Recent advances in the development of aerospace materials
NASA Astrophysics Data System (ADS)
Zhang, Xuesong; Chen, Yongjun; Hu, Junling
2018-02-01
In recent years, much progress has been made on the development of aerospace materials for structural and engine applications. Alloys, such as Al-based alloys, Mg-based alloys, Ti-based alloys, and Ni-based alloys, are developed for aerospace industry with outstanding advantages. Composite materials, the innovative materials, are taking more and more important roles in aircrafts. However, recent aerospace materials still face some major challenges, such as insufficient mechanical properties, fretting wear, stress corrosion cracking, and corrosion. Consequently, extensive studies have been conducted to develop the next generation aerospace materials with superior mechanical performance and corrosion resistance to achieve improvements in both performance and life cycle cost. This review focuses on the following topics: (1) materials requirements in design of aircraft structures and engines, (2) recent advances in the development of aerospace materials, (3) challenges faced by recent aerospace materials, and (4) future trends in aerospace materials.
CNT-based Thermal Interface Materials for Load-Bearing Aerospace Applications
2012-08-01
CNT -based Thermal Interface Materials for Load-Bearing Aerospace Applications Michael Bifano, Pankaj Kaul and Vikas Prakash (PI) Department...4. TITLE AND SUBTITLE CNT -based Thermal Interface Materials for Load-Bearing Aerospace Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Z39-18 Objective Develop multifunctional CNT -epoxy Thermal Interface Materials (TIMs) for load bearing aerospace applications. Emphasis - To
5th Conference on Aerospace Materials, Processes, and Environmental Technology
NASA Technical Reports Server (NTRS)
Cook, M. B. (Editor); Stanley, D. Cross (Editor)
2003-01-01
Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.
Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology
NASA Technical Reports Server (NTRS)
Griffin, D. E. (Editor); Stanley, D. C. (Editor)
2001-01-01
The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.
NASA-UVa light aerospace alloy and structures technology program
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.
1991-01-01
The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.
Mass spectrometry of aerospace materials
NASA Technical Reports Server (NTRS)
Colony, J. A.
1976-01-01
Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.
A Study of Aerospace Education Workshops Which Utilize NASA Materials and Resource Personnel
ERIC Educational Resources Information Center
Helton, Robert Dale
1974-01-01
Reports findings from two questionnaires administered to participants of aerospace workshops which utilized the National Aeronautics and Space Administration (NASA) materials and resource personnel. The findings gave a broad picture of aerospace workshops across the United States. (BR)
Environmental, Safety, and Health Considerations: Composite Materials in the Aerospace Industry
NASA Technical Reports Server (NTRS)
Chu, Huai-Pu (Compiler)
1994-01-01
The Aerospace Industries Association, Suppliers of Advanced Composite Materials Association, and the National Aeronautics and Space Administration co-sponsored a conference on 'Environmental, Safety, and Health Considerations--Composite Materials in the Aerospace Industry.' The conference was held in Mesa, Arizona, on October 20-21, 1994. Seventeen papers were presented in four sessions including general information, safety, waste, and emissions from composites. Topics range from product stewardship, best work practice, biotransformation of uncured composite materials, to hazardous waste determination and offgassing of composite materials.
NASA-UVA light aerospace alloy and structures technology program (LA(sup 2)ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.
1992-01-01
The general objective of the Light Aerospace Alloy and Structures Technology (LA(sup 2)ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with Langley researchers. Specific technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanics analyses, measurement advances, and critically, a pool of educated graduate students for aerospace technologies. Four research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.
Advanced Ceramic Materials for Future Aerospace Applications
NASA Technical Reports Server (NTRS)
Misra, Ajay
2015-01-01
With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1996-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. Three research areas are being actively investigated, including: (1) Mechanical and environmental degradation mechanisms in advanced light metals, (2) Aerospace materials science, and (3) Mechanics of materials for light aerospace structures.
NASA Technical Reports Server (NTRS)
Boyce, L.
1992-01-01
A probabilistic general material strength degradation model has been developed for structural components of aerospace propulsion systems subjected to diverse random effects. The model has been implemented in two FORTRAN programs, PROMISS (Probabilistic Material Strength Simulator) and PROMISC (Probabilistic Material Strength Calibrator). PROMISS calculates the random lifetime strength of an aerospace propulsion component due to as many as eighteen diverse random effects. Results are presented in the form of probability density functions and cumulative distribution functions of lifetime strength. PROMISC calibrates the model by calculating the values of empirical material constants.
Challenges for Insertion of Structural Nanomaterials in Aerospace Applications
NASA Technical Reports Server (NTRS)
Sochi, Emilie J.
2012-01-01
In the two decades since Iijima's report on carbon nanotubes (CNT), there has been great interest in realizing the benefits of mechanical properties observed at the nanoscale in large-scale structures. The weight savings possible due to dramatic improvements in mechanical properties relative to state-of-the-art material systems can be game changing for applications like aerospace vehicles. While there has been significant progress in commercial production of CNTs, major aerospace applications that take advantage of properties offered by this material have yet to be realized. This paper provides a perspective on the technical challenges and barriers for insertion of CNTs as an emerging material technology in aerospace applications and proposes approaches that may reduce the typical timeframe for technology maturation and insertion into aerospace structures.
Conservation of Strategic Aerospace Materials (COSAM)
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1981-01-01
Research efforts to reduce the dependence of the aerospace industry on strategic metals, such as cobalt (Co), columbium (Cb), tantalum (Ta), and chromium (Cr), by providing the materials technology needed to minimize the strategic metal content of critical aerospace components for gas turbine engines are addressed. Thrusts in three technology areas are identified: near term activities in the area of strategic element substitution; intermediate-range activities in the area of materials processing; and long term, high risk activities in the area of 'new classes' of high temprature metallic materials. Specifically, the role of cobalt in nickel-base and cobalt-base superalloys vital to the aerospace industry is examined along with the mechanical and physical properties of intermetallics that will contain a minimum of the stragetic metals.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.
1992-01-01
The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.
The development of aerospace polyimide adhesives
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L.
1983-01-01
Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.
Optical Characterization of Window Materials for Aerospace Applications
NASA Technical Reports Server (NTRS)
Tedjojuwono, Ken K.; Clark, Natalie; Humphreys, William M., Jr.
2013-01-01
An optical metrology laboratory has been developed to characterize the optical properties of optical window materials to be used for aerospace applications. Several optical measurement systems have been selected and developed to measure spectral transmittance, haze, clarity, birefringence, striae, wavefront quality, and wedge. In addition to silica based glasses, several optical lightweight polymer materials and transparent ceramics have been investigated in the laboratory. The measurement systems and selected empirical results for non-silica materials are described. These measurements will be used to form the basis of acceptance criteria for selection of window materials for future aerospace vehicle and habitat designs.
2006-08-01
and defence industries. In fact, some materials with such anomalous (i.e. NPR) properties have been used in applications such as pyrolytic graphite...real applications such as pyrolytic graphite with NPR of -0.21 for thermal protection in aerospace (Garber, 1963), large single crystals of Ni3Al with...Foundations of Solid Mechanics, Prentice-Hall, p.353, 1968. Garber, A.M., Pyrolytic materials for thermal protection systems, Aerospace Eng., Vol
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1997-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Here, we report on progress achieved between July I and December 31, 1996. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report are summarized as follows. Three research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures.
Technical Note: Some Issues Related to the Selection of Polymers for Aerospace Oxygen Systems
NASA Technical Reports Server (NTRS)
Hirsch, David; Beeson, Harold
2004-01-01
Materials intended for use in aerospace oxygen systems are commonly screened for oxygen compatibility following NASA STD 6001. This standard allows qualification of materials based on results provided by only one test method. Potential issues related to this practice are reviewed and recommendations are proposed that would lead to improved aerospace oxygen systems safety.
NASA Technical Reports Server (NTRS)
Boyce, Lola; Bast, Callie C.
1992-01-01
The research included ongoing development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primative variables. These primative variable may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above described constitutive equation using actual experimental materials data together with linear regression of that data, thereby predicting values for the empirical material constraints for each effect or primative variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from the open literature for materials typically of interest to those studying aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.
Bearing and gear steels for aerospace applications
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1990-01-01
Research in metallurgy and processing for bearing and gear steels has resulted in improvements in rolling-element bearing and gear life for aerospace application by a factor of approximately 200 over that obtained in the early 1940's. The selection and specification of a bearing or gear steel is dependent on the integration of multiple metallurgical and physical variables. For most aerospace bearings, through-hardened VIM-VAR AISI M-50 steel is the material of preference. For gears, the preferential material is case-carburized VAR AISI 9310. However, the VAR processing for this material is being replaced by VIM-VAR processing. Since case-carburized VIM-VAR M-50NiL incorporates the desirable qualities of both the AISI M-50 and AISI 9310 materials, optimal life and reliability can be achieved in both bearings and gears with a single steel. Hence, this material offers the promise of a common steel for both bearings and gears for future aerospace applications.
Hydrogen and advanced aerospace materials
NASA Technical Reports Server (NTRS)
Nelson, Howard G.
1988-01-01
The hydrogen embrittlement is briefly reviewed and discussed in terms of specific structural materials considered for use on a generic, hydrogen-fueled, hypersonic aerospace vehicle. A few unusual hydrogen-material incompatibility concerns are identified and some solution methodologies are discussed that could potentially lessen these concerns.
NASA Technical Reports Server (NTRS)
Blankenship, C. P. (Compiler); Teichman, L. A. (Compiler)
1982-01-01
Composites, polymer science, metallic materials (aluminum, titanium, and superalloys), materials processing technology, materials durability in the aerospace environment, ceramics, fatigue and fracture mechanics, tribology, and nondestructive evaluation (NDE) are discussed. Research and development activities are introduced to the nonaerospace industry. In order to provide a convenient means to help transfer aerospace technology to the commercial mainstream in a systematic manner.
US-Europe Workshop on Impact of Multifunctionality on Damage Evolution in Composite Materials
2015-09-01
Inventions (DD882) Scientific Progress See Attachment Technology Transfer Not applicable UNIVERSITY OF ILLINOIS AEROSPACE ENGINEERING...Composite Materials PI: Ioannis Chasiotis Aerospace Engineering University of Illinois at Urbana-Champaign Talbot Lab, 104 S. Wright Street, Urbana, IL...focused on the current state of corporate research in the aerospace industry which is a major potential adopter of multifunctional composites. The two
High temperature arc-track resistant aerospace insulation
NASA Technical Reports Server (NTRS)
Dorogy, William
1994-01-01
The topics are presented in viewgraph form and include the following: high temperature aerospace insulation; Foster-Miller approach to develop a 300 C rated, arc-track resistant aerospace insulation; advantages and disadvantages of key structural features; summary goals and achievements of the phase 1 program; performance goals for selected materials; materials under evaluation; molecular structures of candidate polymers; candidate polymer properties; film properties; and a detailed program plan.
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.
1997-01-01
Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.
Second Aerospace Environmental Technology Conference
NASA Technical Reports Server (NTRS)
Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)
1997-01-01
The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.
Second Aerospace Environmental Technology Conference
NASA Technical Reports Server (NTRS)
Whitaker, A. F.; Clark-Ingram, M.; Hessler, S. L.
1997-01-01
The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.
The international aerospace industry - New challenges and opportunities for translation suppliers
NASA Technical Reports Server (NTRS)
Rowe, T.
1986-01-01
Attention is given to the recent trend toward internationalization in the aerospace industry and its effects on commercial and governmental translation programs. The aerospace industry, once dominated by organizations from a small number of countries, is now widely international in scope. In effect, there has been in increase in the demand for translations from German, Japanese, Chinese, French and Spanish source material while that for translation from Russian source material has remained constant. The impact of the Challenger disaster on aerospace translation programs is discussed as well as the impact of international participation in Space Station research.
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.
2010-01-01
This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).
NASA's activities in the conservation of strategic aerospace materials
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1980-01-01
The United States imports 50-100 percent of certain metals critical to the aerospace industry, namely, cobalt, columbium, chromium, and tantalum. In an effort to reduce this dependence on foreign sources, NASA is planning a program called Conservation of Strategic Aerospace Materials (COSAM), which will provide technology minimizing strategic metal content in the components of aerospace structures such as aircraft engines. With a proposed starting date of October 1981, the program will consist of strategic element substitution, process technology development, and alternate materials research. NASA's two-fold pre-COSAM studies center on, first, substitution research involving nickel-base and cobalt-base superalloys (Waspaloy, Udimet-700, MAE-M247, Rene 150, HA-188) used in turbine disks, low-pressure blades, turbine blades, and combustors; and, second, alternate materials research devoted initially to investigating possible structural applications of the intermetallic alloys nickel aluminide and iron aluminide.
Reach and its Impact: NASA and US Aerospace Communities
NASA Technical Reports Server (NTRS)
Rothgeb, Matthew J.
2011-01-01
REACH is a European law that threatens to impact materials used within the US aerospace communities, including NASA. The presentation briefly covers REACH and generally, its perceived impacts to NASA and the aerospace community within the US.
Thermal Expansion Properties of Aerospace Materials
NASA Technical Reports Server (NTRS)
Green, E. F.
1969-01-01
Thermal expansion properties of materials used in aerospace systems are compiled into a single handbook. The data, derived from experimental measurements supplemented by information from literature sources, are presented in charts and tables arranged in two sections, covering cryogenic and elevated temperatures.
Second Conference on NDE for Aerospace Requirements
NASA Technical Reports Server (NTRS)
Woodis, Kenneth W. (Compiler); Bryson, Craig C. (Compiler); Workman, Gary L. (Compiler)
1990-01-01
Nondestructive evaluation and inspection procedures must constantly improve rapidly in order to keep pace with corresponding advances being made in aerospace material and systems. In response to this need, the 1989 Conference was organized to provide a forum for discussion between the materials scientists, systems designers, and NDE engineers who produce current and future aerospace systems. It is anticipated that problems in current systems can be resolved more quickly and that new materials and structures can be designed and manufactured in such a way as to be more easily inspected and to perform reliably over the life cycle of the system.
Aerospace Environmental Technology Conference
NASA Technical Reports Server (NTRS)
Whitaker, A. F. (Editor)
1995-01-01
The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.
Metal Matrix Composite Materials for Aerospace Applications
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)
2001-01-01
Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.
Advanced Materials and Coatings for Aerospace Applications
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
2004-01-01
In the application area of aerospace tribology, researchers and developers must guarantee the highest degree of reliability for materials, components, and systems. Even a small tribological failure can lead to catastrophic results. The absence of the required knowledge of tribology, as Professor H.P. Jost has said, can act as a severe brake in aerospace vehicle systems-and indeed has already done so. Materials and coatings must be able to withstand the aerospace environments that they encounter, such as vacuum terrestrial, ascent, and descent environments; be resistant to the degrading effects of air, water vapor, sand, foreign substances, and radiation during a lengthy service; be able to withstand the loads, stresses, and temperatures encountered form acceleration and vibration during operation; and be able to support reliable tribological operations in harsh environments throughout the mission of the vehicle. This presentation id divided into two sections: surface properties and technology practice related to aerospace tribology. The first section is concerned with the fundamental properties of the surfaces of solid-film lubricants and related materials and coatings, including carbon nanotubes. The second is devoted to applications. Case studies are used to review some aspects of real problems related to aerospace systems to help engineers and scientists to understand the tribological issues and failures. The nature of each problem is analyzed, and the tribological properties are examined. All the fundamental studies and case studies were conducted at the NASA Glenn Research Center.
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2010-01-01
This slide presentation discusses the application of testing aerospace materials to the environment of space for flammability. Test environments include use of drop towers, and the parabolic flight to simulate the low gravity environment of space.
Developments in metallic materials for aerospace applications
NASA Astrophysics Data System (ADS)
Wadsworth, J.; Froes, F. H.
1989-05-01
High-performance aerospace systems are creating a demand for new materials, not only for airframe and engine applications, but for missile and space systems as well. Recently, advances have been made in metallic materials systems based on magnesium, aluminum, titanium and niobium using a variety of processing methods, including ingot casting, powder metallurgy, rapid solidification and composite technology.
Aerospace Resources for Science and Technology Education.
ERIC Educational Resources Information Center
Maley, Donald, Ed.; Smith, Kenneth L., Ed.
This publication on Aerospace Programs is a special edition of "Technology Education" featuring descriptions of 15 select aerospace education programs from diverse localities spanning the full range of instructional levels. Following introductory material, the monograph contains the following largely unedited program descriptions: (1)…
Structures Technology for Future Aerospace Systems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Venneri, Samuel L.; Paul, Donald B.; Hopkins, Mark A.
2000-01-01
An overview of structures technology for future aerospace systems is given. Discussion focuses on developments in component technologies that will improve the vehicle performance, advance the technology exploitation process, and reduce system life-cycle costs. The component technologies described are smart materials and structures, multifunctional materials and structures, affordable composite structures, extreme environment structures, flexible load bearing structures, and computational methods and simulation-based design. The trends in each of the component technologies are discussed and the applicability of these technologies to future aerospace vehicles is described.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edger A., Jr.
1996-01-01
This progress report covers achievements made between January 1 and June 30, 1966 on the NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. . The accomplishments presented in this report are: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures. Collective accomplishments between January and June of 1996 include: 4 journal or proceedings publications, 1 NASA progress report, 4 presentations at national technical meetings, and 2 PhD dissertations published.
NASA Technical Reports Server (NTRS)
Boyce, Lola; Bast, Callie C.; Trimble, Greg A.
1992-01-01
This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology.
NASA Technical Reports Server (NTRS)
Boyce, Lola; Bast, Callie C.; Trimble, Greg A.
1992-01-01
The results of a fourth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA) are presented. The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue, or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation was randomized and is included in the computer program, PROMISC. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.
Spacecraft materials studies on the Aerospace Corporation tray on EOIM-3
NASA Technical Reports Server (NTRS)
Stuckey, Wayne K.; Hemminger, Carol S.; Steckel, Gary L.; Hills, Malina M.; Hilton, Michael R.
1995-01-01
A passive tray was flown on the Effects of Oxygen Interaction with Materials experiment on STS-46 (EOIM-3) with 82 samples from The Aerospace Corporation. A variety of advanced materials related to potential uses on future spacecraft were included for evaluation representing optical coatings, lubricants, polymers, composites, carbon-carbon composite protective coatings, graphite protective coatings, thermal-control materials, and some samples of current materials. An overview of the available results from the investigations of these materials is presented.
High Flight. Aerospace Activities, K-12.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Education, Oklahoma City.
Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…
National Aerospace Professional Societies and Associations and Organizations
NASA Technical Reports Server (NTRS)
Henderson, Arthur J., Jr.
2000-01-01
This session will highlight several highly recognized National Technical and Professional Aerospace Societies, Associations and Organizations that are dedicated to the advancement of the theories, practices and unique applications of Science, Engineering and related Aerospace Activities ongoing in the United States. The emphasis will be on at least three (3) Aerospace Organizations, while reference many others. This paper will provide a wealth of educational references, information, opportunities and services available through many of the National and Local Chapter Affiliates, associated with the respective associations. Again, all experience and knowledge levels (K-12) will benefit from this information and reference material. Reference materials and other points of contact will be made available to all attendees.
Aerospace Environmental Technology Conference: Exectutive summary
NASA Technical Reports Server (NTRS)
Whitaker, A. F. (Editor)
1995-01-01
The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The papers from this conference are being published in a separate volume as NASA CP-3298.
Metal- and intermetallic-matrix composites for aerospace propulsion and power systems
NASA Astrophysics Data System (ADS)
Doychak, J.
1992-06-01
Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.
Out-of-Autoclave Cure Composites
NASA Technical Reports Server (NTRS)
Hayes, Brian S.
2015-01-01
As the size of aerospace composite parts exceeds that of even the largest autoclaves, the development of new out-of-autoclave processes and materials is necessary to ensure quality and performance. Many out-of-autoclave prepreg systems can produce high-quality composites initially; however, due to long layup times, the resin advancement commonly causes high void content and variations in fiber volume. Applied Poleramic, Inc. (API), developed an aerospace-grade benzoxazine matrix composite prepreg material that offers more than a year out-time at ambient conditions and provides exceptionally low void content when out-of-autoclave cured. When compared with aerospace epoxy prepreg systems, API's innovation offers significant improvements in terms of out-time at ambient temperature and the corresponding tack retention. The carbon fiber composites developed with the optimized matrix technology have significantly better mechanical performance in terms of hot-wet retention and compression when compared with aerospace epoxy matrices. These composites also offer an excellent overall balance of properties. This matrix system imparts very low cure shrinkage, low coefficient of thermal expansion, and low density when compared with most aerospace epoxy prepreg materials.
Aerospace Bibliography. Seventh Edition.
ERIC Educational Resources Information Center
Blashfield, Jean F., Comp.
Provided for teachers and the general adult reader is an annotated and graded list of books and reference materials dealing with aerospace subjects. Only non-fiction books and pamphlets that need to be purchased from commercial or government sources are included. Free industrial materials and educational aids are not included because they tend to…
Resources - Supply and availability. [of superalloys for United States aerospace industry
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.
1989-01-01
Over the past several decades there have been shortage of strategic materials because of our near total import dependence on such metals as chromium, cobalt, and tantalum. In response to the continued vulnerability of U.S. superalloy producers to disruptions in resource supplies, NASA has undertaken a program to address alternatives to the super-alloys containing significant quantities of the strategic materials such as chromium, cobalt, niobium, and tantalum. The research program called Conservation of Strategic Aerospace Materials (COSAM) focuses on substitution, processing, and alternate materials to achieve its goals. In addition to NASA Lewis Research Center, universities and industry play an important role in the COSAM Program. This paper defines what is meant by strategic materials in the aerospace community, presents a strategic materials index, and reviews the resource supply and availability picture from the U.S. point of view. In addition, research results from the COSAM Program are highlighted and future directions for the use of low strategic material alloys or alternate materials are discussed.
Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hardy, Robin C. (Editor); Simpson, Joycelyn O. (Editor)
1996-01-01
The objective of the Fourth Annual Conference on Advances in Smart Materials for Aerospace Applications was to provide a forum for technical dialogue on numerous topics in the area of smart materials. The proceedings presented herein represent the technical contributions of the participants of the workshop. Topics addressed include shape memory alloys, ferroelectrics, fiber optics, finite element simulation, and active control.
Third Aerospace Environmental Technology Conference
NASA Technical Reports Server (NTRS)
Whitaker, A. F. (Editor); Cross, D. R. (Editor); Caruso, S. V. (Editor); Clark-Ingram, M. (Editor)
1999-01-01
The elimination of CFC's, Halons, TCA, other ozone depleting chemicals, and specific hazardous materials is well underway. The phaseout of these chemicals has mandated changes and new developments in aerospace materials and processes. We are beyond discovery and initiation of these new developments and are now in the implementation phase. This conference provided a forum for materials and processes engineers, scientists, and managers to describe, review, and critically assess the evolving replacement and clean propulsion technologies from the standpoint of their significance, application, impact on aerospace systems, and utilization by the research and development community. The use of these new technologies, their selection and qualification, their implementation, and the needs and plans for further developments are presented.
Introduction: Aims and Requirements of Future Aerospace Vehicles. Chapter 1
NASA Technical Reports Server (NTRS)
Rodriguez, Pedro I.; Smeltzer, Stanley S., III; McConnaughey, Paul (Technical Monitor)
2001-01-01
The goals and system-level requirements for the next generation aerospace vehicles emphasize safety, reliability, low-cost, and robustness rather than performance. Technologies, including new materials, design and analysis approaches, manufacturing and testing methods, operations and maintenance, and multidisciplinary systems-level vehicle development are key to increasing the safety and reducing the cost of aerospace launch systems. This chapter identifies the goals and needs of the next generation or advanced aerospace vehicle systems.
Carbon nanotube: A review on its mechanical properties and application in aerospace industry
NASA Astrophysics Data System (ADS)
Raunika, A.; Aravind Raj, S.; Jayakrishna, K.; Sultan, M. T. H.
2017-12-01
Carbon nanotube (CNT) is a prominent material that has good potential to be used in numerous aerospace applications. This paper presents a review about CNT on its various aspects such as fabrication methods, mechanical properties and applications in aerospace. The evolution of CNT is discussed to its recent applications. The aim of this review article is to highlight the recent advancements in CNT and its possible applications in aerospace.
Aerospace and Flight. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This packet of technology learning activity (TLA) materials on aerospace and flight for students in grades 6-10 consists of a technology education overview, information on use, and instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections are…
NASA Technical Reports Server (NTRS)
Stradling, J.; Pippen, D. L.
1985-01-01
The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.
Aerospace Materials Process Modelling
1988-08-01
development of advanced technologies for the fabrication of close-tolerance parts, in conjunction with the development of advanced materials, plays a key...1883. 17. Gegel, H. L., et al., "Materials Modeling and Intrinsic Workability for Simulation of Bulk Deformiti6n," Advanced Technology of Plasticity, Vol...process in the last three decades. As a result of technological advances gained in aerospace industry there has been an increasing demand for the
Military handbook: Metallic materials and elements for aerospace vehicle structures, volume 1
NASA Astrophysics Data System (ADS)
1994-11-01
Since many aerospace companies manufacture both commercial and military products, the standardization of metallic materials design data, which are acceptable to government procuring or certification agencies, is very beneficial to those manufacturers as well as governmental agencies. Although the design requirements for military and commercial products may differ greatly, the required design values for the strength of materials and elements and other needed material characteristics are often identical. Therefore this publication is to provide standardized design values and related design information for metallic materials and structural elements used in aerospace structures. The data contained herein or from approved items in the minutes of MIL-RDBK-5 coordination meetings are acceptable to the Air Force, the Navy, the Army, and the Federal Aviation Administration. Approval by the procuring or certificating agency must be obtained for the use of design values for products not contained herein.
