Science.gov

Sample records for aerospace industry requires

  1. A qualitative inquiry of educational requirements of selected professions in the Oklahoma aerospace industry

    NASA Astrophysics Data System (ADS)

    Walker, Casey Jerry Kennon

    Interview of incumbents of intellectual capital positions at Boeing. The aerospace industry is a dynamic industry that requires continual skill updates to keep up with advancements in technology and operational trends within the industry. The purpose of this study was to examine intellectual capital requirements of selected professional positions within the Boeing Company in Oklahoma. Data obtained through interviews was used to determine if educational skills gaps existed. The findings of the study can be used to develop an aerospace educational pipeline based on collaborative relationships between industry and higher education to facilitate educational and training programs. Three broad research questions were used to address and support the findings of this study related to educational background, career progression, and gaps. A purposive sample of 10 professional positions was selected for interview using an interview guide containing 18 questions. Data was analyzed using manual coding techniques. Findings and conclusions. The study found that minimum education requirements for selected professional positions consisted of a bachelor's degree. Although the majority of participants identified a business degree as optimal, several participants indicated that an education background from multiple disciplines would provide the greatest benefit. Data from interviews showed educational degrees were not specialized enough and skills required to perform job functions were obtained through direct on the job experience or through corporate training. Indications from participant responses showed employees with a thorough knowledge of government acronyms had a decided advantage over those that did not. Recommendations included: expanding the study to multiple organizations by conducting a survey; expanding industry and academic partnerships; establishing a structured educational pipeline to fill critical positions; creating broad aerospace curricula degree programs tailored

  2. Aerospace Industry and Research. Aerospace Education II.

    ERIC Educational Resources Information Center

    Mackin, T. E.

    This book, to be used in the Air Force ROTC program only, discusses various aspects of the aerospace industry and its importance to the society. Not only does a modern and strong aerospace technology help in national defense, but it is a major economic industry as well. The vast number of people employed could shake the roots of economic…

  3. Careers in the Aerospace Industry.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Office of General Aviation.

    The document briefly presents career information in the field of aerospace industry. Employment exists in three areas: (1) professional and technical occupations in research and development (engineers, scientists, and technicians); (2) administrative, clerical, and related occupations (engineers, scientists, technicians, clerks, secretaries,…

  4. KIBO Industry, innovates in aerospace

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on industry KIBO is postulated in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo entomocole industry is the first production company in Europe to human food, it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and in the universities of Angers, Nantes, Lille.

  5. KIBO Industry, innovates in aerospace

    NASA Astrophysics Data System (ADS)

    Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on this postulate KIBO in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo industry is the first entomocole production company creat in Europe to human food; it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and various universities in France.

  6. U.S. aerospace industry opinion of the effect of computer-aided prediction-design technology on future wind-tunnel test requirements for aircraft development programs

    NASA Technical Reports Server (NTRS)

    Treon, S. L.

    1979-01-01

    A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.

  7. Developing IVHM Requirements for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Rajamani, Ravi; Saxena, Abhinav; Kramer, Frank; Augustin, Mike; Schroeder, John B.; Goebel, Kai; Shao, Ginger; Roychoudhury, Indranil; Lin, Wei

    2013-01-01

    The term Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable sustainable and safe operation of components and subsystems within aerospace platforms. However, very little guidance exists for the systems engineering aspects of design with IVHM in mind. It is probably because of this that designers have to use knowledge picked up exclusively by experience rather than by established process. This motivated a group of leading IVHM practitioners within the aerospace industry under the aegis of SAE's HM-1 technical committee to author a document that hopes to give working engineers and program managers clear guidance on all the elements of IVHM that they need to consider before designing a system. This proposed recommended practice (ARP6883 [1]) will describe all the steps of requirements generation and management as it applies to IVHM systems, and demonstrate these with a "real-world" example related to designing a landing gear system. The team hopes that this paper and presentation will help start a dialog with the larger aerospace community and that the feedback can be used to improve the ARP and subsequently the practice of IVHM from a systems engineering point-of-view.

  8. A success paradigm for project managers in the aerospace industry

    NASA Astrophysics Data System (ADS)

    Bauer, Barry Jon

    Within the aerospace industry, project managers traditionally have been selected based on their technical competency. While this may lead to brilliant technical solutions to customer requirements, a lack of management ability can result in failed programs that over-run on cost, are late to critical path schedules, fail to fully utilize the diversity of talent available within the program team, and otherwise disappoint key stakeholders. This research study identifies the key competencies that a project manager should possess in order to successfully lead and manage a project in the aerospace industry. The research attempts to show evidence that within the aerospace industry, it is perceived that management competency is more important to project management success than only technical competence.

  9. Alternate Jobs for Aerospace Workers. Examples of Employment Opportunities in Private Industry.

    ERIC Educational Resources Information Center

    Draper, A. M. Leslie

    Based on a survey of the characteristics of unemployed aerospace workers, this is the second of two reports developed to suggest alternate job opportunities in private industry for unemployed aerospace engineers and scientists. Included in the brief summaries of 70 jobs found in private industry are general, basic requirements and kinds of…

  10. U.S. Aerospace Manufacturing: Industry Overview and Prospects

    DTIC Science & Technology

    2009-12-03

    recession has affected aerospace manufacturing, with both the defense and commercial sides of the industry facing difficult business conditions for the...manufacturing industries, the worldwide recession is weighing heavily on aerospace manufacturing. This is especially true for commercial aerospace...revenues of $60.9 billion and Airbus recorded revenues of $38.7 billion in 2008. Nonetheless, the recession is affecting both producers. In 2008, net

  11. Requirements for effective use of CFD in aerospace design

    NASA Technical Reports Server (NTRS)

    Raj, Pradeep

    1995-01-01

    This paper presents a perspective on the requirements that Computational Fluid Dynamics (CFD) technology must meet for its effective use in aerospace design. General observations are made on current aerospace design practices and deficiencies are noted that must be rectified for the U.S. aerospace industry to maintain its leadership position in the global marketplace. In order to rectify deficiencies, industry is transitioning to an integrated product and process development (IPPD) environment and design processes are undergoing radical changes. The role of CFD in producing data that design teams need to support flight vehicle development is briefly discussed. An overview of the current state of the art in CFD is given to provide an assessment of strengths and weaknesses of the variety of methods currently available, or under development, to produce aerodynamic data. Effectiveness requirements are examined from a customer/supplier view point with design team as customer and CFD practitioner as supplier. Partnership between the design team and CFD team is identified as an essential requirement for effective use of CFD. Rapid turnaround, reliable accuracy, and affordability are offered as three key requirements that CFD community must address if CFD is to play its rightful role in supporting the IPPD design environment needed to produce high quality yet affordable designs.

  12. Higher Education's Effectiveness in Preparing Students for Professional Practice: Perspectives from the Aerospace and Banking Industries.

    ERIC Educational Resources Information Center

    Hansen, Ronald E.

    The congruence of expectations of industrial managers concerning the preparation of college graduates and what university professional schools are attempting to provide was explored. The focus was the aerospace and banking industries. Interviews were conducted with 24 senior executives from 13 corporations to determine what industry requires of…

  13. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 1, Part 2

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume I: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements of the program's operations.

  14. The comprehensive aerospace index (CASI): Tracking the economic performance of the aerospace industry

    NASA Astrophysics Data System (ADS)

    Mattedi, Adriana Prest; Mantegna, Rosario Nunzio; Ramos, Fernando Manuel; Rosa, Reinaldo Roberto

    2008-12-01

    In this paper, we described the Comprehensive AeroSpace Index (CASI), a financial index aimed at representing the economic performance of the aerospace industry. CASI is build upon a data set of approximately 20 years of daily close prices set, from January 1987 to June 2007, from a comprehensive sample of leading aerospace-related companies with stocks negotiated on the New York Exchange (NYSE) and on the over-the-counter (OTC) markets. We also introduced the sub-indices CASI-AERO, for aeronautical segment, and CASI-SAT, for satellite segment, and considered the relation between them. These three indices are compared to others aerospace indices and to more traditional general financial indices like DJIA, S&P500 and Nasdaq. Our results have shown that the CASI is an index that describes very well the aerospace sector behavior, since it is able to reflect the aeronautical segment comportment as well as the satellite one. Therefore, in this sense, it can be considered as a representative index of the aerospace sector. Moreover, the creation of two sub-indices, the CASI-AERO and the CASI-SAT, allows to elucidate capital movements within the aerospace sector, particularly those of speculative nature, like the dot.com bubble and crash of 1998-2001.

  15. Guide to Canadian Aerospace-Related Industries

    DTIC Science & Technology

    1990-08-01

    sensing devices, ground power units, motor Winnipeg-based maioutacturer and supplier of portable heaters and generators, test stands, search lights...division also manu- using an electric motor power package. factures a wide selection of tachometer generators and valves. The company also manutactures its...and fabrication capabilities, and automated numerically controlled process * Bristol Aerospace Ltd - rocket motor case development. and inspection

  16. Guide to Canadian Aerospace Related Industries,

    DTIC Science & Technology

    1986-02-28

    Cloud Seeding. Cloud Physics; Weather Average Work Force: 25 - Total Modification; Convective Storms; Hydrometeorology; Precipita- tion Measurement...8217.v.r.. .,~r’:: Experience: Cametoid has more than 25 years of active sub- Canada Ltd, Bata Engineering; Bell Northern Research, Canada contract...the US Coast Guard over the past 25 years. meeting international aerospace and defense companies all military specifications satisfactorily The

  17. Chromatography - mass spectrometry in aerospace industry

    NASA Astrophysics Data System (ADS)

    Buryak, A. K.; Serdyuk, T. M.

    2013-01-01

    The applications of chromatography - mass spectrometry in aerospace industry are considered. The primary attention is devoted to the development of physicochemical grounds of the use of various chromatography - mass spectrometry procedures to solve topical problems of this industry. Various methods for investigation of the composition of rocket fuels, surfaces of structural materials and environmental media affected by aerospace activities are compared. The application of chromatography - mass spectrometry for the development and evaluation of processes for decontaminations of equipment, industrial wastes and soils from rocket fuel components is substantiated. The bibliography includes 135 references.

  18. TRANSFERABILITY OF RESEARCH AND DEVELOPMENT SKILLS IN THE AEROSPACE INDUSTRY.

    DTIC Science & Technology

    industry scientists and engineers . Studies performed by four aerospace contractors for the State of California are used as case examples of the...transferability of industry scientists and engineers , the four California studies are inconclusive; (2) the largest group of scientists and engineers in the... industry , those engaged in design and development , may well be the least transferable; and (3) civilian-public projects are unlikely to become in the next 5 years or so a significant part of the industry’s

  19. Training Engineers of Joint Programs for the European Aerospace Industry.

    ERIC Educational Resources Information Center

    Thomas, Jurgen

    1985-01-01

    Examines topics and issues related to training engineers of joint programs for the European aerospace industry. Forms of cooperation, European educational systems, and skills needed to successfully work as an engineer in a joint program for the European aircraft industry are the major areas addressed. (JN)

  20. Introduction: Aims and Requirements of Future Aerospace Vehicles. Chapter 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, Pedro I.; Smeltzer, Stanley S., III; McConnaughey, Paul (Technical Monitor)

    2001-01-01

    The goals and system-level requirements for the next generation aerospace vehicles emphasize safety, reliability, low-cost, and robustness rather than performance. Technologies, including new materials, design and analysis approaches, manufacturing and testing methods, operations and maintenance, and multidisciplinary systems-level vehicle development are key to increasing the safety and reducing the cost of aerospace launch systems. This chapter identifies the goals and needs of the next generation or advanced aerospace vehicle systems.

  1. Technology transfer between the government and the aerospace industry

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert; Dunbar, Dennis

    1992-01-01

    The object of this working group panel was to review questions and issues pertaining to technology transfer between the government and the aerospace industry for use on both government and commercial space customer applications. The results of this review are presented in vugraph form.

  2. Second Conference on NDE for Aerospace Requirements

    NASA Technical Reports Server (NTRS)

    Woodis, Kenneth W. (Compiler); Bryson, Craig C. (Compiler); Workman, Gary L. (Compiler)

    1990-01-01

    Nondestructive evaluation and inspection procedures must constantly improve rapidly in order to keep pace with corresponding advances being made in aerospace material and systems. In response to this need, the 1989 Conference was organized to provide a forum for discussion between the materials scientists, systems designers, and NDE engineers who produce current and future aerospace systems. It is anticipated that problems in current systems can be resolved more quickly and that new materials and structures can be designed and manufactured in such a way as to be more easily inspected and to perform reliably over the life cycle of the system.

  3. Industrial Design in Aerospace/Role of Aesthetics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2006-01-01

    Industrial design creates and develops concepts and specifications that seek to simultaneously and synergistically optimize function, production, value and appearance. The inclusion of appearance, or esthetics, as a major design metric represents both an augmentation of conventional engineering design and an intersection with artistic endeavor(s). Report surveys past and current industrial design practices and examples across aerospace including aircraft and spacecraft, both exterior and interior.

  4. Can Lean Manufacturing Change the Aerospace Defense Industry

    DTIC Science & Technology

    1994-04-01

    In times of decreasing orders, increasing overhead costs and fewer customers, lean manufacturing techniques may allow the aerospace defense industry...industry has shown lean manufacturing techniques can substantially reduce costs, cut development time, and produce a better product than mass production. The...Program, and the Lean Aircraft Initiative. European defense companies are also implementing the principles of lean manufacturing with results well worth noting.

  5. Childhood brain tumors and paternal occupation in the aerospace industry.

    PubMed

    Olshan, A F; Breslow, N E; Daling, J R; Weiss, N S; Leviton, A

    1986-07-01

    Data from a case-control study of childhood brain tumors were analyzed to examine the possibility that paternal occupation in the aerospace industry is related to the development of a brain tumor in offspring. Parents of 51 children with brain tumors diagnosed in western Washington State during 1978-81 were interviewed, and their responses were compared to those of parents of 142 children selected at random from this population. Among all children, proportions of case and control fathers who had ever been employed in the aerospace industry were nearly identical [relative risk (RR) = 0.94; 95% confidence interval (CI) = 0.40-2.19]. Employment in the aerospace industry during the period from 1 year prior to birth to the time of diagnosis and any employment in the manufacturing part of the industry were not associated with increased risk. However, stratification by age at diagnosis revealed an increased risk associated with father's ever-employment in the industry (RR = 2.10; 95% CI = 0.79-5.60) for children under 10 years old. A corresponding decreased risk (RR = 0.12; 95% CI = 0.01-1.08) was found for children over 10 years old. Because of the relatively small number of cases with a positive paternal occupational history, interpretations of the difference in the direction of the association according to age at diagnosis must remain tentative ones.

  6. Quantitative risk assessment in aerospace: Evolution from the nuclear industry

    SciTech Connect

    Frank, M.V.

    1996-12-31

    In 1987, the National Aeronautics and Space Administration (NASA) and the aerospace industry relied on failure mode and effects analysis (FMEA) and hazards analysis as the primary tools for safety and reliability of their systems. The FMEAs were reviewed to provide critical items using a set of qualitative criteria. Hazards and critical items judged the worst, by a qualitative method, were to be either eliminated by a design change or controlled by the addition of a safeguard. However, it is frequently the case that limitations of space, weight, technical feasibility, and cost left critical items and hazards unable to be eliminated or controlled. In these situations, program management accepted the risk. How much risk was being accepted was unknown because quantitative risk assessment methods were not used. Perhaps the greatest contribution of the nuclear industry to NASA and the aerospace industry was the introduction of modern (i.e., post-WASH-1400) quantitative risk assessment concepts and techniques. The concepts of risk assessment that have been most useful in the aerospace industry are the following: 1. combination of accident sequence diagrams, event trees, and fault trees to model scenarios and their causative factors; 2. use of Bayesian analysis of system and component failure data; 3. evaluation and presentation of uncertainties in the risk estimates.

  7. Hexavalent Chromium Reduction in the Aerospace Industry

    DTIC Science & Technology

    2010-12-01

    information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this...Technical Symposium & Workshop, 30 Nov ? 2 Dec 2010, Washington, DC. Sponsored by SERDP and ESTCP. U.S. Government or Federal Rights License 14...and qualification testing continues for many applications due to unique customer or weapon system requirements. Implementation of replacements are

  8. U.S. Aerospace and Aviation Industry: A State-By-State Analysis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    President George W. Bush and the Congress created the Commission on the Future of the United States Aerospace Industry to evaluate the current and future health of the industry as well as the challenges that lie ahead for the U.S. workforce and the economy. To accomplish our mission, we commissioned a study on the economic impact of the aerospace industry nationally and on a state-by-state basis, using the best available U.S. government data. This study sought to define the core of the aerospace industry. The resulting data represents that very core those jobs specifically tied to commercial and civilian aerospace. U.S. Aerospace and Aviation: A State-by-State Analysis examines the civilian and commercial aerospace and aviation industry by employment, wages, payroll, and establishments. The report found that the U.S. civilian and commercial aerospace and aviation industry employed over 2 million workers in 2001.

  9. Making aerospace technology work for the automotive industry - Introduction

    NASA Technical Reports Server (NTRS)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  10. Aerospace Industries Association (AIA) work practices report for composites

    NASA Technical Reports Server (NTRS)

    Luca, Jackie

    1994-01-01

    In an effort to gain a better understanding of effective safety and health work practice controls for composite manufacturing operations, the Aerospace Industries Association (AIA) Occupational Safety and Health Committee established a Composites Task Group. The group's task was to provide AIA members with recommendations for minimizing occupational exposure risk and to determine research needs and information gaps. The strategy included a review of toxicological information on composites, a review of member company experience and control methods, and interaction with other professional organizations who share an interest in composite work practices.

  11. High-strength nanostructured titanium alloy for aerospace industry

    NASA Astrophysics Data System (ADS)

    Naydenkin, E. V.; Mishin, I. P.; Ratochka, I. V.; Vinokurov, V. A.

    2015-10-01

    The technological regimes of receiving of round bars of VT22 titanium alloy with the diameter 22 mm and hierarchically organized ultrafine-grained (nano-) structure by helical rolling and subsequent heat treatment (aging) were developed. It was shown that such structure formation results in a substantial increase (by more than 20%) of strength properties of the alloy as compared to the initial state. The obtained rods with a high specific strength may be used in the aerospace industry in the manufacture of critical structural elements.

  12. Elements of a collaborative systems model within the aerospace industry

    NASA Astrophysics Data System (ADS)

    Westphalen, Bailee R.

    2000-10-01

    Scope and method of study. The purpose of this study was to determine the components of current aerospace collaborative efforts. There were 44 participants from two selected groups surveyed for this study. Nineteen were from the Oklahoma Air National Guard based in Oklahoma City representing the aviation group. Twenty-five participants were from the NASA Johnson Space Center in Houston representing the aerospace group. The surveys for the aviation group were completed in reference to planning missions necessary to their operations. The surveys for the aerospace group were completed in reference to a well-defined and focused goal from a current mission. A questionnaire was developed to survey active participants of collaborative systems in order to consider various components found within the literature. Results were analyzed and aggregated through a database along with content analysis of open-ended question comments from respondents. Findings and conclusions. This study found and determined elements of a collaborative systems model in the aerospace industry. The elements were (1) purpose or mission for the group or team; (2) commitment or dedication to the challenge; (3) group or team meetings and discussions; (4) constraints of deadlines and budgets; (5) tools and resources for project and simulations; (6) significant contributors to the collaboration; (7) decision-making formats; (8) reviews of project; (9) participants education and employment longevity; (10) cross functionality of team or group members; (11) training on the job plus teambuilding; (12) other key elements identified relevant by the respondents but not included in the model such as communication and teamwork; (13) individual and group accountability; (14) conflict, learning, and performance; along with (15) intraorganizational coordination. These elements supported and allowed multiple individuals working together to solve a common problem or to develop innovation that could not have been

  13. Analysis of labour risks in the Spanish industrial aerospace sector.

    PubMed

    Laguardia, Juan; Rubio, Emilio; Garcia, Ana; Garcia-Foncillas, Rafael

    2016-01-01

    Labour risk prevention is an activity integrated within Safety and Hygiene at Work in Spain. In 2003, the Electronic Declaration for Accidents at Work, Delt@ (DELTA) was introduced. The industrial aerospace sector is subject to various risks. Our objective is to analyse the Spanish Industrial Aerospace Sector (SIAS) using the ACSOM methodology to assess its labour risks and to prioritise preventive actions. The SIAS and the Services Subsector (SS) were created and the relevant accident rate data were obtained. The ACSOM method was applied through double contrast (deviation and translocation) of the SIAS or SS risk polygon with the considered pattern, accidents from all sectors (ACSOM G) or the SIAS. A list of risks was obtained, ordered by action phases. In the SIAS vs. ACSOM G analysis, radiation risks were the worst, followed by overstrains. Accidents caused by living beings were also significant in the SS vs. SIAE, which will be able to be used to improve Risk Prevention. Radiation is the most significant risk in the SIAS and the SS. Preventive actions will be primary and secondary. ACSOM has shown itself to be a valid tool for the analysis of labour risks.

  14. Meeting Technology and Manpower Needs through the Industry/University Interface. An Aerospace Industry Perspective.

    ERIC Educational Resources Information Center

    Aerospace Industries Association of America, Inc., Washington, DC.

    The Aerospace Industries Association (AIA) examined its member companies and their existing university relationships as an initial step in the process of strengthening these ties. Information drawn from background research, interviews (with company representatives and university, government, and private sector spokesmen), and a formal survey of…

  15. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 18:] Scientific and Technical Information (STI) policy and the competitive position of the US aerospace industry

    NASA Technical Reports Server (NTRS)

    Hernon, Peter; Pinelli, Thomas E.

    1992-01-01

    With its contribution to trade, its coupling with national security, and its symbolism of U.S. technological strength, the U.S. aerospace industry holds a unique position in the Nation's industrial structure. Federal science and technology policy and Federal scientific and technical information (STI) policy loom important as strategic contributions to the U.S. aerospace industry's leading competitive position. However, three fundamental policy problems exist. First, the United States lacks a coherent STI policy and a unified approach to the development of such a policy. Second, policymakers fail to understand the relationship of STI to science and technology policy. Third, STI is treated as a part of general information policy, without any recognition of its uniqueness. This paper provides an overview of the Federal information policy structure as it relates to STI and frames the policy issues that require resolution.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 18: Scientific and Technical Information (STI) policy and the competitive position of the US aerospace industry

    NASA Technical Reports Server (NTRS)

    Hernon, Peter; Pinelli, Thomas E.

    1992-01-01

    With its contribution to trade, its coupling with national security, and its symbolism of U.S. technological strength, the U.S. aerospace industry holds a unique position in the Nation's industrial structure. Federal science and technology policy and Federal scientific and technical information (STI) policy loom important as strategic contributions to the U.S. aerospace industry's leading competitive position. However, three fundamental policy problems exist. First, the United States lacks a coherent STI policy and a unified approach to the development of such a policy. Second, policymakers fail to understand the relationship of STI to science and technology policy. Third, STI is treated as a part of general information policy, without any recognition of its uniqueness. This paper provides an overview of the Federal information policy structure as it relates to STI and frames the policy issues that require resolution.

  17. Aerospace Education for Teachers Based on Recommendations of Selected Aviation and Space Industries.

    ERIC Educational Resources Information Center

    Sanders, Leroy John

    The study attempted to determine procedures for providing elementary and secondary school teachers with a general knowledge of aerospace science. A two-part rating scale was developed and sent to member companies of the Aerospace Industries Association of America. Results showed that (1) planned industrial tours by teachers, meetings between…

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 69: Writing for the Aerospace Industry. Chapter 3; The Practice of Technical and Scientific Communication: Writing in Professional Contexts

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.

    1997-01-01

    The large and complex aerospace industry, which employed approximately 850,000 people in 1994 (Aerospace Facts, 1994-95, p. 11), plays a vital role in the nation's economy. Although only a small percentage of those employed in aerospace are technical communicators, they perform a wide variety of communication duties in government and the private sector.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 26: The relationship between technology policy and scientific and technical information within the US and Japanese aerospace industries

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 42: An analysis of the transfer of Scientific and Technical Information (STI) in the US aerospace industry

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.; Pinelli, Thomas E.; Hecht, Laura F.; Barclay, Rebecca O.

    1994-01-01

    The U.S. aerospace industry has a long history of federal support for research related to its needs. Since the establishment of the National Advisory Committee for Aeronautics (NACA) in 1915, the federal government has provided continuous research support related to flight and aircraft design. This research has contributed to the international preeminence of the U.S. aerospace industry. In this paper, we present a sociological analysis of aerospace engineers and scientists and how their attitudes and behaviors impact the flow of scientific and technical information (STI). We use a constructivist framework to explain the spotty dissemination of federally funded aerospace research. Our research is aimed towards providing federal policymakers with a clearer understanding of how and when federally funded aerospace research is used. This understanding will help policymakers design improved information transfer systems that will aid the competitiveness of the U.S. aerospace industry.

  1. The international aerospace industry - New challenges and opportunities for translation suppliers

    NASA Technical Reports Server (NTRS)

    Rowe, T.

    1986-01-01

    Attention is given to the recent trend toward internationalization in the aerospace industry and its effects on commercial and governmental translation programs. The aerospace industry, once dominated by organizations from a small number of countries, is now widely international in scope. In effect, there has been in increase in the demand for translations from German, Japanese, Chinese, French and Spanish source material while that for translation from Russian source material has remained constant. The impact of the Challenger disaster on aerospace translation programs is discussed as well as the impact of international participation in Space Station research.

  2. Supercomputer requirements for selected disciplines important to aerospace

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Kim, John; Holst, Terry L.; Deiwert, George S.; Cooper, David M.; Watson, Andrew B.; Bailey, F. Ron

    1989-01-01

    Speed and memory requirements placed on supercomputers by five different disciplines important to aerospace are discussed and compared with the capabilities of various existing computers and those projected to be available before the end of this century. The disciplines chosen for consideration are turbulence physics, aerodynamics, aerothermodynamics, chemistry, and human vision modeling. Example results for problems illustrative of those currently being solved in each of the disciplines are presented and discussed. Limitations imposed on physical modeling and geometrical complexity by the need to obtain solutions in practical amounts of time are identified. Computational challenges for the future, for which either some or all of the current limitations are removed, are described. Meeting some of the challenges will require computer speeds in excess of exaflop/s (10 to the 18th flop/s) and memories in excess of petawords (10 to the 15th words).

  3. Electronic Noses for Composites Surface Contamination Detection in Aerospace Industry.

    PubMed

    Vito, Saverio De; Miglietta, Maria Lucia; Massera, Ettore; Fattoruso, Grazia; Formisano, Fabrizio; Polichetti, Tiziana; Salvato, Maria; Alfano, Brigida; Esposito, Elena; Francia, Girolamo Di

    2017-04-02

    The full exploitation of Composite Fiber Reinforced Polymers (CFRP) in so-called green aircrafts design is still limited by the lack of adequate quality assurance procedures for checking the adhesive bonding assembly, especially in load-critical primary structures. In this respect, contamination of the CFRP panel surface is of significant concern since it may severely affect the bonding and the mechanical properties of the joint. During the last years, the authors have developed and tested an electronic nose as a non-destructive tool for pre-bonding surface inspection for contaminants detection, identification and quantification. Several sensors and sampling architectures have been screened in view of the high Technology Readiness Level (TRL) scenarios requirements. Ad-hoc pattern recognition systems have also been devised to ensure a fast and reliable assessment of the contamination status, by combining real time classifiers and the implementation of a suitable rejection option. Results show that e-noses could be used as first line low cost Non Destructive Test (NDT) tool in aerospace CFRP assembly and maintenance scenarios.

  4. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 2/Part 2

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume II Appendix A to Part 2 - Volume I.

  5. Aerospace energy systems laboratory: Requirements and design approach

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    The NASA Ames-Dryden Flight Research Facility at Edwards, California, operates a mixed fleet of research aircraft employing nickel-cadmium (NiCd) batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has developed over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.

  6. A preliminary investigation of the potential applicability of the IPAD system to non-aerospace industry

    NASA Technical Reports Server (NTRS)

    Hulbert, L. E.

    1975-01-01

    A study of the applicability of the planned Integrated Programs for Aerospace-Vehicle Design (IPAD) system to the design activities of non-aerospace industries was carried out. It was determined that IPAD could be of significant benefit to a number of industries, with the most likely users being the heavy construction and automotive industries. Two additional short studies were initiated to investigate the possible impact of IPAD on a national energy program and on urban and regional planning activities of local and state governments. These initial studies indicated the possibility of significant payoff in these areas and the need for further investigations. It was also determined that utilization of IPAD by non-aerospace industries will probably involve a long stepwise process, since these industries maintain a policy of gradual introduction of new technology.

  7. An overview of interferometric metrology and NDT techniques and applications for the aerospace industry

    NASA Astrophysics Data System (ADS)

    Georges, Marc P.; Thizy, Cédric; Languy, Fabian; Vandenrijt, Jean-François

    2016-08-01

    We review some full-field interferometric techniques which have been successfully applied in different applications related to the aerospace industry. The first part of the paper concerns the long-wave infrared (LWIR) digital holographic interferometry which allows the measurement large displacements that occur when space structures undergo large temperature excursions. A second part of the paper concerns different developments in interferometric nondestructive testing (NDT) techniques intended to improve their usability in aerospace industrial environments. Among others, we discuss LWIR speckle interferometry for simultaneous deformation and temperature variation measurements and new post-processing techniques applied to shearography for an easier detection of flaws in composite structures.

  8. Environmental, Safety, and Health Considerations: Composite Materials in the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Chu, Huai-Pu (Compiler)

    1994-01-01

    The Aerospace Industries Association, Suppliers of Advanced Composite Materials Association, and the National Aeronautics and Space Administration co-sponsored a conference on 'Environmental, Safety, and Health Considerations--Composite Materials in the Aerospace Industry.' The conference was held in Mesa, Arizona, on October 20-21, 1994. Seventeen papers were presented in four sessions including general information, safety, waste, and emissions from composites. Topics range from product stewardship, best work practice, biotransformation of uncured composite materials, to hazardous waste determination and offgassing of composite materials.

  9. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented.

  10. Human Requirements of Flight. Aviation and Spaceflight. Aerospace Education III.

    ERIC Educational Resources Information Center

    Coard, E. A.

    This book, one in the series on Aerospace Education III, deals with the general nature of human physiology during space flights. Chapter 1 begins with a brief discussion of the nature of the atmosphere. Other topics examined in this chapter include respiration and circulation, principles and problems of vision, noise and vibration, and…

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report number 21: US aerospace industry librarians and technical information specialists as information intermediaries: Results of the phase 2 survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. aerospace industry librarians and technical information specialists as information intermediaries.

  12. Applications of aerospace technology in the electric power industry

    NASA Technical Reports Server (NTRS)

    Johnson, F. D.; Heins, C. F.

    1974-01-01

    Existing applications of NASA contributions to disciplines such as combustion engineering, mechanical engineering, materials science, quality assurance and computer control are outlined to illustrate how space technology is used in the electric power industry. Corporate strategies to acquire relevant space technology are described.

  13. China’s Aerospace Industry: Technology, Funding and Modernization

    DTIC Science & Technology

    1992-01-01

    space capability has faired well, but the best example of this indigenous production has been the development of their nuclear industry. Since the Soviet...the present time. First, self reliance would be the best course of action for the Chinese. Expressed in the over-reaction a decade-or-so following the...dollars. Presently, China ranks fourth in the world in arms deliveries to the Third World. The amount of activity is best exemplified in the supply of

  14. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXVI - The relationship between technology policy and scientific and technical information within the U.S. and Japanese aerospace industries

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Lahr, Tom; Hoetker, Glenn

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry, which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  15. The development of optical techniques for component inspection in the aerospace industry

    NASA Astrophysics Data System (ADS)

    Irving, Paul Anthony

    A key requirement discussed within this thesis is feature extraction, in particular line segments. The Hough Transform is an elegant feature extraction technique for image analysis which performs well in noisy scenes and where occlusion may be problematic. Since its inception by P. V. C. Hough in 1962 for the detection of lines in bubble chambers, it has been widely researched, but minimal machine vision applications of the Hough Transform have been implemented. This lack of an application for the Hough Transform, coupled with the need for experimentation of an optical probe based on a conventional granite bed Coordinate Measuring Machine (CMM) is addressed. This latter requirement is currently fulfilled by mechanical touch trigger probes, or where optical techniques are used, back-illuminated glass tables. The suitability of the Hough Transform for machine vision inspection tasks is analyzed, and conclusions are drawn on whether or not useful results can be obtained by mounting a camera on the head of a CMM coupled with illumination from above. The industrial application addressed a drill and rout template digitizing within the aerospace industry; furthermore, the Hough Transform is also demonstrated for object recognition with a view to automatic component datum setting. New methods are illustrated for efficient, high accuracy Hough Transformation. Techniques are given for peak extraction in Hough space, enabling the isolation of all peaks irrespective of comparative magnitude, thereby eliminating the need for thresholding. Software data structures are shown to be an efficient method for implementing the above, especially with the later processing stages involving component boundary segment parsing.

  16. Making aerospace technology work for the automotive industry, introduction

    NASA Technical Reports Server (NTRS)

    Olson, W. T.

    1978-01-01

    NASA derived technology already in use in the automotive industry include: (1) developments in electronics design, computer systems, and quality control methods for line testing of cars and trucks; (2) a combustion analysis computer program for automotive engine research and development; (3) an infrared scanner and television display for analyzing tire design and performance, and for studying the effects of heat on the service life of V-belts, shock mounts, brakes, and rubber bearings; (4) exhaust gas analyzers for trouble shooting and emissions certification; (5) a device for reducing noise from trucks; and (6) a low cost test vehicle for measuring highway skid resistance. Services offered by NASA to facilitate access to its technology are described.

  17. Industrial and biomedical use of aerospace personal cooling garments

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Mcewen, G. N., Jr.; Montgomery, L. D.; Elkins, W. E.

    1975-01-01

    Liquid-cooled garments (LCG) have been developed which utilize liquid-cooled modules rather than the network of tygon tubing typical of Apollo LCG's. The ultra-thin, heat-sealed, polyurethane modules are situated over the body to cover 50 percent of the body surface area with special emphasis on the 'working' muscles and the head-neck area. These garments are being designed specifically for industrial and biomedical uses, such as: a head-neck cooling system which is being tested for race-car drivers, tractor drivers, truck drivers, or a head-neck cooling system tested for the reduction of the scalp hair loss which normally accompanies cancer treatments. A combined head-neck and thorax unit is being developed for use during mine distaster rescue operations, and for other hazardous hot applications. Finally applications for head-neck and partitional cooling are anticipated for military pilots, tank drivers, and heavy equipment operations.

  18. Economic interrelationships and impacts of the aviation/aerospace industry in the state of Florida using input-output analysis

    NASA Astrophysics Data System (ADS)

    Whealan George, Kelly

    The study provided a detailed description of the interrelatedness of the aviation and aerospace industry with principal industries in Florida and Volusia County (VC) using Input-Output (IO) analysis. Additionally, this research provided an economic impact analysis of the creation of a university research park in Daytona Beach (DB). The economic impact measures included not only direct economic output and industry employment descriptions but also described the multiplier effects in the form of indirect and induced impacts using data for 2012. This research concluded the average labor income of the aviation and aerospace industry was higher than average labor income in Florida and VC. A substantive difference between the Florida and VC average labor income for the aviation and aerospace industry existed because VC's aerospace sector was only concentrated in the search, detection, and navigation instruments manufacturing sector. VC's transport by air sector was one-fifth the size of Florida's. Differences in the aviation and aerospace industry composition between Florida and VC are important because the economic impacts from a shock to the entire aviation and aerospace industry will be distributed differently. Since the aviation and aerospace average labor income is higher than the average labor income in Florida and VC, it would be a positive move for Florida's economy to attract and grow the aviation and aerospace industry. It would be highly unlikely that the entirety of newly created jobs would be resourced from the local population. Nonetheless, growing the aviation and aerospace industry jobs would have a positive influence on the region's economy and tax revenues. It would be a desirable course of action to spur the growth of this sector, as its direct effect would culminate with additional jobs in Florida that would bring higher wage jobs to the state. The interdependencies of the aviation and aerospace industry in Florida and VC with other industries had a

  19. Results of a Survey Software Development Project Management in the U.S. Aerospace Industry. Volume III. Major Problems.

