ultimately, to operation. The linkage and integration of design and manufacture is addressed in some detail. This leads naturally to the concept of engineers influencing and controlling cost within their own domain rather than trusting this to financers who have little control over the cause of cost. In terms of influence, the engineer creates the potential for cost and in a concurrent environment this requires models that integrate cost into the decision making process.

  10. A Systems Engineering Approach to Quality Assurance for Aerospace Testing

    NASA Technical Reports Server (NTRS)

    Shepherd, Christena C.

    2014-01-01

    On the surface, it appears that AS9100 has little to say about how to apply a Quality Management System (QMS) to major aerospace test programs (or even smaller ones). It also appears that there is little in the quality engineering Body of Knowledge (BOK) that applies to testing, unless it is nondestructive examination (NDE), or some type of lab or bench testing associated with the manufacturing process. However, if one examines: a) how the systems engineering (SE) processes are implemented throughout a test program; and b) how these SE processes can be mapped to the requirements of AS9100, a number of areas for involvement of the quality professional are revealed. What often happens is that quality assurance during a test program is limited to inspections of the test article; what could be considered a manufacturing al fresco approach. This limits the quality professional and is a disservice to the programs and projects, since there are a number of ways that quality can enhance critical processes, and support efforts to improve risk reduction, efficiency and effectiveness. The Systems Engineering (SE) discipline is widely used in aerospace to ensure the progress from Stakeholder Expectations (the President, Congress, the taxpayers) to a successful, delivered product or service. Although this is well known, what is not well known is that these same SE processes are implemented in varying complexity, to prepare for and implement test projects that support research, development, verification and validation, qualification, and acceptance test projects. Although the test organization's terminology may vary from the SE terminology, and from one test service provider to another, the basic process is followed by successful, reliable testing organizations. For this analysis, NASA Procedural Requirements (NPR) 7123.1, NASA Systems Engineering Processes and Requirements is used to illustrate the SE processes that are used for major aerospace testing. Many of these processes

  11. Characterizing Distributed Concurrent Engineering Teams: A Descriptive Framework for Aerospace Concurrent Engineering Design Teams

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Debarati; Hihn, Jairus; Warfield, Keith

    2011-01-01

    As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades in a cost-efficient manner. To successfully accomplish these complex missions with limited funding, it is also essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. This paper is an extension of a recent white paper written by the Concurrent Engineering Working Group, which details the unique challenges of distributed collaborative concurrent engineering. This paper includes a short history of aerospace concurrent engineering, and defines the terms 'concurrent', 'collaborative' and 'distributed' in the context of aerospace concurrent engineering. In addition, a model for the levels of complexity of concurrent engineering teams is presented to provide a way to conceptualize information and data flow within these types of teams.

  12. Space architecture education as a part of aerospace engineering curriculum

    NASA Astrophysics Data System (ADS)

    Bannova, Olga; Bell, Larry

    2011-12-01

    Education is particularly important for new fields. In the case of space architecture, there are two core needs: educating the aerospace community about the architect's function and activity and design process within the enterprise; educating space architects and associated specialists about constraints, conditions, and priorities unique to human space systems. These needs can be addressed, respectively, by two key educational tools for the 21st century: introducing the space architecture discipline into the space system engineering curricula; developing space architecture as a distinct, complete training curriculum. New generations of professionals with a space architecture background can help shift professional focus from just engineering-driven transportation systems and "sortie" missions to permanent offworld human presence by offering their inherently integrative design approach to all types of space structures and facilities. Although architectural and engineering approaches share some similarities in solving problems, they also have significant differences. Architectural training teaches young professionals to operate at all scales from the "overall picture" down to the smallest details to provide directive intention - not just analysis - to design opportunities, to address the relationship between human behavior and the built environment, and to interact with many diverse fields and disciplines throughout the project lifecycle.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace research and development (R/D) and the information seeking behavior of US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    In this paper, the diffusion of federally funded aerospace R&D is explored from the perspective of the information-seeking behavior of U.S. aerospace engineers and scientists. The following three assumptions frame this exploration: (1) knowledge production, transfer, and utilization are equally important components of the aerospace R&D process; (2) the diffusion of knowledge resulting from federally funded aerospace R&D is indispensable for the U.S. to remain a world leader in aerospace; and (3) U.S. government technical reports, produced by NASA and DOD, play an important, but as yet undefined, role in the diffusion of federally funded aerospace R&D. A conceptual model for federally funded aerospace knowledge diffusion, one that emphasizes U.S. goverment technical reports, is presented. Data regarding three research questions concerning the information-seeking behavior of U.S. aerospace engineers and scientists are also presented.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 49: Becoming an aerospace engineer: A cross-gender comparison

    NASA Technical Reports Server (NTRS)

    Hecht, Laura M.; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    We conducted a mail (self-reported) survey of 4300 student members of the American Institute of Aeronautics and Astronautics (AIAA) during the spring of 1993 as a Phase 3 activity of the NASA/DoD Aerospace Knowledge Diffusion Research Project. The survey was designed to explore students' career goals and aspirations, communications skills training, and their use of information sources, products, and services. We received 1723 completed questionnaires for an adjusted response rate of 42%. In this article, we compare the responses of female and male aerospace engineering students in the context of two general aspects of their educational experience. First, we explore the extent to which women and men differ in regard to factors that lead to the choice to study aerospace engineering, their current level of satisfaction with that choice, and their career-related goals and aspirations. Second, we examine students' responses to questions about communications skills training and the helpfulness of that training, and their use of and the importance to them of selected information sources, products, and services. The cross-gender comparison revealed more similarities than differences. Female students appear to be more satisfied than their male counterparts with the decision to major in aerospace engineering. Both female and male student respondents consider communications skills important for professional success, but females place a higher value than males do on oral communications skills. Women students also place a higher value than men do on the roles of other students and faculty members in satisfying their needs for information.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 35: The use of computer networks in aerospace engineering

    NASA Technical Reports Server (NTRS)

    Bishop, Ann P.; Pinelli, Thomas E.

    1995-01-01

    This research used survey research to explore and describe the use of computer networks by aerospace engineers. The study population included 2000 randomly selected U.S. aerospace engineers and scientists who subscribed to Aerospace Engineering. A total of 950 usable questionnaires were received by the cutoff date of July 1994. Study results contribute to existing knowledge about both computer network use and the nature of engineering work and communication. We found that 74 percent of mail survey respondents personally used computer networks. Electronic mail, file transfer, and remote login were the most widely used applications. Networks were used less often than face-to-face interactions in performing work tasks, but about equally with reading and telephone conversations, and more often than mail or fax. Network use was associated with a range of technical, organizational, and personal factors: lack of compatibility across systems, cost, inadequate access and training, and unwillingness to embrace new technologies and modes of work appear to discourage network use. The greatest positive impacts from networking appear to be increases in the amount of accurate and timely information available, better exchange of ideas across organizational boundaries, and enhanced work flexibility, efficiency, and quality. Involvement with classified or proprietary data and type of organizational structure did not distinguish network users from nonusers. The findings can be used by people involved in the design and implementation of networks in engineering communities to inform the development of more effective networking systems, services, and policies.

  16. Engineering derivatives from biological systems for advanced aerospace applications

    NASA Technical Reports Server (NTRS)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  17. A Systems Engineering Approach to Quality Assurance for Aerospace Testing

    NASA Technical Reports Server (NTRS)

    Shepherd, Christena C.

    2015-01-01

    On the surface, it appears that AS91001 has little to say about how to apply a Quality Management System (QMS) to major aerospace test programs (or even smaller ones). It also appears that there is little in the quality engineering Body of Knowledge (BOK)2 that applies to testing, unless it is nondestructive examination (NDE), or some type of lab or bench testing associated with the manufacturing process. However, if one examines: a) how the systems engineering (SE) processes are implemented throughout a test program; and b) how these SE processes can be mapped to the requirements of AS9100, a number of areas for involvement of the quality professional are revealed. What often happens is that quality assurance during a test program is limited to inspections of the test article; what could be considered a manufacturing al fresco approach. This limits the quality professional and is a disservice to the programs and projects, since there are a number of ways that quality can enhance critical processes, and support efforts to improve risk reduction, efficiency and effectiveness.

  18. NASA-universities relationships in aero/space engineering: A review of NASA's program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    NASA is concerned about the health of aerospace engineering departments at U.S. universities. The number of advanced degrees in aerospace engineering has declined. There is concern that universities' facilities, research equipment, and instrumentation may be aging or outmoded and therefore affect the quality of research and education. NASA requested that the National Research Council's Aeronautics and Space Engineering Board (ASEB) review NASA's support of universities and make recommendations to improve the program's effectiveness.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  20. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Two pilot studies were conducted that investigated the technical communications practices of U.S. and European aerospace engineers and scientists. Both studies had the same five objectives: (1) solicit opinions regarding the importance of technical communications; (2) determine the use and production of technical communications; (3) seek views about the appropriate content of an undergraduate course in technical communications; (4) determine use of libraries, information centers, and online database; (5) determine use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected aerospace engineers and scientists, with a slightly modified version sent to European colleagues. Their responses to selected questions are presented in this paper.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 20: Engineers as information processors: A survey of US aerospace engineering faculty and students

    NASA Technical Reports Server (NTRS)

    Holland, Maurita Peterson; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1991-01-01

    U.S. aerospace engineering faculty and students were surveyed as part of the NASA/DoD Aerospace Knowledge Research Project. Faculty and students were viewed as information processors within a conceptual framework of information seeking behavior. Questionnaires were received from 275 faculty members and 640 students, which were used to determine: (1) use and importance of information sources; (2) use of specific print sources and electronic data bases; (3) use of information technology; and (4) the influence of instruction on the use of information sources and the products of faculty and students. Little evidence was found to support the belief that instruction in library or engineering information use has significant impact either on broadening the frequency or range of information products and sources used by U.S. aerospace engineering students.

  2. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  3. The First "A" in NASA: Motivations for a Career in Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer

    2008-01-01

    This document offers a poster presentation highlighting reasons to pursue a career in aerospace engineering. These motivations are correlated with NASA's overall mission of scientific discovery and space exploration.

  4. Applications of aerospace technology to petroleum extraction and reservoir engineering

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Back, L. H.; Berdahl, C. M.; Collins, E. E., Jr.; Gordon, P. G.; Houseman, J.; Humphrey, M. F.; Hsu, G. C.; Ham, J. D.; Marte, J. E.; Owen, W. A.

    1977-01-01

    Through contacts with the petroleum industry, the petroleum service industry, universities and government agencies, important petroleum extraction problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified, where possible. Some of the problems were selected for further consideration. Work on these problems led to the formulation of specific concepts as candidate for development. Each concept is addressed to the solution of specific extraction problems and makes use of specific areas of aerospace technology.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 33: Technical communications practices and the use of information technologies as reported by Dutch and US aerospace engineers

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA ARC (U.S.), and NASA LaRC (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions concerning four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  6. The technical communication practices of Russian and U.S. aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  7. Technological Innovation and Technical Communications: Their Place in Aerospace Engineering Curricula. A Survey of European, Japanese and US Aerospace Engineers and Scientists.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    1991-01-01

    Reports on results from 260 aerospace engineers and scientists in United States, Europe, and Japan regarding their opinions about professional importance of technical communications; generation and utilization of technical communications; and relevant content of an undergraduate course in technical communications. The fields of cryogenics,…

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 11: The Voice of the User: How US Aerospace Engineers and Scientists View DoD Technical Reports

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1991-01-01

    The project examines how the results of NASA/DOD research diffuse into the aerospace R&D process, and empirically analyzes the implications of the aerospace knowledge diffusion process. Specific issues considered are the roles played by government technical reports, the recognition of the value of scientific and technical information (STI), and the optimization of the STI aerospace transfer system. Information-seeking habits are assessed for the U.S. aerospace community, the general community, the academic sector, and the international community. U.S. aerospace engineers and scientists use 65 percent of working time to communicate STI, and prefer 'internal' STI over 'external' STI. The isolation from 'external' information is found to be detrimental to U.S. aerospace R&D in general.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 31: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SME mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical communications practices of U.S. aerospace engineers and scientists affiliated with, not necessarily belonging to, the Society of Manufacturing Engineers (SME).

  11. Concurrent Engineering Working Group White Paper Distributed Collaborative Design: The Next Step in Aerospace Concurrent Engineering

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Panek, John; Warfield, Keith; Borden, Chester

    2011-01-01

    As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades of performance, cost and schedule. To successfully accomplish these complex missions with limited funding, it is essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. The purpose of this white paper is to identify a near-term vision for the future of distributed collaborative concurrent engineering design for aerospace missions as well as discuss the challenges to achieving that vision. The white paper also documents the advantages of creating a working group to investigate how to engage the expertise of different teams in joint design sessions while enabling organizations to maintain their organizations competitive advantage.

  12. Bayesian framework for aerospace gas turbine engine prognostics

    NASA Astrophysics Data System (ADS)

    Zaidan, M. A.; Mills, A. R.; Harrison, R. F.

    Prognostics is an emerging capability of modern health monitoring that aims to increase the fidelity of failure predictions. In the aerospace industry, it is a key technology to maximise aircraft availability, offering a route to increase time in-service and reduce operational disruption through improved asset management.

  13. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Results are reported from pilot surveys on the use of scientific and technical information (STI) by U.S. and NATO-nation aerospace scientists and engineers, undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. The survey procedures and the demographic characteristics of the 67 scientists and engineers who responded to the survey are summarized, and the results are presented in a series of tables and discussed in detail. Findings emphasized include: (1) both U.S. and NATO respondents spend around 60 percent of their work week producing or using STI products; (2) NATO respondents are more likely than their U.S. counterparts to use 'formal' STI products (like technical reports and papers) and the services of librarians and online data bases; (3) most of the respondents use computers and information technology in preparing STI products; and (4) respondents who had taken courses in technical communication agreed on the value and ideal subject matter of such courses.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 45; The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 3 US Aerospace Engineering Educators Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports, present a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the American Institute of Aeronautics and Astronautics (AIAA) and identified themselves as educators.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 29: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 18: A comparison of the technical communication practices of aerospace engineers and scientists in India and the United States

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: A comparison of the technical communications practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 55: Career goals and educational preparation of aerospace engineering and science students: An international perspective

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1995-01-01

    Results are presented of a survey of aerospace engineering and science students conducted in India, Japan, Russia, the United Kingdom, and the United States. The similarities and differences among aerospace engineering and science students from the five countries are examined in the context of two general aspects of educational experience. First, the extent to which students differ regarding the factors that led to the choice of a career in aerospace, their current levels of satisfaction with that choice, and career-related goals and objectives is considered. Second, the importance of certain communications/information-use skills for professional use is examined, as well as the frequency of use and importance of specific information sources and products to meet students' educational needs. Overall, the students who participated in this research remain relatively happy with the choice of a career in aerospace engineering, despite pessimism in some quarters about the future of the industry. Regardless of national identity, aerospace engineering and science students appear to share a similar vision of the profession in terms of their career goals and aspirations. The data also indicate that aerospace engineering and science students are well aware of the importance of communications/information-use skills to professional success and that competency in these skills will help them to be productive members of their profession. Collectively, all of the students appear to use and value similar information sources and products, although some differences appear by country.

  20. Aerospace Engineering Systems and the Advanced Design Technologies Testbed Experience

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: 1) Physics-based analysis tools for filling the design space database; 2) Distributed computational resources to reduce response time and cost; 3) Web-based technologies to relieve machine-dependence; and 4) Artificial intelligence technologies to accelerate processes and reduce process variability. The Advanced Design Technologies Testbed (ADTT) activity at NASA Ames Research Center was initiated to study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities are reported.

  1. Stirling engines. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning fuel consumption, engine design and testing, computerized simulation, and lubrication systems relative to the Stirling cycle engine. Solar energy conversion research, thermodynamic efficiency, economics, and utilization for power generation and automobile engines are included. Materials used in Stirling engines are briefly evaluated. (Contains 250 citations and includes a subject term index and title list.)

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 45: A comparison of the information-seeking behaviors of three groups of US aerospace engineers

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.; Pinelli, Thomas E.; Barclay, Rebecca O.

    1995-01-01

    To understand the transfer of scientific and technical information (STI) in aerospace, it is necessary to understand the characteristics and behaviors of those who create and use STI. In this paper, we analyze the similarities and differences in the scientific and technical information-seeking behaviors of three groups of US aerospace engineers and scientists. We describe some of their demographic characteristics and their duties and responsibilities as a method of understanding their STI use patterns. There is considerable diversity among aerospace engineers in their use of STI. In general, engineers engaged in research use more STI than those who are in design/development and manufacturing/production. Research engineers also use different standards to determine the STI sources and products that they will use.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 14: Engineering work and information use in aerospace: Results of a telephone survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists who were on the Society of Automotive Engineers (SAE) mailing list was conducted between August 14-26, 1991. The survey was undertaken to obtain information on the daily work activities of aerospace engineers and scientists, to measure various practices used by aerospace engineers and scientists to obtain STI, and to ask aerospace engineers and scientists about their use of electronic networks. Co-workers were found important sources of information. Co-workers are used to obtain technical information because the information they have is relevant, not because co-workers are accessible. As technical uncertainty increases, so does the need for information internal and external to the organization. Electronic networks enjoy widespread use within the aerospace community. These networks are accessible and they are used to contact people at remote sites. About 80 percent of the respondents used electronic mail, file transfer, and information or data retrieval to commercial or in-house data bases.

  4. The National Evaluation of NASA's Science, Engineering, Mathematics and Aerospace Academy (SEMAA) Program

    ERIC Educational Resources Information Center

    Martinez, Alina; Cosentino de Cohen, Clemencia

    2010-01-01

    This report presents findings from a NASA requested evaluation in 2008, which contains both implementation and impact modules. The implementation study investigated how sites implement Science, Engineering, Mathematics, and Aerospace Academy (SEMAA) and the contextual factors important in this implementation. The implementation study used data…

  5. The National Evaluation of NASA's Science, Engineering, Mathematics and Aerospace Academy (SEMAA) Program

    ERIC Educational Resources Information Center

    Martinez, Alina; Cosentino de Cohen, Clemencia

    2010-01-01

    This report presents findings from a NASA requested evaluation in 2008, which contains both implementation and impact modules. The implementation study investigated how sites implement Science, Engineering, Mathematics, and Aerospace Academy (SEMAA) and the contextual factors important in this implementation. The implementation study used data…

  6. Projected progress in the engineering state-of-the-art. [for aerospace

    NASA Technical Reports Server (NTRS)

    Nicks, O. W.

    1978-01-01

    Projected advances in discipline areas associated with aerospace engineering are discussed. The areas examined are propulsion and power, materials and structures, aerothermodynamics, and electronics. Attention is directed to interdisciplinary relationships; one example would be the application of communications technology to the solution of propulsion problems. Examples involving projected technology changes are presented, and technology integration and societal effects are considered.

  7. An Evaluation of a Course That Introduces Undergraduate Students to Authentic Aerospace Engineering Research

    ERIC Educational Resources Information Center

    Mena, Irene B.; Schmitz, Sven; McLaughlin, Dennis

    2015-01-01

    This paper describes the implementation and assessment of an aerospace engineering course in which undergraduate students worked on research projects with graduate research mentors. The course was created using the principles from cooperative learning and project-based learning, and consisted of students working in small groups on a complex,…

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 21: Technological innovation and technical communications: Their place in aerospace engineering curricula. A survey of European, Japanese, and US Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Holland, Maurita Peterson; Keene, Michael L.; Kennedy, John M.

    1991-01-01

    Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors.

  9. Aerospace Concurrent Engineering Design Teams: Current State, Next Steps and a Vision for the Future

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Borden, Chester; Panek, John; Warfield, Keith

    2011-01-01

    Over the past sixteen years, government aerospace agencies and aerospace industry have developed and evolved operational concurrent design teams to create novel spaceflight mission concepts and designs. These capabilities and teams, however, have evolved largely independently. In today's environment of increasingly complex missions with limited budgets it is becoming readily apparent that both implementing organizations and today's concurrent engineering teams will need to interact more often than they have in the past. This will require significant changes in the current state of practice. This paper documents the findings from a concurrent engineering workshop held in August 2010 to identify the key near term improvement areas for concurrent engineering capabilities and challenges to the long-term advancement of concurrent engineering practice. The paper concludes with a discussion of a proposed vision for the evolution of these teams over the next decade.

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 24: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SAE mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists affiliated with the Society of Automotive Engineers (SAE).

  11. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  12. Computational simulation of concurrent engineering for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 34: How early career-stage US aerospace engineers and scientists produce and use information

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the production and use of information by U.S. aerospace engineers and scientists who had changed their American Institute of Aeronautics and Astronautics (AIAA) membership from student to professional in the past five years.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 33: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 AIAA mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who are members of the American Institute of Aeronautics and Astronautics (AIAA).

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 23: The communications practices of US aerospace engineering faculty and students: Results of the phase 3 survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. aerospace engineering faculty and students.

  16. Interdisciplinary and multilevel optimum design. [in aerospace structural engineering

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1987-01-01

    Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.

  17. The Information Needs of Scientists and Engineers in Aerospace.

    ERIC Educational Resources Information Center

    Raitt, D. I.

    The information seeking and use habits of more than 600 scientists and engineers on staff at the European Space Agency (ESA) were studied and compared with those of staff at five European organizations with similar missions: the United Nations Education, Scientific, and Cultural Organization (UNESCO) in France; the International Atomic Energy…

  18. Towards Requirements in Systems Engineering for Aerospace IVHM Design

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Roychoudhury, Indranil; Lin, Wei; Goebel, Kai

    2013-01-01

    Health management (HM) technologies have been employed for safety critical system for decades, but a coherent systematic process to integrate HM into the system design is not yet clear. Consequently, in most cases, health management resorts to be an after-thought or 'band-aid' solution. Moreover, limited guidance exists for carrying out systems engineering (SE) on the subject of writing requirements for designs with integrated vehicle health management (IVHM). It is well accepted that requirements are key to developing a successful IVHM system right from the concept stage to development, verification, utilization, and support. However, writing requirements for systems with IVHM capability have unique challenges that require the designers to look beyond their own domains and consider the constraints and specifications of other interlinked systems. In this paper we look at various stages in the SE process and identify activities specific to IVHM design and development. More importantly, several relevant questions are posed that system engineers must address at various design and development stages. Addressing these questions should provide some guidance to systems engineers towards writing IVHM related requirements to ensure that appropriate IVHM functions are built into the system design.

  19. NASA Engineering Safety Center NASA Aerospace Flight Battery Systems Working Group 2007 Proactive Task Status

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2007-01-01

    In 2007, the NASA Engineering Safety Center (NESC) chartered the NASA Aerospace Flight Battery Systems Working Group to bring forth and address critical battery-related performance/manufacturing issues for NASA and the aerospace community. A suite of tasks identifying and addressing issues related to Ni-H2 and Li-ion battery chemistries was submitted and selected for implementation. The current NESC funded are: (1) Wet Life of Ni-H2 Batteries (2) Binding Procurement (3) NASA Lithium-Ion Battery Guidelines (3a) Li-Ion Performance Assessment (3b) Li-Ion Guidelines Document (3b-i) Assessment of Applicability of Pouch Cells for Aerospace Missions (3b-ii) High Voltage Risk Assessment (3b-iii) Safe Charge Rates for Li-Ion Cells (4) Availability of Source Material for Li-Ion Cells (5) NASA Aerospace Battery Workshop This presentation provides a brief overview of the tasks in the 2007 plan and serves as an introduction to more detailed discussions on each of the specific tasks.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 36: Technical uncertainty as a correlate of information use by US industry-affiliated aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1994-01-01

    This paper reports the results of an exploratory study that investigated the influence of technical uncertainty on the use of information and information sources by U.S. industry-affiliated aerospace engineers and scientists in completing or solving a project, task, or problem. Data were collected through a self-administered questionnaire. Survey participants were U.S. aerospace engineers and scientists whose names appeared on the Society of Automotive Engineers (SAE) mailing list. The results support the findings of previous research and the following study assumptions. Information and information-source use differ for projects, problems, and tasks with high and low technical uncertainty. As technical uncertainty increases, information-source use changes from internal to external and from informal to formal sources. As technical uncertainty increases, so too does the use of federally funded aerospace research and development (R&D). The use of formal information sources to learn about federally funded aerospace R&D differs for projects, problems, and tasks with high and low technical uncertainty.

  1. NASA's activities in the conservation of strategic aerospace materials

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1980-01-01

    The United States imports 50-100 percent of certain metals critical to the aerospace industry, namely, cobalt, columbium, chromium, and tantalum. In an effort to reduce this dependence on foreign sources, NASA is planning a program called Conservation of Strategic Aerospace Materials (COSAM), which will provide technology minimizing strategic metal content in the components of aerospace structures such as aircraft engines. With a proposed starting date of October 1981, the program will consist of strategic element substitution, process technology development, and alternate materials research. NASA's two-fold pre-COSAM studies center on, first, substitution research involving nickel-base and cobalt-base superalloys (Waspaloy, Udimet-700, MAE-M247, Rene 150, HA-188) used in turbine disks, low-pressure blades, turbine blades, and combustors; and, second, alternate materials research devoted initially to investigating possible structural applications of the intermetallic alloys nickel aluminide and iron aluminide.

  2. Aerospace engineering design by systematic decomposition and multilevel optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Barthelemy, J. F. M.; Giles, G. L.

    1984-01-01

    A method for systematic analysis and optimization of large engineering systems, by decomposition of a large task into a set of smaller subtasks that is solved concurrently is described. The subtasks may be arranged in hierarchical levels. Analyses are carried out in each subtask using inputs received from other subtasks, and are followed by optimizations carried out from the bottom up. Each optimization at the lower levels is augmented by analysis of its sensitivity to the inputs received from other subtasks to account for the couplings among the subtasks in a formal manner. The analysis and optimization operations alternate iteratively until they converge to a system design whose performance is maximized with all constraints satisfied. The method, which is still under development, is tentatively validated by test cases in structural applications and an aircraft configuration optimization.

  3. Advanced bearing materials for cryogenic aerospace engine turbopump requirements

    NASA Technical Reports Server (NTRS)

    Friedman, G.; Bhat, B. N.

    1986-01-01

    The properties of eleven alloys were investigated to select an improved bearing material for the High Pressure Oxygen Turbo Pump which delivers liquid oxygen to the Space Shuttle Main Engine. The alloys, selected through detailed literature analysis, X 405, MRC-2001, T440V, 14-4/6V, D-5, V-M Pyromet 350, Stellite 3, FerroTic CS-40, Tribaloy 800, WD-65, and CBS-600. The alloys were tested in hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness tests, and their performance was compared with the baseline 440C test alloy. As a result, five alloys were eliminated, leaving the remaining six (X 405, MRC-2001, T440V, 14-4/6V, D-5, and WD-65 to be evaluated in the next phase of NASA tests which will include fracture toughness, rolling contact fatigue, wear resistance, and corrosion resistance. From these, three alloys will be selected, which will be made into ninety bearings for subsequent testing.

  4. Introduction to System Health Engineering and Management in Aerospace

    NASA Technical Reports Server (NTRS)

    Johnson, Stephen B.

    2005-01-01

    This paper provides a technical overview of Integrated System Health Engineering and Management (ISHEM). We define ISHEM as "the paper provides a techniques, and technologies used to design, analyze, build, verify, and operate a system to prevent faults and/or minimize their effects." This includes design and manufacturing techniques as well operational and managerial methods. ISHEM is not a "purely technical issue" as it also involves and must account for organizational, communicative, and cognitive f&ms of humans as social beings and as individuals. Thus the paper will discuss in more detail why all of these elements, h m the technical to the cognitive and social, are necessary to build dependable human-machine systems. The paper outlines a functional homework and architecture for ISHEM operations, describes the processes needed to implement ISHEM in the system life-cycle, and provides a theoretical framework to understand the relationship between the different aspects of the discipline. It then derives from these and the social and cognitive bases a set of design and operational principles for ISHEM.

  5. Contamination control engineering design guidelines for the aerospace community

    NASA Technical Reports Server (NTRS)

    Tribble, A. C. (Principal Investigator); Boyadjian, B.; Davis, J.; Haffner, J.; McCullough, E.

    1996-01-01

    Thermal control surfaces, solar arrays, and optical devices may be adversely affected by a small quantity of molecular and/or particulate contamination. What is rarely discussed is how one: (1) quantifies the level of contamination that must be maintained in order for the system to function properly, and (2) enforces contamination control to ensure compliance with requirements. This document is designed to address these specific issues and is intended to serve as a handbook on contamination control for the reader, illustrating process and methodology while providing direction to more detailed references when needed. The effects of molecular contamination on reflecting and transmitting surfaces are examined and quantified in accordance with MIL STD 1246C. The generation, transportation, and deposition of molecular contamination is reviewed and specific examples are worked to illustrate the process a design engineer can use to estimate end of life cleanliness levels required by solar arrays, thermal control surfaces, and optical surfaces. A similar process is used to describe the effect of particulate contamination as related to percent area coverage (PAC) and bi-directional reflectance distribution function (BRDF). Relationships between PAC and surface cleanliness, which include the effects of submicron sized particles, are developed and BRDF is related to specific sensor design parameters such as Point Source Transmittance (PST). The pros and cons of various methods of preventing, monitoring, and cleaning surfaces are examined and discussed.

  6. Tensile properties of nicalon fiber-reinforced carbon following aerospace turbine engine testing

    NASA Astrophysics Data System (ADS)

    Pierce, J. L.; Zawada, L. P.; Srinivasan, R.

    2003-06-01

    The durability of coated Nicalon silicon carbide fiber-reinforced carbon (SiC/C) as the flap and seal exhaust nozzle components in a military aerospace turbine engine was studied. Test specimens machined from both a flap and a seal component were tested for residual strength following extended ground engine testing on a General Electric F414 afterburning turbofan engine. Although small amounts of damage to the protective exterior coating were identified on each component following engine testing, the tensile strengths were equal to the as-fabricated tensile strength of the material. Differences in strength between the two components and variability within the data sets could be traced back to the fabrication process using witness coupon test data from the manufacturer. It was also observed that test specimens machined transversely across the flap and seal components were stronger than those machined along the length. The excellent retained strength of the coated SiC/C material after extended exposure to the severe environment in the afterburner exhaust section of an aerospace turbofan engine has resulted in this material being selected as the baseline material for the F414 exhaust nozzle system.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 52: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    To understand the diffusion of aerospace knowledge, it is necessary to understand the communications practices and the information-seeking behaviors of those involved in the production, transfer, and use of aerospace knowledge at the individual, organizational, national, and international levels. In this paper, we report selected results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on communications practices and information-seeking behaviors in the workplace. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communications, use of libraries, the use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports. The responses of the survey respondents are placed within the context of the Japanese culture. We assume that differences in Japanese and U.S. cultures influence the communications practices and information-seeking behaviors of Japanese and U.S. aerospace engineers and scientists.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 13: Source selection and information use by US aerospace engineers and scientists: Results of a telephone survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists belonging to the Society of Automotive Engineers (SAE) was conducted between December 4, 1991 and January 5, 1992. The survey was undertaken to (1) validate the telephone survey as an appropriate technique for collecting data from U.S. aerospace engineers and scientists; (2) collect information about how the results of NASA/DoD aerospace research are used in the R&D process; (3) identify those selection criteria which affect the use of federally-funded aerospace R&D; and (4) obtain information that could be used to develop a self-administered mail questionnaire for use with the same population. The average rating of importance of U.S. government technical reports was 2.5 (on a 4-point scale); The mean/median number of times U.S. government technical reports were used per 6 months was 8/2. Factors scoring highest for U.S. government technical reports were technical accuracy (2.9), reliable data and technical information (2.8), and contains comprehensive data and information (2.7) on a 4-point system. The factors scoring highest for influencing the use of U.S. government technical reports were relevance (3.1), technical accuracy (3.06), and reliable data/information (3.02). Ease of use, familiarity, technical accuracy, and relevance correlated with use of U.S. government technical reports. Survey demographics, survey questionnaire, and the NASA/DoD Aerospace Knowledge Diffusion Research Project publications list are included.

  9. Perceived leader integrity and employee job satisfaction: A quantitative study of U.S. aerospace engineers

    NASA Astrophysics Data System (ADS)

    Harper, Kay E.

    The goal of this quantitative study was to determine if there is a significant relationship between perceived leader integrity and employee job satisfaction. The population selected to be analyzed was U.S. Aerospace engineers. Two existing valid and reliable survey instruments were used to collect data. One of the surveys was the Perceived Leader Integrity Scale developed by Craig and Gustafson. The second survey was the Minnesota Satisfaction Questionnaire created by Weiss, Dawis, England, and Lofquist. The public professional networking site LinkedIn was used to invite U.S. Aerospace engineers to participate. The survey results were monitored by Survey Monkey and the sample data was analyzed using SPSS software. 184 responses were collected and of those, 96 were incomplete. 91 usable survey responses were left to be analyzed. When the results were plotted on an x-y plot, the data line had a slight negative slope. The plotted data showed a very small negative relationship between perceived leader integrity and employee job satisfaction. This relationship could be interpreted to mean that as perceived leader integrity improved, employee job satisfaction decreased only slightly. One explanation for this result could be that employees focused on their negative feelings about their current job assignment when they did not have to be concerned about the level of integrity with which their leader acted. The findings of this study reinforce the importance of employee's perception of a critical leader quality - integrity. For future research, a longitudinal study utilizing another sampling method other than convenience sampling may better statistically capture the relationship between perceived leader integrity and employee job satisfaction for U.S. aerospace engineers.