Aerospace materials for nonaerospace applications
NASA Technical Reports Server (NTRS)
Johnston, R. L.; Dawn, F. S.
1974-01-01
Many of the flame-resistant nonmetallic materials that were developed for the Apollo and Skylab programs are discussed for commercial and military applications. Interchanges of information are taking place with the government agencies, industries, and educational institutions, which are interested in applications of fire-safe nonmetallic materials. These materials are particularly applicable to the design of aircraft, mass transit interiors, residential and public building constructions, nursing homes and hospitals, and to other fields of fire safety applications. Figures 22, 23 and 24 show the potential nonaerospace applications of flame-resistant aerospace materials are shown.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2018-01-01
Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.
PREFACE: Trends in Aerospace Manufacturing 2009 International Conference
NASA Astrophysics Data System (ADS)
Ridgway, Keith; Gault, Rosemary; Allen, Adrian
2011-12-01
The aerospace industry is rapidly changing. New aircraft structures are being developed and aero-engines are becoming lighter and more environmentally friendly. In both areas, innovative materials and manufacturing methods are used in an attempt to get maximum performance for minimum cost. At the same time, the structure of the industry has changed and there has been a move from large companies designing, manufacturing components and assembling aircraft to one of large global supply chains headed by large system integrators. All these changes have forced engineers and managers to bring in innovations in design, materials, manufacturing technologies and supply chain management. In September 2009, the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield held the inaugural Trends in Aerospace Manufacturing conference (TRAM09). This brought together 28 speakers over two days, who presented in sessions on advanced manufacturing trends for the aerospace sector. Areas covered included new materials, including composites, advanced machining, state of the art additive manufacturing techniques, assembly and supply chain issues.
Secondary aerospace batteries and battery materials: A bibliography, 1969 - 1974
NASA Technical Reports Server (NTRS)
Mcdermott, P.; Halpert, G.; Ekpanyaskun, S.; Nche, P.
1976-01-01
This annotated bibliography on the subject of secondary aerospace battery materials and related physical and electrochemical processes was compiled from references to journal articles published between 1969 and 1974. A total of 332 citations are arranged in chronological order under journal titles. Indices by system and component, techniques and processes, and author are included.
Graphene in the Sky and Beyond
NASA Technical Reports Server (NTRS)
Siochi, Emilie J.
2014-01-01
With the premium placed on strong, lightweight structures, carbon materials have a long history of use in aerospace applications. Graphitized carbon and carbon/carbon composites are used in thermal protection systems and heat shields, carbon fiber composites in aircraft, and more recently, carbon nanotubes have been used on spacecraft. As the newest member of this family of materials, graphene also has a number of interesting properties that intersect with unique aerospace requirements. Despite its many attractive properties, graphene-based structures and systems, like any other material used in aerospace, must clear a number of hurdles before it will be accepted for use in flight structures. Carbon fiber, for example, underwent a development period of several decades between initial discovery and large-scale application in commercial aircraft.
Probabilistic lifetime strength of aerospace materials via computational simulation
NASA Technical Reports Server (NTRS)
Boyce, Lola; Keating, Jerome P.; Lovelace, Thomas B.; Bast, Callie C.
1991-01-01
The results of a second year effort of a research program are presented. The research included development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic phenomenological constitutive relationship, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects of primitive variables. These primitive variables often originate in the environment and may include stress from loading, temperature, chemical, or radiation attack. This multifactor interaction constitutive equation is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the constitutive equation using actual experimental materials data together with the multiple linear regression of that data.
NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1993-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.
Cost-effective lightweight mirrors for aerospace and defense
NASA Astrophysics Data System (ADS)
Woodard, Kenneth S.; Comstock, Lovell E.; Wamboldt, Leonard; Roy, Brian P.
2015-05-01
The demand for high performance, lightweight mirrors was historically driven by aerospace and defense (A&D) but now we are also seeing similar requirements for commercial applications. These applications range from aerospace-like platforms such as small unmanned aircraft for agricultural, mineral and pollutant aerial mapping to an eye tracking gimbaled mirror for optometry offices. While aerospace and defense businesses can often justify the high cost of exotic, low density materials, commercial products rarely can. Also, to obtain high performance with low overall optical system weight, aspheric surfaces are often prescribed. This may drive the manufacturing process to diamond machining thus requiring the reflective side of the mirror to be a diamond machinable material. This paper summarizes the diamond machined finishing and coating of some high performance, lightweight designs using non-exotic substrates to achieve cost effective mirrors. The results indicate that these processes can meet typical aerospace and defense requirements but may also be competitive in some commercial applications.
Between Industry and Academia: A Physicist's Experiences at The Aerospace Corporation
NASA Astrophysics Data System (ADS)
Camparo, James
2005-03-01
The Aerospace Corporation is a nonprofit company whose purposes are exclusively scientific: to provide research, development, and advisory services for space programs that serve the national interest, primarily the Air Force's Space and Missile Systems Center and the National Reconnaissance Office. The corporation's laboratory has a staff of about 150 scientists who conduct research in fields ranging from Space Sciences to Material Sciences and from Analytical Chemistry to Atomic Physics. As a consequence, Aerospace stands midway between an industrial research laboratory, focused on product development, and academic/national laboratories focused on basic science. Drawing from Dr. Camparo's personal experiences, the presentation will discuss advantages and disadvantages of a career at Aerospace, including the role of publishing in peer-reviewed journals and the impact of work on family life. Additionally, the presentation will consider the balance between basic physics, applied physics, and engineering in the work at Aerospace. Since joining Aerospace in 1981, Dr. Camparo has worked as an atomic physicist specializing in the area of atomic clocks, and has had the opportunity to experiment and publish on a broad range of research topics including: the stochastic-field/atom interaction, radiation effects on semiconductor materials, and stellar scintillation.
Acoustic emission measurements of aerospace materials and structures
NASA Technical Reports Server (NTRS)
Sachse, Wolfgang; Gorman, Michael R.
1993-01-01
A development status evaluation is given for aerospace applications of AE location, detection, and source characterization. Attention is given to the neural-like processing of AE signals for graphite/epoxy. It is recommended that development efforts for AE make connections between the material failure process and source dynamics, and study the effects of composite material anisotropy and inhomogeneity on the propagation of AE waves. Broadband, as well as frequency- and wave-mode selective sensors, need to be developed.
Polymer and ceramic nanocomposites for aerospace applications
NASA Astrophysics Data System (ADS)
Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana
2017-11-01
This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.
Environmentally regulated aerospace coatings
NASA Technical Reports Server (NTRS)
Morris, Virginia L.
1995-01-01
Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.
Unification - An international aerospace information issue
NASA Technical Reports Server (NTRS)
Cotter, Gladys A.; Lahr, Thomas F.
1992-01-01
Scientific and Technical Information (STI) represents the results of large investments in research and development (R&D) and the expertise of a nation and is a valuable resource. For more than four decades, NASA and its predecessor organizations have developed and managed the preeminent aerospace information system. NASA obtains foreign materials through its international exchange relationships, continually increasing the comprehensiveness of the NASA Aerospace Database (NAD). The NAD is de facto the international aerospace database. This paper reviews current NASA goals and activities with a view toward maintaining compatibility among international aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.
Polymeric Materials for Aerospace Power and Propulsion-NASA Glenn Overview
NASA Technical Reports Server (NTRS)
Meador, Michael A.
2008-01-01
Use of lightweight materials in aerospace power and propulsion components can lead to significant reductions in vehicle weight and improvements in performance and efficiency. Polymeric materials are well suited for many of these applications, but improvements in processability, durability and performance are required for their successful use in these components. Polymers Research at NASA Glenn is focused on utilizing a combination of traditional polymer science and engineering approaches and nanotechnology to develop new materials with enhanced processability, performance and durability. An overview of these efforts will be presented.
Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler)
2002-01-01
This document contains the proceedings of the Training Workshop on Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, March 5 - 6, 2002. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in hierarchical approach to material modeling from continuum to atomistics; applications of multiscale modeling to advanced and improved material synthesis; defects, dislocations, and material deformation; fracture and friction; thin-film growth; characterization at nano and micro scales; and, verification and validation of numerical simulations, and to identify their potential for future aerospace systems.
Graphene-magnesium nanocomposite: An advanced material for aerospace application
NASA Astrophysics Data System (ADS)
Das, D. K.; Sarkar, Jit
2018-02-01
This work focuses on the analytical study of mechanical and thermal properties of a nanocomposite that can be obtained by reinforcing graphene in magnesium. The estimated mechanical and thermal properties of graphene-magnesium nanocomposite are much higher than magnesium and other existing alloys used in aerospace materials. We also altered the weight percentage of graphene in the composite and observed mechanical and thermal properties of the composite increase with increase in concentration of graphene reinforcement. The Young’s modulus and thermal conductivity of graphene-magnesium nanocomposite are found to be ≥165 GPa and ≥175 W/mK, respectively. Nanocomposite material with desired properties for targeted applications can also be designed by our analytical modeling technique. This graphene-magnesium nanocomposite can be used for designing improved aerospace structure systems with enhanced properties.
Trends in aerospace structures
NASA Technical Reports Server (NTRS)
Card, M. F.
1978-01-01
Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.
NASA Technical Reports Server (NTRS)
Bladwin, Richard S.
2009-01-01
As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.
Unified System Of Data On Materials And Processes
NASA Technical Reports Server (NTRS)
Key, Carlo F.
1989-01-01
Wide-ranging sets of data for aerospace industry described. Document describes Materials and Processes Technical Information System (MAPTIS), computerized set of integrated data bases for use by NASA and aerospace industry. Stores information in standard format for fast retrieval in searches and surveys of data. Helps engineers select materials and verify their properties. Promotes standardized nomenclature as well as standarized tests and presentation of data. Format of document of photographic projection slides used in lectures. Presents examples of reports from various data bases.
Organization of Workshop on Emerging Technologies for In-Situ Processing
1992-08-31
for Atomic Layer Processin H . Helvajian Materials & Mechanics Technology Center Aerospace Corporation Los Angeles, California 90009 USA There exists...Krishna Saraswat (Stanford) $ 750 - Henry Helvajian (Aerospace Corp.) $ 500 - Lloyd Hariott (Bell Labs) $ 500 - Jon Orloff (Oregon Grad. Inst.) $ 750 - Tom...Ablation Deposition of Thin Films and surface Analysis by STM/AFM (Coffee) 3:30 PM Henry Helvajian Laser Material Interaction for Atomic Layer
ERIC Educational Resources Information Center
Fowler, Wallace T.; Watkins, R. D.
With the decline in enrollment in the early 1970's, many aerospace engineering departments had too few students to offer some required courses. At the University of Texas at Austin, a set of personalized system of instruction (PSI) materials for the aircraft performance, stability, and control course was developed. The paper includes a description…
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Kennedy, John M.
1990-01-01
Descriptive and analytical data regarding the flow of aerospace-based scientific and technical information (STI) in the academic community are presented. An overview is provided of the Federal Aerospace Knowledge Diffusion Research Project, illustrating a five-year program on aerospace knowledge diffusion. Preliminary results are presented of the project's research concerning the information-seeking habits, practices, and attitudes of U.S. aerospace engineering and science students and faculty. The type and amount of education and training in the use of information sources are examined. The use and importance ascribed to various information products by U.S. aerospace faculty and students including computer and other information technology is assessed. An evaluation of NASA technical reports is presented and it is concluded that NASA technical reports are rated high in terms of quality and comprehensiveness, citing Engineering Index and IAA as the most frequently used materials by faculty and students.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1994-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Astrophysics Data System (ADS)
Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1994-03-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.
International Conference on Superplasticity and Superplastic Forming
1988-08-09
aluminides and other intermetallic compounds, as well as certain metal matrix composites. The applications of SPF parts continues to increase both in...aerospace and non-aerospace areas. Titanium continues to be the primary material processed for aerospace, although the development in Al SPF is accelerating...Electrical Technology of SCMI Superplastic Forming of Ti-Alloy Turbine Blade Paper 28 WANG CHENG and LUO YING-SHE, Xiangtan University Nc~’ Advance
Assessment of the Flammability of Aircraft Hydraulic Fluids
1979-07-01
and C. Y. Ito, Editors, " Thermophysical Properties of Selected Aerospace Materials," Part 1, Thermal Radiation Properties , Purdue University., 1976...34 Thermophysical Properties of Selected Aerospace Materials," Part 1, Thermal Radiation Properties , Purdue University, 1976. 9. J. M. Kuchta, "Summary of...propagation properties , and heats of combustion of a number of aircraft fluids. These included currently used (cont’d) FtORM DD I JAN 7 1473 EDITION
The development of Nb-based advanced intermetallic alloys for structural applications
NASA Astrophysics Data System (ADS)
Subramanian, P. R.; Mendiratta, M. G.; Dimiduk, D. M.
1996-01-01
A new generation of refractory material systems with significant increases in temperature capability is required to meet the demands of future aerospace applications. Such materials require a balance of properties such as low-temperature damage tolerance, high-temperature strength, creep resistance, and superior environmental stability for implementation in advanced aerospace systems. Systems incorporating niobium-based beta alloys and intermetallic compounds have the potential for meeting these requirements.
Real-time Monitoring Of Damage Evolution In Aerospace Materials Using Nonlinear Acoustics
NASA Astrophysics Data System (ADS)
Matikas, T. E.; Paipetis, A.; Kostopoulos, V.
2008-06-01
This work deals with the development of a novel non-destructive technique based on nonlinear acoustics, enabling real-time monitoring of material degradation in aerospace structures. When a sinusoidal ultrasonic wave of a given frequency and of sufficient amplitude is introduced into a nonlinear or an-harmonic solid, the fundamental wave distorts as it propagates, so that the second and higher harmonics of the fundamental frequency are generated. The measurement of the amplitude of these harmonics provides information on the coefficient of the second and higher order terms of the stress-strain relation for a nonlinear solid. It is demonstrated here that the material bulk nonlinear parameter for titanium alloy samples at different fatigue levels exhibits large changes compared to linear ultrasonic parameters such as velocity and attenuation. However, the use of bulk ultrasonic waves has serious disadvantages for the health monitoring of aerospace structures since it requires the placement of ultrasonic transducers on two, perfectly parallel, opposite sides of the samples. Such a setup is hardly feasible in real field conditions. For this reason, surface acoustic waves (SAW) were used in this study enabling the in-situ characterization of fatigue damage. The experimental setup for measuring the material nonlinear parameter using SAW was realised and the feasibility of the technique for health monitoring of aerospace structures was evaluated.
Materials Lifecycle and Environmental Consideration at NASA
NASA Technical Reports Server (NTRS)
Clark-Ingram, Marceia
2010-01-01
The aerospace community faces tremendous challenges with continued availability of existing material supply chains during the lifecycle of a program. Many obsolescence drivers affect the availability of materials: environmental safety ahd health regulations, vendor and supply economics, market sector demands,and natural disasters. Materials selection has become increasingly more critical when designing aerospace hardware. NASA and DoD conducted a workshop with subject matter experts to discuss issues and define solutions for materials selections during the lifecycle phases of a product/system/component. The three primary lifecycle phases were: Conceptualization/Design, Production & Sustainment, and End of life / Reclamation. Materials obsolescence and pollution prevention considerations were explored for the aforementioned lifecycle phases. The recommended solutions from the workshop are being presented.
NASA Technical Reports Server (NTRS)
Graham, R. W.; Gutstein, M. U.
1972-01-01
The primary technology areas are aerospace propulsion, power and materials. As examples in these technologies, the programs in the fields of cryogenics and liquid metals are reviewed and potential non-aerospace applications for the results of these programs are discussed. These include such possibilities as: hydrogen as a non-polluting industrial fuel; more efficient central power stations; and powerplants for advanced ground transportation.
Using Aerospace Technology To Design Orthopedic Implants
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Mraz, P. J.; Davy, D. T.
1996-01-01
Technology originally developed to optimize designs of composite-material aerospace structural components used to develop method for optimizing designs of orthopedic implants. Development effort focused on designing knee implants, long-term goal to develop method for optimizing designs of orthopedic implants in general.
Advanced Space Flight and Environmental Concerns
NASA Technical Reports Server (NTRS)
Whitaker, A.
2001-01-01
The aerospace industry has conquered numerous environmental challenges during the last decade. The aerospace industry of today has evolved due in part to the environmental challenges, becoming stronger, more robust, learning to push the limits of technology, materials and manufacturing, and performing cutting edge engineering.
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.
2010-01-01
This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This report contains the Appendices to the findings from the first year of the program's operations.
Damping in aerospace composite materials
NASA Astrophysics Data System (ADS)
Agneni, A.; Balis Crema, L.; Castellani, A.
Experimental results are presented on specimens of carbon and Kevlar fibers in epoxy resin, materials used in many aerospace structures (control surfaces and wings in aircraft, large antennas in spacecraft, etc.). Some experimental methods of estimating damping ratios are first reviewed, either in the time domain or in the frequency domain. Some damping factor estimates from experimental tests are then shown; in order to evaluate the effects of the aerospace environment, damping factors have been obtained in a typical range of temperature, namely between +120 C and -120 C, and in the pressure range from room pressure to 10 exp -6 torr. Finally, a theoretical approach for predicting the bounds of the damping coefficients is shown, and prediction data are compared with experimental results.
NASA-UVA light aerospace alloy and structures technology program
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1990-01-01
The objective of the Light Aerospace Alloy and Structures Technology Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. Individual technical objectives are established for each project. Efforts aim to produce basic understanding of material behavior, monolithic and composite alloys, processing methods, solid and mechanics analyses, measurement advances, and a pool of educated graduate students. Progress is reported for 11 areas of study.
Aerospace Concepts at the Elementary Level
ERIC Educational Resources Information Center
Journal of Aerospace Education, 1975
1975-01-01
Presents materials compiled to assist the elementary teacher in preparing teaching units in aerospace education. Suggests specific and general objectives and lists important concepts and questions pertaining to areas such as: history of flight, weather and flying, airplanes, jets, rockets, space travel, and the solar system. (MLH)
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1995-01-01
The NASA-UVa Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. Here, we report on progress achieved between July 1 and December 31, 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.
Ni-Ti Alloys for Aerospace Bearing Applications
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2017-01-01
Nickel-rich Ni-Ti alloys are emerging candidate materials for aerospace bearing applications. These alloys exhibit a unique combination of physical, chemical, and tribological properties that are highly relevant to challenging aerospace bearings and other mechanical components. Despite being made solely from metals, Ni-Ti alloys are classified as intermetallics with properties akin to both metals and ceramics. For instance, like metals, they are electrically conductive but they tend to be brittle like ceramics. When properly processed, they have high hardness, low elastic modulus and an extensive elastic deformation range that imparts extraordinarily high resilience and resistance to denting. New alloy compositions enable simpler thermal processing and machining and intensive microstructural analyses have helped elucidate the materials science mechanisms governing hardness. In this paper, the application of state-of-art in NiTi alloys for aerospace bearings and mechanical components is explored. In addition to reviewing future trends and remaining challenges, the unique approaches and methods of tailoring bearing design to accommodate NiTis unique properties is discussed.
Metal clad aramid fibers for aerospace wire and cable
NASA Technical Reports Server (NTRS)
Tokarsky, Edward W.; Dunham, Michael G.; Hunt, James E.; Santoleri, E. David; Allen, David B.
1995-01-01
High strength light weight metal clad aramid fibers can provide significant weight savings when used to replace conventional metal wire in aerospace cable. An overview of metal clad aramid fiber materials and information on performance and use in braided electrical shielding and signal conductors is provided.
Resin Transfer Moldable Polyimides Developed for High-Temperature Applications
NASA Technical Reports Server (NTRS)
Meador, Mary Ann
2000-01-01
High-temperature polyimides, such as PMR 15 (which was developed at the NASA Glenn Research Center at Lewis Field), are becoming an increasingly important class of materials for a variety of aerospace applications, such as aircraft engine components and propulsion and airframe components for reusable launch vehicles (RLV s). Because of their high specific strength and low density, use of these materials in place of more traditional aerospace materials, such as titanium, can significantly reduce component and vehicle weight, leading to reductions in fuel consumption (and pollutants), increases in payload and passenger capacity, and improvements in vehicle performance.
Novel Wiring Technologies for Aerospace Applications
NASA Technical Reports Server (NTRS)
Gibson, Tracy L.; Parrish, Lewis M.
2014-01-01
Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.
Study on application of aerospace technology to improve surgical implants
NASA Technical Reports Server (NTRS)
Johnson, R. E.; Youngblood, J. L.
1982-01-01
The areas where aerospace technology could be used to improve the reliability and performance of metallic, orthopedic implants was assessed. Specifically, comparisons were made of material controls, design approaches, analytical methods and inspection approaches being used in the implant industry with hardware for the aerospace industries. Several areas for possible improvement were noted such as increased use of finite element stress analysis and fracture control programs on devices where the needs exist for maximum reliability and high structural performance.
1994-02-01
within and between organizations. The technical report has been defined etymologically , according to report content and method (U.S. Department of...number) I AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4 GEOSCIENCES 9 SPACE SCIENCES 5...the application of your work? (Circle ONLY one number) 1 AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3
Exploratory Investigation into the Durability of Beneficial Cold Worked Fastener Hole in Aluminum
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Clark, David A.
1999-01-01
Cold working fastener holes in aluminum alloys is a widely used technique in the aerospace industry for improving the fatigue performance of structures. A compressive tangential stress introduced in the material during the cold working of the hole reduces the natural tendency of the material to crack at the holes under cyclic tensile loading. It is a lucrative technique for the aerospace industry in that it provides an increase in performance without any weight cost.
Overview and major characteristics of future aeronautical and space systems
NASA Technical Reports Server (NTRS)
Venneri, Samuel L.; Noor, Ahmed K.
1992-01-01
A systematic projection is made of prospective materials and structural systems' performance requirements in light of emerging applications. The applications encompass high-speed/long-range rotorcraft, advanced subsonic commercial aircraft, high speed (supersonic) commercial transports, hypersonic aircraft and missiles, extremely high-altitude cruise aircraft and missiles, and aerospace craft and launch vehicles. A tabulation is presented of the materials/structures/dynamics requirements associated with future aerospace systems, as well as the further development needs foreseen in each such case.
Elementary School Aerospace Activities: A Resource for Teachers.
ERIC Educational Resources Information Center
Kopp, O. W.; And Others
This publication is designed for use by elementary school teachers when introducing aerospace developments into classroom programs. Its materials, prepared at the University of Nebraska-Lincoln, are grouped into ten sections: (1) earth characteristics that affect flight; (2) flight in the atmosphere; (3) rockets; (4) technological advances; (5)…
ERIC Educational Resources Information Center
Strickler, Mervin K., Jr.
This publication is designed to provide both policy guidance and examples of how to work with various constituencies in planning and carrying out appropriate Federal Aviation Administration (FAA) aviation education activities. Information is provided on the history of aerospace/aviation education, FAA educational materials, aerospace/aviation…
The JPL Cryogenic Dilatometer: Measuring the Thermal Expansion Coefficient of Aerospace Materials
NASA Technical Reports Server (NTRS)
Halverson, Peter G.; Dudick, Matthew J.; Karlmann, Paul; Klein, Kerry J.; Levine, Marie; Marcin, Martin; Parker, Tyler J.; Peters, Robert D.; Shaklan, Stuart; VanBuren, David
2007-01-01
This slide presentation details the cryogenic dilatometer, which is used by JPL to measure the thermal expansion coefficient of materials used in Aerospace. Included is a system diagram, a picture of the dilatometer chamber and the laser source, a description of the laser source, pictures of the interferometer, block diagrams of the electronics and software and a picture of the electronics, and software. Also there is a brief review of the accurace.error budget. The materials tested are also described, and the results are shown in strain curves, JPL measured strain fits are described, and the coefficient of thermal expansion (CTE) is also shown for the materials tested.
NASA Astrophysics Data System (ADS)
Gohardani, Omid; Elola, Maialen Chapartegui; Elizetxea, Cristina
2014-10-01
Carbon nanotubes have instigated the interest of many different scientific fields since their authenticated introduction, more than two decades ago. Particularly in aerospace applications, the potential implementations of these advanced materials have been predicted to have a large impact on future aircraft and space vehicles, mainly due to their distinct features, which include superior mechanical, thermal and electrical properties. This article provides the very first consolidated review of the imminent prospects of utilizing carbon nanotubes and nanoparticles in aerospace sciences, based on their recent implementations and predicted future applications. Explicitly, expected carbon nanotube employment in aeronautics and astronautics are identified for commercial aircraft, military aircraft, rotorcraft, unmanned aerial vehicles, satellites, and space launch vehicles. Attention is devoted to future utilization of carbon nanotubes, which may comprise hydrogen storage encapsulation, composite material implementation, lightning protection for aircraft, aircraft icing mitigation, reduced weight of airframes/satellites, and alleviation of challenges related to future space launch. This study further sheds light onto recent actualized implementations of carbon nanotubes in aerospace applications, as well as current and prospective challenges related to their usage in aerospace sciences, encompassing health and safety hazards, large scale manufacturing, achievement of optimum properties, recycling, and environmental impacts.