    DTIC Science & Technology

    1979-12-18

    DEVELOPMENT PROJECT MANAGEMENT IN THE U.S. AEROSPACE INDUSTRY VOLUME III MAJOR PROBLEMS ZZ: RICHARD H. THAYER SACRAMENTO AIR LOGISTICS CENTER tAIR FORCE...by block numbr) Software Engineering Project Management, Software Development , Survey, Project Management, Major Issues 20. AESTRACT (Continue oun... development projects. The sample of the U.S. Aerospace Industry that was surveyed consisted of companies with membership in the ALAA Technical

  20. Exploring Stakeholder Definitions within the Aerospace Industry: A Qualitative Case Study

    NASA Astrophysics Data System (ADS)

    Hebert, Jonathan R.

    A best practice in the discipline of project management is to identify all key project stakeholders prior to the execution of a project. When stakeholders are properly identified, they can be consulted to provide expert advice on project activities so that the project manager can ensure the project stays within the budget and schedule constraints. The problem addressed by this study is that managers fail to properly identify key project stakeholders when using stakeholder theory because there are multiple conflicting definitions for the term stakeholder. Poor stakeholder identification has been linked to multiple negative project outcomes such as budget and schedules overruns, and this problem is heightened in certain industries such as aerospace. The purpose of this qualitative study was to explore project managers' and project stakeholders' perceptions of how they define and use the term stakeholder within the aerospace industry. This qualitative exploratory single-case study had two embedded units of analysis: project managers and project stakeholders. Six aerospace project managers and five aerospace project stakeholders were purposively selected for this study. Data were collected through individual semi-structured interviews with both project managers and project stakeholders. All data were analyzed using Yin's (2011) five-phased cycle approach for qualitative research. The results indicated that the aerospace project managers and project stakeholder define the term stakeholder as "those who do the work of a company." The participants build upon this well-known concept by adding that, "a company should list specific job titles" that correspond to their company specific-stakeholder definition. Results also indicated that the definition of the term stakeholder is used when management is assigning human resources to a project to mitigate or control project risk. Results showed that project managers tended to include the customer in their stakeholder definitions

  1. Discovery of the Kalman filter as a practical tool for aerospace and industry

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Schmidt, S. F.

    1985-01-01

    The sequence of events which led the researchers at Ames Research Center to the early discovery of the Kalman filter shortly after its introduction into the literature is recounted. The scientific breakthroughs and reformulations that were necessary to transform Kalman's work into a useful tool for a specific aerospace application are described. The resulting extended Kalman filter, as it is now known, is often still referred to simply as the Kalman filter. As the filter's use gained in popularity in the scientific community, the problems of implementation on small spaceborne and airborne computers led to a square-root formulation of the filter to overcome numerical difficulties associated with computer word length. The work that led to this new formulation is also discussed, including the first airborne computer implementation and flight test. Since then the applications of the extended and square-root formulations of the Kalman filter have grown rapidly throughout the aerospace industry.

  2. The link between aerospace industry and NASA during the Apollo years

    NASA Astrophysics Data System (ADS)

    Turcat, Nicolas

    2008-01-01

    Made in the frame of a French master on political history of USA in Paris IV La Sorbonne University, this subject is the third part of " The Economy of Apollo during the 60s". Nicolas Turcat is actually preparing his PhD in History of Innovation (DEA—Paris IV La Sorbonne). Our actual subject is " the link between aerospace industry and NASA during the Apollo years". This speech will highlight on some aspects of the link between NASA and aerospace industry. NASA could achieve the Apollo mission safely and under heavy financial pressure during the sixties due to a new type of organization for a civil agency; the contractor system. In fact, Military used it since the 1950s. And we will see how the development of this type of contract permitted a better interaction between the two parts. NASA would make another type of link with universities and technical institutes; a real brain trust was created, and between 1961 and 1967, 10,000 students worked and more than 200 universities on Apollo program. We will try to study briefly the procurement plan and process during the Apollo years. Without entering the " spin-offs debate", we will try to watch different aspects of the impacts and realities of the contractor and subcontractor system. We will see that would create a political debate inside USA when presidents Johnson and Nixon would decide to reduce Apollo program. Which states will benefit Apollo program? Or questions like how the debate at the end of the 1960s will become more and more political? Actually, almost 60% of the country's R&D was focused on Apollo, economical and moreover, political impacts would be great. We will try to study this under the light of different example: and particularly in California. The industrial and military complex was a part of the Apollo program. Apollo reoriented the aim of this complex for making it the first aerospace industry. Since this time, USA had not only acquired space ambition but real space capabilities. But more than

  3. Development of Face Gear Technology for Industrial and Aerospace Power Transmission

    DTIC Science & Technology

    2002-05-01

    of the face gear tooth. The allowable bending stresses shown in Table 6 for carburized and hardened steel gears, the production heat treat...Center indicated strong potential for the use of face gears in aerospace applications. The tests were performed on AISI 9310 steel face gears in... carburized and ground face gears demonstrated the required durability when run for ten-million cycles at each of the applied loads. Other than wear lines

  4. Requirements for multidisciplinary design of aerospace vehicles on high performance computers

    NASA Technical Reports Server (NTRS)

    Voigt, Robert G.

    1989-01-01

    The design of aerospace vehicles is becoming increasingly complex as the various contributing disciplines and physical components become more tightly coupled. This coupling leads to computational problems that will be tractable only if significant advances in high performance computing systems are made. Some of the modeling, algorithmic and software requirements generated by the design problem are discussed.

  5. Development of Integrated Programs for Aerospace-Vehicle Design (IPAD) - IPAD user requirements

    NASA Technical Reports Server (NTRS)

    Anderton, G. L.

    1979-01-01

    Results of a requirements analysis task for Integrated Programs for Aerospace Vehicle Design (IPAD) are presented. User requirements which, in part, will shape the IPAD system design are given. Requirements considered were: generation, modification, storage, retrieval, communication, reporting, and protection of information. Data manipulation and controls on the system and the information were also considered. Specific needs relative to the product design process are also discussed.

  6. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA's patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  7. The effect of generation on retention of women engineers in aerospace and industry

    NASA Astrophysics Data System (ADS)

    Kiernan, Kristine Maria

    The purpose of this dissertation was to determine the nature and extent of differences between generational cohorts regarding the effect of family factors on retention of women in engineering, with an emphasis on women in the aerospace industry. While 6% of the aerospace workforce is made up of aeronautical engineers, an additional 11.2% of the aerospace workforce is drawn from other engineering disciplines. Therefore, the analysis included all engineering sub-disciplines. In order to include women who had left the workforce, women in all industries were used as a proxy for women in aerospace. Exits to other fields were modeled separately from exits out of the workforce. The source of data was the National Survey of College Graduates. Women engineers were divided into the Baby Boom cohort (born 1945-1964), the Generation X cohort (born 1965-1980), and the Millennial cohort (born 1981-1997). A time-lag design was used to compare generational cohorts when they were the same age. The results of this study showed that generational cohort did not affect retention of women in engineering. However, generational cohort affected family formation decisions, with Millennial women marrying and having children later than their counterparts in the Generation X and Baby Boom cohorts. Generational cohort also affected the influence of motherhood on retention in the workforce, with Generation X and Millennial mothers more likely to stay in the workforce than their counterparts in the Baby Boom cohort. There was no significant difference between Generation X and Millennial women in the proportion of mothers who stayed in the workforce. Generational cohort influenced the reasons women left the workforce. Women in the Millennial cohort were more likely to cite not needing or wanting to work, while women in the Generation X cohort were more likely to cite family responsibilities. Among mothers in the Millennial cohort who were out of the workforce, the proportion who cited not needing

  8. Results of a Survey Software Development Project Management in the U.S. Aerospace Industry. Volume II. Project Management Techniques, Procedures and Tools.

    DTIC Science & Technology

    1979-12-18

    PROJECT MANAGEMENT IN THE U.S. AEROSPACE INDUSTRY Volume I1 PROJECT MANAGEMENT TECHNIQUES, PROCEDURES AND TOOLS RICHARD Hf. THAYER SACRAMENTO AIR...MANAGEMENT TECHNIQUES AND PROCEDURES USED IN SOFTWARE DEVELOPMENT PROJECTS BY THE US AEROSPACE INDUSTRY BY Richard H. Thayer and John H. Lehman This report...contains the results of a survey conducted in 1977 and 1978 on how the US Aerospace Industry manages its software development projects. The sample of

  9. Development of Integrated Programs for Aerospace-vehicle design (IPAD): Integrated information processing requirements

    NASA Technical Reports Server (NTRS)

    Southall, J. W.

    1979-01-01

    The engineering-specified requirements for integrated information processing by means of the Integrated Programs for Aerospace-Vehicle Design (IPAD) system are presented. A data model is described and is based on the design process of a typical aerospace vehicle. General data management requirements are specified for data storage, retrieval, generation, communication, and maintenance. Information management requirements are specified for a two-component data model. In the general portion, data sets are managed as entities, and in the specific portion, data elements and the relationships between elements are managed by the system, allowing user access to individual elements for the purpose of query. Computer program management requirements are specified for support of a computer program library, control of computer programs, and installation of computer programs into IPAD.

  10. Towards Requirements in Systems Engineering for Aerospace IVHM Design

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Roychoudhury, Indranil; Lin, Wei; Goebel, Kai

    2013-01-01

    Health management (HM) technologies have been employed for safety critical system for decades, but a coherent systematic process to integrate HM into the system design is not yet clear. Consequently, in most cases, health management resorts to be an after-thought or 'band-aid' solution. Moreover, limited guidance exists for carrying out systems engineering (SE) on the subject of writing requirements for designs with integrated vehicle health management (IVHM). It is well accepted that requirements are key to developing a successful IVHM system right from the concept stage to development, verification, utilization, and support. However, writing requirements for systems with IVHM capability have unique challenges that require the designers to look beyond their own domains and consider the constraints and specifications of other interlinked systems. In this paper we look at various stages in the SE process and identify activities specific to IVHM design and development. More importantly, several relevant questions are posed that system engineers must address at various design and development stages. Addressing these questions should provide some guidance to systems engineers towards writing IVHM related requirements to ensure that appropriate IVHM functions are built into the system design.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 36: Technical uncertainty as a correlate of information use by US industry-affiliated aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1994-01-01

    This paper reports the results of an exploratory study that investigated the influence of technical uncertainty on the use of information and information sources by U.S. industry-affiliated aerospace engineers and scientists in completing or solving a project, task, or problem. Data were collected through a self-administered questionnaire. Survey participants were U.S. aerospace engineers and scientists whose names appeared on the Society of Automotive Engineers (SAE) mailing list. The results support the findings of previous research and the following study assumptions. Information and information-source use differ for projects, problems, and tasks with high and low technical uncertainty. As technical uncertainty increases, information-source use changes from internal to external and from informal to formal sources. As technical uncertainty increases, so too does the use of federally funded aerospace research and development (R&D). The use of formal information sources to learn about federally funded aerospace R&D differs for projects, problems, and tasks with high and low technical uncertainty.

  12. Aerospace Technology Careers: The Opportunity To Soar. Information Summaries.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This document provides guidelines for the preparation of careers in aerospace, whether with the National Aeronautics and Space Administration (NASA) or private industry. The document discusses the following topics: (1) Preparing for an Aerospace Career; (2) Careers in Aerospace; (3) Employment Requirements; and (4) How To Apply. (ZWH)

  13. Automated Modeling and Simulation Using the Bond Graph Method for the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Granda, Jose J.; Montgomery, Raymond C.

    2003-01-01

    Bond graph modeling was originally developed in the late 1950s by the late Prof. Henry M. Paynter of M.I.T. Prof. Paynter acted well before his time as the main advantage of his creation, other than the modeling insight that it provides and the ability of effectively dealing with Mechatronics, came into fruition only with the recent advent of modern computer technology and the tools derived as a result of it, including symbolic manipulation, MATLAB, and SIMULINK and the Computer Aided Modeling Program (CAMPG). Thus, only recently have these tools been available allowing one to fully utilize the advantages that the bond graph method has to offer. The purpose of this paper is to help fill the knowledge void concerning its use of bond graphs in the aerospace industry. The paper first presents simple examples to serve as a tutorial on bond graphs for those not familiar with the technique. The reader is given the basic understanding needed to appreciate the applications that follow. After that, several aerospace applications are developed such as modeling of an arresting system for aircraft carrier landings, suspension models used for landing gears and multibody dynamics. The paper presents also an update on NASA's progress in modeling the International Space Station (ISS) using bond graph techniques, and an advanced actuation system utilizing shape memory alloys. The later covers the Mechatronics advantages of the bond graph method, applications that simultaneously involves mechanical, hydraulic, thermal, and electrical subsystem modeling.

  14. Resources - Supply and availability. [of superalloys for United States aerospace industry

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1989-01-01

    Over the past several decades there have been shortage of strategic materials because of our near total import dependence on such metals as chromium, cobalt, and tantalum. In response to the continued vulnerability of U.S. superalloy producers to disruptions in resource supplies, NASA has undertaken a program to address alternatives to the super-alloys containing significant quantities of the strategic materials such as chromium, cobalt, niobium, and tantalum. The research program called Conservation of Strategic Aerospace Materials (COSAM) focuses on substitution, processing, and alternate materials to achieve its goals. In addition to NASA Lewis Research Center, universities and industry play an important role in the COSAM Program. This paper defines what is meant by strategic materials in the aerospace community, presents a strategic materials index, and reviews the resource supply and availability picture from the U.S. point of view. In addition, research results from the COSAM Program are highlighted and future directions for the use of low strategic material alloys or alternate materials are discussed.

  15. NASA specification for manufacturing and performance requirements of NASA standard aerospace nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    1988-01-01

    On November 25, 1985, the NASA Chief Engineer established a NASA-wide policy to maintain and to require the use of the NASA standard for aerospace nickel-cadmium cells and batteries. The Associate Administrator for Safety, Reliability, Maintainability, and Quality Assurance stated on December 29, 1986, the intent to retain the NASA standard cell usage policy established by the Office of the Chief Engineer. The current NASA policy is also to incorporate technological advances as they are tested and proven for spaceflight applications. This policy will be implemented by modifying the existing standard cells or by developing new NASA standards and their specifications in accordance with the NASA's Aerospace Battery Systems Program Plan. This NASA Specification for Manufacturing and Performance Requirements of NASA Standard Aerospace Nickel-Cadmium Cells is prepared to provide requirements for the NASA standard nickel-cadmium cell. It is an interim specification pending resolution of the separator material availability. This specification has evolved from over 15 years of nickel-cadmium cell experience by NASA. Consequently, considerable experience has been collected and cell performance has been well characterized from many years of ground testing and from in-flight operations in both geosynchronous (GEO) and low earth orbit (LEO) applications. NASA has developed and successfully used two standard flight qualified cell designs.

  16. Turbulence modeling needs of commercial CFD codes: Complex flows in the aerospace and automotive industries

    NASA Technical Reports Server (NTRS)

    Befrui, Bizhan A.

    1995-01-01

    This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.

  17. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama developed a high-strength aluminum alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard, 40-90 horsepower, engine line. The alloy pistons make the outboard motor quieter and cleaner, while improving fuel mileage and increasing engine durability. The engines comply with California Air resources Board emissions standards, some of the most stringent in the United States. (photo credit: Bombardiier Recreational Products)

  18. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    NASA Technical Reports Server (NTRS)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  19. The Aerospace Age. Aerospace Education I.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is written for use only in the Air Force ROTC program and cannot be purchased on the open market. The book describes the historical development of aerospace industry. The first chapter contains a brief review of the aerospace environment and the nature of technological changes brought by the aerospace revolution. The following chapter…

  20. An analysis of the effect of STEM initiatives on socially responsible diversity management in the US aerospace and defense industry

    NASA Astrophysics Data System (ADS)

    Johnson-Oliver, Patrick

    Workforce diversity is a growing concern at a global level and enlightened economic self-interest and corporate image compels industries to leverage it as a competitive advantage. The US aerospace and defense industry (US ADI) addresses workforce diversity through socially responsible diversity management. Prior research into the topic of approaching workforce diversity as a business rationale and a moral imperative has been limited. Scharmer and Kaufer's (2013) Theory U guided this longitudinal explanatory quantitative study, leading from the future as it emerged relative to socially responsible diversity management to compel industry to remove blind spots and co-create an economy that benefits all by promoting workforce diversity as a dual agenda. This study filled a research gap investigating the business case for diversity as a dual agenda in aerospace industry science, technology, engineering, and mathematics (STEM) disciplines. The study also investigated the America COMPETES Act as a moderator of the relationship between historically black colleges and universities (HBCUs) and industry. Data was retrieved for secondary data analysis from the National Science Foundation (NSF) and other public government services and agency websites. Two hypotheses were tested using quantitative analysis including descriptive statistics, linear regression, ANOVA, and two factor analysis. The statistical results were analyzed and deductive logic employed to develop conclusions for the study. There was a significant relationship found between both predictors and socially responsible diversity management. The results reinforce the necessity for the aerospace defense industry to promote the dual agenda of the business case for diversity as complementary; not as competing mandates.

  1. Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  2. Technical Uncertainty and Project Complexity as Correlates of Information Use by U.S. Industry-Affiliated Aerospace Engineers and Scientists: Results of an Exploratory Investigation

    DTIC Science & Technology

    1993-09-01

    Project Complexity as Correlates of Information Use by U.S. Industry-Affiliated Aerospace Engineers and Scientists: Results of an Exploratory Investigation...information environment in which U.S. aerospace engineers and scientists work and the factors that influence their use of scientific and technical...aerospace engineers and scientists. The work of Paisley (1980), Wilson (1981), Roberts (1982), Dervin (1983), and Taylor (1991) regarding "information

  3. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  4. The Impact of the Defense Industry Consolidation on the Aerospace Industry

    DTIC Science & Technology

    2006-03-01

    Markets, School of Economics, University of Nottingham, May 2000. 9. Demski, Joel S. and Robert P. Magee. “A Perspective on Accounting for Defense...Takuji. “What Do the Purified Solow Residuals Tell Us about Japan’s Lost Decade?” Monetary and Economic Studies: 113-148 (February 2005). 26. Kim... Robert E. Waller. “Consolidation of the U.S. Defense Industrial Base: Impact on Research Expenditures,” Acquisition Review Quarterly, 9: 143-150 (Spring

  5. The Effect of Online Systems Analysis Training on Aerospace Industry Business Performance: A Qualitative Study

    ERIC Educational Resources Information Center

    Burk, Erlan

    2012-01-01

    Aerospace companies needed additional research on technology-based training to verify expectations when enhancing human capital through online systems analysis training. The research for online systems analysis training provided aerospace companies a means to verify expectations for systems analysis technology-based training on business…

  6. How leadership attributes influence employee loyalty in the aerospace industry: An exploratory qualitative inquiry

    NASA Astrophysics Data System (ADS)

    Harrison, Marriel

    The influence leaders have on employee loyalty in the aerospace industry was examined through exploratory, qualitative inquiry. In-depth, semi-structured interviews were conducted to ascertain the influence of six leadership attributes on loyalty. These specific leadership attributes were addressed based on key themes from the scholarly leadership research and included communication, trust, accountability, understanding, compassion, and recognition. Data were analyzed to identify common themes and patterns among the 21 study participants. Based on the study findings, the majority of participants expressed that they want leaders to communicate--and to do so often and concisely. Participants also voiced that communication was a central component in resolving many of the problems associated with loyalty, such as clarity of direction or sense of inclusion in the organization. The central themes derived from the research include the following: (a) employee loyalty no longer exists when organizational leadership fails to challenge or empower employees or create an opportunity for growth, (b) effective leaders inspire employees by sharing the vision of an organization and including employees in the decision-making process, and (c) organizational culture, values, and effective leadership play an integral role in employee loyalty and long-term commitment to the organization.

  7. Numerical and Experimental Investigation of the Innovatory Incremental-Forming Process Dedicated to the Aerospace Industry

    NASA Astrophysics Data System (ADS)

    Szyndler, Joanna; Grosman, Franciszek; Tkocz, Marek; Madej, Lukasz

    2016-11-01

    The main goal of this work is development of the incremental-forming (IF) process for manufacturing integral elements applicable to the aerospace industry. A description of the proposed incremental-forming concept based on division of large die into a series of small anvils pressed into the material by a moving roll is presented within this article. A unique laboratory device has been developed to investigate the effects of process parameters on the material flow and the press loads. Additionally, a developed numerical model of this process with specific boundary conditions is also presented and validated to prove its predictive capabilities. However, main attention is placed on development of the process window. Thus, detailed investigation of the process parameters that can influence material behavior during plastic deformation, namely, roll size and roll frequency, is presented. Proper understanding of the material flow to improve the IF process, as well as press prototype, and to increase its technological readiness is the goal of this article. Results in the form of, e.g., strain distribution or recorded forging loads are presented and discussed.

  8. Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Rouse, Doris J.

    1984-01-01

    The objective of the Research Triangle Institute Technology Transfer Team is to assist NASA in achieving widespread utilization of aerospace technology in terrestrial applications. Widespread utilization implies that the application of NASA technology is to benefit a significant sector of the economy and population of the Nation. This objective is best attained by stimulating the introduction of new or improved commercially available devices incorporating aerospace technology. A methodology is presented for the team's activities as an active transfer agent linking NASA Field Centers, industry associations, user groups, and the medical community. This methodology is designed to: (1) identify priority technology requirements in industry and medicine, (2) identify applicable NASA technology that represents an opportunity for a successful solution and commercial product, (3) obtain the early participation of industry in the transfer process, and (4) successfully develop a new product based on NASA technology.

  9. Influence of Psychological Factors on Product Development. Lessons from Aerospace and other Industries

    NASA Astrophysics Data System (ADS)

    Kamata, E. S.

    2002-10-01

    Product development is a major determinant of quality and cost as companies throughout the world struggle to optimize product development processes. Engineering tasks are usually implicitly assumed to be a primarily technical activity, but in reality they feature numerous nontechnical factors as well. This book focuses on the interrelationships of social, technical, and organizational aspects of the product development process. Cases observed in industry and research laboratories are presented and interpreted based on the socio-technical system approach (Emery / Trist) of examining the reciprocal relationship between the technical and the social subsystems. This book is primarily intended for engineering and quality professionals who want to know the limitations of current methods used in product development, to examine the so-called soft factors by means of grounded studies of their effect on R&D performance, not only to acknowledge the influence of soft factors but to actively consider their potential to improve the work environment. Academic researchers of the topic will also find many references and material for advanced courses on project and quality management. In addition to numerous cases from the aerospace industry, its general solution concepts are generalizable to other industries in which the high degree of product complexity necessitates effective interaction among different disciplines. The historical evaluation is neither intended for introductory purposes nor to propose a return to the past, but as a survey of the relevant factors to be applied in present and future projects. The author holds a degree in Electronics Engineering from the Instituto Tecnológico de Aeronautica, Brazil, as well as a PhD in Administration Sciences from the Swiss Federal Institute of Technology in Zurich, Switzerland. He draws on profound academic research as well as a wealth of practical experience in avionics, telecommunications, systems control, and the space industry

  10. Results of a Survey Software Development Project Management in the U.S. Aerospace Industry. Volume I. Company Environment, Organization and Procedures.

    DTIC Science & Technology

    1979-12-18

    SK-ALC/M4E "TR -79-54- Volume I 18 December 1979 RESULTS OF A SURVEY SOFTWARE DEVELOPMENT PROJECT MANAGEMENT IN THE U.S. AEROSPACE INDUSTRY VOLUME I T2...Software Engineering Project Management, Software Development , Survey, Proj ect Management, Organization. O. AISTRACT (C4010i0 n reverse side It necessafy...REPRODUCE LEGIBLY. K, ABSTRACT RESULTS OF A SURVEY SOFTWARE DEVELOPMENT PROJECT MANAGEMENT IN THE U.S. AEROSPACE INDUSTRY Volume 1: COMPANY ENVIRONMENT

  11. Conference on Occupational Health Aspects of Advanced Composite Technology in the Aerospace Industry Held in Dayton, Ohio on 6-9 February 1989. Volume 1. Executive Summary

    DTIC Science & Technology

    1989-03-01

    ITIC FILE (MOPY AAMR1I.TR49OO8 o CONFERENCE ON OCCUPATIONAL HEALTH ASPECTS OF ADVANCED N COMPOSITE TECHNOLOGY IN THE AEROSPACE INDUSTRY VOLUME I...ADDRESS -(City. S00,SANIZI CO*e) 10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO ACCESSION NO. -- COFREC ON OCCUPs ~cls...conference on the Occupational Health Aspects of Advanced Composite Materials in% the Aerospace Industry, 6-9 February 989, in Dayton, Ohio. The

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 15: Technical uncertainty and project complexity as correlates of information use by US industry-affiliated aerospace engineers and scientists: Results of an exploratory investigation

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    An exploratory study was conducted that investigated the influence of technical uncertainty and project complexity on information use by U.S. industry-affiliated aerospace engineers and scientists. The study utilized survey research in the form of a self-administered mail questionnaire. U.S. aerospace engineers and scientists on the Society of Automotive Engineers (SAE) mailing list served as the study population. The adjusted response rate was 67 percent. The survey instrument is appendix C to this report. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and information use. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and the use of federally funded aerospace R&D. The results of this investigation are relevant to researchers investigating information-seeking behavior of aerospace engineers. They are also relevant to R&D managers and policy planners concerned with transferring the results of federally funded aerospace R&D to the U.S. aerospace industry.

  13. Applications of aerospace technology in industry, a technology transfer profile: Lubrication

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.

    1971-01-01

    Technology transfer in the lubrication field is discussed in terms of the movement of NASA-generated lubrication technology into the private sector as affected by evolving industrial requirements. An overview of the field is presented, and NASA technical contributions to lubrication technology are described. Specific examples in which these technologies have been used in the private sector are summarized.

  14. A case study of the knowledge transfer practices from the perspectives of highly experienced engineers in the aerospace industry

    NASA Astrophysics Data System (ADS)

    Martin, Deloris

    Purpose. The purpose of this study was to describe the existing knowledge transfer practices in selected aerospace companies as perceived by highly experienced engineers retiring from the company. Specifically it was designed to investigate and describe (a) the processes and procedures used to transfer knowledge, (b) the systems that encourage knowledge transfer, (c) the impact of management actions on knowledge transfer, and (d) constraining factors that might impede knowledge transfer. Methodology. A descriptive case study was the methodology applied in this study. Qualitative data were gathered from highly experienced engineers from 3 large aerospace companies in Southern California. A semistructured interview was conducted face-to-face with each participant in a private or semiprivate, non-workplace setting to obtain each engineer's perspectives on his or her company's current knowledge transfer practices. Findings. The participants in this study preferred to transfer knowledge using face-to-face methods, one-on-one, through actual troubleshooting and problem-solving scenarios. Managers in these aerospace companies were observed as having knowledge transfer as a low priority; they tend not to promote knowledge transfer among their employees. While mentoring is the most common knowledge transfer system these companies offer, it is not the preferred method of knowledge transfer among the highly experienced engineers. Job security and schedule pressures are the top constraints that impede knowledge transfer between the highly experienced engineers and their coworkers. Conclusions. The study data support the conclusion that the highly experienced engineers in the study's aerospace companies would more likely transfer their knowledge to those remaining in the industry if the transfer could occur face-to-face with management support and acknowledgement of their expertise and if their job security is not threatened. The study also supports the conclusion that managers

  15. 76 FR 25229 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G250 Airplane, Dynamic Test Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 Special Conditions: Gulfstream Aerospace LP (GALP) Model... special conditions are issued for the Gulfstream Aerospace LP (GALP) model G250 airplane. This...

  16. Development of Integrated Programs for Aerospace-vechicle Design (IPAD). IPAD user requirements: Implementation (first-level IPAD)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The requirements implementation strategy for first level development of the Integrated Programs for Aerospace Vehicle Design (IPAD) computing system is presented. The capabilities of first level IPAD are sufficient to demonstrated management of engineering data on two computers (CDC CYBER 170/720 and DEC VAX 11/780 computers) using the IPAD system in a distributed network environment.

  17. Evaluating the Availability, Role, and Performance of Subcontractors in the Aerospace Industry

    DTIC Science & Technology

    1983-07-15

    certain page 6-16 cone,; , which itiight contribute to a more creative and Hing production base analysis . First, a credible industrial planning process...subcontractors by those firms holding prime contracts with the Air Force. Acquisition planning and production base analysis require that the specific...considerations. Beyond these three specific defined tasks, production base analysis is discussed as it relates to the consideration of databases

  18. A comparative analysis of user preference-based and existing knowledge management systems attributes in the aerospace industry

    NASA Astrophysics Data System (ADS)

    Varghese, Nishad G.

    Knowledge management (KM) exists in various forms throughout organizations. Process documentation, training courses, and experience sharing are examples of KM activities performed daily. The goal of KM systems (KMS) is to provide a tool set which serves to standardize the creation, sharing, and acquisition of business critical information. Existing literature provides numerous examples of targeted evaluations of KMS, focusing on specific system attributes. This research serves to bridge the targeted evaluations with an industry-specific, holistic approach. The user preferences of aerospace employees in engineering and engineering-related fields were compared to profiles of existing aerospace KMS based on three attribute categories: technical features, system administration, and user experience. The results indicated there is a statistically significant difference between aerospace user preferences and existing profiles in the user experience attribute category, but no statistically significant difference in the technical features and system administration attribute categories. Additional analysis indicated in-house developed systems exhibit higher technical features and user experience ratings than commercial-off-the-self (COTS) systems.

  19. The Relationship of Skilled Aerospace Manufacturing Workforce Performance to Training

    ERIC Educational Resources Information Center

    Malsberry, Suzanne

    2014-01-01

    A major economic driver, the aerospace industry contributes to exports and higher wage jobs, which the United States requires to maintain robust economic health. Despite the investment in vocational educational training programs, insufficient workers have been available to aerospace companies. The purpose of this study was to investigate the…

  20. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)

    1997-01-01

    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  1. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Clark-Ingram, M.; Hessler, S. L.

    1997-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  2. New materials in the aerospace industries. [emphasizing heat resistant and light alloys

    NASA Technical Reports Server (NTRS)

    Gangler, J. J.

    1973-01-01

    Trends in the development of new aerospace metals and alloys are reviewed, and applications of these advanced materials in nonaerospace fields are indicated. Emphasis is placed on the light metals and the high-temperature alloys. Attention is given to the properties and uses of the high-strength aluminum alloy 7050, alpha and beta titanium alloys, dispersion strengthened superalloys, metal-metal composites, eutectic superalloys, and coated columbium alloys.

  3. Forging Industry Leadtimes: An Analysis of Causes for and Solutions to Long Leadtimes for Aerospace Forgings

    DTIC Science & Technology

    1986-09-01

    books , pamphlets, hearing briefs from the international trade commission, trade association publications and position papers. The first major study is...entitled Analysis of Critical Parts and Materials, was commissioned by the Air Force Business Management Research Center located at Wright-Patterson AFB... Parts and Materials study: The majority of suppliers are not exclusively in the military aerospace business, indeed many deliberately minimize their

  4. Laser Direct Manufacturing Developments State-of-the-Art and Activities in the French Aerospace Industry

    DTIC Science & Technology

    2006-05-01

    TA6V AeroMet specimens (see figure 3) proved the great interest for laser additive manufacturing process. The figure 3 indicates the static and fatigue ... Manufacturing (DM) for fully dense aerospace parts without forming tooling and link directly to CAD model. Two additive processes based on metal... Manufacturing processes Laser additive deposition Selective Laser melting Laser process LASFORM by AeroMet LENS by OPTOMEC MCP, EOS, PHENIX

  5. Development of aerospace nursing.

    PubMed

    Barron, N J

    1975-04-01

    In the initial development, the primary purpose of the USAF aerospace nursing program was to prepare the nurse to function as an integral member of the aerospace medical team in support of bioastronautics, occupational health and aerospace medical research programs. The absence of an expanded manned space program has required the aerospace nurse to redirect her energies toward the immediate needs of the aerospace medicine program. Many of the aerospace nurse's more specific functions are dependent upon the mission objectives of the command and military base to which she is assigned. Aerospace nursing reflects a concern for the total health needs of the Air Force community and the application of a holistic approach. It includes all aspects of health and all environmental hazards which alter health. The development of aerospace nursing paves the way for this expanded view of nursing practice.

  6. Unification: An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.; Carroll, Bonnie C.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  7. Unification - An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  8. Applications of fiber optic sensors in the aerospace and marine industries

    NASA Astrophysics Data System (ADS)

    Culshaw, Brian

    Current and potential aerospace and marine applications of fiber-optic device technology are surveyed and illustrated with diagrams, drawings, and photographs. Consideration is given to fiber-optic gyros for guidance and navigation; temperature, pressure, displacement, smoke-detection, fuel-level and fuel-flow, vibration, and acceleration sensors for flight-control systems; sensors for turbine-engine monitoring and testing; and embedded-fiber testing and process-monitoring methods for advanced composite materials. The specifically marine applications discussed are arrays of hydrophones and magnetometers based on fibers with acoustic and magnetic coatings, respectively.

  9. Aerospace Dermatology.

    PubMed

    Arora, Gp Capt Sandeep

    2017-01-01

    Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry.

  10. Aerospace Dermatology

    PubMed Central

    Arora, Gp Capt Sandeep

    2017-01-01

    Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry. PMID:28216729

  11. Aerospace Applications of Microprocessors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An assessment of the state of microprocessor applications is presented. Current and future requirements and associated technological advances which allow effective exploitation in aerospace applications are discussed.

  12. 77 FR 27833 - Requirements for Recognizing the Aviation and Aerospace Innovation in Science and Engineering Award

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... Engineering Award AGENCY: Office of the Secretary of Transportation, U.S. Department of Transportation. ACTION... ] Aviation and Aerospace Innovation in Science and Engineering) Award. Authority: 15 U.S.C. 3719 (America... an award to recognize students who develop unique scientific and engineering innovations in...

  13. National Emission Standards for Aerospace Manufacturing and Rework Facilities: Summary of Requirements for Implementing the National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    This summary of implementation requirements document for the Aerospace Manufacturing and Rework facilties NESHAP was originally prepared in August 1997, but it was updated in January 2001 with a new amendments update.

  14. Excimer-laser-induced surface treatments on metal and ceramic materials: applications to automotive, aerospace, and microelectronic industries

    NASA Astrophysics Data System (ADS)

    Autric, Michel L.

    1999-09-01

    Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.

  15. An Empirical Analysis of the Impacts of Adopting Lean Purchasing and Supplier Management Principles on the Participation of Small Business Within the Department of Defense Aerospace Industry

    DTIC Science & Technology

    2003-03-01

    lean manufacturing concepts. A primary goal of lean manufacturing is to add value by eliminating waste and inefficiency while improving quality and...implemented within the defense aerospace industry. Lean Purchasing and Supplier Management (PSM) Principles are subsets of the overall lean manufacturing concept...Force, and key defense contractors jointly funded the research of applying lean manufacturing concepts to the U.S. military aircraft industry. The

  16. 77 FR 3739 - Executive-led Aerospace and Defense Industry Trade Mission to Turkey-Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... Industry Trade Mission is to (1) introduce U.S. companies to Turkish business partners and industry... service providers to end-users and prospective partners whose needs and capabilities are targeted to each... Turkish partners and with the TuAFF where U.S. projects are concerned. The Commercial Service and...