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 44: Becoming an aerospace engineer: Some thoughts on the career goals and educational preparation of AIAA student members

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Hecht, Laura M.

    1994-01-01

    Similarities and differences between undergraduate and graduate engineering students in the context of two general aspects of educational experience are described. Considered first is the extent to which students differ regarding the factors that led to the choice of a career in aerospace engineering, their current levels of satisfaction with that choice, and career-related goals and objectives. Second, the importance of certain information-use skills for professional success, and the frequency of use and importance of specific information sources and products to meet students' educational needs, are explored.

  11. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXXIII - Technical communications practices and the use of information technologies as reported by Dutch and U.S. aerospace engineers

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA Ames Research Center (U.S.), and the NASA Langley Research Center (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions about four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  12. Project-based introduction to aerospace engineering course: A model rocket

    NASA Astrophysics Data System (ADS)

    Jayaram, Sanjay; Boyer, Lawrence; George, John; Ravindra, K.; Mitchell, Kyle

    2010-05-01

    In this paper, a model rocket project suitable for sophomore aerospace engineering students is described. This project encompasses elements of drag estimation, thrust determination and analysis using digital data acquisition, statistical analysis of data, computer aided drafting, programming, team work and written communication skills. The student built rockets are launched in the university baseball field with the objective of carrying a specific amount of payload so that the rocket achieves a specific altitude before the parachute is deployed. During the course of the project, the students are introduced to real-world engineering practice through written report submission of their designs. Over the years, the project has proven to enhance the learning objectives, yet cost effective and has provided good outcome measures.

  13. Applications of hybrid and digital computation methods in aerospace-related sciences and engineering. [problem solving methods at the University of Houston

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Motard, R. L.

    1978-01-01

    The computing equipment in the engineering systems simulation laboratory of the Houston University Cullen College of Engineering is described and its advantages are summarized. The application of computer techniques in aerospace-related research psychology and in chemical, civil, electrical, industrial, and mechanical engineering is described in abstracts of 84 individual projects and in reprints of published reports. Research supports programs in acoustics, energy technology, systems engineering, and environment management as well as aerospace engineering.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 26: The technical communication practices of aerospace engineering students: Results of the phase 3 AIAA National Student Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Hecht, Laura M.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    This report describes similarities and differences between undergraduate and graduate engineering students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an engineer, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication practices, habits, and training of aerospace engineering students. The reported data were obtained from a survey of student members of the American Institute of Aeronautics and Astronautics (AIAA). The survey was undertaken as a phase 3 activity of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance; use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign language technical reports; and foreign language (reading and speaking) skills.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace Research and Development (R&D) and the information seeking behavior of US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    The present exploration of the diffusion of federally-funded R&D via the information-seeking behavior of scientists and engineers proceeds under three assumptions: (1) that knowledge transfer and utilization is as important as knowledge production; (2) that the diffusion of knowledge obtained through federally-funded R&D is necessary for the maintenance of U.S. preeminence in the aerospace field; and (3) that federally-funded NASA and DoD technical reports play an important, albeit as-yet undefined, role in aerospace R&D diffusion. A conceptual model is presented for the process of knowledge diffusion that stresses the role of U.S. government-funded technical reports.

  16. A Model-Based Approach to Engineering Behavior of Complex Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Ingham, Michel; Day, John; Donahue, Kenneth; Kadesch, Alex; Kennedy, Andrew; Khan, Mohammed Omair; Post, Ethan; Standley, Shaun

    2012-01-01

    One of the most challenging yet poorly defined aspects of engineering a complex aerospace system is behavior engineering, including definition, specification, design, implementation, and verification and validation of the system's behaviors. This is especially true for behaviors of highly autonomous and intelligent systems. Behavior engineering is more of an art than a science. As a process it is generally ad-hoc, poorly specified, and inconsistently applied from one project to the next. It uses largely informal representations, and results in system behavior being documented in a wide variety of disparate documents. To address this problem, JPL has undertaken a pilot project to apply its institutional capabilities in Model-Based Systems Engineering to the challenge of specifying complex spacecraft system behavior. This paper describes the results of the work in progress on this project. In particular, we discuss our approach to modeling spacecraft behavior including 1) requirements and design flowdown from system-level to subsystem-level, 2) patterns for behavior decomposition, 3) allocation of behaviors to physical elements in the system, and 4) patterns for capturing V&V activities associated with behavioral requirements. We provide examples of interesting behavior specification patterns, and discuss findings from the pilot project.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 53: From student to entry-level professional: Examining the technical communications practices of early career-stage US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    Studies indicate that communications and information-related activities take up a substantial portion of an engineer's work week; therefore, effective communications and information-use skills are one of the key engineering competencies that early career-stage aerospace engineers and scientists must possess to be successful. Feedback from industry rates communications and information-use skills high in terms of their importance to engineering practice; however, this same feedback rates the communications and information-use skills of early career-stage engineers low. To gather adequate and generalizable data about the communications and information-related activities of entry-level aerospace engineers and scientists, we surveyed 264 members of the AIAA who have no more than 1-5 years of aerospace engineering work experience. To learn more about the concomitant communications norms, we compared the results of this study with data (1,673 responses) we collected from student members of the AIAA and with data (341 responses) we collected from a study of aerospace engineering professionals. In this paper, we report selected results from these studies that focused on the communications practices and information-related activities of early career-stage U.S. aerospace engineers and scientists in the workplace.

  18. Mars Navigator: An Interactive Multimedia Program about Mars, Aerospace Engineering, Astronomy, and the JPL Mars Missions. [CD-ROM

    ERIC Educational Resources Information Center

    Gramoll, Kurt

    This CD-ROM introduces basic astronomy and aerospace engineering by examining the Jet Propulsion Laboratory's (JPL) Mars Pathfinder and Mars Global Surveyor missions to Mars. It contains numerous animations and narrations in addition to detailed graphics and text. Six interactive laboratories are included to help understand topics such as the…

  19. Integration of educational and scientific-technological areas during the process of education of aerospace engineers

    NASA Astrophysics Data System (ADS)

    Mayorova, Vera

    2011-09-01

    test-beds for quick and affordable trial-and-test of new technologies and design solutions in aerospace followed by implementation of selected efficiencies in the industry; development and improvement of ground control infrastructure based in the university, which includes the Mission Control Center and the Earth Remote Sensing Center; development of cooperative partnerships with international partners in the field of microsatellite technologies with the goal of sharing experience, uniting efforts in preparing and running scientific and educational experiments and creating next-generation spacecraft by multi-national student groups. Such approaches allow creating seamless environment that unites educational, scientific and innovative processes. This allows students to develop high professionalism, modern engineering thinking and stable engineering skills at an early stage of education at the university.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1: The value of scientific and technical information (STI), its relationship to Research and Development (R/D), and its use by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Glassman, Myron; Oliu, Walter E.

    1990-01-01

    This paper is based on the premise that scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace research and development (R&D) process are related. We intend to support this premise with data gathered from numerous studies concerned with STI, the relationship of STI to the performance and management of R&D activities, and the information use and seeking behavior of engineers in general and aerospace engineers and scientists in particular. We intend to develop and present a synthesized appreciation of how aerospace R&D managers can improve the efficacy of the R&D process by understanding the role and value of STI in this process.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 15: Technical uncertainty and project complexity as correlates of information use by US industry-affiliated aerospace engineers and scientists: Results of an exploratory investigation

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    An exploratory study was conducted that investigated the influence of technical uncertainty and project complexity on information use by U.S. industry-affiliated aerospace engineers and scientists. The study utilized survey research in the form of a self-administered mail questionnaire. U.S. aerospace engineers and scientists on the Society of Automotive Engineers (SAE) mailing list served as the study population. The adjusted response rate was 67 percent. The survey instrument is appendix C to this report. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and information use. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and the use of federally funded aerospace R&D. The results of this investigation are relevant to researchers investigating information-seeking behavior of aerospace engineers. They are also relevant to R&D managers and policy planners concerned with transferring the results of federally funded aerospace R&D to the U.S. aerospace industry.

  2. A case study of the knowledge transfer practices from the perspectives of highly experienced engineers in the aerospace industry

    NASA Astrophysics Data System (ADS)

    Martin, Deloris

    Purpose. The purpose of this study was to describe the existing knowledge transfer practices in selected aerospace companies as perceived by highly experienced engineers retiring from the company. Specifically it was designed to investigate and describe (a) the processes and procedures used to transfer knowledge, (b) the systems that encourage knowledge transfer, (c) the impact of management actions on knowledge transfer, and (d) constraining factors that might impede knowledge transfer. Methodology. A descriptive case study was the methodology applied in this study. Qualitative data were gathered from highly experienced engineers from 3 large aerospace companies in Southern California. A semistructured interview was conducted face-to-face with each participant in a private or semiprivate, non-workplace setting to obtain each engineer's perspectives on his or her company's current knowledge transfer practices. Findings. The participants in this study preferred to transfer knowledge using face-to-face methods, one-on-one, through actual troubleshooting and problem-solving scenarios. Managers in these aerospace companies were observed as having knowledge transfer as a low priority; they tend not to promote knowledge transfer among their employees. While mentoring is the most common knowledge transfer system these companies offer, it is not the preferred method of knowledge transfer among the highly experienced engineers. Job security and schedule pressures are the top constraints that impede knowledge transfer between the highly experienced engineers and their coworkers. Conclusions. The study data support the conclusion that the highly experienced engineers in the study's aerospace companies would more likely transfer their knowledge to those remaining in the industry if the transfer could occur face-to-face with management support and acknowledgement of their expertise and if their job security is not threatened. The study also supports the conclusion that managers

  3. Roles, uses, and benefits of general aviation aircraft in aerospace engineering education

    NASA Technical Reports Server (NTRS)

    Odonoghue, Dennis P.; Mcknight, Robert C.

    1994-01-01

    Many colleges and universities throughout the United States offer outstanding programs in aerospace engineering. In addition to the fundamentals of aerodynamics, propulsion, flight dynamics, and air vehicle design, many of the best programs have in the past provided students the opportunity to design and fly airborne experiments on board various types of aircraft. Sadly, however, the number of institutions offering such 'airborne laboratories' has dwindled in recent years. As a result, opportunities for students to apply their classroom knowledge, analytical skills, and engineering judgement to the development and management of flight experiments on an actual aircraft are indeed rare. One major reason for the elimination of flight programs by some institutions, particularly the smaller colleges, is the prohibitive cost of operating and maintaining an aircraft as a flying laboratory. The purpose of this paper is to discuss simple, low-cost, relevant flight experiments that can be performed using readily available general aviation aircraft. This paper examines flight experiments that have been successfully conducted on board the NASA Lewis Research Center's T-34B aircraft, as part of the NASA/AIAA/University Flight Experiment Program for Students (NAUFEPS) and discusses how similar experiments could be inexpensively performed on other general aviation aircraft.

  4. A Comparison of the Technical Communications Practices of Japanese and U.S. Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    To understand the diffusion of aerospace knowledge, it is necessary to understand the communications practices and the information-seeking behaviors of those involved in the production, transfer, and use of aerospace knowledge at the individual, organizational, national, and international levels. In this paper, we report selected results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on communications practices and information-seeking behaviors in the workplace. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communications, use of libraries, the use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports. The responses of the survey respondents are placed within the context of the Japanese culture. We assume that differences in Japanese and U.S. cultures influence the communications practices and information-seeking behaviors of Japanese and U.S. aerospace engineers and scientists.

  5. Person-job and person-organization fits: Co-op fits in an aerospace engineering environment

    NASA Astrophysics Data System (ADS)

    Urban, Anthony John, Jr.

    This dissertation research was a replication of a quantitative study completed by Dr. Cynthia Shantz at Wayne State University during 2003. The intent of the research was to investigate the fits of college students who participated in cooperative academic-work programs (co-ops) to employment positions within aerospace engineering. The objective of investigating person-job (P-J) and person-organization (P-O) fits was to determine if variables could be identified that indicated an individual's aptitude to complete successfully aerospace engineering standard work. Research participants were co-op employees who were surveyed during their employment to identify indications of their fits into their organization and job assignments. Dr. Shantz's research led to the thought employment success might increase when P-J and P-O fits increase. For example, reduced initial training investments and increased employee retention might result with improved P-O and P-J fits. Research data were gathered from surveys of co-ops who worked at a Connecticut aerospace engineering company. Data were collected by distributing invitations to co-ops to participate in three online surveys over a 9-11 week period. Distribution of survey invitations was accomplished through the Human Resources Department to ensure that respondent identities were maintained private. To protect anonymity and privacy further, no identifying information about individuals or the company is published. However, some demographic information was collected to ensure that correlations were based on valid and reliable data and research and analysis methods. One objective of this research was to determine if co-op characteristics could be correlated with successful employment in an aerospace engineering environment. A second objective was to determine if P-J and P-O fits vary over time as co-ops become increasing familiar with their assignments, organization, and environment. Understanding and incorporating the use P-J and P

  6. Application of powder metallurgy technique to produce improved bearing elements for cryogenic aerospace engine turbopumps

    NASA Technical Reports Server (NTRS)

    Moxson, V. S.; Moracz, D. J.; Bhat, B. N.; Dolan, F. J.; Thom, R.

    1987-01-01

    Traditionally, vacuum melted 440C stainless steel is used for high performance bearings for aerospace cryogenic systems where corrosion due to condensation is a major concern. For the Space Shuttle Main Engine (SSME), however, 440C performance in the high-pressure turbopumps has been marginal. A basic assumption of this study was that powder metallurgy, rather than cast/wrought, processing would provide the finest, most homogeneous bearing alloy structure. Preliminary testing of P/M alloys (hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness) was used to 'de-select' alloys which did perform as well as baseline 440C. Five out of eleven candidate materials (14-4/6V, X-405, MRC-2001, T-440V, and D-5) based on preliminary screening were selected for the actual rolling-sliding five-ball testing. The results of this test were compared with high-performance vacuum-melted M50 bearing steel. The results of the testing indicated outstanding performance of two P/M alloys, X-405 and MRC-2001, which eventually will be further evaluated by full-scale bearing testing.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 28: The technical communication practices of aerospace engineering and science students: Results of the phase 4 cross-national surveys

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Hecht, Laura M.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    This report describes similarities and differences between undergraduate and graduate aerospace engineering and science students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an aerospace engineer or a scientist, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication skills, practices, habits, and training of aerospace engineering and science students. The reported data were obtained from a survey of students enrolled in aerospace engineering and science programs at universities in India, Japan, Russia, and the United Kingdom. The surveys were undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance, use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign language technical reports; and foreign language (reading and speaking) skills.

  8. NASA/DoD Aerospace Knowledge Diffusion Research Project: Report 43: The Technical Communication Practices of U.S. Aerospace Engineers and Scientists: Results of the Phase 1 Mail Survey -- Manufacturing and Production Perspective

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the Society of Manufacturing Engineers.

  9. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1:] The value of Scientific and Technical Information (STI), its relationship to Research and Development (R&D), and its use by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Myron; Barclay, Rebecca O.; Oliu, Walter E.

    1990-01-01

    The relationship between scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace R&D process is examined. Data are presented from studies of the role of STI in the performance and management of R&D activities and the behavior of engineers when using and seeking information. Consideration is given to the information sources used to solve technical problems, the production and use of technical communications, and the use of libraries, technical information centers, and on-line data bases.

  10. Sallie Mae Eyes Expansion beyond Its Charter.

    ERIC Educational Resources Information Center

    Zook, Jim

    1995-01-01

    The Student Loan Marketing Association (Sallie Mae) and the Clinton Administration are preparing legislation to transform the federally sponsored corporation into a private business but must negotiate complex political and financial issues. Destabilization of the private student-loan industry and conflict over direct-lending policies are central…

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report No. 36: The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 1 NASA Langley Research Center Mail Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 25: The technical communications practices of British aerospace engineers and scientists: Results of the phase 4 RAeS mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of British aerospace engineers and scientists.

  13. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    The NASA-Lewis Research Center (LeRC) has conducted, and has sponsored with industry and universities, extensive research into many of the technology areas related to gas turbine propulsion systems. This aerospace-related technology has been developed at both the component and systems level, and may have significant potential for application to the automotive gas turbine engine. This paper summarizes this technology and lists the associated references. The technology areas are system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  14. 77 FR 27833 - Requirements for Recognizing the Aviation and Aerospace Innovation in Science and Engineering Award

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... high schools, colleges, and universities to develop innovative solutions to aviation and aerospace... high school (or equivalent approved home school program), college, or university to be eligible to... of Transportation and a display copy of the trophy will be sent to the winner's...

  15. Teaching an Aerospace Engineering Design Course via Virtual Worlds: A Comparative Assessment of Learning Outcomes

    ERIC Educational Resources Information Center

    Okutsu, Masataka; DeLaurentis, Daniel; Brophy, Sean; Lambert, Jason

    2013-01-01

    To test the concept of multiuser 3D virtual environments as media to teach semester-long courses, we developed a software prototype called Aeroquest. An aerospace design course--offered to 135 second-year students for university credits in Fall 2009--was divided into two groups: the real-world group attending lectures, physically, in a campus hall…

  16. Chemical exposures of rocket-engine test-stand personnel and cancer mortality in a cohort of aerospace workers.

    PubMed

    Ritz, B; Morgenstern, H; Froines, J; Moncau, J

    1999-10-01

    We conducted a retrospective cohort study of 6107 aerospace workers to examine whether exposure to chemicals--primarily hydrazine fuels--during rocket-engine fueling and testing affects cancer mortality. When conditional logistic regression analysis was applied and adjusted for confounding variables, the estimated rate ratio for lung cancer mortality, comparing exposed to unexposed workers from the same facility, ranged from 1.68 (95% confidence interval, 1.12 to 2.52) to 2.10 (95% confidence interval, 1.36 to 3.25), depending on job-duration threshold (6 or 24 months) and lag (0 to 15 years). Similar results were obtained for hemato- and lymphopoietic cancer and for bladder and kidney cancer mortality, but estimates for these cancers were imprecise. We concluded that occupational exposure to hydrazine or other chemicals associated with rocket-engine testing jobs increased the risk of dying from lung cancer, and possibly other cancers, in this population of aerospace workers; however, our results need to be replicated in other populations. PMID:10529946

  17. Transducer technology transfer to bio-engineering applications. [aerospace stress transducer for heart function analysis

    NASA Technical Reports Server (NTRS)

    Duran, E. N.; Lewis, G. W.; Feldstein, C.; Corday, E.; Meerbaum, S.; Lang, T.

    1973-01-01

    The results of a technology transfer of a miniature unidirectional stress transducer, developed for experimental stress analysis in the aerospace field, to applications in bioengineering are reported. By modification of the basic design and innovations in attachment techniques, the transducer was successfully used in vivo on the myocardium of large dogs to record the change in contractile force due to coronary occlusion, reperfusion, and intervention.

  18. Aerospace Community. Aerospace Education I.

    ERIC Educational Resources Information Center

    Mickey, V. V.

    This book, one in the series on Aerospace Education I, emphasizes the two sides of aerospace--military aerospace and civilian aerospace. Chapter 1 includes a brief discussion on the organization of Air Force bases and missile sites in relation to their missions. Chapter 2 examines the community services provided by Air Force bases. The topics…

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 17: The relationship between seven variables and the use of US government technical reports by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Nanci; Demerath, Loren

    1991-01-01

    A study was undertaken to investigate the relationship between the use of U.S. government technical reports by U.S. aerospace engineers and scientists and seven selected sociometric variables. Data were collected by means of a self-administered mail survey which was distributed to a randomly drawn sample of American Institute of Aeronautics and Astronautics (AIAA) members. Two research questions concerning the use of conference meeting papers, journal articles, in-house technical reports, and U.S. government technical reports were investigated. Relevance, technical quality, and accessibility were found to be more important determinants of the overall extent to which U.S. government technical reports and three other information products were used by U.S. aerospace engineers and scientists.

  20. The triumph and decline of the "squares": Grumman Aerospace engineers and production workers in the Apollo era, 1957--1973

    NASA Astrophysics Data System (ADS)

    Onkst, David Hugh

    This dissertation is a social, cultural, and economic history of the men and women of the Grumman Aerospace Company of Bethpage, New York from 1957 through 1973. These "Grummanites" were the engineers and production workers who designed and built the Apollo Lunar Modules that allowed humans to land on the Moon. This study provides unique insights into the impact that the Apollo Program---a large state-initiated and -supported program---had on those "squares," people whom many contemporaries saw as a vital part of mainstream 1960s American society. By the beginning of the Space Age in 1957, Grumman, Long Island's single largest employer, had firmly established a workplace culture of paternalism that Grummanites largely embraced. Company officials believed strongly in worker retention and had established a policy of providing every sort of benefit their employees seemingly desired, including a highly personal and participatory form of management. Many Grummanites had joined the firm during the early years of the Apollo Program because they believed in the promise of permanent employment on exciting projects that would explore the endless frontier of space. But, as many of these mainly self-reliant, individualistic "squares" would bitterly discover, their dedication to Grumman did little to secure their livelihoods during the aerospace industry's early 1970s downsizing; their individual successes were too largely tied to federal spending and declined when Americans grew disenchanted with space exploration. This dissertation demonstrates how the cultural bond of paternalism between aerospace workers and their company unraveled in the 1960s, and then ended in the early 1970s, because of forces within the company, the economy, and the American state. The word "triumph" in this study's title not only applies to Grummanites' triumphs with the Lunar Modules, but also their individual socioeconomic victories. The term "decline" refers to the early 1970s downsizing of more

  1. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Michaud, Vince

    2015-01-01

    NASA Aerospace Medicine overview - Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.

  2. The Relationship between Seven Variables and the Use of U.S. Government Technical Reports by U.S. Aerospace Engineers and Scientists.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    1991-01-01

    Describes a project sponsored by the National Aeronautics and Space Administration (NASA) and the Department of Defense that investigated the relationship between the use of U.S. government technical reports by aerospace engineers and scientists and seven independent sociometric variables. The conceptual framework is explained, and relevant…

  3. From Student to Entry-Level Professional: Examining the Role of Language and Written Communications in the Reacculturation of Aerospace Engineering Students.

    ERIC Educational Resources Information Center

    Pinelli, T. E.; And Others

    1995-01-01

    Argues that language and written communication play a critical role in the reacculturation process that enables individuals to make a successful transition from the academic world to a professional environment. Reports results of a mail survey examining the technical communications abilities of aerospace engineering students and the technical…

  4. Smart structures in engineering and technology: an aerospace and automotive perspective

    NASA Astrophysics Data System (ADS)

    Boller, Christian

    2003-03-01

    This paper gives an overview on what was expected to be achieved in smart structures and materials for aerospace and automotive applications about a decade ago and what so far could be achieved. Although initial goals turned out to be somewhat over-ambitious, achievements so far are worth to be discussed and pursued. Major ongoing activities being on the verge to be transferred into application are therefore summarized and referenced. A major lack in smart structures technology transfer has been identified being procedures on how to identify which technologies have the most likely chance to be transferred into application. A procedure for this successfully applied in market research and product development is therefore described and proposed here.

  5. RICIS Software Engineering 90 Symposium: Aerospace Applications and Research Directions Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: synthesis - integrating product and process; Serpent - a user interface management system; prototyping distributed simulation networks; and software reuse.

  6. Case study: Comparison of motivation for achieving higher performance between self-directed and manager-directed aerospace engineering teams

    NASA Astrophysics Data System (ADS)

    Erlick, Katherine

    "The stereotype of engineers is that they are not people oriented; the stereotype implies that engineers would not work well in teams---that their task emphasis is a solo venture and does not encourage social aspects of collaboration" (Miner & Beyerlein, 1999, p. 16). The problem is determining the best method of providing a motivating environment where design engineers may contribute within a team in order to achieve higher performance in the organization. Theoretically, self-directed work teams perform at higher levels. But, allowing a design engineer to contribute to the team while still maintaining his or her anonymity is the key to success. Therefore, a motivating environment must be established to encourage greater self-actualization in design engineers. The purpose of this study is to determine the favorable motivational environment for design engineers and describe the comparison between two aerospace design-engineering teams: one self-directed and the other manager directed. Following the comparison, this study identified whether self-direction or manager-direction provides the favorable motivational environment for operating as a team in pursuit of achieving higher performance. The methodology used in this research was the case study focusing on the team's levels of job satisfaction and potential for higher performance. The collection of data came from three sources, (a) surveys, (b) researcher observer journal and (c) collection of artifacts. The surveys provided information regarding personal behavior characteristics, potentiality for higher performance and motivational attributes. The researcher journal provided information regarding team dynamics, individual interaction, conflict and conflict resolution. The milestone for performance was based on the collection of artifacts from the two teams. The findings from this study illustrated that whether the team was manager-directed or self-directed does not appear to influence the needs and wants of the

  7. New Mass Properties Engineers Aerospace Ballasting Challenge Facilitated by the SAWE Community

    NASA Technical Reports Server (NTRS)

    Cutright, Amanda; Shaughnessy, Brendan

    2010-01-01

    The discipline of Mass Properties Engineering tends to find the engineers; not typically vice versa. In this case, two engineers quickly found their new responsibilities deep in many aspects of mass properties engineering and required to meet technical challenges in a fast paced environment. As part of NASA's Constellation Program, a series of flight tests will be conducted to evaluate components of the new spacecraft launch vehicles. One of these tests is the Pad Abort 1 (PA-1) flight test which will test the Launch Abort System (LAS), a system designed to provide escape for astronauts in the event of an emergency. The Flight Test Articles (FTA) used in this flight test are required to match mass properties corresponding to the operational vehicle, which has a continually evolving design. Additionally, since the structure and subsystems for the Orion Crew Module (CM) FTA are simplified versions of the final product, thousands of pounds of ballast are necessary to achieve the desired mass properties. These new mass properties engineers are responsible for many mass properties aspects in support of the flight test, including meeting the ballasting challenge for the CM Boilerplate FTA. SAWE expert and experienced mass properties engineers, both those that are directly on the team and many that supported via a variety of Society venues, significantly contributed to facilitating the success of addressing this particular mass properties ballasting challenge, in addition to many other challenges along the way. This paper discusses the details regarding the technical aspects of this particular mass properties challenge, as well as identifies recommendations for new mass properties engineers that were learned from the SAWE community along the way.

  8. System Engineering of Aerospace and Advanced Technology Programs at AN Astronautics Company

    NASA Astrophysics Data System (ADS)

    Kennedy, Mike O.

    The purpose of this Record of Study is to document an internship with the Martin Marietta Astronautics Group in Denver, Colorado that was performed in partial fulfillment of the requirements for the Doctor of Engineering degree at Texas A&M University, and to demonstrate that the internship objectives have been met. The internship included assignments with two Martin Marietta companies, on three different programs and in four areas of engineering. The Record of Study takes a first-hand look at system engineering, SDI and advanced program management, and the way Martin Marietta conducts business. The five internship objectives were related to assignments in system modeling, system integration, engineering analysis and technical management. In support of the first objective, the effects of thermally and mechanically induced mirror surface distortions upon the wavefront intensity field of a high energy laser beam passing through the optical train of a space-based laser system were modeled. To satisfy the second objective, the restrictive as opposed to the broad interpretation of the 1972 ABM Treaty, and the capability of the Strategic Defense Initiative Zenith Star Program to comply with the Treaty were evaluated. For the third objective, the capability of Martin Marietta to develop an automated analysis system to integrate and analyze Superconducting Super Collider detector designs was investigated. For the fourth objective, the thermal models that were developed in support of the Small Intercontinental Ballistic Missile flight tests were described. And in response to the fifth objective, the technical management role of the Product Integrity Engineer assigned to the Zenith Star spacecraft's Beam Control and Transfer Subsystem was discussed. This Record of Study explores the relationships between the engineering, business, security and social concerns associated with the practice of engineering and the management of programs by a major defense contractor.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 50: From student to entry-level professional: Examining the role of language and written communications in the reacculturation of aerospace engineering students

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Kennedy, John M.; Hecht, Laura F.

    1995-01-01

    When students graduate and enter the world of work, they must make the transition from an academic to a professional knowledge community. Kenneth Bruffee's model of the social construction of knowledge suggests that language and written communication play a critical role in the reacculturation process that enables successful movement from one knowledge community to another. We present the results of a national (mail) survey that examined the technical communications abilities, skills, and competencies of 1,673 aerospace engineering students, who represent an academic knowledge community. These results are examined within the context of the technical communications behaviors and practices reported by 2,355 aerospace engineers and scientists employed in government and industry, who represent a professional knowledge community that the students expect to join. Bruffee's claim of the importance of language and written communication in the successful transition from an academic to a professional knowledge community is supported by the responses from the two communities we surveyed. Implications are offered for facilitating the reacculturation process of students to entry-level engineering professionals.

  10. RICIS Software Engineering 90 Symposium: Aerospace Applications and Research Directions Proceedings Appendices

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: flight critical software; management of real-time Ada; software reuse; megaprogramming software; Ada net; POSIX and Ada integration in the Space Station Freedom Program; and assessment of formal methods for trustworthy computer systems.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 64: Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and US Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the large commercial aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk-sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a program participant in the production of the Boeing Company's 777. The aspects of Japanese culture and workplace communications will be examined: 1.) the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; 2.) those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decision making-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; 3.) and those cultural determinants thought to influence the information-seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this article, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  12. Development and Use of Engineering Standards for Computational Fluid Dynamics for Complex Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Lee, Hyung B.; Ghia, Urmila; Bayyuk, Sami; Oberkampf, William L.; Roy, Christopher J.; Benek, John A.; Rumsey, Christopher L.; Powers, Joseph M.; Bush, Robert H.; Mani, Mortaza

    2016-01-01

    Computational fluid dynamics (CFD) and other advanced modeling and simulation (M&S) methods are increasingly relied on for predictive performance, reliability and safety of engineering systems. Analysts, designers, decision makers, and project managers, who must depend on simulation, need practical techniques and methods for assessing simulation credibility. The AIAA Guide for Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998 (2002)), originally published in 1998, was the first engineering standards document available to the engineering community for verification and validation (V&V) of simulations. Much progress has been made in these areas since 1998. The AIAA Committee on Standards for CFD is currently updating this Guide to incorporate in it the important developments that have taken place in V&V concepts, methods, and practices, particularly with regard to the broader context of predictive capability and uncertainty quantification (UQ) methods and approaches. This paper will provide an overview of the changes and extensions currently underway to update the AIAA Guide. Specifically, a framework for predictive capability will be described for incorporating a wide range of error and uncertainty sources identified during the modeling, verification, and validation processes, with the goal of estimating the total prediction uncertainty of the simulation. The Guide's goal is to provide a foundation for understanding and addressing major issues and concepts in predictive CFD. However, this Guide will not recommend specific approaches in these areas as the field is rapidly evolving. It is hoped that the guidelines provided in this paper, and explained in more detail in the Guide, will aid in the research, development, and use of CFD in engineering decision-making.

  13. Resilience Engineering in Critical Long Term Aerospace Software Systems: A New Approach to Spacecraft Software Safety

    NASA Astrophysics Data System (ADS)

    Dulo, D. A.

    Safety critical software systems permeate spacecraft, and in a long term venture like a starship would be pervasive in every system of the spacecraft. Yet software failure today continues to plague both the systems and the organizations that develop them resulting in the loss of life, time, money, and valuable system platforms. A starship cannot afford this type of software failure in long journeys away from home. A single software failure could have catastrophic results for the spaceship and the crew onboard. This paper will offer a new approach to developing safe reliable software systems through focusing not on the traditional safety/reliability engineering paradigms but rather by focusing on a new paradigm: Resilience and Failure Obviation Engineering. The foremost objective of this approach is the obviation of failure, coupled with the ability of a software system to prevent or adapt to complex changing conditions in real time as a safety valve should failure occur to ensure safe system continuity. Through this approach, safety is ensured through foresight to anticipate failure and to adapt to risk in real time before failure occurs. In a starship, this type of software engineering is vital. Through software developed in a resilient manner, a starship would have reduced or eliminated software failure, and would have the ability to rapidly adapt should a software system become unstable or unsafe. As a result, long term software safety, reliability, and resilience would be present for a successful long term starship mission.

  14. Bringing Back the Social Affordances of the Paper Memo to Aerospace Systems Engineering Work

    NASA Technical Reports Server (NTRS)

    Davidoff, Scott; Holloway, Alexandra

    2014-01-01

    Model-based systems engineering (MBSE) is a relatively new field that brings together the interdisciplinary study of technological components of a project (systems engineering) with a model-based ontology to express the hierarchical and behavioral relationships between the components (computational modeling). Despite the compelling promises of the benefits of MBSE, such as improved communication and productivity due to an underlying language and data model, we observed hesitation to its adoption at the NASA Jet Propulsion Laboratory. To investigate, we conducted a six-month ethnographic field investigation and needs validation with 19 systems engineers. This paper contributes our observations of a generational shift in one of JPL's core technologies. We report on a cultural misunderstanding between communities of practice that bolsters the existing technology drag. Given the high cost of failure, we springboard our observations into a design hypothesis - an intervention that blends the social affordances of the narrative-based work flow with the rich technological advantages of explicit data references and relationships of the model-based approach. We provide a design rationale, and the results of our evaluation.