NASA Astrophysics Data System (ADS)
Bright, Robin Michael
The ability to adequately cool internal gas-turbine engine components in next-generation commercial and military aircraft is of extreme importance to the aerospace industry as the demand for high-efficiency engines continues to push operating temperatures higher. Pulsed laser-drilling is rapidly becoming the preferred method of creating cooling holes in high temperature components due a variety of manufacturing advantages of laser-drilling over conventional hole-drilling techniques. As cooling requirements become more demanding, the impact of drilling conditions on material removal behavior and subsequent effects on hole quality becomes critical. In this work, the development of emission spectroscopy as a method to probe the laser-drilling process is presented and subsequently applied to the study of material behavior of various structural aerospace materials during drilling. Specifically, emitted photons associated with energy level transitions within excited neutral atoms in material ejected during drilling were detected and analyzed. Systematic spectroscopic studies indicated that electron energy level populations and calculated electron temperatures within ejected material are dependent on both laser pulse energy and duration. Local thermal conditions detected by the developed method were related to the characteristics of ejected material during drilling and to final hole quality. Finally, methods of utilizing the observed relationships for spectroscopic process monitoring and control were demonstrated.
Ultrasonic Characterization of Aerospace Composites
NASA Technical Reports Server (NTRS)
Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel
2015-01-01
Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.
NASA Technical Reports Server (NTRS)
Fuerstenau, D. W.; Ravikumar, R.
1997-01-01
In this report, thin film deposition of one of the model candidate materials for use as water repellent coating on the thermal protection systems (TPS) of an aerospace vehicle was investigated. The material tested was boron nitride (BN), the water-repellent properties of which was detailed in our other investigation. Two different methods, chemical vapor deposition (CVD) and pulsed laser deposition (PLD), were used to prepare the BN films on a fused quartz substrate (one of the components of thermal protection systems on aerospace vehicles). The deposited films were characterized by a variety of techniques including X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The BN films were observed to be amorphous in nature, and a CVD-deposited film yielded a contact angle of 60 degrees with water, similar to the pellet BN samples investigated previously. This demonstrates that it is possible to use the bulk sample wetting properties as a guideline to determine the candidate waterproofing material for the TPS.
Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost
NASA Astrophysics Data System (ADS)
Shen, A. W.; Guo, J. L.; Wang, Z. J.
2015-12-01
In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.
REACH Impact on Aerospace Materials - U.S. Perspective
2012-08-01
Case of Di-isobutyl Phthalate - OR- How ECHA Can Greatly Accelerate Phase-Out •In 2008, Di-isobutyl Phthalate (DIBP) was not a CMR but was a...Problems • Phthalates – Used to make stuff flexible •Aerospace Uses – sleeving, wire sheath, plastic panels, adhesives, etc, etc •Out of 30 most
Aerospace-Related Life Science Concepts for Use in Life Science Classes Grades 7-12.
ERIC Educational Resources Information Center
Williams, Mary H.; Rademacher, Jean
The purpose of this guide is to provide the teacher of secondary school life science classes with resource materials for activities to familiarize students with recent discoveries in bioastronautics. Each section introduces a life science concept and a related aerospace concept, gives background information, suggested activities, and an annotated…
Aerospace-Oriented Units for Use in Secondary School Classes.
ERIC Educational Resources Information Center
Williams, Mary H.; And Others
This set of nine units is intended to furnish aerospace-oriented resource material to help teachers include recent scientific and technological advances in the secondary school science curriculum. The units provided are as follows: history of astronomy, the solar system, beyond the solar system, history of flight, spaceflight facts, aerology,…
NASA technology utilization survey on composite materials
NASA Technical Reports Server (NTRS)
Leeds, M. A.; Schwartz, S.; Holm, G. J.; Krainess, A. M.; Wykes, D. M.; Delzell, M. T.; Veazie, W. H., Jr.
1972-01-01
NASA and NASA-funded contractor contributions to the field of composite materials are surveyed. Existing and potential non-aerospace applications of the newer composite materials are emphasized. Economic factors for selection of a composite for a particular application are weight savings, performance (high strength, high elastic modulus, low coefficient of expansion, heat resistance, corrosion resistance,), longer service life, and reduced maintenance. Applications for composites in agriculture, chemical and petrochemical industries, construction, consumer goods, machinery, power generation and distribution, transportation, biomedicine, and safety are presented. With the continuing trend toward further cost reductions, composites warrant consideration in a wide range of non-aerospace applications. Composite materials discussed include filamentary reinforced materials, laminates, multiphase alloys, solid multiphase lubricants, and multiphase ceramics. New processes developed to aid in fabrication of composites are given.
Chromatography - mass spectrometry in aerospace industry
NASA Astrophysics Data System (ADS)
Buryak, A. K.; Serdyuk, T. M.
2013-01-01
The applications of chromatography - mass spectrometry in aerospace industry are considered. The primary attention is devoted to the development of physicochemical grounds of the use of various chromatography - mass spectrometry procedures to solve topical problems of this industry. Various methods for investigation of the composition of rocket fuels, surfaces of structural materials and environmental media affected by aerospace activities are compared. The application of chromatography - mass spectrometry for the development and evaluation of processes for decontaminations of equipment, industrial wastes and soils from rocket fuel components is substantiated. The bibliography includes 135 references.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.
1991-01-01
The general objective of the Light Aerospace Alloy and Structures Technology (LA2ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures in close collaboration with Langley researchers. Specific technical objectives are established for each research project. Relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanic analyses, measurement advances, and a pool of educated graduate students are sought.
Other NASA-developed materials and some industrial applications
NASA Technical Reports Server (NTRS)
Radnofsky, M. I.
1971-01-01
The characteristics and applications of various materials for fireproofing aerospace vehicles are discussed. Materials described are: (1) fibrous materials, (2) nonflammable paper and paperboard, (3) elastomers, (4) foams, and (5) plastics. The suitability of the various materials for specific applications are investigated.
1994-01-01
defined etymologically , according to report content and method (U.S. Department of Defense, 1964); behaviorally, according to the influence on the reader...SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4 GEOSCIENCES 9 SPACE SCIENCES 5 LIFE SCIENCES 10 OTHER (specify) 63. IsANYof...YOUR work? (Circle ONLY one number) I AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4
Polyimide Boosts High-Temperature Performance
NASA Technical Reports Server (NTRS)
2008-01-01
Maverick Corporation, of Blue Ash, Ohio, licensed DMBZ-15 polyimide technology from Glenn Research Center. This ultrahigh-temperature material provides substantial weight savings and reduced machining costs compared to the same component made with more traditional metallic materials. DMBZ-15 has a wide range of applications from aerospace (aircraft engine and airframe components, space transportation systems, and missiles) to non-aerospace (oil drilling, rolling mill), and is particularly well-suited to use as face sheets with honey cones or thermal protection systems for reusable launch vehicles, which encounter elevated temperatures during launch and re-entry.
Tensile properties of nicalon fiber-reinforced carbon following aerospace turbine engine testing
NASA Astrophysics Data System (ADS)
Pierce, J. L.; Zawada, L. P.; Srinivasan, R.
2003-06-01
The durability of coated Nicalon silicon carbide fiber-reinforced carbon (SiC/C) as the flap and seal exhaust nozzle components in a military aerospace turbine engine was studied. Test specimens machined from both a flap and a seal component were tested for residual strength following extended ground engine testing on a General Electric F414 afterburning turbofan engine. Although small amounts of damage to the protective exterior coating were identified on each component following engine testing, the tensile strengths were equal to the as-fabricated tensile strength of the material. Differences in strength between the two components and variability within the data sets could be traced back to the fabrication process using witness coupon test data from the manufacturer. It was also observed that test specimens machined transversely across the flap and seal components were stronger than those machined along the length. The excellent retained strength of the coated SiC/C material after extended exposure to the severe environment in the afterburner exhaust section of an aerospace turbofan engine has resulted in this material being selected as the baseline material for the F414 exhaust nozzle system.
NASA Astrophysics Data System (ADS)
Matikas, Theodore E.
2010-07-01
The objective of this work is to characterize the damage and monitor in real-time aging structural components used in aerospace applications by means of advanced nondestructive evaluation techniques. Two novel experimental methodologies are used in this study, based on ultrasonic microscopy and nonlinear acoustics. It is demonstrated in this work that ultrasonic microscopy can be successfully utilized for local elastic property measurement, crack-size determination as well as for interfacial damage evaluation in high-temperature materials, such as metal matrix composites. Nonlinear acoustics enables real-time monitoring of material degradation in aerospace structures. When a sinusoidal ultrasonic wave of a given frequency and of sufficient amplitude is introduced into a nonharmonic solid, the fundamental wave distorts as it propagates, and therefore the second and higher harmonics of the fundamental frequency are generated. Measurements of the amplitude of these harmonics provide information on the coefficient of second- and higher-order terms of the stress-strain relation for a nonlinear solid. It is shown in this article that the material bulk nonlinear parameter for metallic alloy samples at different fatigue levels exhibits large changes compared to linear ultrasonic parameters, such as velocity and attenuation.
76 FR 48045 - Airworthiness Directives; Costruzioni Aeronautiche Tecnam srl Model P2006T Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... material at the FAA, call (816) 329-4148; e-mail: albert.mercado@faa.gov . Examining the AD Docket You may... Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City, Missouri... procedures found in 14 CFR 39.19. Send information to ATTN: Albert Mercado, Aerospace Engineer, FAA, Small...
Ceramic Integration Technologies for Energy and Aerospace Applications
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Asthana, Ralph N.
2007-01-01
Robust and affordable integration technologies for advanced ceramics are required to improve the performance, reliability, efficiency, and durability of components, devices, and systems based on them in a wide variety of energy, aerospace, and environmental applications. Many thermochemical and thermomechanical factors including joint design, analysis, and optimization must be considered in integration of similar and dissimilar material systems.
Yuan, Ye; Sun, Xianxian; Yang, Minglong; Xu, Fan; Lin, Zaishan; Zhao, Xu; Ding, Yujie; Li, Jianjun; Yin, Weilong; Peng, Qingyu; He, Xiaodong; Li, Yibin
2017-06-28
Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge. Herein, inspired by the unique structure of natural wood, lightweight and highly anisotropic wood-derived carbon composite EMI shielding materials have been prepared which possess not only high EMI shielding performance and mechanical stable characteristics, but also possess thermally stable properties, outperforming those metals, conductive polymers, and their composites. The newly developed low-cost materials are promising for specific applications in aerospace electronic devices, especially regarding extreme temperatures.
NASA Technical Reports Server (NTRS)
Davidson, Paul; Pineda, Evan J.; Heinrich, Christian; Waas, Anthony M.
2013-01-01
The open hole tensile and compressive strengths are important design parameters in qualifying fiber reinforced laminates for a wide variety of structural applications in the aerospace industry. In this paper, we present a unified model that can be used for predicting both these strengths (tensile and compressive) using the same set of coupon level, material property data. As a prelude to the unified computational model that follows, simplified approaches, referred to as "zeroth order", "first order", etc. with increasing levels of fidelity are first presented. The results and methods presented are practical and validated against experimental data. They serve as an introductory step in establishing a virtual building block, bottom-up approach to designing future airframe structures with composite materials. The results are useful for aerospace design engineers, particularly those that deal with airframe design.
Current and future translation trends in aeronautics and astronautics
NASA Technical Reports Server (NTRS)
Rowe, Timothy
1986-01-01
The pattern of translation activity in aeronautics and astronautics is reviewed. It is argued that the international nature of the aerospace industry and the commercialization of space have increased the need for the translation of scientific literature in the aerospace field. Various factors which can affect the quality of translations are examined. The need to translate the activities of the Soviets, Germans, and French in materials science in microgravity, of the Japanese, Germans, and French in the development of industrial ceramics, and of the Chinese in launching and communications satellites is discussed. It is noted that due to increases in multilateral and bilateral relationships in the aerospace industry, the amount of translation from non-English source material into non-English text will increase and the most important languages will be French and German, with an increasing demand for Japanese, Chinese, Spanish, and Italian translations.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Jefferson, Michael
2015-01-01
NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.
NASA aerospace database subject scope: An overview
NASA Technical Reports Server (NTRS)
1993-01-01
Outlined here is the subject scope of the NASA Aerospace Database, a publicly available subset of the NASA Scientific and Technical (STI) Database. Topics of interest to NASA are outlined and placed within the framework of the following broad aerospace subject categories: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences, and general. A brief discussion of the subject scope is given for each broad area, followed by a similar explanation of each of the narrower subject fields that follow. The subject category code is listed for each entry.
The role of light microscopy in aerospace analytical laboratories
NASA Technical Reports Server (NTRS)
Crutcher, E. R.
1977-01-01
Light microscopy has greatly reduced analytical flow time and added new dimensions to laboratory capability. Aerospace analytical laboratories are often confronted with problems involving contamination, wear, or material inhomogeneity. The detection of potential problems and the solution of those that develop necessitate the most sensitive and selective applications of sophisticated analytical techniques and instrumentation. This inevitably involves light microscopy. The microscope can characterize and often identify the cause of a problem in 5-15 minutes with confirmatory tests generally less than one hour. Light microscopy has and will make a very significant contribution to the analytical capabilities of aerospace laboratories.
NASA Technical Reports Server (NTRS)
Scott, Elaine P.
1993-01-01
Thermal stress analyses are an important aspect in the development of aerospace vehicles such as the National Aero-Space Plane (NASP) and the High-Speed Civil Transport (HSCT) at NASA-LaRC. These analyses require knowledge of the temperature within the structures which consequently necessitates the need for thermal property data. The initial goal of this research effort was to develop a methodology for the estimation of thermal properties of aerospace structural materials at room temperature and to develop a procedure to optimize the estimation process. The estimation procedure was implemented utilizing a general purpose finite element code. In addition, an optimization procedure was developed and implemented to determine critical experimental parameters to optimize the estimation procedure. Finally, preliminary experiments were conducted at the Aircraft Structures Branch (ASB) laboratory.
NASA Astrophysics Data System (ADS)
Scott, Elaine P.
1993-12-01
Thermal stress analyses are an important aspect in the development of aerospace vehicles such as the National Aero-Space Plane (NASP) and the High-Speed Civil Transport (HSCT) at NASA-LaRC. These analyses require knowledge of the temperature within the structures which consequently necessitates the need for thermal property data. The initial goal of this research effort was to develop a methodology for the estimation of thermal properties of aerospace structural materials at room temperature and to develop a procedure to optimize the estimation process. The estimation procedure was implemented utilizing a general purpose finite element code. In addition, an optimization procedure was developed and implemented to determine critical experimental parameters to optimize the estimation procedure. Finally, preliminary experiments were conducted at the Aircraft Structures Branch (ASB) laboratory.
40 CFR 59.1 - Final determinations under Section 183(e)(3)(C) of the CAA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... furniture coatings; (b) Aerospace coatings; (c) Shipbuilding and repair coatings; (d) Lithographic printing materials; (e) Letterpress printing materials; (f) Flexible packaging printing materials; (g) Flat wood... materials; and (p) Miscellaneous industrial adhesives. [73 FR 58491, Oct. 7, 2008] ...
Superalloy resources: Supply and availability
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.
1987-01-01
Over the past several decades there have been shortages of strategic materials because of our near total import dependence on such metals as chromium, cobalt, and tantalum. In response to the continued vulnerability of U.S. superalloy producers to disruptions in resource supplies, NASA has undertaken a program to address alternatives to the super-alloys containing significant quantities of the strategic materials such as chromium, cobalt, niobium, and tantalum. The research program called Conservation of Strategic Aerospace Materials (COSAM) focuses on substitution, processing, and alternate materials to achieve its goals. In addition to NASA Lewis Research Center, universities and industry play an important role in the COSAM Program. This paper defines what is meant by strategic materials in the aerospace community, presents a strategic materials index, and reviews the resource supply and availability picture from the U.S. point of view. In addition, research results from the COSAM Program are highlighted and future directions for the use of low strategic material alloys or alternate materials are discussed.
Directionally Solidified Eutectic Ceramics for Multifunctional Aerospace Applications
2009-06-01
Solidified Alumina - Titania Composites", Key Engineering Materials, 290 (2005) pp 199 - 202. PEER REVIEWED CONFERENCE PROCEEDINGS 22. A. Sayir, S...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 1 Progress Report for 2006 For the Grant Directionally Solidified Eutectic Ceramics ...incorporating structural ceramics in future aerospace applications: (1) the challenges associated with ceramics are improving strength, toughness and
Projected progress in the engineering state-of-the-art. [for aerospace
NASA Technical Reports Server (NTRS)
Nicks, O. W.
1978-01-01
Projected advances in discipline areas associated with aerospace engineering are discussed. The areas examined are propulsion and power, materials and structures, aerothermodynamics, and electronics. Attention is directed to interdisciplinary relationships; one example would be the application of communications technology to the solution of propulsion problems. Examples involving projected technology changes are presented, and technology integration and societal effects are considered.
High Temperature Epoxy Nanocomposites for Aerospace Applications
2009-06-10
thermal stability (~430°C) can be used for formulation of next generation aerospace nanocomposite matrix materials. 10 Publications: 1. J. Langat ...Properties Evaluation of Thermally Stable Layered Organosilicate Nanocomposites, Polymers for Advanced Technology, 18, 574(2007). 3. J. Langat , M...Properties in Polymer Nanocomposites, edited by Dr. Sergei Nazarenko (MRS Fall Meeting Symposium KK Proceedings) Boston, MA 2008 (in print). 5. J. Langat
An e-learning platform for aerospace medicine.
Bamidis, P D; Konstantinidis, S; Papadelis, C L; Perantoni, E; Styliadis, C; Kourtidou-Papadeli, C; Kourtidou-Papadeli, C; Pappas, C
2008-08-01
The appeal of online education and distance learning as an educational alternative is ever increasing. To support and accommodate the over-specialized knowledge available by different experts, information technology can be employed to develop virtual distributed pools of autonomous specialized educational modules and provide the mechanisms for retrieving and sharing them. New educational standards such as SCORM and Healthcare LOM enhance this process of sharing by offering qualities like interoperability, accessibility, and reusability, so that learning material remains credible, up-to-date and tracks changes and developments of medical techniques and standards through time. Given that only a few e-learning courses exist in aerospace medicine the material of which may be exchanged among teachers, the aim of this paper is to illustrate the procedure of creating a SCORM compliant course that incorporates notions of recent advances in social web technologies. The course is in accordance with main educational and technological details and is specific to pulmonary disorders in aerospace medicine. As new educational trends place much emphasis in continuing medical education, the expansion of a general practitioner's knowledge in topics such as aviation and aerospace pulmonary disorders for crew and passengers becomes a societal requirement.
An e-learning platform for Aerospace Medicine
Bamidis, P D; Konstantinidis, S; Papadelis, C L; Perantoni, E; Styliadis, C; Kourtidou-Papadeli, C; Kourtidou-Papadeli, C; Pappas, C
2008-01-01
The appeal of online education and distance learning as an educational alternative is ever increasing. To support and accommodate the over-specialized knowledge available by different experts, information technology can be employed to develop virtual distributed pools of autonomous specialized educational modules and provide the mechanisms for retrieving and sharing them. New educational standards such as SCORM and Healthcare LOM enhance this process of sharing by offering qualities like interoperability, accessibility, and reusability, so that learning material remains credible, up-to-date and tracks changes and developments of medical techniques and standards through time. Given that only a few e-learning courses exist in aerospace medicine the material of which may be exchanged among teachers, the aim of this paper is to illustrate the procedure of creating a SCORM compliant course that incorporates notions of recent advances in social web technologies. The course is in accordance with main educational and technological details and is specific to pulmonary disorders in aerospace medicine. As new educational trends place much emphasis in continuing medical education, the expansion of a general practitioner's knowledge in topics such as aviation and aerospace pulmonary disorders for crew and passengers becomes a societal requirement. PMID:19048088
NASA Technical Reports Server (NTRS)
Chang, C. I.
1989-01-01
An account is given of approaches that have emerged as useful in the incorporation of thermal loading considerations into advanced composite materials-based aerospace structural design practices. Sources of structural heating encompass not only propulsion system heat and aerodynamic surface heating at supersonic speeds, but the growing possibility of intense thermal fluxes from directed-energy weapons. The composite materials in question range from intrinsically nonheat-resistant polymer matrix systems to metal-matrix composites, and increasingly to such ceramic-matrix composites as carbon/carbon, which are explicitly intended for elevated temperature operation.
NASA Technical Reports Server (NTRS)
St. Clair, Anne K.; St. Clair, Terry L.; Winfree, William P.; Emerson, Bert R., Jr.
1989-01-01
New process developed to produce aromatic condensation polyimide films and coatings having dielectric constants in range of 2.4 to 3.2. Materials better electrical insulators than state-of-the-art commercial polyimides. Several low-dielectric-constant polyimides have excellent resistance to moisture. Useful as film and coating materials for both industrial and aerospace applications where high electrical insulation, resistance to moisture, mechanical strength, and thermal stability required. Applicable to production of high-temperature and moisture-resistance adhesives, films, photoresists, and coatings. Electronic applications include printed-circuit boards, both of composite and flexible-film types and potential use in automotive, aerospace, and electronic industries.
Mechanics of Multifunctional Materials & Microsystems
2012-03-09
Mechanics of Materials; Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic...Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic Systems; Multifunctional...release; distribution is unlimited. 7 VISION: EXPANDED • site specific • autonomic AUTONOMIC AEROSPACE STRUCTURES • Sensing & Precognition • Self
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2007-01-01
In 2007, the NASA Engineering Safety Center (NESC) chartered the NASA Aerospace Flight Battery Systems Working Group to bring forth and address critical battery-related performance/manufacturing issues for NASA and the aerospace community. A suite of tasks identifying and addressing issues related to Ni-H2 and Li-ion battery chemistries was submitted and selected for implementation. The current NESC funded are: (1) Wet Life of Ni-H2 Batteries (2) Binding Procurement (3) NASA Lithium-Ion Battery Guidelines (3a) Li-Ion Performance Assessment (3b) Li-Ion Guidelines Document (3b-i) Assessment of Applicability of Pouch Cells for Aerospace Missions (3b-ii) High Voltage Risk Assessment (3b-iii) Safe Charge Rates for Li-Ion Cells (4) Availability of Source Material for Li-Ion Cells (5) NASA Aerospace Battery Workshop This presentation provides a brief overview of the tasks in the 2007 plan and serves as an introduction to more detailed discussions on each of the specific tasks.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1982-01-01
The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.
Determining the Mechanical Properties of Lattice Block Structures
NASA Technical Reports Server (NTRS)
Wilmoth, Nathan
2013-01-01
Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.
NASA Technical Reports Server (NTRS)
Huber, P. D.; Gallagher, J. P.
1994-01-01
This report describes the organization, format and content of the NASA Johnson damage tolerant database which was created to store damage tolerant property data for non aerospace structural materials. The database is designed to store fracture toughness data (K(sub IC), K(sub c), J(sub IC) and CTOD(sub IC)), resistance curve data (K(sub R) VS. delta a (sub eff) and JR VS. delta a (sub eff)), as well as subcritical crack growth data (a vs. N and da/dN vs. delta K). The database contains complementary material property data for both stainless and alloy steels, as well as for aluminum, nickel, and titanium alloys which were not incorporated into the Damage Tolerant Design Handbook database.
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Dreshfield, R. L.; Nathal, M. V.
1983-01-01
Because of the import status and essential nature of their use, cobalt, chromium, tantalum, and niobium were identified as strategic and critical in the aerospace industry. NASA's Conservation of Strategic Aerospace Materials (COSAM) program aims to reduce the need for strategic materials used in gas turbine engines. Technological thrusts in two major areas are under way to meet the primary objective of conserving the use of strategic materials in nickelbase superalloys. These thrusts consist of strategic element substitution and alternative material identification. The program emphasizes cooperative research teams involving NASA Lewis Research Center, universities, and industry. The adoption of refractory metals in nickel-base superalloys is summarized including their roles in mechanical strengthening and environmental resistance; current research activities under way in the COSAM Program are presented as well as research findings to date.
Nondestructive damage evaluation in ceramic matrix composites for aerospace applications.
Dassios, Konstantinos G; Kordatos, Evangelos Z; Aggelis, Dimitrios G; Matikas, Theodore E
2013-01-01
Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.
Aerospace, Chemical and Material Sciences
2012-03-05
Origami , ASDR&E COI Materials, Joint AFOSR/RX/RH Center of Excellence at Georgia Tech on Bio Materials Rice professor’s nanotube theory confirmed...Jason’s Study) • (Schmisseur invited expert and our newest AIAA Fellow!!!) • AFOSR-NSF collaborative agreement & Origami Initiative • (collaborative
Terrestrial applications from space technology
NASA Technical Reports Server (NTRS)
Clarks, H.
1985-01-01
NASA's Technology Utilization Program, which is concerned with transferring aerospace technologies to the public and private sectors, is described. The strategy for transferring the NASA technologies to engineering projects includes: (1) identification of the problem, (2) selection of an appropriate aerospace technology, (3) development of a partnership with the company, (4) implementation of the project, and (5) commercialization of the product. Three examples revealing the application of aerospace technologies to projects in biomedical engineering, materials, and automation and robotics are presented; the development of a programmable, implantable medication system and a programmable, mask-based optical correlator, and the improvement of heat and erosion resistance in continuous casting are examined.