  17. Unification: An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1991-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace business. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a view toward developing a scenario for establishing an international aerospace data base, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  18. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  19. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    SciTech Connect

    Reynolds, Robert E.

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  20. At NASA Dryden, Aerospace industry representatives view actual and mock-up versions of 'X-Planes' in

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aerospace industry representatives view actual and mock-up versions of 'X-Planes' intended to enhance access to space during a technical exposition on June 22, 2000 at Dryden Flight Research Center, Edwards, California. From left to right: NASA's B-52 launch aircraft, in service with NASA since 1959; a neutral-buoyancy model of the Boeing's X-37; the Boeing X-40A behind the MicroCraft X-43 mock-up; Orbital Science's X-34 and the modified Lockheed L-1011 airliner that was to launch the X-34. These X-vehicles are part of NASA's Access to Space plan intended to bring new technologies to bear in an effort to dramatically lower the cost of putting payloads in space, and near-space environments. The June 22, 2000 NASA Reusable Launch Vehicle (RLV) Technology Exposition included presentations on the history, present, and future of NASA's RLV program. Special Sessions for industry representatives highlighted the X-37 project and its related technologies. The X-37 project is managed by NASA's Marshall Space Flight Center, Huntsville, Alabama.

  1. Aerospace industry representatives view actual and mock-up versions of 'X-Planes' intended to enhanc

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aerospace industry representatives view actual and mock-up versions of 'X-Planes' intended to enhance access to space during a technical exposition on June 22, 2000 at Dryden Flight Research Center, Edwards, California. From left to right: NASA's B-52 launch aircraft, in service with NASA since 1959; a neutral-buoyancy model of the Boeing's X-37; the Boeing X-40A behind the MicroCraft X-43 mock-up; Orbital Science's X-34 and the modified Lockheed L-1011 airliner that was to launch the X-34. These X-vehicles are part of NASA's Access to Space plan intended to bring new technologies to bear in an effort to dramatically lower the cost of putting payloads in space, and near-space environments. The June 22, 2000 NASA Reusable Launch Vehicle (RLV) Technology Exposition included presentations on the history, present, and future of NASA's RLV program. Special Sessions for industry representatives highlighted the X-37 project and its related technologies. The X-37 project is managed by NASA's Marshall Space Flight Center, Huntsville, Alabama.

  2. Aerospace management techniques: Commercial and governmental applications

    NASA Technical Reports Server (NTRS)

    Milliken, J. G.; Morrison, E. J.

    1971-01-01

    A guidebook for managers and administrators is presented as a source of useful information on new management methods in business, industry, and government. The major topics discussed include: actual and potential applications of aerospace management techniques to commercial and governmental organizations; aerospace management techniques and their use within the aerospace sector; and the aerospace sector's application of innovative management techniques.

  3. Aerospace Community. Aerospace Education I.

    ERIC Educational Resources Information Center

    Mickey, V. V.

    This book, one in the series on Aerospace Education I, emphasizes the two sides of aerospace--military aerospace and civilian aerospace. Chapter 1 includes a brief discussion on the organization of Air Force bases and missile sites in relation to their missions. Chapter 2 examines the community services provided by Air Force bases. The topics…

  4. Evolution of and projections for automated composite material placement equipment in the aerospace industry

    NASA Astrophysics Data System (ADS)

    McCarville, Douglas A.

    2009-12-01

    As the commercial aircraft industry attempts to improve airplane fuel efficiency by shifting from aluminum to composites (reinforced plastics), there is a concern that composite processing equipment is not mature enough to meet increasing demand and that delivery delays and loss of high tech jobs could result. The research questions focused on the evolution of composite placement machines, improvement of machine functionality by equipment vendors, and the probability of new inventions helping to avoid production shortfalls. An extensive review of the literature found no studies that addressed these issues. Since the early twentieth century, exploratory case study of pivotal technological advances has been an accepted means of performing historic analysis and furthering understanding of rapidly changing marketplaces and industries. This qualitative case study investigated evolution of automated placement equipment by (a) codifying and mapping patent data (e.g., claims and functionality descriptions), (b) triangulating archival data (i.e., trade literature, vender Web sites, and scholarly texts), and (c) interviewing expert witnesses. An industry-level sensitivity model developed by the author showed that expanding the vendor base and increasing the number of performance enhancing inventions will most likely allow the industry to make the transition from aluminum to composites without schedule delays. This study will promote social change by (a) advancing individual and community knowledge (e.g., teaching modules for students, practitioners, and professional society members) and (b) providing an empirical model that will help in the understanding and projection of next generation composite processing equipment demand and productivity output.

  5. The North Texas aerospace manufacturing and aviation industries: An explanatory case study of school-to-work collaborative networks

    NASA Astrophysics Data System (ADS)

    Miller, Cynthia Ann

    The purpose of this study is to explore how educators, business partners and facilitators developed ties or networks to initiate a school-to-work collaboration to prepare students for jobs and careers in the aerospace manufacturing and aviation industries. There is growing concern about preparing a future workforce supply in these industries in North Texas. Workforce projections call for 8000 additional jobs between 2010 and 2020 (North Central Texas Council of Governments, 2013). Collaboration is recognized as a valuable asset to connect disjointed segments within the K-16 trajectory. This study explores the contradiction between the stated need for collaborative strategies and the inability of stakeholders attempting to collaborate across organizational and institutional boundaries to sustain these connections. Through the lens of networking theory, the roles of facilitators and the operation of networks and ties between and among partners are investigated. Ten participants in a high school curriculum development project were interviewed, representing a business, community college, and K-12 education. Data analysis revealed findings associated with three major themes: facilitation, project activity and relationships. Nine individuals were identified as facilitators, and facilitators were perceived as helping the project move forward. Project activity benefited from the structured curriculum development process. Although relationships characterized by strong ties helped start the project, weak ties predominated among project participants. Implications for theory include the need for more knowledge about facilitator roles and group dynamics. Further research about the functioning of weak and strong ties and facilitator skill sets relating to collaborative leadership would be valuable. Implications for practice include capturing lessons learned to apply to other industries, and overtly acknowledging the existence and importance of facilitators.

  6. Aerospace Systems Technical Research Operation Services (ASTROS) Industry Day (Briefing Charts)

    DTIC Science & Technology

    2014-07-01

    Mechanics • RQRO – Experimental Demonstrations – World-Class Facilities & Testing Support For Rocket Propulsion Technologies and Systems...10x, reducing s/c propellant 10x, enabling lighter and/or more capable s/c Transition? In-House: • Test facilities • 8 vacuum chambers • Thruster...and facility operations for demonstrating next generation rocket propulsion technologies • Early Industry Involvement – Encourage competition

  7. Applications of aerospace technology in industry: A technology transfer profile, nondestructive testing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.

  8. Applications of aerospace technology in industry, a technology transfer profile: Contamination control

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The strong influence NASA-sponsored research has had on the development of solutions to difficult contamination problems is considered. The contamination control field is comprised of an industrial base, supplying the tools of control; a user base, adopting control techniques; and a technical base, expanding the concepts of control. Both formal and informal mechanisms used by NASA to communicate a variety of technical advances are reviewed and certain examples of the expansion of the user base through technology transfer are given. Issues related to transfer of NASA-generated contamination control technology are emphasized.

  9. Limitless Horizons: Careers in Aerospace.

    ERIC Educational Resources Information Center

    Lewis, Mary H.

    This is a manual for acquainting students with pertinent information relating to career choices in aerospace science, engineering, and technology. The first chapter presents information about the aerospace industry by describing disciplines typical of this industry. The National Aeronautics and Space Administration's (NASA) classification system…

  10. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Michaud, Vince

    2015-01-01

    NASA Aerospace Medicine overview - Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.

  11. The Mobilus Initiative: Creating A New Component of the US Aerospace Industry Centered Upon Transport Airships

    DTIC Science & Technology

    2004-01-01

    or 4- 5 C- 17s of capacity. These rough estimates of a future capability do not require significant technical breakthroughs. The challenge lies far...the core strategies for transforming the Next Generation Air Transportation System. 5 While each individual cargo-carrying airship would be...expand these points. 5 References to the Joint Planning and Development Office (JPDO) Futures Working Group/related efforts come from the author’s

  12. Aerospace Environmental Technology Conference: Exectutive summary

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The papers from this conference are being published in a separate volume as NASA CP-3298.

  13. Applications of aerospace technology in industry: A technology transfer profile. Visual display systems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The growth of common as well as emerging visual display technologies are surveyed. The major inference is that contemporary society is rapidly growing evermore reliant on visual display for a variety of purposes. Because of its unique mission requirements, the National Aeronautics and Space Administration has contributed in an important and specific way to the growth of visual display technology. These contributions are characterized by the use of computer-driven visual displays to provide an enormous amount of information concisely, rapidly and accurately.

  14. Capital Requirements for the Air Transport Industry

    NASA Technical Reports Server (NTRS)

    James, G. W.

    1972-01-01

    In recent years the U.S. scheduled airline industry has been involved in the largest re-equipment program that involves the addition of hundreds of new aircraft to the airline fleet. The costs associated with the purchase of this new equipment, along with the other costs involving such matters as the environment and security, are presenting the carriers with significant financial challenges.

  15. ASTM E 1559 method for measuring material outgassing/deposition kinetics has applications to aerospace, electronics, and semiconductor industries

    NASA Technical Reports Server (NTRS)

    Garrett, J. W.; Glassford, A. P. M.; Steakley, J. M.

    1994-01-01

    The American Society for Testing and Materials has published a new standard test method for characterizing time and temperature-dependence of material outgassing kinetics and the deposition kinetics of outgassed species on surfaces at various temperatures. This new ASTM standard, E 1559(1), uses the quartz crystal microbalance (QCM) collection measurement approach. The test method was originally developed under a program sponsored by the United States Air Force Materials Laboratory (AFML) to create a standard test method for obtaining outgassing and deposition kinetics data for spacecraft materials. Standardization by ASTM recognizes that the method has applications beyond aerospace. In particular, the method will provide data of use to the electronics, semiconductor, and high vacuum industries. In ASTM E 1559 the material sample is held in vacuum in a temperature-controlled effusion cell, while its outgassing flux impinges on several QCM's which view the orifice of the effusion cell. Sample isothermal total mass loss (TML) is measured as a function of time from the mass collected on one of the QCM's which is cooled by liquid nitrogen, and the view factor from this QCM to the cell. The amount of outgassed volatile condensable material (VCM) on surfaces at higher temperatures is measured as a function of time during the isothermal outgassing test by controlling the temperatures of the remaining QCM's to selected values. The VCM on surfaces at temperatures in between those of the collector QCM's is determined at the end of the isothermal test by heating the QCM's at a controlled rate and measuring the mass loss from the end of the QCM's as a function of time and temperature. This reevaporation of the deposit collected on the QCM's is referred to as QCM thermogravimetric analysis. Isothermal outgassing and deposition rates can be determined by differentiating the isothermal TML and VCM data, respectively, while the evaporation rates of the species can be obtained as a

  16. Aerospace technology comes home.

    PubMed

    Coleman, C

    1997-07-01

    Science is expanding the options for homebound patients. Many of the new technologies coming into the home care industry are the result of aerospace innovations. What are these new technologies, and what can the home care industry expect to see in the future.

  17. Aerospace Meteorology Lessons Learned Relative to Aerospace Vehicle Design and Operations

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Anderson, B. Jeffrey

    2004-01-01

    Aerospace Meteorology came into being in the 1950s as the development of rockets for military and civilian usage grew in the United States. The term was coined to identify those involved in the development of natural environment models, design/operational requirements, and environment measurement systems to support the needs of aerospace vehicles, both launch vehicles and spacecraft. It encompassed the atmospheric environment of the Earth, including Earth orbit environments. Several groups within the United States were active in this area, including the Department of Defense, National Aeronautics and Space Administration, and a few of the aerospace industry groups. Some aerospace meteorology efforts were similar to those being undertaken relative to aviation interests. As part of the aerospace meteorology activities a number of lessons learned resulted that produced follow on efforts which benefited from these experiences, thus leading to the rather efficient and technologically current descriptions of terrestrial environment design requirements, prelaunch monitoring systems, and forecast capabilities available to support the development and operations of aerospace vehicles.

  18. Fact Sheets and Questions and Answers for the Final Air Toxics Rules for the Aerospace Manufacturing and Rework Industry

    EPA Pesticide Factsheets

    This page contains the July 1995 final rule fact sheet and the January 2015 proposed rule fact sheet that contains information on the National Emission Standards for Aerospace Manufacturing and Rework Facilities, as well as a 2001 Q&A document on the rule

  19. Computational aerodynamics requirements: The future role of the computer and the needs of the aerospace industry

    NASA Technical Reports Server (NTRS)

    Rubbert, P. E.

    1978-01-01

    The commercial airplane builder's viewpoint on the important issues involved in the development of improved computational aerodynamics tools such as powerful computers optimized for fluid flow problems is presented. The primary user of computational aerodynamics in a commercial aircraft company is the design engineer who is concerned with solving practical engineering problems. From his viewpoint, the development of program interfaces and pre-and post-processing capability for new computational methods is just as important as the algorithms and machine architecture. As more and more details of the entire flow field are computed, the visibility of the output data becomes a major problem which is then doubled when a design capability is added. The user must be able to see, understand, and interpret the results calculated. Enormous costs are expanded because of the need to work with programs having only primitive user interfaces.

  20. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  1. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  2. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The following areas of NASA's responsibilities are examined: (1) the Space Transportation System (STS) operations and evolving program elements; (2) establishment of the Space Station program organization and issuance of requests for proposals to the aerospace industry; and (3) NASA's aircraft operations, including research and development flight programs for two advanced X-type aircraft.

  3. Aerospace Bibliography. Seventh Edition.

    ERIC Educational Resources Information Center

    Blashfield, Jean F., Comp.

    Provided for teachers and the general adult reader is an annotated and graded list of books and reference materials dealing with aerospace subjects. Only non-fiction books and pamphlets that need to be purchased from commercial or government sources are included. Free industrial materials and educational aids are not included because they tend to…

  4. Safety Climate Management: A Method to Positively Shape a Safety Culture for Success in the Aerospace Industry

    NASA Astrophysics Data System (ADS)

    Neubauer, Kenneth; Shea, Edward

    2010-09-01

    The effectiveness of the safety management systems established by aerospace organizations depends upon the strength of the organization’s safety culture. If safety culture is in need of positive change, the challenge to leadership can be daunting. Cultural change is difficult in the best organizations and can take years to accomplish. Where do leaders begin when cultural change is needed? How can leaders gain the actionable knowledge necessary to steer their organization toward positive change? How can leaders get a true sense of their organization’s safety culture and then use that knowledge to affect change? Using the process of Safety Climate Management, aerospace leaders can assess and then take action to proactively and positively shape safety culture.

  5. Military Aerospace. Aerospace Education II.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is a revised publication in the series on Aerospace Education II. It describes the employment of aerospace forces, their methods of operation, and some of the weapons and equipment used in combat and combat support activities. The first chapter describes some of the national objectives and policies served by the Air Force in peace and…

  6. Aerospace Environment. Aerospace Education I.

    ERIC Educational Resources Information Center

    Savler, D. S.; Smith, J. C.

    This book is one in the series on Aerospace Education I. It briefly reviews current knowledge of the universe, the earth and its life-supporting atmosphere, and the arrangement of celestial bodies in outer space and their physical characteristics. Chapter 1 includes a brief survey of the aerospace environment. Chapters 2 and 3 examine the…

  7. NASA/DoD Aerospace Knowledge Diffusion Research Project. Report Number 21. U.S. Aerospace Industry Librarians and Technical Information Specialists as Information Intermediaries: Results of the Phase 2 Survey

    DTIC Science & Technology

    1994-02-01

    Merill. D. W. Stevenson 1976 McClure, C. R. "The Federal Technical Report Literature: Research Needs and 1988 Issues." Government Information Quarterly . 5... Information Quarterly 8(2): 219-233. R. 0. Barclay 1991 Pinelli, T. E., "Aerospace Knowledge Diffusion Research." World Aerospace J. M. Kennedy, Technology 󈨟...Sciences; AKA the SATCOM 1969 Report. Pinelli, T. E., "The NASA/DoD Aerospace Knowledge Diffusion Research J. M. Kennedy, and Project." Government

  8. Aerospace Technology.

    ERIC Educational Resources Information Center

    Paschke, Jean; And Others

    1991-01-01

    Describes the Sauk Rapids (Minnesota) High School aviation and aerospace curriculum that was developed by Curtis Olson and the space program developed by Gerald Mayall at Philadelphia's Northeast High School. Both were developed in conjunction with NASA. (JOW)

  9. Environmentally regulated aerospace coatings

    NASA Technical Reports Server (NTRS)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  10. Aerospace applications of batteries

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    1993-01-01

    NASA has developed battery technology to meet the demanding requirements for aerospace applications; specifically, the space vacuum, launch loads, and high duty cycles. Because of unique requirements and operating environments associated with space applications, NASA has written its own standards and specifications for batteries.

  11. Research needs in aerospace structural dynamics

    NASA Technical Reports Server (NTRS)

    Amos, A. K.; Goetz, R. C.

    1979-01-01

    The perspective of a NASA Ad Hoc Study Committee on future research needs in structural dynamics within the aerospace industry is presented. It identifies the common aspects of the design process across the industry and establishes the role of structural dynamics in it through a discussion of various design considerations having their basis in structural dynamics. The specific structural dynamics issues involved in these considerations are identified and assessed as to their current technological status and trends. Projections of future requirements based on this assessment are made and areas of research to meet them are identified.

  12. 77 FR 75400 - Labeling Requirements for Commercial and Industrial Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... Equipment AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request... conservation standards for certain commercial and industrial equipment, and requires the Department of Energy (DOE) to administer an energy conservation program for the equipment, including the development...

  13. The Educational Requirements for Industrial Democracy. Final Report.

    ERIC Educational Resources Information Center

    Center for Economic Studies, Stanford, CA.

    Four publications of the Educational Requirements for Industrial Democracy Project (1973-1976) are briefly reviewed. The project produced four books or monographs, seven published articles, and a number of unpublished papers. The main publication, "The Dialectic of Education and Work," by project investigators Henry M. Levin and Martin Carnoy,…

  14. Industry-Oriented Competency Requirements for Mechatronics Technology in Taiwan

    ERIC Educational Resources Information Center

    Shyr, Wen-Jye

    2012-01-01

    This study employed a three-phase empirical method to identify competency indicators for mechatronics technology according to industry-oriented criteria. In Phase I, a list of required competencies was compiled using Behavioral Event Interviews (BEI) with three engineers specializing in the field of mechatronics technology. In Phase II, the Delphi…

  15. Applications of artificial intelligence 1993: Knowledge-based systems in aerospace and industry; Proceedings of the Meeting, Orlando, FL, Apr. 13-15, 1993

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M. (Editor); Uthurusamy, Ramasamy (Editor)

    1993-01-01

    The present volume on applications of artificial intelligence with regard to knowledge-based systems in aerospace and industry discusses machine learning and clustering, expert systems and optimization techniques, monitoring and diagnosis, and automated design and expert systems. Attention is given to the integration of AI reasoning systems and hardware description languages, care-based reasoning, knowledge, retrieval, and training systems, and scheduling and planning. Topics addressed include the preprocessing of remotely sensed data for efficient analysis and classification, autonomous agents as air combat simulation adversaries, intelligent data presentation for real-time spacecraft monitoring, and an integrated reasoner for diagnosis in satellite control. Also discussed are a knowledge-based system for the design of heat exchangers, reuse of design information for model-based diagnosis, automatic compilation of expert systems, and a case-based approach to handling aircraft malfunctions.

  16. ASAP Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the First Quarterly Report for the newly reconstituted Aerospace Safety Advisory Panel (ASAP). The NASA Administrator rechartered the Panel on November 18,2003, to provide an independent, vigilant, and long-term oversight of NASA's safety policies and programs well beyond Return to Flight of the Space Shuttle. The charter was revised to be consistent with the original intent of Congress in enacting the statute establishing ASAP in 1967 to focus on NASA's safety and quality systems, including industrial and systems safety, risk-management and trend analysis, and the management of these activities.The charter also was revised to provide more timely feedback to NASA by requiring quarterly rather than annual reports, and by requiring ASAP to perform special assessments with immediate feedback to NASA. ASAP was positioned to help institutionalize the safety culture of NASA in the post- Stafford-Covey Return to Flight environment.

  17. 77 FR 64767 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... Aircraft Industries, Ltd.) Model Galaxy and Gulfstream 200 airplanes. The proposed AD would have required... Certificate previously held by Israel Aircraft Industries, Ltd.) Model Galaxy and Gulfstream 200 airplanes... indicates the unsafe condition no longer exists. Review of the Gulfstream Aerospace LP Model Galaxy...

  18. 78 FR 11567 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Airplanes AGENCY... are adopting a new airworthiness directive (AD) for all Gulfstream Aerospace LP (Type Certificate..., Aerospace Engineer, International Branch, ANM-116, Transport Airplane Directorate, FAA, 1601 Lind Avenue...

  19. 77 FR 44432 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Airplanes AGENCY... are adopting a new airworthiness directive (AD) for certain Gulfstream Aerospace LP (Type Certificate...., Washington, DC. FOR FURTHER INFORMATION CONTACT: Tom Groves, Aerospace Engineer, International Branch,...

  20. Engineering in the 21st century. [aerospace technology prospects

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1978-01-01

    A description is presented of the nature of the aerospace technology system that might be expected by the 21st century from a reasonable evolution of the current resources and capabilities. An aerospace employment outlook is provided. The years 1977 and 1978 seem to be marking the beginning of a period of stability and moderate growth in the aerospace industry. Aerospace research and development employment increased to 70,000 in 1977 and is now occupying a near-constant 18% share of the total research and development work force. The changing job environment is considered along with the future of aerospace education. It is found that one trend is toward a more interdisciplinary education. Most trend setters in engineering education recognize that the really challenging engineering problems invariably require the judicious exercise of several disciplines for their solution. Some future trends in aerospace technology are discussed. By the year 2000 space technology will have achieved major advances in four areas, including management of information, transportation, space structures, and energy.

  1. Frontier Aerospace Opportunities

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2014-01-01

    Discussion and suggested applications of the many ongoing technology opportunities for aerospace products and missions, resulting in often revolutionary capabilities. The, at this point largely unexamined, plethora of possibilities going forward, a subset of which is discussed, could literally reinvent aerospace but requires triage of many possibilities. Such initial upfront homework would lengthen the Research and Development (R&D) time frame but could greatly enhance the affordability and performance of the evolved products and capabilities. Structural nanotubes and exotic energetics along with some unique systems approaches are particularly compelling.

  2. Adapting ORAP to wind plants : industry value and functional requirements.

    SciTech Connect

    Not Available

    2010-08-01

    Strategic Power Systems (SPS) was contracted by Sandia National Laboratories to assess the feasibility of adapting their ORAP (Operational Reliability Analysis Program) tool for deployment to the wind industry. ORAP for Wind is proposed for use as the primary data source for the CREW (Continuous Reliability Enhancement for Wind) database which will be maintained by Sandia to enable reliability analysis of US wind fleet operations. The report primarily addresses the functional requirements of the wind-based system. The SPS ORAP reliability monitoring system has been used successfully for over twenty years to collect RAM (Reliability, Availability, Maintainability) and operations data for benchmarking and analysis of gas and steam turbine performance. This report documents the requirements to adapt the ORAP system for the wind industry. It specifies which existing ORAP design features should be retained, as well as key new requirements for wind. The latter includes alignment with existing and emerging wind industry standards (IEEE 762, ISO 3977 and IEC 61400). There is also a comprehensive list of thirty critical-to-quality (CTQ) functional requirements which must be considered and addressed to establish the optimum design for wind.

  3. Advances in Computational Stability Analysis of Composite Aerospace Structures

    SciTech Connect

    Degenhardt, R.; Araujo, F. C. de

    2010-09-30

    European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.

  4. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    This abstract describes the content of a presentation for ground rounds at Mt. Sinai School of Medicine. The presentation contains three sections. The first describes the history of aerospace medicine beginning with early flights with animals. The second section of the presentation describes current programs and planning for future missions. The third section describes the medical challenges of exploration missions.

  5. CORBASec Used to Secure Distributed Aerospace Propulsion Simulations

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2003-01-01

    The NASA Glenn Research Center and its industry partners are developing a Common Object Request Broker (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines. It was developed by Glenn and is being managed by the NASA Ames Research Center as the lead center reporting directly to NASA Headquarters' Aerospace Technology Enterprise. Glenn is an active domain member of the Object Management Group: an open membership, not-for-profit consortium that produces and manages computer industry specifications (i.e., CORBA) for interoperable enterprise applications. When NPSS is deployed, it will assemble a distributed aerospace propulsion simulation scenario from proprietary analytical CORBA servers and execute them with security afforded by the CORBASec implementation. The NPSS CORBASec test bed was initially developed with the TPBroker Security Service product (Hitachi Computer Products (America), Inc., Waltham, MA) using the Object Request Broker (ORB), which is based on the TPBroker Basic Object Adaptor, and using NPSS software across different firewall products. The test bed has been migrated to the Portable Object Adaptor architecture using the Hitachi Security Service product based on the VisiBroker 4.x ORB (Borland, Scotts Valley, CA) and on the Orbix 2000 ORB (Dublin, Ireland, with U.S. headquarters in Waltham, MA). Glenn, GE Aircraft Engines, and Pratt & Whitney Aircraft are the initial industry partners contributing to the NPSS CORBASec test bed. The test bed uses Security SecurID (RSA Security Inc., Bedford, MA) two-factor token-based authentication together with Hitachi Security Service digital-certificate-based authentication to validate the various NPSS users. The test

  6. Estimation of Managerial and Technical Personnel Requirements in Selected Industries. Training for Industry Series, No. 2.

    ERIC Educational Resources Information Center

    United Nations Industrial Development Organization, Vienna (Austria).

    The need to develop managerial and technical personnel in the cement, fertilizer, pulp and paper, sugar, leather and shoe, glass, and metal processing industries of various nations was studied, with emphasis on necessary steps in developing nations to relate occupational requirements to technology, processes, and scale of output. Estimates were…

  7. National meeting to review IPAD status and goals. [Integrated Programs for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1980-01-01

    A joint NASA/industry project called Integrated Programs for Aerospace-vehicle Design (IPAD) is described, which has the goal of raising aerospace-industry productivity through the application of computers to integrate company-wide management of engineering data. Basically a general-purpose interactive computing system developed to support engineering design processes, the IPAD design is composed of three major software components: the executive, data management, and geometry and graphics software. Results of IPAD activities include a comprehensive description of a future representative aerospace vehicle design process and its interface to manufacturing, and requirements and preliminary design of a future IPAD software system to integrate engineering activities of an aerospace company having several products under simultaneous development.

  8. Informatics requirements for a restructured competitive electric power industry

    SciTech Connect

    Pickle, S.; Marnay, C.; Olken, F.

    1996-08-01

    The electric power industry in the United States is undergoing a slow but nonetheless dramatic transformation. It is a transformation driven by technology, economics, and politics; one that will move the industry from its traditional mode of centralized system operations and regulated rates guaranteeing long-run cost recovery, to decentralized investment and operational decisionmaking and to customer access to true spot market prices. This transformation will revolutionize the technical, procedural, and informational requirements of the industry. A major milestone in this process occurred on December 20, 1995, when the California Public Utilities Commission (CPUC) approved its long-awaited electric utility industry restructuring decision. The decision directed the three major California investor-owned utilities to reorganize themselves by the beginning of 1998 into a supply pool, at the same time selling up to a half of their thermal generating plants. Generation will be bid into this pool and will be dispatched by an independent system operator. The dispatch could potentially involve bidders not only from California but from throughout western North America and include every conceivable generating technology and scale of operation. At the same time, large customers and aggregated customer groups will be able to contract independently for their supply and the utilities will be required to offer a real-time pricing tariff based on the pool price to all their customers, including residential. In related proceedings concerning competitive wholesale power markets, the Federal Energy Regulatory Commission (FERC) has recognized that real-time information flows between buyers and sellers are essential to efficient equitable market operation. The purpose of this meeting was to hold discussions on the information technologies that will be needed in the new, deregulated electric power industry.

  9. Scoping Aerospace: Tracking Federal Procurement and R&D Spending in the Aerospace Sector

    DTIC Science & Technology

    2005-01-01

    study). 2 Stanley I. Weiss and Amir R. Amir, “Aerospace Industry,” available at Encyclopedia Britannica Online , accessed 19 July 2004. 3 This general...at Encyclopedia Britannica Online , accessed 19 July 2004. 5 CHAPTER TWO State of the Aerospace Sector from 1993 to 2003 In the two years since RAND...Quadrennial Defense Review Report. Washington, D.C: 30 September 2001. Weiss, Stanley I., and Amir R. Amir. “Aerospace Industry,” Encyclopedia Britannica Online . Available

  10. Energy Storage for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.

    2001-01-01

    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.

  11. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  12. Lightning Protection Guidelines for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Goodloe, C. C.

    1999-01-01

    This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.

  13. Guidelines for the Procurement of Aerospace Nickel Cadmium Cells

    NASA Technical Reports Server (NTRS)

    Thierfelder, Helmut

    1997-01-01

    NASA has been using a Modular Power System containing "standard" nickel cadmium (NiCd) batteries, composed of "standard" NiCd cells. For many years the only manufacturer of the NASA "standard" NiCd cells was General Electric Co. (subsequently Gates Aerospace and now SAFT). This standard cell was successfully used in numerous missions. However, uncontrolled technical changes, and changes in industrial restructuring require a new approach. General Electric (now SAFT Aerospace Batteries) had management changes, new manufacturers entered the market (Eagle-Picher Industries, ACME Electric Corporation, Aerospace Division, Sanyo Electric Co.) and battery technology advanced. New NASA procurements for aerospace NiCd cells will have specifications unique to the spacecraft and mission requirements. This document provides the user/customer guidelines for the new approach to procuring of and specifying performance requirements for highly reliable NiCd cells and batteries. It includes details of key parameters and their importance. The appendices contain a checklist, detailed calculations, and backup information.

  14. Aerospace Sector. Basic Skills Needs Assessment. Bristol Aerospace Limited & Canadian Auto Workers, Local 3005.

    ERIC Educational Resources Information Center

    Cole, Lee Thomas

    A project examined the skill gaps within the aerospace industry, identified and prioritized the skills common to all jobs and work areas within the industry, and provided insight into the skills that workers need to upgrade and develop. The research was conducted June-August 1994 at Bristol Aerospace's Winnipeg, Manitoba, operations. The basic…

  15. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  16. An Aerospace and Defense Industry Market Index for 1950-2012 and the Connection With Defense Spending

    DTIC Science & Technology

    2012-04-30

    School. To request defense acquisition research or to become a research sponsor, please contact: NPS Acquisition Research Program Attn: James B...Naval Postgraduate School Foundation and acknowledge its generous contributions in support of this symposium. James B. Greene Jr. Keith F. Snider...Assessing Defense Industry Health in a Constrained Fiscal and Global Context Wednesday, May 16, 2012 1:45 p.m. – 3:15 p.m. Chair: James E. Thomsen

  17. Aerospace Education - An Overview

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Discusses the surge of interest throughout the country in aerospace education and discusses what aerospace education is, the implications in career education and the relevance of aerospace education in the curriculum. (BR)

  18. Basic Aerospace Education Library

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Lists the most significant resource items on aerospace education which are presently available. Includes source books, bibliographies, directories, encyclopedias, dictionaries, audiovisuals, curriculum/planning guides, aerospace statistics, aerospace education statistics and newsletters. (BR)

  19. Aerospace gerontology

    NASA Technical Reports Server (NTRS)

    Comfort, A.

    1982-01-01

    The relevancy of gerontology and geriatrics to the discipline of aerospace medicine is examined. It is noted that since the shuttle program gives the facility to fly passengers, including specially qualified older persons, it is essential to examine response to acceleration, weightlessness, and re-entry over the whole adult lifespan, not only its second quartile. The physiological responses of the older person to weightlessness and the return to Earth gravity are reviewed. The importance of the use of the weightless environment to solve critical problems in the fields of fundamental gerontology and geriatrics is also stressed.

  20. Industrial Ceramics: Secondary Schools.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    The expanding use of ceramic products in today's world can be seen in the areas of communications, construction, aerospace, textiles, metallurgy, atomic energy, and electronics. The demands of science have brought ceramics from an art to an industry using mass production and automated processes which requires the services of great numbers as the…

  1. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Beall, H. C.; Beadles, R. L.; Brown, J. N., Jr.; Clingman, W. H.; Courtney, M. W.; Rouse, D. J.; Scearce, R. W.

    1979-01-01

    Medical products utilizing and incorporating aerospace technology were studied. A bipolar donor-recipient model for medical transfer is presented. The model is designed to: (1) identify medical problems and aerospace technology which constitute opportunities for successful medical products; (2) obtain early participation of industry in the transfer process; and (3) obtain acceptance by medical community of new medical products based on aerospace technology.

  2. Aerospace in the future

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1980-01-01

    National research and technology trends are introduced in the environment of accelerating change. NASA and the federal budget are discussed. The U.S. energy dependence on foreign oil, the increasing oil costs, and the U.S. petroleum use by class are presented. The $10 billion aerospace industry positive contribution to the U.S. balance of trade of 1979 is given as an indicator of the positive contribution of NASA in research to industry. The research work of the NASA Lewis Research Center in the areas of space, aeronautics, and energy is discussed as a team effort of government, the areas of space, aeronautics, and energy is discussed as a team effort of government, industry, universities, and business to maintain U.S. world leadership in advanced technology.

  3. Heat transfer in aerospace propulsion

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

    1988-01-01

    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

  4. Technology utilization. [aerospace technology transfer

    NASA Technical Reports Server (NTRS)

    Kubokawa, C. C.

    1978-01-01

    NASA developed technologies were used to tackle problems associated with safety, transportation, industry, manufacturing, construction and state and local governments. Aerospace programs were responsible for more innovations for the benefit of mankind than those brought about by either major wars, or peacetime programs. Briefly outlined are some innovations for manned space flight, satellite surveillance applications, and pollution monitoring techniques.

  5. 75 FR 20265 - Airworthiness Directives; Liberty Aerospace Incorporated Model XL-2 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... Aerospace Incorporated Model XL-2 Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Liberty Aerospace Incorporated Model XL-2 airplanes. AD 2009-08-05 currently requires repetitively... approved the incorporation by reference of Liberty Aerospace, Inc. Service Document Critical...

  6. Water requirements of the rayon- and acetate-fiber industry

    USGS Publications Warehouse

    Mussey, Orville Durey

    1957-01-01

    Water is required for several purposes in the manufacture of rayon and acetate fiber. These water requirements, as indicated by a survey of the water used by the plants operating in 1953, are both quantitative and qualitative. About 300 mgd (million gallons per day) of water was used in 1953 in the preparation of purified wood cellulose and cotton linters, the basic material from which the rayon and acetate fiber is made. An additional 620 mgd was used in the process of converting the cellulose to rayon and acetate fiber. The total, 920 mgd, is about 1 percent of the total estimated withdrawals of industrial water in the United States in 1953. The rayon- and acetate-fiber plants are scattered through eastern United States and generally are located in small towns or rural areas where there are abundant supplies of clean, soft water. Water use at a typical rayon-fiber plant was about 9 mgd, and at a typical acetate-fiber plant about 38 mgd. About 110 gallons of water was used to produce a pound of rayon fiber, 32 gallons per pound was process water and the remainder was used largely for cooling in connection with power production and air conditioning. For the manufacture of a pound of acetate fiber about 170 gallons of water was used. However, the field survey on which this report is based indicated a wide range in the amount of water used per pound of product. For example, in the manufacture of viscose rayon, the maximum unit water use was 8 times the minimum unit water use. Water use in summer was about 22 percent greater than average annual use. About 8 mgd Of water was consumed by evaporation in the manufacture of rayon and acetate fiber. More than 90 percent of the water used by the rayon and acetate industry was with- drawn from surface-water sources, about 8 percent from ground water, and less than 2 percent from municipal water supplies. All available analyses of the untreated waters used by the rayon and acetate industry were collected and studied. The

  7. Aerospace Engineering Systems

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: Physics-based analysis tools for filling the design space database; Distributed computational resources to reduce response time and cost; Web-based technologies to relieve machine-dependence; and Artificial intelligence technologies to accelerate processes and reduce process variability. Activities such as the Advanced Design Technologies Testbed (ADTT) project at NASA Ames Research Center study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities will be reported.