  15. Lightning Protection Guidelines for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Goodloe, C. C.

    1999-01-01

    This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 37: The impact of political control on technical communications: A comparative study of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Flammia, Madelyn; Kennedy, John M.

    1994-01-01

    Until the recent dissolution of the Soviet Union, the Communist Party exerted a strict control of access to and dissemination of scientific and technical information (STI). This article presents models of the Soviet-style information society and the Western-style information society and discusses the effects of centralized governmental control of information on Russian technical communication practices. The effects of political control on technical communication are then used to interpret the results of a survey of Russian and U.S. aerospace engineers and scientists concerning the time devoted to technical communication, their collaborative writing practices and their attitudes toward collaboration, the kinds of technical documents they produce and use, and their use of computer technology, and their use of and the importance to them of libraries and technical information centers. The data are discussed in terms of tentative conclusions drawn from the literature. Finally, we conclude with four questions concerning government policy, collaboration, and the flow of STI between Russian and U.S. aerospace engineers and scientists.

  17. Limitless Horizons: Careers in Aerospace.

    ERIC Educational Resources Information Center

    Lewis, Mary H.

    This is a manual for acquainting students with pertinent information relating to career choices in aerospace science, engineering, and technology. The first chapter presents information about the aerospace industry by describing disciplines typical of this industry. The National Aeronautics and Space Administration's (NASA) classification system…

  18. Limitless Horizons. Careers in Aerospace

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1980-01-01

    A manual is presented for use by counselors in career guidance programs. Pertinent information is provided on choices open in aerospace sciences, engineering, and technology. Accredited institutions awarding degrees in pertinent areas are listed as well as additional sources of aerospace career information. NASA's role and fields of interest are emphasized.

  19. Engineering science research issues in high power density transmission dynamics for aerospace applications. [rotorcraft geared rotors

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Houser, Donald R.

    1993-01-01

    This paper discusses analytical and experimental approaches that will be needed to understand dynamic, vibro-acoustic and design characteristics of high power density rotorcraft transmissions. Complexities associated with mathematical modeling of such systems will be discussed. An overview of research work planned during the next several years will be presented, with emphasis on engineering science issues such as gear contact mechanics, multi-mesh drive dynamics, parameter uncertainties, vibration transmission through bearings, and vibro-acoustic characteristics of geared rotor systems and housing-mount structures. A few examples of work in progress are cited.

  20. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 2:] External Information Sources and aerospace R&D: The use and importance of technical reports by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Blados, Walter R.; Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1990-01-01

    This paper formulates and studies two propositions. Proposition 1 states that information that is external to the aerospace organization tends to be used less than internal sources of information; the more geographically removed the information is from the organization, the less likely it is to be used. Proposition 2 states that of the various sociometric variables assumed to influence the use of an information channel or source, perceived accessibility exerts the greatest influence. Preliminary analysis based on surveys supports Proposition 1. This analysis does not support Proposition 2, however. Evidence here indicates that reliability and relevance influence the use of an information source more than the idea of perceived accessibility.

  1. Military Aerospace. Aerospace Education II.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is a revised publication in the series on Aerospace Education II. It describes the employment of aerospace forces, their methods of operation, and some of the weapons and equipment used in combat and combat support activities. The first chapter describes some of the national objectives and policies served by the Air Force in peace and…

  2. Aerospace Environment. Aerospace Education I.

    ERIC Educational Resources Information Center

    Savler, D. S.; Smith, J. C.

    This book is one in the series on Aerospace Education I. It briefly reviews current knowledge of the universe, the earth and its life-supporting atmosphere, and the arrangement of celestial bodies in outer space and their physical characteristics. Chapter 1 includes a brief survey of the aerospace environment. Chapters 2 and 3 examine the…

  3. The 1975 NASA/ASEE summer faculty fellowship research program. [research in the areas of aerospace engineering, aerospace systems, and information systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A research program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA engineers and scientists, and to enrich the research activities of the participants' institutions. Abstracts of reports submitted at the end of the program are presented. Topics investigated include multispectral photography, logic circuits, gravitation theories, information systems, fracture mechanics, holographic interferometry, surface acoustic wave technology, ion beams in the upper atmosphere, and hybrid microcircuits.

  4. Aerospace Technology.

    ERIC Educational Resources Information Center

    Paschke, Jean; And Others

    1991-01-01

    Describes the Sauk Rapids (Minnesota) High School aviation and aerospace curriculum that was developed by Curtis Olson and the space program developed by Gerald Mayall at Philadelphia's Northeast High School. Both were developed in conjunction with NASA. (JOW)

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 61: The Technical Communications Practices of ESL Aerospace Engineering Students in the United States: Results of a National Survey

    NASA Technical Reports Server (NTRS)

    Webb, John R.; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    When engineering students graduate and enter the world of work, they make the transition from an academic to a professional community of knowledge. The importance of oral and written communication to the professional success and advancement of engineers is well documented. For example, studies such as those conducted by Mailloux (1989) indicate that communicating data, information, and knowledge takes up as much as 80% of an engineer's time. However, these same studies also indicate that many engineering graduates cannot (a) write technical reports that effectively inform and influence decisionmaking, (b) present their ideas persuasively, and (c) communicate with their peers. If these statements are true, how is learning to communicate effectively in their professional knowledge community different for engineering students educated in the United States but who come from other cultures-cultures in which English is not the primary language of communication? Answering this question requires adequate and generalizable data about these students' communications abilities, skills, and competencies. To contribute to the answer, we undertook a national (mail) survey of 1,727 student members of the American Institute of Aeronautics and Astronautics (AIAA). The focus of our analysis and this paper is a comparison of the responses of 297 student members for whom English is a second language with the responses of 1,430 native English speaking students to queries regarding career choice, bilingualism and language fluency, communication skills, collaborative writing, computer use, and the use of electronic (computer) networks.

  6. Heat transfer in aerospace propulsion

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

    1988-01-01

    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

  7. Culture, social networks, and information sharing: An exploratory study of Japanese aerospace engineers' information-seeking processes and habits in light of cultural factors

    NASA Astrophysics Data System (ADS)

    Sato, Yuko

    The purpose of this study was to investigate the effects of culture and language on Japanese aerospace engineers' information-seeking processes by both quantitative and qualitative approaches. The Japanese sample consisted of 162 members of the Japan Society for Aeronautical and Space Sciences (JSASS). U.S. aerospace engineers served as a reference point, consisting of 213 members of the American Institute of Aeronautics and Astronautics (AIAA). The survey method was utilized in gathering data using self-administered mail questionnaires in order to explore the following eight areas: (1) the content and use of information resources; (2) production and use of information products; (3) methods of accessing information service providers; (4) foreign language skills; (5) studying/researching/collaborating abroad as a tool in expanding information resources; (6) scientific and technical societies as networking tools; (7) alumni associations (school/class reunions) as networking tools; and (8) social, corporate, civic and health/fitness clubs as networking tools. Nine Japanese cultural factors expressed as statements about Japanese society are as follows: (1) information is neither autonomous, objective, nor independent of the subject of cognition; (2) information and knowledge are not readily accessible to the public; (3) emphasis on groups is reinforced in a hierarchical society; (4) social networks thrive as information-sharing vehicles; (5) high context is a predominant form of communication in which most of the information is already in the person, while very little is in the coded, transmitted part of the message; (6) obligations based on mutual trust dictate social behaviors instead of contractual agreements; (7) a surface message is what is presented while a bottom-line message is true feeling privately held; (8) various religious beliefs uphold a work ethic based on harmony; (9) ideas from outside are readily assimilated into its own society. The result of the

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 51: Workplace communications skills and the value of communications and information-use skills instruction: Engineering students' perspectives

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    Studies indicate that communications and information-related activities take up a substantial portion of an engineer's work week; therefore, effective communications and information use skills are one of the key engineering competencies that recent graduates of engineering programs are expected to possess. Feedback from industry rates communications and information use skills of entry-level engineers low. Missing from current discussions of communications and information use skills and competencies for engineering students is a clear explanation from the professional engineering community about what constitutes 'acceptable and desirable communications and information norms' within that community. To gather adequate and generalizable data about communications and information skills instruction and to provide a student perspective on the communications skills of engineers, we undertook a national study of aerospace engineering students in March 1993. The study included questions about the importance of certain communications and information skills to professional success, the instruction students had received in these skills, and perceived helpfulness of the instruction. Selected results from the study study are reported in this paper.

  9. The Feasibility of Developing a Non-Engineering Aeronautical/Aerospace Science Doctoral Degree Program in U.S. Universities.

    ERIC Educational Resources Information Center

    Johnson, Jeffrey Alan; Lehrer, Henry R.

    1995-01-01

    A survey of 101 college aviation faculty that received a 79% response indicated that 68.3% agree on the current need and 75.9% on the future need for a nonengineering doctoral program in aeronautical/aerospace sciences; 51% believe the Council on Aviation Accreditation would be more willing to accredit institutions with such programs. (SK)

  10. Technical evaluation report on Propulsion and Energetics Panel 38th Meeting on Inlets and Nozzles for Aerospace Engines

    NASA Technical Reports Server (NTRS)

    Bowditch, D. N.; Monti, R.

    1972-01-01

    The application and use of inlets and nozzles in aerospace, V/STOL, and hypersonic propulsion systems are discussed. Data cover test techniques and facilities, experimental results from small rig tests to flight tests, and theoretical analysis of propulsion system flows. The problems associated with such a system are also discussed.

  11. Development and Deployment of an Aerospace Recommended Practice (ARP) Compliant Measurement System for nvPM Certification Measurements of Aircraft Engines - Current Status.

    NASA Astrophysics Data System (ADS)

    Whitefield, P. D.; Hagen, D. E.; Lobo, P.; Miake-Lye, R. C.

    2015-12-01

    The Society of Automotive Engineers (SAE) Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter (nvPM) from aircraft engines (SAE 2013). The system is designed to operate in parallel with existing International Civil Aviation Organization (ICAO) Annex 16 compliant combustion gas sampling systems used for emissions certification from aircraft engines captured by conventional (Annex 16) gas sampling rakes (ICAO, 2008). The SAE E-31 committee is also working to ballot an Aerospace Recommended Practice (ARP) that will provide the methodology and system specification to measure nvPM from aircraft engines. The ARP is currently in preparation and is expected to be ready for ballot in 2015. A prototype AIR-compliant nvPM measurement system - The North American Reference System (NARS) has been built and evaluated at the MSTCOE under the joint sponsorship of the FAA, EPA and Transport Canada. It has been used to validate the performance characteristics of OEM AIR-compliant systems and is being used in engine certification type testing at OEM facilities to obtain data from a set of representative engines in the fleet. The data collected during these tests will be used by ICAO/CAEP/WG3/PMTG to develop a metric on which on the regulation for nvPM emissions will be based. This paper will review the salient features of the NARS including: (1) emissions sample transport from probe tip to the key diagnostic tools, (2) the mass and number-based diagnostic tools for nvPM mass and number concentration measurement and (3) methods employed to assess the extent of nvPM loss throughout the sampling system. This paper will conclude with a discussion of the recent results from inter-comparison studies conducted with other US - based systems that gives credence to the ARP's readiness for ballot.

  12. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    This abstract describes the content of a presentation for ground rounds at Mt. Sinai School of Medicine. The presentation contains three sections. The first describes the history of aerospace medicine beginning with early flights with animals. The second section of the presentation describes current programs and planning for future missions. The third section describes the medical challenges of exploration missions.

  13. dbMAE: the database of autosomal monoallelic expression

    PubMed Central

    Savova, Virginia; Patsenker, Jon; Vigneau, Sébastien; Gimelbrant, Alexander A.

    2016-01-01

    Recently, data on ‘random’ autosomal monoallelic expression has become available for the entire genome in multiple human and mouse tissues and cell types, creating a need for better access and dissemination. The database of autosomal monoallelic expression (dbMAE; https://mae.hms.harvard.edu) incorporates data from multiple recent reports of genome-wide analyses. These include transcriptome-wide analyses of allelic imbalance in clonal cell populations based on sequence polymorphisms, as well as indirect identification, based on a specific chromatin signature present in MAE gene bodies. Currently, dbMAE contains transcriptome-wide chromatin identification calls for 8 human and 21 mouse tissues, and describes over 16 000 murine and ∼700 human cases of directly measured biased expression, compiled from allele-specific RNA-seq and genotyping array data. All data are manually curated. To ensure cross-publication uniformity, we performed re-analysis of transcriptome-wide RNA-seq data using the same pipeline. Data are accessed through an interface that allows for basic and advanced searches; all source references, including raw data, are clearly described and hyperlinked. This ensures the utility of the resource as an initial screening tool for those interested in investigating the role of monoallelic expression in their specific genes and tissues of interest. PMID:26503248

  14. Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and U.S. Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E. (Editor); Sato, Yuko (Editor); Barclay, Rebecca O. (Editor); Kennedy, John M. (Editor)

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the large commercial aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk-sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a program participant in the production of the Boeing Company's 777. The aspects of Japanese culture and workplace communications will be examined: (1) the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; (2) those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decision making-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; (3) and those cultural determinants thought to influence the information-seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this article, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 6: The relationship between the use of US government technical reports by US aerospace engineers and scientists and selected institutional and sociometric variables. Ph.D. Thesis - Indiana Univ., Nov. 1990 No. 6

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.

    1991-01-01

    The relationship between the use of U.S. government technical reports by U.S. aerospace engineers and scientists and selected institutional and sociometric variables was investigated. The methodology used for this study was survey research. Data were collected by means of a self-administered mail questionnaire. The approximately 34,000 members of the American Institute of Aeronautics and Astronauts (AIAA) served as the study population. The response rate for the survey was 70 percent. A dependent relationship was found to exist between the use of U.S. government technical reports and three of the institutional variables (academic preparation, years of professional aerospace work experience, and technical discipline). The use of U.S. government technical reports was found to be independent of all of the sociometric variables. The institutional variables best explain the use of U.S. government technical reports by U.S. aerospace engineers and scientists.

  16. Careers in the Aerospace Industry.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Office of General Aviation.

    The document briefly presents career information in the field of aerospace industry. Employment exists in three areas: (1) professional and technical occupations in research and development (engineers, scientists, and technicians); (2) administrative, clerical, and related occupations (engineers, scientists, technicians, clerks, secretaries,…

  17. The Role of Aerospace Technology in Agriculture. The 1977 Summer Faculty Fellowship Program in Engineering Systems Design

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Possibilities were examined for improving agricultural productivity through the application of aerospace technology. An overview of agriculture and of the problems of feeding a growing world population are presented. The present state of agriculture, of plant and animal culture, and agri-business are reviewed. Also analyzed are the various systems for remote sensing, particularly applications to agriculture. The report recommends additional research and technology in the areas of aerial application of chemicals, of remote sensing systems, of weather and climate investigations, and of air vehicle design. Also considered in detail are the social, legal, economic, and political results of intensification of technical applications to agriculture.

  18. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  19. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 27: The technical communication practices of engineering and science students: Results of the phase 3 academic surveys

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Hecht, Laura M.; Kennedy, John M.

    1994-01-01

    This report describes similarities and differences between undergraduate and graduate engineering science students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an engineer or a scientist, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication practices, habits, and training of engineers and science (Physics) students. The reported data were obtained from a survey of students enrolled in the College of Engineering at the University of Illinois at Urbana-Champaign, Bowling Green State University, and Texas A&M University. The survey was undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance, use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign technical reports; and foreign language (reading and speaking) skills.

  1. Aerospace gerontology

    NASA Technical Reports Server (NTRS)

    Comfort, A.

    1982-01-01

    The relevancy of gerontology and geriatrics to the discipline of aerospace medicine is examined. It is noted that since the shuttle program gives the facility to fly passengers, including specially qualified older persons, it is essential to examine response to acceleration, weightlessness, and re-entry over the whole adult lifespan, not only its second quartile. The physiological responses of the older person to weightlessness and the return to Earth gravity are reviewed. The importance of the use of the weightless environment to solve critical problems in the fields of fundamental gerontology and geriatrics is also stressed.

  2. Basic Aerospace Education Library

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Lists the most significant resource items on aerospace education which are presently available. Includes source books, bibliographies, directories, encyclopedias, dictionaries, audiovisuals, curriculum/planning guides, aerospace statistics, aerospace education statistics and newsletters. (BR)

  3. Aerospace Education - An Overview

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Discusses the surge of interest throughout the country in aerospace education and discusses what aerospace education is, the implications in career education and the relevance of aerospace education in the curriculum. (BR)

  4. 31 CFR 354.7 - Withdrawal of eligible Book-entry Sallie Mae Securities for conversion to definitive form.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Sallie Mae Securities for conversion to definitive form. 354.7 Section 354.7 Money and Finance: Treasury... (SALLIE MAE) § 354.7 Withdrawal of eligible Book-entry Sallie Mae Securities for conversion to definitive form. (a) Eligible Book-entry Sallie Mae Securities may be withdrawn from the Book-entry System...

  5. 31 CFR 354.7 - Withdrawal of eligible Book-entry Sallie Mae Securities for conversion to definitive form.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Sallie Mae Securities for conversion to definitive form. 354.7 Section 354.7 Money and Finance: Treasury... MAE) § 354.7 Withdrawal of eligible Book-entry Sallie Mae Securities for conversion to definitive form. (a) Eligible Book-entry Sallie Mae Securities may be withdrawn from the Book-entry System...

  6. 31 CFR 354.7 - Withdrawal of eligible Book-entry Sallie Mae Securities for conversion to definitive form.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Sallie Mae Securities for conversion to definitive form. 354.7 Section 354.7 Money and Finance: Treasury... MAE) § 354.7 Withdrawal of eligible Book-entry Sallie Mae Securities for conversion to definitive form. (a) Eligible Book-entry Sallie Mae Securities may be withdrawn from the Book-entry System...

  7. 31 CFR 354.7 - Withdrawal of eligible Book-entry Sallie Mae Securities for conversion to definitive form.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Sallie Mae Securities for conversion to definitive form. 354.7 Section 354.7 Money and Finance: Treasury... MAE) § 354.7 Withdrawal of eligible Book-entry Sallie Mae Securities for conversion to definitive form. (a) Eligible Book-entry Sallie Mae Securities may be withdrawn from the Book-entry System...

  8. 31 CFR 354.7 - Withdrawal of eligible Book-entry Sallie Mae Securities for conversion to definitive form.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Sallie Mae Securities for conversion to definitive form. 354.7 Section 354.7 Money and Finance: Treasury... MAE) § 354.7 Withdrawal of eligible Book-entry Sallie Mae Securities for conversion to definitive form. (a) Eligible Book-entry Sallie Mae Securities may be withdrawn from the Book-entry System...

  9. NASA/DoD Aerospace Knowledge Diffusion Research Project. Paper 31: The information-seeking behavior of engineers

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    Engineers are an extraordinarily diverse group of professionals, but an attribute common to all engineers is their use of information. Engineering can be conceptualized as an information processing system that must deal with work-related uncertainty through patterns of technical communications. Throughout the process, data, information, and tacit knowledge are being acquired, produced, transferred, and utilized. While acknowledging that other models exist, we have chosen to view the information-seeking behavior of engineers within a conceptual framework of the engineer as an information processor. This article uses the chosen framework to discuss information-seeking behavior of engineers, reviewing selected literature and empirical studies from library and information science, management, communications, and sociology. The article concludes by proposing a research agenda designed to extend our current, limited knowledge of the way engineers process information.

  10. The Aerospace Age. Aerospace Education I.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is written for use only in the Air Force ROTC program and cannot be purchased on the open market. The book describes the historical development of aerospace industry. The first chapter contains a brief review of the aerospace environment and the nature of technological changes brought by the aerospace revolution. The following chapter…

  11. Aerospace structures supportability

    NASA Astrophysics Data System (ADS)

    Smith, Howard Wesley

    1989-04-01

    This paper is about supportability in its general sense, with emphasis on aerospace structures. Reliability and maintainability (R&M) are described and defined from the standpoint of both structural analysis. Accessability, inspectability, and replaceability are described as design attributes. Reliability and probability of failure are shown to be in the domain of the analysis. Availability and replaceability are traditional logistic responsibilities which are influenced by supportability engineers. The USAF R&M 2000 process is described, and the R&M 1988 Workshop at Wright-Patterson Air Force Base is also included in the description.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report number 20: The use of selected information products and services by US aerospace engineers and scientists: Results of two surveys

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally, funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from two surveys of our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report and close with a brief overview of on-going research into aerospace knowledge diffusion focusing on the role of the industry-affiliated information intermediary.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 13: The information-seeking habits and practices of engineers

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.

    1991-01-01

    It is argued that only by maximizing the research and development process can the United States maintain and possibly capture its international competitive edge. Key to this goal is the provision of information services and products which meet the information needs of engineers. Evidence exists which indicates that traditional information services and products may, in fact, not be meeting the information needs of engineers. The primary reason for this deficiency is three fold. First, the specific information needs of engineers are neither well known nor well understood. Second, what is known about the information seeking habits and practices of engineers has not been applied to existing engineering information services. Third, the information professionals continue to over-emphasize technology instead of concentrating on the quality of the information itself and the ability of the information to meet the needs of the user.

  14. Ball Aerospace Actuator Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Kingsbury, Lana; Lightsey, Paul; Quigley, Phil; Rutkowski, Joel; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The ambient testing characterizing step size and repeatability for the Ball Aerospace Cryogenic Nano-Positioner actuators for the AMSD (Advanced Mirror System Demonstrator) program has been completed and are presented. Current cryogenic testing is underway. Earlier cryogenic test results for a pre-cursor engineering model are presented.

  15. Additive Manufacturing of Aerospace Propulsion Components

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  16. The 11th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Various mechanisms in aerospace engineering were presented at this conference. Specifications, design, and use of spacecraft and missile components are discussed, such as tail assemblies, radiometers, magnetormeters, pins, reaction wheels, ball bearings, actuators, mirrors, nutation dampers, airfoils, solar arrays, etc.

  17. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    Technology areas related to gas turbine propulsion systems with potential for application to the automotive gas turbine engine are discussed. Areas included are: system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  18. 76 FR 63822 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane, Limit Engine Torque Loads...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... thrust; and (b) the maximum acceleration of the engine. 2. For auxiliary power unit (APU) installations, the APU mounts and adjacent supporting airframe structure must be designed to withstand 1g level...: (a) Sudden APU deceleration due to malfunction or structural failure; and (b) The...

  19. Despite a Settlement, Sallie Mae Still Plays Host to College Student-Aid Sites

    ERIC Educational Resources Information Center

    Hermes, J. J.

    2008-01-01

    Last April, as part of a $2-million settlement with New York's attorney general, the nation's largest student-loan company, Sallie Mae, agreed to stop providing staff members for colleges' financial-aid offices and call centers at no cost to the institutions. But one year later, Sallie Mae still plays host to the entire online presence for the…

  20. 31 CFR 354.0 - Applicability; maintenance of Sallie Mae Securities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Applicability; maintenance of Sallie Mae Securities. 354.0 Section 354.0 Money and Finance: Treasury Regulations Relating to Money and... GOVERNING BOOK-ENTRY SECURITIES OF THE STUDENT LOAN MARKETING ASSOCIATION (SALLIE MAE) § 354.0...

  1. An Aerospace Workshop

    ERIC Educational Resources Information Center

    Hill, Bill

    1972-01-01

    Describes the 16-day, 10,000 mile national tour of the nation's major aerospace research and development centers by 65 students enrolled in Central Washington State College's Summer Aerospace Workshop. (Author/MB)

  2. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Aerospace Safety Advisory Panel (ASAP) provided oversight on the safety aspects of many NASA programs. In addition, ASAP undertook three special studies. At the request of the Administrator, the panel assessed the requirements for an assured crew return vehicle (ACRV) for the space station and reviewed the organization of the safety and mission quality function within NASA. At the behest of Congress, the panel formed an independent, ad hoc working group to examine the safety and reliability of the space shuttle main engine. Section 2 presents findings and recommendations. Section 3 consists of information in support of these findings and recommendations. Appendices A, B, C, and D, respectively, cover the panel membership, the NASA response to the findings and recommendations in the March 1992 report, a chronology of the panel's activities during the reporting period, and the entire ACRV study report.

  3. The 1990 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Kennedy, Lewis M. (Compiler)

    1991-01-01

    This document contains the proceedings of the 21st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on December 4-6, 1990. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers as well as participation in like kind from the European Space Agency member nations. The subjects covered included nickel-cadmium, nickel-hydrogen, silver-zinc, lithium based chemistries, and advanced technologies as they relate to high reliability operations in aerospace applications.

  4. Enhancing undergraduate education in aerospace engineering and planetary sciences at MIT through the development of a CubeSat mission

    NASA Astrophysics Data System (ADS)

    Smith, Matthew W.; Miller, David W.; Seager, Sara

    2011-09-01

    CubeSats are a class of nanosatellites that conform to a standardized 10 cm x 10 cm x 10 cm, 1 kg form factor. This miniaturization, along with a standardized deployment device for launch vehicles, allows CubeSats to be launched at low cost by sharing the trip to orbit with other spacecraft. Part of the original motivation for the CubeSat platform was also to allow university students to participate more easily in space technology development and to gain hands-on experience with flight hardware. The Department of Aeronautics and Astronautics along with the Department of Earth, Atmospheric, and Planetary Studies (EAPS) at the Massachusetts Institute of Technology (MIT) recently completed a three semester-long course that uses the development of a CubeSat-based science mission as its core teaching method. Serving as the capstone academic experience for undergraduates, the goal of this class is to design and build a CubeSat spacecraft that serves a relevant science function, such as the detection of exoplanets transiting nearby stars. This project-based approach gives students essential first hand insights into the challenges of balancing science requirements and engineering design. Students are organized into subsystem-specific teams that refine and negotiate requirements, explore the design trade space, perform modeling and simulation, manage interfaces, test subsystems, and finally integrate prototypes and flight hardware. In this work we outline the heritage of capstone design/build classes at MIT, describe the class format in greater detail, and give results on the ability to meet learning objectives using this pedagogical approach.

  5. Magnetic Gearboxes for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Alvarez-Valenzuela, Marco A.; Sanchez-Garcia-Casarrubios, Juan; Cristache, Christian; Valiente-Blanco, Ignacio

    2014-01-01

    Magnetic gearboxes are contactless mechanisms for torque-speed conversion. They present no wear, no friction and no fatigue. They need no lubricant and can be customized for other mechanical properties as stiffness or damping. Additionally, they can protect structures and mechanisms against overloads, limitting the transmitted torque. In this work, spur, planetary and "magdrive" or "harmonic drive" configurations are compared considering their use in aerospace applications. The most recent test data are summarized to provide some useful help for the design engineer.

  6. The 2000 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, J. C. (Compiler)

    2001-01-01

    This document contains the proceedings of the 33nd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 14-16, 2000. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, lithium-ion, lithium-sulfur, and silver-zinc technologies.

  7. The 1999 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, J. C. (Compiler)

    2000-01-01

    This document contains the proceedings of the 32nd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 16-18, 1999. The workshop was attended by scientists and engineers from various agencies of the US Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, nickel-cadmium, lithium-ion, and silver-zinc technologies.

  8. The 2001 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeff C. (Compiler)

    2002-01-01

    This document contains the proceedings of the 34th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center, November 27-29, 2001. The workshop was attended by scientists and engineers from various agencies of the US Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind. The subjects covered included nickel-hydrogen, nickel-cadmium, lithium-ion, and silver-zinc technologies.

  9. Aerospace applications of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-01-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  10. 78 FR 21393 - Notice of Submission of Proposed Information Collection to OMB Ginnie Mae Multiclass Securities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... (``REMIC'') securities, Stripped Mortgage-Backed Securities (``SMBS''), and Platinum securities. The... timely payment of principal and interest on Ginnie Mae REMIC, SMBS and Platinum securities. DATES...'') securities, Stripped Mortgage- Backed Securities (``SMBS''), and Platinum securities. The...

  11. NSWC Crane Aerospace Cell Test History Database

    NASA Technical Reports Server (NTRS)

    Brown, Harry; Moore, Bruce

    1994-01-01

    The Aerospace Cell Test History Database was developed to provide project engineers and scientists ready access to the data obtained from testing of aerospace cell designs at Naval Surface Warfare Center, Crane Division. The database is intended for use by all aerospace engineers and scientists involved in the design of power systems for satellites. Specifically, the database will provide a tool for project engineers to review the progress of their test at Crane and to have ready access to data for evaluation. Additionally, the database will provide a history of test results that designers can draw upon to answer questions about cell performance under certain test conditions and aid in selection of a cell for a satellite battery. Viewgraphs are included.

  12. Third Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Cross, D. R. (Editor); Caruso, S. V. (Editor); Clark-Ingram, M. (Editor)

    1999-01-01

    The elimination of CFC's, Halons, TCA, other ozone depleting chemicals, and specific hazardous materials is well underway. The phaseout of these chemicals has mandated changes and new developments in aerospace materials and processes. We are beyond discovery and initiation of these new developments and are now in the implementation phase. This conference provided a forum for materials and processes engineers, scientists, and managers to describe, review, and critically assess the evolving replacement and clean propulsion technologies from the standpoint of their significance, application, impact on aerospace systems, and utilization by the research and development community. The use of these new technologies, their selection and qualification, their implementation, and the needs and plans for further developments are presented.

  13. Supercomputing in Aerospace

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Yee, Helen

    1987-01-01

    Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics.

  14. Aerospace Applications of Microprocessors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An assessment of the state of microprocessor applications is presented. Current and future requirements and associated technological advances which allow effective exploitation in aerospace applications are discussed.

  15. Aerospace - Aviation Education.

    ERIC Educational Resources Information Center

    Martin, Arthur I.; Jones, K. K.

    This document outlines the aerospace-aviation education program of the State of Texas. In this publication the course structures have been revised to fit the quarter system format of secondary schools in Texas. The four courses outlined here have been designed for students who will be consumers of aerospace products, spinoffs, and services or who…

  16. Integration of a NASA faculty fellowship project within an undergraduate engineering capstone design class

    NASA Astrophysics Data System (ADS)

    Carmen, C.

    2012-11-01

    The United States (US) National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate (ESMD) provides university faculty fellowships that prepare the faculty to implement engineering design class projects that possess the potential to contribute to NASA ESMD objectives. The goal of the ESMD is to develop new capabilities, support technologies and research that will enable sustained and affordable human and robotic space exploration. In order to create a workforce that will have the desire and skills necessary to achieve these goals, the NASA ESMD faculty fellowship program enables university faculty to work on specific projects at a NASA field center and then implement the project within their capstone engineering design class. This allows the senior - or final year - undergraduate engineering design students, the opportunity to develop critical design experience using methods and design tools specified within NASA's Systems Engineering (SE) Handbook. The faculty fellowship projects focus upon four specific areas critical to the future of space exploration: spacecraft, propulsion, lunar and planetary surface systems and ground operations. As the result of a 2010 fellowship, whereby faculty research was conducted at Marshall Space Flight Center (MSFC) in Huntsville, Alabama (AL), senior design students in the Mechanical and Aerospace Engineering (MAE) department at the University of Alabama in Huntsville (UAH) had the opportunity to complete senior design projects that pertained to current work conducted to support ESMD objectives. Specifically, the UAH MAE students utilized X-TOOLSS (eXploration Toolset for the Optimization Of Launch and Space Systems), an Evolutionary Computing (EC) design optimization software, as well as design, analyze, fabricate and test a lunar regolith burrowing device - referred to as the Lunar Wormbot (LW) - that is aimed at exploring and retrieving samples of lunar regolith. These two projects were

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 54: The technical communications practices of engineering technology students: Results of the NASA/DOD Aerospace Knowledge Diffusion Research Project phase 3 student surveys

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; England, Mark; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    Engineering technology programs are characterized by their focus on application and practice, and by their approximately 50/50 mix of theory and laboratory experience. Engineering technology graduates are employed across the technological spectrum and are often found in areas that deal with application, implementation, and production. Yet we know very little about the communications practices and information-use skills of engineering technology students. In this paper, we report selected results of an exploratory study of engineering technology students enrolled in three U.S. institutions of higher education. Data are presented for the following topics: career goals and aspirations; the importance of, receipt of, and helpfulness of communications and information-use skills instruction; collaborative writing; use of libraries; and the use of electronic (computer) networks.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 19: Computer and information technology and aerospace knowledge diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.; Bishop, Ann P.

    1992-01-01

    To remain a world leader in aerospace, the US must improve and maintain the professional competency of its engineers and scientists, increase the research and development (R&D) knowledge base, improve productivity, and maximize the integration of recent technological developments into the R&D process. How well these objectives are met, and at what cost, depends on a variety of factors, but largely on the ability of US aerospace engineers and scientists to acquire and process the results of federally funded R&D. The Federal Government's commitment to high speed computing and networking systems presupposes that computer and information technology will play a major role in the aerospace knowledge diffusion process. However, we know little about information technology needs, uses, and problems within the aerospace knowledge diffusion process. The use of computer and information technology by US aerospace engineers and scientists in academia, government, and industry is reported.