Space Station Freedom - A resource for aerospace education
NASA Technical Reports Server (NTRS)
Brown, Robert W.
1988-01-01
The role of the International Space Station in future U.S. aerospace education efforts is discussed from a NASA perspective. The overall design concept and scientific and technological goals of the Space Station are reviewed, and particular attention is given to education projects such as the Davis Planetarium Student Space Station, the Starship McCullough, the Space Habitat, the working Space Station model in Austin, TX, the Challenger Center for Space Life Education, Space M+A+X, and the Space Science Student Involvement Program. Also examined are learning-theory aspects of aerospace education: child vs adult learners, educational objectives, teaching methods, and instructional materials.
Recent advances in nondestructive evaluation made possible by novel uses of video systems
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Roth, Don J.
1990-01-01
Complex materials are being developed for use in future advanced aerospace systems. High temperature materials have been targeted as a major area of materials development. The development of composites consisting of ceramic matrix and ceramic fibers or whiskers is currently being aggressively pursued internationally. These new advanced materials are difficult and costly to produce; however, their low density and high operating temperature range are needed for the next generation of advanced aerospace systems. These materials represent a challenge to the nondestructive evaluation community. Video imaging techniques not only enhance the nondestructive evaluation, but they are also required for proper evaluation of these advanced materials. Specific research examples are given, highlighting the impact that video systems have had on the nondestructive evaluation of ceramics. An image processing technique for computerized determination of grain and pore size distribution functions from microstructural images is discussed. The uses of video and computer systems for displaying, evaluating, and interpreting ultrasonic image data are presented.
Development of uniform and predictable battery materials for nickel-cadmium aerospace cells
NASA Technical Reports Server (NTRS)
1971-01-01
Battery materials and manufacturing methods were analyzed with the aim of developing uniform and predictable battery plates for nickel cadmium aerospace cells. A study is presented for the high temperature electrochemical impregnation process for the preparation of nickel cadmium battery plates. This comparative study is set up as a factorially designed experiment to examine both manufacturing and operational variables and any interaction that might exist between them. The manufacturing variables in the factorial design include plaque preparative method, plaque porosity and thickness, impregnation method, and loading, The operational variables are type of duty cycle, charge and discharge rate, extent of overcharge, and depth of discharge.
Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities
NASA Astrophysics Data System (ADS)
Katnam, K. B.; Da Silva, L. F. M.; Young, T. M.
2013-08-01
Advanced composite materials have gained popularity in high-performance structural designs such as aerospace applications that require lightweight components with superior mechanical properties in order to perform in demanding service conditions as well as provide energy efficiency. However, one of the major challenges that the aerospace industry faces with advanced composites - because of their inherent complex damage behaviour - is structural repair. Composite materials are primarily damaged by mechanical loads and/or environmental conditions. If material damage is not extensive, structural repair is the only feasible solution as replacing the entire component is not cost-effective in many cases. Bonded composite repairs (e.g. scarf patches) are generally preferred as they provide enhanced stress transfer mechanisms, joint efficiencies and aerodynamic performance. With an increased usage of advanced composites in primary and secondary aerospace structural components, it is thus essential to have robust, reliable and repeatable structural bonded repair procedures to restore damaged composite components. But structural bonded repairs, especially with primary structures, pose several scientific challenges with the current existing repair technologies. In this regard, the area of structural bonded repair of composites is broadly reviewed - starting from damage assessment to automation - to identify current scientific challenges and future opportunities.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Jefferson, Michael
2015-01-01
Under NASA Space Act Agreement (SAA3-1288), NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54 kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.
NASA-DoD Lead-Free Electronics Project
NASA Technical Reports Server (NTRS)
Kessel, Kurt
2010-01-01
Original Equipment Manufacturers (OEMs), depots, and support contract ors have to be prepared to deal with an electronics supply chain that increasingly provides parts with lead-free finishes, some labeled no differently and intermingled with their SnPb counterparts. Allowance of lead-free components presents one of the greatest risks to the r eliability of military and aerospace electronics. The introduction of components with lead-free terminations, termination finishes, or cir cuit boards presents a host of concerns to customers, suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers 2. Incompatibility of lead-f ree processes and parameters (including higher melting points of lead -free alloys) with other materials in the system 3. Unknown material properties and incompatibilities that could reduce solder joint reli ability As the transition to lead-free becomes a certain reality for military and aerospace applications, it will be critical to fully un derstand the implications of reworking lead-free assemblies.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. United Space Alliance workers begin packing pieces of Columbia debris for shipment to The Aerospace Corporation in El Segundo, Calif. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crews families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbias debris is stored in the VAB.
Aerospace safety advisory panel
NASA Technical Reports Server (NTRS)
1994-01-01
This report from the Aerospace Safety Advisory Panel (ASAP) contains findings, recommendations, and supporting material concerning safety issues with the space station program, the space shuttle program, aeronautics research, and other NASA programs. Section two presents findings and recommendations, section three presents supporting information, and appendices contain data about the panel membership, the NASA response to the March 1993 ASAP report, and a chronology of the panel's activities during the past year.
Soft impacts on aerospace structures
NASA Astrophysics Data System (ADS)
Abrate, Serge
2016-02-01
This article provides an overview of the literature dealing with three types of soft impacts of concern for the aerospace applications, namely impacts of rain drops, hailstones and birds against aircraft. It describes the physics of the problem as it has become better understood through experiments, analyses, and numerical simulations. Some emphasis has been placed on the material models and the numerical approaches used in modeling these three types of projectiles.
Probabilistic evaluation of uncertainties and risks in aerospace components
NASA Technical Reports Server (NTRS)
Shah, A. R.; Shiao, M. C.; Nagpal, V. K.; Chamis, C. C.
1992-01-01
A methodology is presented for the computational simulation of primitive variable uncertainties, and attention is given to the simulation of specific aerospace components. Specific examples treated encompass a probabilistic material behavior model, as well as static, dynamic, and fatigue/damage analyses of a turbine blade in a mistuned bladed rotor in the SSME turbopumps. An account is given of the use of the NESSES probabilistic FEM analysis CFD code.
JPRS report: Science and Technology. Europe and Latin America
NASA Astrophysics Data System (ADS)
1988-01-01
Articles from the popular and trade press are included on the following subjects: advanced materials, aerospace industry, automotive industry, biotechnology, computers, factory automation and robotics, microelectronics, and science and technology policy. The aerospace articles discuss briefly and in a nontechnical way the SAGEM bubble memories for space applications, Ariane V new testing facilities, innovative technologies of TDF-1 satellite, and the restructuring of the Aviation Division at France's Aerospatiale.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.
1994-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1994. These results were presented at the Fifth Annual NASA LA2ST Grant Review Meeting held at the Langley Research Center in July of 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, lightweight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.
Chemical Fingerprinting of Materials Developed Due To Environmental Issues
NASA Technical Reports Server (NTRS)
Smith, Doris A.; McCool, A. (Technical Monitor)
2000-01-01
This paper presents viewgraphs on chemical fingerprinting of materials developed due to environmental issues. Some of the topics include: 1) Aerospace Materials; 2) Building Blocks of Capabilities; 3) Spectroscopic Techniques; 4) Chromatographic Techniques; 5) Factors that Determine Fingerprinting Approach; and 6) Fingerprinting: Combination of instrumental analysis methods that diagnostically characterize a material.
Barriers to applying advanced high-temperature materials
NASA Astrophysics Data System (ADS)
Premkumar, M. K.
1993-01-01
During the past 25 years, aerospace engineers and material scientists have made significant technical progress toward developing next-generation aircraft. However, while advanced high-temperature materials continue to be developed, the outlook for their future application is uncertain and will depend on the ability of these materials to satisfy a more diverse market.
Mishap risk control for advanced aerospace/composite materials
NASA Technical Reports Server (NTRS)
Olson, John M.
1994-01-01
Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.
Directory of aerospace safety specialized information sources
NASA Technical Reports Server (NTRS)
Fullerton, E. A.; Rubens, L. S.
1973-01-01
A directory is presented to make available to the aerospace safety community a handbook of organizations and experts in specific, well-defined areas of safety technology. It is designed for the safety specialist as an aid for locating both information sources and individual points of contact (experts) in engineering related fields. The file covers sources of data in aerospace design, tests, as well as information in hazard and failure cause identification, accident analysis, materials characteristics, and other related subject areas. These 171 organizations and their staff members, hopefully, should provide technical information in the form of documentation, data and consulting expertise. These will be sources that have assembled and collated their information, so that it will be useful in the solution of engineering problems. One of the goals of the project in the United States that have and are willing to share data of value to the aerospace safety community.
NASA Technical Reports Server (NTRS)
Beyerle, F. J.
1973-01-01
A biodetection grinder for sampling aerospace materials for microorganisms without killing them was constructed. The device employs a shearing action to generate controllable sized particles with a minimum of energy input. Tests were conducted on materials ranging from soft plastics to hard rocks.
ERIC Educational Resources Information Center
Aviation/Space, 1980
1980-01-01
The resources listed different types of materials related to the aerospace science under specified categories: free materials and inexpensive, selected government publication, audiovisual (government, nongovernment), aviation books, and space books. The list includes the publisher's name and the price for each publication. (SK)
Pressure Flammability Thresholds in Oxygen of Selected Aerospace Materials
NASA Technical Reports Server (NTRS)
Hirsch, David; Williams, Jim; Harper, Susana; Beeson, Harold; Ruff, Gary; Pedley, Mike
2010-01-01
The experimental approach consisted of concentrating the testing in the flammability transition zone following the Bruceton Up-and-Down Method. For attribute data, the method has been shown to be very repeatable and most efficient. Other methods for characterization of critical levels (Karberand Probit) were also considered. The data yielded the upward limiting pressure index (ULPI), the pressure level where approx.50% of materials self-extinguish in a given environment.Parametric flammability thresholds other than oxygen concentration can be determined with the methodology proposed for evaluating the MOC when extinguishment occurs. In this case, a pressure threshold in 99.8% oxygen was determined with the methodology and found to be 0.4 to 0.9 psia for typical spacecraft materials. Correlation of flammability thresholds obtained with chemical, hot wire, and other ignition sources will be conducted to provide recommendations for using alternate ignition sources to evaluate flammability of aerospace materials.
Leaching kinetics of cobalt from the scraps of spent aerospace magnetic materials.
Zhou, Xuejiao; Chen, Yongli; Yin, Jianguo; Xia, Wentang; Yuan, Xiaoli; Xiang, Xiaoyan
2018-06-01
Based on physicochemical properties of the scraps of spent aerospace magnetic materials, a roasting - magnetic separation followed by sulfuric acid leaching process was proposed to extract cobalt. Roasting was performed at 500 °C to remove organic impurity. Non-magnetic impurities were reduced by magnetic separation and then the raw material was sieved into desired particle sizes. Acid leaching was carried out to extract cobalt from the scraps and experimental parameters included agitation speed, particle size, initial concentration of sulfuric acid and temperature. Agitation speed higher than 300 r/min had a relatively small impact on the cobalt extraction. As the particle size reduced, the content of cobalt in the raw material decreases and the extraction of cobalt by acid leaching increased at first and decreased afterwards. Raising the initial concentration of sulfuric acid and temperature contributed to improve the cobalt extraction and the influence of temperature was more remarkable. SEM image revealed that the spent aerospace magnetic materials mainly existed in the sliced strip flake with a loose surface and porous structure. Under the experimental condition, the leaching rate of cobalt from the scraps in sulfuric acid solution could be expressed as ln(-ln(1 - α)) = lnk + nlnt. The apparent activation energy was found to be 38.33 kJ/mol and it was mainly controlled by the surface chemical reaction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Workshop III: Future Directions for Thin Films Workshop at SPRAT XIX
NASA Technical Reports Server (NTRS)
Dickman, John E.; McNatt, Jeremiah S.
2007-01-01
The SPRAT conference series at NASA Glenn Research Center has devoted a workshop to the topic of thin-film solar cell technology and potential aerospace applications. With the advent of aerospace applications requiring very-high, mass, specific power, there has been a renewed interest in thin film materials and solar cells. Aerospace applications such as station-keeping for high-altitude airships, space solar power, lunar and planetary surface power, and solar electric propulsion would be enhanced or enabled by the development of flexible, very-high, mass specific power thin film arrays. To initiate discussion, a series of questions were asked of the attendees. These questions, three generated by the group, and the attendees comments follow.
Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications
NASA Technical Reports Server (NTRS)
Singh, M.
2005-01-01
Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.
Conservation of strategic metals
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1982-01-01
A long-range program in support of the aerospace industry aimed at reducing the use of strategic materials in gas turbine engines is discussed. The program, which is called COSAM (Conservation of Strategic Aerospace Materials), has three general objectives. The first objective is to contribute basic scientific understanding to the turbine engine technology bank so that our national security is not jeopardized if our strategic material supply lines are disrupted. The second objective is to help reduce the dependence of United States military and civilian gas turbine engines on worldwide supply and price fluctuations in regard to strategic materials. The third objective is, through research, to contribute to the United States position of preeminence in the world gas turbine engine markets by minimizing the acquisition costs and optimizing the performance of gas turbine engines. Three major research thrusts are planned: strategic element substitution; advanced processing concepts; and alternate material identification. Results from research and any required supporting technology will give industry the materials technology options it needs to make tradeoffs in material properties for critical components against the cost and availability impacts related to their strategic metal content.
Aerospace Plane Technology, Research and Development Efforts in Europe
1991-07-25
to conventional titanium alloys. Moreover, ti- aluminide has one-half the weight of the material previously used at these high temperatures. Real Gas...for the engine’s blades , turbine blisk (a turbine disk with integral blades ), Page 44 GAO/NSIAID-91-194 Aerospace Plane Technology Chapter 3 European...X-30 fuselage section from silicon carbide-reinforced titanium and manufactured an X-30 fuel tank from a graphite-polyamide composite. Although
NASA Technical Reports Server (NTRS)
Matus, Lawrence G.; Seng, Gary T.
1990-01-01
To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.
Wiring for aerospace applications
NASA Astrophysics Data System (ADS)
Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.
1992-07-01
In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.
JPRS report: Science and technology. Europe and Latin America
NASA Astrophysics Data System (ADS)
1988-01-01
Articles from the popular and trade press of Western Europe and Latin America are presented on advanced materials, aerospace and civial aviation, computers, defense industries, factory automation and robotics, lasers, senors, optics microelectronics, science and technology policy, biotechnology, marine technology, and nuclear developments. The aerospace articles include an overview of Austrian space activities and plans and a report on a panel of West German experts recommending against self-sufficiency for the Airbus.
Earth observations and global change decision making: A special bibliography, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The first section of the bibliography contains 294 bibliographic citations and abstracts of relevant reports, articles, and documents announced in 'Scientific and Technical Aerospace Reports (STAR)' and 'International Aerospace Abstracts (IAA)'. These abstracts are categorized by the following major subject divisions: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences and general. Following the abstract section, seven indexes are provided for further assistance.
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Lark, R. F.
1978-01-01
The investigation indicated that structural laminates can be made which have: a modulus of elasticity comparable to steel, fracture strength of comparable to the yield strength of titanium, density comparable to aluminum, impact resistance comparable to titanium, and little or no notch sensitivity. These laminates can have stiffness and weight advantages over other materials including advanced fiber composites, in some aerospace applications where buckling resistance, vibration frequencies, and weight considerations control the design.
Wiring for aerospace applications
NASA Technical Reports Server (NTRS)
Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.
1992-01-01
In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.
Polymer-based composites for aerospace: An overview of IMAST results
NASA Astrophysics Data System (ADS)
Milella, Eva; Cammarano, Aniello
2016-05-01
This paper gives an overview of technological results, achieved by IMAST, the Technological Cluster on Engineering of Polymeric Composite Materials and Structures, in the completed Research Projects in the aerospace field. In this sector, the Cluster developed different solutions: lightweight multifunctional fiber-reinforced polymer composites for aeronautic structures, advanced manufacturing processes (for the optimization of energy consumption and waste reduction) and multifunctional components (e.g., thermal, electrical, acoustic and fire resistance).
Net Shape Technology in Aerospace Structures. Volume 1.
1986-11-01
ofI nIo n- destructive evaluation methods, such a s ult rasonic inspection, in detecting otherwise hidden defects in parts made of the material. Pratt...SCHEDULE 4. PERFORMING ORGANIZATION REPORT NUMBER( S ) 5. MONITORING ORGANIZATION REPORT NUMBER( S ) n/a n/a 6a. NAME OF PERFORMING ORGANIZATION 6b...a n/a n/a 11 TITLE (Include Security Classification) Net Shape Technology in Aerospace Structures, Vol. I (U) 12. PERSONAL AUTHOR( S ) 13a. TYPE OF
2009-11-01
quality control RCRA Resource Conservation and Recovery Act SAE Society for Automotive Engineers S-N stress vs number of cycles (fatigue curve...Automotive Engineers ( SAE ) Aerospace Materials Specifications (AMS): Figure 3. Air handler and dust filter installation at FRC-E. 8 - AMS 2447 was...developed with the assistance of the HCAT team and issued by SAE in 1998. It is now a widely used standard in the aerospace industry. - AMS 2448
NASA Technical Reports Server (NTRS)
Potter, Andrew
1989-01-01
The materials with vulnerability to micrometeoroids and space debris are discussed. It is concluded that all materials are vulnerable to hypervelocity impacts and that the importance of these impacts depends on the function of material. It is also concluded that low earth orbits are the most significant region relative to orbital debris. The consequences of aerospace environment effects are discussed.
Composite materials: Tomorrow for the day after tomorrow
NASA Technical Reports Server (NTRS)
Condom, P.
1982-01-01
A description is given of the history of the use of composite materials in the aerospace industry. Research programs underway to obtain exact data on the behavior of composite materials over time are discussed. It is concluded that metal composites have not yet replaced metals, but that that this may be a future possibility.
A status review of NASA's COSAM (Conservation Of Strategic Aerospace Materials) program
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1982-01-01
The use and supply of strategic elements in nickel base superalloys for gas turbine engines are reviewed. Substitution of strategic elements, advanced processing concepts, and the identification of alternate materials are considered. Cobalt, tantalum, columbium, and chromium, the supplies of which are 91-100% imported, are the materials of major concern.
Manpower Requirements Report FY 1994
1993-06-01
decrease in FY 1993 is primarily due to reductions in advanced weapons (-144), aerospace avionics (-48), materials (-37), and test and evaluation support...sub- sistence, medical goods, industrial and construction material , general and electronic supplies, and petroleum products. Logistic services include...efficiencies resulting from streamlining depots, modernizing/automating materials handling, and a projected decline in contract administration and
National Aerospace Leadership Initiative - Phase 2
2010-03-01
components) for turbine airfoils and larger sized components (e.g., combustor, augmenter, and nozzle applications). Substrate material properties ...material property impact to sensing, measurement and breakthrough detection. Establishment of CCAT’s Laser Applications Laboratory that includes next...generation and materials property (and component) validation. Task IV - Total Supply Chain Enterprise Effectiveness The competitiveness and
Development and Application of Microfabricated Chemical Gas Sensors For Aerospace Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, A.; Hammond, J.; Makel, D.;
1990-01-01
Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring and control, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. This paper discusses the needs of space applications and the point-contact sensor technology being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (Nox, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. Demonstration and application these sensor technologies will be described. The demonstrations range from use of a microsystem based hydrogen sensor on the Shuttle to engine demonstration of a nanocrystalline based sensor for NO, detection. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.
Chemical Microsensor Development for Aerospace Applications
NASA Technical Reports Server (NTRS)
Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Chen, Liangyu; Biaggi-Labiosa, Azlin M.
2013-01-01
Numerous aerospace applications, including low-false-alarm fire detection, environmental monitoring, fuel leak detection, and engine emission monitoring, would benefit greatly from robust and low weight, cost, and power consumption chemical microsensors. NASA Glenn Research Center has been working to develop a variety of chemical microsensors with these attributes to address the aforementioned applications. Chemical microsensors using different material platforms and sensing mechanisms have been produced. Approaches using electrochemical cells, resistors, and Schottky diode platforms, combined with nano-based materials, high temperature solid electrolytes, and room temperature polymer electrolytes have been realized to enable different types of microsensors. By understanding the application needs and chemical gas species to be detected, sensing materials and unique microfabrication processes were selected and applied. The chemical microsensors were designed utilizing simple structures and the least number of microfabrication processes possible, while maintaining high yield and low cost. In this presentation, an overview of carbon dioxide (CO2), oxygen (O2), and hydrogen/hydrocarbons (H2/CxHy) microsensors and their fabrication, testing results, and applications will be described. Particular challenges associated with improving the H2/CxHy microsensor contact wire-bonding pad will be discussed. These microsensors represent our research approach and serve as major tools as we expand our sensor development toolbox. Our ultimate goal is to develop robust chemical microsensor systems for aerospace and commercial applications.
Gloria, Antonio; Ronca, Dante; Russo, Teresa; D'Amora, Ugo; Chierchia, Marianna; De Santis, Roberto; Nicolais, Luigi; Ambrosio, Luigi
2011-01-01
Polymer-based composite materials are ideal for applications where high stiffness-to-weight and strength-to-weight ratios are required. From aerospace and aeronautical field to biomedical applications, fiber-reinforced polymers have replaced metals, thus emerging as an interesting alternative. As widely reported, the mechanical behavior of the composite materials involves investigation on micro- and macro-scale, taking into consideration micromechanics, macromechanics and lamination theory. Clinical situations often require repairing connective tissues and the use of composite materials may be suitable for these applications because of the possibility to design tissue substitutes or implants with the required mechanical properties. Accordingly, this review aims at stressing the importance of fiber-reinforced composite materials to make advanced and biomimetic prostheses with tailored mechanical properties, starting from the basic principle design, technologies, and a brief overview of composites applications in several fields. Fiber-reinforced composite materials for artificial tendons, ligaments, and intervertebral discs, as well as for hip stems and mandible models will be reviewed, highlighting the possibility to mimic the mechanical properties of the soft and hard tissues that they replace.
Unintended Consequences: How Qualification Constrains Innovation
NASA Technical Reports Server (NTRS)
Brice, Craig A.
2011-01-01
The development and implementation of new materials and manufacturing processes for aerospace application is often hindered by the high cost and long time span associated with current qualification procedures. The data requirements necessary for material and process qualification are extensive and often require millions of dollars and multiple years to complete. Furthermore, these qualification data can become obsolete for even minor changes to the processing route. This burden is a serious impediment to the pursuit of revolutionary new materials and more affordable processing methods for air vehicle structures. The application of integrated computational materials engineering methods to this problem can help to reduce the barriers to rapid insertion of new materials and processes. By establishing predictive capability for the development of microstructural features in relation to processing and relating this to critical property characteristics, a streamlined approach to qualification is possible. This paper critically examines the advantages and challenges to a modeling-assisted qualification approach for aerospace structural materials. An example of how this approach might apply towards the emerging field of additive manufacturing is discussed in detail.
Sputtering and ion plating for aerospace applications
NASA Technical Reports Server (NTRS)
Spalvins, T.
1981-01-01
Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3 dimensional coverage are the primary attributes of this technology.
Sputtering and ion plating for aerospace applications
NASA Technical Reports Server (NTRS)
Spalvins, T.
1981-01-01
Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3-dimensional coverage are the primary attributes of this technology.
High performance dielectric materials development
NASA Technical Reports Server (NTRS)
Piche, Joe; Kirchner, Ted; Jayaraj, K.
1994-01-01
The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.
High performance dielectric materials development
NASA Astrophysics Data System (ADS)
Piche, Joe; Kirchner, Ted; Jayaraj, K.
1994-09-01
The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.
2004-05-25
KENNEDY SPACE CENTER, FLA. - United Space Alliance technician J.C. Harrison steers while NASA’s Scott Thurston guides a piece of Columbia debris through a gate in the Vehicle Assembly Building, where the debris is stored. This piece is one of eight being released to The Aerospace Corporation in El Segundo, Calif., for testing and research. Thurston is the Columbia debris coordinator. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crew’s families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite.
2004-05-25
KENNEDY SPACE CENTER, FLA. - United Space Alliance workers J.C. Harrison (left) and Amy Mangiacapra (right) pack up pieces of Columbia debris for shipment to The Aerospace Corporation in El Segundo, Calif. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crew’s families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbia’s debris is stored in the VAB.
2004-05-25
KENNEDY SPACE CENTER, FLA. - United Space Alliance workers begin packing pieces of Columbia debris for shipment to The Aerospace Corporation in El Segundo, Calif. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crew’s families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbia’s debris is stored in the VAB.
2004-05-25
KENNEDY SPACE CENTER, FLA. - United Space Alliance workers J.C. Harrison (left) and Amy Mangiacapra pack pieces of Columbia debris for transfer to the shipping facility for travel to The Aerospace Corporation in El Segundo, Calif. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crew’s families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbia’s debris is stored in the VAB.
NASA-UVA light aerospace alloy and structures technology program
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Thornton, Earl A.; Stoner, Glenn E.; Swanson, Robert E.; Wawner, Franklin E., Jr.; Wert, John A.