  8. The psychiatrist's role in aerospace operations.

    PubMed

    Sledge, W H; Boydstun, J A

    1980-08-01

    This paper presents two unique aspects of aerospace psychiatry: the influence of the specialized stressors and occupational requirements of an aviation career and the ambiguous role of the aerospace psychiatrist. Aerospace psychiatrists have multiple, sometimes conflicting, responsibilities to the organization and society (the social control task) and to the individual aviator (the humanistic and medical tasks). In the two case reports below the authors describe airmen who had vasovagal syncope and how the psychiatrist intervened and resolved these conflicting tasks.

  9. Assessment of US industry's technology trends and new technology requirements

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The utility and effectiveness of a novel approach (the Applications Development, or AD approach), intended to augment the efficiency of NASA's technology utilization (TU) through dissemination of NASA technologies and joint technology development efforts with U.S. industry is tested. The innovative AD approach consists of the following key elements: selection of NASA technologies appearing to have leading edge attributes; interaction with NASA researchers to assess the characteristics and quality of each selected technology; identification of industry's needs in the selected technology areas; structuring the selected technologies in terms of specifications and standards familiar to industry (industrial Spec. Sheets); identification and assessment of industry's interest in the specific selected NASA technologies, utilizing the greatly facilitated communication made possible by the availability of the industrial Spec. Sheets; and matching selected NASA technologies with the needs of selected industries.

  10. Browsing through rapid-fire imaging: requirements and industry initiatives

    NASA Astrophysics Data System (ADS)

    Wittenburg, Kent; Chiyoda, Carlos; Heinrichs, Michael; Lanning, Tom

    1999-12-01

    It is well established that humans possess cognitive abilities to process images extremely rapidly. At GTE Laboratories we have been experimenting with Web-based browsing interfaces that take advantage of this human facility. We have prototyped a number of browsing applications in different domains that offer the advantages of high interactivity and visual engagement. Our hypothesis, confirmed by user evaluations and a pilot experiment, is that many users will be drawn to interfaces that provide rapid presentation of images for browsing tasks in many contexts, among them online shopping, multimedia title selection, and people directories. In this paper we present our application prototypes using a system called PolyNav and discuss the imaging requirements for applications like these. We also raise the suggestion that if the Web industry at large standardized on an XML for meta-content that included images, then the possibility exist that rapid-fire image browsing could become a standard part of the Web experience for content selection in a variety of domains.

  11. A Comparative Analysis of Industrial Technology Education in Minnesota and the Requirements of Industry.

    ERIC Educational Resources Information Center

    Strom, Irving Elner

    Questionnaires designed to determine to what extent existing 4-year industrial technology curriculums in the State of Minnesota were meeting the needs of the selected Minnesota industries were returned from all existing 4-year industrial technology programs and from 111 (80 percent) selected industries. Some of the findings were: (1) Aeronautics,…

  12. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  13. 9 CFR 11.41 - Reporting required of horse industry organizations or associations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Reporting required of horse industry... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE HORSE PROTECTION REGULATIONS § 11.41 Reporting required of horse industry organizations or associations. Each horse industry organization or...

  14. 9 CFR 11.41 - Reporting required of horse industry organizations or associations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Reporting required of horse industry... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE HORSE PROTECTION REGULATIONS § 11.41 Reporting required of horse industry organizations or associations. Each horse industry organization or...

  15. 9 CFR 11.41 - Reporting required of horse industry organizations or associations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Reporting required of horse industry... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE HORSE PROTECTION REGULATIONS § 11.41 Reporting required of horse industry organizations or associations. Each horse industry organization or...

  16. 9 CFR 11.41 - Reporting required of horse industry organizations or associations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Reporting required of horse industry... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE HORSE PROTECTION REGULATIONS § 11.41 Reporting required of horse industry organizations or associations. Each horse industry organization or...

  17. 9 CFR 11.41 - Reporting required of horse industry organizations or associations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Reporting required of horse industry... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE HORSE PROTECTION REGULATIONS § 11.41 Reporting required of horse industry organizations or associations. Each horse industry organization or...

  18. Maintaining the Defense Industrial Base

    DTIC Science & Technology

    1994-05-02

    34 43 Utilizing concurrent engineering , development times are reduced by up to 40%.44 Japan’s auto industry use of concurrent engineering is a factor in... Developing this prescription for maintaining the defense industrial base involves a two step process. First, it is important to establish the current...increased. The skills required to work with advanced aerospace composite materials are unique to the industry . Developing 8 -1777 profiiency in this

  19. Skills Conversion Project, Chapter 12, Leisure Industries.

    ERIC Educational Resources Information Center

    National Society of Professional Engineers, Washington, DC.

    The Skills Conversion Project conducted by the National Society of Professional Engineers sought to study the transition mechanisms required to transfer available technical manpower from aerospace and defense industries into other areas of employment in private industry and public service. Fourteen study teams assessed the likelihood of future…

  20. 76 FR 71577 - Guidance for Industry on Medication Guide Distribution Requirements and Inclusion of Medication...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry on Medication Guide Distribution Requirements and Inclusion of Medication Guides in Risk Evaluation and Mitigation Strategies; Availability...) is announcing the availability of a guidance for industry entitled ``Medication Guides--...

  1. Graphite Nanoreinforcements for Aerospace Nanocomposites

    NASA Technical Reports Server (NTRS)

    Drzal, Lawrence T.

    2005-01-01

    New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.

  2. End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes

    SciTech Connect

    L.E. Demick

    2010-09-01

    This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

  3. 76 FR 49772 - Guidance for Industry: Bar Code Label Requirements-Questions and Answers; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry: Bar Code Label Requirements... Industry: Bar Code Label Requirements--Questions and Answers'' dated August 2011. The guidance announced in... alternative coding technologies to the linear bar code requirement. The guidance announced in this...

  4. Key Issues for Aerospace Applications of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Levine, S. R.

    1998-01-01

    Ceramic matrix composites (CMC) offer significant advantages for future aerospace applications including turbine engine and liquid rocket engine components, thermal protection systems, and "hot structures". Key characteristics which establish ceramic matrix composites as attractive and often enabling choices are strength retention at high temperatures and reduced weight relative to currently used metallics. However, due to the immaturity of this class of materials which is further compounded by the lack of experience with CMC's in the aerospace industry, there are significant challenges involved in the development and implementation of ceramic matrix composites into aerospace systems. Some of the more critical challenges are attachment and load transfer methodologies; manufacturing techniques, particularly scale up to large and thick section components; operational environment resistance; damage tolerance; durability; repair techniques; reproducibility; database availability; and the lack of validated design and analysis tools. The presentation will examine the technical issues confronting the application of ceramic matrix composites to aerospace systems and identify the key material systems having potential for substantial payoff relative to the primary requirements of light weight and reduced cost for future systems. Current programs and future research opportunities will be described in the presentation which will focus on materials and processes issues.

  5. 78 FR 77618 - Airworthiness Directives; M7 Aerospace LLC Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; M7 Aerospace LLC...). SUMMARY: We propose to adopt a new airworthiness directive (AD) for all M7 Aerospace LLC Models SA226-AT... bulkhead. This proposed AD also requires reporting certain inspection results to M7 Aerospace LLC. We...

  6. An Aerospace Workshop

    ERIC Educational Resources Information Center

    Hill, Bill

    1972-01-01

    Describes the 16-day, 10,000 mile national tour of the nation's major aerospace research and development centers by 65 students enrolled in Central Washington State College's Summer Aerospace Workshop. (Author/MB)

  7. Novel Wiring Technologies for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  8. Probability and Statistics in Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Howell, L. W.

    1998-01-01

    This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

  9. Photogrammetric techniques for aerospace applications

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu; Burner, Alpheus W.; Jones, Thomas W.; Barrows, Danny A.

    2012-10-01

    Photogrammetric techniques have been used for measuring the important physical quantities in both ground and flight testing including aeroelastic deformation, attitude, position, shape and dynamics of objects such as wind tunnel models, flight vehicles, rotating blades and large space structures. The distinct advantage of photogrammetric measurement is that it is a non-contact, global measurement technique. Although the general principles of photogrammetry are well known particularly in topographic and aerial survey, photogrammetric techniques require special adaptation for aerospace applications. This review provides a comprehensive and systematic summary of photogrammetric techniques for aerospace applications based on diverse sources. It is useful mainly for aerospace engineers who want to use photogrammetric techniques, but it also gives a general introduction for photogrammetrists and computer vision scientists to new applications.

  10. Manpower Requirements in the Nuclear Power Industry, 1982-1991.

    ERIC Educational Resources Information Center

    Johnson, Ruth C.

    A study projected employment needs created by growth and employee turnover for the nuclear power industry over the next decade. Only employment by electric utilities in the commercial generation of nuclear power was investigated. Employment data for 1981 were collected in a survey of 60 member utilities of the Institute of Nuclear Power…

  11. 40 CFR 403.12 - Reporting requirements for POTW's and industrial users.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., any Industrial User subject to Pretreatment Standards and Requirements shall submit to the Control... Industrial Users subject to equivalent mass or concentration limits established by the Control Authority in... are to be submitted. (2) The Control Authority may authorize the Industrial User subject to...

  12. 40 CFR 403.12 - Reporting requirements for POTW's and industrial users.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., any Industrial User subject to Pretreatment Standards and Requirements shall submit to the Control... Industrial Users subject to equivalent mass or concentration limits established by the Control Authority in... are to be submitted. (2) The Control Authority may authorize the Industrial User subject to...

  13. 40 CFR 403.12 - Reporting requirements for POTW's and industrial users.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., any Industrial User subject to Pretreatment Standards and Requirements shall submit to the Control... Industrial Users subject to equivalent mass or concentration limits established by the Control Authority in... are to be submitted. (2) The Control Authority may authorize the Industrial User subject to...

  14. 40 CFR 403.12 - Reporting requirements for POTW's and industrial users.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., any Industrial User subject to Pretreatment Standards and Requirements shall submit to the Control... Industrial Users subject to equivalent mass or concentration limits established by the Control Authority in... are to be submitted. (2) The Control Authority may authorize the Industrial User subject to...

  15. Improved Verification for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Powell, Mark A.

    2008-01-01

    Aerospace systems are subject to many stringent performance requirements to be verified with low risk. This report investigates verification planning using conditional approaches vice the standard classical statistical methods, and usage of historical surrogate data for requirement validation and in verification planning. The example used in this report to illustrate the results of these investigations is a proposed mission assurance requirement with the concomitant maximum acceptable verification risk for the NASA Constellation Program Orion Launch Abort System (LAS). This report demonstrates the following improvements: 1) verification planning using conditional approaches vice classical statistical methods results in plans that are more achievable and feasible; 2) historical surrogate data can be used to bound validation of performance requirements; and, 3) incorporation of historical surrogate data in verification planning using conditional approaches produces even less costly and more reasonable verification plans. The procedures presented in this report may produce similar improvements and cost savings in verification for any stringent performance requirement for an aerospace system.

  16. Oklahoma Aerospace Intellectual Capital/Educational Recommendations: An Inquiry of Oklahoma Aerospace Executives

    ERIC Educational Resources Information Center

    Nelson, Erin M.

    2010-01-01

    Scope and Method of Study: The purpose of this qualitative study was to conduct detailed personal interviews with aerospace industry executives/managers from both the private and military sectors from across Oklahoma to determine their perceptions of intellectual capital needs of the industry. Interviews with industry executives regarding…

  17. New insulation constructions for aerospace wiring applications

    NASA Technical Reports Server (NTRS)

    Slenski, George

    1994-01-01

    Outlined in this presentation is the background to insulation constructions for aerospace wiring applications, the Air Force wiring policy, the purpose and contract requirements of new insulation constructions, the test plan, and the test results.

  18. Capital raising of aerospace companies: equities or debts?

    NASA Astrophysics Data System (ADS)

    Hui-Shan, L.; Taw-Onn, Y.; Wai-Mun, H.

    2016-10-01

    Aerospace products enhance national and economic activities, thus maintaining the sustainability of aerospace industry is crucial. One of the perspectives in ensuring sustainability of aerospace companies is expansion of firms by raising funds for research and development in order to provide a reasonable profitability to the firms. This study comprises a sample of 47 aerospace companies from 2009 to 2015 to analyze the impact of raising fund by equities or debts to the profitability of the firms. The result indicates that capital raising through equities is preferable than debts. Moreover, the study also identifies that the profit of aerospace industry is volatile and there is cyclical reduction of the net income in the first quarter of the year. The management needs to make wise decisions in raising fund to ensure a healthy growth of the aerospace company.

  19. Industrial process driven system requirements for PSII applications

    SciTech Connect

    Munson, C.P.

    1997-10-01

    Plasma Source Ion Implantation (PSII) is a room temperature, plasma-based surface enhancement technology which is being commercialized through the efforts of a group of companies. A number of issues are critical to the successful design and operation of a commercial PSII system. These include overall vacuum system design, plasma source requirements and plasma-target interaction considerations, pulsed, high voltage sub-system (typically referred to as modulator) requirements, and target requirements and limitations. Critical system components are outlined and overall system design will be briefly covered.

  20. Pathways and Challenges to Innovation in Aerospace

    NASA Technical Reports Server (NTRS)

    Terrile, Richard J.

    2010-01-01

    This paper explores impediments to innovation in aerospace and suggests how successful pathways from other industries can be adopted to facilitate greater innovation. Because of its nature, space exploration would seem to be a ripe field of technical innovation. However, engineering can also be a frustratingly conservative endeavor when the realities of cost and risk are included. Impediments like the "find the fault" engineering culture, the treatment of technical risk as almost always evaluated in terms of negative impact, the difficult to account for expansive Moore's Law growth when making predictions, and the stove-piped structural organization of most large aerospace companies and federally funded research laboratories tend to inhibit cross-cutting technical innovation. One successful example of a multi-use cross cutting application that can scale with Moore's Law is the Evolutionary Computational Methods (ECM) technique developed at the Jet Propulsion Lab for automated spectral retrieval. Future innovations like computational engineering and automated design optimization can potentially redefine space exploration, but will require learning lessons from successful innovators.

  1. Training of aerospace medicine physicians.

    PubMed

    Mohler, S R

    1985-03-01

    In the U. S. there are 23 recognized medical specialty boards. One of these is preventive medicine. Within preventive medicine there are three areas: Aerospace Medicine, Occupational Medicine, and Public Health/General Preventive Medicine. The preventive medicine specialties have a common core of required training including biostatistics, epidemiology, health services administration and environmental health. These, plus associated topics are covered during year one of training. Year two of training involves clinical rotations specifically tailored to the eye, ear, heart, lungs and brain, plus flight training to the private pilot level, and a Masters Degree research project for the required thesis. During year three the physicians in aerospace medicine practice full-time aerospace medicine in a NASA or other government laboratory or a private facility. To date, more than 40 physicians have received aerospace medicine training through the Wright State University School of Medicine program. Among these are physicians from Japan, Australia, Taiwan, Canada and Mexico. In addition to the civilian program at Wright State University, there are programs conducted by the U. S. Air Force and Navy. The Wright State program has been privileged to have officers from the U. S. Army, Navy and Air Force. A substantial supporter of the Wright State program is the National Aeronautics and Space Administration and a strong space component is contained in the program.

  2. Aerospace Flywheel Technology Development for IPACS Applications

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry L.; Jansen, Ralph H.; Fausz, Jerry; Bauer, Robert D.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) are cooperating under a space act agreement to sponsor the research and development of aerospace flywheel technologies to address mutual future mission needs. Flywheel technology offers significantly enhanced capability or is an enabling technology. Generally these missions are for energy storage and/or integrated power and attitude control systems (IPACS) for mid-to-large satellites in low earth orbit. These missions require significant energy storage as well as a CMG or reaction wheel function for attitude control. A summary description of the NASA and AFRL flywheel technology development programs is provided, followed by specific descriptions of the development plans for integrated flywheel system tests for IPACS applications utilizing both fixed and actuated flywheel units. These flywheel system development tests will be conducted at facilities at AFRL and NASA Glenn Research Center and include participation by industry participants Honeywell and Lockheed Martin.

  3. IT Knowledge Requirements Identification in Organizational Networks: Cooperation Between Industrial Organizations and Universities

    NASA Astrophysics Data System (ADS)

    Rudzajs, Peteris; Kirikova, Marite

    ICT professionals face rapid technology development, changes in design paradigms, methodologies, approaches, and cooperation patterns. These changes impact relationships between universities that teach ICT disciplines and industrial organizations that develop and use ICT-based products. The required knowledge and skills of university graduates depend mainly on the current industrial situation; therefore the university graduates have to meet industry requirements which are stated at the time point of their graduation, not at the start of their studies. Continuous cooperation between universities and industrial organizations is needed to identify a time and situation-dependent set of knowledge requirements, which lead to situation aware, industry acknowledged, balanced and productive ICT study programs. This chapter proposes information systems solutions supporting cooperation between the university and the industrial organizations with respect to curriculum development in ICT area.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 39: The role of computer networks in aerospace engineering

    NASA Technical Reports Server (NTRS)

    Bishop, Ann P.; Pinelli, Thomas E.

    1994-01-01

    This paper presents selected results from an empirical investigation into the use of computer networks in aerospace engineering. Such networks allow aerospace engineers to communicate with people and access remote resources through electronic mail, file transfer, and remote log-in. The study drew its subjects from private sector, government and academic organizations in the U.S. aerospace industry. Data presented here were gathered in a mail survey, conducted in Spring 1993, that was distributed to aerospace engineers performing a wide variety of jobs. Results from the mail survey provide a snapshot of the current use of computer networks in the aerospace industry, suggest factors associated with the use of networks, and identify perceived impacts of networks on aerospace engineering work and communication.

  5. Aerospace concurrent engineering: a modern global approach

    NASA Astrophysics Data System (ADS)

    Imbert, Mariano; Li, Xiaoxing

    2009-12-01

    System engineering aspects, like concurrent engineering (CE) in the aerospace sector, has been studied by many authors. The change and evolution in this regard is continually influenced by the information technology advances. But global cooperation is only discussed by developed countries and high technology corporations. A review of CE and its ramifications in the aerospace industry is presented. Based on the current literature, the general lifecycle of a spacecraft and its phases are explained as well as the tools that are implemented in today's industry. In this paper we propose a new approach for the product development process in the spacecraft production industry the Aerospace Concurrent Engineering (ACE), which is mainly focused in the technology itself, its optimal design and environment impact rather than costs and marketing impact. And the potential of globally oriented research and implementation of space programs is discussed for its consideration.

  6. Advance Planning Briefing for Industry. Technology Requirements Briefings

    DTIC Science & Technology

    2009-02-17

    Adobe Flash Player , as well as various MPEG types Automatically locating and landmarking faces in individual still images Allowing the user to...meters (objective); include a Selective Availability Anti-Spoofing Module; and have “one-touch” location save of waypoints. The real -time tracking ...required data fields. Retain User Name and Password for login and tracking identification. To automatically reset a forgotten password, under Login

  7. Aerospace Safety Advisory Panel

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The Aerospace Safety Advisory Panel (ASAP) provided oversight on the safety aspects of many NASA programs. In addition, ASAP undertook three special studies. At the request of the Administrator, the panel assessed the requirements for an assured crew return vehicle (ACRV) for the space station and reviewed the organization of the safety and mission quality function within NASA. At the behest of Congress, the panel formed an independent, ad hoc working group to examine the safety and reliability of the space shuttle main engine. Section 2 presents findings and recommendations. Section 3 consists of information in support of these findings and recommendations. Appendices A, B, C, and D, respectively, cover the panel membership, the NASA response to the findings and recommendations in the March 1992 report, a chronology of the panel's activities during the reporting period, and the entire ACRV study report.

  8. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Aerospace Safety Advisory Panel (ASAP) provided oversight on the safety aspects of many NASA programs. In addition, ASAP undertook three special studies. At the request of the Administrator, the panel assessed the requirements for an assured crew return vehicle (ACRV) for the space station and reviewed the organization of the safety and mission quality function within NASA. At the behest of Congress, the panel formed an independent, ad hoc working group to examine the safety and reliability of the space shuttle main engine. Section 2 presents findings and recommendations. Section 3 consists of information in support of these findings and recommendations. Appendices A, B, C, and D, respectively, cover the panel membership, the NASA response to the findings and recommendations in the March 1992 report, a chronology of the panel's activities during the reporting period, and the entire ACRV study report.

  9. Supercomputing in Aerospace

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Yee, Helen

    1987-01-01

    Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics.

  10. Micro/Nanoscale Chemicalsensor Systems for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary; Xu, Jennifer; Evans, Laura; Biaggi-Labiosa, Azlin; Ward, Benjamin; Rowe, Scott; Makel, Darby; Liu, Chung Chiun; Dutta, Prabir; Berger, Gordon; VanderWal, Randy

    2010-01-01

    The aerospace industry requires development of a range of chemical-sensor technologies for applications including emissions monitoring as well as fuel-leak and fire detection. Improvements in sensing technology are necessary to increase safety, reduce emissions, and increase performance. The overall aim is to develop intelligent-vehicle systems that can autonomously monitor their state and respond to environmental changes. A range of chemical sensors is under development to meet these needs, based in part on microfabrication technology which produces sensors of minimal size, weight, and power consumption. We have fabricated a range of sensor platforms, integrated them with hardware to form complete sensor systems, and demonstrated their applicability.

  11. Aerospace Technology Curriculum Guide. Invest in Success. Vo. Ed. #260.

    ERIC Educational Resources Information Center

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This document contains standards for an articulated secondary and postsecondary curriculum in aerospace technology. The curriculum standards can be used to ensure that vocational programs meet the needs of local business and industry. The first part of the document contains a task list and student performance standards for the aerospace technology…

  12. The Status and Future of Aerospace Engineering Education in Turkey.

    ERIC Educational Resources Information Center

    Hale, Francis J.

    There is no aerospace industry in Turkey, and the level of operational activity is low even though the potential for the exploitation of aviation is high. The government of Turkey hopes to establish an aircraft factory in conjunction with a foreign contractor and is aware of the need for aerospace engineering education. This paper describes the…

  13. Advanced Hybrid Materials for Aerospace Propulsion Applications (Briefing Charts)

    DTIC Science & Technology

    2013-02-01

    Viewgraph 3. DATES COVERED (From - To) February 2013- April 2013 4. TITLE AND SUBTITLE Advanced hybrid materials for aerospace propulsion applications ...Many material improvements are needed for specific aerospace propulsion applications . Because the industrial community in extremely risk-averse, the...activities focused on inert materials for solid rocket propulsion applications , including the development of alternative high-temperature thermosetting

  14. 10 CFR 34.20 - Performance requirements for industrial radiography equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Performance requirements for industrial radiography equipment. 34.20 Section 34.20 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND... meet the following minimum criteria: (a)(1) Each radiographic exposure device, source assembly...

  15. 76 FR 10908 - Draft Guidance for Industry on Medication Guides-Distribution Requirements and Inclusion of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Medication Guides--Distribution Requirements and Inclusion of Medication Guides in Risk Evaluation and Mitigation Strategies... Administration (FDA) is announcing the availability of a draft guidance for industry entitled ``Medication...

  16. The Training Requirements of the Clothing Industry. A Survey of Selected Occupations.

    ERIC Educational Resources Information Center

    Berry, Kathleen M.; Kuhl, Dean H.

    This survey was conducted in order to determine the training requirements of the clothing industry in South Australia. The results and findings are intended to be used as a means for upgrading and revising the Clothing Production Certificate Course and for providing suitable training programs for other key occupations within the industry. Survey…

  17. EPA Seeks Small Entity Input on Financial Responsibility Requirements for Hardrock Mining Industry

    EPA Pesticide Factsheets

    WASHINGTON -- The U.S. Environmental Protection Agency (EPA) seeks nominations from those small entities that may be subject to a proposed rule establishing financial responsibility requirements for facilities within the hardrock mining industry. Fi

  18. Conservation of Strategic Aerospace Materials (COSAM)

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    Research efforts to reduce the dependence of the aerospace industry on strategic metals, such as cobalt (Co), columbium (Cb), tantalum (Ta), and chromium (Cr), by providing the materials technology needed to minimize the strategic metal content of critical aerospace components for gas turbine engines are addressed. Thrusts in three technology areas are identified: near term activities in the area of strategic element substitution; intermediate-range activities in the area of materials processing; and long term, high risk activities in the area of 'new classes' of high temprature metallic materials. Specifically, the role of cobalt in nickel-base and cobalt-base superalloys vital to the aerospace industry is examined along with the mechanical and physical properties of intermetallics that will contain a minimum of the stragetic metals.

  19. Aerospace - Aviation Education.

    ERIC Educational Resources Information Center

    Martin, Arthur I.; Jones, K. K.

    This document outlines the aerospace-aviation education program of the State of Texas. In this publication the course structures have been revised to fit the quarter system format of secondary schools in Texas. The four courses outlined here have been designed for students who will be consumers of aerospace products, spinoffs, and services or who…

  20. 77 FR 58323 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Airplanes AGENCY... propose to adopt a new airworthiness directive (AD) for all Gulfstream Aerospace LP (Type Certificate... information identified in this proposed AD, contact Gulfstream Aerospace Corporation, P.O. Box 2206,...

  1. RETRACTED ARTICLE: Microstructural evolution of AA7449 aerospace alloy refined by intensive shearing

    NASA Astrophysics Data System (ADS)

    Haghayeghi, R.; Nastac, L.

    2012-10-01

    Many aerospace alloys are sensitive to their composition thus cannot be chemically grain refined. In addition, only 1% grain refiners can act as nuclei for refining the structure. In this paper, physical refinement by intensive shearing above liquidus as an alternative technique will be investigated for AA7449 aerospace alloy. The results can open a new gateway for aerospace industry for refining their microstructure.

  2. Aerospace materials for nonaerospace applications

    NASA Technical Reports Server (NTRS)

    Johnston, R. L.; Dawn, F. S.

    1974-01-01

    Many of the flame-resistant nonmetallic materials that were developed for the Apollo and Skylab programs are discussed for commercial and military applications. Interchanges of information are taking place with the government agencies, industries, and educational institutions, which are interested in applications of fire-safe nonmetallic materials. These materials are particularly applicable to the design of aircraft, mass transit interiors, residential and public building constructions, nursing homes and hospitals, and to other fields of fire safety applications. Figures 22, 23 and 24 show the potential nonaerospace applications of flame-resistant aerospace materials are shown.

  3. Careers in Aerospace: A Broad Horizon.

    ERIC Educational Resources Information Center

    Aerospace, 1984

    1984-01-01

    Summarizes career opportunities in the aerospace industry. The 1.2 million workers (including 20 percent in research and development) are employed in professional and technical positions, management/administrative occupations, and plants. General training and qualifications are given for each area. The outlook for future employment in these areas…

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 5: Aerospace librarians and technical information specialists as information intermediaries: A report of phase 2 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The objective of the NASA/DOD Aerospace Knowledge Diffusion Research Project is to provide descriptive and analytical data regarding the flow of scientific and technical information (STI) at the individual, organizational, national, and international levels, placing emphasis on the systems used to diffuse the results of federally funded aerospace STI. An overview of project assumptions, objectives, and design is presented and preliminary results of the phase 2 aerospace library survey are summarized. Phase 2 addressed aerospace knowledge transfer and use within the larger social system and focused on the flow of aerospace STI in government and industry and the role of the information intermediary in knowledge transfer.

  5. 40 CFR 63.1583 - What are the emission points and control requirements for an industrial POTW treatment plant?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....1583 What are the emission points and control requirements for an industrial POTW treatment plant? (a) The emission points and control requirements for an existing industrial POTW treatment plant are... control requirements for an industrial POTW treatment plant? 63.1583 Section 63.1583 Protection...

  6. Aerospace Robotic Implementations: An Assessment and Forecast. Phase 2,

    DTIC Science & Technology

    1986-09-01

    IMPLEMENTATIONS: An Assessment and Forecast SEPTEMBER 1986 Rpproved fc-, Pubi .AEROSPACE IDSRA "’" MODERNIZATION OFFICE Wright-Patterson Air Force Base, Ohio...0111, Deilvery Order 0001) to the Aerospace Industrial Modernization (AIM) Office of the Air Force Systems command. The Project Manager for this effort...a two-phased investigation was initiated to determine the potential for modernizing selective portions of the industrial sector through the

  7. Study on application of aerospace technology to improve surgical implants

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Youngblood, J. L.

    1982-01-01

    The areas where aerospace technology could be used to improve the reliability and performance of metallic, orthopedic implants was assessed. Specifically, comparisons were made of material controls, design approaches, analytical methods and inspection approaches being used in the implant industry with hardware for the aerospace industries. Several areas for possible improvement were noted such as increased use of finite element stress analysis and fracture control programs on devices where the needs exist for maximum reliability and high structural performance.

  8. Applications of aerospace technology to petroleum extraction and reservoir engineering

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Back, L. H.; Berdahl, C. M.; Collins, E. E., Jr.; Gordon, P. G.; Houseman, J.; Humphrey, M. F.; Hsu, G. C.; Ham, J. D.; Marte, J. E.; Owen, W. A.

    1977-01-01

    Through contacts with the petroleum industry, the petroleum service industry, universities and government agencies, important petroleum extraction problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified, where possible. Some of the problems were selected for further consideration. Work on these problems led to the formulation of specific concepts as candidate for development. Each concept is addressed to the solution of specific extraction problems and makes use of specific areas of aerospace technology.

  9. Aerospace Payloads Leak Test Methodology

    NASA Technical Reports Server (NTRS)

    Lvovsky, Oleg; Grayson, Cynthia M.

    2010-01-01

    Pressurized and sealed aerospace payloads can leak on orbit. When dealing with toxic or hazardous materials, requirements for fluid and gas leakage rates have to be properly established, and most importantly, reliably verified using the best Nondestructive Test (NDT) method available. Such verification can be implemented through application of various leak test methods that will be the subject of this paper, with a purpose to show what approach to payload leakage rate requirement verification is taken by the National Aeronautics and Space Administration (NASA). The scope of this paper will be mostly a detailed description of 14 leak test methods recommended.

  10. Ninteenth Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings of the 19th Aerospace Mechanisms Symposium are reported. Technological areas covered include space lubrication, bearings, aerodynamic devices, spacecraft/Shuttle latches, deployment, positioning, and pointing. Devices for spacecraft docking and manipulator and teleoperator mechanisms are also described.

  11. Aerospace bibliography, seventh edition

    NASA Technical Reports Server (NTRS)

    Blashfield, J. F. (Compiler)

    1983-01-01

    Space travel, planetary probes, applications satellites, manned spaceflight, the impacts of space exploration, future space activities, astronomy, exobiology, aeronautics, energy, space and the humanities, and aerospace education are covered.

  12. Wireless Sensing Opportunities for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2007-01-01

    Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  13. NASA's activities in the conservation of strategic aerospace materials

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1980-01-01

    The primary objective of the Conservation of Strategic Aerospace Materials (COSAM) Program is to help reduce the dependence of the United States aerospace industry on strategic metals by providing the materials technology needed to minimize the strategic metal content of critical aerospace components with prime emphasis on components for gas turbine engines. Initial emphasis was placed in the area of strategic element substinction. Specifically, the role of cobalt in nickel base and cobalt base superalloys vital to the aerospace industry is being examined in great detail by means of cooperative university-industry-government research efforts. Investigations are underway in the area of "new classes" of alloys. Specifically, a study was undertaken to investigate the mechanical and physical properties of intermetallics that contain a minimum of the strategic metals. Current plans for the much larger COSAM Program are also presented.

  14. Development of the supply chain oriented quality assurance system for aerospace manufacturing SMEs and its implementation perspectives

    NASA Astrophysics Data System (ADS)

    Hussein, Abdullahi; Cheng, Kai

    2016-10-01

    Aerospace manufacturing SMEs are continuously facing the challenge on managing their supply chain and complying with the aerospace manufacturing quality standard requirement due to their lack of resources and the nature of business. In this paper, the ERP system based approach is presented to quality control and assurance work in light of seamless integration of in-process production data and information internally and therefore managing suppliers more effectively and efficiently. The Aerospace Manufacturing Quality Assurance Standard (BS/EN9100) is one of the most recognised and essential protocols for developing the industry-operated-and-driven quality assurance systems. The research investigates using the ERP based system as an enabler to implement BS/EN9100 quality management system at manufacturing SMEs and the associated implementation and application perspectives. An application case study on a manufacturing SME is presented by using the SAP based implementation, which helps further evaluate and validate the approach and application system development.

  15. Vapor cycle compressors for aerospace vehicle thermal management

    NASA Astrophysics Data System (ADS)

    Dexter, Peter F.; Watts, Roland J.; Haskin, William L.

    1990-10-01

    An overview is given of approaches to achieving high reliability and long life in vapor cycle compressor design for aerospace vehicles. The requirements peculiar to aircraft and spacecraft cooling systems are described. Piston, rotary vane, rolling piston, helical screw, scroll, and centrifugal compressors being developed for aerospace applications are discussed.

  16. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This annual report is based on the activities of the Aerospace Safety Advisory Panel in calendar year 2000. During this year, the construction of the International Space Station (ISS) moved into high gear. The launch of the Russian Service Module was followed by three Space Shuttle construction and logistics flights and the deployment of the Expedition One crew. Continuous habitation of the ISS has begun. To date, both the ISS and Space Shuttle programs have met or exceeded most of their flight objectives. In spite of the intensity of these efforts, it is clear that safety was always placed ahead of cost and schedule. This safety consciousness permitted the Panel to devote more of its efforts to examining the long-term picture. With ISS construction accelerating, demands on the Space Shuttle will increase. While Russian Soyuz and Progress spacecraft will make some flights, the Space Shuttle remains the primary vehicle to sustain the ISS and all other U.S. activities that require humans in space. Development of a next generation, human-rated vehicle has slowed due to a variety of technological problems and the absence of an approach that can accomplish the task significantly better than the Space Shuttle. Moreover, even if a viable design were currently available, the realities of funding and development cycles suggest that it would take many years to bring it to fruition. Thus, it is inescapable that for the foreseeable future the Space Shuttle will be the only human-rated vehicle available to the U.S. space program for support of the ISS and other missions requiring humans. Use of the Space Shuttle will extend well beyond current planning, and is likely to continue for the life of the ISS.

  17. Sealed aerospace metal-hydride batteries

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  18. Skills Conversion Project, Chapter 4, Health Care and Health Services Industry.

    ERIC Educational Resources Information Center

    National Society of Professional Engineers, Washington, DC.

    The Skills Conversion Project conducted by the National Society of Professional Engineers sought to study the transition mechanisms required to transfer available technical manpower from aerospace and defense industries into other areas of employment in private industry and public service. Fourteen study teams assessed the likelihood of future…

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 19: Computer and information technology and aerospace knowledge diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.; Bishop, Ann P.