  19. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Aerospace Safety Advisory Panel (ASAP) monitored NASA's activities and provided feedback to the NASA Administrator, other NASA officials and Congress throughout the year. Particular attention was paid to the Space Shuttle, its launch processing and planned and potential safety improvements. The Panel monitored Space Shuttle processing at the Kennedy Space Center (KSC) and will continue to follow it as personnel reductions are implemented. There is particular concern that upgrades in hardware, software, and operations with the potential for significant risk reduction not be overlooked due to the extraordinary budget pressures facing the agency. The authorization of all of the Space Shuttle Main Engine (SSME) Block II components portends future Space Shuttle operations at lower risk levels and with greater margins for handling unplanned ascent events. Throughout the year, the Panel attempted to monitor the safety activities related to the Russian involvement in both space and aeronautics programs. This proved difficult as the working relationships between NASA and the Russians were still being defined as the year unfolded. NASA's concern for the unique safety problems inherent in a multi-national endeavor appears appropriate. Actions are underway or contemplated which should be capable of identifying and rectifying problem areas. The balance of this report presents 'Findings and Recommendations' (Section 2), 'Information in Support of Findings and Recommendations' (Section 3) and Appendices describing Panel membership, the NASA response to the March 1994 ASAP report, and a chronology of the panel's activities during the reporting period (Section 4).

  20. Directory of aerospace safety specialized information sources

    NASA Technical Reports Server (NTRS)

    Fullerton, E. A.; Rubens, L. S.

    1973-01-01

    A directory is presented to make available to the aerospace safety community a handbook of organizations and experts in specific, well-defined areas of safety technology. It is designed for the safety specialist as an aid for locating both information sources and individual points of contact (experts) in engineering related fields. The file covers sources of data in aerospace design, tests, as well as information in hazard and failure cause identification, accident analysis, materials characteristics, and other related subject areas. These 171 organizations and their staff members, hopefully, should provide technical information in the form of documentation, data and consulting expertise. These will be sources that have assembled and collated their information, so that it will be useful in the solution of engineering problems. One of the goals of the project in the United States that have and are willing to share data of value to the aerospace safety community.

  1. The 18th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics concerning aerospace mechanisms, their functional performance, and design specifications are presented. Discussed subjects include the design and development of release mechanisms, actuators, linear driver/rate controllers, antenna and appendage deployment systems, position control systems, and tracking mechanisms for antennas and solar arrays. Engine design, spaceborne experiments, and large space structure technology are also examined.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 26: The relationship between technology policy and scientific and technical information within the US and Japanese aerospace industries

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  3. Evaluating Aerospace Workshops.

    ERIC Educational Resources Information Center

    Leonard, Rex L.

    1978-01-01

    Declining enrollments in aerospace teacher workshops suggest the need for evaluation and cost effectiveness measurements. A major purpose of this article is to illustrate some typical evaluation methodologies, including the semantic differential. (MA)

  4. Aerospace bibliography, seventh edition

    NASA Technical Reports Server (NTRS)

    Blashfield, J. F. (Compiler)

    1983-01-01

    Space travel, planetary probes, applications satellites, manned spaceflight, the impacts of space exploration, future space activities, astronomy, exobiology, aeronautics, energy, space and the humanities, and aerospace education are covered.

  5. Ninteenth Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings of the 19th Aerospace Mechanisms Symposium are reported. Technological areas covered include space lubrication, bearings, aerodynamic devices, spacecraft/Shuttle latches, deployment, positioning, and pointing. Devices for spacecraft docking and manipulator and teleoperator mechanisms are also described.

  6. The 1993 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1994-01-01

    This document contains the proceedings of the 26th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on 16-18 Nov. 1993. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-cadmium, nickel-hydrogen, nickel-metal hydride, and lithium based technologies, as well as advanced technologies including various bipolar designs.

  7. The 1998 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1999-01-01

    This document contains the proceedings of the 31st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on October 27-29, 1998. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, silver-hydrogen, nickel-metal hydride, and lithium-based technologies, as well as results from destructive physical analyses on various cell chemistries.

  8. Aerospace Applications of Integer and Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  9. Aerospace applications on integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  10. Aerospace applications of integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  11. Second Conference on NDE for Aerospace Requirements

    NASA Technical Reports Server (NTRS)

    Woodis, Kenneth W. (Compiler); Bryson, Craig C. (Compiler); Workman, Gary L. (Compiler)

    1990-01-01

    Nondestructive evaluation and inspection procedures must constantly improve rapidly in order to keep pace with corresponding advances being made in aerospace material and systems. In response to this need, the 1989 Conference was organized to provide a forum for discussion between the materials scientists, systems designers, and NDE engineers who produce current and future aerospace systems. It is anticipated that problems in current systems can be resolved more quickly and that new materials and structures can be designed and manufactured in such a way as to be more easily inspected and to perform reliably over the life cycle of the system.

  12. The 1992 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1993-01-01

    This document contains the proceedings of the 23rd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 15-19, 1992. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-cadmium, nickel-hydrogen, nickel-metal hydride, and lithium based technologies, as well as advanced technologies including sodium-sulfur and various bipolar designs.

  13. The 1997 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1998-01-01

    This document contains the proceedings of the 30th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 18-20, 1997. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-cadmium, nickel-hydrogen, nickel-metal hydride, lithium, lithium-ion, and silver-zinc technologies, as well as various aspects of nickel electrode design.

  14. NASA aerospace database subject scope: An overview

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Outlined here is the subject scope of the NASA Aerospace Database, a publicly available subset of the NASA Scientific and Technical (STI) Database. Topics of interest to NASA are outlined and placed within the framework of the following broad aerospace subject categories: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences, and general. A brief discussion of the subject scope is given for each broad area, followed by a similar explanation of each of the narrower subject fields that follow. The subject category code is listed for each entry.

  15. Integration of pyrotechnics into aerospace systems

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Schimmel, Morry L.

    1993-01-01

    The application of pyrotechnics to aerospace systems has been resisted because normal engineering methods cannot be used in design and evaluation. Commonly used approaches for energy sources, such as electrical, hydraulic and pneumatic, do not apply to explosive and pyrotechnic devices. This paper introduces the unique characteristics of pyrotechnic devices, describes how functional evaluations can be conducted, and demonstrates an engineering approach for pyrotechnic integration. Logic is presented that allows evaluation of two basic types of pyrotechnic systems to demonstrate functional margin.

  16. Conservation of Strategic Aerospace Materials (COSAM)

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    Research efforts to reduce the dependence of the aerospace industry on strategic metals, such as cobalt (Co), columbium (Cb), tantalum (Ta), and chromium (Cr), by providing the materials technology needed to minimize the strategic metal content of critical aerospace components for gas turbine engines are addressed. Thrusts in three technology areas are identified: near term activities in the area of strategic element substitution; intermediate-range activities in the area of materials processing; and long term, high risk activities in the area of 'new classes' of high temprature metallic materials. Specifically, the role of cobalt in nickel-base and cobalt-base superalloys vital to the aerospace industry is examined along with the mechanical and physical properties of intermetallics that will contain a minimum of the stragetic metals.

  17. 24 CFR 350.8 - Withdrawal of Eligible Book-entry Ginnie Mae Securities for Conversion to Definitive Form.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... book-entry in the Book-entry System, facilitate the conversion of such securities into Definitive... Ginnie Mae Securities for Conversion to Definitive Form. 350.8 Section 350.8 Housing and Urban... Book-entry Ginnie Mae Securities for Conversion to Definitive Form. (a) Eligible book-entry Ginnie...

  18. 24 CFR 350.8 - Withdrawal of Eligible Book-entry Ginnie Mae Securities for Conversion to Definitive Form.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... book-entry in the Book-entry System, facilitate the conversion of such securities into Definitive... Ginnie Mae Securities for Conversion to Definitive Form. 350.8 Section 350.8 Housing and Urban... Book-entry Ginnie Mae Securities for Conversion to Definitive Form. (a) Eligible book-entry Ginnie...

  19. 24 CFR 350.8 - Withdrawal of Eligible Book-entry Ginnie Mae Securities for Conversion to Definitive Form.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... book-entry in the Book-entry System, facilitate the conversion of such securities into Definitive... Ginnie Mae Securities for Conversion to Definitive Form. 350.8 Section 350.8 Housing and Urban... Book-entry Ginnie Mae Securities for Conversion to Definitive Form. (a) Eligible book-entry Ginnie...

  20. 24 CFR 350.8 - Withdrawal of Eligible Book-entry Ginnie Mae Securities for Conversion to Definitive Form.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... book-entry in the Book-entry System, facilitate the conversion of such securities into Definitive... Ginnie Mae Securities for Conversion to Definitive Form. 350.8 Section 350.8 Housing and Urban... Book-entry Ginnie Mae Securities for Conversion to Definitive Form. (a) Eligible book-entry Ginnie...

  1. 24 CFR 350.8 - Withdrawal of Eligible Book-entry Ginnie Mae Securities for Conversion to Definitive Form.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... book-entry in the Book-entry System, facilitate the conversion of such securities into Definitive... Ginnie Mae Securities for Conversion to Definitive Form. 350.8 Section 350.8 Housing and Urban... Book-entry Ginnie Mae Securities for Conversion to Definitive Form. (a) Eligible book-entry Ginnie...

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 47: The value of computer networks in aerospace

    NASA Technical Reports Server (NTRS)

    Bishop, Ann Peterson; Pinelli, Thomas E.

    1995-01-01

    This paper presents data on the value of computer networks that were obtained from a national survey of 2000 aerospace engineers that was conducted in 1993. Survey respondents reported the extent to which they used computer networks in their work and communication and offered their assessments of the value of various network types and applications. They also provided information about the positive impacts of networks on their work, which presents another perspective on value. Finally, aerospace engineers' recommendations on network implementation present suggestions for increasing the value of computer networks within aerospace organizations.

  3. Environmentally regulated aerospace coatings

    NASA Technical Reports Server (NTRS)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  4. Advanced Materials and Coatings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2004-01-01

    In the application area of aerospace tribology, researchers and developers must guarantee the highest degree of reliability for materials, components, and systems. Even a small tribological failure can lead to catastrophic results. The absence of the required knowledge of tribology, as Professor H.P. Jost has said, can act as a severe brake in aerospace vehicle systems-and indeed has already done so. Materials and coatings must be able to withstand the aerospace environments that they encounter, such as vacuum terrestrial, ascent, and descent environments; be resistant to the degrading effects of air, water vapor, sand, foreign substances, and radiation during a lengthy service; be able to withstand the loads, stresses, and temperatures encountered form acceleration and vibration during operation; and be able to support reliable tribological operations in harsh environments throughout the mission of the vehicle. This presentation id divided into two sections: surface properties and technology practice related to aerospace tribology. The first section is concerned with the fundamental properties of the surfaces of solid-film lubricants and related materials and coatings, including carbon nanotubes. The second is devoted to applications. Case studies are used to review some aspects of real problems related to aerospace systems to help engineers and scientists to understand the tribological issues and failures. The nature of each problem is analyzed, and the tribological properties are examined. All the fundamental studies and case studies were conducted at the NASA Glenn Research Center.

  5. How America Pays for College, 2011. Sallie Mae's National Study of College Students and Parents

    ERIC Educational Resources Information Center

    Sallie Mae, Inc., 2011

    2011-01-01

    Sallie Mae's national study, "How America Pays for College," now in its fourth year, shows the resilience of American families' strongly held belief in the value of a college education. Even in the face of rising tuition costs and the worst economic decline in a generation, between academic years 2007-2008 and 2009-2010 Americans paid increasingly…

  6. 78 FR 23281 - Notice of Proposed Information Collection; Comment Request: Ginnie Mae Multiclass Securities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ...-Backed Securities (``SMBS''), and Platinum securities. The Multiclass Securities program provides an... Ginnie Mae REMIC, SMBS and Platinum securities. Agency form numbers, if applicable: Not applicable.... Subtotal 232.5 ......... 995.3 Platinum Securities: Deposit Agreement......... Depositor....... 19 10 190...

  7. 77 FR 71433 - Notice of Proposed Information Collection: Comment Request; Ginnie Mae Multiclass Securities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ...-Backed Securities (``SMBS''), and Platinum securities. The Multiclass Securities program provides an... Ginnie Mae REMIC, SMBS and Platinum securities. Agency form numbers, if applicable: Not applicable........... 10 1 10 2 20 Total 232.5 995.3 Platinum Securities Deposit Agreement Depositor 19 10 190 1 190...

  8. 75 FR 5336 - Notice of Proposed Information Collection: Comment Request; Ginnie Mae Multiclass Securities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... Mortgage-Backed Securities (``SMBS''), and Platinum securities. The Multiclass Securities program provides... on Ginnie Mae REMIC, SMBS and Platinum securities. Agency form numbers, if applicable: Not applicable... for Sponsor........ 10 1 10 2 20 Total 232.5 995.3 Platinum Securities Deposit Agreement Depositor...

  9. How America Pays for College, 2012. Sallie Mae's National Study of College Students and Parents

    ERIC Educational Resources Information Center

    Sallie Mae, Inc., 2012

    2012-01-01

    Sallie Mae has conducted "How America Pays for College" annually since 2008, providing information about the resources American families invest in an undergraduate college education. This study focuses particularly on the planning and payment behaviors in a given academic year. Now in its fifth year, the study allows tracking over time of changes…

  10. How America Pays for College, 2009. Sallie Mae's National Study of College Students and Parents

    ERIC Educational Resources Information Center

    Sallie Mae, Inc., 2009

    2009-01-01

    Sallie Mae's study, "How America Pays for College 2009," conducted by Gallup, provides a picture of how families made the investment in higher education last academic year and how they are beginning to meet the challenges of the economic recession. Based on a nationally representative survey of college-going students and parents of undergraduates,…

  11. How America Pays for College, 2014: Sallie Mae's National Study of College Students and Parents

    ERIC Educational Resources Information Center

    Sallie Mae, Inc., 2014

    2014-01-01

    Sallie Mae has conducted "How America Pays for College" annually since 2008, providing information about the resources American families invest in an undergraduate college education. This study focuses particularly on the planning and payment behaviors in a given academic year. Now in its seventh year, the study provides a compelling…

  12. The Miocene avifauna of the Li Mae Long locality, Thailand: systematics and paleoecology

    NASA Astrophysics Data System (ADS)

    Cheneval, Jacques; Ginsburg, Léonard; Mourer-Chauvire, Cécile; Ratanasthien, Benjavun

    The Miocene avifauna from Li Mae Long includes an anhinga, a heron, a new species of lesser flamingo, Phoeniconaias siamensis n. sp., two Anatidae, a Phasianidae, three Rallidae, and a Strigidae. The landscape indicated by the mammalian and avian faunas corresponds to a large swampy depression, with probably saline or alkaline waters, surrounded by humid forests, under a warm climate.

  13. African-American Soul Force: Dance, Music and Vera Mae Green.

    ERIC Educational Resources Information Center

    Bolles, A. Lynn

    1986-01-01

    The Black anthropologist, Vera Mae Green, is featured in this analysis of the concept of soul as applied to African-Americans. Music and dance are used to express soul in cultural context. But soul is also a force, an energy which encompasses the Black experience and makes Black culture persevere. (VM)

  14. Managing complexity of aerospace systems

    NASA Astrophysics Data System (ADS)

    Tamaskar, Shashank

    Growing complexity of modern aerospace systems has exposed the limits of conventional systems engineering tools and challenged our ability to design them in a timely and cost effective manner. According to the US Government Accountability Office (GAO), in 2009 nearly half of the defense acquisition programs are expecting 25% or more increase in unit acquisition cost. Increase in technical complexity has been identified as one of the primary drivers behind cost-schedule overruns. Thus to assure the affordability of future aerospace systems, it is increasingly important to develop tools and capabilities for managing their complexity. We propose an approach for managing the complexity of aerospace systems to address this pertinent problem. To this end, we develop a measure that improves upon the state-of-the-art metrics and incorporates key aspects of system complexity. We address the problem of system decomposition by presenting an algorithm for module identification that generates modules to minimize integration complexity. We demonstrate the framework on diverse spacecraft and show the impact of design decisions on integration cost. The measure and the algorithm together help the designer track and manage complexity in different phases of system design. We next investigate how complexity can be used as a decision metric in the model-based design (MBD) paradigm. We propose a framework for complexity enabled design space exploration that introduces the idea of using complexity as a non-traditional design objective. We also incorporate complexity with the component based design paradigm (a sub-field of MBD) and demonstrate it on several case studies. The approach for managing complexity is a small but significant contribution to the vast field of complexity management. We envision our approach being used in concert with a suite of complexity metrics to provide an ability to measure and track complexity through different stages of design and development. This will not

  15. Frontier Aerospace Opportunities

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2014-01-01

    Discussion and suggested applications of the many ongoing technology opportunities for aerospace products and missions, resulting in often revolutionary capabilities. The, at this point largely unexamined, plethora of possibilities going forward, a subset of which is discussed, could literally reinvent aerospace but requires triage of many possibilities. Such initial upfront homework would lengthen the Research and Development (R&D) time frame but could greatly enhance the affordability and performance of the evolved products and capabilities. Structural nanotubes and exotic energetics along with some unique systems approaches are particularly compelling.

  16. Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  17. Nanotechnology research for aerospace applications

    NASA Astrophysics Data System (ADS)

    Agee, Forrest J.; Lozano, Karen; Gutierrez, Jose M.; Chipara, Mircea; Thapa, Ram; Chow, Alice

    2009-04-01

    Nanotechnology is impacting the future of the military and aerospace. The increasing demands for high performance and property-specific applications are forcing the scientific world to take novel approaches in developing programs and accelerating output. CONTACT or Consortium for Nanomaterials for Aerospace Commerce and Technology is a cooperative nanotechnology research program in Texas building on an infrastructure that promotes collaboration between universities and transitioning to industry. The participants of the program include the US Air Force Research Laboratory (AFRL), five campuses of the University of Texas (Brownsville, Pan American, Arlington, Austin, and Dallas), the University of Houston, and Rice University. Through the various partnerships between the intellectual centers and the interactions with AFRL and CONTACT's industrial associates, the program represents a model that addresses the needs of the changing and competitive technological world. Into the second year, CONTACT has expanded to twelve projects that cover four areas of research: Adaptive Coatings and Surface Engineering, Nano Energetics, Electromagnetic Sensors, and Power Generation and Storage. This paper provides an overview of the CONTACT program and its projects including the research and development of new electrorheological fluids with nanoladen suspensions and composites and the potential applications.

  18. Aerospace Education. NSTA Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2008

    2008-01-01

    National Science Teachers Association (NSTA) has developed a new position statement, "Aerospace Education." NSTA believes that aerospace education is an important component of comprehensive preK-12 science education programs. This statement highlights key considerations that should be addressed when implementing a high quality aerospace education…

  19. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The following areas of NASA's responsibilities are examined: (1) the Space Transportation System (STS) operations and evolving program elements; (2) establishment of the Space Station program organization and issuance of requests for proposals to the aerospace industry; and (3) NASA's aircraft operations, including research and development flight programs for two advanced X-type aircraft.

  20. Aerospace Bibliography. Seventh Edition.

    ERIC Educational Resources Information Center

    Blashfield, Jean F., Comp.

    Provided for teachers and the general adult reader is an annotated and graded list of books and reference materials dealing with aerospace subjects. Only non-fiction books and pamphlets that need to be purchased from commercial or government sources are included. Free industrial materials and educational aids are not included because they tend to…

  1. Aerospace at Saint Francis.

    ERIC Educational Resources Information Center

    Aviation/Space, 1980

    1980-01-01

    Discusses an aviation/aerospace program as a science elective for 11th and 12th year students. This program is multi-faceted and addresses the needs of a wide variety of students. Its main objective is to present aviation and space sciences which will provide a good base for higher education in these areas. (SK)

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 56: Technical Communications in Engineering and Science: The Practices Within a Government Defense Laboratory

    NASA Technical Reports Server (NTRS)

    VonSeggern, Marilyn; Jourdain, Janet M.; Pinelli, Thomas E.

    1996-01-01

    Research in recent decades has identified the varied information needs of engineers versus scientists. While most of that research looked at the differences among organizations, we surveyed engineers and scientists within a single Air Force research and development laboratory about their information gathering, usage, and production practices. The results of the Phillips Laboratory survey confirm prior assumptions about distinctions between engineering and science. Because military employees responded at a much higher rate than civilian staff, the survey also became an opportunity to profile a little-known segment of the engineer/scientist population. In addition to the effect Phillips Laboratory's stated mission may have on member engineers and scientists, other factors causing variations in technical communication and information-related activities are identified.

  3. A review of multifunctional structure technology for aerospace applications

    NASA Astrophysics Data System (ADS)

    Sairajan, K. K.; Aglietti, G. S.; Mani, K. M.

    2016-03-01

    The emerging field of multifunctional structure (MFS) technologies enables the design of systems with reduced mass and volume, thereby improving their overall efficiency. It requires developments in different engineering disciplines and their integration into a single system without degrading their individual performances. MFS is particularly suitable for aerospace applications where mass and volume are critical to the cost of the mission. This article reviews the current state of the art of multifunctional structure technologies relevant to aerospace applications.

  4. Palynology and organic/isotope geochemistry of the Mae Moh Basin, Northern Thailand

    SciTech Connect

    Minh, L.V.; Abrajano, T.; Burden, E.; Winsor, L. ); Ratanasthien, B. )

    1994-07-01

    The Mae Moh basin is one of several Tertiary intermontane basins in northern Thailand, whose evolution has been linked to the collision of the Indian plate with the Eurasian plate since the early Eocene. As in most of these basins, lacustrine/swamp sedimentation in the Mae Moh basin can be broadly divided into an Oligocene to Miocene synrift sequence and a Miocene to Quarternary postrift sequence. The dominance of swamp flora recognized from spore and pollen assemblages (e.g., Polypodiidites usmensis, Verrucatosporites, Cyrtostachys), as well as the abundance of macrophytes and woody debris, indicate overwhelming hot and humid swamp conditions, with lake development restricted to relatively small areas. The distribution of alkanes and their compound-specific carbon isotope compositions are used to further show climatic variations affecting the lake/swamp ecology during the deposition of the synrift sequence.

  5. Developing IVHM Requirements for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Rajamani, Ravi; Saxena, Abhinav; Kramer, Frank; Augustin, Mike; Schroeder, John B.; Goebel, Kai; Shao, Ginger; Roychoudhury, Indranil; Lin, Wei

    2013-01-01

    The term Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable sustainable and safe operation of components and subsystems within aerospace platforms. However, very little guidance exists for the systems engineering aspects of design with IVHM in mind. It is probably because of this that designers have to use knowledge picked up exclusively by experience rather than by established process. This motivated a group of leading IVHM practitioners within the aerospace industry under the aegis of SAE's HM-1 technical committee to author a document that hopes to give working engineers and program managers clear guidance on all the elements of IVHM that they need to consider before designing a system. This proposed recommended practice (ARP6883 [1]) will describe all the steps of requirements generation and management as it applies to IVHM systems, and demonstrate these with a "real-world" example related to designing a landing gear system. The team hopes that this paper and presentation will help start a dialog with the larger aerospace community and that the feedback can be used to improve the ARP and subsequently the practice of IVHM from a systems engineering point-of-view.

  6. [Aquatic Ecological Index based on freshwater (ICE(RN-MAE)) for the Rio Negro watershed, Colombia].

    PubMed

    Forero, Laura Cristina; Longo, Magnolia; John Jairo, Ramirez; Guillermo, Chalar

    2014-04-01

    Aquatic Ecological Index based on freshwater (ICE(RN-MAE)) for the Rio Negro watershed, Colombia. Available indices to assess the ecological status of rivers in Colombia are mostly based on subjective hypotheses about macroinvertebrate tolerance to pollution, which have important limitations. Here we present the application of a method to establish an index of ecological quality for lotic systems in Colombia. The index, based on macroinvertebrate abundance and physicochemical variables, was developed as an alternative to the BMWP-Col index. The method consists on determining an environmental gradient from correlations between physicochemical variables and abundance. The scores obtained in each sampling point are used in a standardized correlation for a model of weighted averages (WA). In the WA model abundances are also weighted to estimate the optimum and tolerance values of each taxon; using this information we estimated the index of ecological quality based also on macroinvertebrate (ICE(RN-MAE)) abundance in each sampling site. Subsequently, we classified all sites using the index and concentrations of total phosphorus (TP) in a cluster analysis. Using TP and ICE(RN-MAE), mean, maximum, minimum and standard deviation, we defined threshold values corresponding to three categories of ecological status: good, fair and critical. PMID:25189081

  7. MAE4, an eLtaS monoclonal antibody, blocks Staphylococcus aureus virulence

    PubMed Central

    Liu, Yu; Feng, Jiannan; Lu, Qiang; Zhang, Xin; Gao, Yaping; Yan, Jun; Mu, Chunhua; Hei, Yan; Lv, Ming; Han, Gencheng; Chen, Guojiang; Jin, Peng; Hu, Weiguo; Shen, Beifen; Yang, Guang

    2015-01-01

    Staphylococcus aureus causes a wide range of infectious diseases. Treatment of these infections has become increasingly difficult due to the widespread emergence of antibiotic-resistant strains; therefore, it is essential to explore effective alternatives to antibiotics. A secreted protein of S. aureus, known as eLtaS, is an extracellular protein released from the bacterial membrane protein, LtaS. However, the role of eLtaS in S. aureus pathogenesis remains largely unknown. Here we show eLtaS dramatically aggravates S. aureus infection by binding to C3b and then inhibiting the phagocytosis of C3b-deposited S. aureus. Furthermore, we developed a monoclonal antibody against eLtaS, MAE4, which neutralizes the activity of eLtaS and blocks staphylococcal evasion of phagocytosis. Consequently, MAE4 is capable of protecting mice from lethal S. aureus infection. Our findings reveal that targeting of eLtaS by MAE4 is a potential therapeutic strategy for the treatment of infectious diseases caused by S. aureus. PMID:26599734

  8. Technician Career Opportunities in Engineering Technology.

    ERIC Educational Resources Information Center

    Engineers' Council for Professional Development, New York, NY.

    Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…

  9. Materials for aerospace

    SciTech Connect

    Steinberg, M.A.

    1986-10-01

    Early last year the US Office of Science and Technology put forward an agenda for American aerospace activity in the coming decades. The plan established goals for subsonic, supersonic and transatmospheric hypersonic flight. Those goals, together with Reagan Administration's programs for a space station and the Strategic Defense Initiative, serve as a driving force for extensive improvements in the materials that enable airplanes and spacecraft to function efficiently. The development of materials, together with advances in the technology of fabricating parts, will play a key role in aerospace systems of the future. Among the materials developments projected for the year 2000 are new composites and alloys for structural members; superalloys, ceramics and glass composites for propulsion systems, and carbon-carbon composites (carbon fibers in a carbon matrix) for high-temperature applications in places where resistance to heat and ablation is critical. 5 figures.

  10. Trends in aerospace structures

    NASA Technical Reports Server (NTRS)

    Card, M. F.

    1978-01-01

    Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.

  11. Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Rouse, Doris J.

    1984-01-01

    The objective of the Research Triangle Institute Technology Transfer Team is to assist NASA in achieving widespread utilization of aerospace technology in terrestrial applications. Widespread utilization implies that the application of NASA technology is to benefit a significant sector of the economy and population of the Nation. This objective is best attained by stimulating the introduction of new or improved commercially available devices incorporating aerospace technology. A methodology is presented for the team's activities as an active transfer agent linking NASA Field Centers, industry associations, user groups, and the medical community. This methodology is designed to: (1) identify priority technology requirements in industry and medicine, (2) identify applicable NASA technology that represents an opportunity for a successful solution and commercial product, (3) obtain the early participation of industry in the transfer process, and (4) successfully develop a new product based on NASA technology.

  12. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  13. AI aerospace components

    SciTech Connect

    Heindel, T.A.; Murphy, T.B.; Rasmussen, A.N.; Mcfarland, R.Z.; Montgomery, R.E.; Pohle, G.E.; Heard, A.E.; Atkinson, D.J.; Wedlake, W.E.; Anderson, J.M. Mitre Corp., Houston, TX Unisys Corp., Houston, TX Rockwell International Corp., El Segundo, CA NASA, Kennedy Space Center, Cocoa Beach, FL JPL, Pasadena, CA Lockheed Missiles and Space Co., Inc., Austin, TX McDonnell Douglas Electronic Systems Co., McLean, VA )

    1991-10-01

    An evaluation is made of the application of novel, AI-capabilities-related technologies to aerospace systems. Attention is given to expert-system shells for Space Shuttle Orbiter mission control, manpower and processing cost reductions at the NASA Kennedy Space Center's 'firing rooms' for liftoff monitoring, the automation of planetary exploration systems such as semiautonomous mobile robots, and AI for battlefield staff-related functions.

  14. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report from the Aerospace Safety Advisory Panel (ASAP) contains findings, recommendations, and supporting material concerning safety issues with the space station program, the space shuttle program, aeronautics research, and other NASA programs. Section two presents findings and recommendations, section three presents supporting information, and appendices contain data about the panel membership, the NASA response to the March 1993 ASAP report, and a chronology of the panel's activities during the past year.

  15. Unmanned Aerospace Vehicle Workshop

    SciTech Connect

    Vitko, J. Jr.

    1995-04-01

    The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

  16. SOFIA Engineer Thomas Keilig

    NASA Video Gallery

    Thomas Keilig, the German Aerospace Agency's (DLR) chief telescope engineer for the Stratospheric Observatory for Infrared Astronomy (SOFIA), comments on technical details of the high-tech primary ...

  17. Novel Nanolaminates for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Volz, Martin; Mazuruk, consty

    2006-01-01

    Nanolaminate manufacturing (NLM) is a new way of developing materials whose properties can far exceed those of homogeneous materials. Traditional alloys, composites and bulk laminates tend to average the properties of the materials from which they were made. With nanostructured materials, the high density of interfaces between dissimilar materials results in novel material properties. For example, materials made -from alternating nanoscale layers of metals and oxides have exhibited thermal conductivities far below those of the oxides themselves. Also, metallic nanolaminates can have peak strengths 100 times lager than the bulk constituent metals. Recent work at MSFC has focused on the development of nickel/aluminum oxide (Ni/Al2O3)) nanolaminates. Ni/Al2O3 nanolaminates are expected to have better strength, creep and fatigue resistance, oxygen compatibility, and corrosion resistance than the traditional metal-matrix composites of this material, which has been used in a variety of aerospace applications. A chemical vapor deposition (CW) system has been developed and optimized for the deposition of nanolaminates. Nanolaminates with layer thicknesses between 10 and 300 nm have been successfully grown and characterization has included scanning electron microscopy (SEM) and atomic force microscopy (AFM) Nanolaminates have a large variety of potential applications. They can be tailored to have both very small and anisotropic thermal conductivities and are promising as thermal coatings for both rock$ engine components and aerobraking structures. They also have the potential to be used in aerospace applications where strength at high temperatures, corrosion resistance or resistance to hydrogen embrittlement is important. Both CVD and magnetron sputtering facilities are available for the deposition of nanolayered materials. Characterization equipment includes SEM, AFM, X-ray diffraction, transmission electron microscopy, optical profilometry, and mechanical tensile pull

  18. Materials Selection for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 42: An analysis of the transfer of Scientific and Technical Information (STI) in the US aerospace industry

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.; Pinelli, Thomas E.; Hecht, Laura F.; Barclay, Rebecca O.

    1994-01-01

    The U.S. aerospace industry has a long history of federal support for research related to its needs. Since the establishment of the National Advisory Committee for Aeronautics (NACA) in 1915, the federal government has provided continuous research support related to flight and aircraft design. This research has contributed to the international preeminence of the U.S. aerospace industry. In this paper, we present a sociological analysis of aerospace engineers and scientists and how their attitudes and behaviors impact the flow of scientific and technical information (STI). We use a constructivist framework to explain the spotty dissemination of federally funded aerospace research. Our research is aimed towards providing federal policymakers with a clearer understanding of how and when federally funded aerospace research is used. This understanding will help policymakers design improved information transfer systems that will aid the competitiveness of the U.S. aerospace industry.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 6: Aerospace knowledge diffusion in the academic community: A report of phase 3 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    Descriptive and analytical data regarding the flow of aerospace-based scientific and technical information (STI) in the academic community are presented. An overview is provided of the Federal Aerospace Knowledge Diffusion Research Project, illustrating a five-year program on aerospace knowledge diffusion. Preliminary results are presented of the project's research concerning the information-seeking habits, practices, and attitudes of U.S. aerospace engineering and science students and faculty. The type and amount of education and training in the use of information sources are examined. The use and importance ascribed to various information products by U.S. aerospace faculty and students including computer and other information technology is assessed. An evaluation of NASA technical reports is presented and it is concluded that NASA technical reports are rated high in terms of quality and comprehensiveness, citing Engineering Index and IAA as the most frequently used materials by faculty and students.