1989-01-01
The report on progress achieved in accomplishing of the NASA-UVA Light Aerospace Alloy and Structures Technology Program is presented. The objective is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys and associated thermal gradient structures in close collaboration with researchers. The efforts will produce basic understanding of material behavior, new monolithic and composite alloys, processing methods, solid and fluid mechanics analyses, measurement advances, and a pool of educated graduate students. The presented accomplishments include: research on corrosion fatigue of Al-Li-Cu alloy 2090; research on the strengthening effect of small In additions to Al-Li-Cu alloys; research on localized corrosion of Al-Li alloys; research on stress corrosion cracking of Al-Li-Cu alloys; research on fiber-matrix reaction studies (Ti-1100 and Ti-15-3 matrices containing SCS-6, SCS-9, and SCS-10 fibers); and research on methods for quantifying non-random particle distribution in materials that has led to generation of a set of computer programs that can detect and characterize clusters in particles.
2004-05-25
KENNEDY SPACE CENTER, FLA. - After being wrapped and secured on pallets, pieces of Columbia debris are loaded onto a truck to transport them to the shipping facility for travel to The Aerospace Corporation in El Segundo, Calif. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crew’s families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbia’s debris is stored in the VAB.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. United Space Alliance workers J.C. Harrison (left) and Amy Mangiacapra (right) pack up pieces of Columbia debris for shipment to The Aerospace Corporation in El Segundo, Calif. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crews families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbias debris is stored in the VAB.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. United Space Alliance workers J.C. Harrison (far left) and Amy Mangiacapra guide a wrapped piece of Columbia debris through the Vehicle Assembly Building, where it is stored. Alongside is NASAs Scott Thurston, who is the Columbia debris coordinator. This piece is one of eight being released to The Aerospace Corporation in El Segundo, Calif., for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crews families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. United Space Alliance workers J.C. Harrison (left) and Amy Mangiacapra pack pieces of Columbia debris for transfer to the shipping facility for travel to The Aerospace Corporation in El Segundo, Calif. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crews families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbias debris is stored in the VAB.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. United Space Alliance technician J.C. Harrison steers while NASAs Scott Thurston guides a piece of Columbia debris through a gate in the Vehicle Assembly Building, where the debris is stored. This piece is one of eight being released to The Aerospace Corporation in El Segundo, Calif., for testing and research. Thurston is the Columbia debris coordinator. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crews families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite.
Materials Selection for Aerospace Systems
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Cebon, David; Ashby, Mike
2012-01-01
A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.
Recent advances in aerospace composite NDE
NASA Astrophysics Data System (ADS)
Georgeson, Gary E.
2002-06-01
As the aerospace industry continues to advance the design and use of composite structure, the NDE community faces the difficulties of trying to keep up. The challenges lie in manufacturing evaluation of the newest aerospace structures and materials and the in-service inspection and monitoring of damaged or aging composites. This paper provides examples of several promising NDI applications in the world of aerospace composites. Airborne (or non-contact) Ultrasonic Testing (UT) has been available for decades, but recently has generated new interest due to significant improvements in transducer design and low noise electronics. Boeing is developing inspection techniques for composite joints and core blankets using this technology. In-service inspection techniques for thick, multi-layer structures are also being advanced. One effective technique integrates the S-9 Sondicator, a traditional bond testing device, with Boeing's Mobile Automated Scanner (MAUS) platform. Composite patches have seen limited use on-aircraft, due, in part, to the difficulty of determining the quality of a bonded joint. A unique approach using Electronic Speckle Pattern Interferometry (ESPI) is showing promise as a bonded patch-inspection method. Other NDI techniques currently being developed for aerospace application are also briefly discussed.
Application of magnetic pulse forming to aeronautic small pieces
NASA Astrophysics Data System (ADS)
Sow, C.; Bazin, G.; Daniel, D.; Bon, E.; Priem, D.; Racineux, G.
2018-05-01
Stelia Aerospace company is specialized in the forming of small (Lmax <200 mm), medium (200 mm
A critical review of nanotechnologies for composite aerospace structures
NASA Astrophysics Data System (ADS)
Kostopoulos, Vassilis; Masouras, Athanasios; Baltopoulos, Athanasios; Vavouliotis, Antonios; Sotiriadis, George; Pambaguian, Laurent
2017-03-01
The past decade extensive efforts have been invested in understanding the nano-scale and revealing the capabilities offered by nanotechnology products to structural materials. Integration of nano-particles into fiber composites concludes to multi-scale reinforced composites and has opened a new wide range of multi-functional materials in industry. In this direction, a variety of carbon based nano-fillers has been proposed and employed, individually or in combination in hybrid forms, to approach the desired performance. Nevertheless, a major issue faced lately more seriously due to the interest of industry is on how to incorporate these nano-species into the final composite structure through existing manufacturing processes and infrastructure. This interest originates from several industrial applications needs that request the development of new multi-functional materials which combine enhanced mechanical, electrical and thermal properties. In this work, an attempt is performed to review the most representative processes and related performances reported in literature and the experience obtained on nano-enabling technologies of fiber composite materials. This review focuses on the two main composite manufacturing technologies used by the aerospace industry; Prepreg/Autoclave and Resin Transfer technologies. It addresses several approaches for nano-enabling of composites for these two routes and reports latest achieved results focusing on performance of nano-enabled fiber reinforced composites extracted from literature. Finally, this review work identifies the gap between available nano-technology integration routes and the established industrial composite manufacturing techniques and the challenges to increase the Technology Readiness Level to reach the demands for aerospace industry applications.
Reinforcements: The key to high performance composite materials
NASA Technical Reports Server (NTRS)
Grisaffe, Salvatore J.
1990-01-01
Better high temperature fibers are the key to high performance, light weight composite materials. However, current U.S. and Japanese fibers still have inadequate high temperature strength, creep resistance, oxidation resistance, modulus, stability, and thermal expansion match with some of the high temperature matrices being considered for future aerospace applications. In response to this clear deficiency, both countries have research and development activities underway. Once successful fibers are identified, their production will need to be taken from laboratory scale to pilot plant scale. In such efforts it can be anticipated that the Japanese decisions will be based on longer term criteria than those applied in the U.S. Since the initial markets will be small, short term financial criteria may adversely minimize the number and strength of U.S. aerospace materials suppliers to well into the 21st century. This situation can only be compounded by the Japanese interests in learning to make commercial products with existing materials so that when the required advanced fibers eventually do arrive, their manufacturing skills will be developed.
Interdisciplinary optimum design. [of aerospace structures
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.
1986-01-01
Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.
Directory of aerospace safety specialized information sources, volume 2
NASA Technical Reports Server (NTRS)
Rubinstein, R. I.; Pinto, J. J.; Meschkow, S. Z.
1976-01-01
A handbook of organizations and experts in specific and well-defined areas of safety technology is presented. It is designed for the safety specialist as an aid for locating both information sources and individual points of contact (experts) in engineering related fields. The file covers sources of data in aerospace design, tests, and operations, as well as information on hazard and failure cause identification, accident analysis, and materials characteristics. Other related areas include the handling and transportation of hazardous chemicals, radioactive isotopes, and liquified natural gases.
Atmospheric electricity criteria guidelines for use in aerospace vehicle development
NASA Technical Reports Server (NTRS)
Daniels, G. E.
1972-01-01
Lightning has always been of concern for aerospace vehicle ground activities. The unexpected triggering of lightning discharges by the Apollo 12 space vehicle shortly after launch and the more recent repeated lightning strikes to the launch umbilical tower while the Apollo 15 space vehicle was being readied for launch have renewed interest in studies of atmospheric electricity as it relates to space vehicle missions. The material presented reflects some of the results of these studies with regard to updating the current criteria guidelines.
Overview of NASA/OAST efforts related to manufacturing technology
NASA Technical Reports Server (NTRS)
Saunders, N. T.
1976-01-01
Activities of the Office of Aeronautics and Space Technology (OAST) in a number of areas related to manufacturing technology are considered. In the computer-aided design area improved approaches are developed for the design of specific classes of components or structural subsystems. A generalized approach for the design of a complete aerospace vehicle is also developed. Efforts directed toward an increased use of composite materials in aerospace structures are also discussed and attention is given to projects concerned with the manufacture of turbine engine components.
NASA Technical Reports Server (NTRS)
Johnson, Howard T.
1995-01-01
17-4 PH and 15-5 PH are extremely useful and versatile precipitation-hardening stainless steels. Armco 17-4 PH is well suited for the magnetic particle inspection requirements of Aerospace Material Specification. Armco 15-5 PH and 17-4 PH are produced in billet, plate, bar, and wire. Also, 15-5 PH is able to meet the stringent mechanical properties required in the aerospace and nuclear industries. Both products are easy to heat treat and machine, making them very useful in many applications.
NASA Technical Reports Server (NTRS)
1975-01-01
An overview is given of the utility, feasibility, and advantages of active microwave sensors for a broad range of applications, including aerospace. In many instances, the material provides an in-depth examination of the applicability and/or the technology of microwave remote sensing, and considerable documentation is presented in support of these techniques. An assessment of the relative strengths and weaknesses of active microwave sensor data indicates that satisfactory data are obtainable for several significant applications.
Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering
NASA Astrophysics Data System (ADS)
Kainer, Karl U.
2006-02-01
Since the properties of MMCs can be directly designed "into" the material, they can fulfill all the demands set by design engineers. This book surveys the latest results and development possibilities for MMCs as engineering and functional materials, making it of utmost value to all materials scientists and engineers seeking in-depth background information on the potentials these materials have to offer in research, development and design engineering.
Tensile properties of textile composites
NASA Technical Reports Server (NTRS)
Avva, V. Sarma; Sadler, Robert L.; Lyon, Malcolm
1992-01-01
The importance of textile composite materials in aerospace structural applications has been gaining momentum in recent years. With a view to better understand the suitability of these materials in aerospace applications, an experimental program was undertaken to assess the mechanical properties of these materials. Specifically, the braided textile preforms were infiltrated with suitable polymeric matrices leading to the fabrication of composite test coupons. Evaluation of the tensile properties and the analyses of the results in the form of strength moduli, Poisson's ratio, etc., for the braided composites are presented. Based on our past experience with the textile coupons, the fabrication techniques have been modified (by incorporating glass microballoons in the matrix and/or by stabilizing the braid angle along the length of the specimen with axial fibers) to achieve enhanced mechanical properties of the textile composites. This paper outlines the preliminary experimental results obtained from testing these composites.
NASA Technical Reports Server (NTRS)
Greene, Benjamin; McClure, Mark B.
2012-01-01
The NASA Johnson Space Center White Sands Test Facility (WSTF) has performed testing of hazardous and reactive aerospace fluids, including hypergolic propellants, with materials since the 1960s with the Apollo program. Amongst other test activities, Test 15 is a NASA standard test for evaluating the reactivity of materials with selected aerospace fluids, in particular hydrazine, monomethylhydrazine, uns-dimethylhydrazine, Aerozine 50, dinitrogen tetroxide oxidizers, and ammonia. This manuscript provides an overview of the history of Test 15 over a timeline ranging from prior to its development and first implementation as a NASA standard test in 1974 to its current refinement. Precursor documents to NASA standard tests, as they are currently known, are reviewed. A related supplementary test, international standardization, and enhancements to Test 15 are also discussed. Because WSTF was instrumental in the development and implementation of Test 15, WSTF experience and practices are referred to in this manuscript.
Investigation of CFRP in aerospace field and improvement of the molding accuracy by using autoclave
NASA Astrophysics Data System (ADS)
Minamisawa, Takunori
2017-07-01
In recent years, CFRP (Carbon Fiber Reinforced Plastic) has come to be used in a wide range of industries such as sporting goods, fishing tackle and cars because it has a large number of advantages. In this situation, even the passenger aircraft industry also pays attention to the material. CFRP is an ideal material for airplanes because it has a lot of advantages such as light weight and strong, chemical resistance and corrosion resistance. Generally, autoclave is used for molding CFRP in the field of aerospace engineering. Autoclave is a machine that can mold a product by heating and pressurizing material in an evacuated bag. What is examined in this paper is an observation on handmade CFRP by a polarizing microscope. In addition, mechanical characteristics were investigated. Furthermore, an improvement of accuracy in CFRP molding using an autoclave is suggested from viewpoint of thermodynamics.
High-Temperature Graphite/Phenolic Composite
NASA Technical Reports Server (NTRS)
Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.
1995-01-01
Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.
The effect of erosion on the fatigue limit of metallic materials for aerospace applications
NASA Astrophysics Data System (ADS)
Kordatos, E. Z.; Exarchos, D. A.; Matikas, T. E.
2018-03-01
This work deals with the study of the fatigue behavior of metallic materials for aerospace applications which have undergone erosion. Particularly, an innovative non-destructive methodology based on infrared lock-in thermography was applied on aluminum samples for the rapid determination of their fatigue limit. The effect of erosion on the structural integrity of materials can lead to a catastrophic failure and therefore an efficient assessment of the fatigue behavior is of high importance. Infrared thermography (IRT) as a non-destructive, non-contact, real time and full field method can be employed in order the fatigue limit to be rapidly determined. The basic principle of this method is the detection and monitoring of the intrinsically dissipated energy due to the cyclic fatigue loading. This methodology was successfully applied on both eroded and non-eroded aluminum specimens in order the severity of erosion to be evaluated.
PMR Extended Shelf Life Technology Given 2000 R and D 100 Award
NASA Technical Reports Server (NTRS)
Meador, Michael A.
2001-01-01
An approach developed at the NASA Glenn Research Center for extending the shelf life of PMR polyimide solutions and prepregs received an R&D 100 Award this year. PMR polyimides, in particular PMR-15, have become attractive materials for a variety of aerospace applications because of their outstanding high-temperature stability and performance. PMR-15 can be used in components with exposures to temperatures as high as 290 C, which leads to substantial reductions in weight, as much as 30 percent over metal components. PMR-15 composites are used widely in aerospace applications ranging from ducts and external components in aircraft engines to an engine access door for the Space Shuttle Main Engine. A major barrier to more widespread use of these materials is high component costs. Recent efforts at Glenn have addressed the various factors that contribute to these costs in an attempt to more fully utilize these lightweight, high-temperature materials.
NASA R and T aerospace plane vehicles: Progress and plans
NASA Technical Reports Server (NTRS)
Dixon, S. C.
1985-01-01
Progress made in key technologies such as materials, structures, aerothermodynamics, hypersonic aerodynamics, and hypersonic airbreathing propulsion are reported. Advances were made in more generic, areas such as active controls, flight computer hardware and software, and interdisciplinary analytical design methodology. These technology advances coupled with the development of and experiences with the Space Shuttle make feasible aerospace plane-type vehicles that meet the more demanding requirements of various DOD missions and/or an all-weather Shuttle II with reduced launch costs. Technology needs and high payoff technologies, and the technology advancements in propulsion, control-configured-vehicles, aerodynamics, aerothermodynamics, aerothermal loads, and materials and structures were studied. The highest payoff technologies of materials and structures including thermal-structural analysis and high temperature test techniques are emphasized. The high priority technology of propulsion, and plans, of what remains to be done rather than firm program commitments, are briefly discussed.
Influence of the Cutting Conditions in the Surface Finishing of Turned Pieces of Titanium Alloys
NASA Astrophysics Data System (ADS)
Huerta, M.; Arroyo, P.; Sánchez Carrilero, M.; Álvarez, M.; Salguero, J.; Marcos, M.
2009-11-01
Titanium is a material that, despite its high cost, is increasingly being introduced in the aerospace industry due to both, its weight, its mechanical properties and its corrosion potential, very close to that of carbon fiber based composite material. This fact allows using Ti to form Fiber Metal Laminates Machining operations are usually used in the manufacturing processes of Ti based aerospace structural elements. These elements must be machined under high surface finish requirements. Previous works have shown the relationship between the surface roughness and the tool changes in the first instants of turning processes. From these results, new tests have been performed in an aeronautical factory, in order to analyse roughness in final pieces.
NASA Technical Reports Server (NTRS)
Blake, Jean A.
1987-01-01
Spacelink is an electronic information service to be operated by the Marshall Space Flight Center. It will provide NASA news and educational resources including software programs that can be accessed by anyone with a computer and modem. Spacelink is currently being installed and will soon begin service. It will provide daily updates of NASA programs, information about NASA educational services, manned space flight, unmanned space flight, aeronautics, NASA itself, lesson plans and activities, and space program spinoffs. Lesson plans and activities were extracted from existing NASA publications on aerospace activities for the elementary school. These materials were arranged into 206 documents which have been entered into the Spacelink program for use in grades K-6.
1989-08-30
year period in the following products: Technology Field Product New materials Composite materials Amorphous alloys Macromolecule separation...plastics 8. Composite materials B. Parts 9. Optical fiber 10. Semiconductor lasers 11. CCD 12. Semiconductor memory elements 13. Microcomputers...separation. Composite materials (containing carbon fiber) (1) Aerospace users required strict specifi cations for carbon fiber, resulting in
JPRS report. Science and technology: Europe and Latin America
NASA Astrophysics Data System (ADS)
1987-12-01
Topics addressed include: advanced materials; aerospace; civil aviation; automative industry; biotechnology; computers; metallurgical industries; microelectronics; science and technology policy; and lasers, sensor, and optics.
NASA Technical Reports Server (NTRS)
Park, Cheol; Wise, Kristopher E.; Kang, Jin Ho; Kim, Jae-Woo; Sauti, Godfrey; Lowther, Sharon E.; Lillehei, Peter T.; Smith, Michael W.; Siochi, Emilie J.; Harrison, Joycelyn S.;
2008-01-01
Multifunctional structural materials can enable a novel design space for advanced aerospace structures. A promising route to multifunctionality is the use of nanotubes possessing the desired combination of properties to enhance the characteristics of structural polymers. Recent nanotube-polymer nanocomposite studies have revealed that these materials have the potential to provide structural integrity as well as sensing and/or actuation capabilities. Judicious selection or modification of the polymer matrix to promote donor acceptor and/or dispersion interactions can improve adhesion at the interface between the nanotubes and the polymer matrix significantly. The effect of nanotube incorporation on the modulus and toughness of the polymer matrix will be presented. Very small loadings of single wall nanotubes in a polyimide matrix yield an effective sensor material that responds to strain, stress, pressure, and temperature. These materials also exhibit significant actuation in response to applied electric fields. The objective of this work is to demonstrate that physical properties of multifunctional material systems can be tailored for specific applications by controlling nanotube treatment (different types of nanotubes), concentration, and degree of alignment.
Real-Time Radiographic In-Situ Characterization Of Ply Lift In Composite Aerospace Materials
NASA Technical Reports Server (NTRS)
Beshears, Ronald D.; Doering, Edward R.
2006-01-01
The problem of ply lifting in composite materials is a significant issue for various aerospace and military applications. A fundamental element in the prevention or mitigation of ply lift is determination of the timing of the ply lifting event during exposure of the composite material to flight conditions. The Marshall Space Flight Center s Nondestructive Evaluation Team developed a real-time radiographic technique for the detection of ply lift in carbon phenolic ablative materials in situ during live firings of subscale test motors in support of NASA s Reusable Solid Rocket Motor program, using amorphous silicon detector panels. The radiographic method has successfully detected ply lifting in seven consecutive carbon phenolic converging cones attached to solid fuel torches, providing the time of ply lift initiation in each test. Post-processing of the radiographic images improved the accuracy of timing measurements and allowed measurement of the ply lifting height as a function of time. Radiographic data correlated well with independent pressure and temperature measurements that indicate the onset of ply lift in the nozzle material.
Directionally Solidified Eutectic Ceramics for Multifunctional Aerospace Applications
2013-01-01
eutectic materials development through a new initiative entitled Boride Eutectic Project. These results first time organize and populate materials...property databases, and utilize an iterative feedback routine to constantly improve the design process of the boride eutectics LaB6-MeB2 (Me = Zr, Hf, Ti
Transportation Exploration. Practical Arts. Instructor's Manual. Competency-Based Education.
ERIC Educational Resources Information Center
Keeton, Martha; And Others
This manual provides curriculum materials for implementing a career exploration class in transportation occupations within a Practical Arts Education program for middle/junior high school students. Introductory materials include the program master sequence, a list of transportation occupations (land, water and aerospace transportation families),…
Carbon offers advantages as implant material in human body
NASA Technical Reports Server (NTRS)
Benson, J.
1969-01-01
Because of such characteristics as high strength and long-term biocompatability, aerospace carbonaceous materials may be used as surgical implants to correct pathological conditions in the body resulting from disease or injury. Examples of possible medical uses include bone replacement, implantation splints and circulatory bypass implants.
Design and Manufacture of Energy Absorbing Materials
Duoss, Eric
2018-01-16
Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.
Materials Genome Initiative Element
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
NASA is committed to developing new materials and manufacturing methods that can enable new missions with ever increasing mission demands. Typically, the development and certification of new materials and manufacturing methods in the aerospace industry has required more than 20 years of development time with a costly testing and certification program. To reduce the cost and time to mature these emerging technologies, NASA is developing computational materials tools to improve understanding of the material and guide the certification process.
LSP Composite Susbtrate Manufacturing Processing Guide
NASA Technical Reports Server (NTRS)
Kovach, Daniel J.; Griess, Kenneth H.
2013-01-01
This document is intended to define Carbon Fiber Reinforced Plastic (CFRP) test panel configurations that can be employed for the purposes of evaluating the protection capabilities of Lightning Strike Protection (LSP) materials developed by the Aerospace Industry. The configurations are intended to provide consistent behavior in their response to simulated lightning strikes at pre-defined levels when tested by a capable vendor according to a test procedure written to enable consistent results (ref section 2.1.2). In response to an attachment of a simulated lightning strike on a CFRP panel, one can expect to see various levels of ablation and delamination, both through the thickness of the panel and with respect to the amount of panel surface area that exhibits damage. Panel configurations defined in this document include: An "unprotected" configuration 128694-1 (ref section 4.1), consisting of a cured CFRP laminate stackup of tape and fabric prepregs, coated with a typical aerospace primer and paint finishing scheme, attached to aluminum grounding bars intended to draw electrical current from the lightning attachment point to the panel edges and thus to ground. A "protected" configuration 128694-2 (ref section 4.1), wherein a layer of an LSP material form often used in the Aerospace Industry is included in the laminate stackup prior to cure. The CFRP materials, finishes and grounding arrangement for ths configuration are the same as for the "unprotected" configuration.
Electrically conducting polymers for aerospace applications
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.
1991-01-01
Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.
NASA Technical Reports Server (NTRS)
1975-01-01
Development and understanding of materials most suitable for use in compact magnetic and optical memory systems are discussed. Suppression of metal deterioration by hydrogen is studied. Improvement of mechanical properties of polymers is considered, emphasizing low temperature ductility and compatibility with high modulus fiber materials.
2016-07-01
characteristics and to examine the sensitivity of using such techniques for evaluating microstructure. In addition to the GUI tool, a manual describing its use has... Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures, Metallurgical and...driven approach for quanti - fying materials uncertainty in creep deformation and failure of aerspace materials, Multi-scale Structural Mechanics and
Future requirements for advanced materials
NASA Technical Reports Server (NTRS)
Olstad, W. B.
1980-01-01
Recent advances and future trends in aerospace materials technology are reviewed with reference to metal alloys, high-temperature composites and adhesives, tungsten fiber-reinforced superalloys, hybrid materials, ceramics, new ablative materials, such as carbon-carbon composite and silica tiles used in the Shuttle Orbiter. The technologies of powder metallurgy coupled with hot isostatic pressing, near net forging, complex large shape casting, chopped fiber molding, superplastic forming, and computer-aided design and manufacture are emphasized.
Self-lubricating composite materials
NASA Technical Reports Server (NTRS)
Sliney, H. E.
1980-01-01
The mechanical properties of two types of self lubricating composites (polymer matrix composites and inorganic composites) are discussed. Specific emphasis is given to the applicability of these composites in the aerospace industry.
NASA-DoD Lead-Free Electronics Project
NASA Technical Reports Server (NTRS)
Kessel, Kurt
2011-01-01
Original Equipment Manufacturers (OEMs). depots. and support contractors have to be prepared to deal with an electronics supply chain thaI increasingly provides parts with lead-free finishes. some labeled no differently and intenningled with their SnPb counterparts. Allowance oflead-free components presents one of the greatest risks to the reliability of military and aerospace electronics. The introduction of components with lead-free lenninations, tennination finishes, or circuit boards presents a host of concerns to customers. suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers; 2. Incompatibility oflead-free processes and parameters (including higher melting points of lead-free alloys) with other materials in the system; and 3. Unknown material properties and incompatibilities that could reduce solder joint re liability.
2004-05-25
KENNEDY SPACE CENTER, FLA. - United Space Alliance workers J.C. Harrison (far left) and Amy Mangiacapra guide a wrapped piece of Columbia debris through the Vehicle Assembly Building, where it is stored. Alongside is NASA’s Scott Thurston, who is the Columbia debris coordinator. This piece is one of eight being released to The Aerospace Corporation in El Segundo, Calif., for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crew’s families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite.
A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
2007-01-01
A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.
2004-05-25
KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building (VAB), Scott Thurston looks at pieces of Columbia debris being prepared for transfer to the shipping facility before their delivery to The Aerospace Corporation in El Segundo, Calif. Thurston is the Columbia debris coordinator. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crew’s families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbia’s debris is stored in the VAB.