    1992-01-01

    To remain a world leader in aerospace, the US must improve and maintain the professional competency of its engineers and scientists, increase the research and development (R&D) knowledge base, improve productivity, and maximize the integration of recent technological developments into the R&D process. How well these objectives are met, and at what cost, depends on a variety of factors, but largely on the ability of US aerospace engineers and scientists to acquire and process the results of federally funded R&D. The Federal Government's commitment to high speed computing and networking systems presupposes that computer and information technology will play a major role in the aerospace knowledge diffusion process. However, we know little about information technology needs, uses, and problems within the aerospace knowledge diffusion process. The use of computer and information technology by US aerospace engineers and scientists in academia, government, and industry is reported.

  20. Aerospace engineering educational program

    NASA Technical Reports Server (NTRS)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  1. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  2. 75 FR 54347 - Draft Guidance for Industry: Bar Code Label Requirements-Questions and Answers (Question 12...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry: Bar Code Label Requirements... document entitled ``Guidance for Industry: Bar Code Label Requirements--Questions and Answers (Question 12... advice concerning compliance with the bar code label requirements. In this guidance, FDA is proposing...

  3. 40 CFR 270.22 - Specific part B information requirements for boilers and industrial furnaces burning hazardous...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for boilers and industrial furnaces burning hazardous waste. 270.22 Section 270.22 Protection of... requirements for boilers and industrial furnaces burning hazardous waste. When an owner or operator of a cement... production furnace becomes subject to RCRA permit requirements after October 12, 2005, or when an owner...

  4. 40 CFR 270.22 - Specific part B information requirements for boilers and industrial furnaces burning hazardous...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for boilers and industrial furnaces burning hazardous waste. 270.22 Section 270.22 Protection of... requirements for boilers and industrial furnaces burning hazardous waste. When an owner or operator of a cement... production furnace becomes subject to RCRA permit requirements after October 12, 2005, or when an owner...

  5. 40 CFR 270.22 - Specific part B information requirements for boilers and industrial furnaces burning hazardous...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for boilers and industrial furnaces burning hazardous waste. 270.22 Section 270.22 Protection of... requirements for boilers and industrial furnaces burning hazardous waste. When an owner or operator of a cement... production furnace becomes subject to RCRA permit requirements after October 12, 2005, or when an owner...

  6. 40 CFR 270.22 - Specific part B information requirements for boilers and industrial furnaces burning hazardous...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for boilers and industrial furnaces burning hazardous waste. 270.22 Section 270.22 Protection of... requirements for boilers and industrial furnaces burning hazardous waste. When an owner or operator of a cement... production furnace becomes subject to RCRA permit requirements after October 12, 2005, or when an owner...

  7. 76 FR 721 - Airworthiness Directives; Gulfstream Aerospace Corporation Model G-1159 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... Aerospace Corporation Model G-1159 Airplanes AGENCY: Federal Aviation Administration, DOT. ACTION: Proposed... Aerospace Corporation Model G-1159 airplanes. The existing AD requires an inspection to detect cracks or... is withdrawn. FOR FURTHER INFORMATION CONTACT: Carey O'Kelley, Aerospace Engineer, Airframe...

  8. An Examination of the Indiana State University Aerospace Administration Program

    NASA Technical Reports Server (NTRS)

    Schwab, Gregory L.

    2005-01-01

    Declining enrollments in the Indiana State University (ISU) aerospace administration program prompted this case study. which evaluates the program in comparison with parallel programs at other universities, industry standards, and an independent audit. Survey instruments were administered to graduates, faculty, and employers for their views on competencies of an excellent aerospace administration program Results show the deficiency of the ISU program. Graduates, faculty, and employers rated all competencies-from moderate to considerable importance-similarly for an excellent program. Recommendations for program improvement were made, and suggestions for further research include studies to evaluate the effectiveness of a revised aerospace administration program.

  9. Advanced Materials and Coatings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2004-01-01

    In the application area of aerospace tribology, researchers and developers must guarantee the highest degree of reliability for materials, components, and systems. Even a small tribological failure can lead to catastrophic results. The absence of the required knowledge of tribology, as Professor H.P. Jost has said, can act as a severe brake in aerospace vehicle systems-and indeed has already done so. Materials and coatings must be able to withstand the aerospace environments that they encounter, such as vacuum terrestrial, ascent, and descent environments; be resistant to the degrading effects of air, water vapor, sand, foreign substances, and radiation during a lengthy service; be able to withstand the loads, stresses, and temperatures encountered form acceleration and vibration during operation; and be able to support reliable tribological operations in harsh environments throughout the mission of the vehicle. This presentation id divided into two sections: surface properties and technology practice related to aerospace tribology. The first section is concerned with the fundamental properties of the surfaces of solid-film lubricants and related materials and coatings, including carbon nanotubes. The second is devoted to applications. Case studies are used to review some aspects of real problems related to aerospace systems to help engineers and scientists to understand the tribological issues and failures. The nature of each problem is analyzed, and the tribological properties are examined. All the fundamental studies and case studies were conducted at the NASA Glenn Research Center.

  10. Aerospace applications of advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Langenbeck, S. L.

    1993-01-01

    Advanced metallic materials within the Al-base family are being developed for applications on current and future aerospace vehicles. These advanced materials offer significant improvements in density, strength, stiffness, fracture resistance, and/or higher use temperature which translates into improved vehicle performance. Aerospace applications of advanced metallic materials include space structures, fighters, military and commercial transport aircraft, and missiles. Structural design requirements, including not only static and durability/damage tolerance criteria but also environmental considerations, drive material selections. Often trade-offs must be made regarding strength, fracture resistance, cost, reliability, and maintainability in order to select the optimum material for a specific application. These trade studies not only include various metallic materials but also many times include advanced composite materials. Details of material comparisons, aerospace applications, and material trades will be presented.

  11. Psychiatric considerations in military aerospace medicine.

    PubMed

    Jones, D R; Marsh, R W

    2001-02-01

    Military aerospace medicine requires a psychiatric selection and certification process that determines not only the absence of significant mental disorders, but also the presence of positive qualities in the realms of motivation, ability and stability: not all normal people are fit to fly. Other issues of aerospace psychiatry involve maintenance of mental resilience and hardiness during a flying career, aeromedical decisions about when to remove from flight duties and when to return, criteria for waivers for psychiatric conditions, use of medications for treatment of psychiatric symptoms, questions of substance abuse, and research in such areas as genetics. This report reviews the basis for military aerospace psychiatry, primarily as practiced in the United States Air Force (USAF), and presents some of its underlying principles as they apply to clinical situations.

  12. Aerospace Education. NSTA Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2008

    2008-01-01

    National Science Teachers Association (NSTA) has developed a new position statement, "Aerospace Education." NSTA believes that aerospace education is an important component of comprehensive preK-12 science education programs. This statement highlights key considerations that should be addressed when implementing a high quality aerospace education…

  13. EVALUATION OF CHANGES IN SKILL-PROFILE AND JOB-CONTENT DUE TO TECHNOLOGICAL CHANGE, METHODOLOGY AND PILOT RESULTS FROM THE BANKING, STEEL AND AEROSPACE INDUSTRIES.

    ERIC Educational Resources Information Center

    CROSSMAN, EDWARD R.F.W.; AND OTHERS

    THE MAJOR OBJECTIVE WAS TO TEST THE HYPOTHESIS THAT THE HIGHEST LEVELS OF MECHANIZATION AND AUTOMATION GENERALLY REQUIRE LOWER LEVELS OF SKILLS THAN EARLIER PRODUCTION SYSTEMS. A SECONDARY OBJECTIVE WAS TO DEVELOP AN INSTRUMENT CAPABLE OF GIVING UNBIASED PROJECTIONS OF THE MANPOWER IMPACT OF SPECIFIC ADVANCES IN PRODUCTION TECHNOLOGY. DEPENDENT…

  14. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a five-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASA's safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are 'one deep.' The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting 'brain drain' could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. The major NASA programs are also limited in their ability to plan property for the future. This is of particular concern for the Space Shuttle and ISS because these programs are scheduled to operate well into the next century. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has

  15. Aerospace at Saint Francis.

    ERIC Educational Resources Information Center

    Aviation/Space, 1980

    1980-01-01

    Discusses an aviation/aerospace program as a science elective for 11th and 12th year students. This program is multi-faceted and addresses the needs of a wide variety of students. Its main objective is to present aviation and space sciences which will provide a good base for higher education in these areas. (SK)

  16. Aerospace Bibliography, Third Edition.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This third edition bibliography lists books and teaching aids related to aeronautics and space. Aeronautics titles are limited to aerospace-related research subjects, and books on astronomy to those directly related to space exploration. Also listed are pertinent references like pamphlets, films, film strips, booklets, charts, pictures,…

  17. Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Miller, Charles G.

    1998-01-01

    Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamics and physical processes, is the genesis for the design and development of advanced space transportation vehicles and provides crucial information to other disciplines such as structures, materials, propulsion, avionics, and guidance, navigation and control. Sources of aerothermodynamic information are ground-based facilities, Computational Fluid Dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this aerothermodynamic triad provides the optimum aerothermodynamic design to safely satisfy mission requirements while reducing design conservatism, risk and cost. The iterative aerothermodynamic process for initial screening/assessment of aerospace vehicle concepts, optimization of aerolines to achieve/exceed mission requirements, and benchmark studies for final design and establishment of the flight data book are reviewed. Aerothermodynamic methodology centered on synergism between ground-based testing and CFD predictions is discussed for various flow regimes encountered by a vehicle entering the Earth s atmosphere from low Earth orbit. An overview of the resources/infrastructure required to provide accurate/creditable aerothermodynamic information in a timely manner is presented. Impacts on Langley s aerothermodynamic capabilities due to recent programmatic changes such as Center reorganization, downsizing, outsourcing, industry (as opposed to NASA) led programs, and so forth are discussed. Sample applications of these capabilities to high Agency priority, fast-paced programs such as Reusable Launch Vehicle (RLV)/X-33 Phases I and 11, X-34, Hyper-X and X-38 are presented and lessons learned discussed. Lastly, enhancements in ground-based testing/CFD capabilities necessary to partially/fully satisfy future requirements are addressed.

  18. Factors Influencing Advancement of Women Senior Leaders in Aerospace Companies

    NASA Astrophysics Data System (ADS)

    Garrett-Howard, Camille Elaine

    The problem researched in this study was the limited number of women in senior leadership positions in the aerospace industry. The purpose of this qualitative phenomenological research study was to interview women senior leaders in the aerospace industry to explore the factors they perceived as beneficial to their advancement to senior leadership positions in the aerospace industry. The research study was guided by a central research question relating to what professional and personal factors might have led to promotional opportunities into senior leadership roles. Transformational leadership was the conceptual framework used to inform the study. The qualitative, phenomenological approach was selected to gain insights of the lived experiences and perceptions relating to career advancement of women to senior leadership positions in the aerospace industry. Data were collected using a modified Van Kaam method, coded, and analyzed to discern themes or patterns. Findings were that the attributes participants contributed to their success, included a focus on leadership, personal development, and the importance of mentoring relationships. This study presented a positive direction in addressing the gaps in the body of knowledge related to women and leadership development by exploring the experiences of women in senior leadership positions in the aerospace industry. Implications for social change include informing organizations and women about specific leadership development practices as one way to promote more women into leadership positions thus reducing the gap between the number of men and women leaders.

  19. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  20. Aerospace Concurrent Engineering Design Teams: Current State, Next Steps and a Vision for the Future

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Borden, Chester; Panek, John; Warfield, Keith

    2011-01-01

    Over the past sixteen years, government aerospace agencies and aerospace industry have developed and evolved operational concurrent design teams to create novel spaceflight mission concepts and designs. These capabilities and teams, however, have evolved largely independently. In today's environment of increasingly complex missions with limited budgets it is becoming readily apparent that both implementing organizations and today's concurrent engineering teams will need to interact more often than they have in the past. This will require significant changes in the current state of practice. This paper documents the findings from a concurrent engineering workshop held in August 2010 to identify the key near term improvement areas for concurrent engineering capabilities and challenges to the long-term advancement of concurrent engineering practice. The paper concludes with a discussion of a proposed vision for the evolution of these teams over the next decade.

  1. Certification Processes for Safety-Critical and Mission-Critical Aerospace Software

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy

    2003-01-01

    This document is a quick reference guide with an overview of the processes required to certify safety-critical and mission-critical flight software at selected NASA centers and the FAA. Researchers and software developers can use this guide to jumpstart their understanding of how to get new or enhanced software onboard an aircraft or spacecraft. The introduction contains aerospace industry definitions of safety and safety-critical software, as well as, the current rationale for certification of safety-critical software. The Standards for Safety-Critical Aerospace Software section lists and describes current standards including NASA standards and RTCA DO-178B. The Mission-Critical versus Safety-Critical software section explains the difference between two important classes of software: safety-critical software involving the potential for loss of life due to software failure and mission-critical software involving the potential for aborting a mission due to software failure. The DO-178B Safety-critical Certification Requirements section describes special processes and methods required to obtain a safety-critical certification for aerospace software flying on vehicles under auspices of the FAA. The final two sections give an overview of the certification process used at Dryden Flight Research Center and the approval process at the Jet Propulsion Lab (JPL).

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 8: The role of the information intermediary in the diffusion of aerospace knowledge

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1990-01-01

    The United States aerospace industry is experiencing profound changes created by a combination of domestic actions and circumstances such as airline deregulation. Other changes result from external trends such as emerging foreign competition. These circumstances intensify the need to understand the production, transfer, and utilization of knowledge as a precursor to the rapid diffusion of technology. Presented here is a conceptual framework for understanding the diffusion of technology. A conceptual framework is given for understanding the diffusion of aerospace knowledge. The framework focuses on the information channels and members of the social system associated with the aerospace knowledge diffusion process, placing particular emphasis on aerospace librarians as information intermediaries.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 9: Summary report to phase 3 faculty and student respondents including frequency distributions

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.

    1991-01-01

    This project is designed to explore the diffusion of scientific and technical information (STI) throughout the aerospace industry. The increased international competition and cooperation in the industry promises to significantly affect the STI standards of U.S. aerospace engineers and scientists. Therefore, it is important to understand the aerospace knowledge diffusion process itself and its implications at the individual, organizational, national, and international levels. Examined here is the role of STI in the academic aerospace community.

  4. SALT tracker upgrade utilizing aerospace processes and procedures

    NASA Astrophysics Data System (ADS)

    van den Berg, Raoul; Coetzee, Chris; Strydom, Ockert; Brink, Janus; Browne, Keith; Wiid, Eben; Lochner, Wouter; Nelson, Grant; Rabe, Paul; Wilkinson, Martin; Moore, Vic; Malan, Adelaide; Love, Jonathan; Koeslag, Anthony

    2016-08-01

    The SALT Tracker was originally designed to carry a payload of approximately 1000 kg. The current loading exceeds 1300 kg and more instrumentation, for example, the Near-Infrared (NIR) arm of the Robert Stobie Spectrograph (RSS), is being designed for the telescope. In general, provision also had to be made to expand the envelope of the tracker payload carrying capacity for future growth as some of the systems on SALT are currently running with small safety margins. It was therefore decided to upgrade the SALT Tracker to be able to carry a payload of 1875 kg. Before the project "Kick-Off" it became evident that neither SALT nor SAAO had the required standard of formal processes and procedures to execute a project of this nature. The Project Management, Mechanical Design and Review processes and procedures were adopted from the Aerospace Industry and tailored for our application. After training the project team in the application of these processes/procedures and gaining their commitment, the Tracker Upgrade Project was "Kicked-Off" in early May 2013. The application of these aerospace-derived processes and procedures, as used during the Tracker Upgrade Project, were very successful as is shown in this paper where the authors also highlight some of the details of the implemented processes and procedures as well as specific challenges that needed to be met while executing a project of this nature and technical complexity.

  5. Rapid adhesive bonding and field repair of aerospace materials

    NASA Technical Reports Server (NTRS)

    Stein, B. A.

    1985-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process are often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid Adhesive Bonding concepts are developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens can be cut by a factor of 10 to 100 compared to standard press or autoclave bonding. The development of Rapid Adhesive Bonding for lap shear specimens (per ASTM D1002 and D3163), for aerospace panel or component bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric-matrix composite structures is reviewed. Equipment and procedures are described for bonding and repairing thin sheets, simple geometries, and honeycomb core panels.

  6. Technology Applications Team: Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Highlights of the Research Triangle Institute (RTI) Applications Team activities over the past quarter are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. The authors gratefully acknowledge the contributions of many individuals to the RTI Technology Applications Team program. The time and effort contributed by managers, engineers, and scientists throughout NASA were essential to program success. Most important to the program has been a productive working relationship with the NASA Field Center Technology Utilization (TU) Offices. The RTI Team continues to strive for improved effectiveness as a resource to these offices. Industry managers, technical staff, medical researchers, and clinicians have been cooperative and open in their participation. The RTI Team looks forward to continuing expansion of its interaction with U.S. industry to facilitate the transfer of aerospace technology to the private sector.

  7. Implications of Pb-free microelectronics assembly in aerospace applications

    NASA Technical Reports Server (NTRS)

    Shapiro, A. A.; Bonner, J. K.; Ogunseitan, D.; Saphores, J. D.; Schoenung, J.

    2003-01-01

    The commercial microelectronics industry is rapidly moving to completely Pb-free assembly strategies within the next decade. This trend is being driven by existing and proposed legislation in Europe and in Japan. The microelectronics industry has become truly global, as indicated by major U .S. firms who already adopted Pb-free implementation programs. Among these forward-looking firms are AT&T, IBM, Motorola, HP and Intel to name a few.Following Moore's law, advances in microelectronics are happening very rapidly. In many cases, commercial industry is ahead of the aerospace sector in technology. Progress by commercial industry, along with cost, drives the use of Commercial Off-The-Shelf (COTS) parts for military and space applications. We can thus anticipate that the aerospace industry will, at some point, be forced to use Pb-free components and subsystems as part of their standard business practices. In this paper we attempt to provide a snapshot of the commercial industry trends and how they may impact electronics in the aerospace environment. In addition, we also look at different strategies for implementation. Finally we present data collected on a recent NASA project to focus on finding suitable alternatives to eutectic tin-lead solders and solder pastes. The world is moving toward implementation of environmentally friendly manufacturing techniques. The aerospace industry will be forced to deal with issues related with Pb free assembly, either by availability or legislation. This paper provides some insight into some of the tradeoffs that should be considered.

  8. Reliability issues of COTS MEMS for aerospace applications

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni; Ghaffarian, Reza; Kim, Namsoo P.

    1999-08-01

    During the last decade, research and development of microelectromechanical systems (MEMS) has shown a significant promise for a variety of commercial applications including automobile and medical purposes. For example, accelerometers are widely used for air bag in automobile and pressure sensors for various industrial applications. Some of the MEMS devices have potential to become the commercial- off-the-shelf (COTS) components. While high reliability applications including aerospace require much more sophisticated technology development, they would achieve significant cost savings if they could utilize COTS components in their systems. This paper reviews the current status of MEMS packaging technology from COTS to specific application provides lessons learned, and finally, identifies a need for a systematic approach for this purpose.

  9. Trends in aerospace structures

    NASA Technical Reports Server (NTRS)

    Card, M. F.

    1978-01-01

    Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.

  10. An Aerospace Nation

    DTIC Science & Technology

    2016-05-25

    aircraft order share of Boeing or Air - bus in recent years.24 America’s leadership in the high-technology sector is also faltering and, if not corrected...Executive Order 9781, establishing the Air Coordinating Commit- tee, with the mission to “examine aviation problems and development affecting more...robotics, drones, information technologies, energy research, and aerospace design. Establish a New Air and Space Structure Like its predecessor

  11. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report from the Aerospace Safety Advisory Panel (ASAP) contains findings, recommendations, and supporting material concerning safety issues with the space station program, the space shuttle program, aeronautics research, and other NASA programs. Section two presents findings and recommendations, section three presents supporting information, and appendices contain data about the panel membership, the NASA response to the March 1993 ASAP report, and a chronology of the panel's activities during the past year.

  12. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  13. AI aerospace components

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Murphy, Terri B.; Rasmussen, Arthur N.; Mcfarland, Robert Z.; Montgomery, Ronnie E.; Pohle, George E.; Heard, Astrid E.; Atkinson, David J.; Wedlake, William E.; Anderson, John M.

    1991-01-01

    An evaluation is made of the application of novel, AI-capabilities-related technologies to aerospace systems. Attention is given to expert-system shells for Space Shuttle Orbiter mission control, manpower and processing cost reductions at the NASA Kennedy Space Center's 'firing rooms' for liftoff monitoring, the automation of planetary exploration systems such as semiautonomous mobile robots, and AI for battlefield staff-related functions.

  14. Study of industry requirements that can be fulfilled by combustion experimentation aboard space station

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.

    1988-01-01

    The purpose of this study is to define the requirements of commercially motivated microgravity combustion experiments and the optimal way for space station to accommodate these requirements. Representatives of commercial organizations, universities and government agencies were contacted. Interest in and needs for microgravity combustion studies are identified for commercial/industrial groups involved in fire safety with terrestrial applications, fire safety with space applications, propulsion and power, industrial burners, or pollution control. From these interests and needs experiments involving: (1) no flow with solid or liquid fuels; (2) homogeneous mixtures of fuel and air; (3) low flow with solid or liquid fuels; (4) low flow with gaseous fuel; (5) high pressure combustion; and (6) special burner systems are described and space station resource requirements for each type of experiment provided. Critical technologies involving the creation of a laboratory environment and methods for combining experimental needs into one experiment in order to obtain effective use of space station are discussed. Diagnostic techniques for monitoring combustion process parameters are identified.

  15. Cost-effective lightweight mirrors for aerospace and defense

    NASA Astrophysics Data System (ADS)

    Woodard, Kenneth S.; Comstock, Lovell E.; Wamboldt, Leonard; Roy, Brian P.

    2015-05-01

    The demand for high performance, lightweight mirrors was historically driven by aerospace and defense (A&D) but now we are also seeing similar requirements for commercial applications. These applications range from aerospace-like platforms such as small unmanned aircraft for agricultural, mineral and pollutant aerial mapping to an eye tracking gimbaled mirror for optometry offices. While aerospace and defense businesses can often justify the high cost of exotic, low density materials, commercial products rarely can. Also, to obtain high performance with low overall optical system weight, aspheric surfaces are often prescribed. This may drive the manufacturing process to diamond machining thus requiring the reflective side of the mirror to be a diamond machinable material. This paper summarizes the diamond machined finishing and coating of some high performance, lightweight designs using non-exotic substrates to achieve cost effective mirrors. The results indicate that these processes can meet typical aerospace and defense requirements but may also be competitive in some commercial applications.

  16. Liquid Nitrogen Removal of Critical Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Noah, Donald E.; Merrick, Jason; Hayes, Paul W.

    2005-01-01

    Identification of innovative solutions to unique materials problems is an every-day quest for members of the aerospace community. Finding a technique that will minimize costs, maximize throughput, and generate quality results is always the target. United Space Alliance Materials Engineers recently conducted such a search in their drive to return the Space Shuttle fleet to operational status. The removal of high performance thermal coatings from solid rocket motors represents a formidable task during post flight disassembly on reusable expended hardware. The removal of these coatings from unfired motors increases the complexity and safety requirements while reducing the available facilities and approved processes. A temporary solution to this problem was identified, tested and approved during the Solid Rocket Booster (SRB) return to flight activities. Utilization of ultra high-pressure liquid nitrogen (LN2) to strip the protective coating from assembled space shuttle hardware marked the first such use of the technology in the aerospace industry. This process provides a configurable stream of liquid nitrogen (LN2) at pressures of up to 55,000 psig. The performance of a one-time certification for the removal of thermal ablatives from SRB hardware involved extensive testing to ensure adequate material removal without causing undesirable damage to the residual materials or aluminum substrates. Testing to establish appropriate process parameters such as flow, temperature and pressures of the liquid nitrogen stream provided an initial benchmark for process testing. Equipped with these initial parameters engineers were then able to establish more detailed test criteria that set the process limits. Quantifying the potential for aluminum hardware damage represented the greatest hurdle for satisfying engineers as to the safety of this process. Extensive testing for aluminum erosion, surface profiling, and substrate weight loss was performed. This successful project clearly

  17. Aerospace Technology Innovation. Volume 10

    NASA Technical Reports Server (NTRS)

    Turner, Janelle (Editor); Cousins, Liz (Editor); Bennett, Evonne (Editor); Vendette, Joel (Editor); West, Kenyon (Editor)

    2002-01-01

    Whether finding new applications for existing NASA technologies or developing unique marketing strategies to demonstrate them, NASA's offices are committed to identifying unique partnering opportunities. Through their efforts NASA leverages resources through joint research and development, and gains new insight into the core areas relevant to all NASA field centers. One of the most satisfying aspects of my job comes when I learn of a mission-driven technology that can be spun-off to touch the lives of everyday people. NASA's New Partnerships in Medical Diagnostic Imaging is one such initiative. Not only does it promise to provide greater dividends for the country's investment in aerospace research, but also to enhance the American quality of life. This issue of Innovation highlights the new NASA-sponsored initiative in medical imaging. Early in 2001, NASA announced the launch of the New Partnerships in Medical Diagnostic Imaging initiative to promote the partnership and commercialization of NASA technologies in the medical imaging industry. NASA and the medical imaging industry share a number of crosscutting technologies in areas such as high-performance detectors and image-processing tools. Many of the opportunities for joint development and technology transfer to the medical imaging market also hold the promise for future spin back to NASA.

  18. Global Aerospace Industries: Rapid Changes Ahead? (Abridged)

    DTIC Science & Technology

    2012-04-30

    Rapid Changes Ahead? (Abridged) Raymond Franck and Ira Lewis, Naval Postgraduate School Bernard Udis, University of Colorado at Boulder Published...Acquisition Research Program Attn: James B. Greene, RADM, USN, (Ret.) Acquisition Chair Graduate School of Business and Public Policy Naval Postgraduate... James B. Greene Jr. Keith F. Snider, PhD Rear Admiral, U.S. Navy (Ret.) Associate Professor ^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW= `êÉ~íáåÖ=póåÉêÖó=Ñçê

  19. Guide to Canadian Aerospace Related Industries,

    DTIC Science & Technology

    1983-01-01

    restrictions, lighting conditions and can detect the munition’s impact with or without an accompanying blast or marking charge. It is self-contained...Development Program ( Light air cushion triphibious aircraft); and Canadian/USAF Joint Defense Program (Air Cushion Equipment Transporter - ACET - Program...products covering a technological spectrum from aircraft and satellite components, to thermoformed acrylic bathtubs, light rail vehicles, and farm

  20. Guide to Canadian Aerospace Related Industries,

    DTIC Science & Technology

    1984-03-01

    hybrids, epoxy die attach, gold ball bonding, laser pas- Revised: Dec 83 sive and active trimming, and cermaic packaging. Average Work Force: 25 ...instrumentation. Plant: 200 Laurentien Blvd The company has a firm commitment to the ongoing design St Laurent, Quebec, Canada 4M 25 and development of new...4.3M nique known as LASERTRACEhas been developed for providing 25 element analyses of the minute traces of Plant Size: Barringer Resources Inc

  1. Determinants of premiums in aerospace mergers and acquisitions: A preliminary analysis

    NASA Astrophysics Data System (ADS)

    Bryant, John K.

    There is a large body of literature on different aspects of premiums as they relate to mergers and acquisitions. However, there is very little literature that specifically discusses the determinants of premiums in aerospace. Few industries have experienced the prolonged consolidation that the aerospace industry has seen. Today, the industry is dominated by a few large firms, but there is still merger activity continuing especially with second-tier firms attempting to secure their future through growth. This paper examines several determinants as applied to 18 aerospace mergers of publicly held companies and divisions from 1991 through April of 2002.

  2. IT Data Mining Tool Uses in Aerospace

    NASA Technical Reports Server (NTRS)

    Monroe, Gilena A.; Freeman, Kenneth; Jones, Kevin L.

    2012-01-01

    Data mining has a broad spectrum of uses throughout the realms of aerospace and information technology. Each of these areas has useful methods for processing, distributing, and storing its corresponding data. This paper focuses on ways to leverage the data mining tools and resources used in NASA's information technology area to meet the similar data mining needs of aviation and aerospace domains. This paper details the searching, alerting, reporting, and application functionalities of the Splunk system, used by NASA's Security Operations Center (SOC), and their potential shared solutions to address aircraft and spacecraft flight and ground systems data mining requirements. This paper also touches on capacity and security requirements when addressing sizeable amounts of data across a large data infrastructure.

  3. Lessons learned from modal testing of aerospace structures

    NASA Astrophysics Data System (ADS)

    Hunt, David L.; Brillhart, Ralph D.

    1993-02-01

    The primary factors affecting the accuracy and the time required to perform modal tests on aerospace structures are discussed, and the lessons learned from modal tests performed over the past 15 yrs are examined. Case histories of modal testing on aerospace structures are reviewed, including the Galileo satellite and the Space Shuttle solid rocket motor and test stand. Currently recommended approaches to the modal testing are addressed.

  4. A review of multifunctional structure technology for aerospace applications

    NASA Astrophysics Data System (ADS)

    Sairajan, K. K.; Aglietti, G. S.; Mani, K. M.

    2016-03-01

    The emerging field of multifunctional structure (MFS) technologies enables the design of systems with reduced mass and volume, thereby improving their overall efficiency. It requires developments in different engineering disciplines and their integration into a single system without degrading their individual performances. MFS is particularly suitable for aerospace applications where mass and volume are critical to the cost of the mission. This article reviews the current state of the art of multifunctional structure technologies relevant to aerospace applications.

  5. Aerospace Nickel-cadmium Cell Verification

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Strawn, D. Michael; Hall, Stephen W.

    2001-01-01

    During the early years of satellites, NASA successfully flew "NASA-Standard" nickel-cadmium (Ni-Cd) cells manufactured by GE/Gates/SAFF on a variety of spacecraft. In 1992 a NASA Battery Review Board determined that the strategy of a NASA Standard Cell and Battery Specification and the accompanying NASA control of a standard manufacturing control document (MCD) for Ni-Cd cells and batteries was unwarranted. As a result of that determination, standards were abandoned and the use of cells other than the NASA Standard was required. In order to gain insight into the performance and characteristics of the various aerospace Ni-Cd products available, tasks were initiated within the NASA Aerospace Flight Battery Systems Program that involved the procurement and testing of representative aerospace Ni-Cd cell designs. A standard set of test conditions was established in order to provide similar information about the products from various vendors. The objective of this testing was to provide independent verification of representative commercial flight cells available in the marketplace today. This paper will provide a summary of the verification tests run on cells from various manufacturers: Sanyo 35 Ampere-hour (Ali) standard and 35 Ali advanced Ni-Cd cells, SAFr 50 Ah Ni-Cd cells and Eagle-Picher 21 Ali Magnum and 21 Ali Super Ni-CdTM cells from Eagle-Picher were put through a full evaluation. A limited number of 18 and 55 Ali cells from Acme Electric were also tested to provide an initial evaluation of the Acme aerospace cell designs. Additionally, 35 Ali aerospace design Ni-MH cells from Sanyo were evaluated under the standard conditions established for this program. Ile test program is essentially complete. The cell design parameters, the verification test plan and the details of the test result will be discussed.

  6. Environmentally friendly power sources for aerospace applications

    NASA Astrophysics Data System (ADS)

    Lapeña-Rey, Nieves; Mosquera, Jonay; Bataller, Elena; Ortí, Fortunato; Dudfield, Christopher; Orsillo, Alessandro

    between the two power sources [N. Lapeña-Rey, J. Mosquera, E. Bataller, F. Ortí, SAE 2007 Aerotech Congress & Exhibition, 2007 (Publication number: 2007-01-3906)]. The demonstrator airplane constitutes an example of the successful implementation of novel clean power sources in aviation. The detailed description of the airplane and its subsystems is given elsewhere [N. Lapeña-Rey, J. Mosquera, E. Bataller, F. Ortí, SAE 2007 Aerotech Congress & Exhibition, 2007 (Publication number: 2007-01-3906)]. This paper focuses specially on the power sources design and pre-flight tests giving special attention to those requirements derived from aerospace applications.

  7. Limitless Horizons. Careers in Aerospace

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1980-01-01

    A manual is presented for use by counselors in career guidance programs. Pertinent information is provided on choices open in aerospace sciences, engineering, and technology. Accredited institutions awarding degrees in pertinent areas are listed as well as additional sources of aerospace career information. NASA's role and fields of interest are emphasized.

  8. Aerospace Activities and Language Development

    ERIC Educational Resources Information Center

    Jones, Robert M.; Piper, Martha

    1975-01-01

    Describes how science activities can be used to stimulate language development in the elementary grades. Two aerospace activities are described involving liquid nitrogen and the launching of a weather balloon which integrate aerospace interests into the development of language skills. (BR)

  9. Manpower Requirements for Massachusetts: by Occupation, by Industry, 1970-1980.

    ERIC Educational Resources Information Center

    Ganong, Robert

    The report is an approximation of industrial and occupational needs for 1970-80 for 225 industries and 445 occupations in Massachusetts based on industry and employment records for 1960-71, occupational employment levels as reported in the 1970 Decennial Census, and the national industry/occupational matrix. The occupational demand detailed in the…

  10. Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication

    NASA Technical Reports Server (NTRS)

    Jones, C. S.; Gangl, K. J.

    1986-01-01

    In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.

  11. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  12. Dielectric barrier discharge processing of aerospace materials

    NASA Astrophysics Data System (ADS)

    Scott, S. J.; Figgures, C. C.; Dixon, D. G.

    2004-08-01

    We report the use of atmospheric pressure, air based, dielectric barrier discharges (DBD) to treat materials commonly used in the aerospace industries. The material samples were processed using a test-bed of a conventional DBD configuration in which the sample formed one of the electrodes and was placed in close proximity to a ceramic electrode. The discharges generated a powerful, cold oxidizing environment which was able to remove organic contaminants, etch primer and paint layers, oxidize aluminium and roughen carbon fibre composites by the selective removal of resin.

  13. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    Actively controlled mechanical seals have recently been developed for industrial use. This study investigates the feasibility of using such seals for aerospace applications. In a noncontacting mechanical seal, the film thickness depends on the geometry of the seal interface. The amount of coning, which is a measure of the radial convergence or divergence of the seal interface, has a primary effect on the film thickness. Active control of the film thickness is established by controlling the coning with a piezoelectric material. A mathematical model has been formulated to predict the performance of an actively controlled mechanical seal.

  14. International aerospace review; Proceedings of the First International Aerospace Symposium, Le Bourget, Seine-Saint-Denis, France, June 2, 3, 1981

    NASA Technical Reports Server (NTRS)

    Grey, J. (Editor); Hamdan, L. A.

    1982-01-01

    The status of aerospace industrial development in various countries is summarized, and specific areas of current and future progress are discussed. The first Shuttle astronauts recount details of the flight and performance of the initial Columbia mission and an attempt to assess the importance of the Shuttle as a milestone in transportation systems is presented. ESA space activities are reviewed, including the impact of space programs on European industries and employment. Attention is also given to Japanese and Chinese space programs. The evolution of communications satellites is traced and projections are made for near-term satellite requirements to be incorporated in the construction of Intelsat VI. Finally, advances in production of military jets and helicopters are considered, along with candidate alternate fuel systems to replace petroleum products.