  1. NASA's activities in the conservation of strategic aerospace materials

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1980-01-01

    The primary objective of the Conservation of Strategic Aerospace Materials (COSAM) Program is to help reduce the dependence of the United States aerospace industry on strategic metals by providing the materials technology needed to minimize the strategic metal content of critical aerospace components with prime emphasis on components for gas turbine engines. Initial emphasis was placed in the area of strategic element substinction. Specifically, the role of cobalt in nickel base and cobalt base superalloys vital to the aerospace industry is being examined in great detail by means of cooperative university-industry-government research efforts. Investigations are underway in the area of "new classes" of alloys. Specifically, a study was undertaken to investigate the mechanical and physical properties of intermetallics that contain a minimum of the strategic metals. Current plans for the much larger COSAM Program are also presented.

  2. The electronic transfer of information and aerospace knowledge diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1992-01-01

    Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a motor role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.

  3. Sputtering and ion plating for aerospace applications

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3 dimensional coverage are the primary attributes of this technology.

  4. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXVI - The relationship between technology policy and scientific and technical information within the U.S. and Japanese aerospace industries

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Lahr, Tom; Hoetker, Glenn

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry, which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  5. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 1, Part 2

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume I: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements of the program's operations.

  6. NASA/DoD Aerospace Knowledge Diffusion Research Project. Paper 30: The electronic transfer of information and aerospace knowledge diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1992-01-01

    Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a major role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.

  7. The Aerospace Environment. Aerospace Education I. Instructor Handbook.

    ERIC Educational Resources Information Center

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This publication provides guidelines for teachers using the textbook entitled "Aerospace Environment," published in the Aerospace Education I series. Major categories included in each chapter are objectives, behavioral objectives, suggested outline, orientation, suggested key points, instructional aids, projects, and further reading. Background…

  8. Development and integration of modern laboratories in aerospace education

    NASA Technical Reports Server (NTRS)

    Desautel, D.; Hunter, N.; Mourtos, N.; Pernicka, H.

    1992-01-01

    This paper describes the development and integration of a suite of laboratories in an aerospace engineering program. The program's approach to undergraduate education is described as the source for the development of the supporting laboratories. Nine laboratories supporting instruction were developed and installed. The nine laboratories include most major flight-vehicle disciplines. The purpose and major equipments/experiments of each laboratory are briefly described, as is the integration of the laboratory with coursework. The laboratory education provided by this program successfully achieves its purpose of producing competitive aerospace engineering graduates and advancing the level of undergraduate education.

  9. Langley Aerospace Research Summer Scholars. Part 2

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  10. Aerospace Activities and Language Development

    ERIC Educational Resources Information Center

    Jones, Robert M.; Piper, Martha

    1975-01-01

    Describes how science activities can be used to stimulate language development in the elementary grades. Two aerospace activities are described involving liquid nitrogen and the launching of a weather balloon which integrate aerospace interests into the development of language skills. (BR)

  11. Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway.

    PubMed

    Landete, José María; García-Haro, Luisa; Blasco, Amalia; Manzanares, Paloma; Berbegal, Carmen; Monedero, Vicente; Zúñiga, Manuel

    2010-01-01

    Lactobacillus casei can metabolize L-malic acid via malolactic enzyme (malolactic fermentation [MLF]) or malic enzyme (ME). Whereas utilization of L-malic acid via MLF does not support growth, the ME pathway enables L. casei to grow on L-malic acid. In this work, we have identified in the genomes of L. casei strains BL23 and ATCC 334 a cluster consisting of two diverging operons, maePE and maeKR, encoding a putative malate transporter (maeP), an ME (maeE), and a two-component (TC) system belonging to the citrate family (maeK and maeR). Homologous clusters were identified in Enterococcus faecalis, Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus uberis. Our results show that ME is essential for L-malic acid utilization in L. casei. Furthermore, deletion of either the gene encoding the histidine kinase or the response regulator of the TC system resulted in the loss of the ability to grow on L-malic acid, thus indicating that the cognate TC system regulates and is essential for the expression of ME. Transcriptional analyses showed that expression of maeE is induced in the presence of L-malic acid and repressed by glucose, whereas TC system expression was induced by L-malic acid and was not repressed by glucose. DNase I footprinting analysis showed that MaeR binds specifically to a set of direct repeats [5'-TTATT(A/T)AA-3'] in the mae promoter region. The location of the repeats strongly suggests that MaeR activates the expression of the diverging operons maePE and maeKR where the first one is also subjected to carbon catabolite repression. PMID:19897756

  12. Exploring in Aerospace Rocketry. An Introduction to the Fundamentals of Rocketry.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Cleveland, OH. Lewis Research Center.

    This curriculum guide is based on 2 years of lectures and projects of a contemporary, special-interest aerospace program for promising students, ages 15-19. The program uses technical lectures, project activities and field trips to introduce students to the real engineering world of pioneering aerospace achievement, and the variety of skills and…

  13. Temperature Variability Associated with the Middle Atmosphere Electrodynamics (MAE-1) Campaign

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.

    1999-01-01

    Meteorological rockets launched during the Middle Atmosphere Electrodynamics (MAE-1) Campaign in October 1980 from Andoya Rocket Range (ARR), Norway, exhibited large and unexpected temperature variability. Temperatures were found to vary as much as 20 C within a few hours and demonstrated a similar type of variability from one day to the next. Following examination of the reduced rocketsonde profiles the question was raised whether the observed variability was due to natural atmospheric variability or instrument malfunction. Small-scale variability, as observed, may result from one or multiple sources, e.g., intense storms upstream from the observing site, orography such as mountain waves off of the Greenland Plateau, convective activity, gravity waves, etc. Arranging the observations spaced over time showed that the perturbations moved downward. Prior to MAE-1 very few small rocketsonde measurements had been launched from ARR, thus the quality of the initial measurements in early October caused concern when the large variability was noted. We discuss the errors of the rocketsonde measurements, graphically review the nature of the variability observed, compare the data with other measurements, and postulate a possible cause for the variability.

  14. UAE, MAE, SFE-CO2 and classical methods for the extraction of Mitragyna speciosa leaves.

    PubMed

    Orio, Laura; Alexandru, Lavinia; Cravotto, Giancarlo; Mantegna, Stefano; Barge, Alessandro

    2012-05-01

    Mitragyna speciosa, a tropical plant indigenous to Southeast Asia, is well known for its psychoactive properties. Its leaves are traditionally chewed by Thai and Malaysian farmers and manual labourers as it causes a numbing, stimulating effect. The present study aims to evaluate alkaloid yield and composition in the leaf extracts. For this purpose we have compared several non-conventional extraction techniques with classic procedures (room temperature or under heating). Dried M. speciosa leaves belonging to three batches of different origin (from Thailand, Malaysia and Indonesia) were extracted using ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) and supercritical carbon dioxide extraction SFE-CO(2), using methanol, ethanol, water and binary mixtures. The extracts were compared using an HPLC/ESI-MS analysis of mitragynine and four other related alkaloids which were present in the alkaloid fraction. The extraction technique influences both the raw product yield and the relative alkaloid content of M. speciosa leaves. Of the several methods tested, MAE in a closed vessel at 110 °C (60 W, methanol/water 1:1) gave the highest alkaloid fraction amount, while UAE with an immersion horn at 25 °C (21.4 kHz, 50 W, methanol) showed the best yield for mitragynine. This work may prove to be a useful contribution to forensic, toxicological and pharmacognosy studies. Although the potential applications of M. speciosa alkaloids clearly need further investigation, these results may facilitate the scaling-up of their extraction. PMID:22054912

  15. Measuring teachers' knowledge of attention deficit hyperactivity disorder: the MAE-TDAH Questionnaire.

    PubMed

    Soroa, Marian; Balluerka, Nekane; Gorostiaga, Arantxa

    2014-01-01

    The lack of methodological rigor is frequent in most of instruments developed to assess the knowledge of teachers regarding Attention Deficit Hyperactivity Disorder (ADHD). The aim of this study was to develop a questionnaire, namely Questionnaire for the evaluation of teachers' knowledge of ADHD (MAE-TDAH), for measuring the level of knowledge about ADHD of infant and primary school teachers. A random sample of 526 teachers from 57 schools in the Autonomous Community of the Basque Country and Navarre was used for the analysis of the psychometric properties of the instrument. The participant teachers age range was between 22 and 65 (M = 42.59; SD = 10.89), and there were both generalist and specialized teachers. The measure showed a 4 factor structure (Etiology of ADHD, Symptoms/Diagnosis of ADHD, General information about ADHD and Treatment of ADHD) with adequate internal consistency (Omega values ranged between .83 and .91) and temporal stability indices (Spearman's Rho correlation values ranged between .62 and .79). Furthermore, evidence of convergent and external validity was obtained. Results suggest that the MAE-TDAH is a valid and reliable measure when it comes to evaluating teachers' level of knowledge of ADHD. PMID:26055541

  16. Aerospace in the future

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1980-01-01

    National research and technology trends are introduced in the environment of accelerating change. NASA and the federal budget are discussed. The U.S. energy dependence on foreign oil, the increasing oil costs, and the U.S. petroleum use by class are presented. The $10 billion aerospace industry positive contribution to the U.S. balance of trade of 1979 is given as an indicator of the positive contribution of NASA in research to industry. The research work of the NASA Lewis Research Center in the areas of space, aeronautics, and energy is discussed as a team effort of government, the areas of space, aeronautics, and energy is discussed as a team effort of government, industry, universities, and business to maintain U.S. world leadership in advanced technology.

  17. Aerospace Human Factors

    NASA Technical Reports Server (NTRS)

    Jordan, Kevin

    1999-01-01

    The following contains the final report on the activities related to the Cooperative Agreement between the human factors research group at NASA Ames Research Center and the Psychology Department at San Jose State University. The participating NASA Ames division has been, as the organization has changed, the Aerospace Human Factors Research Division (ASHFRD and Code FL), the Flight Management and Human Factors Research Division (Code AF), and the Human Factors Research and Technology Division (Code IH). The inclusive dates for the report are November 1, 1984 to January 31, 1999. Throughout the years, approximately 170 persons worked on the cooperative agreements in one capacity or another. The Cooperative Agreement provided for research personnel to collaborate with senior scientists in ongoing NASA ARC research. Finally, many post-MA/MS and post-doctoral personnel contributed to the projects. It is worth noting that 10 former cooperative agreement personnel were hired into civil service positions directly from the agreements.

  18. Aerospace and military

    SciTech Connect

    Adam, J.A.; Esch, K

    1990-01-01

    This article reviews military and aerospace developments of 1989. The Voyager spacecraft returned astounding imagery from Neptune, sophisticated sensors were launched to explore Venus and Jupiter, and another craft went into earth orbit to explore cosmic rays, while a huge telescope is to be launched early in 1990. The U.S. space shuttle redesign was completed and access to space has become no longer purely a governmental enterprise. In the military realm, events within the Soviet bloc, such as the Berlin Wall's destruction, have popularized arms control. Several big treaties could be signed within the year. Massive troop, equipment, and budget reductions are being considered, along with a halt or delay of major new weapons systems. For new missions, the U.S. military is retreating to its role of a century ago - patrolling the nation's borders, this time against narcotics traffickers.

  19. Dynamics of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.

  20. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a 5-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASAs safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are "one deep." The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting "brain drain" could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has little flexibility to begin long lead-time items for upgrades or contingency planning.

  1. Experiments on the applicability of MAE techniques for predicting sound diffraction by irregular terrains. [Matched Asymptotic Expansion

    NASA Technical Reports Server (NTRS)

    Berthelot, Yves H.; Pierce, Allan D.; Kearns, James A.

    1987-01-01

    The sound field diffracted by a single smooth hill of finite impedance is studied both analytically, within the context of the theory of Matched Asymptotic Expansions (MAE), and experimentally, under laboratory scale modeling conditions. Special attention is given to the sound field on the diffracting surface and throughout the transition region between the illuminated and the shadow zones. The MAE theory yields integral equations that are amenable to numerical computations. Experimental results are obtained with a spark source producing a pulse of 42 microsec duration and about 130 Pa at 1 m. The insertion loss of the hill is inferred from measurements of the acoustic signals at two locations in the field, with subsequent Fourier analysis on an IBM PC/AT. In general, experimental results support the predictions of the MAE theory, and provide a basis for the analysis of more complicated geometries.

  2. Pathways and Challenges to Innovation in Aerospace

    NASA Technical Reports Server (NTRS)

    Terrile, Richard J.

    2010-01-01

    This paper explores impediments to innovation in aerospace and suggests how successful pathways from other industries can be adopted to facilitate greater innovation. Because of its nature, space exploration would seem to be a ripe field of technical innovation. However, engineering can also be a frustratingly conservative endeavor when the realities of cost and risk are included. Impediments like the "find the fault" engineering culture, the treatment of technical risk as almost always evaluated in terms of negative impact, the difficult to account for expansive Moore's Law growth when making predictions, and the stove-piped structural organization of most large aerospace companies and federally funded research laboratories tend to inhibit cross-cutting technical innovation. One successful example of a multi-use cross cutting application that can scale with Moore's Law is the Evolutionary Computational Methods (ECM) technique developed at the Jet Propulsion Lab for automated spectral retrieval. Future innovations like computational engineering and automated design optimization can potentially redefine space exploration, but will require learning lessons from successful innovators.

  3. Comments on a military transatmospheric aerospace plane

    SciTech Connect

    Chase, R.L.

    1997-01-01

    The conceptual design of a military transatmospheric aerospace plane candidate involves the selection of the mission(s), operating environment, operational concept, payload definition, specific design choices, and a close look at the technology base. A broad range of missions and concepts were reviewed prior to the selection of the mission and concepts presented in this paper. The mission selected was CONUS based global strike. The flight profile selected was a boost-glide-skip unrefuled global range trajectory. Two concepts were selected. The first was a rocket-powered design and the second was a combined air-breathing and rocket powered design. The rocket-powered configuration is a high lift-to-drag ratio modified lifting body. The rocket engine is an advanced dual fuel linear aero-spike. The air-breathing powered configuration is a modified waverider configuration. The engine for the air-breather is a rocket based combined cycle engine. Performance and technology readiness comparisons are presented for the two concepts. The paper closes with a discussion of lessons learned about military transatmospheric aerospace planes over the past twenty years. {copyright} {ital 1997 American Institute of Physics.}

  4. Interdisciplinary optimum design. [of aerospace structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.

  5. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  6. Public Sector Benefits From Aerospace Research and Development

    ERIC Educational Resources Information Center

    Hamilton, Jeffrey T.

    1973-01-01

    Many benefits from aerospace research have occurred: research on quiet aircraft engines, worldwide news coverage, contributions to the national economy, development of reliable fluid amplifiers and logic systems, attempts to control airport congestion, a low speed air sensor for use on a pulmonary flow meter and even as a flow meter in a large…

  7. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  8. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  9. Aerospace management techniques: Commercial and governmental applications

    NASA Technical Reports Server (NTRS)

    Milliken, J. G.; Morrison, E. J.

    1971-01-01

    A guidebook for managers and administrators is presented as a source of useful information on new management methods in business, industry, and government. The major topics discussed include: actual and potential applications of aerospace management techniques to commercial and governmental organizations; aerospace management techniques and their use within the aerospace sector; and the aerospace sector's application of innovative management techniques.

  10. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Annual Report of the Aerospace Safety Advisory Panel (ASAP) presents results of activities during calendar year 2001. The year was marked by significant achievements in the Space Shuttle and International Space Station (ISS) programs and encouraging accomplishments by the Aerospace Technology Enterprise. Unfortunately, there were also disquieting mishaps with the X-43, a LearJet, and a wind tunnel. Each mishap was analyzed in an orderly process to ascertain causes and derive lessons learned. Both these accomplishments and the responses to the mishaps led the Panel to conclude that safety and risk management is currently being well served within NASA. NASA's operations evidence high levels of safety consciousness and sincere efforts to place safety foremost. Nevertheless, the Panel's safety concerns have never been greater. This dichotomy has arisen because the focus of most NASA programs has been directed toward program survival rather than effective life cycle planning. Last year's Annual Report focused on the need for NASA to adopt a realistically long planning horizon for the aging Space Shuttle so that safety would not erode. NASA's response to the report concurred with this finding. Nevertheless, there has been a greater emphasis on current operations to the apparent detriment of long-term planning. Budget cutbacks and shifts in priorities have severely limited the resources available to the Space Shuttle and ISS for application to risk-reduction and life-extension efforts. As a result, funds originally intended for long-term safety-related activities have been used for operations. Thus, while safety continues to be well served at present, the basis for future safety has eroded. Section II of this report develops this theme in more detail and presents several important, overarching findings and recommendations that apply to many if not all of NASA's programs. Section III of the report presents other significant findings, recommendations and supporting

  11. Norwegian Aerospace Activities: an Overview

    NASA Technical Reports Server (NTRS)

    Arnesen, T. (Editor); Rosenberg, G. (Editor)

    1986-01-01

    Excerpts from a Governmental Investigation concerning Norwegian participation in the European Space Organization (ESA) is presented. The implications and advantages of such a move and a suggestion for the reorganization of Norwegian Aerospace activity is given.

  12. The FASST Aerospace Student Forum

    ERIC Educational Resources Information Center

    David, Leonard

    1976-01-01

    Describes a three-day Forum for the Advancement of Students in Science and Technology (FASST), at which students from 20 colleges and universities and six Soviet students discussed the application of aerospace technology to the problems of society. (MLH)

  13. AeroSpace Days 2013

    NASA Video Gallery

    At the eighth annual AeroSpace Days, first mom in space, Astronaut AnnaFisher, and Sen. Louise Lucas, interacted with students from Mack BennJr. Elementary School in Suffolk, Va. through NASA’s...

  14. Ball Aerospace AMSD Progress Update

    NASA Technical Reports Server (NTRS)

    Blair, Mark; Brown, Robert; Chaney, David; Lightsey, Paul; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The current status of the Advanced Mirror System Demonstrator program being performed by Ball Aerospace is presented. The hexagonal low-areal density Beryllium mirror blank has been fabricated and undergoing polishing at the time of this presentation.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 9: Summary report to phase 3 faculty and student respondents including frequency distributions

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.

    1991-01-01

    This project is designed to explore the diffusion of scientific and technical information (STI) throughout the aerospace industry. The increased international competition and cooperation in the industry promises to significantly affect the STI standards of U.S. aerospace engineers and scientists. Therefore, it is important to understand the aerospace knowledge diffusion process itself and its implications at the individual, organizational, national, and international levels. Examined here is the role of STI in the academic aerospace community.

  16. 32nd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Walker, S. W. (Compiler); Boesiger, Edward A. (Compiler)

    1998-01-01

    The proceedings of the 32nd Aerospace Mechanism Symposium are reported. NASA John F. Kennedy Space Center (KSC) hosted the symposium that was held at the Hilton Oceanfront Hotel in Cocoa Beach, Florida on May 13-15, 1998. The symposium was cosponsored by Lockheed Martin Missiles and Space and the Aerospace Mechanisms Symposium Committee. During these days, 28 papers were presented. Topics included robotics, deployment mechanisms, bearing, actuators, scanners, boom and antenna release, and test equipment.

  17. Late Devonian sedimentary record of the Paleotethys Ocean - The Mae Sariang section, northwestern Thailand

    NASA Astrophysics Data System (ADS)

    Königshof, P.; Savage, N. M.; Lutat, P.; Sardsud, A.; Dopieralska, J.; Belka, Z.; Racki, G.

    2012-06-01

    An 11 m thick condensed sequence of Late Devonian limestones in northwestern Thailand exhibits faunal associations and sedimentological-/microfacies data which are indicative of a pelagic facies setting. The entire long-ranging section is completely free from clastic input. Similar successions are known worldwide in a few sections only. The Mae Sariang section is characterised by low sedimentation rates as recognised by a number of hardgrounds, neptunian dikes and Fe/Mn crusts. The succession comprises a number of pelagic faunal elements e.g. conodonts, cephalopods and pelagic ostracodes. The fauna records rare macrofossils and the faunal diversity is low. The very condensed section ranges from the Late rhenana to praesulcata conodont biozones, but contains some global events as undoubtedly shown by biostratigraphical and carbon-isotope results (including major Kellwasser and Hangenberg biotic crises). In terms of plate tectonics this important succession most probably belongs to the Inthanon Zone comprising remnants of the Paleotethys Ocean.

  18. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Each item is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1996.

  19. Nondeterministic Approaches and Their Potential for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2001-01-01

    This document contains the proceedings of the Training Workshop on Nondeterministic Approaches and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, May 30-3 1, 2001. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in nondeterministic approaches, uncertainty management methodologies, reliability assessment and risk management techniques, and to identify their potential for future aerospace systems.

  20. NASA-OAI Collaborative Aerospace Research and Fellowship Program

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Kankam, Mark D.

    2003-01-01

    During the summer of 2003, a IO-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). The objectives of CFP are: (1) to further the professional knowledge of qualified engineering and science faculty, (2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants' institutions, and (4) to contribute to the research objectives of Glenn. This report is intended primarily to summarize the research activities comprising the 2003 CFP Program at Glenn.

  1. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  2. Aerospace Safety Advisory Panel

    NASA Astrophysics Data System (ADS)

    1989-03-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  3. 24 CFR 350.11 - Notice of Attachment for Ginnie Mae Securities in Book-entry System.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Securities in Book-entry System. 350.11 Section 350.11 Housing and Urban Development Regulations Relating to... AND URBAN DEVELOPMENT BOOK-ENTRY PROCEDURES § 350.11 Notice of Attachment for Ginnie Mae Securities in Book-entry System. The interest of a debtor in a Security Entitlement may be reached by a creditor...

  4. How America Saves for College, 2013. Sallie Mae's National Study of Parents with Children under Age 18

    ERIC Educational Resources Information Center

    Sallie Mae, Inc., 2013

    2013-01-01

    Sallie Mae has conducted an ongoing study, "How America Pays for College," annually since 2008. Through that study, the researchers are able to provide a clearer picture of how the typical American undergraduate is paying for college today. This report is the third in the "How America Saves for College" series conducted since 2009. Interviews took…

  5. 24 CFR 350.11 - Notice of Attachment for Ginnie Mae Securities in Book-entry System.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Securities in Book-entry System. 350.11 Section 350.11 Housing and Urban Development Regulations Relating to... AND URBAN DEVELOPMENT BOOK-ENTRY PROCEDURES § 350.11 Notice of Attachment for Ginnie Mae Securities in Book-entry System. The interest of a debtor in a Security Entitlement may be reached by a creditor...

  6. 24 CFR 350.11 - Notice of Attachment for Ginnie Mae Securities in Book-entry System.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Securities in Book-entry System. 350.11 Section 350.11 Housing and Urban Development Regulations Relating to... AND URBAN DEVELOPMENT BOOK-ENTRY PROCEDURES § 350.11 Notice of Attachment for Ginnie Mae Securities in Book-entry System. The interest of a debtor in a Security Entitlement may be reached by a creditor...

  7. How America Saves for College, 2014: Sallie Mae's National Study of Parents with Children under Age 18

    ERIC Educational Resources Information Center

    Sallie Mae, Inc., 2014

    2014-01-01

    This is the fourth report in the Sallie Mae series "How America Saves for College," which launched in 2009. To understand how American families are planning for their children's education, the study captures data on parents' decision-making about savings, the use of savings vehicles, and the amount they save, as well as attitudes toward…

  8. Intelligent Systems for Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Clancey, Daniel (Technical Monitor)

    2002-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  9. Intelligent Systems For Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, K.

    2003-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  10. National Aerospace Professional Societies and Associations and Organizations

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur J., Jr.

    2000-01-01

    This session will highlight several highly recognized National Technical and Professional Aerospace Societies, Associations and Organizations that are dedicated to the advancement of the theories, practices and unique applications of Science, Engineering and related Aerospace Activities ongoing in the United States. The emphasis will be on at least three (3) Aerospace Organizations, while reference many others. This paper will provide a wealth of educational references, information, opportunities and services available through many of the National and Local Chapter Affiliates, associated with the respective associations. Again, all experience and knowledge levels (K-12) will benefit from this information and reference material. Reference materials and other points of contact will be made available to all attendees.

  11. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a five-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASA's safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are 'one deep.' The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting 'brain drain' could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. The major NASA programs are also limited in their ability to plan property for the future. This is of particular concern for the Space Shuttle and ISS because these programs are scheduled to operate well into the next century. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has

  12. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This annual report is based on the activities of the Aerospace Safety Advisory Panel in calendar year 2000. During this year, the construction of the International Space Station (ISS) moved into high gear. The launch of the Russian Service Module was followed by three Space Shuttle construction and logistics flights and the deployment of the Expedition One crew. Continuous habitation of the ISS has begun. To date, both the ISS and Space Shuttle programs have met or exceeded most of their flight objectives. In spite of the intensity of these efforts, it is clear that safety was always placed ahead of cost and schedule. This safety consciousness permitted the Panel to devote more of its efforts to examining the long-term picture. With ISS construction accelerating, demands on the Space Shuttle will increase. While Russian Soyuz and Progress spacecraft will make some flights, the Space Shuttle remains the primary vehicle to sustain the ISS and all other U.S. activities that require humans in space. Development of a next generation, human-rated vehicle has slowed due to a variety of technological problems and the absence of an approach that can accomplish the task significantly better than the Space Shuttle. Moreover, even if a viable design were currently available, the realities of funding and development cycles suggest that it would take many years to bring it to fruition. Thus, it is inescapable that for the foreseeable future the Space Shuttle will be the only human-rated vehicle available to the U.S. space program for support of the ISS and other missions requiring humans. Use of the Space Shuttle will extend well beyond current planning, and is likely to continue for the life of the ISS.

  13. CORBASec Used to Secure Distributed Aerospace Propulsion Simulations

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2003-01-01

    The NASA Glenn Research Center and its industry partners are developing a Common Object Request Broker (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines. It was developed by Glenn and is being managed by the NASA Ames Research Center as the lead center reporting directly to NASA Headquarters' Aerospace Technology Enterprise. Glenn is an active domain member of the Object Management Group: an open membership, not-for-profit consortium that produces and manages computer industry specifications (i.e., CORBA) for interoperable enterprise applications. When NPSS is deployed, it will assemble a distributed aerospace propulsion simulation scenario from proprietary analytical CORBA servers and execute them with security afforded by the CORBASec implementation. The NPSS CORBASec test bed was initially developed with the TPBroker Security Service product (Hitachi Computer Products (America), Inc., Waltham, MA) using the Object Request Broker (ORB), which is based on the TPBroker Basic Object Adaptor, and using NPSS software across different firewall products. The test bed has been migrated to the Portable Object Adaptor architecture using the Hitachi Security Service product based on the VisiBroker 4.x ORB (Borland, Scotts Valley, CA) and on the Orbix 2000 ORB (Dublin, Ireland, with U.S. headquarters in Waltham, MA). Glenn, GE Aircraft Engines, and Pratt & Whitney Aircraft are the initial industry partners contributing to the NPSS CORBASec test bed. The test bed uses Security SecurID (RSA Security Inc., Bedford, MA) two-factor token-based authentication together with Hitachi Security Service digital-certificate-based authentication to validate the various NPSS users. The test

  14. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 2/Part 2

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume II Appendix A to Part 2 - Volume I.

  15. National meeting to review IPAD status and goals. [Integrated Programs for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1980-01-01

    A joint NASA/industry project called Integrated Programs for Aerospace-vehicle Design (IPAD) is described, which has the goal of raising aerospace-industry productivity through the application of computers to integrate company-wide management of engineering data. Basically a general-purpose interactive computing system developed to support engineering design processes, the IPAD design is composed of three major software components: the executive, data management, and geometry and graphics software. Results of IPAD activities include a comprehensive description of a future representative aerospace vehicle design process and its interface to manufacturing, and requirements and preliminary design of a future IPAD software system to integrate engineering activities of an aerospace company having several products under simultaneous development.

  16. Chemical Gas Sensors for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  17. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report presents the results of the Aerospace Safety Advisory Panel (ASAP) activities during 2002. The format of the report has been modified to capture a long-term perspective. Section II is new and highlights the Panel's view of NASA's safety progress during the year. Section III contains the pivotal safety issues facing NASA in the coming year. Section IV includes the program area findings and recommendations. The Panel has been asked by the Administrator to perform several special studies this year, and the resulting white papers appear in Appendix C. The year has been filled with significant achievements for NASA in both successful Space Shuttle operations and International Space Station (ISS) construction. Throughout the year, safety has been first and foremost in spite of many changes throughout the Agency. The relocation of the Orbiter Major Modifications (OMMs) from California to Kennedy Space Center (KSC) appears very successful. The transition of responsibilities for program management of the Space Shuttle and ISS programs from Johnson Space Center (JSC) to NASA Headquarters went smoothly. The decision to extend the life of the Space Shuttle as the primary NASA vehicle for access to space is viewed by the Panel as a prudent one. With the appropriate investments in safety improvements, in maintenance, in preserving appropriate inventories of spare parts, and in infrastructure, the Space Shuttle can provide safe and reliable support for the ISS for the foreseeable future. Indications of an aging Space Shuttle fleet occurred on more than one occasion this year. Several flaws went undetected in the early prelaunch tests and inspections. In all but one case, the problems were found prior to launch. These incidents were all handled properly and with safety as the guiding principle. Indeed, launches were postponed until the problems were fully understood and mitigating action could be taken. These incidents do, however, indicate the need to analyze the

  18. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During 1997, the Aerospace Safety Advisory Panel (ASAP) continued its safety reviews of NASA's human space flight and aeronautics programs. Efforts were focused on those areas that the Panel believed held the greatest potential to impact safety. Continuing safe Space Shuttle operations and progress in the manufacture and testing of primary components for the International Space Station (ISS) were noteworthy. The Panel has continued to monitor the safety implications of the transition of Space Shuttle operations to the United Space Alliance (USA). One area being watched closely relates to the staffing levels and skill mix in both NASA and USA. Therefore, a section of this report is devoted to personnel and other related issues that are a result of this change in NASA's way of doing business for the Space Shuttle. Attention will continue to be paid to this important topic in subsequent reports. Even though the Panel's activities for 1997 were extensive, fewer specific recommendations were formulated than has been the case in recent years. This is indicative of the current generally good state of safety of NASA programs. The Panel does, however, have several longer term concerns that have yet to develop to the level of a specific recommendation. These are covered in the introductory material for each topic area in Section 11. In another departure from past submissions, this report does not contain individual findings and recommendations for the aeronautics programs. While the Panel devoted its usual efforts to examining NASA's aeronautic centers and programs, no specific recommendations were identified for inclusion in this report. In lieu of recommendations, a summary of the Panel's observations of NASA's safety efforts in aeronautics and future Panel areas of emphasis is provided. With profound sadness the Panel notes the passing of our Chairman, Paul M. Johnstone, on December 17, 1997, and our Staff Assistant, Ms. Patricia M. Harman, on October 5, 1997. Other

  19. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Data acquired on the actual flight experience with the various subsystems are assessed. These subsystems include: flight control and performance, structural integrity, orbiter landing gear, lithium batteries, EVA and prebreathing, and main engines. Improvements for routine operations are recommended. Policy issues for operations and flight safety for aircraft operations are discussed.

  20. Nanomaterials and future aerospace technologies: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Vaia, Richard A.

    2012-06-01

    Two decades of extensive investment in nanomaterials, nanofabrication and nanometrology have provided the global engineering community a vast array of new technologies. These technologies not only promise radical change to traditional industries, such as transportation, information and aerospace, but may create whole new industries, such as personalized medicine and personalized energy harvesting and storage. The challenge today for the defense aerospace community is determining how to accelerate the conversion of these technical opportunities into concrete benefits with quantifiable impact, in conjunction with identifying the most important outstanding scientific questions that are limiting their utilization. For example, nanomaterial fabrication delivers substantial tailorablity beyond a traditional material data sheet. How can we integrate this tailorability into agile manufacturing and design methods to further optimize the performance, cost and durability of future resilient aerospace systems? The intersection of nano-based metamaterials and nanostructured devices with biotechnology epitomizes the technological promise of autonomous systems and enhanced human-machine interfaces. What then are the key materials and processes challenges that are inhibiting current lab-scale innovation from being integrated into functioning systems to increase effectiveness and productivity of our human resources? Where innovation is global, accelerating the use of breakthroughs, both for commercial and defense, is essential. Exploitation of these opportunities and finding solutions to the associated challenges for defense aerospace will rely on highly effective partnerships between commercial development, scientific innovation, systems engineering, design and manufacturing.

  1. Key Issues for Aerospace Applications of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Levine, S. R.

    1998-01-01

    Ceramic matrix composites (CMC) offer significant advantages for future aerospace applications including turbine engine and liquid rocket engine components, thermal protection systems, and "hot structures". Key characteristics which establish ceramic matrix composites as attractive and often enabling choices are strength retention at high temperatures and reduced weight relative to currently used metallics. However, due to the immaturity of this class of materials which is further compounded by the lack of experience with CMC's in the aerospace industry, there are significant challenges involved in the development and implementation of ceramic matrix composites into aerospace systems. Some of the more critical challenges are attachment and load transfer methodologies; manufacturing techniques, particularly scale up to large and thick section components; operational environment resistance; damage tolerance; durability; repair techniques; reproducibility; database availability; and the lack of validated design and analysis tools. The presentation will examine the technical issues confronting the application of ceramic matrix composites to aerospace systems and identify the key material systems having potential for substantial payoff relative to the primary requirements of light weight and reduced cost for future systems. Current programs and future research opportunities will be described in the presentation which will focus on materials and processes issues.