2004-05-25
KENNEDY SPACE CENTER, FLA. - With NASA’s Scott Thurston (left) alongside, United Space Alliance workers J.C. Harrison (in cap) and Amy Mangiacapra (right) begin moving a piece of Columbia debris being shipped to The Aerospace Corporation in El Segundo, Calif. Thurston is the Columbia debris coordinator. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crew’s families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbia’s debris is stored in the VAB.
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott
2016-01-01
The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable both the use and sustainment of composites in commercial aircraft structures. One key to the sustainment of these large composite structures is the rapid, in-situ characterization of a wide range of potential defects that may occur during the vehicle's life. Additionally, in many applications it is necessary to monitor changes in these materials over their lifetime. Quantitative characterization through Nondestructive Evaluation (NDE) of defects such as reduced bond strength, microcracking, and delamination damage due to impact, are of particular interest. This paper will present an overview of NASA's applications of NDE technologies being developed for the characterization and sustainment of advanced aerospace composites. The approaches presented include investigation of conventional, guided wave, and phase sensitive ultrasonic methods and infrared thermography techniques for NDE. Finally, the use of simulation tools for optimizing and validating these techniques will also be discussed.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building (VAB), Scott Thurston looks at pieces of Columbia debris being prepared for transfer to the shipping facility before their delivery to The Aerospace Corporation in El Segundo, Calif. Thurston is the Columbia debris coordinator. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crews families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbias debris is stored in the VAB.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. With NASAs Scott Thurston (left) alongside, United Space Alliance workers J.C. Harrison (in cap) and Amy Mangiacapra (right) begin moving a piece of Columbia debris being shipped to The Aerospace Corporation in El Segundo, Calif. Thurston is the Columbia debris coordinator. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crews families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbias debris is stored in the VAB.
Thermal Protection Materials Development
NASA Technical Reports Server (NTRS)
Selvaduray, Guna; Cox, Michael
1998-01-01
The main portion of this contract year was spent on the development of materials for high temperature applications. In particular, thermal protection materials were constantly tested and evaluated for thermal shock resistance, high-temperature dimensional stability, and tolerance to hostile environmental effects. The analytical laboratory at the Thermal Protection Materials Branch (TPMB), NASA-Ames played an integral part in the process of materials development of high temperature aerospace applications. The materials development focused mainly on the determination of physical and chemical characteristics of specimens from the various research programs.
Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Six, Frank (Editor); Karr, Gerald R. (Editor)
1990-01-01
Reports on the research projects performed under the NASA/ASEE Summer Faculty Fellowship Program are presented. The program was conducted by The University of Alabama and MSFC during the period from June 4, 1990 through August 10, 1990. Some of the topics covered include: (1) Space Shuttles; (2) Space Station Freedom; (3) information systems; (4) materials and processes; (4) Space Shuttle main engine; (5) aerospace sciences; (6) mathematical models; (7) mission operations; (8) systems analysis and integration; (9) systems control; (10) structures and dynamics; (11) aerospace safety; and (12) remote sensing
Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2005-01-01
Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.
Vacuum investment cast PH13-8Mo corrosion resistant steel. (SAE standard)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-07-01
An industry-wide interest has arisen with regards to the properties and capabilities of investment cast PH 13-8Mo corrosion resistant steel. Specifically of interest are the structural applications in the aerospace industry for this product heat treated to the H1000 condition. The objective of this AMEC cooperative test program was to generate and compile useful data for aerospace structural evaluation of investment cast PH 13-8Mo heat treated to H1000. The determination was made of overall mechanical properties, fatigue, fracture toughness, and crack growth data along with basic microstructural evaluation of the investment cast material. The evaluation of mechanical property variations betweenmore » cast and machined tensile specimens and evaluation of microstructural constituents. PH 13-8Mo, H1000 investment castings for use in the aerospace industry is included.« less
2007-03-01
materials: • Electrical conductivity -- probably the best conductor of electricity on a nanoscale level that can ever be possible. • Thermal ...for high purity nanotubes. RTO-EN-AVT-129bis 3 - 1 van Heeren, H. (2007) Nano Materials. In Nanotechnology Aerospace Applications...2006 (pp. 3- 1 – 3-4). Educational Notes RTO-EN-AVT-129bis, Paper 3. Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int
Advances in Protective Coatings and Their Application to Ageing Aircraft
2000-04-01
Aerospace Material Specification Selectively (1997) Strippable Acrylic Finishing Schemes - Matt and Glossy - 23. K.R. Baldwin and C.J.E. Smith, Repair...corrosion through design, the selection of military and civil aircraft during the last thirty years. Research materials that are resistant to corrosion and...compliant coatings. initiation of corrosion. This paper first examines the general principles involved in 2.2 Materials selection the corrosion
2016 Summer Series - Kenneth Cheung: Building Blocks for Aerospace Structures
2016-06-16
Strong, ultra-lightweight materials are expected to play a key role in the design of future aircraft and space vehicles. Lower structural mass leads to improved performance, maneuverability, efficiency, range and payload capacity. Dr. Kenneth Cheung is developing cellular composite building blocks, or digital materials, to create transformable aerostructures. In his presentation, Dr. Cheung will discuss the implications of the digital materials and morphing structures.
Tech Transfer Webinar: Energy Absorbing Materials
Duoss, Eric
2018-01-16
A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1982-01-01
Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
These military-developed curriculum materials consist of five volumes of individualized, self-paced training manuals for use by those studying to be airframe repair technicians. Covered in the individual volumes are the following topics: fundamentals of organization and management (ground safety, aircraft ground safety, and aerospace and power…
Finite Element Analysis of Morphing Piezoelectric Structures Studied
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
2002-01-01
The development of morphing aerospace structures that optimize their shape offers the potential to significantly improve the performance of existing airplanes. These morphing vehicles will operate with new capabilities to reduce noise, damp vibrations, manipulate flow, and monitor damage. Piezoelectric materials represent one of the popular materials currently being investigated for applications in morphing structures.
2011-11-01
correlating with the common use of graphite-epoxy composites in aerospace materials. Ghandi and Lyon identify two primary exposure routes from...Materials, Springer, Dordrecht, The Netherlands, 2006; Chapter 12, “Health Hazards of Composites in Fire”. 5. Sanjeev Ghandi and Richard E. Lyon, Health
1986-12-01
Reliability Studies ............................................................ 295 NDI for Corrosion .................................................... (Not...available at time of printing) Plastic Bead Blast Materials Characterization Study ................................................ 313 In-Service... Studies Ward Rummel, Martin-Marietta Aerospace AGENDA (Continued) 2. NOI for Corrosion Jeff Rowe, Lockheed-Georgia 3. Plastic Bead Blast Materials R. D
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Wang, Morgan
1992-01-01
The recognition of materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques.
Nano-enhanced aerospace composites for increased damage tolerance and service life damage monitoring
NASA Astrophysics Data System (ADS)
Paipetis, A.; Matikas, T. E.; Barkoula, N. M.; Karapappas, P.; Vavouliotis, A.; Kostopoulos, V.
2009-03-01
This study deals with new generation composite systems which apart from the primary reinforcement at the typical fiber scale (~10 μm) are also reinforced at the nanoscale. This is performed via incorporation of nano-scale additives in typical aerospace matrix systems, such as epoxies. Carbon Nanotubes (CNTs) are ideal candidates as their extremely high aspect ratio and mechanical properties render them advantageous to other nanoscale materials. The result is the significant increase in the damage tolerance of the novel composite systems even at very low CNT loadings. By monitoring the resistance change of the CNT network, information both on the real time deformation state of the composite is obtained as a reversible change in the bulk resistance of the material, and the damage state of the material as an irreversible change in the bulk resistance of the material. The irreversible monotonic increase of the electrical resistance can be related to internal damage in the hybrid composite system and may be used as an index of the remaining lifetime of a structural component.
NASA Astrophysics Data System (ADS)
dell'Erba, M.; Galantucci, L. M.; Miglietta, S.
This paper reports on the results of research which investigated the potential for the application of an excimer laser in the field of composite material drilling and cutting, by comparing this technology with that using CO2 sources. In particular, the scope of the work was to check whether the interaction between excimer lasers and composite materials, whose characteristic feature is the absence of thermal transfer, could yield better results than those obtainable with CO2 sources once heat transfer-induced difficulties had been eliminated. The materials selected for the experiments were multilayer composites having an epoxy resin matrix (65 percent in volume), with aramid fiber (Kevlar), carbon fiber and glass fiber as reinforcing materials, all of considerable interest for the aerospace industry. Optimal operational parameters were identified in relation to each source with a view to obtaining undersize holes or through cuts exhibiting severed areas of good quality. A comparison between the two types of processing carried out show that rims processed by excimer lasers are of better quality - particularly so with Kevlar - whereas the ablation rate is undoubtedly rather low compared with the CO2 technology.
A Survey of Emerging Materials for Revolutionary Aerospace Vehicle Structures and Propulsion Systems
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Shuart, Mark J.; Gray, Hugh R.
2002-01-01
The NASA Strategic Plan identifies the long-term goal of providing safe and affordable space access, orbital transfer, and interplanetary transportation capabilities to enable scientific research, human, and robotic exploration, and the commercial development of space. Numerous scientific and engineering breakthroughs will be required to develop the technology required to achieve this goal. Critical technologies include advanced vehicle primary and secondary structure, radiation protection, propulsion and power systems, fuel storage, electronics and devices, sensors and science instruments, and medical diagnostics and treatment. Advanced materials with revolutionary new capabilities are an essential element of each of these technologies. A survey of emerging materials with applications to aerospace vehicle structures and propulsion systems was conducted to assist in long-term Agency mission planning. The comprehensive survey identified materials already under development that could be available in 5 to 10 years and those that are still in the early research phase and may not be available for another 20 to 30 years. The survey includes typical properties, a description of the material and processing methods, the current development status, and the critical issues that must be overcome to achieve commercial viability.
Ultra Low Outgassing silicone performance in a simulated space ionizing radiation environment
NASA Astrophysics Data System (ADS)
Velderrain, M.; Malave, V.; Taylor, E. W.
2010-09-01
The improvement of silicone-based materials used in space and aerospace environments has garnered much attention for several decades. Most recently, an Ultra Low Outgassing™ silicone incorporating innovative reinforcing and functional fillers has shown that silicone elastomers with unique and specific properties can be developed to meet applications requiring stringent outgassing requirements. This paper will report on the next crucial step in qualifying these materials for spacecraft applications requiring chemical and physical stability in the presence of ionizing radiation. As a first step in this process, selected materials were irradiated with Co-60 gamma-rays to simulate the total dose received in near- Earth orbits. The paper will present pre-and post-irradiation response data of Ultra Low Outgassing silicone samples exposed under ambient air environment coupled with measurements of collected volatile condensable material (CVCM) and total mass loss (TML) per the standard conditions in ASTM E 595. The data will show an insignificant effect on the CVCMs and TMLs after exposure to various dosages of gamma radiation. This data may favorably impact new applications for these silicone materials for use as an improved sealant for space solar cell systems, space structures, satellite systems and aerospace systems.
NASA Astrophysics Data System (ADS)
Heeter, Ann E.
Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those physical attributes back to the material mechanisms to improve predictive modeling capability.
NASA Technical Reports Server (NTRS)
Starke, E. A., Jr.
1993-01-01
This report on the NASA-UVa Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from January 1, 1992 to June 30, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) powder metallurgy 2XXX alloys, (3) rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.
Puncture Self-Healing Polymers for Aerospace Applications
NASA Technical Reports Server (NTRS)
Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.
2011-01-01
Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.
NASA Technical Reports Server (NTRS)
Starke, E. A., Jr. (Editor)
1995-01-01
This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.
Peng, Qingyu; Qin, Yuyang; Zhao, Xu; Sun, Xianxian; Chen, Qiang; Xu, Fan; Lin, Zaishan; Yuan, Ye; Li, Ying; Li, Jianjun; Yin, Weilong; Gao, Chao; Zhang, Fan; He, Xiaodong; Li, Yibin
2017-12-20
Lightweight, high-performance, thermally insulating, and antifrosting porous materials are in increasing demand to improve energy efficiency in many fields, such as aerospace and wearable devices. However, traditional thermally insulating materials (porous ceramics, polymer-based sponges) could not simultaneously meet these demands. Here, we propose a hierarchical assembly strategy for producing nanocomposite foams with lightweight, mechanically flexible, superinsulating, and antifrosting properties. The nanocomposite foams consist of a highly anisotropic reduced graphene oxide/polyimide (abbreviated as rGO/PI) network and hollow graphene oxide microspheres. The hierarchical nanocomposite foams are ultralight (density of 9.2 mg·cm -3 ) and exhibit ultralow thermal conductivity of 9 mW·m -1 ·K -1 , which is about a third that of traditional polymer-based insulating materials. Meanwhile, the nanocomposite foams show excellent icephobic performance. Our results show that hierarchical nanocomposite foams have promising applications in aerospace, wearable devices, refrigerators, and liquid nitrogen/oxygen transportation.
Porous Foam Based Wick Structures for Loop Heat Pipes
NASA Technical Reports Server (NTRS)
Silk, Eric A.
2012-01-01
As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.
NASA Technical Reports Server (NTRS)
2004-01-01
Beginning with the Apollo Program in the early 1960s, the NASA White Sands Test Facility (WSTF) has supported every U.S. human exploration space flight program to date. Located in Las Cruces, New Mexico, WSTF is part of Johnson Space Center. The facility's primary mission is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components, and rocket propulsion systems to enable the safe human exploration and utilization of space. WSTF stores, tests, and disposes of Space Shuttle and International Space Station propellants. Since aerospace fluids can have harmful reactions with the construction materials of the systems containing them, a major component of WSTF's work is the study of propellants and hazardous materials. WSTF has a wide variety of resources to draw upon in assessing the fire, explosion, compatibility, and safety hazards of these fluids, which include hydrogen, oxygen, hydrazine fuels, and nitrogen tetroxide. In addition to developing new test methods, WSTF has created technical manuals and training courses for the safe use of aerospace fluids.
Silicon Carbide Technologies for Lightweighted Aerospace Mirrors
NASA Astrophysics Data System (ADS)
Matson, L.; Chen, M.; Deblonk, B.; Palusinski, I.
The use of monolithic glass and beryllium to produce lightweighted aerospace mirror systems has reached its limits due to the long lead times, high processing costs, environmental effects and launch load/weight requirements. New material solutions and manufacturing processes are required to meet DoD's directed energy weapons, reconnaissance/surveillance, and secured communications needs. Over the past several years the Air Force, MDA, and NASA has focused their efforts on the fabrication, lightweighting, and scale-up of numerous silicon carbide (SiC) based materials. It is anticipated that SiC can be utilized for most applications from cryogenic to high temperatures. This talk will focus on describing the SOA for these (near term) SiC technology solutions for making mirror structural substrates, figuring and finishing technologies being investigated to reduce cost time and cost, and non-destructive evaluation methods being investigated to help eliminate risk. Mirror structural substrates made out of advanced engineered materials (far term solutions) such as composites, foams, and microsphere arrays for ultra lightweighting will also be briefly discussed.
NASA Astrophysics Data System (ADS)
Riahi, Mohammad; Ahmadi, Alireza
2016-04-01
Role of air transport in the development and expansion of world trade leading to economic growth of different countries is undeniable. Continuing the world's trade sustainability without expansion of aerospace is next to impossible. Based on enormous expenses for design, manufacturing and maintenance of different aerospace structures, correct and timely diagnosis of defects in those structures to provide for maximum safety has the highest importance. Amid all this, manufacturers of commercial and even military aircrafts are after production of less expensive, lighter, higher fuel economy and nonetheless, higher safety. As such, two events has prevailed in the aerospace industries: (1) Utilization of composites for the fuselage as well as other airplane parts, (2) using modern manufacturing methods. Arrival of two these points have created the need for upgrading of the present systems as well as innovating newer methods in diagnosing and detection of defects in aerospace structures. Despite applicability of nondestructive testing (NDT) methods in aerospace for decades, due to some limitations in the defect detection's certainty, particularly for composite material and complex geometries, shadow of doubt has fallen on maintaining complete confidence in using NDT. These days, two principal approach are ahead to tackle the above mentioned problems. First, approach for the short range is the creative and combinational mean to increase the reliability of NDT and for the long run, innovation of new methods on the basis of structural health monitoring (SHM) is in order. This has led to new philosophy in the maintenance area and in some instances; field of design has also been affected by it.
High-Temperature Strain Sensing for Aerospace Applications
NASA Technical Reports Server (NTRS)
Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.
2008-01-01
Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.
Nondestructive Evaluation for Aerospace Composites
NASA Technical Reports Server (NTRS)
Leckey, Cara; Cramer, Elliott; Perey, Daniel
2015-01-01
Nondestructive evaluation (NDE) techniques are important for enabling NASA's missions in space exploration and aeronautics. The expanded and continued use of composite materials for aerospace components and vehicles leads to a need for advanced NDE techniques capable of quantitatively characterizing damage in composites. Quantitative damage detection techniques help to ensure safety, reliability and durability of space and aeronautic vehicles. This presentation will give a broad outline of NASA's range of technical work and an overview of the NDE research performed in the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center. The presentation will focus on ongoing research in the development of NDE techniques for composite materials and structures, including development of automated data processing tools to turn NDE data into quantitative location and sizing results. Composites focused NDE research in the areas of ultrasonics, thermography, X-ray computed tomography, and NDE modeling will be discussed.
NASA Astrophysics Data System (ADS)
Handa, Danish; Sekhar Dondapati, Raja; Kumar, Abhinav
2017-08-01
Ductile to brittle transition (DTBT) is extensively observed in materials under cryogenic temperatures, thereby observing brittle failure due to the non-resistance of crack propagation. Owing to its outstanding mechanical and thermal properties, Kevlar 49 composites are widely used in aerospace applications under cryogenic temperatures. Therefore, in this paper, involving the assumption of linear elastic fracture mechanics (LEFM), mechanical characterization of Kevlar 49 composite is done using Extended Finite Element Method (X-FEM) technique in Abaqus/CAE software. Further, the failure of Kevlar 49 composites due to the propagation of crack at room temperature and the cryogenic temperature is investigated. Stress, strain and strain energy density as a function of the width of the Kevlar specimen is predicted, indicates that Kevlar 49 composites are suitable for use under cryogenic temperatures.
NASA Technical Reports Server (NTRS)
1989-01-01
The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.
Radiation Exposure Effects and Shielding Analysis of Carbon Nanotube Materials
NASA Technical Reports Server (NTRS)
Wilkins, Richard; Armendariz, Lupita (Technical Monitor)
2002-01-01
Carbon nanotube materials promise to be the basis for a variety of emerging technologies with aerospace applications. Potential applications to human space flight include spacecraft shielding, hydrogen storage, structures and fixtures and nano-electronics. Appropriate risk analysis on the properties of nanotube materials is essential for future mission safety. Along with other environmental hazards, materials used in space flight encounter a hostile radiation environment for all mission profiles, from low earth orbit to interplanetary space.
New developments in aluminum for aircraft and automobiles
NASA Technical Reports Server (NTRS)
Petit, Jocelyn I.
1994-01-01
A common bond for the aircraft and automobile industry is the need for cost-efficient, lightweight structures such as provided by aluminum based materials. The topics are presented in viewgraph form and cover the following: new developments in aluminum for aircraft and automobiles; forces shaping future automotive materials needs; aluminum strength/weakness versus competitive materials; evolution of aluminum aerospace alloys; forces shaping future aircraft materials needs; fiber/metal structural laminates; and property requirements for jetliner and military transport applications.
Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.
Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele
2018-02-16
Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.
Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components
Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele
2018-01-01
Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites. PMID:29462953
Material characterization and modeling with shear ography
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Callahan, Virginia
1993-01-01
Shearography has emerged as a useful technique for nondestructible evaluation and materials characterization of aerospace materials. A suitable candidate for the technique is to determine the response of debonds on foam-metal interfaces such as the TPS system on the External Tank. The main thrust is to develop a model which allows valid interpretation of shearographic information on TPS type systems. Confirmation of the model with shearographic data will be performed.
Flexible diaphragm-extreme temperature usage
NASA Astrophysics Data System (ADS)
Lerma, Guillermo
1991-02-01
A diaphragm suitable for extreme temperature usage, such as encountered in critical aerospace applications, is fabricated by a unique method, and of a unique combination of materials. The materials include multilayered lay-ups of diaphragm materials sandwiched between layers of bleeder fabrics. After being formed in the desired shape on a mold, they are vacuum sealed and then cured under pressure, in a heated autoclave. A bond capable of withstanding extreme temperatures are produced.
Ceramic TBS/porous metal compliant layer
NASA Technical Reports Server (NTRS)
Tolokan, Robert P.; Jarrabet, G. P.
1992-01-01
Technetics Corporation manufactures metal fiber materials and components used in aerospace applications. Our technology base is fiber metal porous sheet material made from sinter bonded metal fibers. Fiber metals have percent densities (metal content by volume) from 10 to 65 percent. Various topics are covered and include the following: fiber metal materials, compliant layer thermal bayer coatings (TBC's), pad properties, ceramic/pad TBC design, thermal shock rig, fabrication, and applications.
Friction surfacing and linear friction welding
NASA Astrophysics Data System (ADS)
Nicholas, E. D.
The paper describes the development of the friction-surfacing and linear-friction welding technologies, with particular attention given to the equipment evolution and the application of the processes and advanced materials (such as intermetallics, metal-matrix composites (MMCs), ODS alloys, and powder metallurgy alloys) for the aerospace industry. The use of friction surfacing to modify the surface material with MMCs, to repair defects by plugging, and manufacture/reprocess materials is described.
Potential Applications of Biotechnology to Aerospace Materials.
1986-11-01
sulfate:(1) ms + 202 a msO4 where m is a bivalent metal. In the indirect method of bioleach- ing, the metal sulfide is oxidized by ferric ion: ms + 2Fe...possibility exists of using bioleaching or biosorption for recovery of strategic and precious metals such as cobalt, nickel, zinc, arsenic, gallium ...workshop that could be of significant interest to the Materials Laboratory including acetylene compounds , adhesives, structural materials, lubricants, and
Investigation of single crystal ferrite thin films
NASA Technical Reports Server (NTRS)
Mee, J. E.; Besser, P. J.; Elkins, P. E.; Glass, H. L.; Whitcomb, E. C.
1972-01-01
Materials suitable for use in magnetic bubble domain memories were developed for aerospace applications. Practical techniques for the preparation of such materials in forms required for fabrication of computer memory devices were considered. The materials studied were epitaxial films of various compositions of the gallium-substituted yttrium gadolinium iron garnet system. The major emphasis was to determine their bubble properties and the conditions necessary for growing uncracked, high quality films.
Flexible diaphragm-extreme temperature usage
NASA Technical Reports Server (NTRS)
Lerma, Guillermo (Inventor)
1991-01-01
A diaphragm suitable for extreme temperature usage, such as encountered in critical aerospace applications, is fabricated by a unique method, and of a unique combination of materials. The materials include multilayered lay-ups of diaphragm materials sandwiched between layers of bleeder fabrics. After being formed in the desired shape on a mold, they are vacuum sealed and then cured under pressure, in a heated autoclave. A bond capable of withstanding extreme temperatures are produced.
High-temperature test facility at the NASA Lewis engine components research laboratory
NASA Technical Reports Server (NTRS)
Colantonio, Renato O.
1990-01-01
The high temperature test facility (HTTF) at NASA-Lewis Engine Components Research Laboratory (ECRL) is presently used to evaluate the survivability of aerospace materials and the effectiveness of new sensing instrumentation in a realistic afterburner environment. The HTTF has also been used for advanced heat transfer studies on aerospace components. The research rig uses pressurized air which is heated with two combustors to simulate high temperature flow conditions for test specimens. Maximum airflow is 31 pps. The HTTF is pressure rated for up to 150 psig. Combustors are used to regulate test specimen temperatures up to 2500 F. Generic test sections are available to house test plates and advanced instrumentation. Customized test sections can be fabricated for programs requiring specialized features and functions. The high temperature test facility provides government and industry with a facility for testing aerospace components. Its operation and capabilities are described.
NASA Technical Reports Server (NTRS)
Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.
2014-01-01
As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.
2005-01-01
The description and interpretation of the terrestrial environment (0-90 km altitude) is an important driver of aerospace vehicle structural, control, and thermal system design. NASA is currently in the process of reviewing the meteorological information acquired over the past decade and producing an update to the 1993 Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, sea state, etc. In addition, the respective engineering design elements will be discussed relative to the importance and influence of terrestrial environment inputs that require consideration and interpretation for design applications. Specific lessons learned that have contributed to the advancements made in the acquisition, interpretation, application and awareness of terrestrial environment inputs for aerospace engineering applications are discussed.
NASA Technical Reports Server (NTRS)
Friedrich, Craig R.; Warrington, Robert O.
1995-01-01
Micromechanical machining processes are those micro fabrication techniques which directly remove work piece material by either a physical cutting tool or an energy process. These processes are direct and therefore they can help reduce the cost and time for prototype development of micro mechanical components and systems. This is especially true for aerospace applications where size and weight are critical, and reliability and the operating environment are an integral part of the design and development process. The micromechanical machining processes are rapidly being recognized as a complementary set of tools to traditional lithographic processes (such as LIGA) for the fabrication of micromechanical components. Worldwide efforts in the U.S., Germany, and Japan are leading to results which sometimes rival lithography at a fraction of the time and cost. Efforts to develop processes and systems specific to aerospace applications are well underway.