  15. Current Requirements of the Society to the Professional Training of Specialists in Information Technology Industry in Japan

    ERIC Educational Resources Information Center

    Pododimenko, Inna

    2014-01-01

    The problem of professional training of skilled human personnel in the industry of information communication technology, the urgency of which is recognized at the state level of Ukraine and the world, has been considered. It has been traced that constantly growing requirements of the labour market, swift scientific progress require the use of…

  16. A Qualitative Descriptive Case Study of the Requirements of the IT Industry for Entry-Level IT Positions

    ERIC Educational Resources Information Center

    Feuerherm, Todd Michael

    2009-01-01

    This qualitative descriptive case study explored the requirements of the IT industry for education, IT certification, and work experience for entry-level IT professionals. Research has shown a growing problem where IT graduates were not able to meet the requirements for entry-level IT jobs. IT enrollment has decreased considerably over the past…

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 31: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SME mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical communications practices of U.S. aerospace engineers and scientists affiliated with, not necessarily belonging to, the Society of Manufacturing Engineers (SME).

  18. Aerospace and military

    SciTech Connect

    Adam, J.A.; Esch, K

    1990-01-01

    This article reviews military and aerospace developments of 1989. The Voyager spacecraft returned astounding imagery from Neptune, sophisticated sensors were launched to explore Venus and Jupiter, and another craft went into earth orbit to explore cosmic rays, while a huge telescope is to be launched early in 1990. The U.S. space shuttle redesign was completed and access to space has become no longer purely a governmental enterprise. In the military realm, events within the Soviet bloc, such as the Berlin Wall's destruction, have popularized arms control. Several big treaties could be signed within the year. Massive troop, equipment, and budget reductions are being considered, along with a halt or delay of major new weapons systems. For new missions, the U.S. military is retreating to its role of a century ago - patrolling the nation's borders, this time against narcotics traffickers.

  19. Dynamics of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.

  20. Aerospace Human Factors

    NASA Technical Reports Server (NTRS)

    Jordan, Kevin

    1999-01-01

    The following contains the final report on the activities related to the Cooperative Agreement between the human factors research group at NASA Ames Research Center and the Psychology Department at San Jose State University. The participating NASA Ames division has been, as the organization has changed, the Aerospace Human Factors Research Division (ASHFRD and Code FL), the Flight Management and Human Factors Research Division (Code AF), and the Human Factors Research and Technology Division (Code IH). The inclusive dates for the report are November 1, 1984 to January 31, 1999. Throughout the years, approximately 170 persons worked on the cooperative agreements in one capacity or another. The Cooperative Agreement provided for research personnel to collaborate with senior scientists in ongoing NASA ARC research. Finally, many post-MA/MS and post-doctoral personnel contributed to the projects. It is worth noting that 10 former cooperative agreement personnel were hired into civil service positions directly from the agreements.

  1. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a 5-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASAs safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are "one deep." The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting "brain drain" could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has little flexibility to begin long lead-time items for upgrades or contingency planning.

  2. Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Pratt, Joseph W.; Brouwer, Jacob

    2004-01-01

    Recent interest in fuel cell-gas turbine hybrid applications for the aerospace industry has led to the need for accurate computer simulation models to aid in system design and performance evaluation. To meet this requirement, solid oxide fuel cell (SOFC) and fuel processor models have been developed and incorporated into the Numerical Propulsion Systems Simulation (NPSS) software package. The SOFC and reformer models solve systems of equations governing steady-state performance using common theoretical and semi-empirical terms. An example hybrid configuration is presented that demonstrates the new capability as well as the interaction with pre-existing gas turbine and heat exchanger models. Finally, a comparison of calculated SOFC performance with experimental data is presented to demonstrate model validity. Keywords: Solid Oxide Fuel Cell, Reformer, System Model, Aerospace, Hybrid System, NPSS

  3. Applications of aerospace technology to petroleum exploration. Volume 1: Efforts and results

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1976-01-01

    The feasibility of applying aerospace techniques to help solve significant problems in petroleum exploration is studied. Through contacts with petroleum industry and petroleum service industry, important petroleum exploration problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified where possible. Topics selected for investigation include: seismic reflection systems; down-hole acoustic techniques; identification of geological analogies; drilling methods; remote geological sensing; and sea floor imaging and mapping. Specific areas of aerospace technology are applied to 21 concepts formulated from the topics of concern.

  4. IPAD: Integrated Programs for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The conference was organized to promote wider awareness of the IPAD program and its coming impact on American industry. The program focuses on technology issues that are critical to computer aided design manufacturing. Included is a description of a representative aerospace design process and its interface with manufacturing, the design of a future IPAD integrated computer aided design system, results to date in developing IPAD products and associated technology, and industry experiences and plans to exploit these products.

  5. Development of Integrated Programs for Aerospace-Vehicle Design (IPAD)

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Calvery, A. L.; Davis, D. A.; Dickmann, L.; Folger, D. H.; Jochem, E. N.; Kitto, C. M.; Vonlimbach, G.

    1977-01-01

    Integrated Programs for Aerospace Vehicle Design (IPAD) system design requirements are given. The information is based on the IPAD User Requirements Document (D6-IPAD-70013-D) and the Integrated Information Processing Requirements Document (D6-IPAD-70012-D). General information about IPAD and a list of the system design requirements that are to be satisfied by the IPAD system are given. The system design requirements definition is to be considered as a baseline definition of the IPAD system design requirements.

  6. Nondeterministic Approaches and Their Potential for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2001-01-01

    This document contains the proceedings of the Training Workshop on Nondeterministic Approaches and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, May 30-3 1, 2001. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in nondeterministic approaches, uncertainty management methodologies, reliability assessment and risk management techniques, and to identify their potential for future aerospace systems.

  7. Suitability of 2-Wire Ethernet Solutions for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Thain, A.; Le Sergent, F.; Marot, C.; Pasquier, B.

    2016-05-01

    The 100BASE-T1protocol is an Ethernet protocol allowing communications at 100 Mb/s on a single unshielded twisted pair cable. It was defined by the OPEN Alliance[1] working group that mainly comprised automobile manufacturers and suppliers, and therefore is specified for short cable lengths up to 15m. The technology originates from Broadcom who markets it as BroadR-Reach. It is of interest to the aerospace industry as a means of reducing weight, cost and installation time. In this paper we report on EMC tests performed to assess the suitability of the protocol for aerospace applications.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  9. Nonclinical reproductive toxicity testing requirements for drugs, pesticides, and industrial chemicals in India and China.

    PubMed

    Rao, K S; Dong, Jing

    2013-01-01

    India and China have booming chemical, agrochemical, and pharmaceutical industries. Both countries also represent expanding markets for foreign chemical and healthcare companies. All such products require reproductive toxicity testing before marketing. The ICH testing guidelines for medicinal products are not applicable in China and India. Nonetheless, reproductive toxicity studies designed and run to ICH principles are generally acceptable for submission. The Chinese guidelines take into consideration traditional Chinese medicines, which are usually mixtures. Likewise, the specific recommendations of India and China for the reproductive toxicity testing of chemicals and pesticides differ from those of the OECD and the USEPA. Again, studies performed in accordance with internationally recognized principles are usually acceptable for submission in both countries. The Chinese guideline for the reproductive toxicity testing of agrochemicals is currently under revision; the new version is expected to resemble more closely the requirements of the OECD and the USEPA. As a member of the OECD, India has conducted Good Laboratory Practice (GLP) inspection, accreditation, and monitoring activities since 2004. China has made several attempts to join the Council Decisions on Mutual Acceptance of Data in the Assessment of Chemicals since 2005. Currently 47 laboratories in China have been certified by the national GLP authorities. Several laboratories in China have also been recently been certified by OECD member countries as GLP compliant. In India, there are currently 23 GLP-Certified laboratories; about six of these are also AALAC accredited. The specific study designs specified in the guidelines of China and India for reproductive toxicity studies are described in detail in this chapter.

  10. Development of requirements on safety cases of machine industry products for power engineering

    NASA Astrophysics Data System (ADS)

    Aronson, K. E.; Brezgin, V. I.; Brodov, Yu. M.; Gorodnova, N. V.; Kultyshev, A. Yu.; Tolmachev, V. V.; Shablova, E. G.

    2016-12-01

    This article considers security assurance for power engineering machinery in the design and production phases. The Federal Law "On Technical Regulation" and the Customs Union Technical Regulations "On Safety of Machinery and Equipment" are analyzed in the legal, technical, and economic aspect with regard to power engineering machine industry products. From the legal standpoint, it is noted that the practical enforcement of most norms of the Law "On Technical Regulation" makes it necessary to adopt subordinate statutory instruments currently unavailable; moreover, the current level of adoption of technical regulations leaves much to be desired. The intensive integration processes observed in the Eurasian Region in recent years have made it a more pressing task to harmonize the laws of the region's countries, including their technical regulation framework. The technical aspect of analyzing the technical regulation of the Customs Union has been appraised by the IDEF0 functional modeling method. The object of research is a steam turbine plant produced at the turbine works. When developing the described model, we considered the elaboration of safety case (SC) requirements from the standpoint of the chief designer of the turbine works as the person generally responsible for the elaboration of the SC document. The economic context relies on risk analysis and appraisal methods. In their respect, these are determined by the purposes and objectives of analysis, complexity of considered objects, availability of required data, and expertise of specialists hired to conduct the analysis. The article proposes the description of all sources of hazard and scenarios of their actualization in all production phases of machinery life cycle for safety assurance purposes. The detection of risks and hazards allows forming the list of unwanted events. It describes the sources of hazard, various risk factors, conditions for their rise and development, tentative risk appraisals, and

  11. Managing human fallibility in critical aerospace situations

    NASA Astrophysics Data System (ADS)

    Tew, Larry

    2014-11-01

    Human fallibility is pervasive in the aerospace industry with over 50% of errors attributed to human error. Consider the benefits to any organization if those errors were significantly reduced. Aerospace manufacturing involves high value, high profile systems with significant complexity and often repetitive build, assembly, and test operations. In spite of extensive analysis, planning, training, and detailed procedures, human factors can cause unexpected errors. Handling such errors involves extensive cause and corrective action analysis and invariably schedule slips and cost growth. We will discuss success stories, including those associated with electro-optical systems, where very significant reductions in human fallibility errors were achieved after receiving adapted and specialized training. In the eyes of company and customer leadership, the steps used to achieve these results lead to in a major culture change in both the workforce and the supporting management organization. This approach has proven effective in other industries like medicine, firefighting, law enforcement, and aviation. The roadmap to success and the steps to minimize human error are known. They can be used by any organization willing to accept human fallibility and take a proactive approach to incorporate the steps needed to manage and minimize error.

  12. AeroSpace Days 2013

    NASA Video Gallery

    At the eighth annual AeroSpace Days, first mom in space, Astronaut AnnaFisher, and Sen. Louise Lucas, interacted with students from Mack BennJr. Elementary School in Suffolk, Va. through NASA’s...

  13. Norwegian Aerospace Activities: an Overview

    NASA Technical Reports Server (NTRS)

    Arnesen, T. (Editor); Rosenberg, G. (Editor)

    1986-01-01

    Excerpts from a Governmental Investigation concerning Norwegian participation in the European Space Organization (ESA) is presented. The implications and advantages of such a move and a suggestion for the reorganization of Norwegian Aerospace activity is given.

  14. The National Aerospace Initiative (NAI): Technologies For Responsive Space Access

    NASA Technical Reports Server (NTRS)

    Culbertson, Andrew; Bhat, Biliyar N.

    2003-01-01

    The Secretary of Defense has set new goals for the Department of Defense (DOD) to transform our nation's military forces. The Director for Defense Research and Engineering (DDR&E) has responded to this challenge by defining and sponsoring a transformational initiative in Science and Technology (S&T) - the National Aerospace Initiative (NAI) - which will have a fundamental impact on our nation's military capabilities and on the aerospace industry in general. The NAI is planned as a joint effort among the tri-services, DOD agencies and National Aeronautics and Space Administration (NASA). It is comprised of three major focus areas or pillars: 1) High Speed Hypersonics (HSH), 2) Space Access (SA), and 3) Space Technology (ST). This paper addresses the Space Access pillar. The NAI-SA team has employed a unique approach to identifying critical technologies and demonstrations for satisfying both military and civilian space access capabilities needed in the future. For planning and implementation purposes the NAI-SA is divided into five technology subsystem areas: Airframe, Propulsion, Flight Subsystems, Operations and Payloads. Detailed technology roadmaps were developed under each subsystem area using a time-phased, goal oriented approach that provides critical space access capabilities in a timely manner and involves subsystem ground and flight demonstrations. This S&T plan addresses near-term (2009), mid-term (2016), and long-term (2025) goals and objectives for space access. In addition, system engineering and integration approach was used to make sure that the plan addresses the requirements of the end users. This paper describes in some detail the technologies in NAI-Space Access pillar. Some areas of emphasis are: high temperature materials, thermal protection systems, long life, lightweight, highly efficient airframes, metallic and composite cryotanks, advanced liquid rocket engines, integrated vehicle health monitoring and management, highly operable systems and

  15. National Aerospace Plane (NASP) program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Artists concept of the X-30 aerospace plane flying through Earth's atmosphere on its way to low-Earth orbit. the experimental concept is part of the National Aero-Space Plane Program. The X-30 is planned to demonstrate the technology for airbreathing space launch and hypersonic cruise vehicles. Photograph and caption published in Winds of Change, 75th Anniversary NASA publication (page 117), by James Schultz.

  16. 32nd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Walker, S. W. (Compiler); Boesiger, Edward A. (Compiler)

    1998-01-01

    The proceedings of the 32nd Aerospace Mechanism Symposium are reported. NASA John F. Kennedy Space Center (KSC) hosted the symposium that was held at the Hilton Oceanfront Hotel in Cocoa Beach, Florida on May 13-15, 1998. The symposium was cosponsored by Lockheed Martin Missiles and Space and the Aerospace Mechanisms Symposium Committee. During these days, 28 papers were presented. Topics included robotics, deployment mechanisms, bearing, actuators, scanners, boom and antenna release, and test equipment.

  17. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Annual Report of the Aerospace Safety Advisory Panel (ASAP) presents results of activities during calendar year 2001. The year was marked by significant achievements in the Space Shuttle and International Space Station (ISS) programs and encouraging accomplishments by the Aerospace Technology Enterprise. Unfortunately, there were also disquieting mishaps with the X-43, a LearJet, and a wind tunnel. Each mishap was analyzed in an orderly process to ascertain causes and derive lessons learned. Both these accomplishments and the responses to the mishaps led the Panel to conclude that safety and risk management is currently being well served within NASA. NASA's operations evidence high levels of safety consciousness and sincere efforts to place safety foremost. Nevertheless, the Panel's safety concerns have never been greater. This dichotomy has arisen because the focus of most NASA programs has been directed toward program survival rather than effective life cycle planning. Last year's Annual Report focused on the need for NASA to adopt a realistically long planning horizon for the aging Space Shuttle so that safety would not erode. NASA's response to the report concurred with this finding. Nevertheless, there has been a greater emphasis on current operations to the apparent detriment of long-term planning. Budget cutbacks and shifts in priorities have severely limited the resources available to the Space Shuttle and ISS for application to risk-reduction and life-extension efforts. As a result, funds originally intended for long-term safety-related activities have been used for operations. Thus, while safety continues to be well served at present, the basis for future safety has eroded. Section II of this report develops this theme in more detail and presents several important, overarching findings and recommendations that apply to many if not all of NASA's programs. Section III of the report presents other significant findings, recommendations and supporting

  18. Hybrid Titanium Composite Laminates: A New Aerospace Material

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Cobb, Ted Q.; Lowther, Sharon; St.Clair, T. L.

    1998-01-01

    In the realm of aerospace design and performance, there are few boundaries in the never-ending drive for increased performance. This thirst for ever-increased performance of aerospace equipment has driven the aerospace and defense industries into developing exotic, extremely high-performance composites that are pushing the envelope in terms of strength-to-weight ratios, durability, and several other key measurements. To meet this challenge of ever-increasing improvement, engineers and scientists at NASA-Langley Research Center (NASA-LaRC) have developed a high-temperature metal laminate based upon titanium, carbon fibers, and a thermoplastic resin. This composite, known as the Hybrid Titanium Composite Laminate, or HTCL, is the latest chapter in a significant, but relatively short, history of metal laminates.

  19. NASA's activities in the conservation of strategic aerospace materials

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1980-01-01

    The United States imports 50-100 percent of certain metals critical to the aerospace industry, namely, cobalt, columbium, chromium, and tantalum. In an effort to reduce this dependence on foreign sources, NASA is planning a program called Conservation of Strategic Aerospace Materials (COSAM), which will provide technology minimizing strategic metal content in the components of aerospace structures such as aircraft engines. With a proposed starting date of October 1981, the program will consist of strategic element substitution, process technology development, and alternate materials research. NASA's two-fold pre-COSAM studies center on, first, substitution research involving nickel-base and cobalt-base superalloys (Waspaloy, Udimet-700, MAE-M247, Rene 150, HA-188) used in turbine disks, low-pressure blades, turbine blades, and combustors; and, second, alternate materials research devoted initially to investigating possible structural applications of the intermetallic alloys nickel aluminide and iron aluminide.

  20. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  1. Materials Selection for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  2. A simultaneous spin/eject mechanism for aerospace payloads

    NASA Technical Reports Server (NTRS)

    Palmer, G. D.; Banks, T. N.

    1976-01-01

    A simultaneous spin/eject mechanism was developed for aerospace applications requiring a compact, passive device which would accommodate payload support and controlled-release functions, and which would provide a highly accurate spin-ejection motion to the payload. The mechanism satisfied the requirements and is adaptable to other deployment applications.

  3. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  4. Aerospace Safety Advisory Panel

    NASA Astrophysics Data System (ADS)

    1989-03-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  5. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Aerospace Safety Advisory Panel (ASAP) monitored NASA's activities and provided feedback to the NASA Administrator, other NASA officials and Congress throughout the year. Particular attention was paid to the Space Shuttle, its launch processing and planned and potential safety improvements. The Panel monitored Space Shuttle processing at the Kennedy Space Center (KSC) and will continue to follow it as personnel reductions are implemented. There is particular concern that upgrades in hardware, software, and operations with the potential for significant risk reduction not be overlooked due to the extraordinary budget pressures facing the agency. The authorization of all of the Space Shuttle Main Engine (SSME) Block II components portends future Space Shuttle operations at lower risk levels and with greater margins for handling unplanned ascent events. Throughout the year, the Panel attempted to monitor the safety activities related to the Russian involvement in both space and aeronautics programs. This proved difficult as the working relationships between NASA and the Russians were still being defined as the year unfolded. NASA's concern for the unique safety problems inherent in a multi-national endeavor appears appropriate. Actions are underway or contemplated which should be capable of identifying and rectifying problem areas. The balance of this report presents 'Findings and Recommendations' (Section 2), 'Information in Support of Findings and Recommendations' (Section 3) and Appendices describing Panel membership, the NASA response to the March 1994 ASAP report, and a chronology of the panel's activities during the reporting period (Section 4).

  6. Aerospace Applications Of High Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Anderson, W. W.

    1988-05-01

    The existence of superconductors with TcOOK (which implies device operating temper-atures the order of Top ≍45K) opens up a variety of potential applications within the aerospace/defense industry. This is partly due to the existence of well developed cooler technologies to reach this temperature regime and partly due to the present operation of some specialized components at cryogenic temperatures. In particular, LWIR focal planes may operate at 10K with some of the signal processing electronics at an intermediate temperature of 40K. Addition of high Tc superconducting components in the latter system may be "free" in the sense of additional system complexity required. The established techniques for cooling in the 20K to 50K temperature regime are either open cycle, expendable material (stored gas with Joule-Thomson expansion, liquid cryogen or solid cryogen) or mechanical refrigerators (Stirling cycle, Brayton cycle or closed cycle Joule-Thomson). The high Tc materials may also contribute to the development of coolers through magnetically levitated bearings or providing the field for a stage of magnetic refrigeration. The discovery of materials with Tc, 90K has generated a veritable shopping list of applications. The superconductor properties which are of interest for applications are (1) zero resistance, (2) Meissner effect, (3) phase coherence and (4) existence of an energy gap. The zero resistance property is significant in the development of high field magnets requiring neglible power to maintain the field. In addition to the publicized applications to rail guns and electromagnetic launcher, we can think of space born magnets for charged particle shielding or whistler mode propagation through a plasma sheath. Conductor losses dominate attenuation and dispersion in microstrip transmission lines. While the surface impedance of a superconductor is non vanishing, significant improvements in signal transmission may be obtained. The Meissner effect may be utilized

  7. Federal R and D Reductions, Market Share, and Aerospace Information Usage

    NASA Technical Reports Server (NTRS)

    Rocker, JoAnne; Roncaglia, George

    2000-01-01

    Reductions in federally funded research have a rippling effect over the entire aerospace industry. The decline in federal R&D spending in aerospace in recent years coincides with declines in U.S. aerospace market share, One of the lesser-understood factors in the declining U.S. market share may be the differing ways and intensity with which the U.S. and its competitors approach another trend, the increasing availability of large amounts of aerospace research information on the World Wide Web. The U.S. has been a pioneer in making research information available in electronic form, and the international community has long been a heavy consumer of that information. In essence, the U.S. contributes to the research efforts of its competitors, thus contributing to foreign aerospace consortiums efforts to gain market share in the aerospace industry, This may be a cautionary note to the U.S. aerospace industry to consider the use of R&D output in its own development and strategy because the foreign competition is using the U.S. scientific and technical literature.

  8. Technology issues associated with fueling the national aerospace plane with slush hydrogen

    NASA Technical Reports Server (NTRS)

    Hannum, Ned P.

    1988-01-01

    The National Aerospace Plane is a horizontal takeoff and landing, single stage-to-orbit vehicle using hydrogen fuel. The first flights are planned for the mid 1990's. The success of this important national program requires advances in virtually every discipline associated with both airbreathing and space flight. The high heating value, cooling capacity, and combustion properties make hydrogen the fuel of choice, but low density results in a large vehicle. Both fuel cooling capacity and density are increased with the use of slush hydrogen and result in significant reductions in vehicle size. A national program to advance this technology and to find engineering solutions to the many design issues is now under way. The program uses the expertise of the cryogenics production and services industry, the instrumentation industry, universities and governments. The program will be discussed to highlight the major issues and display progress to date.

  9. Technical Training Requirements of Middle Management in the Greek Textile and Clothing Industries.

    ERIC Educational Resources Information Center

    Fotinopoulou, K.; Manolopoulos, N.

    A case study of 16 companies in the Greek textile and clothing industry elicited the training needs of the industry's middle managers. The study concentrated on large and medium-sized work units, using a lengthy questionnaire. The study found that middle managers increasingly need to solve problems and ensure the reliability of new equipment and…

  10. Genome-wide screening of Saccharomyces cerevisiae genes required to foster tolerance towards industrial wheat straw hydrolysates.

    PubMed

    Pereira, Francisco B; Teixeira, Miguel C; Mira, Nuno P; Sá-Correia, Isabel; Domingues, Lucília

    2014-12-01

    The presence of toxic compounds derived from biomass pre-treatment in fermentation media represents an important drawback in second-generation bio-ethanol production technology and overcoming this inhibitory effect is one of the fundamental challenges to its industrial production. The aim of this study was to systematically identify, in industrial medium and at a genomic scale, the Saccharomyces cerevisiae genes required for simultaneous and maximal tolerance to key inhibitors of lignocellulosic fermentations. Based on the screening of EUROSCARF haploid mutant collection, 242 and 216 determinants of tolerance to inhibitory compounds present in industrial wheat straw hydrolysate (WSH) and in inhibitor-supplemented synthetic hydrolysate were identified, respectively. Genes associated to vitamin metabolism, mitochondrial and peroxisomal functions, ribosome biogenesis and microtubule biogenesis and dynamics are among the newly found determinants of WSH resistance. Moreover, PRS3, VMA8, ERG2, RAV1 and RPB4 were confirmed as key genes on yeast tolerance and fermentation of industrial WSH.

  11. Commercial/industrial photovoltaic module and array requirement study. Low-cost solar array project engineering area

    NASA Astrophysics Data System (ADS)

    1981-12-01

    Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.

  12. Commercial/industrial photovoltaic module and array requirement study. Low-cost solar array project engineering area

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.

  13. AN INVESTIGATION OF THE TRAINING AND SKILL REQUIREMENTS OF INDUSTRIAL MACHINERY MAINTENANCE WORKERS. VOLUME II. FINAL REPORT.

    ERIC Educational Resources Information Center

    LYNN, FRANK

    THE APPENDIXES FOR "AN INVESTIGATION OF THE TRAINING AND SKILL REQUIREMENTS OF INDUSTRIAL MACHINERY MAINTENANCE WORKERS, FINAL REPORT, VOLUME I" (VT 004 006) INCLUDE (1) TWO LETTERS FROM PLANT ENGINEERS STRESSING THE IMPORTANCE OF TRAINING MACHINERY MAINTENANCE WORKERS, (2) A DESCRIPTION OF THE MAINTENANCE TRAINING SURVEY, A SAMPLE QUESTIONNAIRE,…

  14. The Requirement for Vocational Skills in the Engineering Industry in the Areas of Modena and Vienna. Synthesis Report.

    ERIC Educational Resources Information Center

    Gatti, Mario; Mereu, Maria Grazia; Tagliaferro, Claudio; Markowitsch, Jorg; Neuberger, Robert

    Requirements for vocational skills in the engineering industry in Modena, Italy, and Vienna, Austria, were studied. In Modena, employees of a representative sample of 90 small, medium, and large firms in the mechanical processing, agricultural machinery, and sports car manufacturing sectors were interviewed. In Vienna, data were collected through…

  15. 75 FR 30282 - Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ...-008-AD; Amendment 39-16312; AD 2010-11-07] RIN 2120-AA64 Airworthiness Directives; Quartz Mountain... Quartz Mountain Aerospace, Inc. Model 11E airplanes. This AD requires you to clean and lubricate the... publications listed in this AD. ADDRESSES: Quartz Mountain Aerospace, Inc. is in liquidation. For...

  16. Mobile Computing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Swietek, Gregory E. (Technical Monitor)

    1994-01-01

    The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the

  17. A standardized diode cryogenic temperature sensor for aerospace applications

    NASA Astrophysics Data System (ADS)

    Courts, Samuel Scott

    2016-03-01

    The model DT-670-SD cryogenic diode temperature sensor, manufactured by Lake Shore Cryotronics, Inc. has been used on numerous aerospace space missions since its introduction nearly 15 years ago. While the sensing element is a diode, it is operated in a non-standard manner when used as a temperature sensor over the 1.4-500 K temperature range. For this reason, the NASA and MIL-type test and performance standards designed to ensure high reliability of diode aerospace parts don't properly define the inspection and test protocol for the DT-670-SD temperature sensor as written. This requires each aerospace application to develop unique test and inspection protocols for the project, typically for a small number of sensors, resulting in expensive sensors with a long lead time. With over 30 years of experience in supplying cryogenic temperature sensors for aerospace applications, Lake Shore has developed screening and qualification inspection and test protocols to provide "commercial off-the-shelf (COTS)" DT-670-SD temperature sensors that should meet the requirements of most high-reliability applications including aerospace. Parts from acceptance and qualified lots will be available at a base sensor level with the ability to specify an interchangeability tolerance, calibration range, mounting adaptor, and/or lead extension for final configuration. This work presents details of this acceptance and qualification inspection and test protocol as well as performance characteristics of the DT-670-SD cryogenic temperature sensors when inspected and tested to this protocol.

  18. Nanomaterials and future aerospace technologies: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Vaia, Richard A.

    2012-06-01

    Two decades of extensive investment in nanomaterials, nanofabrication and nanometrology have provided the global engineering community a vast array of new technologies. These technologies not only promise radical change to traditional industries, such as transportation, information and aerospace, but may create whole new industries, such as personalized medicine and personalized energy harvesting and storage. The challenge today for the defense aerospace community is determining how to accelerate the conversion of these technical opportunities into concrete benefits with quantifiable impact, in conjunction with identifying the most important outstanding scientific questions that are limiting their utilization. For example, nanomaterial fabrication delivers substantial tailorablity beyond a traditional material data sheet. How can we integrate this tailorability into agile manufacturing and design methods to further optimize the performance, cost and durability of future resilient aerospace systems? The intersection of nano-based metamaterials and nanostructured devices with biotechnology epitomizes the technological promise of autonomous systems and enhanced human-machine interfaces. What then are the key materials and processes challenges that are inhibiting current lab-scale innovation from being integrated into functioning systems to increase effectiveness and productivity of our human resources? Where innovation is global, accelerating the use of breakthroughs, both for commercial and defense, is essential. Exploitation of these opportunities and finding solutions to the associated challenges for defense aerospace will rely on highly effective partnerships between commercial development, scientific innovation, systems engineering, design and manufacturing.

  19. Review and Assessment of Post-Orientation Careers of ADAPT (Aerospace and Defense Adaptation to Public Technology) Participants. Final Report.

    ERIC Educational Resources Information Center

    Ventre, Francis T.; Sullivan, Larry N.

    Careers of 185 unemployed aerospace professionals from aerospace and defense industries are documented following completion of a month-long orientation to Urban Affairs. Seventy percent of the persons completing the program were professionally employed eight months later; 60 percent of those at work are in the public service. Preparedness of…

  20. Information Technology and Aerospace Knowledge Diffusion: Exploring the Intermediary-End User Interface in a Policy Framework.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    1992-01-01

    Discusses U.S. technology policy and the transfer of scientific and technical information (STI). Results of a study of knowledge diffusion in the aerospace industry are reported, including data on aerospace information intermediaries, use of computer and information technologies, and the use of NASA (National Aeronautics and Space Administration)…

  1. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    The main objective is to determine the feasibility of utilizing controllable mechanical seals for aerospace applications. A potential application was selected as a demonstration case: the buffer gas seal in a LOX (liquid oxygen) turbopump. Currently, floating ring seals are used in this application. Their replacement with controllable mechanical seals would result in substantially reduced leakage rates. This would reduce the required amount of stored buffer gas, and therefore increase the vehicle payload. For such an application, a suitable controllable mechanical seal was designed and analyzed.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 45; The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 3 US Aerospace Engineering Educators Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports, present a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the American Institute of Aeronautics and Astronautics (AIAA) and identified themselves as educators.

  3. Potential aerospace applications of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  4. Ethernet for Aerospace Applications - Ethernet Heads for the Skies

    NASA Technical Reports Server (NTRS)

    Grams, Paul R.

    2015-01-01

    One of the goals of aerospace applications is to reduce the cost and complexity of avionic systems. Ethernet is a highly scalable, flexible, and popular protocol. The aerospace market is large, with a forecasted production of over 50,000 turbine-powered aircraft valued at $1.7 trillion between 2012 and 2022. Boeing estimates demand for commercial aircraft by 2033 to total over 36,000 with a value of over $5 trillion. In 2014 US airlines served over 750 million passengers and this is growing over 2% yearly. Electronic fly-by-wire is now used for all airliners and high performance aircraft. Although Ethernet has been widely used for four decades, its use in aerospace applications is just beginning to become common. Ethernet is the universal solution in commercial networks because of its high bandwidths, lower cost, openness, reliability, maintainability, flexibility, and interoperability. However, when Ethernet was designed applications with time-critical, safety relevant and deterministic requirements were not given much consideration. Many aerospace applications use a variety of communication architectures that add cost and complexity. Some of them are SpaceWire, MIL-STD-1553, Avionics Full Duplex Switched Ethernet (AFDX), and Time-Triggered Ethernet (TTE). Aerospace network designers desire to decrease the number of networks to reduce cost and effort while improving scalability, flexibility, openness, maintainability, and reliability. AFDX and TTE are being considered more for critical aerospace systems because they provide redundancy, failover protection, guaranteed timing, and frame priority and are based on Ethernet IEEE 802.3. This paper explores the use of AFDX and TTE for aerospace applications.

  5. NASA aerospace pyrotechnically actuated systems: Program plan

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1992-01-01

    The NASA Aerospace Pyrotechnically Actuated Systems (PAS) Program, a focused technology program, is being initiated to enhance the reliability, safety, and performance of pyrotechnically actuated systems. In broad terms, this Program Plan presents the approach that helps to resolve concerns raised by the NASA/DOD/DOE Aerospace Pyrotechnic Steering Committee. This Plan reflects key efforts needed in PAS technology. The resources committed to implement the Program will be identified in the Program Implementation Plan (PIP). A top level schedule is included along with major Program milestones and products. Responsibilities are defined in the PIP. The Plan identifies the goals and detailed objectives which define how those goals are to be accomplished. The Program will improve NASA's capabilities to design, develop, manufacture, and test pyrotechnically actuated systems for NASA's programs. Program benefits include the following: advanced pyrotechnic systems technology developed for NASA programs; hands-on pyrotechnic systems expertise; quick response capability to investigate and resolve pyrotechnic problems; enhanced communications and intercenter support among the technical staff; and government-industry PAS technical interchange. The PAS Program produces useful products that are of a broad-based technology nature rather than activities intended to meet specific technology objectives for individual programs. Serious problems have occurred with pyrotechnic devices although near perfect performance is demanded by users. The lack of a program to address those problems in the past is considered a serious omission. The nature of problems experienced as revealed by a survey are discussed and the origin of the program is explained.

  6. Lithium-Ion Batteries for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Halpert, G.; Marsh, R. A.; James, R.

    1999-01-01

    This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented.

  7. Chemical Gas Sensors for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  8. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During 1997, the Aerospace Safety Advisory Panel (ASAP) continued its safety reviews of NASA's human space flight and aeronautics programs. Efforts were focused on those areas that the Panel believed held the greatest potential to impact safety. Continuing safe Space Shuttle operations and progress in the manufacture and testing of primary components for the International Space Station (ISS) were noteworthy. The Panel has continued to monitor the safety implications of the transition of Space Shuttle operations to the United Space Alliance (USA). One area being watched closely relates to the staffing levels and skill mix in both NASA and USA. Therefore, a section of this report is devoted to personnel and other related issues that are a result of this change in NASA's way of doing business for the Space Shuttle. Attention will continue to be paid to this important topic in subsequent reports. Even though the Panel's activities for 1997 were extensive, fewer specific recommendations were formulated than has been the case in recent years. This is indicative of the current generally good state of safety of NASA programs. The Panel does, however, have several longer term concerns that have yet to develop to the level of a specific recommendation. These are covered in the introductory material for each topic area in Section 11. In another departure from past submissions, this report does not contain individual findings and recommendations for the aeronautics programs. While the Panel devoted its usual efforts to examining NASA's aeronautic centers and programs, no specific recommendations were identified for inclusion in this report. In lieu of recommendations, a summary of the Panel's observations of NASA's safety efforts in aeronautics and future Panel areas of emphasis is provided. With profound sadness the Panel notes the passing of our Chairman, Paul M. Johnstone, on December 17, 1997, and our Staff Assistant, Ms. Patricia M. Harman, on October 5, 1997. Other

  9. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report presents the results of the Aerospace Safety Advisory Panel (ASAP) activities during 2002. The format of the report has been modified to capture a long-term perspective. Section II is new and highlights the Panel's view of NASA's safety progress during the year. Section III contains the pivotal safety issues facing NASA in the coming year. Section IV includes the program area findings and recommendations. The Panel has been asked by the Administrator to perform several special studies this year, and the resulting white papers appear in Appendix C. The year has been filled with significant achievements for NASA in both successful Space Shuttle operations and International Space Station (ISS) construction. Throughout the year, safety has been first and foremost in spite of many changes throughout the Agency. The relocation of the Orbiter Major Modifications (OMMs) from California to Kennedy Space Center (KSC) appears very successful. The transition of responsibilities for program management of the Space Shuttle and ISS programs from Johnson Space Center (JSC) to NASA Headquarters went smoothly. The decision to extend the life of the Space Shuttle as the primary NASA vehicle for access to space is viewed by the Panel as a prudent one. With the appropriate investments in safety improvements, in maintenance, in preserving appropriate inventories of spare parts, and in infrastructure, the Space Shuttle can provide safe and reliable support for the ISS for the foreseeable future. Indications of an aging Space Shuttle fleet occurred on more than one occasion this year. Several flaws went undetected in the early prelaunch tests and inspections. In all but one case, the problems were found prior to launch. These incidents were all handled properly and with safety as the guiding principle. Indeed, launches were postponed until the problems were fully understood and mitigating action could be taken. These incidents do, however, indicate the need to analyze the

  10. Civil Air Patrol and Aerospace Education

    ERIC Educational Resources Information Center

    Sorenson, John V.