  2. Challenges in aerospace medicine education.

    PubMed

    Grenon, S Marlene; Saary, Joan

    2011-11-01

    Aerospace medicine training and research represents a dream for many and a challenge for most. In Canada, although some opportunities exist for the pursuit of education and research in the aerospace medicine field, they are limited despite the importance of this field for enabling safe human space exploration. In this commentary, we aim to identify some of the challenges facing individuals wishing to get involved in the field as well as the causal factors for these challenges. We also explore strategies to mitigate against these. PMID:22097645

  3. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)

    1997-01-01

    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  4. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Clark-Ingram, M.; Hessler, S. L.

    1997-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  5. Chemical Microsensor Development for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Chen, Liangyu; Biaggi-Labiosa, Azlin M.

    2013-01-01

    Numerous aerospace applications, including low-false-alarm fire detection, environmental monitoring, fuel leak detection, and engine emission monitoring, would benefit greatly from robust and low weight, cost, and power consumption chemical microsensors. NASA Glenn Research Center has been working to develop a variety of chemical microsensors with these attributes to address the aforementioned applications. Chemical microsensors using different material platforms and sensing mechanisms have been produced. Approaches using electrochemical cells, resistors, and Schottky diode platforms, combined with nano-based materials, high temperature solid electrolytes, and room temperature polymer electrolytes have been realized to enable different types of microsensors. By understanding the application needs and chemical gas species to be detected, sensing materials and unique microfabrication processes were selected and applied. The chemical microsensors were designed utilizing simple structures and the least number of microfabrication processes possible, while maintaining high yield and low cost. In this presentation, an overview of carbon dioxide (CO2), oxygen (O2), and hydrogen/hydrocarbons (H2/CxHy) microsensors and their fabrication, testing results, and applications will be described. Particular challenges associated with improving the H2/CxHy microsensor contact wire-bonding pad will be discussed. These microsensors represent our research approach and serve as major tools as we expand our sensor development toolbox. Our ultimate goal is to develop robust chemical microsensor systems for aerospace and commercial applications.

  6. Hybrid techniques for complex aerospace electromagnetics problems

    NASA Technical Reports Server (NTRS)

    Aberle, Jim

    1993-01-01

    Important aerospace electromagnetics problems include the evaluation of antenna performance on aircraft and the prediction and control of the aircraft's electromagnetic signature. Due to the ever increasing complexity and expense of aircraft design, aerospace engineers have become increasingly dependent on computer solutions. Traditionally, computational electromagnetics (CEM) has relied primarily on four disparate techniques: the method of moments (MoM), the finite-difference time-domain (FDTD) technique, the finite element method (FEM), and high frequency asymptotic techniques (HFAT) such as ray tracing. Each of these techniques has distinct advantages and disadvantages, and no single technique is capable of accurately solving all problems of interest on computers that are available now or will be available in the foreseeable future. As a result, new approaches that overcome the deficiencies of traditional techniques are beginning to attract a great deal of interest in the CEM community. Among these new approaches are hybrid methods which combine two or more of these techniques into a coherent model. During the ASEE Summer Faculty Fellowship Program a hybrid FEM/MoM computer code was developed and applied to a geometry containing features found on many modern aircraft.

  7. Aerospace Education for the Melting Pot.

    ERIC Educational Resources Information Center

    Joels, Kerry M.

    1979-01-01

    Aerospace education is eminently suited to provide a framework for multicultural education. Effective programs accommodating minorities' frames of reference to the rapidly developing disciplines of aerospace studies have been developed. (RE)

  8. Aerospace Education and the Elementary Teacher

    ERIC Educational Resources Information Center

    Jones, Robert M.

    1978-01-01

    This articles attempts to stimulate otherwise reluctant school teachers to involve aerospace education in their content repertoire. Suggestions are made to aid the teacher in getting started with aerospace education. (MDR)

  9. Accommodation of Nontraditional Aerospace Degree Aspirants

    ERIC Educational Resources Information Center

    Schukert, Michael A.

    1977-01-01

    Presents results of a national survey of institutions offering college level aerospace studies. Primary survey concern is the availability of nontraditional aerospace education programs; however, information pertaining to institution characteristics, program characteristics, and staffing are also included. (SL)

  10. Optical Information Processing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Current research in optical processing is reviewed. Its role in future aerospace systems is determined. The development of optical devices and components demonstrates that system concepts can be implemented in practical aerospace configurations.

  11. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  12. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 2:] Technical communications in aeronautics: Results of an exploratory study. An analysis of managers' and nonmanagers' responses

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Myron; Barclay, Rebecca O.; Oliu, Walter E.

    1989-01-01

    Data collected from an exploratory study concerned with the technical communications practices of aerospace engineers and scientists were analyzed to test the primary assumption that aerospace managers and nonmanagers have different technical communications practices. Five assumptions were established for the analysis. Aerospace managers and nonmanagers were found to have different technical communications practices for three of the five assumptions tested. Although aerospace managers and nonmanagers were found to have different technical communications practices, the evidence was neither conclusive nor compelling that the presumption of difference in practices could be attributed to the duties performed by aerospace managers and nonmanagers.

  13. Aerospace Training. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Aerospace is an economic powerhouse that generates jobs and fuels our economy. Washington's community and technical colleges produce the world-class employees needed to keep it that way. With about 1,250 aerospace-related firms employing more than 94,000 workers, Washington has the largest concentration of aerospace expertise in the nation. To…

  14. 41st Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor)

    2012-01-01

    The proceedings of the 41st Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held in Pasadena Hilton, Pasadena, California on May 16-18, 2012. Lockheed Martin Space Systems cosponsored the symposium. Technology areas covered include gimbals and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and Mars Science Laboratory mechanisms.

  15. 35th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Doty, Laura W. (Technical Monitor)

    2001-01-01

    The proceedings of the 35th Aerospace Mechanisms Symposium are reported. Ames Research Center hosted the conference, which was held at the Four Points Sheraton, Sunnyvale, California, on May 9-11, 2001. The symposium was sponsored by the Mechanisms Education Association. Technology areas covered included bearings and tribology; pointing, solar array, and deployment mechanisms; and other mechanisms for spacecraft and large space structures.

  16. Technology utilization. [aerospace technology transfer

    NASA Technical Reports Server (NTRS)

    Kubokawa, C. C.

    1978-01-01

    NASA developed technologies were used to tackle problems associated with safety, transportation, industry, manufacturing, construction and state and local governments. Aerospace programs were responsible for more innovations for the benefit of mankind than those brought about by either major wars, or peacetime programs. Briefly outlined are some innovations for manned space flight, satellite surveillance applications, and pollution monitoring techniques.

  17. Graphical simulation for aerospace manufacturing

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Bien, Christopher

    1994-01-01

    Simulation software has become a key technological enabler for integrating flexible manufacturing systems and streamlining the overall aerospace manufacturing process. In particular, robot simulation and offline programming software is being credited for reducing down time and labor cost, while boosting quality and significantly increasing productivity.

  18. Aerospace for the Very Young.

    ERIC Educational Resources Information Center

    2003

    This packet includes games and activities concerning aerospace education for the very young. It is designed to develop and strengthen basic concepts and skills in a non-threatening atmosphere of fun. Activities include: (1) "The Sun, Our Nearest Star"; (2) "Twinkle, Twinkle, Little Star, How I Wonder Where You Are"; (3) "Shadows"; (4) "The Earth…

  19. Aerospace/Aviation Science Occupations.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Occupational Education.

    The guide was developed to provide secondary students the opportunity to study aviation and aerospace education from the conceptual and career approach coupled with general education specifically related to science. Unit plans were prepared to motivate, develop skills, and offer counseling to the students of aviation science and occupational…

  20. 33rd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Litty, Edward C. (Compiler); Sevilla, Donald R. (Compiler)

    1999-01-01

    The proceedings of the 33rd Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held at the Pasadena Conference and Exhibition Center, Pasadena, California, on May 19-21, 1999. Lockheed Martin Missiles and Space cosponsored the symposium. Technology areas covered include bearings and tribology; pointing, solar array and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  1. Analytical prediction of aerospace vehicle vibration environments

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Piersol, A. G.

    1981-01-01

    Considerable attention has been given recently to the formulation and validation of analytical models for the prediction of aerospace vehicle vibration response to acoustic and fluctuating pressures. This paper summarizes the development of such analytical models for two applications, (1) structural vibrations of the Space Shuttle orbiter vehicle due to broadband rocket noise and aerodynamic boundary layer turbulence, and (2) structural vibrations of general aviation aircraft due to discrete frequency propeller and reciprocating engine exhaust noise. In both cases, the spatial exterior excitations are convected pressure fields which are described on the basis of measured cross spectra (coherence and phase) information. Structural modal data are obtained from analytical predictions, and structural responses to appropriate excitation fields are calculated. The results are compared with test data, and the strengths and weaknesses of the analytical models are assessed.

  2. Analytical prediction of aerospace vehicle vibration environments

    NASA Astrophysics Data System (ADS)

    Wilby, J. F.; Piersol, A. G.

    1981-09-01

    Considerable attention has been given recently to the formulation and validation of analytical models for the prediction of aerospace vehicle vibration response to acoustic and fluctuating pressures. This paper summarizes the development of such analytical models for two applications, (1) structural vibrations of the Space Shuttle orbiter vehicle due to broadband rocket noise and aerodynamic boundary layer turbulence, and (2) structural vibrations of general aviation aircraft due to discrete frequency propeller and reciprocating engine exhaust noise. In both cases, the spatial exterior excitations are convected pressure fields which are described on the basis of measured cross spectra (coherence and phase) information. Structural modal data are obtained from analytical predictions, and structural responses to appropriate excitation fields are calculated. The results are compared with test data, and the strengths and weaknesses of the analytical models are assessed.

  3. Optical Measurements for Intelligent Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    2003-01-01

    There is growing interest in applying intelligent technologies to aerospace propulsion systems to reap expected benefits in cost, performance, and environmental compliance. Cost benefits span the engine life cycle from development, operations, and maintenance. Performance gains are anticipated in reduced fuel consumption, increased thrust-toweight ratios, and operability. Environmental benefits include generating fewer pollutants and less noise. Critical enabling technologies to realize these potential benefits include sensors, actuators, logic, electronics, materials, and structures. For propulsion applications, the challenge is to increase the robustness of these technologies so that they can withstand harsh temperatures, vibrations, and grime while providing extremely reliable performance. This paper addresses the role that optical metrology is playing in providing solutions to these challenges. Optics for ground-based testing (development cycle), flight sensing (operations), and inspection (maintenance) are described. Opportunities for future work are presented.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 46: Technical communications in aerospace: A comparison across four countries

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.; Pinelli, Thomas E.; Hecht, Laura Frye; Barclay, Rebecca O.

    1995-01-01

    In this paper we describe the preliminary analysis of four groups of aerospace engineering and science students -- student members of the American Institute of Aeronautics and Astronautics (AIAA) and students from universities in Japan, Russia, and Great Britain. We compare: (1) the demographic characteristics of the students; (2) factors that affected their career decision; (3) their career goals and aspirations; (4) their training in technical communication; and (5) their training in techniques for finding and using aerospace scientific and technical information (STI). Many employers in the US aerospace industry think there is a need for increased training of engineering students in technical communication. Engineers in the US and other countries believe that technical communication skills are critical for engineers' professional success. All students in our study agree about the importance of technical communication training for professional success, yet relatively few are happy with the instruction they receive. Overall, we conclude that additional instruction in technical communication and accessing STI would make it easier for students to achieve their career goals.

  5. New Skills for Out-of-Work Engineers

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1972

    1972-01-01

    Discusses an innovative educational program conducted by a large aerospace company to retrain unemployed aerospace engineers in water pollution control, thus providing them with useful and satisfying employment. Program development, implementation and success are reviewed. (BL)

  6. Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology

    NASA Technical Reports Server (NTRS)

    Griffin, D. E. (Editor); Stanley, D. C. (Editor)

    2001-01-01

    The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.

  7. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An assessment of NASA's safety performance for 1983 affirms that NASA Headquarters and Center management teams continue to hold the safety of manned flight to be their prime concern, and that essential effort and resources are allocated for maintaining safety in all of the development and operational programs. Those conclusions most worthy of NASA management concentration are given along with recommendations for action concerning; product quality and utility; space shuttle main engine; landing gear; logistics and management; orbiter structural loads, landing speed, and pitch control; the shuttle processing contractor; and the safety of flight operations. It appears that much needs to be done before the Space Transportation System can achieve the reliability necessary for safe, high rate, low cost operations.

  8. IPAD: Integrated Programs for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    Miller, R. E., Jr.

    1985-01-01

    Early work was performed to apply data base technology in support of the management of engineering data in the design and manufacturing environments. The principal objective of the IPAD project is to develop a computer software system for use in the design of aerospace vehicles. Two prototype systems are created for this purpose. Relational Information Manager (RIM) is a successful commercial product. The IPAD Information Processor (IPIP), a much more sophisticated system, is still under development.

  9. Industrial Design in Aerospace/Role of Aesthetics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2006-01-01

    Industrial design creates and develops concepts and specifications that seek to simultaneously and synergistically optimize function, production, value and appearance. The inclusion of appearance, or esthetics, as a major design metric represents both an augmentation of conventional engineering design and an intersection with artistic endeavor(s). Report surveys past and current industrial design practices and examples across aerospace including aircraft and spacecraft, both exterior and interior.

  10. Multistage aerospace craft. [perspective drawings of conceptual design

    NASA Technical Reports Server (NTRS)

    Kelly, D. L. (Inventor)

    1973-01-01

    A conceptual design of a multi-stage aerospace craft is presented. Two perspective views of the vehicle are developed to show the two component configuration with delta wing, four vertical tail surfaces, tricycle landing gear, and two rocket exhaust nozzles at the rear of the fuselage. Engines for propulsion in the atmosphere are mounted on the fuselage in front of the wing root attachment.

  11. Verification and Validation of Neural Networks for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale; Nelson, Stacy; Schumman, Johann; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: 1) Overview of Adaptive Systems; and 2) V&V Processes/Methods.

  12. Verification and Validation of Neural Networks for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale; Nelson, Stacy; Schumann, Johann

    2002-01-01

    The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: Overview of Adaptive Systems and V&V Processes/Methods.

  13. AIAA Computing in Aerospace 10, San Antonio, TX, March 28-30, 1995

    SciTech Connect

    1995-09-01

    A conference covered a wide range of topics related to the use of computers and computer software in the many branches of aerospace engineering. Specific areas covered included: space flight operations, satellite control, ground systems, computer hardware, computer software, human-computer interactions, artificial intelligence, avionics, computer tool development, aerospace computer systems, and computer tools. For individual titles, see A95-90630 through A95-90707.

  14. New environmental regulation for the aerospace industry: The aerospace NESHAP

    SciTech Connect

    Bauer, J.P.; Gampper, B.P.; Baker, J.M.

    1997-12-31

    40 CFR Part 63, Subpart GG, the National Emission Standard for Hazardous Air Pollutants for Aerospace Manufacturing and Rework Facilities, commonly referred to as the Aerospace NESHAP, was issued on September 1, 1995 and requires compliance by September 1, 1998. The regulation affects any facility that manufactures or reworks commercial, civil, or military aircraft vehicles or components and is a major source of Hazardous Air Pollutants (HAPs). The regulation targets reducing Volatile Organic Compound (VOC) and Hazardous Air Pollutant (HAP) emissions to the atmosphere. Processes affected by the new regulation include aircraft painting, paint stripping, chemical milling masking, solvent cleaning, and spray gun cleaning. Regulatory requirements affecting these processes are summarized, and different compliance options compared in terms of cost-effectiveness and industry acceptance. Strategies to reduce compliance costs and minimize recordkeeping burdens are also presented.

  15. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1992-01-01

    The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  16. Analysis and Perspective from the Complex Aerospace Systems Exchange (CASE) 2013

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Parker, Peter A.; Detweiler, Kurt N.; McGowan, Anna-Maria R.; Dress, David A.; Kimmel, William M.

    2014-01-01

    NASA Langley Research Center embedded four rapporteurs at the Complex Aerospace Systems Exchange (CASE) held in August 2013 with the objective to capture the essence of the conference presentations and discussions. CASE was established to provide a discussion forum among chief engineers, program managers, and systems engineers on challenges in the engineering of complex aerospace systems. The meeting consists of invited presentations and panels from industry, academia, and government followed by discussions among attendees. This report presents the major and reoccurring themes captured throughout the meeting and provides analysis and insights to further the CASE mission.

  17. 38th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2006-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 38th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 38th AMs, hosted by the NASA Langley Research Center in Williamsburg, Virginia, was held May 17-19, 2006. During these three days, 34 papers were presented. Topics included gimbals, tribology, actuators, aircraft mechanisms, deployment mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  18. 37th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2004-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is reporting problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 37th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 37th AMS, hosted by the Johnson Space Center (JSC) in Galveston, Texas, was held May 19, 20 and 21, 2004. During these three days, 34 papers were presented. Topics included deployment mechanisms, tribology, actuators, pointing and optical mechanisms, Space Station and Mars Rover mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  19. 39th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, E. A. (Compiler)

    2008-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA Marshall Space Flight Center (MSFC) and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 39th symposium, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 39th AMS was held in Huntsville, Alabama, May 7-9, 2008. During these 3 days, 34 papers were presented. Topics included gimbals and positioning mechanisms, tribology, actuators, deployment mechanisms, release mechanisms, and sensors. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  20. 34th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2000-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. The National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for organizing the AMS. Now in its 34th year, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 34th AMS, hosted by the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland, was held May 10, 11 and 12, 2000. During these three days, 34 papers were presented. Topics included deployment mechanisms, bearings, actuators, pointing and optical mechanisms, Space Station mechanisms, release mechanisms, and test equipment. Hardware displays during the vendor fair gave attendees an opportunity to meet with developers of current and future mechanism components.

  1. Lattice Structures For Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Del Olmo, E.; Grande, E.; Samartin, C. R.; Bezdenejnykh, M.; Torres, J.; Blanco, N.; Frovel, M.; Canas, J.

    2012-07-01

    The way of mass reduction improving performances in the aerospace structures is a constant and relevant challenge in the space business. The designs, materials and manufacturing processes are permanently in evolution to explore and get mass optimization solutions at low cost. In the framework of ICARO project, EADS CASA ESPACIO (ECE) has designed, manufactured and tested a technology demonstrator which shows that lattice type of grid structures is a promising weight saving solution for replacing some traditional metallic and composite structures for space applications. A virtual testing methodology was used in order to support the design of a high modulus CFRP cylindrical lattice technology demonstrator. The manufacturing process, based on composite Automatic Fiber Placement (AFP) technology developed by ECE, allows obtaining high quality low weight lattice structures potentially applicable to a wide range of aerospace structures. Launcher payload adaptors, satellite platforms, antenna towers or instrument supports are some promising candidates.

  2. Soft impacts on aerospace structures

    NASA Astrophysics Data System (ADS)

    Abrate, Serge

    2016-02-01

    This article provides an overview of the literature dealing with three types of soft impacts of concern for the aerospace applications, namely impacts of rain drops, hailstones and birds against aircraft. It describes the physics of the problem as it has become better understood through experiments, analyses, and numerical simulations. Some emphasis has been placed on the material models and the numerical approaches used in modeling these three types of projectiles.

  3. 30th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Bradley, Obie H., Jr. (Compiler); Rogers, John F. (Compiler)

    1996-01-01

    The proceedings of the 30th Aerospace Mechanisms Symposium are reported. NASA Langley Research Center hosted the proceedings held at the Radisson Hotel in Hampton, Virginia on May 15-17, 1996, and Lockheed Martin Missiles and Space Company, Inc. co-sponsored the symposium. Technological areas covered include bearings and tribology; pointing, solar array, and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  4. KIBO Industry, innovates in aerospace

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on industry KIBO is postulated in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo entomocole industry is the first production company in Europe to human food, it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and in the universities of Angers, Nantes, Lille.

  5. KIBO Industry, innovates in aerospace

    NASA Astrophysics Data System (ADS)

    Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on this postulate KIBO in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo industry is the first entomocole production company creat in Europe to human food; it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and various universities in France.

  6. Ball Aerospace Hybrid Space Cryocoolers

    NASA Astrophysics Data System (ADS)

    Gully, W.; Glaister, D. S.; Hendershott, P.; Kotsubo, V.; Lock, J. S.; Marquardt, E.

    2008-03-01

    This paper describes the design, development, testing, and performance at Ball Aerospace of a long-life hybrid (combination of Stirling and Joule-Thomson [J-T] thermodynamic cycles) space cryocooler. Hybrid coolers are synergistic combinations of two thermodynamic cycles that combine advantages of each cycle to yield overall improved performance. Hybrid cooler performance advantages include: 1) load leveling of large heat loads; 2) remote cryogenic cooling with very low to negligible induced vibration and jitter; 3) very low redundant (off state) cooler penalties; 4) high power efficiency, especially at low temperatures; and 5) simplified system integration with capability to cross gimbals and no need for thermal straps or switches. Ball Aerospace is currently developing several different hybrid cooler systems. The 35 K hybrid cooler provides 2.0 W at 35 K and 8.5 W at 85 K with an emphasis on load leveling of high transient heat loads and remote, low vibration cooling. The 10 K hybrid cooler provides 200 mW at 10 K, 700 mW at 15 K, and 10.7 W at 85 K with an emphasis on power efficiency. In addition, Ball Aerospace built and tested a complete hybrid cooler that met the requirements of the JWST Mid-Infrared Instrument (MIRI) cooler including providing 80 mW at 6 K and 100 mW at 18 K for a total system (28 V) power of 310 W.

  7. Overview of integrated programs for aerospace-vehicle design (IPAD)

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1980-01-01

    An overview of a joint industry/government project, denoted Integrated Programs for Aerospace-Vehicle Design (IPAD), which focuses on development of technology and associated software for integrated company-wide management of engineering information is presented. Results to date are summarized and include an in-depth documentation of a representative design process for a large engineering project, the definition and design of computer-aided design software needed to support that process, and the release of prototype software to integrated selected design functions.

  8. Prospect of HIP application in aerospace and power plant industry

    SciTech Connect

    Boris, B.I.; Genrikh, G.S.; Oleg, F.Ch.

    1996-12-31

    Technology used in production of PM superalloy disks and shafts for military and civil aircraft engines was proposed in published works of Academicians A.F. Bewlov, A.I. Tselicov, Professor N.F. Anoshkin, their disciples and associates about 20 years ago. This technology determined progress in this field for all preceding years and played a remarkable role in both aviation material science and aerospace. This technology contributed to successful development of gas turbine engines for such dazzling specimens of Soviet aircraft and space vehicles as MiG-29, MiG-31, IL-096, TU-204, IL-114, Energia-Buran rocket-space shuttle system, etc.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 43: The role of information resource training in aerospace education. Expanded version

    NASA Technical Reports Server (NTRS)

    Lawrence, Barbara; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Holloway, Karen

    1994-01-01

    Information resource instruction for undergraduate aerospace engineering students has traditionally been limited to an occasional part of the education process--a written paper required in the capstone design course or a library tour. Efforts to encourage the use of aerospace literature and information resources have been made in the past decade, with a recent push from information and, especially, networking technology. This paper presents data from a survey of U.S. aerospace engineering students regarding their instruction in the use of information resources. We find that more than 25 percent of the students surveyed had no instruction in technical communications skills or the use of information resources. We consider the need for instruction in the use of information resources and technical communications skills and the opportunities presented for improvement.

  10. Liquid Nitrogen Removal of Critical Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Noah, Donald E.; Merrick, Jason; Hayes, Paul W.

    2005-01-01

    Identification of innovative solutions to unique materials problems is an every-day quest for members of the aerospace community. Finding a technique that will minimize costs, maximize throughput, and generate quality results is always the target. United Space Alliance Materials Engineers recently conducted such a search in their drive to return the Space Shuttle fleet to operational status. The removal of high performance thermal coatings from solid rocket motors represents a formidable task during post flight disassembly on reusable expended hardware. The removal of these coatings from unfired motors increases the complexity and safety requirements while reducing the available facilities and approved processes. A temporary solution to this problem was identified, tested and approved during the Solid Rocket Booster (SRB) return to flight activities. Utilization of ultra high-pressure liquid nitrogen (LN2) to strip the protective coating from assembled space shuttle hardware marked the first such use of the technology in the aerospace industry. This process provides a configurable stream of liquid nitrogen (LN2) at pressures of up to 55,000 psig. The performance of a one-time certification for the removal of thermal ablatives from SRB hardware involved extensive testing to ensure adequate material removal without causing undesirable damage to the residual materials or aluminum substrates. Testing to establish appropriate process parameters such as flow, temperature and pressures of the liquid nitrogen stream provided an initial benchmark for process testing. Equipped with these initial parameters engineers were then able to establish more detailed test criteria that set the process limits. Quantifying the potential for aluminum hardware damage represented the greatest hurdle for satisfying engineers as to the safety of this process. Extensive testing for aluminum erosion, surface profiling, and substrate weight loss was performed. This successful project clearly

  11. HASA: Hypersonic Aerospace Sizing Analysis for the Preliminary Design of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Harloff, Gary J.; Berkowitz, Brian M.

    1988-01-01

    A review of the hypersonic literature indicated that a general weight and sizing analysis was not available for hypersonic orbital, transport, and fighter vehicles. The objective here is to develop such a method for the preliminary design of aerospace vehicles. This report describes the developed methodology and provides examples to illustrate the model, entitled the Hypersonic Aerospace Sizing Analysis (HASA). It can be used to predict the size and weight of hypersonic single-stage and two-stage-to-orbit vehicles and transports, and is also relevant for supersonic transports. HASA is a sizing analysis that determines vehicle length and volume, consistent with body, fuel, structural, and payload weights. The vehicle component weights are obtained from statistical equations for the body, wing, tail, thermal protection system, landing gear, thrust structure, engine, fuel tank, hydraulic system, avionics, electral system, equipment payload, and propellant. Sample size and weight predictions are given for the Space Shuttle orbiter and other proposed vehicles, including four hypersonic transports, a Mach 6 fighter, a supersonic transport (SST), a single-stage-to-orbit (SSTO) vehicle, a two-stage Space Shuttle with a booster and an orbiter, and two methane-fueled vehicles.

  12. PREFACE: Trends in Aerospace Manufacturing 2009 International Conference

    NASA Astrophysics Data System (ADS)

    Ridgway, Keith; Gault, Rosemary; Allen, Adrian

    2011-12-01

    The aerospace industry is rapidly changing. New aircraft structures are being developed and aero-engines are becoming lighter and more environmentally friendly. In both areas, innovative materials and manufacturing methods are used in an attempt to get maximum performance for minimum cost. At the same time, the structure of the industry has changed and there has been a move from large companies designing, manufacturing components and assembling aircraft to one of large global supply chains headed by large system integrators. All these changes have forced engineers and managers to bring in innovations in design, materials, manufacturing technologies and supply chain management. In September 2009, the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield held the inaugural Trends in Aerospace Manufacturing conference (TRAM09). This brought together 28 speakers over two days, who presented in sessions on advanced manufacturing trends for the aerospace sector. Areas covered included new materials, including composites, advanced machining, state of the art additive manufacturing techniques, assembly and supply chain issues.

  13. IPAD applications to the design, analysis, and/or machining of aerospace structures. [Integrated Program for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    Blackburn, C. L.; Dovi, A. R.; Kurtze, W. L.; Storaasli, O. O.

    1981-01-01

    A computer software system for the processing and integration of engineering data and programs, called IPAD (Integrated Programs for Aerospace-Vehicle Design), is described. The ability of the system to relieve the engineer of the mundane task of input data preparation is demonstrated by the application of a prototype system to the design, analysis, and/or machining of three simple structures. Future work to further enhance the system's automated data handling and ability to handle larger and more varied design problems are also presented.

  14. The Need for an Aerospace Pharmacy Residency

    NASA Technical Reports Server (NTRS)

    Bayuse, T.; Schuyler, C.; Bayuse, Tina M.

    2007-01-01

    This viewgraph poster presentation reviews the rationale for a call for a new program in residency for aerospace pharmacy. Aerospace medicine provides a unique twist on traditional medicine, and a specialty has evolved to meet the training for physicians, and it is becoming important to develop such a program for training in pharmacy designed for aerospace. The reasons for this specialist training are outlined and the challenges of developing a program are reviewed.

  15. It's not just the alcohol: gender, alcohol use, and intimate partner violence in Mae La refugee camp, Thailand, 2009.

    PubMed

    Ezard, Nadine

    2014-05-01

    Alcohol use is common in many conflict-displaced populations; population perspectives of alcohol use have not been well studied. Interviews were conducted with a convenience sample of 97 people (September-December 2009) in Mae La, a long-standing refugee camp on the Thai-Burma border, and analyzed thematically. Intimate partner violence (IPV) emerged as a prominent theme, with four subthemes: alcohol use is subject to strongly gendered social controls; alcohol use is changing under the pressures of displacement; IPV is an emergent alcohol-related harm; the relationship between IPV and alcohol is complex. The study's limitations are noted, and future practice and research directions are discussed. PMID:24377756

  16. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships and 10 or 12 week fellowships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Approximately 150 interns are selected to participate in this program and begin arriving the second week in May. Each intern is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1995.

  17. Recent GRC Aerospace Technologies Applicable to Terrestrial Energy Systems

    NASA Technical Reports Server (NTRS)

    Kankam, David; Lyons, Valerie J.; Hoberecht, Mark A.; Tacina, Robert R.; Hepp, Aloysius F.

    2000-01-01

    This paper is an overview of a wide range of recent aerospace technologies under development at the NASA Glenn Research Center, in collaboration with other NASA centers, government agencies, industry and academia. The focused areas are space solar power, advanced power management and distribution systems, Stirling cycle conversion systems, fuel cells, advanced thin film photovoltaics and batteries, and combustion technologies. The aerospace-related objectives of the technologies are generation of space power, development of cost-effective and reliable, high performance power systems, cryogenic applications, energy storage, and reduction in gas-turbine emissions, with attendant clean jet engines. The terrestrial energy applications of the technologies include augmentation of bulk power in ground power distribution systems, and generation of residential, commercial and remote power, as well as promotion of pollution-free environment via reduction in combustion emissions.

  18. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships and 10 or 12 week fellowships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Approximately 200 interns are selected to participate in this program and begin arriving the second week in May. Each intern is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1994.

  19. Unification - An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Scientific and Technical Information (STI) represents the results of large investments in research and development (R&D) and the expertise of a nation and is a valuable resource. For more than four decades, NASA and its predecessor organizations have developed and managed the preeminent aerospace information system. NASA obtains foreign materials through its international exchange relationships, continually increasing the comprehensiveness of the NASA Aerospace Database (NAD). The NAD is de facto the international aerospace database. This paper reviews current NASA goals and activities with a view toward maintaining compatibility among international aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  20. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  1. Aerospace Activities in the Elementary School

    ERIC Educational Resources Information Center

    Jones, Robert M.; Wiggins, Kenneth E.

    1974-01-01

    Describes 17 activities which are aerospace oriented and yet provide an interdisciplinary approach to learning. Some of the activities described involve paper airplanes, parachutes, model rockets, etc. (BR)

  2. Cybersecurity for aerospace autonomous systems

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  3. Aerospace materials for nonaerospace applications

    NASA Technical Reports Server (NTRS)

    Johnston, R. L.; Dawn, F. S.

    1974-01-01

    Many of the flame-resistant nonmetallic materials that were developed for the Apollo and Skylab programs are discussed for commercial and military applications. Interchanges of information are taking place with the government agencies, industries, and educational institutions, which are interested in applications of fire-safe nonmetallic materials. These materials are particularly applicable to the design of aircraft, mass transit interiors, residential and public building constructions, nursing homes and hospitals, and to other fields of fire safety applications. Figures 22, 23 and 24 show the potential nonaerospace applications of flame-resistant aerospace materials are shown.

  4. Aerospace Medical Support in Russia

    NASA Technical Reports Server (NTRS)

    Castleberry, Tara; Chamberlin, Blake; Cole, Richard; Dowell, Gene; Savage, Scott

    2011-01-01

    This slide presentation reviews the role of the flight surgeon in support of aerospace medical support operations at the Gagarin Cosmonaut Training Center (GCTC), also known as Star City, in Russia. The flight surgeon in this role is the medical advocate for non-russian astronauts, and also provides medical care for illness and injury for astronauts, family members, and guests as well as civil servants and contractors. The flight surgeon also provides support for hazardous training. There are various photos of the area, and the office, and some of the equipment that is used.

  5. Aerospace Payloads Leak Test Methodology

    NASA Technical Reports Server (NTRS)

    Lvovsky, Oleg; Grayson, Cynthia M.

    2010-01-01

    Pressurized and sealed aerospace payloads can leak on orbit. When dealing with toxic or hazardous materials, requirements for fluid and gas leakage rates have to be properly established, and most importantly, reliably verified using the best Nondestructive Test (NDT) method available. Such verification can be implemented through application of various leak test methods that will be the subject of this paper, with a purpose to show what approach to payload leakage rate requirement verification is taken by the National Aeronautics and Space Administration (NASA). The scope of this paper will be mostly a detailed description of 14 leak test methods recommended.