NASA Astrophysics Data System (ADS)
Autric, Michel L.
1999-09-01
Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.
Products of combustion of non-metallic materials
NASA Technical Reports Server (NTRS)
Perry, Cortes L.
1995-01-01
The objective of this project is to evaluate methodologies for the qualitative and quantitative determination of the gaseous products of combustion of non-metallic materials of interest to the aerospace community. The goal is to develop instrumentation and analysis procedures which qualitatively and quantitatively identify gaseous products evolved by thermal decomposition and provide NASA a detailed system operating procedure.
Short beam shear tests of polymeric laminates and unidirectional composites
NASA Technical Reports Server (NTRS)
Stinchcomb, W. W.; Henneke, E. G.
1980-01-01
The application of advanced composite materials in aerospace, ground transportation, and sporting industries are discussed. Failure theories for the design and mechanical behavior of composite materials are emphasized. Methods for detecting specific types of flaws are outlined. The effect of detected flaws on mechanical properties such as stiffness, strength, fatigue lifetime, or residual strength is described.
NASA Technical Reports Server (NTRS)
1997-01-01
The bibliography contains citations concerning analytical techniques using constitutive equations, applied to materials under stress. The properties explored with these techniques include viscoelasticity, thermoelasticity, and plasticity. While many of the references are general as to material type, most refer to specific metals or composites, or to specific shapes, such as flat plate or spherical vessels.
Consortium for Nanomaterials for Aerospace Commerce and Technology (CONTACT)
2013-02-01
108 47 Absorption mechanism in tandem OPVs and absorption spectra of common organic materials...different protection mechanisms in the humid air of terrestrial environments and the dry vacuum of space. From these initial successes, a range of...confinement based materials enable the ability to manipulate and enhance the optical, electrical, thermal and noise mechanisms to optimize device
Advanced materials for aircraft engine applications.
Backman, D G; Williams, J C
1992-02-28
A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.
Aerospace Payloads Leak Test Methodology
NASA Technical Reports Server (NTRS)
Lvovsky, Oleg; Grayson, Cynthia M.
2010-01-01
Pressurized and sealed aerospace payloads can leak on orbit. When dealing with toxic or hazardous materials, requirements for fluid and gas leakage rates have to be properly established, and most importantly, reliably verified using the best Nondestructive Test (NDT) method available. Such verification can be implemented through application of various leak test methods that will be the subject of this paper, with a purpose to show what approach to payload leakage rate requirement verification is taken by the National Aeronautics and Space Administration (NASA). The scope of this paper will be mostly a detailed description of 14 leak test methods recommended.
Elementary school aerospace activities: A resource for teachers
NASA Technical Reports Server (NTRS)
1977-01-01
The chronological development of the story of man and flight, with emphasis on space flight, is presented in 10 units designed as a resource for elementary school teachers. Future exploration of space and the utlization of space flight capabilities are included. Each unit contains an outline, a list of suggested activities for correlation, a bibliography, and a list of selected audiovisual materials. A glossary of aerospace terms is included. Topics cover: earth characteristics that affect flight; flight in atmosphere, rockets, technological advances, unmanned Earth satellites, umanned exploration of the solar system, life support systems; astronauts, man in space, and projections for the future.
Proceedings of the ASPE/MSFC Symposium on Engineering and Productivity Gains from Space Technology
NASA Technical Reports Server (NTRS)
1977-01-01
Aerospace technology findings were examined in regard to nonaerospace applications. Studies of energy generation, materials and processes, earth observation as well as advances and benefits of electronics are included.
Remarks on Flammability Testing of Aerospace Materials
NASA Technical Reports Server (NTRS)
Hirsch, David B.; Beeson, Harold D.
2013-01-01
Agenda for the presentation: (1) Brief background of ISO 16697 (a) Reasons for the approach (b) Stated intent for this International Technical Specification (2) Evolution of initial considerations for the ISO approach (3) Discussion and recommendation
2004-05-25
KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building (VAB), Scott Thurston (red shirt) stands by while a United Space Alliance worker (blue shirt) gets ready to start moving pieces of Columbia debris, such as the PRSD tank in front, for transfer to a shipping facility and delivery to The Aerospace Corporation in El Segundo, Calif. Thurston is the Columbia debris coordinator. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crew’s families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbia’s debris is stored in the VAB.
NASA Astrophysics Data System (ADS)
Beal, Roger Zack
The current fiscally austere environment prevalent in the military and industry is driving extreme measures to save money. In the United States Air Force, this has driven enormous efforts to trim sustainment spending on extended life aircraft. The challenge to the aerospace engineer is to ensure flight safety in the midst of this economic pressure. One method of cutting costs is to increase the time an aircraft is in service by delaying the point when the aircraft is taken out of service for depot maintenance. To ensure flight safety, in depth fatigue and fracture analysis needs to be accomplished to assess increasing the inspection interval. The purpose of this study was to determine the sensitivity of Aluminum 2024-T351 alloy, a common material used in tension dominated aerospace applications, to two different loading spectra---one that is aggressive and the other that is benign. This was accomplished by conducting five different combinations of the two spectra, developing computer simulations using the AFGROW software and comparing with the measured data. The results showed that the material demonstrated significantly different behavior between the two spectra. These results provide a valuable tool for the aerospace engineer for fatigue life prediction and inspection interval evaluation.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building (VAB), Scott Thurston (red shirt) stands by while a United Space Alliance worker (blue shirt) gets ready to start moving pieces of Columbia debris, such as the PRSD tank in front, for transfer to a shipping facility and delivery to The Aerospace Corporation in El Segundo, Calif. Thurston is the Columbia debris coordinator. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crews families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbias debris is stored in the VAB.
NASA Astrophysics Data System (ADS)
Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan
2014-09-01
This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.
Aviation combustion toxicology: an overview.
Chaturvedi, Arvind K
2010-01-01
Aviation combustion toxicology is a subspecialty of the field of aerospace toxicology, which is composed of aerospace and toxicology. The term aerospace, that is, the environment extending above and beyond the surface of the Earth, is also used to represent the combined fields of aeronautics and astronautics. Aviation is another term interchangeably used with aerospace and aeronautics and is explained as the science and art of operating powered aircraft. Toxicology deals with the adverse effects of substances on living organisms. Although toxicology borrows knowledge from biology, chemistry, immunology, pathology, physiology, and public health, the most closely related field to toxicology is pharmacology. Economic toxicology, environmental toxicology, and forensic toxicology, including combustion toxicology, are the three main branches of toxicology. In this overview, a literature search for the period of 1960-2007 was performed and information related to aviation combustion toxicology collected. The overview included introduction; combustion, fire, and smoke; smoke gas toxicity; aircraft material testing; fire gases and their interactive effects; result interpretation; carboxyhemoglobin and blood cyanide ion levels; pyrolytic products of aircraft engine oils, fluids, and lubricants; and references. This review is anticipated to be an informative resource for aviation combustion toxicology and fire-related casualties.
Nanotechnology for aerospace: potential transitions from university research
NASA Astrophysics Data System (ADS)
Agee, Forrest J.
2008-04-01
Nanotechnology is expected to provide the fundamental basis of the next two generations of products and processes. Impacts for applications are already being felt in many fields, and there is interest especially in the aerospace industry, where performance is a major driver of decisions for applications. Four areas are receiving special emphasis in a program aimed at the Air Force's strategic focus on materials. The emphasis includes adaptive coatings and surface engineering, nanoenergetics, electromagnetic sensors, and power generation and storage. Seven universities in Texas have initiated the CONTACT program of focused research including nine projects in the first year, with plans for expansion in subsequent years. This paper discusses the focus, progress, and plans for the second year and opportunities for industry input to the scope and content of the research. A new model for the creation and guidance of research programs for industry is presented. The new approach includes interaction with the aerospace industry and the Air Force that provides a focus for the research. Results to date for the new method and for the research are presented. A discussion of nanoengineering technology transition into the aerospace industry highlights the mechanisms for enhancing the process and for dealing with intellectual property.
Self-healing nanocomposite using shape memory polymer and carbon nanotubes
NASA Astrophysics Data System (ADS)
Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi
2013-04-01
Carbon fiber reinforced composites are used in a wide range of applications in aerospace, mechanical, and civil structures. Due to the nature of material, most damage in composites, such as delaminations, are always barely visible to the naked eye, which makes it difficult to detect and repair. The investigation of biological systems has inspired the development and characterization of self-healing composites. This paper presents the development of a new type of self-healing material in order to impede damage progression and conduct in-situ damage repair in composite structures. Carbon nanotubes, which are highly conductive materials, are mixed with shape memory polymer to develop self-healing capability. The developed polymeric material is applied to carbon fiber reinforced composites to automatically heal the delamination between different layers. The carbon fiber reinforced composite laminates are manufactured using high pressure molding techniques. Tensile loading is applied to double cantilever beam specimens using an MTS hydraulic test frame. A direct current power source is used to generate heat within the damaged area. The application of thermal energy leads to re-crosslinking in shape memory polymers. Experimental results showed that the developed composite materials are capable of healing the matrix cracks and delaminations in the bonded areas of the test specimens. The developed self-healing material has the potential to be used as a novel structural material in mechanical, civil, aerospace applications.
Composite structural materials
NASA Technical Reports Server (NTRS)
Loewy, R.; Wiberley, S. E.
1986-01-01
Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.
Composite Structural Materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.
1984-01-01
The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.
Advanced Ablative Insulators and Methods of Making Them
NASA Technical Reports Server (NTRS)
Congdon, William M.
2005-01-01
Advanced ablative (more specifically, charring) materials that provide temporary protection against high temperatures, and advanced methods of designing and manufacturing insulators based on these materials, are undergoing development. These materials and methods were conceived in an effort to replace the traditional thermal-protection systems (TPSs) of re-entry spacecraft with robust, lightweight, better-performing TPSs that can be designed and manufactured more rapidly and at lower cost. These materials and methods could also be used to make improved TPSs for general aerospace, military, and industrial applications.
Microwave techniques for measuring complex permittivity and permeability of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillon, P.
1995-08-01
Different materials are of fundamental importance to the aerospace, microwave, electronics and communications industries, and include for example microwave absorbing materials, antennas lenses and radomes, substrates for MMIC and microwave components and antennaes. Basic measurements for the complex permittivity and permeability of those homogeneous solid materials in the microwave spectral region are described including hardware, instrumentation and analysis. Elevated temperature measurements as well as measurements intercomparisons, with a discussion of the strengths and weaknesses of each techniques are also presented.
Cryomicrotome Applications: Techniques for the Study of Skeletal Materials.
1983-09-01
Dehydrate rapidly and mount Results: collagen-blue ground substance of cartilage and bones-shades of blue mucus, amyloid, other hyaline substances-shades...AD-N±3? SiB CRYOMICROTOME AiPPLICATIONS: TECHNIQUES FOR THE STUDY OF i/i SKELETAL MATERIAL.-[I AIR FORCE AEROSPACE MEDICAL RESEARCH LAB WRIGHT...THE STUDY OF SKELETAL MATERIALS .% . , KATHERINE C. SMITH CLARENCE U. OLOFF LEON E. KAZARIAN A.7t SEPTEMBER 1083 4-Z LUJ Approved for public release
Workshop on Aerospace Materials for Extreme Environments
2009-12-01
Materials for Titanium Alloys Machining Ukraine Volodymyr Filipov Influence of Lattice Parameter Mismatch between Fibers and Matrix on Structure and...on your own 1:00 pm Alina Ievdokymova ZrBi2-Based Tool Materials for Titanium Alloys Machining 1:30 pm Donna Ballard and Don Weaver Processing of...C.K. Gren, T.P. Hanusa, "Deposition of Alumina From Dimethylaluminum Isopropoxide " Ken Sandhage D. Lipke, Y. Zhang, Y. Liu, B. Church, and K
Polyimide Resins Resist Extreme Temperatures
NASA Technical Reports Server (NTRS)
2009-01-01
Spacecraft and aerospace engines share a common threat: high temperature. The temperatures experienced during atmospheric reentry can reach over 2,000 F, and the temperatures in rocket engines can reach well over 5,000 F. To combat the high temperatures in aerospace applications, Dr. Ruth Pater of Langley Research Center developed RP-46, a polyimide resin capable of withstanding the most brutal temperatures. The composite material can push the service temperature to the limits of organic materials. Designed as an environmentally friendly alternative to other high-temperature resins, the RP-46 polyimide resin system was awarded a 1992 "R&D 100" award, named a "2001 NASA Technology of the Year," and later, due to its success as a spinoff technology, "2004 NASA Commercial Invention of the Year." The technology s commercial success also led to its winning the Langley s "Paul F. Holloway Technology Transfer Award" as well as "Richard T. Whitcom Aerospace Technology Transfer Award" both for 2004. RP-46 is relatively inexpensive and it can be readily processed for use as an adhesive, composite, resin molding, coating, foam, or film. Its composite materials can be used in temperatures ranging from minus 150 F to 2,300 F. No other organic materials are known to be capable of such wide range and extreme high-temperature applications. In addition to answering the call for environmentally conscious high-temperature materials, RP-46 provides a slew of additional advantages: It is extremely lightweight (less than half the weight of aluminum), chemical and moisture resistant, strong, and flexible. Pater also developed a similar technology, RP-50, using many of the same methods she used with RP-46, and very similar in composition to RP-46 in terms of its thermal capacity and chemical construction, but it has different applications, as this material is a coating as opposed to a buildable composite. A NASA license for use of this material outside of the Space Agency as well as additional government-funded testing proved that RP-46 is even more exceptional than originally thought.
75 FR 57831 - Office of Hazardous Materials Safety; Notice of Application for Special Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-22
... thereof 15110-N Kidde Aerospace and 49 CFR 178.65...... To authorize the Defense (KAD) manufacture... authorize the Aeronautics and 178.53. transportation in Space commerce of certain Administration Division 2...
Preparing Social Studies Teachers for the Space Age
ERIC Educational Resources Information Center
Kirman, Joseph M.
1975-01-01
Describes a unit on aerospace education which can be presented in a social studies class. Outlined are the aims, materials and procedures for presenting a short unit on the impact of science and technology on society. (BR)
MIDWEST STRUCTURAL SCIENCES CENTER 2011 ANNUAL REPORT
2011-10-01
S. MICHAEL SPOTTSWOOD MICHAEL J. SHEPARD , Chief Senior Aerospace Engineer Analytical Mechanics Branch Analytical...49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Confe- rence, Chicago , IL, Apr. 7-10, 2008. AIAA 2008-2077. Efstathiou C
Systems analysis of carbon nanotubes: opportunities and challenges for space applications.
Samareh, Jamshid A; Siochi, Emilie J
2017-09-15
Recent availability of carbon nanotubes (CNTs) in quantities and formats amenable to producing macroscale components invites consideration of these materials in space applications where their attractive properties can enable the realization of bold concepts for affordable space exploration. The challenge is to identify relevant systems and quantify the benefits at the systems level. Before significant investment or adoption of CNTs for large aerospace systems can be justified, there must be a plausible path to attain the perceived systems level benefits. This challenging step requires a close collaboration among experts on CNTs and aerospace system communities. This paper provides an overview of a few relevant potential CNTs applications for space systems and the gap that must be overcome for deployment of CNTs. It also provides a simple engineering-level systems analysis approach to quantify the benefits of using CNTs over state of the art material solutions.
NASA Astrophysics Data System (ADS)
Aerodynamics, flight, structures and materials, space technology and remote sensing, informatics, environment, energy supply, and equipment, were studied. Research for the Fokker-50 and 100 projects and related development of a measuring, recording, and data processing system for aircraft are described. Damage tolerance of aircraft structures and materials such as carbon/epoxy laminates with outer plies of glass, Aramid and carbon fabric, titanium alloys, and carbon fiber composites, were investigated. Fluid physics research, spacecraft attitude control system tests, and thermal vacuum research were carried out. The development of a multispectral CCD scanner, synthetic aperture radar, and side-looking airborne radar, were studied. A program to integrate aerospace informatics disciplines is described. Air traffic noise calculations, and windpower utilization research were executed. A simulation system for the satellite navigation system NAVSAT was developed. A low-speed wind tunnel LST 3x2.25 was commissioned.
Applications of Materials Selection For Joining Composite/Alloy Piping Systems
NASA Technical Reports Server (NTRS)
Crosby, Karen E.; Smith, Brett H.; Mensah, Patrick F.; Stubblefield, Michael A.
2001-01-01
A study in collaboration between investigators at Southern University and Louisiana State University in Baton Rouge, Louisiana and NASA/MSFC is examining materials for modeling and analysis of heat-activated thermal coupling for joining composite to composite/alloy structures. The short-term objectives of this research are to develop a method for joining composite or alloy structures, as well as to study the effects of thermal stress on composite-to-alloy joints. This investigation will result in the selection of a suitable metallic alloy. Al-Li alloys have potential for this purpose in aerospace applications due to their excellent strength-to-weight ratio. The study of Al-Li and other alloys is of significant importance to this and other aerospace as well as offshore related interests. Further research will incorporate the use of computer aided design and rapid prototype hardware for conceptual design and verification of a potential composite piping delivery system.
NASA Astrophysics Data System (ADS)
Bochenek, Kamil; Basista, Michal
2015-11-01
Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.
Systems analysis of carbon nanotubes: opportunities and challenges for space applications
NASA Astrophysics Data System (ADS)
Samareh, Jamshid A.; Siochi, Emilie J.
2017-09-01
Recent availability of carbon nanotubes (CNTs) in quantities and formats amenable to producing macroscale components invites consideration of these materials in space applications where their attractive properties can enable the realization of bold concepts for affordable space exploration. The challenge is to identify relevant systems and quantify the benefits at the systems level. Before significant investment or adoption of CNTs for large aerospace systems can be justified, there must be a plausible path to attain the perceived systems level benefits. This challenging step requires a close collaboration among experts on CNTs and aerospace system communities. This paper provides an overview of a few relevant potential CNTs applications for space systems and the gap that must be overcome for deployment of CNTs. It also provides a simple engineering-level systems analysis approach to quantify the benefits of using CNTs over state of the art material solutions.
NASA Technical Reports Server (NTRS)
Jackson, Dionne
2005-01-01
The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janicki, G.; Bailey, V.; Schjelderup, H.
The present conference discusses topics in the fields of ultralightweight structures, producibility of thermoplastic composites, innovation in sandwich structures, composite failure processes, toughened materials, metal-matrix composites, advanced materials for future naval systems, thermoplastic polymers, automated composites manufacturers, advanced adhesives, emerging processes for aerospace component fabrication, and modified resin systems. Also discussed are matrix behavior for damage tolerance, composite materials repair, testing for damage tolerance, composite strength analyses, materials workplace health and safety, cost-conscious composites, bismaleimide systems, and issues facing advanced composite materials suppliers.
NASA Technical Reports Server (NTRS)
Shoultz, M. B.; Mcclurken, E. W., Jr.
1975-01-01
A compilation of NASA research efforts in the area of space environmental effects on materials and processes is presented. Topics considered are: (1) fluid mechanics and heat transfer; (2) crystal growth and containerless melts; (3) acoustics; (4) glass and ceramics; (5) electrophoresis; (6) welding; and (7) exobiology.
An Approach to the Flammability Testing of Aerospace Materials
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2012-01-01
Presentation reviews: (1) Current approach to evaluation of spacecraft materials flammability (2) The need for and the approach to alternative routes (3) Examples of applications of the approach recommended a) Crew Module splash down b) Crew Module depressurization c) Applicability of NASA's flammability test data to other sample configurations d) Applicability of NASA's ground flammability test data to spacecraft environments
NASA Technical Reports Server (NTRS)
Rubin, E. J.; Turchan, M. J.
1974-01-01
A high energy density nickel cadmium cell of aerospace quality was designed. The approach used was to utilize manufacturing techniques which produce highly uniform and controlled starting materials in addition to improvements in the overall design. Parameters controlling the production of plaque and both positive and negative plate were studied. Quantities of these materials were produced and prototype cells were assembled to test the proposed design.
Computational Process Modeling for Additive Manufacturing (OSU)
NASA Technical Reports Server (NTRS)
Bagg, Stacey; Zhang, Wei
2015-01-01
Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.
Coupling Damage-Sensing Particles to the Digitial Twin Concept
NASA Technical Reports Server (NTRS)
Hochhalter, Jacob; Leser, William P.; Newman, John A.; Gupta, Vipul K.; Yamakov, Vesselin; Cornell, Stephen R.; Willard, Scott A.; Heber, Gerd
2014-01-01
The research presented herein is a first step toward integrating two emerging structural health management paradigms: digital twin and sensory materials. Digital twin is an emerging life management and certification paradigm whereby models and simulations consist of as-built vehicle state, as-experienced loads and environments, and other vehicle-specific history to enable high-fidelity modeling of individual aerospace vehicles throughout their service lives. The digital twin concept spans many disciplines, and an extensive study on the full domain is out of the scope of this study. Therefore, as it pertains to the digital twin, this research focused on one major concept: modeling specifically the as-manufactured geometry of a component and its microstructure (to the degree possible). The second aspect of this research was to develop the concept of sensory materials such that they can be employed within the digital twin framework. Sensory materials are shape-memory alloys that undergo an audible phase transformation while experiencing sufficient strain. Upon embedding sensory materials with a structural alloy, this audible transformation helps improve the reliability of crack detection especially at the early stages of crack growth. By combining these two early-stage technologies, an automated approach to evidence-based inspection and maintenance of aerospace vehicles is sought.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dornheim, M.A.
1991-04-01
A comprehensive evaluation is made of the development trends in high performance advanced aerospace structural materials applications. It is noted that the anticipated predominance of thermoplastic composite-matrix polymers in the F-22/F-23 ATF propotypes has not materialized, due both to their high materials and processing costs and the emergence of a more tractable high operating temperature thermoset, BMI, whose toughness characteristics are of the order of those associated with thermoplastics. No more than 15 percent of F-22 weight is thermoplastics; the F-23 use of such resins is nill. Throughout the advanced nonmetallics industry, reduced DOD procurements have come to represent slowmore » growth and the prospect of consolidation. Also, such lightweight Al-based metallics as the Al-Li alloys have posed a major market-share challenge to polymeric composites, as in the case of the C-17 airlifter's 6,269 lbs of such Al-Li alloys as 2090, largely in cargo floor and ramp bulkhead structures. The EFA fighter makes frequent use of SPF-DB Ti alloys in combat damage-critical components. Metal-matrix composites employing titanium aluminide matrices will be extensively used in the X-30 hypersonic aircraft program.« less
Advances in SiC/SiC Composites for Aerospace Applications
NASA Technical Reports Server (NTRS)
DiCarlo, James A.
2006-01-01
In recent years, supported by a variety of materials development programs, NASA Glenn Research Center has significantly increased the thermostructural capability of SiC/SiC composite materials for high-temperature aerospace applications. These state-of-the-art advances have occurred in every key constituent of the composite: fiber, fiber coating, matrix, and environmental barrier coating, as well as processes for forming the fiber architectures needed for complex-shaped components such as turbine vanes for gas turbine engines. This presentation will briefly elaborate on the nature of these advances in terms of performance data and underlying mechanisms. Based on a list of first-order property goals for typical high-temperature applications, key data from a variety of laboratory tests are presented which demonstrate that the NASA-developed constituent materials and processes do indeed result in SiC/SiC systems with the desired thermal and structural capabilities. Remaining process and microstructural issues for further property enhancement are discussed, as well as on-going approaches at NASA to solve these issues. NASA efforts to develop physics-based property models that can be used not only for component design and life modeling, but also for constituent material and process improvement will also be discussed.
NASA Astrophysics Data System (ADS)
Frövel, Malte; Carrión, Gabriel; Gutiérrez, César; Moravec, Carolina; Pintado, José María
2009-03-01
Fiber Bragg Grating Sensors, FBGSs, are very promising for Structural Health Monitoring, SHM, of aerospace vehicles due to their capacity to measure strain and temperature, their lightweight harnesses, their multiplexing capacities and their immunity to electromagnetic interferences, within others. They can be embedded in composite materials that are increasingly forming an important part of aerospace structures. The use of embedded FBGSs for SHM purposes is advantageous, but their response under all operative environmental conditions of an aerospace structure must be well understood for the necessary flight certification of these sensors. This paper describes the first steps ahead for a possible in future flight certification of FBGSs embedded in carbon fiber reinforced plastics, CFRP. The investigation work was focused on the validation of the dependence of the FBGS's strain sensitivity in tensile and compression load, in dry and humid condition and in a temperature range from -150°C to 120°C. The test conditions try to simulate the in service temperature and humidity range and static load condition of military aircraft. FBGSs with acrylic and with polyimide coating have been tested. The FBGSs are embedded in both, unidirectional and quasi isotropic carbon/epoxy composite material namely M21/T800 and also MTM-45-1/IM7. Conventional extensometers and strain gages have been used as reference strain sensors. The performed tests show an influence of the testing temperatures, the dry or wet specimen condition, the load direction and the coating material on the sensor strain sensitivity that should be taken into account when using these sensors.
Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications
NASA Technical Reports Server (NTRS)
Boghosian, Mary; Narvaez, Pablo; Herman, Ray
2012-01-01
The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.
NASA Technical Reports Server (NTRS)
Min, James B.; Harris, Donald L.; Ting, J. M.