    1972-01-01

    Aerospace education is a branch of general education concerned with communicating knowledge, imparting skills, and developing attitudes necessary to interpret aerospace activities and the total impact of air and space vehicles upon society. (Author)

  11. Aerospace Education and the Elementary Teacher

    ERIC Educational Resources Information Center

    Jones, Robert M.

    1978-01-01

    This articles attempts to stimulate otherwise reluctant school teachers to involve aerospace education in their content repertoire. Suggestions are made to aid the teacher in getting started with aerospace education. (MDR)

  12. Accommodation of Nontraditional Aerospace Degree Aspirants

    ERIC Educational Resources Information Center

    Schukert, Michael A.

    1977-01-01

    Presents results of a national survey of institutions offering college level aerospace studies. Primary survey concern is the availability of nontraditional aerospace education programs; however, information pertaining to institution characteristics, program characteristics, and staffing are also included. (SL)

  13. Optical Information Processing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Current research in optical processing is reviewed. Its role in future aerospace systems is determined. The development of optical devices and components demonstrates that system concepts can be implemented in practical aerospace configurations.

  14. Aerospace Education for the Melting Pot.

    ERIC Educational Resources Information Center

    Joels, Kerry M.

    1979-01-01

    Aerospace education is eminently suited to provide a framework for multicultural education. Effective programs accommodating minorities' frames of reference to the rapidly developing disciplines of aerospace studies have been developed. (RE)

  15. Aerospace Education: Is the Sky the Limit?

    ERIC Educational Resources Information Center

    Little Soldier, Lee

    1991-01-01

    Provides suggestions on ways to include aerospace education in an integrated elementary school curriculum that focuses on content from the social and physical sciences and emphasizes process skills. Activities that build understanding of aerospace concepts are described. (BB)

  16. The Potential of RFID Technology in the Textile and Clothing Industry: Opportunities, Requirements and Challenges

    NASA Astrophysics Data System (ADS)

    Legnani, Elena; Cavalieri, Sergio; Pinto, Roberto; Dotti, Stefano

    In the current competitive environment, companies need to extensively exploit the use of advanced technologies in order to develop a sustainable advantage, enhance their operational efficiency and better serve customers. In this context, RFID technology has emerged as a valid support for the company progress and its value is becoming more and more apparent. In particular, the textile and clothing industry, characterised by short life-cycles , quick response production , fast distribution, erratic customer preferences and impulsive purchasing, is one of the sectors which can extensively benefit from the RFID technology. However, actual applications are still very limited, especially in the upstream side of the supply network. This chapter provides an insight into the main benefits and potentials of this technology and highlights the main issues which are currently inhibiting its large scale development in the textile and clothing industry. The experience of two industry-academia projects and the relative fallouts are reported.

  17. Challenges in aerospace medicine education.

    PubMed

    Grenon, S Marlene; Saary, Joan

    2011-11-01

    Aerospace medicine training and research represents a dream for many and a challenge for most. In Canada, although some opportunities exist for the pursuit of education and research in the aerospace medicine field, they are limited despite the importance of this field for enabling safe human space exploration. In this commentary, we aim to identify some of the challenges facing individuals wishing to get involved in the field as well as the causal factors for these challenges. We also explore strategies to mitigate against these.

  18. Computers and the aerospace engineer

    SciTech Connect

    Trego, L.E.

    1990-03-01

    The use of computers in aerospace for design and analysis is described, and examples of project enhancements are presented. NASA is working toward the design of a numerical test cell that will allow integrated, multidisciplinary design, analysis, and optimization of propulsion systems. It is noted that with continuing advances in computer technology, including areas such as three-dimensional computer-aided design, finite element analysis, supercomputers, and artificial intelligence, the possibilities seem limitless for the aerospace engineer. Research projects are currently underway for design and/or reconfiguration of the V-22, B-767, SCRAMJET engines, F-16, and X29A using these techniques.

  19. Advanced model-based FDIR techniques for aerospace systems: Today challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Zolghadri, Ali

    2012-08-01

    This paper discusses some trends and recent advances in model-based Fault Detection, Isolation and Recovery (FDIR) for aerospace systems. The FDIR challenges range from pre-design and design stages for upcoming and new programs, to improvement of the performance of in-service flying systems. For space missions, optimization of flight conditions and safe operation is intrinsically related to GNC (Guidance, Navigation & Control) system of the spacecraft and includes sensors and actuators monitoring. Many future space missions will require autonomous proximity operations including fault diagnosis and the subsequent control and guidance recovery actions. For upcoming and future aircraft, one of the main issues is how early and robust diagnosis of some small and subtle faults could contribute to the overall optimization of aircraft design. This issue would be an important factor for anticipating the more and more stringent requirements which would come in force for future environmentally-friendlier programs. The paper underlines the reasons for a widening gap between the advanced scientific FDIR methods being developed by the academic community and technological solutions demanded by the aerospace industry.

  20. High-End Computing Challenges in Aerospace Design and Engineering

    NASA Technical Reports Server (NTRS)

    Bailey, F. Ronald

    2004-01-01

    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  1. Emerging aerospace technologies

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F., Jr.; Milov, L. A.

    1985-01-01

    The United States Government has a long history of promoting the advancement of technology to strengthen the economy and national defense. An example is NASA, which was formed in 1958 to establish and maintain U.S. space technology leadership. This leadership has resulted in technological benefits to many fields and the establishment of new commercial industries, such as satellite communications. Currently, NASA's leading technology development at Ames Research Center includes the Tilt Rotor XV-15, which provides the versatility of a helicopter with the speed of a turboprop aircraft; the Numerical Aerodynamic Simulator, which is pushing the state of the art in advanced computational mathematics and computer simulation; and the Advanced Automation and Robotics programs, which will improve all areas of space development as well as life on Earth. Private industry is involved in maintaining technological leadership through NASA's Commercial Use of Space Program, which provides for synergistic relationships among government, industry, and academia. The plan for a space station by 1992 has framed much of NASA's future goals and has provided new areas of opportunity for both domestic space technology and leadership improvement of life on Earth.

  2. 76 FR 32863 - Guidance for Industry and Investigators on Enforcement of Safety Reporting Requirements for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ... Bioavailability/Bioequivalence Studies; Availability AGENCY: Food and Drug Administration, HHS. ACTION... Requirements for Bioavailability and Bioequivalence Studies in Humans'' (75 FR 59935, September 29, 2010... Human Drug and Biological Products and Safety Reporting Requirements for Bioavailability...

  3. 75 FR 60129 - Draft Guidance for Industry and Investigators on Safety Reporting Requirements for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Reporting Requirements for Investigational New Drug Applications and Bioavailability/Bioequivalence Studies... Requirements for Bioavailability and Bioequivalence Studies in Humans,'' published elsewhere in this issue of... reporting for bioavailability (BA) and bioequivalence (BE) studies. In the Federal Register of March...

  4. Ceramic Integration Technologies for Energy and Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Asthana, Ralph N.

    2007-01-01

    Robust and affordable integration technologies for advanced ceramics are required to improve the performance, reliability, efficiency, and durability of components, devices, and systems based on them in a wide variety of energy, aerospace, and environmental applications. Many thermochemical and thermomechanical factors including joint design, analysis, and optimization must be considered in integration of similar and dissimilar material systems.

  5. NASA biomedical applications team. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, D. J.; Beadles, R.; Beall, H. C.; Brown, J. N., Jr.; Clingman, W. H.; Courtney, M. W.; Mccartney, M.; Scearce, R. W.; Wilson, B.

    1979-01-01

    The use of a bipolar donor-recipient model of medical technology transfer is presented. That methodology is designed to: (1) identify medical problems and aerospace technology that in combination constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on aerospace technology. Problem descriptions and activity reports and the results of a market study on the tissue freezing device are presented.

  6. Manpower Requirements and Resources in S.C. Industry and Occupation. Supplemental Report 1971.

    ERIC Educational Resources Information Center

    South Carolina State Employment Security Commission, Columbia. Research Dept.

    South Carolina's population growth over 1970-1975 is expected to average 22,000 per year, paralleling the growth rate of the last five-year period. Nonfarm wage and salary employment is expected to increase at an average annual rate of 2.4%, with the corresponding national rate being 2.0%. The fastest growing industrial sectors will be…

  7. 10 CFR 34.20 - Performance requirements for industrial radiography equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equipment. 34.20 Section 34.20 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND... inspection at the Nuclear Regulatory Commission Library, 11545 Rockville Pike, Rockville, Maryland 20852. A.../federal_register/code_of_federal_regulations/ibr_locations.html. (2) Engineering analysis may be...

  8. Universities and Industry: Does the Lambert Code of Governance Meet the Requirements of Good Governance?

    ERIC Educational Resources Information Center

    Buckland, Roger

    2004-01-01

    The Lambert Model Code of Governance proposes to institutionalise the dominance of governors from commercial and industrial organisations as core members of compact and effective boards controlling UK universities. It is the latest expression of a fashion for viewing university governance as an overly-simple example of an obsolete system, where…

  9. 77 FR 75439 - Guidances for Industry and Investigators on Safety Reporting Requirements for Investigational New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... Reporting Requirements for INDs and BA/BE Studies--Small Entity Compliance Guide.'' These guidances are... and BA/BE Studies'' and ``Safety Reporting Requirements for INDs and BA/BE Studies--Small Entity... requirements for IND safety reporting and safety reporting for BA and BE studies. In addition, the Small...

  10. Aerospace Training. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Aerospace is an economic powerhouse that generates jobs and fuels our economy. Washington's community and technical colleges produce the world-class employees needed to keep it that way. With about 1,250 aerospace-related firms employing more than 94,000 workers, Washington has the largest concentration of aerospace expertise in the nation. To…

  11. Critical Systems Engineering Accelerator: Aerospace Demonstrator

    NASA Astrophysics Data System (ADS)

    Moreno, Ricardo; Fernandez, Gonzalo; Regada, Raul; Basanta, Luis; Alana, Elena; del Carmen Lomba, Maria

    2014-08-01

    Nowadays, the complexity and functionality of space systems is increasing more and more. Safety critical systems have to guarantee strong safety and dependability constraints. This paper presents CRYSTAL (Critical sYSTem engineering AcceLeration), a cross-domain ARTEMIS project for increasing the efficiency of the embedded software development in the industry through the definition of an integrated tool chain. CRYSTAL involves four major application domains: Aerospace, Automotive, Rail and Medical Healthcare. The impact in the Space Domain will be evaluated through a demonstrator implemented using CRYSTAL framework: the Low Level Software for an Avionics Control Unit, capable to run Application SW for autonomous navigation, image acquisition control, data compression and/or data handling. Finally, the results achieved will be evaluated taking into account the ECSS (European Committee for Space Standardization) standards and procedures.

  12. Summary of aerospace and nuclear engineering activities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.

  13. JPRS Report Science & Technology: Europe. Recent Developments in European Aerospace.

    DTIC Science & Technology

    2007-11-02

    U.S. DEPARTMENT OF COMMERCE NATIONAL TECHNICAL INFORMATION SERVICE SPRINGFIELD, VA 22161 C^i r\\ 3 Science & Technology Europe Recent...SPAZIOINFORMAZIONI, 15-22 Jul 92] .... 1 Germany’s Aerospace Industry’s Problems, Progress [Erhard Heckmann; Bonn WEHRTECHNIK, Jun 92] , 3 International...medium and long-term planning; 2) it leads all international negotiations, makes proposals, and sets forth objectives; 3 ) it controls the objectives

  14. Local and national impact of aerospace research and technology

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1981-01-01

    An overview of work at the NASA Lewis Research Center in the areas of aeronautics space, and energy is presented. Local and national impact of the work is discussed. Some aspects of the U.S. research and technology base, the aerospace industry, and foreign competition are discussed. In conclusion, U.S. research and technology programs are cited as vital to U.S. economic health.

  15. Impact of knowledge-based software engineering on aerospace systems

    NASA Technical Reports Server (NTRS)

    Peyton, Liem; Gersh, Mark A.; Swietek, Gregg

    1991-01-01

    The emergence of knowledge engineering as a software technology will dramatically alter the use of software by expanding application areas across a wide spectrum of industries. The engineering and management of large aerospace software systems could benefit from a knowledge engineering approach. An understanding of this technology can potentially make significant improvements to the current practice of software engineering, and provide new insights into future development and support practices.

  16. The industrial processing of unidirectional fiber prepregs

    NASA Technical Reports Server (NTRS)

    Laird, B.

    1981-01-01

    Progress made in the industrial processing of preimpregnated composites with unidirectional fibers is discussed, with particular emphasis on applications within the aerospace industry. Selection of industrial materials is considered. Attention is given to the conditions justifying the use of composites and the properties required of industrial prepregs. The hardening cycle is examined for the cases of nonmodified and polymer modified resins, with attention given to the stabilization of flow, the necessary changes of state, viscosity control, and the elimination of porosity. The tooling necessary for the fabrication of a laminated plate is illustrated, and the influence of fabrication and prepreg properties on the mechanical characteristics of a laminate are indicated. Finally, the types of prepregs available and the processing procedures necessary for them are summarized.

  17. Aerospace Education: A Pilot Program.

    ERIC Educational Resources Information Center

    Gerlovich, Jack; Fagle, David

    1983-01-01

    Describes development of K-12 aerospace education materials. The ninth-grade component, adopted as a pilot program, consists of four parts: history, applications (principles of flight, weather, navigation), spin-offs of research, and careers/organizations. Program evaluation results are reported. (JN)

  18. 33rd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Litty, Edward C. (Compiler); Sevilla, Donald R. (Compiler)

    1999-01-01

    The proceedings of the 33rd Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held at the Pasadena Conference and Exhibition Center, Pasadena, California, on May 19-21, 1999. Lockheed Martin Missiles and Space cosponsored the symposium. Technology areas covered include bearings and tribology; pointing, solar array and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  19. Aerospace for the Very Young.

    ERIC Educational Resources Information Center

    2003

    This packet includes games and activities concerning aerospace education for the very young. It is designed to develop and strengthen basic concepts and skills in a non-threatening atmosphere of fun. Activities include: (1) "The Sun, Our Nearest Star"; (2) "Twinkle, Twinkle, Little Star, How I Wonder Where You Are"; (3) "Shadows"; (4) "The Earth…

  20. Job Prospects for Aerospace Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1987-01-01

    Discusses the recent trends in job opportunities for aerospace engineers. Mentions some of the political, technological, and economic factors affecting the overall employment picture. Includes a description of the job prospects created by the general upswing of the large commercial aircraft market. (TW)

  1. Ceramic composites: Enabling aerospace materials

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  2. 35th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Doty, Laura W. (Technical Monitor)

    2001-01-01

    The proceedings of the 35th Aerospace Mechanisms Symposium are reported. Ames Research Center hosted the conference, which was held at the Four Points Sheraton, Sunnyvale, California, on May 9-11, 2001. The symposium was sponsored by the Mechanisms Education Association. Technology areas covered included bearings and tribology; pointing, solar array, and deployment mechanisms; and other mechanisms for spacecraft and large space structures.

  3. Aerospace Education: How Children Learn.

    ERIC Educational Resources Information Center

    Roberson, Glenda F.

    Ways children learn are described and related to aerospace education. Discussion focuses on (1) providing activities on the child's level of understanding; (2) considering the whole child; (3) stimulating curiosity; (4) encouraging thinking; (5) presenting varied experiences; and (6) integrating curriculum areas in each learning activity. Ideas…

  4. Graphical simulation for aerospace manufacturing

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Bien, Christopher

    1994-01-01

    Simulation software has become a key technological enabler for integrating flexible manufacturing systems and streamlining the overall aerospace manufacturing process. In particular, robot simulation and offline programming software is being credited for reducing down time and labor cost, while boosting quality and significantly increasing productivity.

  5. Aerospace applications of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-01-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  6. Aerospace/Aviation Science Occupations.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Occupational Education.

    The guide was developed to provide secondary students the opportunity to study aviation and aerospace education from the conceptual and career approach coupled with general education specifically related to science. Unit plans were prepared to motivate, develop skills, and offer counseling to the students of aviation science and occupational…

  7. Aerospace applications of magnetic bearings

    NASA Astrophysics Data System (ADS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-05-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  8. 41st Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor)

    2012-01-01

    The proceedings of the 41st Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held in Pasadena Hilton, Pasadena, California on May 16-18, 2012. Lockheed Martin Space Systems cosponsored the symposium. Technology areas covered include gimbals and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and Mars Science Laboratory mechanisms.

  9. Automatix Incorporated in aerospace applications

    NASA Astrophysics Data System (ADS)

    Hilmer, C.

    1983-03-01

    Robotic assembly and artificial vision applications are currently employed or have potential in aerospace manufacturing. Automatix vision guided robotics have been used for electronic component assembly, welding of aluminum alloys with both gas metal arc welding (MIG). Other applications include gas tungsten arc welding (TIG), and visual gauging. The unique control concept has provided a single robotic controller with virtual robotic arm interchangeability.

  10. Electrorheological Fluids: Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Eftekhari, A.; Belvin, K. W.; Singh, J. J.

    1996-01-01

    Electrorheological fluids (ERF) are an intriguing class of non-Newtonian industrial fluids. They consist of fine dielectric particles suspended in liquids of low dielectric constants. The objectives of this research were to select a particulate system such that: (1) its density can be varied to match that of the selected liquid, and (2) the dielectric constant of the particles and the liquids should be such that the critical fields needed for asymptotic increase in viscosity are less than or equal to 10 KV/cm. Synthetic Zeolite particles were selected as the solute/suspensions. Octoil oil was selected as the solvent. The results are summarized here.

  11. Cultural changes in aerospace

    NASA Technical Reports Server (NTRS)

    Strobl, Bill

    1991-01-01

    Cultural changes; people and jobs; examples of cultural changes required; advanced launch system (ALS) philosophy; ALS operability capabilities; and ALS operability in design are outlined. This presentation is represented by viewgraphs.

  12. Aerospace Toxicology and Microbiology

    NASA Technical Reports Server (NTRS)

    James, John T.; Parmet, A. J.; Pierson, Duane L.

    2007-01-01

    Toxicology dates to the very earliest history of humanity with various poisons and venom being recognized as a method of hunting or waging war with the earliest documentation in the Evers papyrus (circa 1500 BCE). The Greeks identified specific poisons such as hemlock, a method of state execution, and the Greek word toxos (arrow) became the root of our modern science. The first scientific approach to the understanding of poisons and toxicology was the work during the late middle ages of Paracelsus. He formulated what were then revolutionary views that a specific toxic agent or "toxicon" caused specific dose-related effects. His principles have established the basis of modern pharmacology and toxicology. In 1700, Bernardo Ramazzini published the book De Morbis Artificum Diatriba (The Diseases of Workers) describing specific illnesses associated with certain labor, particularly metal workers exposed to mercury, lead, arsenic, and rock dust. Modern toxicology dates from development of the modern industrial chemical processes, the earliest involving an analytical method for arsenic by Marsh in 1836. Industrial organic chemicals were synthesized in the late 1800 s along with anesthetics and disinfectants. In 1908, Hamilton began the long study of occupational toxicology issues, and by WW I the scientific use of toxicants saw Haber creating war gases and defining time-dosage relationships that are used even today.

  13. A standardized Cernox™ cryogenic temperature sensor for aerospace applications

    NASA Astrophysics Data System (ADS)

    Courts, Samuel Scott

    2014-11-01

    The success of any aerospace mission depends upon the reliability of the discrete components comprising the instrument. To this end, many test standards have been developed to define test protocols and methods for the parts used in these missions. To date, no recognized MIL-type standard exists for cryogenic temperature sensors that are used from room temperature to 20 K or below. The aerospace applications utilizing these sensors require the procuring entity to develop a specification which the sensor manufacturer uses to screen and qualify a single build lot for flight use. The individual applications often require only a small number of sensors with the end result being a relatively high cost and long delivery time. Over the past two decades, Lake Shore Cryotronics, Inc. has worked with many aerospace companies to supply Cernox™ cryogenic temperature sensors for numerous missions. The experience gained from this work has led to the development of a manufacturing and test protocol resulting in 'off-the-shelf' cryogenic temperature sensors that should meet the requirements for many aerospace applications. Sensors will be available at the base part level with the ability to configure the delivered part with regard to lead wire material, package adapter, lead wire extensions, and calibration as appropriate or necessary for the application. This work presents details of this manufacturing, inspection, and test protocol as well as performance characteristics of Cernox™ temperature sensors when inspected and tested to this protocol.

  14. 78 FR 42965 - Guidance for Industry: Enforcement Policy Regarding Investigational New Drug Requirements for Use...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... Investigational New Drug Requirements for Use of Fecal Microbiota for Transplantation To Treat Clostridium... Fecal Microbiota for Transplantation to Treat Clostridium difficile Infection Not Responsive to Standard... new drug (IND) requirements for the use of fecal microbiota for transplantation (FMT) to treat...

  15. 76 FR 82308 - Guidance for Industry: Current Good Tissue Practice and Additional Requirements for Manufacturers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... Additional Requirements for Manufacturers of Human Cells, Tissues, and Cellular and Tissue-Based Products... Tissue Practice (CGTP) and Additional Requirements for Manufacturers of Human Cells, Tissues, and... for Manufacturers of Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps)''...

  16. A methodology for model-based development and automated verification of software for aerospace systems

    NASA Astrophysics Data System (ADS)

    Martin, L.; Schatalov, M.; Hagner, M.; Goltz, U.; Maibaum, O.

    Today's software for aerospace systems typically is very complex. This is due to the increasing number of features as well as the high demand for safety, reliability, and quality. This complexity also leads to significant higher software development costs. To handle the software complexity, a structured development process is necessary. Additionally, compliance with relevant standards for quality assurance is a mandatory concern. To assure high software quality, techniques for verification are necessary. Besides traditional techniques like testing, automated verification techniques like model checking become more popular. The latter examine the whole state space and, consequently, result in a full test coverage. Nevertheless, despite the obvious advantages, this technique is rarely yet used for the development of aerospace systems. In this paper, we propose a tool-supported methodology for the development and formal verification of safety-critical software in the aerospace domain. The methodology relies on the V-Model and defines a comprehensive work flow for model-based software development as well as automated verification in compliance to the European standard series ECSS-E-ST-40C. Furthermore, our methodology supports the generation and deployment of code. For tool support we use the tool SCADE Suite (Esterel Technology), an integrated design environment that covers all the requirements for our methodology. The SCADE Suite is well established in avionics and defense, rail transportation, energy and heavy equipment industries. For evaluation purposes, we apply our approach to an up-to-date case study of the TET-1 satellite bus. In particular, the attitude and orbit control software is considered. The behavioral models for the subsystem are developed, formally verified, and optimized.

  17. Integration of educational and scientific-technological areas during the process of education of aerospace engineers

    NASA Astrophysics Data System (ADS)

    Mayorova, Vera

    2011-09-01

    National priorities, defined by modern state of high-tech industries, demand adequate problem solving of training professionals possessing required modern qualifications. Modern tendencies of the development of aerospace technologies, harsh competition in the market of space services and expansion of international cooperation for implementation of space projects, demand sharp increase of the scientific/technical level and competitiveness of the developed projects. Especially important is to be able to solve technological problems, which in turn define the cost and quality attributes of the designed item, as well as the ability to utilize the most modern design principles. Training of highly efficient, creative professionals who are capable of generating and implementing new ideas is a very important factor driving not only the development of national economy and industry, but also enriching the human capital of the country. Moscow State Technical University named after N.E. Bauman developed and successfully implemented the project-oriented technology of professional training for aerospace industry. It assumes a multitude of forms, methodologies and organizational events, which allow preparing the specialists - on the basis of integration of scientific/technological and educational environment - who are adapted to the conditions of the intellectual market. The Youth Space Center of the University is the base where graduate and post-graduate students attend unique lectures as a part of the facultative course "Applied Cosmonautics", participate in annual International Youth Science School "Space Development: Theory and Practice" and develop innovative technical projects aimed at creation of real-life space hardware. Microsatellite technologies are being developed in Bauman University through various projects, which are implemented in a coordinated manner by way of accomplishing the following steps: development of small-size satellites by universities, using them as

  18. Common display performance requirements for military and commercial aircraft product lines

    NASA Astrophysics Data System (ADS)

    Hoener, Steven J.; Behrens, Arthur J.; Flint, John R.; Jacobsen, Alan R.

    2001-09-01

    Obtaining high quality Active Matrix Liquid Crystal (AMLCD) glass to meet the needs of the commercial and military aerospace business is a major challenge, at best. With the demise of all domestic sources of AMLCD substrate glass, the industry is now focused on overseas sources, which are primarily producing glass for consumer electronics. Previous experience with ruggedizing commercial glass leads to the expectation that the aerospace industry can leverage off the commercial market. The problem remains, while the commercial industry is continually changing and improving its products, the commercial and military aerospace industries require stable and affordable supplies of AMLCD glass for upwards of 20 years to support production and maintenance operations. The Boeing Engineering and Supplier Management Process Councils have chartered a group of displays experts from multiple aircraft product divisions within the Boeing Company, the Displays Process Action Team (DPAT), to address this situation from an overall corporate perspective. The DPAT has formulated a set of Common Displays Performance Requirements for use across the corporate line of commercial and military aircraft products. Though focused on the AMLCD problem, the proposed common requirements are largely independent of display technology. This paper describes the strategy being pursued within the Boeing Company to address the AMLCD supply problem and details the proposed implementation process, centered on common requirements for both commercial and military aircraft displays. Highlighted in this paper are proposed common, or standard, display sizes and the other major requirements established by the DPAT, along with the rationale for these requirements.

  19. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 2: The design process

    NASA Technical Reports Server (NTRS)

    Gillette, W. B.; Turner, M. J.; Southall, J. W.; Whitener, P. C.; Kowalik, J. S.

    1973-01-01

    The extent to which IPAD is to support the design process is identified. Case studies of representative aerospace products were developed as models to characterize the design process and to provide design requirements for the IPAD computing system.

  20. Development of Sensors for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro

    2005-01-01

    Advances in technology have led to the availability of smaller and more accurate sensors. Computer power to process large amounts of data is no longer the prevailing issue; thus multiple and redundant sensors can be used to obtain more accurate and comprehensive measurements in a space vehicle. The successful integration and commercialization of micro- and nanotechnology for aerospace applications require that a close and interactive relationship be developed between the technology provider and the end user early in the project. Close coordination between the developers and the end users is critical since qualification for flight is time-consuming and expensive. The successful integration of micro- and nanotechnology into space vehicles requires a coordinated effort throughout the design, development, installation, and integration processes

  1. A Briefing on Metrics and Risks for Autonomous Decision-Making in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Frost, Susan; Goebel, Kai Frank; Galvan, Jose Ramon

    2012-01-01

    Significant technology advances will enable future aerospace systems to safely and reliably make decisions autonomously, or without human interaction. The decision-making may result in actions that enable an aircraft or spacecraft in an off-nominal state or with slightly degraded components to achieve mission performance and safety goals while reducing or avoiding damage to the aircraft or spacecraft. Some key technology enablers for autonomous decision-making include: a continuous state awareness through the maturation of the prognostics health management field, novel sensor development, and the considerable gains made in computation power and data processing bandwidth versus system size. Sophisticated algorithms and physics based models coupled with these technological advances allow reliable assessment of a system, subsystem, or components. Decisions that balance mission objectives and constraints with remaining useful life predictions can be made autonomously to maintain safety requirements, optimal performance, and ensure mission objectives. This autonomous approach to decision-making will come with new risks and benefits, some of which will be examined in this paper. To start, an account of previous work to categorize or quantify autonomy in aerospace systems will be presented. In addition, a survey of perceived risks in autonomous decision-making in the context of piloted aircraft and remotely piloted or completely autonomous unmanned autonomous systems (UAS) will be presented based on interviews that were conducted with individuals from industry, academia, and government.

  2. Sensor Selection and Optimization for Health Assessment of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Kopasakis, George; Santi, Louis M.; Sowers, Thomas S.; Chicatelli, Amy

    2008-01-01

    Aerospace systems are developed similarly to other large-scale systems through a series of reviews, where designs are modified as system requirements are refined. For space-based systems few are built and placed into service these research vehicles have limited historical experience to draw from and formidable reliability and safety requirements, due to the remote and severe environment of space. Aeronautical systems have similar reliability and safety requirements, and while these systems may have historical information to access, commercial and military systems require longevity under a range of operational conditions and applied loads. Historically, the design of aerospace systems, particularly the selection of sensors, is based on the requirements for control and performance rather than on health assessment needs. Furthermore, the safety and reliability requirements are met through sensor suite augmentation in an ad hoc, heuristic manner, rather than any systematic approach. A review of the current sensor selection practice within and outside of the aerospace community was conducted and a sensor selection architecture is proposed that will provide a justifiable, defendable sensor suite to address system health assessment requirements.

  3. Sensor Selection and Optimization for Health Assessment of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Kopasakis, George; Santi, Louis M.; Sowers, Thomas S.; Chicatelli, Amy

    2007-01-01

    Aerospace systems are developed similarly to other large-scale systems through a series of reviews, where designs are modified as system requirements are refined. For space-based systems few are built and placed into service. These research vehicles have limited historical experience to draw from and formidable reliability and safety requirements, due to the remote and severe environment of space. Aeronautical systems have similar reliability and safety requirements, and while these systems may have historical information to access, commercial and military systems require longevity under a range of operational conditions and applied loads. Historically, the design of aerospace systems, particularly the selection of sensors, is based on the requirements for control and performance rather than on health assessment needs. Furthermore, the safety and reliability requirements are met through sensor suite augmentation in an ad hoc, heuristic manner, rather than any systematic approach. A review of the current sensor selection practice within and outside of the aerospace community was conducted and a sensor selection architecture is proposed that will provide a justifiable, dependable sensor suite to address system health assessment requirements.

  4. Development of a teaching tool to encourage high school students to study aerospace technical subjects

    NASA Technical Reports Server (NTRS)

    Gale, Anita; Edwards, Dick

    1998-01-01

    This report details the efforts to develop a design competition aimed at high school students which will encourage them to study aerospace technical subjects. It has been shown that such competitions - based on an industry simulation game - are valuable ways to energize high school students to study in this area. Under the grant, a new competition scenario was developed, in keeping with NASA-Dryden's mission to develop aircraft and foster knowledge about aeronautics. Included are preliminary background materials and information which, if the grant is continued, would form the basis of a national competition for high school students, wherein they would design an Aerospaceport in a future year, taking into consideration the requirements of aircraft, spacecraft- ground transportation systems, passengers who use the facility, and employees who operate it. Many of the Competition methods were studied and tested during two existing local competitions in the disadvantaged communities of Lancaster and Victorville, California.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 55: Career goals and educational preparation of aerospace engineering and science students: An international perspective

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1995-01-01

    Results are presented of a survey of aerospace engineering and science students conducted in India, Japan, Russia, the United Kingdom, and the United States. The similarities and differences among aerospace engineering and science students from the five countries are examined in the context of two general aspects of educational experience. First, the extent to which students differ regarding the factors that led to the choice of a career in aerospace, their current levels of satisfaction with that choice, and career-related goals and objectives is considered. Second, the importance of certain communications/information-use skills for professional use is examined, as well as the frequency of use and importance of specific information sources and products to meet students' educational needs. Overall, the students who participated in this research remain relatively happy with the choice of a career in aerospace engineering, despite pessimism in some quarters about the future of the industry. Regardless of national identity, aerospace engineering and science students appear to share a similar vision of the profession in terms of their career goals and aspirations. The data also indicate that aerospace engineering and science students are well aware of the importance of communications/information-use skills to professional success and that competency in these skills will help them to be productive members of their profession. Collectively, all of the students appear to use and value similar information sources and products, although some differences appear by country.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 24: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SAE mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists affiliated with the Society of Automotive Engineers (SAE).

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 34: How early career-stage US aerospace engineers and scientists produce and use information

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the production and use of information by U.S. aerospace engineers and scientists who had changed their American Institute of Aeronautics and Astronautics (AIAA) membership from student to professional in the past five years.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 23: The communications practices of US aerospace engineering faculty and students: Results of the phase 3 survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. aerospace engineering faculty and students.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 33: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 AIAA mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who are members of the American Institute of Aeronautics and Astronautics (AIAA).

  10. Constellation Stretch Goals: Review of Industry Inputs

    NASA Technical Reports Server (NTRS)

    Lang, John

    2006-01-01

    Many good ideas received based on industry experience: a) Shuttle operations; b) Commercial aircraft production; c) NASA's historical way of doing business; d) Military and commercial programs. Aerospace performed preliminary analysis: a) Potential savings; b) Cost of implementation; c) Performance or other impact/penalties; d) Roadblocks; e) Unintended consequences; f) Bottom line. Significant work ahead for a "Stretch Goal"to become a good, documented requirement: 1) As a group, the relative "value" of goals are uneven; 2) Focused analysis on each goal is required: a) Need to ensure that a new requirement produces the desired consequence; b) It is not certain that some goals will not create problems elsewhere. 3) Individual implementation path needs to be studied: a) Best place to insert requirement (what level, which document); b) Appropriate wording for the requirement. Many goals reflect "best practices" based on lessons learned and may have value beyond near-term CxP requirements process.

  11. The communications industry's requirements and interests. [thunderstorm and lightning data useful to telephone operating companies

    NASA Technical Reports Server (NTRS)

    Wanaselja, O.

    1979-01-01

    Of interest to the communications industry are the amplitude, waveshape, duration and frequency of lightning-originated voltage surges and transients on the communications network, including the distribution system and AC power supply circuits. The cloud-to-ground lightning discharge and its characteristics are thought to be most meaningful. Of specific interest are peak current, waveshape, number of flashes, strokes per flash, and zone of influence. Accurate and meaningful lightning data at the local level (telephone district office) is necessary for a decision on the appropriate protection level. In addition to lightning, the protection engineer must consider other factors such as: AC induction, switching surges, ground potential rise, soil resistivity, bonding and grounding techniques, shielding and isolation, and exposure of the telephone loop.

  12. Lattice Structures For Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Del Olmo, E.; Grande, E.; Samartin, C. R.; Bezdenejnykh, M.; Torres, J.; Blanco, N.; Frovel, M.; Canas, J.

    2012-07-01

    The way of mass reduction improving performances in the aerospace structures is a constant and relevant challenge in the space business. The designs, materials and manufacturing processes are permanently in evolution to explore and get mass optimization solutions at low cost. In the framework of ICARO project, EADS CASA ESPACIO (ECE) has designed, manufactured and tested a technology demonstrator which shows that lattice type of grid structures is a promising weight saving solution for replacing some traditional metallic and composite structures for space applications. A virtual testing methodology was used in order to support the design of a high modulus CFRP cylindrical lattice technology demonstrator. The manufacturing process, based on composite Automatic Fiber Placement (AFP) technology developed by ECE, allows obtaining high quality low weight lattice structures potentially applicable to a wide range of aerospace structures. Launcher payload adaptors, satellite platforms, antenna towers or instrument supports are some promising candidates.

  13. Third Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Cross, D. R. (Editor); Caruso, S. V. (Editor); Clark-Ingram, M. (Editor)

    1999-01-01

    The elimination of CFC's, Halons, TCA, other ozone depleting chemicals, and specific hazardous materials is well underway. The phaseout of these chemicals has mandated changes and new developments in aerospace materials and processes. We are beyond discovery and initiation of these new developments and are now in the implementation phase. This conference provided a forum for materials and processes engineers, scientists, and managers to describe, review, and critically assess the evolving replacement and clean propulsion technologies from the standpoint of their significance, application, impact on aerospace systems, and utilization by the research and development community. The use of these new technologies, their selection and qualification, their implementation, and the needs and plans for further developments are presented.