  6. National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    Piland, William M.

    1987-01-01

    An account is given of the technology development management objectives thus far planned for the DOD/NASA National Aero-Space Plane (NASP). The technology required by NASP will first be developed in ground-based facilities and then integrated during the design and construction of the X-30 experimental aircraft. Five airframe and three powerplant manufacturers are currently engaged in an 18-month effort encompassing design studies and tradeoff analyses. The first flight of the X-30 is scheduled for early 1993.

  7. Development and application of microwave assisted extraction (MAE) for the extraction of five polycyclic aromatic hydrocarbons in sediment samples in Johannesburg area, South Africa.

    PubMed

    Sibiya, Precious; Chimuka, Luke; Cukrowska, Ewa; Tutu, Hlanganani

    2013-07-01

    A microwave-assisted extraction (MAE) method was verified and applied for the extraction of polycyclic aromatic hydrocarbons (PAHs) in sediment samples. Soxhlet extraction was used as the reference method. The optimum MAE was carried out with 20 mL of hexane/acetone (1:1, v/v) mixture in a 1-g sample at 250 W for 20 min. Soxhlet extraction was carried out with 250 mL of dichloromethane:hexane (1:1, v/v) mixture in a 15-g sample for 24 h in a water bath maintained at 60 °C. The collected extracts were both cleaned up, reduced to 1 mL under nitrogen and then injected into an HPLC fluorescence. To increase the sample throughput, simultaneous MAE was performed. The obtained percentage recoveries ranged from 61 to 93 and 88-98 for MAE and SE, respectively. The optimised MAE method was validated using certified reference material. It was then applied to real sediment samples from in and around the greater Johannesburg area. The sediments from Jukskei River were found to be the most polluted while Hartbeespoort Dam sediments were found to be least polluted. The overall order of concentrations for the studied PAHs per site was as follows: Jukskei River > Kempton Park > Centurion Dams > Natalspruit River (PIT) > Hartbeespoort Dam. PMID:23108712

  8. Additional Burden of Diseases Associated with Cadmium Exposure: A Case Study of Cadmium Contaminated Rice Fields in Mae Sot District, Tak Province, Thailand

    PubMed Central

    Songprasert, Nisarat; Sukaew, Thitiporn; Kusreesakul, Khanitta; Swaddiwudhipong, Witaya; Padungtod, Chantana; Bundhamcharoen, Kanitta

    2015-01-01

    The cadmium (Cd) contaminated rice fields in Mae Sot District, Tak Province, Thailand has been one of the major environmental problems in Thailand for the last 10 years. We used disability adjusted life years (DALYs) to estimate the burden of disease attributable to Cd in terms of additional DALYs of Mae Sot residents. Cd exposure data included Cd and β2–microglobulin (β2-MG) in urine (as an internal exposure dose) and estimated cadmium daily intake (as an external exposure dose). Compared to the general Thai population, Mae Sot residents gained 10%–86% DALYs from nephrosis/nephritis, heart diseases, osteoporosis and cancer depending on their Cd exposure type and exposure level. The results for urinary Cd and dietary Cd intake varied according to the studies used for risk estimation. The ceiling effect was observed in results using dietary Cd intake because of the high Cd content in rice grown in the Mae Sot area. The results from β2-MG were more robust with additional DALYs ranging from 36%–86% for heart failure, cerebral infarction, and nephrosis/nephritis. Additional DALYs is a useful approach for assessing the magnitude of environmental Cd exposure. The Mae Sot population lost more healthy life compared to populations living in a non- or less Cd polluted area. This method should be applicable to various types of environmental contamination problems if exposure assessment information is available. PMID:26262629

  9. Technical Reports: Langley Aerospace Research Summer Scholars. Part 1

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  10. 76 FR 58776 - U.S. Aerospace Supplier & Investment Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    .... 10:30-11:00 Coffee Break-- Networking. 11:00-12:30 Presentations: Canada's Aerospace Market, Quebec's... aerospace sub-markets was often in the top 5. Industry estimates expected Canada's aerospace sector...

  11. Changes in depositional environments from Ordovician to tertiary of carbonate rocks in Tak-Mae Sod area, Northwest Thailand

    NASA Astrophysics Data System (ADS)

    Ratanasthien, Benjavun

    Carbonate rocks ranging in age from Ordovician to Tertiary along the Tak-Mae Sod and Mae Sod-Umphang highways were analysed mineralogically, petrographically, and geochemically. The study revealed the depositional environment of the mainly chemical precipitated Ordovician carbonate rocks to be in shallow (lagoonal?) waters of a warm climate. The Carboniferous carbonates were chemically deposited in moderately deep to deep water as indicated by siliceous limestone composed mainly of calcite and radiolarian chert and/or interbedded chert bands. The environment changed to shallower water during the Permo-Carboniferous as seen in the Pra Woh Limestone. The carbonates are characterized by pale colour dolomite, dolomitic limestone and calcareous sandstone. They are sometimes, fossiliferous, mainly bryozoa, foraminifera, corals, gastropods and bivalves. During Triassic to Jurassic, the carbonates were deposited in comparatively shallow and/or closed basins as indicated by alternating sequences of dark to black limestone, calcareous shale and calcareous sandstone. The rocks are composed of high carbonaceous material and clays with few fossils associated. The environment changed to brackish and eventually to fresh water during the Tertiary indicated by fossiliferous limestone (pelycypods and gastropods) and dolomitic limestone which are chemically precipitated in fresh water.

  12. Ultrasonic Characterization of Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  13. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  14. Optical Information Processing for Aerospace Applications 2

    NASA Technical Reports Server (NTRS)

    Stermer, R. L. (Compiler)

    1984-01-01

    Current research in optical processing, and determination of its role in future aerospace systems was reviewed. It is shown that optical processing offers significant potential for aircraft and spacecraft control, pattern recognition, and robotics. It is demonstrated that the development of optical devices and components can be implemented in practical aerospace configurations.

  15. High Flight. Aerospace Activities, K-12.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  16. The 42nd Aerospace Mechanism Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor); Hakun, Claef (Editor)

    2014-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development, and flight certification of new mechanisms.

  17. NASA Elementary Aerospace Activities Free to Members

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1978

    1978-01-01

    Describes the contents of Elementary School Aerospace Activities: A Resource for Teachers. Activities examine a variety of topics in aerospace education and are intended to be used with children ages 5-11. The book is available from the Government Printing Office (GPO) for $3.00. (CP)

  18. Aerospace Power Technology for Potential Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.

    2012-01-01

    Aerospace technology that is being developed for space and aeronautical applications has great potential for providing technical advances for terrestrial power systems. Some recent accomplishments arising from activities being pursued at the National Aeronautics and Space Administration (NASA) Centers is described in this paper. Possible terrestrial applications of the new aerospace technology are also discussed.

  19. The 29th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Editor)

    1995-01-01

    The proceedings of the 29th Aerospace Mechanisms Symposium, which was hosted by NASA Johnson Space Center and held at the South Shore Harbour Conference Facility on May 17-19, 1995, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft.

  20. The 28th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Rohn, Douglas A. (Compiler)

    1994-01-01

    The proceedings of the 28th Aerospace Mechanisms Symposium, which was hosted by the NASA Lewis Research Center and held at the Cleveland Marriott Society Center on May 18, 19, and 20, 1994, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft.

  1. The 26th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The proceedings of the 26th Aerospace Mechanisms Symposium, which was held at the Goddard Space Flight Center on May 13, 14, and 15, 1992 are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors and other mechanisms for large space structures.

  2. Aerospace Resources for Science and Technology Education.

    ERIC Educational Resources Information Center

    Maley, Donald, Ed.; Smith, Kenneth L., Ed.

    This publication on Aerospace Programs is a special edition of "Technology Education" featuring descriptions of 15 select aerospace education programs from diverse localities spanning the full range of instructional levels. Following introductory material, the monograph contains the following largely unedited program descriptions: (1) summaries of…

  3. The 27th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Mancini, Ron (Compiler)

    1993-01-01

    The proceedings of the 27th Aerospace Mechanisms Symposium, which was held at ARC, Moffett Field, California, on 12-14 May 1993, are reported. Technological areas covered include the following: actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, robotic mechanisms, and other mechanisms for large space structures.

  4. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 3:] Technical communications in aeronautics: Results of an exploratory study. An analysis of profit managers' and nonprofit managers' responses

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Myron; Barclay, Rebecca O.; Oliu, Walter E.

    1989-01-01

    Data collected from an exploratory study concerned with the technical communications practices of aerospace engineers and scientists were analyzed to test the primary assumption that profit and nonprofit managers in the aerospace community have different technical communications practices. Five assumptions were established for the analysis. Profit and nonprofit managers in the aerospace community were found to have different technical communications practices for one of the five assumptions tested. It was, therefore, concluded that profit and nonprofit managers in the aerospace community do not have different technical communications practices.

  5. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  6. Silicon Carbide Technologies for Lightweighted Aerospace Mirrors

    NASA Astrophysics Data System (ADS)

    Matson, L.; Chen, M.; Deblonk, B.; Palusinski, I.

    The use of monolithic glass and beryllium to produce lightweighted aerospace mirror systems has reached its limits due to the long lead times, high processing costs, environmental effects and launch load/weight requirements. New material solutions and manufacturing processes are required to meet DoD's directed energy weapons, reconnaissance/surveillance, and secured communications needs. Over the past several years the Air Force, MDA, and NASA has focused their efforts on the fabrication, lightweighting, and scale-up of numerous silicon carbide (SiC) based materials. It is anticipated that SiC can be utilized for most applications from cryogenic to high temperatures. This talk will focus on describing the SOA for these (near term) SiC technology solutions for making mirror structural substrates, figuring and finishing technologies being investigated to reduce cost time and cost, and non-destructive evaluation methods being investigated to help eliminate risk. Mirror structural substrates made out of advanced engineered materials (far term solutions) such as composites, foams, and microsphere arrays for ultra lightweighting will also be briefly discussed.

  7. Nondestructive Evaluation for Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Cramer, Elliott; Perey, Daniel

    2015-01-01

    Nondestructive evaluation (NDE) techniques are important for enabling NASA's missions in space exploration and aeronautics. The expanded and continued use of composite materials for aerospace components and vehicles leads to a need for advanced NDE techniques capable of quantitatively characterizing damage in composites. Quantitative damage detection techniques help to ensure safety, reliability and durability of space and aeronautic vehicles. This presentation will give a broad outline of NASA's range of technical work and an overview of the NDE research performed in the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center. The presentation will focus on ongoing research in the development of NDE techniques for composite materials and structures, including development of automated data processing tools to turn NDE data into quantitative location and sizing results. Composites focused NDE research in the areas of ultrasonics, thermography, X-ray computed tomography, and NDE modeling will be discussed.

  8. Energy Storage for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.

    2001-01-01

    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.

  9. Automated design of aerospace structures

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Mccomb, H. G.

    1974-01-01

    The current state-of-the-art in structural analysis of aerospace vehicles is characterized, automated design technology is discussed, and an indication is given of the future direction of research in analysis and automated design. Representative computer programs for analysis typical of those in routine use in vehicle design activities are described, and results are shown for some selected analysis problems. Recent and planned advances in analysis capability are indicated. Techniques used to automate the more routine aspects of structural design are discussed, and some recently developed automated design computer programs are described. Finally, discussion is presented of early accomplishments in interdisciplinary automated design systems, and some indication of the future thrust of research in this field is given.

  10. ASAP Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the First Quarterly Report for the newly reconstituted Aerospace Safety Advisory Panel (ASAP). The NASA Administrator rechartered the Panel on November 18,2003, to provide an independent, vigilant, and long-term oversight of NASA's safety policies and programs well beyond Return to Flight of the Space Shuttle. The charter was revised to be consistent with the original intent of Congress in enacting the statute establishing ASAP in 1967 to focus on NASA's safety and quality systems, including industrial and systems safety, risk-management and trend analysis, and the management of these activities.The charter also was revised to provide more timely feedback to NASA by requiring quarterly rather than annual reports, and by requiring ASAP to perform special assessments with immediate feedback to NASA. ASAP was positioned to help institutionalize the safety culture of NASA in the post- Stafford-Covey Return to Flight environment.

  11. 43rd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A.

    2016-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Sponsored and organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 43rd symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 43rd AMS was held in Santa Clara, California on May 4, 5 and 6, 2016. During these three days, 42 papers were presented. Topics included payload and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and mechanism testing. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The high quality of this symposium is a result of the work of many people, and their efforts are gratefully acknowledged. This extends to the voluntary members of the symposium organizing committee representing the eight NASA field centers, LMSSC, and the European Space Agency. Appreciation is also extended to the session chairs, the authors, and particularly the personnel at ARC responsible for the symposium arrangements and the publication of these proceedings. A sincere thank you also goes to the symposium executive committee who is responsible for the year-to-year management of the AMS, including paper processing and preparation of the program. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

  12. Conceptual design for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Gratzer, Louis B.

    1989-01-01

    The designers of aircraft and more recently, aerospace vehicles have always struggled with the problems of evolving their designs to produce a machine which would perform its assigned task(s) in some optimum fashion. Almost invariably this involved dealing with more variables and constraints than could be handled in any computationally feasible way. With the advent of the electronic digital computer, the possibilities for introducing more variable and constraints into the initial design process led to greater expectations for improvement in vehicle (system) efficiency. The creation of the large scale systems necessary to achieve optimum designs has, for many reason, proved to be difficult. From a technical standpoint, significant problems arise in the development of satisfactory algorithms for processing of data from the various technical disciplines in a way that would be compatible with the complex optimization function. Also, the creation of effective optimization routines for multi-variable and constraint situations which could lead to consistent results has lagged. The current capability for carrying out the conceptual design of an aircraft on an interdisciplinary bases was evaluated to determine the need for extending this capability, and if necessary, to recommend means by which this could be carried out. Based on a review of available documentation and individual consultations, it appears that there is extensive interest at Langley Research Center as well as in the aerospace community in providing a higher level of capability that meets the technical challenges. By implication, the current design capability is inadequate and it does not operate in a way that allows the various technical disciplines to participate and cooperately interact in the design process. Based on this assessment, it was concluded that substantial effort should be devoted to developing a computer-based conceptual design system that would provide the capability needed for the near

  13. The Center for Aerospace Research: A NASA Center of Excellence at North Carolina Agricultural and Technical State University

    NASA Technical Reports Server (NTRS)

    Lai, Steven H.-Y.

    1992-01-01

    This report documents the efforts and outcomes of our research and educational programs at NASA-CORE in NCA&TSU. The goal of the center was to establish a quality aerospace research base and to develop an educational program to increase the participation of minority faculty and students in the areas of aerospace engineering. The major accomplishments of this center in the first year are summarized in terms of three different areas, namely, the center's research programs area, the center's educational programs area, and the center's management area. In the center's research programs area, we focus on developing capabilities needed to support the development of the aerospace plane and high speed civil transportation system technologies. In the educational programs area, we developed an aerospace engineering option program ready for university approval.

  14. Spectroscopic Measurement Techniques for Aerospace Flows

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Johansen, Craig T.; Cutler, Andrew D.; Hurley, Samantha

    2014-01-01

    The conditions that characterize aerospace flows are so varied, that a single diagnostic technique is not sufficient for its measurement. Fluid dynamists use knowledge of similarity to help categorize and focus on different flow conditions. For example, the Reynolds number represents the ratio of inertial to viscous forces in a flow. When the velocity scales, length scales, and gas density are large and the magnitude of the molecular viscosity is low, the Reynolds number becomes large. This corresponds to large scale vehicles (e.g Airbus A380), fast moving objects (e.g. artillery projectiles), vehicles in dense fluids (e.g. submarine in water), or flows with low dynamic viscosity (e.g. skydiver in air). In each of these cases, the inertial forces dominate viscous forces, and unsteady turbulent fluctuations in the flow variables are observed. In contrast, flows with small length scales (e.g. dispersion of micro-particles in a solid rocket nozzle), slow moving objects (e.g. micro aerial vehicles), flows with low density gases (e.g. atmospheric re-entry), or fluids with a large magnitude of viscosity (e.g. engine coolant flow), all have low Reynolds numbers. In these cases, viscous forces become very important and often the flows can be steady and laminar. The Mach number, which is the ratio of the velocity to the speed of sound in the medium, also helps to differentiate types of flows. At very low Mach numbers, acoustic waves travel much faster than the object, and the flow can be assumed to be incompressible (e.g. Cessna 172 aircraft). As the object speed approaches the speed of sound, the gas density can become variable (e.g. flow over wing of Learjet 85). When the object speed is higher than the speed of sound (Ma > 1), the presences of shock waves and other gas dynamic features can become important to the vehicle performance (e.g. SR-71 Blackbird). In the hypersonic flow regime (Ma > 5), large changes in temperature begin to affect flow properties, causing real

  15. An overview of the British Aerospace HOTOL transatmospheric vehicle

    NASA Technical Reports Server (NTRS)

    Mesnard, J.

    1986-01-01

    British Aerospace's space-going aircraft and economical launcher Hotol, so named for its horizontal take-off and landing ability, is described. The craft uses Rolls Royce's new Swallow engine, the principle behind which is still secret, which burns atmospheric oxygen until it leaves the atmosphere and then switches to liquid oxygen. This lightens the craft's fuel load tremendously, so that it can carry significant payloads and still take off and land like a normal airplane. A typical future mission for the craft is described.

  16. Directory of aerospace safety specialized information sources, volume 2

    NASA Technical Reports Server (NTRS)

    Rubinstein, R. I.; Pinto, J. J.; Meschkow, S. Z.

    1976-01-01

    A handbook of organizations and experts in specific and well-defined areas of safety technology is presented. It is designed for the safety specialist as an aid for locating both information sources and individual points of contact (experts) in engineering related fields. The file covers sources of data in aerospace design, tests, and operations, as well as information on hazard and failure cause identification, accident analysis, and materials characteristics. Other related areas include the handling and transportation of hazardous chemicals, radioactive isotopes, and liquified natural gases.

  17. Aerospace Threaded Fastener Strength in Combined Shear and Tension Loading

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.; Wingate, R. J.

    2012-01-01

    A test program was initiated by Marshall Space Flight Center and sponsored by the NASA Engineering and Safety Center to characterize the failure behavior of a typical high-strength aerospace threaded fastener under a range of shear to tension loading ratios for both a nut and an insert configuration where the shear plane passes through the body and threads, respectively. The testing was performed with a customized test fixture designed to test a bolt with a single shear plane at a discrete range of loading angles. The results provide data to compare against existing combined loading failure criteria and to quantify the bolt strength when the shear plane passes through the threads.

  18. Making aerospace technology work for the automotive industry - Introduction

    NASA Technical Reports Server (NTRS)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  19. The development of aerospace polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1983-01-01

    Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.

  20. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA's patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 34: Users and uses of DOD technical reports: A report from the field

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    The NASA/DoD Aerospace Knowledge Diffusion Research Project attempts to understand the information environment in which U.S. aerospace engineers and scientists work, the information-seeking behavior of U.S. aerospace engineers and scientists, and the factors that influence the use of scientific and technical information (STI) (Pinelli, Barclay, and Kennedy, 1991). Such an understanding could (1) lead to the development of practical theory, (2) contribute to the design and development of aerospace information systems, and (3) have practical implications for transferring the results of federally funded aerospace research and development (R&D) to the U.S. aerospace community. This paper presents data from two information-seeking behavior studies involving U.S. aerospace engineers and scientists that were undertaken as Phase 1 activities of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Responses from three groups of respondents - DoD, other government, and industry - are presented for two sets of selected questions. One set focuses on DoD technical reports: their use and importance, reasons for non-use, the factors affecting their use, the sources used to find out about them and the sources used to physically obtain them, and the quality of DoD technical reports. The second set focuses on information sources used in problem solving: the use of U.S. government technical reports in problem solving and the information sources used to find out about U.S. government technical reports.

  2. The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of the conference are reported. The conference focussed on lightning protection, detection, and forecasting. The conference was divided into 26 sessions based on research in lightning, static electricity, modeling, and mapping. These sessions spanned the spectrum from basic science to engineering, concentrating on lightning prediction and detection and on safety for ground facilities, aircraft, and aerospace vehicles.

  3. Evaluation of the Selective Dissemination of Information (SDI) Program for the Aerospace Materials Information Center.

    ERIC Educational Resources Information Center

    Scheffler, F. L.; March, J. F.

    The Aerospace Materials Information Center (AMIC) Selective Dissemination of Information (SDI) program was evaluated by an interview technique after one year of operation. The data base for the SDI consists of the periodic document index records input to the AMIC system. The users are 63 engineers, scientists, and technical administrators at the…

  4. Aerospace medicine and biology: A continuing bibliography with indexes (supplement 353)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 238 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in August 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, biotechnology, human factors engineering, and flight crew behavior and performance.

  5. Analysis of dextromethorphan and dextrorphan in decomposed skeletal tissues by microwave assisted extraction, microplate solid-phase extraction and gas chromatography- mass spectrometry (MAE-MPSPE-GCMS).

    PubMed

    Fraser, Candice D; Cornthwaite, Heather M; Watterson, James H

    2015-08-01

    Analysis of decomposed skeletal tissues for dextromethorphan (DXM) and dextrorphan (DXT) using microwave assisted extraction (MAE), microplate solid-phase extraction (MPSPE) and gas chromatography-mass spectrometry (GC-MS) is described. Rats (n = 3) received 100 mg/kg DXM (i.p.) and were euthanized by CO2 asphyxiation roughly 20 min post-dose. Remains decomposed to skeleton outdoors and vertebral bones were recovered, cleaned, and pulverized. Pulverized bone underwent MAE using methanol as an extraction solvent in a closed microwave system, followed by MPSPE and GC-MS. Analyte stability under MAE conditions was assessed and found to be stable for at least 60 min irradiation time. The majority (>90%) of each analyte was recovered after 15 min. The MPSPE-GCMS method was fit to a quadratic response (R(2)  > 0.99), over the concentration range 10-10 000 ng⋅mL(-1) , with coefficients of variation <20% in triplicate analysis. The MPSPE-GCMS method displayed a limit of detection of 10 ng⋅mL(-1) for both analytes. Following MAE for 60 min (80 °C, 1200 W), MPSPE-GCMS analysis of vertebral bone of DXM-exposed rats detected both analytes in all samples (DXM: 0.9-1.5 µg⋅g(-1) ; DXT: 0.5-1.8 µg⋅g(-1) ). PMID:25487525

  6. Unification - An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  7. Fire response test methods for aerospace materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.

    1978-01-01

    Fire response methods which may be suitable for materials intended for aircraft and aerospace applications are presented. They address ignitability, smolder susceptibility, oxygen requirement, flash fire propensity, fire spread, heat release, fire containment, smoke evolution, and toxic gas evolution.

  8. Aerospace Medicine and Biology: Cumulative index, 1979

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This publication is a cumulative index to the abstracts contained in the Supplements 190 through 201 of 'Aerospace Medicine and Biology: A Continuing Bibliography.' It includes three indexes-subject, personal author, and corporate source.

  9. Fred Haise Honored at Aerospace Appreciation Night

    NASA Video Gallery

    Retired NASA astronaut and test pilot Fred Haise was honored recently by the Lancaster, Calif., Jethawks baseball team at its Aerospace Appreciation Night. Best known as one of the Apollo 13 crew, ...

  10. New insulation constructions for aerospace wiring applications

    NASA Technical Reports Server (NTRS)

    Slenski, George

    1994-01-01

    Outlined in this presentation is the background to insulation constructions for aerospace wiring applications, the Air Force wiring policy, the purpose and contract requirements of new insulation constructions, the test plan, and the test results.

  11. Unification: An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1991-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace business. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a view toward developing a scenario for establishing an international aerospace data base, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  12. The 11th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Mechanical devices and drives developed for aerospace applications are described. Satellite flywheels, magnetic bearings, a missile umbilical system, a cartridge firing device, and an oiler for satellite bearing lubrication are among the topics discussed.

  13. The 20th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Numerous topics related to aerospace mechanisms were discussed. Deployable structures, electromagnetic devices, tribology, hydraulic actuators, positioning mechanisms, electric motors, communication satellite instruments, redundancy, lubricants, bearings, space stations, rotating joints, and teleoperators are among the topics covered.

  14. The 25th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Twenty-two papers are documented regarding aeronautical and spacecraft hardware. Technological areas include actuators, latches, cryogenic mechanisms, vacuum tribology, bearings, robotics, ground support equipment for aerospace applications, and other mechanisms.

  15. Unification: An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.; Carroll, Bonnie C.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  16. The 24th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The proceedings of the symposium are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, and other mechanisms for large space structures.

  17. The 12th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mechanisms developed for various aerospace applications are discussed. Specific topics covered include: boom release mechanisms, separation on space shuttle orbiter/Boeing 747 aircraft, payload handling, spaceborne platform support, and deployment of spaceborne antennas and telescopes.

  18. Novel Wiring Technologies for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  19. NASA Ames aerospace systems directorate research

    NASA Technical Reports Server (NTRS)

    Albers, James A.

    1991-01-01

    The Aerospace Systems Directorate is one of four research directorates at the NASA Ames Research Center. The Directorate conducts research and technology development for advanced aircraft and aircraft systems in intelligent computational systems and human-machine systems for aeronautics and space. The Directorate manages research and aircraft technology development projects, and operates and maintains major wind tunnels and flight simulation facilities. The Aerospace Systems Directorate's research and technology as it relates to NASA agency goals and specific strategic thrusts are discussed.

  20. Crew factors in the aerospace workplace

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Foushee, H. C.

    1990-01-01

    The effects of technological change in the aerospace workplace on pilot performance are discussed. Attention is given to individual and physiological problems, crew and interpersonal problems, environmental and task problems, organization and management problems, training and intervention problems. A philosophy and conceptual framework for conducting research on these problems are presented and two aerospace studies are examined which investigated: (1) the effect of leader personality on crew effectiveness and (2) the working undersea habitat known as Aquarius.

  1. In Vitro Antibacterial Activity of a Novel Resin-Based Pulp Capping Material Containing the Quaternary Ammonium Salt MAE-DB and Portland Cement

    PubMed Central

    Zhang, Hongchen; Zhou, Wei; Ban, Jinghao; Wei, Jingjing; Liu, Yan; Gao, Jing; Chen, Jihua

    2014-01-01

    Background Vital pulp preservation in the treatment of deep caries is challenging due to bacterial infection. The objectives of this study were to synthesize a novel, light-cured composite material containing bioactive calcium-silicate (Portland cement, PC) and the antimicrobial quaternary ammonium salt monomer 2-methacryloxylethyl dodecyl methyl ammonium bromide (MAE-DB) and to evaluate its effects on Streptococcus mutans growth in vitro. Methods The experimental material was prepared from a 2∶1 ratio of PC mixed with a resin of 2-hydroxyethylmethacrylate, bisphenol glycerolate dimethacrylate, and triethylene glycol dimethacrylate (4∶3∶1) containing 5 wt% MAE-DB. Cured resin containing 5% MAE-DB without PC served as the positive control material, and resin without MAE-DB or PC served as the negative control material. Mineral trioxide aggregate (MTA) and calcium hydroxide (Dycal) served as commercial controls. S. mutans biofilm formation on material surfaces and growth in the culture medium were tested according to colony-forming units (CFUs) and metabolic activity after 24 h incubation over freshly prepared samples or samples aged in water for 6 months. Biofilm formation was also assessed by Live/Dead staining and scanning electron microscopy. Results S. mutans biofilm formation on the experimental material was significantly inhibited, with CFU counts, metabolic activity, viability staining, and morphology similar to those of biofilms on the positive control material. None of the materials affected bacterial growth in solution. Contact-inhibition of biofilm formation was retained by the aged experimental material. Significant biofilm formation was observed on MTA and Dycal. Conclusion The synthesized material containing HEMA-BisGMA-TEGDMA resin with MAE-DB as the antimicrobial agent and PC to support mineralized tissue formation inhibited S. mutans biofilm formation even after aging in water for 6 months, but had no inhibitory effect on bacteria in solution

  2. Terrestrial environment (climatic) criteria guidelines for use in aerospace vehicle development

    NASA Technical Reports Server (NTRS)

    Turner, R. E. (Compiler); Hill, C. K. (Compiler)

    1982-01-01

    Guidelines on terrestrial environment data specifically applicable for NASA aerospace vehicles and associated equipment development are provided. The general distribution of natural environmental extremes in the conterminous United States that may be needed to specify design criteria in the transportation of space vehicle subsystems and components is considered. Atmospheric attenuation was included, since certain Earth orbital experiment missions are influenced by the Earth's atmosphere. Climatic extremes for worldwide operational needs is also included. Atmospheric chemistry, seismic criteria, and a mathematical model to predict atmospheric dispersion of aerospace engine exhaust cloud rise and growth are discussed. Atmospheric cloud phenomena are considered.

  3. Current research activities at the NASA-sponsored Illinois Computing Laboratory of Aerospace Systems and Software

    NASA Technical Reports Server (NTRS)

    Smith, Kathryn A.

    1994-01-01

    The Illinois Computing Laboratory of Aerospace Systems and Software (ICLASS) was established to: (1) pursue research in the areas of aerospace computing systems, software and applications of critical importance to NASA, and (2) to develop and maintain close contacts between researchers at ICLASS and at various NASA centers to stimulate interaction and cooperation, and facilitate technology transfer. Current ICLASS activities are in the areas of parallel architectures and algorithms, reliable and fault tolerant computing, real time systems, distributed systems, software engineering and artificial intelligence.

  4. Aerospace Technology Innovation. Volume 10

    NASA Technical Reports Server (NTRS)

    Turner, Janelle (Editor); Cousins, Liz (Editor); Bennett, Evonne (Editor); Vendette, Joel (Editor); West, Kenyon (Editor)

    2002-01-01

    Whether finding new applications for existing NASA technologies or developing unique marketing strategies to demonstrate them, NASA's offices are committed to identifying unique partnering opportunities. Through their efforts NASA leverages resources through joint research and development, and gains new insight into the core areas relevant to all NASA field centers. One of the most satisfying aspects of my job comes when I learn of a mission-driven technology that can be spun-off to touch the lives of everyday people. NASA's New Partnerships in Medical Diagnostic Imaging is one such initiative. Not only does it promise to provide greater dividends for the country's investment in aerospace research, but also to enhance the American quality of life. This issue of Innovation highlights the new NASA-sponsored initiative in medical imaging. Early in 2001, NASA announced the launch of the New Partnerships in Medical Diagnostic Imaging initiative to promote the partnership and commercialization of NASA technologies in the medical imaging industry. NASA and the medical imaging industry share a number of crosscutting technologies in areas such as high-performance detectors and image-processing tools. Many of the opportunities for joint development and technology transfer to the medical imaging market also hold the promise for future spin back to NASA.

  5. Graphite Nanoreinforcements for Aerospace Nanocomposites

    NASA Technical Reports Server (NTRS)

    Drzal, Lawrence T.

    2005-01-01

    New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.

  6. Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Miller, Charles G.

    1998-01-01

    Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamics and physical processes, is the genesis for the design and development of advanced space transportation vehicles and provides crucial information to other disciplines such as structures, materials, propulsion, avionics, and guidance, navigation and control. Sources of aerothermodynamic information are ground-based facilities, Computational Fluid Dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this aerothermodynamic triad provides the optimum aerothermodynamic design to safely satisfy mission requirements while reducing design conservatism, risk and cost. The iterative aerothermodynamic process for initial screening/assessment of aerospace vehicle concepts, optimization of aerolines to achieve/exceed mission requirements, and benchmark studies for final design and establishment of the flight data book are reviewed. Aerothermodynamic methodology centered on synergism between ground-based testing and CFD predictions is discussed for various flow regimes encountered by a vehicle entering the Earth s atmosphere from low Earth orbit. An overview of the resources/infrastructure required to provide accurate/creditable aerothermodynamic information in a timely manner is presented. Impacts on Langley s aerothermodynamic capabilities due to recent programmatic changes such as Center reorganization, downsizing, outsourcing, industry (as opposed to NASA) led programs, and so forth are discussed. Sample applications of these capabilities to high Agency priority, fast-paced programs such as Reusable Launch Vehicle (RLV)/X-33 Phases I and 11, X-34, Hyper-X and X-38 are presented and lessons learned discussed. Lastly, enhancements in ground-based testing/CFD capabilities necessary to partially/fully satisfy future requirements are addressed.

  7. Technology Applications Team: Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Highlights of the Research Triangle Institute (RTI) Applications Team activities over the past quarter are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. The authors gratefully acknowledge the contributions of many individuals to the RTI Technology Applications Team program. The time and effort contributed by managers, engineers, and scientists throughout NASA were essential to program success. Most important to the program has been a productive working relationship with the NASA Field Center Technology Utilization (TU) Offices. The RTI Team continues to strive for improved effectiveness as a resource to these offices. Industry managers, technical staff, medical researchers, and clinicians have been cooperative and open in their participation. The RTI Team looks forward to continuing expansion of its interaction with U.S. industry to facilitate the transfer of aerospace technology to the private sector.

  8. NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.

  9. Energetic Combustion Devices for Aerospace Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2000-01-01

    Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.

  10. A Knowledge-Based System Developer for aerospace applications

    NASA Technical Reports Server (NTRS)

    Shi, George Z.; Wu, Kewei; Fensky, Connie S.; Lo, Ching F.

    1993-01-01

    A prototype Knowledge-Based System Developer (KBSD) has been developed for aerospace applications by utilizing artificial intelligence technology. The KBSD directly acquires knowledge from domain experts through a graphical interface then builds expert systems from that knowledge. This raises the state of the art of knowledge acquisition/expert system technology to a new level by lessening the need for skilled knowledge engineers. The feasibility, applicability , and efficiency of the proposed concept was established, making a continuation which would develop the prototype to a full-scale general-purpose knowledge-based system developer justifiable. The KBSD has great commercial potential. It will provide a marketable software shell which alleviates the need for knowledge engineers and increase productivity in the workplace. The KBSD will therefore make knowledge-based systems available to a large portion of industry.

  11. Perspectives on Advanced Learning Technologies and Learning Networks and Future Aerospace Workforce Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    An overview of the advanced learning technologies is given in this presentation along with a brief description of their impact on future aerospace workforce development. The presentation is divided into five parts (see Figure 1). In the first part, a brief historical account of the evolution of learning technologies is given. The second part describes the current learning activities. The third part describes some of the future aerospace systems, as examples of high-tech engineering systems, and lists their enabling technologies. The fourth part focuses on future aerospace research, learning and design environments. The fifth part lists the objectives of the workshop and some of the sources of information on learning technologies and learning networks.

  12. Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Vaughan, William W.

    2004-01-01

    Aerospace Meteorology provides the identification of that aspect of meteorology that is concerned with the definition and modeling of atmospheric parameters for use in aerospace vehicle development, mission planning and operational capability assessments. One of the principal sources of this information is the NASA-HDBK-1001 "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development'. This handbook was approved by the NASA Chief Engineer in 2000 as a NASA Preferred Technical Standard . Its technical contents were based on natural environment statistics/models and criteria developed mostly in the early 1990's. A task was approved to completely update the handbook to reflect the current state-of-the-art in the various terrestrial environment climatic areas.

  13. The K-1 reusable aerospace vehicle: managing to achieve low cost.

    NASA Astrophysics Data System (ADS)

    Mueller (HM), George E.; Lepore, Debra Facktor

    2000-03-01

    Kistler Aerospace Corporation is developing the world's first privately funded, fully reusable aerospace vehicle, the K-1. This vehicle represents a new implementation of proven technologies, designed by an elite, experienced team of engineers and managers and implemented by the best manufacturing capability in the United States. Kistler Aerospace expects to begin commercial operations of the K-1 in 2000. Market researchers predict that during the next decade telecommunications satellite ventures will require launch services for over 1,400 payloads to LEO. This prediction greatly exceeds the current available industry capacity. The K-1 was designed primarily to meet this anticipated growth in demand. Significant progress has been made in constructing the K-1 vehicle fleet. The fully reusable K-1 vehicle is designed to lower the cost of access to space, increase launch reliability, and reduce lead-time-to-launch requirements. The K-1 will offer significant cost benefits and aircraft type reliability based on a proven flight record.

  14. Mobile Computing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Swietek, Gregory E. (Technical Monitor)

    1994-01-01

    The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the

  15. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. As part of the NASA Technical Standards Program activities, engineering lessons learned datasets have been identified from a number of sources. These are being searched and screened for those having a relation to Technical Standards. This paper will address some of these Systems Engineering Lessons Learned and how they are being related to Technical Standards within the NASA Technical Standards Program, including linking to the Agency's Interactive Engineering Discipline Training Courses and the life cycle for a flight vehicle development program.

  16. Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    This research is aimed at developing a neiv and advanced simulation framework that will significantly improve the overall efficiency of aerospace systems design and development. This objective will be accomplished through an innovative integration of object-oriented and Web-based technologies ivith both new and proven simulation methodologies. The basic approach involves Ihree major areas of research: Aerospace system and component representation using a hierarchical object-oriented component model which enables the use of multimodels and enforces component interoperability. Collaborative software environment that streamlines the process of developing, sharing and integrating aerospace design and analysis models. . Development of a distributed infrastructure which enables Web-based exchange of models to simplify the collaborative design process, and to support computationally intensive aerospace design and analysis processes. Research for the first year dealt with the design of the basic architecture and supporting infrastructure, an initial implementation of that design, and a demonstration of its application to an example aircraft engine system simulation.

  17. Environmentally friendly power sources for aerospace applications

    NASA Astrophysics Data System (ADS)

    Lapeña-Rey, Nieves; Mosquera, Jonay; Bataller, Elena; Ortí, Fortunato; Dudfield, Christopher; Orsillo, Alessandro

    One of the crucial challenges of the aviation industry in upcoming years is to reduce emissions not only in the vicinity of airfields but also in cruise. Amongst other transport methods, airplanes emissions count for 3% of the CO 2 emissions. Initiatives to reduce this include not only investing in more fuel-efficient aircrafts or adapting existing ones to make them more efficient (e.g. by fitting fuel-saving winglets), but also more actively researching novel propulsion systems that incorporate environmentally friendly technologies. The Boeing Company through its European subsidiary, Boeing Research and Technology Europe (BR&TE) in collaboration with industry partners throughout Europe is working towards this goal by studying the possible application of advanced batteries and fuel-cell systems in aeronautical applications. One example is the development of a small manned two-seater prototype airplane powered only by proton exchange membrane (PEM) fuel-cell stacks, which runs on compressed hydrogen gas as fuel and pressurized air as oxidant, and Li-ion batteries. The efficient all composite motorglider is an all electric prototype airplane which does not produce any of the noxious engine exhaust by-products, such as carbon dioxide, carbon monoxide or NO x, that can contribute to climate change and adversely affect local air quality. Water and heat are the only exhaust products. The main objective is to demonstrate for the first time in aviation history a straight level manned flight with fuel-cells as the only power source. For this purpose, the original engine of a super Dimona HK36TTC glider from Diamond Aircraft Industries (Austria) was replaced by a hybrid power system, which feeds a brushless dc electrical motor that rotates a variable pitch propeller. Amongst the many technical challenges encountered when developing this test platform are maintaining the weight and balance of the aircraft, designing the thermal management system and the power management

  18. Laboratory Study of Quaternary Sediment Resistivity Related to Groundwater Contamination at Mae-Hia Landfill, Mueang District, Chiang Mai Province

    NASA Astrophysics Data System (ADS)

    Sichan, N.

    2007-12-01

    This study was aimed to understand the nature of the resistivity value of the sediment when it is contaminated, in order to use the information solving the obscure interpretation in the field. The pilot laboratory experiments were designed to simulate various degree of contamination and degree of saturation then observe the resulting changes in resistivity. The study was expected to get a better understanding of how various physical parameters effect the resistivity values in term of mathematic function. And also expected to apply those obtained function to a practical quantitatively interpretation. The sediment underlying the Mae-Hia Landfill consists of clay-rich material, with interfingerings of colluvium and sandy alluvium. A systematic study identified four kinds of sediment, sand, clayey sand, sandy clay, and clay. Representative sediment and leachate samples were taken from the field and returned to the laboratory. Both the physical and chemical properties of the sediments and leachate were analyzed to delineate the necessary parameters that could be used in Archie's equation. Sediment samples were mixed with various concentration of leachate solutions. Then the resistivity values were measured at various controlled steps in the saturation degree in a well- calibrated six-electrode model resistivity box. The measured resistivity values for sand, clayey sand, sandy clay when fully and partly saturated were collected, then plotted and fitted to Archie's equation, to obtain a mathematical relationship between bulk resistivity, porosity, saturation degree and resistivity of pore fluid. The results fit well to Archie's equation, and it was possible to determine all the unknown parameters representative of the sediment samples. For sand, clayey sand, sandy clay, and clay, the formation resistivity factors (F) are 2.90, 5.77, 7.85, and 7.85 with the products of cementation factor (m) and the pore geometry factors (a) (in term of -am) are 1.49, -1.63, -1.92, -2

  19. Aerospace applications of pulsed plasmas

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey

    2012-10-01

    The use of a thermal equilibrium plasma for combustion control dates back more than a hundred years to the advent of internal combustion (IC) engines and spark ignition systems. The same principles are still applied today to achieve high efficiency in various applications. Recently, the potential use of nonequilibrium plasma for ignition and combustion control has garnered increasing interest due to the possibility of plasma-assisted approaches for ignition and flame stabilization. During the past decade, significant progress has been made toward understanding the mechanisms of plasma chemistry interactions, energy redistribution and the nonequilibrium initiation of combustion. In addition, a wide variety of fuels have been examined using various types of discharge plasmas. Plasma application has been shown to provide additional combustion control, which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine (GTE) relight, detonation initiation in pulsed detonation engines (PDE) and distributed ignition control in homogeneous charge-compression ignition (HCCI) engines, among others. The present paper describes the current understanding of the nonequilibrium excitation of combustible mixtures by electrical discharges and plasma-assisted ignition and combustion. Nonequilibrium plasma demonstrates an ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions.

  20. Capacitance-based damage detection sensing for aerospace structural composites

    NASA Astrophysics Data System (ADS)

    Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.

    2014-04-01

    Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket

  1. Ascent performance feasibility of the national aerospace plane

    SciTech Connect

    Miele, A.; Lee, W.Y.; Wu, G.D.

    1994-12-31

    The national aerospace plane (NASP) is a proposed hypervelocity research vehicle which must take-off horizontally, achieve orbital speed, and then land horizontally. Its configuration is dominated by the powerplant, which includes the combination of turbojet engines for flight at subsonic speeds and low supersonic speeds, ramjet engines for flight at high supersonic speeds, scramjet engines for flight at hypersonic speeds, and rocket engines for flight at near-orbital speeds. Optimal trajectories are studied for a given NASP configuration, the so-called general hypersonic aerodynamics model example, under the assumption that the NASP is controlled via angle of attack and power setting. Three powerplant models are considered: (E1) and (E2) are turbojet, ramjet, scramjet combinations; (E3) is a turbojet, ramjet scramjet, rocket combination, with the rocket mode starting at M = 15. Realistic constraints are imposed on the peak dynamic pressure, peak heating rate, and peak tangential acceleration. Under this scenario, the time history of the controls is optimized simultaneously with the switch times from one engine mode to the next. The optimization criterion is the total mass of fuel required to achieve orbital speed. The optimization study employs the sequential gradient-restoration algorithm for optimal control problems.

  2. Ground Operations Aerospace Language (GOAL)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    GOAL, is a test engineer oriented language designed to be used to standardize procedure terminology and as the test programming language to be used for ground checkout operations in a space vehicle launch environment. The material presented concerning GOAL includes: (1) a historical review, (2) development objectives and requirements, (3) language scope and format, and (4) language capabilities.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 66: Emerging Trends in the Globalization of Knowledge: The Role of the Technical Report in Aerospace Research and Development

    NASA Technical Reports Server (NTRS)

    Pinelli,Thomas E.; Golich, Vicki L.

    1997-01-01

    Economists, management theorists, business strategists, and governments alike recognize knowledge as the single most important resource in today's global economy. Because of its relationship to technological progress and economic growth, many governments have taken a keen interest in knowledge; specifically its production, transfer, and use. This paper focuses on the technical report as a product for disseminating the results of aerospace research and development (R&D) and its use and importance to aerospace engineers and scientists. The emergence of knowledge as an intellectual asset, its relationship to innovation, and its importance in a global economy provides the context for the paper. The relationships between government and knowledge and government and innovation are used to place knowledge within the context of publicly-funded R&D. Data, including the reader preferences of NASA technical reports, are derived from the NASA/DoD Aerospace Knowledge Diffusion Research Project, a ten-year study of knowledge diffusion in the U.S. aerospace industry.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 40: Technical communications in aerospace education: A study of AIAA student members

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.; Pinelli, Thomas E.; Barclay, Rebecca O.

    1994-01-01

    This paper describes the preliminary analysis of a survey of the American Institute of Aeronautics and Astronautics (AIAA) student members. In the paper we examine (1) the demographic characteristics of the students, (2) factors that affected their career decisions, (3) their career goals and aspirations, and (4) their training in technical communication and techniques for finding and using aerospace scientific and technical information (STI). We determine that aerospace engineering students receive training in technical communication skills and the use of STI. While those in the aerospace industry think that more training is needed, we believe the students receive the appropriate amount of training. We think that the differences between the amount of training students receive and the perception of training needs is related partially to the characteristics of the students and partially to the structure of the aerospace STI dissemination system. Overall, we conclude that the students' technical communication training and knowledge of STI, while limited by external forces, makes it difficult for students to achieve their career goals.

  5. Contamination of nitrate in groundwater and its potential human health: a case study of lower Mae Klong river basin, Thailand.

    PubMed

    Wongsanit, Jaturong; Teartisup, Piyakarn; Kerdsueb, Prapeut; Tharnpoophasiam, Prapin; Worakhunpiset, Suwalee

    2015-08-01

    Nitrate contamination in groundwater is a worldwide problem especially in agricultural countries. Environmental factors, such as land-use pattern, type of aquifer, and soil-drainage capacity, affect the level of contamination. Exposure to high levels of nitrate in groundwater may contribute to adverse health effects among residents who use groundwater for consumption. This study aimed to determine the relationship between nitrate levels in groundwater with land-use pattern, type of aquifer, and soil-drainage capacity, in Photharam District, Ratchaburi Province, lower Mae Klong basin, Thailand. Health risk maps were created based on hazard quotient to quantify the potential health risk of the residents using US Environmental Protection Agency (U.S. EPA) health risk assessment model. The results showed the influence of land-use patterns, type of aquifer, and soil-drainage capacity on nitrate contamination. It was found that most of the residents in the studied area were not at risk; however, a groundwater nitrate monitoring system should be implemented. PMID:25874425

  6. High prevalence of bancroftian filariasis in Myanmar-migrant workers: a study in Mae Sot district, Tak province, Thailand.

    PubMed

    Triteeraprapab, S; Songtrus, J

    1999-07-01

    Although the prevalence of lymphatic filariasis in the Thai population is low, migration of Myanmar labor into Thailand may increase the incidence of bancroftian filariasis. Epidemiology of filariasis in Myanmars has not been precisely determined. By using microscopic examination, we found that the microfilarial rate in 654 Myanmar migrants working in Mae Sot, Tak province, was 4.4 per cent. The highest microfilarial rate was found in males aged 21-30 years (6.8%). History of mosquito bites was significantly correlated with microfilaremia. The majority of Myanmar migrants (55.5%) have been staying in Thailand 1-6 years; most (82.0%) have never been back to Myanmar. Seventy-nine per cent of infected Myanmars were from Moulmein (Maulamyine) city. Since these migrants carry the parasite with high infected rate and the mosquito vector Culex quinquefasciatus is also prevalent in Thailand, Thai people are at high risk of acquiring this disease if good control and prevention strategies are not implemented. PMID:10511777

  7. Wireless Sensing Opportunities for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2007-01-01

    Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  8. Combustion Processes in the Aerospace Environment

    NASA Technical Reports Server (NTRS)

    Huggett, Clayton

    1969-01-01

    The aerospace environment introduces new and enhanced fire hazards because the special atmosphere employed may increase the frequency and intensity of fires, because the confinement associated with aerospace systems adversely affects the dynamics of fire development and control, and because the hostile external environments limit fire control and rescue operations. Oxygen enriched atmospheres contribute to the fire hazard in aerospace systems by extending the list of combustible fuels, increasing the probability of ignition, and increasing the rates of fire spread and energy release. A system for classifying atmospheres according to the degree of fire hazard, based on the heat capacity of the atmosphere per mole of oxygen, is suggested. A brief exploration of the dynamics of chamber fires shows that such fires will exhibit an exponential growth rate and may grow to dangerous size in a very short time. Relatively small quantities of fuel and oxygen can produce a catastrophic fire in a closed chamber.

  9. Heart-Lung Interactions in Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Guy, Harold J. B.; Prisk, Gordon Kim

    1991-01-01

    Few of the heart-lung interactions that are discussed have been studied in any detail in the aerospace environment, but is seems that many such interactions must occur in the setting of altered accelerative loadings and pressure breathing. That few investigations are in progress suggests that clinical and academic laboratory investigators and aerospace organizations are further apart than during the pioneering work on pressure breathing and acceleration tolerance in the 1940s. The purpose is to reintroduce some of the perennial problems of aviation physiology as well as some newer aerospace concerns that may be of interest. Many possible heart-lung interactions are pondered, by necessity often drawing on data from within the aviation field, collected before the modern understanding of these interactions developed, or on recent laboratory data that may not be strictly applicable. In the field of zero-gravity effects, speculation inevitably outruns the sparse available data.

  10. Sealed aerospace metal-hydride batteries

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  11. Knowledge-based diagnosis for aerospace systems

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.

    1988-01-01

    The need for automated diagnosis in aerospace systems and the approach of using knowledge-based systems are examined. Research issues in knowledge-based diagnosis which are important for aerospace applications are treated along with a review of recent relevant research developments in Artificial Intelligence. The design and operation of some existing knowledge-based diagnosis systems are described. The systems described and compared include the LES expert system for liquid oxygen loading at NASA Kennedy Space Center, the FAITH diagnosis system developed at the Jet Propulsion Laboratory, the PES procedural expert system developed at SRI International, the CSRL approach developed at Ohio State University, the StarPlan system developed by Ford Aerospace, the IDM integrated diagnostic model, and the DRAPhys diagnostic system developed at NASA Langley Research Center.

  12. Aerospace applications of advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Langenbeck, S. L.

    1993-01-01

    Advanced metallic materials within the Al-base family are being developed for applications on current and future aerospace vehicles. These advanced materials offer significant improvements in density, strength, stiffness, fracture resistance, and/or higher use temperature which translates into improved vehicle performance. Aerospace applications of advanced metallic materials include space structures, fighters, military and commercial transport aircraft, and missiles. Structural design requirements, including not only static and durability/damage tolerance criteria but also environmental considerations, drive material selections. Often trade-offs must be made regarding strength, fracture resistance, cost, reliability, and maintainability in order to select the optimum material for a specific application. These trade studies not only include various metallic materials but also many times include advanced composite materials. Details of material comparisons, aerospace applications, and material trades will be presented.

  13. Common Cause Failure Modeling: Aerospace Versus Nuclear

    NASA Technical Reports Server (NTRS)

    Stott, James E.; Britton, Paul; Ring, Robert W.; Hark, Frank; Hatfield, G. Spencer

    2010-01-01

    Aggregate nuclear plant failure data is used to produce generic common-cause factors that are specifically for use in the common-cause failure models of NUREG/CR-5485. Furthermore, the models presented in NUREG/CR-5485 are specifically designed to incorporate two significantly distinct assumptions about the methods of surveillance testing from whence this aggregate failure data came. What are the implications of using these NUREG generic factors to model the common-cause failures of aerospace systems? Herein, the implications of using the NUREG generic factors in the modeling of aerospace systems are investigated in detail and strong recommendations for modeling the common-cause failures of aerospace systems are given.

  14. Aerospace manpower transfer to small business enterprises

    NASA Technical Reports Server (NTRS)

    Green, M. K.

    1972-01-01

    The feasibility of a program to effect transfer of aerospace professional people from the ranks of the unemployed into gainful employment in the small business community was investigated. The effectiveness of accomplishing transfer of technology from the aerospace effort into the private sector through migration of people rather than products or hardware alone was also studied. Two basic methodologies were developed. One involves the matching of ex-aerospace professionals and small companies according to their mutual needs. A training and indoctrination program is aimed at familiarizing the professional with the small company environment, and a program of follow-up counseling is defined. The second methodology incorporates efforts to inform and arouse interest among the nonaerospace business community toward affirmative action programs that will serve mutual self-interests of the individuals, companies, and communities involved.

  15. Machine intelligence and autonomy for aerospace systems

    NASA Technical Reports Server (NTRS)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  16. The National Aerospace Initiative (NAI): Technologies For Responsive Space Access

    NASA Technical Reports Server (NTRS)

    Culbertson, Andrew; Bhat, Biliyar N.

    2003-01-01

    The Secretary of Defense has set new goals for the Department of Defense (DOD) to transform our nation's military forces. The Director for Defense Research and Engineering (DDR&E) has responded to this challenge by defining and sponsoring a transformational initiative in Science and Technology (S&T) - the National Aerospace Initiative (NAI) - which will have a fundamental impact on our nation's military capabilities and on the aerospace industry in general. The NAI is planned as a joint effort among the tri-services, DOD agencies and National Aeronautics and Space Administration (NASA). It is comprised of three major focus areas or pillars: 1) High Speed Hypersonics (HSH), 2) Space Access (SA), and 3) Space Technology (ST). This paper addresses the Space Access pillar. The NAI-SA team has employed a unique approach to identifying critical technologies and demonstrations for satisfying both military and civilian space access capabilities needed in the future. For planning and implementation purposes the NAI-SA is divided into five technology subsystem areas: Airframe, Propulsion, Flight Subsystems, Operations and Payloads. Detailed technology roadmaps were developed under each subsystem area using a time-phased, goal oriented approach that provides critical space access capabilities in a timely manner and involves subsystem ground and flight demonstrations. This S&T plan addresses near-term (2009), mid-term (2016), and long-term (2025) goals and objectives for space access. In addition, system engineering and integration approach was used to make sure that the plan addresses the requirements of the end users. This paper describes in some detail the technologies in NAI-Space Access pillar. Some areas of emphasis are: high temperature materials, thermal protection systems, long life, lightweight, highly efficient airframes, metallic and composite cryotanks, advanced liquid rocket engines, integrated vehicle health monitoring and management, highly operable systems and

  17. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Astrophysics Data System (ADS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-03-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  18. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  19. The comprehensive aerospace index (CASI): Tracking the economic performance of the aerospace industry

    NASA Astrophysics Data System (ADS)

    Mattedi, Adriana Prest; Mantegna, Rosario Nunzio; Ramos, Fernando Manuel; Rosa, Reinaldo Roberto

    2008-12-01

    In this paper, we described the Comprehensive AeroSpace Index (CASI), a financial index aimed at representing the economic performance of the aerospace industry. CASI is build upon a data set of approximately 20 years of daily close prices set, from January 1987 to June 2007, from a comprehensive sample of leading aerospace-related companies with stocks negotiated on the New York Exchange (NYSE) and on the over-the-counter (OTC) markets. We also introduced the sub-indices CASI-AERO, for aeronautical segment, and CASI-SAT, for satellite segment, and considered the relation between them. These three indices are compared to others aerospace indices and to more traditional general financial indices like DJIA, S&P500 and Nasdaq. Our results have shown that the CASI is an index that describes very well the aerospace sector behavior, since it is able to reflect the aeronautical segment comportment as well as the satellite one. Therefore, in this sense, it can be considered as a representative index of the aerospace sector. Moreover, the creation of two sub-indices, the CASI-AERO and the CASI-SAT, allows to elucidate capital movements within the aerospace sector, particularly those of speculative nature, like the dot.com bubble and crash of 1998-2001.

  20. Aerospace NESHAP: A collaborative approach to implementation

    SciTech Connect

    McAfee, M.; Lee, A.; Williamson, C.; Willenberg, J.

    1998-12-31

    The purpose of the Aerospace National Emission Standard for Hazardous Air Pollutants (NESHAP) is to minimize emissions of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from major sources who manufacture or rework aerospace vehicles or components. The NESHAP requires emission reductions through implementation of work practices, application of slower evaporating solvents and coatings with low-HAP and low-VOC content, usage of high transfer efficiency spray equipment, and installation of high capture efficiency exhaust filtration for coatings containing metals. The rule also requires extensive monitoring, recordkeeping, and self-reporting to track compliance. For existing sources the rule becomes effective September 1,1998. Over the past year the Puget Sound Air Pollution Control Agency (PSAPCA) has worked with the Boeing Company and EPA to identify the requirements of the aerospace NESHAP, understand what it means in everyday practice, and develop an enforcement strategy for ensuring compliance. A workshop was held with aerospace manufacturers, local regulators, and EPA to discuss implementation of the rule. Issues regarding compliance efforts and determinations were openly discussed. Subsequent to the workshop, PSAPCA and the Boeing Company participated in several mock inspections to review facility compliance efforts before the rule became effective. Collaborative efforts also ensued to develop operating permit monitoring requirements. Aerospace NESHAP requirements were incorporated into these permits. There are still questions regarding compliance determinations that must be further discussed and resolved. But by using the collaborative approach and having regulators and sources working together, there is a process to work out answers and approaches that will lead to an increased mutual understanding of the aerospace NESHAP and eventual compliance with the standard.

  1. Aerospace Environmental Technology Conference: Exectutive summary

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The papers from this conference are being published in a separate volume as NASA CP-3298.

  2. The Aerospace Vehicle Interactive Design system

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.

    1981-01-01

    The aerospace vehicle interactive design (AVID) is a computer aided design that was developed for the conceptual and preliminary design of aerospace vehicles. The AVID system evolved from the application of several design approaches in an advanced concepts environment in which both mission requirements and vehicle configurations are continually changing. The basic AVID software facilitates the integration of independent analysis programs into a design system where the programs can be executed individually for analysis or executed in groups for design iterations and parametric studies. Programs integrated into an AVID system for launch vehicle design include geometry, aerodynamics, propulsion, flight performance, mass properties, and economics.

  3. Metal Matrix Composite Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)

    2001-01-01

    Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.

  4. Integrated Vehicle Health Management (IVHM) for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Baroth, Edmund C.; Pallix, Joan

    2006-01-01

    To achieve NASA's ambitious Integrated Space Transportation Program objectives, aerospace systems will implement a variety of new concept in health management. System level integration of IVHM technologies for real-time control and system maintenance will have significant impact on system safety and lifecycle costs. IVHM technologies will enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. IVHM also has the potential to reduce, or even eliminate many of the costly inspections and operations activities required by current and future aerospace systems. This presentation will describe the array of NASA programs participating in the development of IVHM technologies for NASA missions. Future vehicle systems will use models of the system, its environment, and other intelligent agents with which they may interact. IVHM will be incorporated into future mission planners, reasoning engines, and adaptive control systems that can recommend or execute commands enabling the system to respond intelligently in real time. In the past, software errors and/or faulty sensors have been identified as significant contributors to mission failures. This presentation will also address the development and utilization of highly dependable sohare and sensor technologies, which are key components to ensure the reliability of IVHM systems.

  5. Engine

    SciTech Connect

    Shin, H.B.

    1984-02-28

    An internal combustion engine has a piston rack depending from each piston. This rack is connected to a power output shaft through a mechanical rectifier so that the power output shaft rotates in only one direction. A connecting rod is pivotally connected at one end to the rack and at the other end to the crank of a reduced function crankshaft so that the crankshaft rotates at the same angular velocity as the power output shaft and at the same frequency as the pistons. The crankshaft has a size, weight and shape sufficient to return the pistons back into the cylinders in position for the next power stroke.

  6. A field-scale study of cadmium phytoremediation in a contaminated agricultural soil at Mae Sot District, Tak Province, Thailand: (1) Determination of Cd-hyperaccumulating plants.

    PubMed

    Khaokaew, Saengdao; Landrot, Gautier

    2015-11-01

    The cadmium (Cd) phytoremediation capabilities of Gynura pseudochina, Chromolaena odorata, Conyza sumatrensis, Crassocephalum crepidioides and Nicotiana tabacum were determined by conducting in-situ experiments in a highly Cd-contaminated agricultural field at Mae Sot District, Tak Province, Thailand. Most of these five plant species, which are commonly found in Thailand, previously demonstrated Cd-hyperaccumulating capacities under greenhouse conditions. This study represented an important initial step in determining if any of these plants could, under field-conditions, effectively remove Cd from the Mae Sot contaminated fields, which represent a health threat to thousands of local villagers. All plant species had at least a 95% survival rate on the final harvest day. Additionally, all plant species, except C. odorata, could hyperaccumulate the extractable Cd amounts present in the soil, based on their associated Bioaccumulation Factor (BAF), Translocation Factor (TF), and background Vegetation Factor (VF). Therefore, the four Cd-hyperaccumulating plant species identified in this study may successfully treat a majority of contaminated fields at Mae Sot, as it was previously reported that Cd amounts present in a number of these soils were mostly available. PMID:25454203

  7. Comparison of Different Extraction Methods for Analysis of 10 Organochlorine Pesticides: Application of MAE-SPE Method in Soil from Beijing.

    PubMed

    Di, Shanshan; Shi, Shengchao; Xu, Peng; Diao, Jinling; Zhou, Zhiqiang

    2015-07-01

    Four commonly applied extraction techniques for organochlorine pesticides, microwave-assisted extraction (MAE), accelerated solvent extraction (ASE), quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction and ultrasonic solvent extraction, were applied on soil samples in order to evaluate their performances. The extracts were analyzed by GC-ECD and confirmed by GC-MS/MS. The MAE and QuEChERS extraction methods generally yielded higher results compared to the ultrasonication and ASE methods, while the lowest recovery (56.8 %) for o,p'-DDD was obtained using the QuEChERS method. The MAE method was further applied to six different soils from Beijing. In the soil samples only α-endosulfan and β-endosulfan were not detected. The ratios of α-HCH/γ-HCH and α-HCH/β-HCH indicated HCH residues likely originated from historical use of HCHs, and that technical HCHs were not likely being currently applied in Beijing. PMID:25935331

  8. Reach and its Impact: NASA and US Aerospace Communities

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J.

    2011-01-01

    REACH is a European law that threatens to impact materials used within the US aerospace communities, including NASA. The presentation briefly covers REACH and generally, its perceived impacts to NASA and the aerospace community within the US.

  9. 76 FR 1600 - U.S. Aerospace Supplier & Investment Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... Sector Panel: Deloitte Touche, AIAC, Minister of Transport, NRC. 10:30-11:00 Coffee break-- Networking... 2009 Canada was the United States' 6th largest aerospace export market, and in many aerospace...

  10. Aerospace Technicians: We're Tomorrow-Minded People

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1981-01-01

    Brief job-related autobiographical sketches of technicians working on NASA aerospace projects are presented. Career and educational guidance is offered to students thinking about entering the field of aerospace technology.

  11. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama developed a high-strength aluminum alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard, 40-90 horsepower, engine line. The alloy pistons make the outboard motor quieter and cleaner, while improving fuel mileage and increasing engine durability. The engines comply with California Air resources Board emissions standards, some of the most stringent in the United States. (photo credit: Bombardiier Recreational Products)

  12. NASA-UVa light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1991-01-01

    The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 7:Summary report to phase 2 respondents including frequency distributions

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.

    1991-01-01

    Phase 2 of the four phase NASA/DoD Aerospace Knowledge Diffusion Research Project was undertaken to study the transfer of scientific and technical information (STI) from government to the aerospace industry and the role of librarians and technical information specialists in the transfer process. Data was collected through a self-administered mailback questionnaire. Libraries identified as holding substantial aerospace or aeronautical technical report collections were selected to receive the questionnaires. Within each library, the person responsible for the technical report was requested to answer the questionnaire. Questionnaires were returned from approx. 68 pct. of the libraries. The respondents indicated that scientists and engineer are not aware of the services available from libraries/technical information centers and that scientists and engineers also under-utilized their services. The respondents also indicated they should be more involved in the process.

  14. 77 FR 38090 - Aerospace Safety Advisory Panel; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting. AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, July 20, 2012, 11:30 a.m. to 12:30 p.m. EDT... FURTHER INFORMATION CONTACT: Ms. Harmony Myers, Aerospace Safety Advisory Panel Executive...

  15. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Beall, H. C.; Beadles, R. L.; Brown, J. N., Jr.; Clingman, W. H.; Courtney, M. W.; Rouse, D. J.; Scearce, R. W.

    1979-01-01

    Medical products utilizing and incorporating aerospace technology were studied. A bipolar donor-recipient model for medical transfer is presented. The model is designed to: (1) identify medical problems and aerospace technology which constitute opportunities for successful medical products; (2) obtain early participation of industry in the transfer process; and (3) obtain acceptance by medical community of new medical products based on aerospace technology.

  16. Teachers, Aerospace, Involvement: The Ingredients for Attitude Change

    ERIC Educational Resources Information Center

    Leonard, Rex; Bell, Michael L.

    1975-01-01

    Describes a two week workshop which concentrated on involving teachers in action oriented aerospace activities and sharing ideas and materials for the application of aerospace concepts in the classroom. Research was also done to see if participants' attitudes toward aerospace education could be positively influenced to enhance personal teaching…

  17. 76 FR 62455 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, October 21, 2011, 12:30 to 2 p.m. Central.... FOR FURTHER INFORMATION CONTACT: Ms. Susan Burch, Aerospace Safety Advisory Panel...

  18. 77 FR 1955 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, January 27, 2012, Time 11 a.m.-12:30 p.m... CONTACT: Ms. Susan Burch, Aerospace Safety Advisory Panel Administrative Officer, National Aeronautics...

  19. 76 FR 65750 - Aerospace Safety Advisory Panel; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Charter Renewal AGENCY: National Aeronautics and... Aerospace Safety Advisory Panel. SUMMARY: Pursuant to sections 14(b)(1) and 9(c) of the Federal Advisory... of the NASA Aerospace Safety Advisory Panel is in the public interest in connection with...

  20. Aerospace Concepts at the Elementary Level

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Presents materials compiled to assist the elementary teacher in preparing teaching units in aerospace education. Suggests specific and general objectives and lists important concepts and questions pertaining to areas such as: history of flight, weather and flying, airplanes, jets, rockets, space travel, and the solar system. (MLH)