  14. 34th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2000-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. The National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for organizing the AMS. Now in its 34th year, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 34th AMS, hosted by the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland, was held May 10, 11 and 12, 2000. During these three days, 34 papers were presented. Topics included deployment mechanisms, bearings, actuators, pointing and optical mechanisms, Space Station mechanisms, release mechanisms, and test equipment. Hardware displays during the vendor fair gave attendees an opportunity to meet with developers of current and future mechanism components.

  15. 38th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2006-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 38th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 38th AMs, hosted by the NASA Langley Research Center in Williamsburg, Virginia, was held May 17-19, 2006. During these three days, 34 papers were presented. Topics included gimbals, tribology, actuators, aircraft mechanisms, deployment mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  16. 39th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, E. A. (Compiler)

    2008-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA Marshall Space Flight Center (MSFC) and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 39th symposium, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 39th AMS was held in Huntsville, Alabama, May 7-9, 2008. During these 3 days, 34 papers were presented. Topics included gimbals and positioning mechanisms, tribology, actuators, deployment mechanisms, release mechanisms, and sensors. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  17. 37th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2004-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is reporting problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 37th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 37th AMS, hosted by the Johnson Space Center (JSC) in Galveston, Texas, was held May 19, 20 and 21, 2004. During these three days, 34 papers were presented. Topics included deployment mechanisms, tribology, actuators, pointing and optical mechanisms, Space Station and Mars Rover mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  18. Proceedings of the Non-Linear Aero Prediction Requirements Workshop

    NASA Technical Reports Server (NTRS)

    Logan, Michael J. (Editor)

    1994-01-01

    The purpose of the Non-Linear Aero Prediction Requirements Workshop, held at NASA Langley Research Center on 8-9 Dec. 1993, was to identify and articulate requirements for non-linear aero prediction capabilities during conceptual/preliminary design. The attendees included engineers from industry, government, and academia in a variety of aerospace disciplines, such as advanced design, aerodynamic performance analysis, aero methods development, flight controls, and experimental and theoretical aerodynamics. Presentations by industry and government organizations were followed by panel discussions. This report contains copies of the presentations and the results of the panel discussions.

  19. Society of the plastic industry process emission initiatives

    NASA Technical Reports Server (NTRS)

    Mcdermott, Joseph

    1994-01-01

    At first view, plastics process emissions research may not seem to have much bearing on outgassing considerations relative to advanced composite materials; however, several parallel issues and cross currents are of mutual interest. The following topics are discussed: relevance of plastics industry research to aerospace composites; impact of clean air act amendment requirements; scope of the Society of the Plastics Industry, Inc. activities in thermoplastic process emissions and reinforced plastics/composites process emissions; and utility of SPI research for advanced polymer composites audiences.

  20. Magnetic Gearboxes for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Alvarez-Valenzuela, Marco A.; Sanchez-Garcia-Casarrubios, Juan; Cristache, Christian; Valiente-Blanco, Ignacio

    2014-01-01

    Magnetic gearboxes are contactless mechanisms for torque-speed conversion. They present no wear, no friction and no fatigue. They need no lubricant and can be customized for other mechanical properties as stiffness or damping. Additionally, they can protect structures and mechanisms against overloads, limitting the transmitted torque. In this work, spur, planetary and "magdrive" or "harmonic drive" configurations are compared considering their use in aerospace applications. The most recent test data are summarized to provide some useful help for the design engineer.

  1. 30th Aerospace Mechanisms Symposium

    SciTech Connect

    Bradley, O.H. Jr.; Rogers, J.F.

    1996-05-01

    The proceedings of the 30th Aerospace Mechanisms Symposium are reported. NASA Langley Research Center hosted the proceedings held at the Radisson Hotel in Hampton, Virginia on May 15-17, 1996, and Lockheed Martin Missiles and Space Company, Inc. co-sponsored the symposium. Technological areas covered include bearings and tribology; pointing, solar array, and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft. Separate abstracts have been indexed into the database for some articles from this proceedings.

  2. 30th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Bradley, Obie H., Jr. (Compiler); Rogers, John F. (Compiler)

    1996-01-01

    The proceedings of the 30th Aerospace Mechanisms Symposium are reported. NASA Langley Research Center hosted the proceedings held at the Radisson Hotel in Hampton, Virginia on May 15-17, 1996, and Lockheed Martin Missiles and Space Company, Inc. co-sponsored the symposium. Technological areas covered include bearings and tribology; pointing, solar array, and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  3. Aerospace Materials for Extreme Environments

    DTIC Science & Technology

    2013-03-07

    AFOSR/RTD Air Force Research Laboratory AEROSPACE MATERIALS FOR EXTREME ENVIRONMENTS Date: 7 March 2013 Report Documentation Page Form...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for...to Washington Headquarters Services, Directorate for Information Operations and Reports , 1215 Jefferson Davis Highway, Suite 1204, Arlington VA

  4. Predicting Production Costs for Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Samareh, J. A.; Weston, R. P.

    2002-01-01

    For early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This paper outlines the development of a process-based cost model in which the physical elements of the vehicle are soared according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this paper is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool.

  5. Study of industry information requirements for flight control and navigation systems of STOL aircraft

    NASA Technical Reports Server (NTRS)

    Gorham, J. A.

    1976-01-01

    Answers to specific study questions are used to ascertain the data requirements associated with a guidance, navigation and control system for a future civil STOL airplane. Results of the study were used to recommend changes for improving the outputs of the STOLAND flight experiments program.

  6. Competencies Required of Human Resource Professionals in the Government Contracting Industry

    ERIC Educational Resources Information Center

    Boyer, Dawn Denise

    2013-01-01

    The purpose of this study was to determine if a unique set of Knowledge, Skills, and Abilities (KSAs) were required of Human Resource Practitioners (HRPs) in federal-level Government Contracting Companies (GCC) in the United States. Study results identified additional sets of HR-related KSAs to perform with minimum competency within a…

  7. A Curriculum Model: Engineering Design Graphics Course Updates Based on Industrial and Academic Institution Requirements

    ERIC Educational Resources Information Center

    Meznarich, R. A.; Shava, R. C.; Lightner, S. L.

    2009-01-01

    Engineering design graphics courses taught in colleges or universities should provide and equip students preparing for employment with the basic occupational graphics skill competences required by engineering and technology disciplines. Academic institutions should introduce and include topics that cover the newer and more efficient graphics…

  8. PREFACE: Trends in Aerospace Manufacturing 2009 International Conference

    NASA Astrophysics Data System (ADS)

    Ridgway, Keith; Gault, Rosemary; Allen, Adrian

    2011-12-01

    The aerospace industry is rapidly changing. New aircraft structures are being developed and aero-engines are becoming lighter and more environmentally friendly. In both areas, innovative materials and manufacturing methods are used in an attempt to get maximum performance for minimum cost. At the same time, the structure of the industry has changed and there has been a move from large companies designing, manufacturing components and assembling aircraft to one of large global supply chains headed by large system integrators. All these changes have forced engineers and managers to bring in innovations in design, materials, manufacturing technologies and supply chain management. In September 2009, the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield held the inaugural Trends in Aerospace Manufacturing conference (TRAM09). This brought together 28 speakers over two days, who presented in sessions on advanced manufacturing trends for the aerospace sector. Areas covered included new materials, including composites, advanced machining, state of the art additive manufacturing techniques, assembly and supply chain issues.

  9. Resource Management and Contingencies in Aerospace Concurrent Engineering

    NASA Technical Reports Server (NTRS)

    Karpati, Gabe; Hyde, Tupper; Peabody, Hume; Garrison, Matthew

    2012-01-01

    significant concern in designing complex systems implementing new technologies is that while knowledge about the system is acquired incrementally, substantial financial commitments, even make-or-break decisions, must be made upfront, essentially in the unknown. One practice that helps in dealing with this dichotomy is the smart embedding of contingencies and margins in the design to serve as buffers against surprises. This issue presents itself in full force in the aerospace industry, where unprecedented systems are formulated and committed to as a matter of routine. As more and more aerospace mission concepts are generated by concurrent design laboratories, it is imperative that such laboratories apply well thought-out contingency and margin structures to their designs. The first part of this publication provides an overview of resource management techniques and standards used in the aerospace industry. That is followed by a thought provoking treatise on margin policies. The expose presents the actual flight telemetry data recorded by the thermal discipline during several recent NASA Goddard Space Flight Center missions. The margins actually achieved in flight are compared against pre-flight predictions, and the appropriateness and the ramifications of having designed with rigid margins to bounding stacked worst case conditions are assessed. The second half of the paper examines the particular issues associated with the application of contingencies and margins in the concurrent engineering environment. In closure, a discipline-by-discipline disclosure of the contingency and margin policies in use at the Integrated Design Center at NASA s Goddard Space Flight Center is made.

  10. Aerospace Communications Technologies in Support of NASA Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2016-01-01

    NASA is endeavoring in expanding communications capabilities to enable and enhance robotic and human exploration of space and to advance aero communications here on Earth. This presentation will discuss some of the research and technology development work being performed at the NASA Glenn Research Center in aerospace communications in support of NASAs mission. An overview of the work conducted in-house and in collaboration with academia, industry, and other government agencies (OGA) to advance radio frequency (RF) and optical communications technologies in the areas of antennas, ultra-sensitive receivers, power amplifiers, among others, will be presented. In addition, the role of these and other related RF and optical communications technologies in enabling the NASA next generation aerospace communications architecture will be also discussed.

  11. Recent GRC Aerospace Technologies Applicable to Terrestrial Energy Systems

    NASA Technical Reports Server (NTRS)

    Kankam, David; Lyons, Valerie J.; Hoberecht, Mark A.; Tacina, Robert R.; Hepp, Aloysius F.

    2000-01-01

    This paper is an overview of a wide range of recent aerospace technologies under development at the NASA Glenn Research Center, in collaboration with other NASA centers, government agencies, industry and academia. The focused areas are space solar power, advanced power management and distribution systems, Stirling cycle conversion systems, fuel cells, advanced thin film photovoltaics and batteries, and combustion technologies. The aerospace-related objectives of the technologies are generation of space power, development of cost-effective and reliable, high performance power systems, cryogenic applications, energy storage, and reduction in gas-turbine emissions, with attendant clean jet engines. The terrestrial energy applications of the technologies include augmentation of bulk power in ground power distribution systems, and generation of residential, commercial and remote power, as well as promotion of pollution-free environment via reduction in combustion emissions.

  12. Wear Characteristics of Oleophobic Coatings in Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Shams, Hamza; Basit, Kanza

    2016-05-01

    This paper investigates the wear characteristics of oleophobic coatings when applied over Inconel 718, which has widespread applications in the aerospace industry. Coatings once applied were selectively exposed to controlled uni-and then multi-directional stand storm conditions. Size and speed of sand particles colliding with the work surface were carefully moderated to simulate sand storm conditions. Study of friction was performed using Lateral Force Microscopy (LFM) coupled with standard optical microscopy. The analysis has been used to devise a coefficient of friction value and in turn suggest wear behavior of the coated surface including the time associated with exposure of the base substrate. The analysis after validation aims to suggest methods for safe usage of these coatings for aerospace applications.

  13. Wear Characteristics of Oleophobic Coatings in Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Shams, Hamza; Siddiqui, Bilal A.; Saleem, Sajid

    This paper investigates the wear characteristics of oleophobic coatings when applied over Inconel 718, which has widespread applications in the aerospace industry. Coatings once applied were selectively exposed to controlled uni-and then multi-directional stand storm conditions. Size and speed of sand particles colliding with the work surface were carefully moderated to simulate sand storm conditions. Study of friction was performed using Lateral Force Microscopy (LFM) coupled with standard optical microscopy. The analysis has been used to devise a coefficient of friction value and in turn suggest wear behavior of the coated surface including the time associated with exposure of the base substrate. The analysis after validation aims to suggest methods for safe usage of these coatings for aerospace applications.

  14. Next generation video coding for mobile applications: industry requirements and technologies

    NASA Astrophysics Data System (ADS)

    Budagavi, Madhukar; Zhou, Minhua

    2007-01-01

    Handheld battery-operated consumer electronics devices such as camera phones, digital still cameras, digital camcorders, and personal media players have become very popular in recent years. Video codecs are extensively used in these devices for video capture and/or playback. The annual shipment of such devices already exceeds a hundred million units and is growing, which makes mobile battery-operated video device requirements very important to focus in video coding research and development. This paper highlights the following unique set of requirements for video coding for these applications: low power consumption, high video quality at low complexity, and low cost, and motivates the need for a new video coding standard that enables better trade-offs of power consumption, complexity, and coding efficiency to meet the challenging requirements of portable video devices. This paper also provides a brief overview of some of the video coding technologies being presented in the ITU-T Video Coding Experts Group (VCEG) standardization body for computational complexity reduction and for coding efficiency improvement in a future video coding standard.

  15. Systemwide Aviation/Aerospace Education Program Review. Aviation/Aerospace Task Force's Report to the Oklahoma State Regents for Higher Education.

    ERIC Educational Resources Information Center

    Oklahoma State Regents for Higher Education, Oklahoma City.

    A program review was done of all aviation/aerospace-related higher education programs in Oklahoma. A team of nine experts reviewed statistics on the state's public and private programs, conducted a survey of institutions on industry status and projected training needs, and visited all 10 program locations. The project applied guidelines to…

  16. The historical background to aerospace pathology.

    PubMed

    Hill, I R

    1982-01-01

    The Joint Committee on Aviation Pathology was born on 14 Nov., 1955. Its formation coincided with the advent of jet-powered commercial air transport, a step recognised by aviators and governments as being of tremendous significance in that it implied a considerable technological advance. Since then, supersonic air transport has become possible and man has walked upon the moon. Although aerospace pathology-which led the way to accident/injury research- has contributed greatly to the very much improved safety record of aviation, it is obvious that additional work is required. A closer relationship between research and development of future aircraft and pathologists is necessary if further inroads are to be made.

  17. Non-equilibrium radiative hypersonic flows: theoretical, observational and numerical aspects in astrophysics and aerospace industry. 5th Workshop of the GDR 'Milieux Circumstellaires'. Proceedings, Mont Sainte Odile (France), 22 - 25 Sep 1997.

    NASA Astrophysics Data System (ADS)

    Lafon, J.-P. J.; Acker, A.; Moffat, A. F. J.

    The following topics were dealt with: hypersonic flows, applications in space industry, stellar winds, wind instabilities and variability on small and large scales, disk formation, interaction of winds in different stages and with their environment, colliding winds in binary systems, dust in stellar winds.

  18. The Need for an Aerospace Pharmacy Residency

    NASA Technical Reports Server (NTRS)

    Bayuse, T.; Schuyler, C.; Bayuse, Tina M.

    2007-01-01

    This viewgraph poster presentation reviews the rationale for a call for a new program in residency for aerospace pharmacy. Aerospace medicine provides a unique twist on traditional medicine, and a specialty has evolved to meet the training for physicians, and it is becoming important to develop such a program for training in pharmacy designed for aerospace. The reasons for this specialist training are outlined and the challenges of developing a program are reviewed.

  19. 75 FR 12713 - Airworthiness Directives; AVOX Systems and B/E Aerospace Oxygen Cylinders as Installed on Various...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    .../E Aerospace Oxygen Cylinders as Installed on Various 14 CFR Part 23 and CAR 3 Airplanes AGENCY... and B/E Aerospace oxygen cylinders, as installed on various 14 CFR part 23 or CAR 3 airplanes. This proposed AD would require inspecting for and removing substandard oxygen cylinders from the airplane....

  20. 75 FR 3141 - Airworthiness Directives; AVOX Systems and B/E Aerospace Oxygen Cylinder Assemblies, as Installed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... B/E Aerospace Oxygen Cylinder Assemblies, as Installed on Various Transport Airplanes AGENCY... AVOX Systems and B/E Aerospace oxygen cylinder assemblies, as installed on various transport airplanes. That AD currently requires removing certain oxygen cylinder assemblies from the airplane. This...

  1. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Jefferson, Michael

    2015-01-01

    NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  2. Aerospace Activities in the Elementary School

    ERIC Educational Resources Information Center

    Jones, Robert M.; Wiggins, Kenneth E.

    1974-01-01

    Describes 17 activities which are aerospace oriented and yet provide an interdisciplinary approach to learning. Some of the activities described involve paper airplanes, parachutes, model rockets, etc. (BR)

  3. Microelectronics packaging research directions for aerospace applications

    NASA Technical Reports Server (NTRS)

    Galbraith, L.

    2003-01-01

    The Roadmap begins with an assessment of needs from the microelectronics for aerospace applications viewpoint. Needs Assessment is divided into materials, packaging components, and radiation characterization of packaging.

  4. Unification - An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Scientific and Technical Information (STI) represents the results of large investments in research and development (R&D) and the expertise of a nation and is a valuable resource. For more than four decades, NASA and its predecessor organizations have developed and managed the preeminent aerospace information system. NASA obtains foreign materials through its international exchange relationships, continually increasing the comprehensiveness of the NASA Aerospace Database (NAD). The NAD is de facto the international aerospace database. This paper reviews current NASA goals and activities with a view toward maintaining compatibility among international aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  5. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  6. Project ADAPT (Report Number 2): Review and Assessment of Post-Orientation Careers of Project Participants. Aerospace Employment Project. Final Report.

    ERIC Educational Resources Information Center

    Massachusetts Inst. of Tech., Cambridge. Dept. of Urban Studies and Planning.

    The careers of 185 previously unemployed aerospace and defense industry professionals are documented, following completion in August 1971 of a 1-month orientation to urban affairs entitled Project ADAPT (Aerospace and Defense Adaptation to Public Technology). Funded by the Labor Department and by the Housing and Urban Development Project to…

  7. Managing complexity of aerospace systems

    NASA Astrophysics Data System (ADS)

    Tamaskar, Shashank

    Growing complexity of modern aerospace systems has exposed the limits of conventional systems engineering tools and challenged our ability to design them in a timely and cost effective manner. According to the US Government Accountability Office (GAO), in 2009 nearly half of the defense acquisition programs are expecting 25% or more increase in unit acquisition cost. Increase in technical complexity has been identified as one of the primary drivers behind cost-schedule overruns. Thus to assure the affordability of future aerospace systems, it is increasingly important to develop tools and capabilities for managing their complexity. We propose an approach for managing the complexity of aerospace systems to address this pertinent problem. To this end, we develop a measure that improves upon the state-of-the-art metrics and incorporates key aspects of system complexity. We address the problem of system decomposition by presenting an algorithm for module identification that generates modules to minimize integration complexity. We demonstrate the framework on diverse spacecraft and show the impact of design decisions on integration cost. The measure and the algorithm together help the designer track and manage complexity in different phases of system design. We next investigate how complexity can be used as a decision metric in the model-based design (MBD) paradigm. We propose a framework for complexity enabled design space exploration that introduces the idea of using complexity as a non-traditional design objective. We also incorporate complexity with the component based design paradigm (a sub-field of MBD) and demonstrate it on several case studies. The approach for managing complexity is a small but significant contribution to the vast field of complexity management. We envision our approach being used in concert with a suite of complexity metrics to provide an ability to measure and track complexity through different stages of design and development. This will not

  8. Adaptive control with aerospace applications

    NASA Astrophysics Data System (ADS)

    Gadient, Ross

    Robust and adaptive control techniques have a rich history of theoretical development with successful application. Despite the accomplishments made, attempts to combine the best elements of each approach into robust adaptive systems has proven challenging, particularly in the area of application to real world aerospace systems. In this research, we investigate design methods for general classes of systems that may be applied to representative aerospace dynamics. By combining robust baseline control design with augmentation designs, our work aims to leverage the advantages of each approach. This research contributes the development of robust model-based control design for two classes of dynamics: 2nd order cascaded systems, and a more general MIMO framework. We present a theoretically justified method for state limiting via augmentation of a robust baseline control design. Through the development of adaptive augmentation designs, we are able to retain system performance in the presence of uncertainties. We include an extension that combines robust baseline design with both state limiting and adaptive augmentations. In addition we develop an adaptive augmentation design approach for a class of dynamic input uncertainties. We present formal stability proofs and analyses for all proposed designs in the research. Throughout the work, we present real world aerospace applications using relevant flight dynamics and flight test results. We derive robust baseline control designs with application to both piloted and unpiloted aerospace system. Using our developed methods, we add a flight envelope protecting state limiting augmentation for piloted aircraft applications and demonstrate the efficacy of our approach via both simulation and flight test. We illustrate our adaptive augmentation designs via application to relevant fixed-wing aircraft dynamics. Both a piloted example combining the state limiting and adaptive augmentation approaches, and an unpiloted example with

  9. Cybersecurity for aerospace autonomous systems

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  10. Aerospace Medical Support in Russia

    NASA Technical Reports Server (NTRS)

    Castleberry, Tara; Chamberlin, Blake; Cole, Richard; Dowell, Gene; Savage, Scott

    2011-01-01

    This slide presentation reviews the role of the flight surgeon in support of aerospace medical support operations at the Gagarin Cosmonaut Training Center (GCTC), also known as Star City, in Russia. The flight surgeon in this role is the medical advocate for non-russian astronauts, and also provides medical care for illness and injury for astronauts, family members, and guests as well as civil servants and contractors. The flight surgeon also provides support for hazardous training. There are various photos of the area, and the office, and some of the equipment that is used.

  11. Aerospace reliability applied to biomedicine.

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Vargo, D. J.

    1972-01-01

    An analysis is presented that indicates that the reliability and quality assurance methodology selected by NASA to minimize failures in aerospace equipment can be applied directly to biomedical devices to improve hospital equipment reliability. The Space Electric Rocket Test project is used as an example of NASA application of reliability and quality assurance (R&QA) methods. By analogy a comparison is made to show how these same methods can be used in the development of transducers, instrumentation, and complex systems for use in medicine.

  12. Cognitive engineering in aerospace applications

    NASA Technical Reports Server (NTRS)

    Woods, David D.

    1993-01-01

    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.

  13. High Flight. Aerospace Activities, K-12.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  14. Aerospace Power Technology for Potential Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.

    2012-01-01

    Aerospace technology that is being developed for space and aeronautical applications has great potential for providing technical advances for terrestrial power systems. Some recent accomplishments arising from activities being pursued at the National Aeronautics and Space Administration (NASA) Centers is described in this paper. Possible terrestrial applications of the new aerospace technology are also discussed.

  15. The 28th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Rohn, Douglas A. (Compiler)

    1994-01-01

    The proceedings of the 28th Aerospace Mechanisms Symposium, which was hosted by the NASA Lewis Research Center and held at the Cleveland Marriott Society Center on May 18, 19, and 20, 1994, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft.

  16. iSTEM: The Aerospace Engineering Challenge

    ERIC Educational Resources Information Center

    English, Lyn D.; King, Donna T.; Hudson, Peter; Dawes, Les

    2014-01-01

    The authors developed The Paper Plane Challenge as one of a three-part response to The Aerospace Engineering Challenge. The Aerospace Engineering Challenge was the second of three multi-part activities that they had developed with the teachers during the year. Their aim was to introduce students to the exciting world of engineering, where they…

  17. Optical Information Processing for Aerospace Applications 2

    NASA Technical Reports Server (NTRS)

    Stermer, R. L. (Compiler)

    1984-01-01

    Current research in optical processing, and determination of its role in future aerospace systems was reviewed. It is shown that optical processing offers significant potential for aircraft and spacecraft control, pattern recognition, and robotics. It is demonstrated that the development of optical devices and components can be implemented in practical aerospace configurations.

  18. The 27th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Mancini, Ron (Compiler)

    1993-01-01

    The proceedings of the 27th Aerospace Mechanisms Symposium, which was held at ARC, Moffett Field, California, on 12-14 May 1993, are reported. Technological areas covered include the following: actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, robotic mechanisms, and other mechanisms for large space structures.

  19. Aerospace Resources for Science and Technology Education.

    ERIC Educational Resources Information Center

    Maley, Donald, Ed.; Smith, Kenneth L., Ed.

    This publication on Aerospace Programs is a special edition of "Technology Education" featuring descriptions of 15 select aerospace education programs from diverse localities spanning the full range of instructional levels. Following introductory material, the monograph contains the following largely unedited program descriptions: (1)…

  20. The 29th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Editor)

    1995-01-01

    The proceedings of the 29th Aerospace Mechanisms Symposium, which was hosted by NASA Johnson Space Center and held at the South Shore Harbour Conference Facility on May 17-19, 1995, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft.

  1. NASA Elementary Aerospace Activities Free to Members

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1978

    1978-01-01

    Describes the contents of Elementary School Aerospace Activities: A Resource for Teachers. Activities examine a variety of topics in aerospace education and are intended to be used with children ages 5-11. The book is available from the Government Printing Office (GPO) for $3.00. (CP)

  2. The 26th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The proceedings of the 26th Aerospace Mechanisms Symposium, which was held at the Goddard Space Flight Center on May 13, 14, and 15, 1992 are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors and other mechanisms for large space structures.

  3. Emergent Aerospace Designs Using Negotiating Autonomous Agents

    DTIC Science & Technology

    2000-06-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO10521 TITLE: Emergent Aerospace Designs Using Negotiating Autonomous ...Optimisation of Flight Vehicles in a Concurrent Multi-Disciplinary Environment [la Conception et l’optimisation aerodynamiques des vehicules eriens dans un...ADP010499 thru AI W3SSIFIED 25-1 Emergent Aerospace Designs Using Negotiating Autonomous Agents Abhijit Deshmukh, Timothy Middelkoop University of

  4. The 42nd Aerospace Mechanism Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor); Hakun, Claef (Editor)

    2014-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development, and flight certification of new mechanisms.

  5. Ultrasonic Characterization of Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  6. Multiple regression analyses in the prediction of aerospace instrument costs

    NASA Astrophysics Data System (ADS)

    Tran, Linh

    The aerospace industry has been investing for decades in ways to improve its efficiency in estimating the project life cycle cost (LCC). One of the major focuses in the LCC is the cost/prediction of aerospace instruments done during the early conceptual design phase of the project. The accuracy of early cost predictions affects the project scheduling and funding, and it is often the major cause for project cost overruns. The prediction of instruments' cost is based on the statistical analysis of these independent variables: Mass (kg), Power (watts), Instrument Type, Technology Readiness Level (TRL), Destination: earth orbiting or planetary, Data rates (kbps), Number of bands, Number of channels, Design life (months), and Development duration (months). This author is proposing a cost prediction approach of aerospace instruments based on these statistical analyses: Clustering Analysis, Principle Components Analysis (PCA), Bootstrap, and multiple regressions (both linear and non-linear). In the proposed approach, the Cost Estimating Relationship (CER) will be developed for the dependent variable Instrument Cost by using a combination of multiple independent variables. "The Full Model" will be developed and executed to estimate the full set of nine variables. The SAS program, Excel, Automatic Cost Estimating Integrate Tool (ACEIT) and Minitab are the tools to aid the analysis. Through the analysis, the cost drivers will be identified which will help develop an ultimate cost estimating software tool for the Instrument Cost prediction and optimization of future missions.

  7. Radiological source tracking in oil/gas, medical and other industries: requirements and specifications for passive RFID technology

    SciTech Connect

    Dowla, Farid U.

    2016-01-01

    Subsurface sensors that employ radioisotopes, such 241Am-Be and 137Cs, for reservoir characterization must be tracked for safety and security reasons. Other radiological sources are also widely used in medicine. The radiological source containers, in both applications, are small, mobile and used widely worldwide. The nuclear sources pose radiological dispersal device (RDD) security risks. Security concerns with the industrial use of radionuclide sources is in fact quite high as it is estimated that each year hundreds of sealed sources go missing, either lost or stolen. Risk mitigation efforts include enhanced regulations, source-use guidelines, research and development on electronic tracking of sources. This report summarizes the major elements of the requirements and operational concepts of nuclear sources with the goal of developing automated electronic tagging and locating systems.

  8. Current industrial practices and regulatory requirements to assess analyte and reagent stability using ligand-binding assays.

    PubMed

    Wang, Jin; Nowatzke, William; Ma, Mark

    2015-01-01

    Specific guidelines on bioanalytical method validation for drug development support are recommended by regulatory agencies. Regarding stability assessment, US FDA states that 'Stability procedures should evaluate the stability of the analytes during sample collection and handling, after long-term (frozen at the intended storage temperature) and short-term (bench-top, room temperature) storage, and after going through freeze and thaw cycles and the analytical process'. Additional regulatory considerations are discussed including topics such as analyte and reagent stability. This article reviews the regulatory requirements as issued by the USA (FDA), Europe (EMA) and Japan (MHLW), for stability studies where bioanalytical methods are used to support drug development programs and summarizes the current industry standard for conducting stability studies when utilizing ligand-binding assays.

  9. High efficiency digital cooler electronics for aerospace applications

    NASA Astrophysics Data System (ADS)

    Kirkconnell, C. S.; Luong, T. T.; Shaw, L. S.; Murphy, J. B.; Moody, E. A.; Lisiecki, A. L.; Ellis, M. J.

    2014-06-01

    Closed-cycle cryogenic refrigerators, or cryocoolers, are an enabling technology for a wide range of aerospace applications, mostly related to infrared (IR) sensors. While the industry focus has tended to be on the mechanical cryocooler thermo mechanical unit (TMU) alone, implementation on a platform necessarily consists of the combination of the TMU and a mating set of command and control electronics. For some applications the cryocooler electronics (CCE) are technologically simple and low cost relative to the TMU, but this is not always the case. The relative cost and complexity of the CCE for a space-borne application can easily exceed that of the TMU, primarily due to the technical constraints and cost impacts introduced by the typical space radiation hardness and reliability requirements. High end tactical IR sensor applications also challenge the state of the art in cryocooler electronics, such as those for which temperature setpoint and frequency must be adjustable, or those where an informative telemetry set must be supported, etc. Generally speaking for both space and tactical applications, it is often the CCE that limits the rated lifetime and reliability of the cryocooler system. A family of high end digital cryocooler electronics has been developed to address these needs. These electronics are readily scalable from 10W to 500W output capacity; experimental performance data for nominally 25W and 100W variants are presented. The combination of a FPGA-based controller and dual H-bridge motor drive architectures yields high efficiency (>92% typical) and precision temperature control (+/- 30 mK typical) for a wide range of Stirling-class mechanical cryocooler types and vendors. This paper focuses on recent testing with the AIM INFRAROT-MODULE GmbH (AIM) SX030 and AIM SF100 cryocoolers.

  10. Aerospace Applications of Non-Equilibrium Plasma

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  11. Some contributions to energetics by the Lewis Research Center and a review of their potential non-aerospace applications

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Gutstein, M. U.

    1972-01-01

    The primary technology areas are aerospace propulsion, power and materials. As examples in these technologies, the programs in the fields of cryogenics and liquid metals are reviewed and potential non-aerospace applications for the results of these programs are discussed. These include such possibilities as: hydrogen as a non-polluting industrial fuel; more efficient central power stations; and powerplants for advanced ground transportation.

  12. Non-functional Avionics Requirements

    NASA Astrophysics Data System (ADS)

    Paulitsch, Michael; Ruess, Harald; Sorea, Maria

    Embedded systems in aerospace become more and more integrated in order to reduce weight, volume/size, and power of hardware for more fuel-effi ciency. Such integration tendencies change architectural approaches of system ar chi tec tures, which subsequently change non-functional requirements for plat forms. This paper provides some insight into state-of-the-practice of non-func tional requirements for developing ultra-critical embedded systems in the aero space industry, including recent changes and trends. In particular, formal requi re ment capture and formal analysis of non-functional requirements of avionic systems - including hard-real time, fault-tolerance, reliability, and per for mance - are exemplified by means of recent developments in SAL and HiLiTE.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 35: The US government technical report and aerospace knowledge diffusion: Results of an on-going investigation

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Khan, A. Rahman; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded (U.S.) R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this paper, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from two surveys (one of five studies) of our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report and close with a brief overview of on-going research into the use of the U.S. government technical report as a rhetorical device for transferring federally funded aerospace R&D.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 46: Technical communications in aerospace: A comparison across four countries

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.; Pinelli, Thomas E.; Hecht, Laura Frye; Barclay, Rebecca O.

    1995-01-01

    In this paper we describe the preliminary analysis of four groups of aerospace engineering and science students -- student members of the American Institute of Aeronautics and Astronautics (AIAA) and students from universities in Japan, Russia, and Great Britain. We compare: (1) the demographic characteristics of the students; (2) factors that affected their career decision; (3) their career goals and aspirations; (4) their training in technical communication; and (5) their training in techniques for finding and using aerospace scientific and technical information (STI). Many employers in the US aerospace industry think there is a need for increased training of engineering students in technical communication. Engineers in the US and other countries believe that technical communication skills are critical for engineers' professional success. All students in our study agree about the importance of technical communication training for professional success, yet relatively few are happy with the instruction they receive. Overall, we conclude that additional instruction in technical communication and accessing STI would make it easier for students to achieve their career goals.

  15. Review of NASA programs in applying aerospace technology to energy

    NASA Astrophysics Data System (ADS)

    Schwenk, F. C.

    NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.

  16. Analysis and test of low profile aluminum aerospace tank dome

    NASA Technical Reports Server (NTRS)

    Ahmed, R.; Wilhelm, J. M.

    1993-01-01

    In order to increase the structural performance of cryogenic tanks, the aerospace industry is beginning to employ low-profile bulkheads in new generation launch vehicle designs. This report details the analysis and test of one such dome made from 2219 aluminum. Such domes have two potential failure modes under internal pressure, general tensile failure and hoop compression buckling (in regions near the equator). The test determined the buckling load and ultimate tensile load of the hardware and showed that both compared well with the analysis predictions. This effort was conducted under the auspices of NASA and the General Dynamics Cryogenic Tank Technology Program (CTTP).

  17. Development of sintered fiber nickel electrodes for aerospace batteries

    SciTech Connect

    Francisco, J.; Chiappetti, D.; Brill, J.

    1997-12-01

    The nickel electrode is the specific energy limiting component in nickel battery systems. A concerted effort is currently underway to improve NiH{sub 2} performance while decreasing system cost. Increased performance with electrode specific energy (mAh/g) is the major goal of this effort. However, cost reduction is also an important part of the overall program, achieved by reducing the electrode weight. A lightweight, high energy density nickel electrode is being developed based on a highly porous, sintered fiber, nickel substrate. This developing technology has many applications, but is highly applicable to the military and aerospace industries.

  18. Review of NASA programs in applying aerospace technology to energy

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1981-01-01

    NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.

  19. Development of Sintered Fiber Nickel Electrodes for Aerospace Batteries

    NASA Technical Reports Server (NTRS)

    Francisco, Jennifer; Chiappetti, Dennis; Brill, Jack

    1997-01-01

    The nickel electrode is the specific energy limiting component in nickel battery systems. A concerted effort is currently underway to improve NiH2 performance while decreasing system cost. Increased performance with electrode specific energy (mAh/g) is the major goal of this effort. However, cost reduction is also an important part of the overall program, achieved by reducing the electrode weight. A lightweight, high energy density, nickel electrode is being, developed based on a highly porous, sintered fiber, nickel substrate. This developing technology has many applications, but is highly, applicable to the military and aerospace industries.

  20. Overview of integrated programs for aerospace-vehicle design (IPAD)

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1980-01-01

    An overview of a joint industry/government project, denoted Integrated Programs for Aerospace-Vehicle Design (IPAD), which focuses on development of technology and associated software for integrated company-wide management of engineering information is presented. Results to date are summarized and include an in-depth documentation of a representative design process for a large engineering project, the definition and design of computer-aided design software needed to support that process, and the release of prototype software to integrated selected design functions.