2011-01-01
For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varughese, Byji; Dayananda, G. N.; Rao, M. Subba
2008-07-29
The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validationmore » of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.« less
Advanced bulk processing of lightweight materials for utilization in the transportation sector
NASA Astrophysics Data System (ADS)
Milner, Justin L.
The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of this research. Development and validation of the processing techniques is achieved through wide-ranging experiments along with detailed mechanical and microstructural examination of the processed material. On a broad level, this research will make advancements in processing of bulk lightweight materials facilitating industrial-scale implementation. Where accumulative roll bonding and isolated shear rolling, currently feasible on an industrial scale, processes bulk sheet materials capable of replacing more expensive grades of alloys and enabling low-temperature and high-strain-rate formability. Furthermore, friction stir processing to manufacture lightweight tubes, made from magnesium alloys, has the potential to increase the utilization of these materials in the automotive and aerospace sectors for high strength - high formability applications. With the increased utilization of these advanced processing techniques will significantly reduce the cost associated with lightweight materials for many applications in the transportation sectors.
Custom Machines Advance Composite Manufacturing
NASA Technical Reports Server (NTRS)
2012-01-01
Here is a brief list of materials that NASA will not be using to construct spacecraft: wood, adobe, fiberglass, bone. While it might be obvious why these materials would not make for safe space travel, they do share a common characteristic with materials that may well be the future foundation of spacecraft design: They all are composites. Formed of two or more unlike materials - such as cellulose and lignin in the case of wood, or glass fibers and plastic resin in the case of fiberglass-composites provide enhanced mechanical and physical properties through the combination of their constituent materials. For this reason, composites are used in everything from buildings, bathtubs, and countertops to boats, racecars, and sports equipment. NASA continually works to develop new materials to enable future space missions - lighter, less expensive materials that can still withstand the extreme demands of space travel. Composites such as carbon fiber materials offer promising solutions in this regard, providing strength and stiffness comparable to metals like aluminum but with less weight, allowing for benefits like better fuel efficiency and simpler propulsion system design. Composites can also be made fatigue tolerant and thermally stable - useful in space where temperatures can swing hundreds of degrees. NASA has recently explored the use of composites for aerospace applications through projects like the Composite Crew Module (CCM), a composite-constructed version of the aluminum-lithium Multipurpose Crew Capsule. The CCM was designed to give NASA engineers a chance to gain valuable experience developing and testing composite aerospace structures.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
..., CO 80027. mountings, fittings, and other machined metal components for aerospace applications. Foam.... custom packaging kits, gaskets, seals, sheets, blocks, etc., of all types of foam materials. Gulf Fish...
Dividends from Technology Applied.
ERIC Educational Resources Information Center
Aviation/Space, 1982
1982-01-01
National Aeronautics and Space Administration's (NASA) Applications Program employs aerospace science/technology to provide direct public benefit. Topics related to this program discussed include: Landsat, earth crustal study (plate tectonics), search and rescue systems, radiation measurement, upper atmosphere research, space materials processing,…
First Look--The Aerospace Database.
ERIC Educational Resources Information Center
Kavanagh, Stephen K.; Miller, Jay G.
1986-01-01
Presents overview prepared by producer of database newly available in 1985 that covers 10 subject categories: engineering, geosciences, chemistry and materials, space sciences, aeronautics, astronautics, mathematical and computer sciences, physics, social sciences, and life sciences. Database development, unique features, document delivery, sample…
Midwest Structural Sciences Center 2010 Annual Report
2011-06-01
S. MICHAEL SPOTTSWOOD MICHAEL J. SHEPARD , Chief Senior Aerospace Engineer Analytical Mechanics Branch Analytical Mechanics Branch Structures...Structural Dynamics & Materials Confe- rence, Chicago , IL, Apr. 7-10, 2008. AIAA 2008-2077. Efstathiou C., Carroll J., Sehitoglu H., Lambros J
Recent Advances in the Development of Processable High-Temperature POLYMERS1
NASA Astrophysics Data System (ADS)
Meador, Michael A.
1998-08-01
High-temperature polymers have found widespread use in aerospace and electronics applications. This review deals with recent developments in the chemistry of these materials that have led to improvements in processability and high-temperature stability.
Molecular Nanotechnology and Space Settlement
NASA Technical Reports Server (NTRS)
Globus, Al; Saini, Subhash (Technical Monitor)
1998-01-01
Atomically precise manipulation of matter is becoming increasingly common in laboratories around the world. As this control moves into aerospace systems, huge improvements in computers, high-strength materials, and other systems are expected. For example, studies suggest that it may be possible to build: 10(exp 18) MIPS computers, 10(exp 15) bytes/sq cm write once memory, $153-412/kg-of-cargo single- stage-to-orbit launch vehicles and active materials which sense their environment and react intelligently. All of NASA's enterprises should benefit significantly from molecular nanotechnology. Although the time may be measured in decades and the precise path to molecular nanotechnology is unclear, all paths (diamondoid, fullerene, self-assembly, biomolecular, etc.) will require very substantial computation. This talk will discuss fullerene nanotechnology and early work on hypothetical active materials consisting of large numbers of identical machines. The speaker will also discuss aerospace applications, particularly missions leading to widespread space settlement (e.g., small near-Earth - object retrieval). It is interesting to note that control of the tiny - individual atoms and molecules - may lead to colonization of the huge -first the solar system, then the galaxy.
Quantitative NDE of Composite Structures at NASA
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Leckey, Cara A. C.; Howell, Patricia A.; Johnston, Patrick H.; Burke, Eric R.; Zalameda, Joseph N.; Winfree, William P.; Seebo, Jeffery P.
2015-01-01
The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable the use and certification of composites in aircraft structures through the Advanced Composites Project (ACP). The rapid, in situ characterization of a wide range of the composite materials and structures has become a critical concern for the industry. In many applications it is necessary to monitor changes in these materials over a long time. The quantitative characterization of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking are of particular interest. The research approaches of NASA's Nondestructive Evaluation Sciences Branch include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on current research activities related to large area NDE for rapidly characterizing aerospace composites.
NASA Astrophysics Data System (ADS)
Huan, Huiting; Mandelis, Andreas; Liu, Lixian
2018-04-01
Determining and keeping track of a material's mechanical performance is very important for safety in the aerospace industry. The mechanical strength of alloy materials is precisely quantified in terms of its stress-strain relation. It has been proven that frequency-domain photothermoacoustic (FD-PTA) techniques are effective methods for characterizing the stress-strain relation of metallic alloys. PTA methodologies include photothermal (PT) diffusion and laser thermoelastic photoacoustic ultrasound (PAUS) generation which must be separately discussed because the relevant frequency ranges and signal detection principles are widely different. In this paper, a detailed theoretical analysis of the connection between thermoelastic parameters and stress/strain tensor is presented with respect to FD-PTA nondestructive testing. Based on the theoretical model, a finite element method (FEM) was further implemented to simulate the PT and PAUS signals at very different frequency ranges as an important analysis tool of experimental data. The change in the stress-strain relation has an impact on both thermal and elastic properties, verified by FEM and results/signals from both PT and PAUS experiments.
An outbreak of illness among aerospace workers.
Sparks, P. J.; Simon, G. E.; Katon, W. J.; Altman, L. C.; Ayars, G. H.; Johnson, R. L.
1990-01-01
A multispecialty panel of physicians evaluated a case series of 53 composite-materials workers in a large aircraft manufacturing facility who filed workers' compensation claims for illness labeled by the media as the "aerospace syndrome." Possible skin and respiratory tract exposures included formaldehyde, phenol, particulates, epoxy resins, and trace organic solvents, but measured concentrations were well below all regulatory and consensus standards. Most workers had histories of transient skin or respiratory tract irritation consistent with the known potential toxicity of these materials. None of the workers tested had immunoglobulin IgG or IgE antibodies to human serum albumin complexed with formaldehyde. A majority (74%) met DSM-III-R [Diagnostic and Statistical Manual of Mental Disorders, 3rd edition, revised] criteria for major depression, panic disorder, or both. Most of these psychiatric disorders were of a recent onset, correlating in time with the use of phenol- and formaldehyde-impregnated composite material. Psychosocial factors were thought to have played a major role in the high prevalence of illness in this group and should be evaluated directly in well-controlled epidemiologic studies of similar crisis-building situations in the future. PMID:2098006
Characterization of Polyimide Matrix Resins and Prepregs
NASA Technical Reports Server (NTRS)
Maximovich, M. G.; Galeos, R. M.
1985-01-01
Graphite/polyimide composite materials are attractive candidates for a wide range of aerospace applications. They have many of the virtues of graphite/epoxies, i.e., high specific strengths and stiffness, and also outstanding thermal/oxidative stability. Yet they are not widely used in the aerospace industry due to problems of procesability. By their nature, modern addition polyimide (PI) resins and prepregs are more complex than epoxies; the key to processing lies in characterizing and understanding the materials. Chemical and rheological characterizations are carried out on several addition polyimide resins and graphite reinforced prepregs, including those based on PMR-15, LARC 160 (AP 22), LARC 160 (Curithane 103) and V378A. The use of a high range torque transducer with a Rheometrics mechanical spectrometer allows rheological data to be generated on prepreg materials as well as neat resins. The use of prepreg samples instead of neat resins eliminates the need for preimidization of the samples and the data correlates well with processing behavior found in the shop. Rheological characterization of the resins and prepregs finds significant differences not readily detected by conventional chemical characterization techniques.
NDE of Fiber Reinforced Foam Composite Structures for Future Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Walker, james; Roth, Don; Hopkins, Dale
2010-01-01
This slide presentation reviews the complexities of non-destructive evaluation (NDE) of fiber reinforced foam composite structures to be used for aerospace vehicles in the future.Various views of fiber reinforced foam materials are shown and described. Conventional methods of NDE for composites are reviewed such as Micro-computed X-Ray Tomography, Thermography, Shearography, and Phased Array Ultrasonics (PAUT). These meth0ods appear to work well on the face sheet and face sheet ot core bond, they do not provide adequate coverage for the webs. There is a need for additional methods that will examine the webs and web to foam core bond.
Evaluation of a Gamma Titanium Aluminide for Hypersonic Structural Applications
NASA Technical Reports Server (NTRS)
Johnson, W. Steven; Weeks, Carrell E.
2005-01-01
Titanium matrix composites (TMCs) have been extensively evaluated for their potential to replace conventional superalloys in high temperature structural applications, with significant weight-savings while maintaining comparable mechanical properties. New gamma titanium aluminide alloys and an appropriate fiber could offer an improved TMC for use in intermediate temperature applications (400-800 C). The purpose of this investigation is the evaluation of a gamma titanium aluminide alloy with nominal composition Ti-46.5Al-4(Cr,Nb,Ta,B)at.% as a structural material in future aerospace transportation systems, where very light-weight structures are necessary to meet the goals of advanced aerospace programs.
An Overview of Innovative Strategies for Fracture Mechanics at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.; Glaessgen, Edward H.; Ratcliffe, James G.
2010-01-01
Engineering fracture mechanics has played a vital role in the development and certification of virtually every aerospace vehicle that has been developed since the mid-20th century. NASA Langley Research Center s Durability, Damage Tolerance and Reliability Branch has contributed to the development and implementation of many fracture mechanics methods aimed at predicting and characterizing damage in both metallic and composite materials. This paper presents a selection of computational, analytical and experimental strategies that have been developed by the branch for assessing damage growth under monotonic and cyclic loading and for characterizing the damage tolerance of aerospace structures
PMR polyimide composites for aerospace applications. [Polymerization of Monomer Reactants
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1984-01-01
A novel class of addition-type polyimides has been developed in response to the need for high temperature polymers with improved processability. The new plastic materials are known as PMR (for in situ polymerization of monomer reactants) polyimides. The highly processable PMR polyimides have made it possible to realize much of the potential of high temperature resistant polymers. Monomer reactant combinations for several PMR polyimides have been identified. The present investigation is concerned with a review of the current status of PMR polyimides. Attention is given to details of PMR polyimide chemistry, the processing of composites and their properties, and aerospace applications of PMR-15 polyimide composites.
Compatibility of Elastomeric Seal Compounds with MIL-H-6083 and MIL-H- 46170 Hydraulic Fluid
1990-06-01
are also made with results obtained using NBR -L, a reference material cited in AMS 3217. 20. DISTRIBUTION/AVAILABILJTY OF ABSTRACT 21. ABSTRACT...Concurrent comparative studies were conducted using NBR -L, a standard reference compound cited in Aerospace Materials Specification (AMS) 3217. Volume...of a standard reference material such as NBR -L, cited in AMS 3217. Obviously, requirements for fluids and for seals are both dictated by the needs of
Better Finite-Element Analysis of Composite Shell Structures
NASA Technical Reports Server (NTRS)
Clarke, Gregory
2007-01-01
A computer program implements a finite-element-based method of predicting the deformations of thin aerospace structures made of isotropic materials or anisotropic fiber-reinforced composite materials. The technique and corresponding software are applicable to thin shell structures in general and are particularly useful for analysis of thin beamlike members having open cross-sections (e.g. I-beams and C-channels) in which significant warping can occur.
NASA Technical Reports Server (NTRS)
Banks, B. A. (Inventor)
1984-01-01
A carbon coating is vacuum arc deposited on a smooth surface of a target which is simultaneously ion beam sputtered. The bombarding ions have sufficient energy to create diamond bonds. Spalling occurs as the carbon deposit thickens. The resulting diamond-like carbon flakes are mixed with a binder or matrix material to form a composite material having improved thermal, electrical, mechanical, and tribological properties when used in aerospace structures and components.
PMR polyimide composites for aerospace applications
NASA Technical Reports Server (NTRS)
Serafini, T. T.
1982-01-01
Fiber reinforced PMR polyimides are finding increased acceptance as engineering materials for high performance structural applications. Prepreg materials based on this novel class of highly processable, high temperature resistant polyimides, are commercially available and the PMR concept was incorporated in several industrial applications. The status of PMR polyimides is reviewed. Emphasis is given to the chemistry, processing, and applications of the first generation PMR polyimides known as PMR-15.
Corrosion Prevention and Control Planning Guidebook for Military Systems and Equipment
2014-04-02
corrosion to applying advanced materials, coatings, inhibitors, and cathodic protection for corrosion control over many years, well before the DoD...requiring the delivery of the Contractor CPCP. Further, MIL-HDBK-1568 is for aerospace systems. Consider this when tailoring your Contract Data...Corrosion personnel from the user command; o Information Analysis Center personnel, such as Advanced Materials, Manufacturing, and Testing Information
Research in the aerospace physical sciences
NASA Technical Reports Server (NTRS)
Whitehurst, R. N.
1973-01-01
Research efforts are reported in various areas including dynamics of thin films, polymer chemistry, mechanical and chemical properties of materials, radar system engineering, stabilization of lasers, and radiation damage of organic crystals. Brief summaries of research accomplished and literature citations are included.
The 1971 NASA/Goddard-Aerospace Industry Battery Workshop, volume 2
NASA Technical Reports Server (NTRS)
1971-01-01
The proceedings of the final two sessions the conference on nickel-cadmium batteries are reported. The major subject areas covered in these two sessions include: (1) materials and pre-charge, and (2) thermal problems experienced with nickel-cadmium batteries.
NASA Technical Reports Server (NTRS)
Gallagher, R. Scott; Purvis, John A.; Moran, Wade W.
1995-01-01
Engineers at Hercules Aerospace, a rocket motor manufacturer in Utah, have worked closely with chemists at Glidco Organics to study the feasibility of using terpenes for zero-residue wipe cleaning. The result of this work is a technological breakthrough, in which the barrier to ultra-low non-volatile residue formation has been broken. After 2 years of development and testing, SCM Glidco Organics has announced the availability of Glidsafe(registered trademark) Prepsolv(TM): a state-of-the-art ultra-low residue terpene wipe cleaning agent that does not require rinsing. Prepsolv(TM) can successfully be used in simple hand-wipe cleaning processes without fear of leaving surface residues. Industry testing has confirmed that Prepsolv(TM) is not only highly effective, but can even be less expensive to use than traditional cleaning solvents like methyl chloroform. This paper addresses the features and benefits of Prepsolv(TM), and presents performance and material compatibility data that characterizes this unique cleaning agent. Since its commercialization, Hercules Aerospace has chosen Prepsolv(TM) as the optimum cleaning agent to replace ozone-depleting solvents in their weapons factory in Magna, UT. Likewise, Boeing has approved Prepsolv(TM) for cleaning components in the manufacture of commercial aircraft at their facilities in Seattle, WA and Wichita, KS. Additional approvals are forthcoming for this uniquely safe and effective solvent.
Proceedings of the Spacecraft Charging Technology Conference: Executive Summary
NASA Technical Reports Server (NTRS)
Pike, C. P.; Whipple, E. C., Jr.; Stevens, N. J.; Minges, M. L.; Lehn, W. L.; Bunn, M. H.
1977-01-01
Aerospace environments are reviewed in reference to spacecraft charging. Modelling, a theoretical scheme which can be used to describe the structure of the sheath around the spacecraft and to calculate the charging currents within, is discussed. Materials characterization is considered for experimental determination of the behavior of typical spacecraft materials when exposed to simulated geomagnetic substorm conditions. Materials development is also examined for controlling and minimizing spacecraft charging or at least for distributing the charge in an equipotential manner, using electrical conductive surfaces for materials exposed to space environment.
Polymeric Materials for Aerospace Power and Propulsion: Overview of Polymer Research at NASA Glenn
NASA Technical Reports Server (NTRS)
Meador, Michael A.
2007-01-01
Weight, durability and performance are all major concerns for any NASA mission. Use of lightweight materials, such as fiber reinforced polymer matrix composites can lead to significant reductions in vehicle weight and improvements in vehicle performance. Research in the Polymeric Materials Branch at NASA Glenn is focused on improving the durability, properties, processability and performance of polymeric materials by utilizing both conventional polymer science and engineering as well as nanotechnology and bioinspired approaches. This presentation will provide an overview of these efforts and highlight recent progress.
On the cyclic stress-strain behavior and low cycle fatigue of aerospace materials
NASA Technical Reports Server (NTRS)
Burbach, J.
1972-01-01
The elastic-plastic deformation behavior under cyclic stress of a number of different engineering materials was experimentally investigated with the aid of high-precision methods of measuring, some of which had been newly developed. Experiments made with a variety of steels, the titanium alloy Ti-A16-V4, a cobalt (tungsten) alloy, the high-temperature material Nimonic 90 and Dural (A1-Cu) are reported. The theory given in an attempt to explain these experiments is aimed at finding general formulas for the cyclic stress-strain behavior materials.
Microstructure and properties of cryomilled nickel aluminide extruded with chromium or molybdenum
NASA Technical Reports Server (NTRS)
Aikin, Beverly J. M.; Dickerson, Robert M.; Dickerson, Patricia O.
1995-01-01
Previous results from high energy, attrition milled NiAl in liquid nitrogen (cryomilled) indicate that this process can produce high temperature, creep resistant AlN particulate reinforced materials. However, the low temperature toughness of such materials is below that preferred for structural applications in aerospace engines. In order to improve the toughness of these materials, prealloyed nickel aluminide (Ni-53 atomic percent Al) powder was cryomilled and mixed with chromium or molybdenum powders. The resulting materials were hot extruded and tested for room temperature toughness and 1300 K compressive strength.
Optimal Location of Piezoelectric Patch on Composite Structure using Viewing Method
NASA Astrophysics Data System (ADS)
Samyal, Rahul; Bagha, Ashok K.
2017-08-01
A useful material which is manufactured by mixing of two or three different materials in homogeneous level is termed as composite material. In now day’s composite materials are used in wide area such as aerospace, automobiles, satellite, bullet proof jackets, rotor blades etc. In this paper modal analysis of composite material, mixture of polyester as matrix and glass as fiber, is carried out by using ABAQUS software. The modal analysis of composite material for fiber orientation 450 is carried out. In this paper by viewing the different mode shapes of the composite material, the optimal location of piezoelectric patch is carried out.
Technology enablers for improved aerospace x-ray NDE
NASA Astrophysics Data System (ADS)
Strabel, George; Ross, Joseph; Graham, Larry; Smith, Kevin
1996-11-01
In the current climate of reduced Military spending and lower commercial demand for aerospace products, it is of critical importance to allocate scarce technology development resources to meet projected needs. During the past decade, dramatic advances in x-ray nondestructive evaluation (NDE) technology have results in commercially viable digital radiography (DR) and computed tomography (CT) systems. X-ray CT has become an important NDE technique that not only provides data about material integrity, but also valuable volumetric data which is finding applications in reverse engineering, rapid prototyping, process control and 3D metrology. Industrial DR and CT systems have been available for almost 10 years, but are very costly, generally designed for specific applications and have well known limitations for both process development and final inspection. They have inadequate energy/flux to penetrate many large components and structures. In order to support the US Aerospace Industry in its drive towards global competitiveness, it is imperative that key enabling tools such as DR and CT be improved, made affordable, and implemented to meet the anticipated needs of the next decade of aerospace applications. This paper describes a strategy for a consortium of suppliers and users of x-ray NDE systems, academia and national laboratories to work together to attain this goal.
NASA Technical Reports Server (NTRS)
1988-01-01
On November 25, 1985, the NASA Chief Engineer established a NASA-wide policy to maintain and to require the use of the NASA standard for aerospace nickel-cadmium cells and batteries. The Associate Administrator for Safety, Reliability, Maintainability, and Quality Assurance stated on December 29, 1986, the intent to retain the NASA standard cell usage policy established by the Office of the Chief Engineer. The current NASA policy is also to incorporate technological advances as they are tested and proven for spaceflight applications. This policy will be implemented by modifying the existing standard cells or by developing new NASA standards and their specifications in accordance with the NASA's Aerospace Battery Systems Program Plan. This NASA Specification for Manufacturing and Performance Requirements of NASA Standard Aerospace Nickel-Cadmium Cells is prepared to provide requirements for the NASA standard nickel-cadmium cell. It is an interim specification pending resolution of the separator material availability. This specification has evolved from over 15 years of nickel-cadmium cell experience by NASA. Consequently, considerable experience has been collected and cell performance has been well characterized from many years of ground testing and from in-flight operations in both geosynchronous (GEO) and low earth orbit (LEO) applications. NASA has developed and successfully used two standard flight qualified cell designs.
The potential for CMCs to replace superalloys in engine exhaust ducts
NASA Astrophysics Data System (ADS)
Roth, Richard; Clark, Joel P.; Field, Frank R.
1994-01-01
The Materials Systems Laboratory at the Massachusetts Institute of Technology has conducted research to develop decision tools that can facilitate materials selection and provide a deeper understanding of the design tradeoffs that occur when choosing among advanced aerospace materials for high-temperature applications. As an illustration of the use of these tools, this paper describes research done to evaluate the material alternatives currently under consideration for exhaust ducts in aircraft gas turbine engines. Although nickel-based superalloys currently prevail for this application, the increasing temperatures of modern engines are necessitating the usage of higher temperature materials.
Application of Electro Chemical Machining for materials used in extreme conditions
NASA Astrophysics Data System (ADS)
Pandilov, Z.
2018-03-01
Electro-Chemical Machining (ECM) is the generic term for a variety of electrochemical processes. ECM is used to machine work pieces from metal and metal alloys irrespective of their hardness, strength or thermal properties, through the anodic dissolution, in aerospace, automotive, construction, medical equipment, micro-systems and power supply industries. The Electro Chemical Machining is extremely suitable for machining of materials used in extreme conditions. General overview of the Electro-Chemical Machining and its application for different materials used in extreme conditions is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguchi, R.A.
1994-06-01
Composite materials are affected by environments differently than conventional airframe structural materials are. This study identifies the environmental conditions which the composite-airframe ARM UAV may encounter, and discusses the potential degradation processes composite materials may undergo when subjected to those environments. This information is intended to be useful in a follow-on program to develop equipment and procedures to prevent, detect, or otherwise mitigate significant degradation with the ultimate goal of preventing catastrophic aircraft failure.
Nonlinear Constitutive Relations for High Temperature Applications, 1986
NASA Technical Reports Server (NTRS)
1988-01-01
The purpose of the symposium was to review the state-of-the-art in nonlinear constitutive modeling of high temperature materials for aeronautics applications and to identify the need for future research and development efforts in this area. Through this symposium, it was recognized that considerable research efforts are urgently needed in the development of nonlinear constitutive relations for high temperature applications. In the aerospace industry this need is further prompted by recent advances in high temperature materials technology and new demands on material and component performance.
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi
1996-01-01
The objective of this research is to develop analysis procedures to investigate the coupling of composite and smart materials to improve aeroelastic and vibratory response of aerospace structures. The structural modeling must account for arbitrarily thick geometries, embedded and surface bonded sensors and actuators and imperfections, such as delamination. Changes in the dynamic response due to the presence of smart materials and delaminations is investigated. Experiments are to be performed to validate the proposed mathematical model.
University of Maryland MRSEC - Research: Seed 1
. University of Maryland Materials Research Science and Engineering Center Home About Us Leadership & Biochemistry Wolfgang Losert, Physics, IPST, IREAP Ben Shapiro, Bio-Engineering, Aerospace Engineering Edo Waks, Electrical & Computer Engineering, IREAP, JQI Creating specific functional patterns
Bonding at Metal-Ceramic Interfaces in Hybrid Materials.
1990-12-31
an arena where America, Europe, and Japan will compete . Aerospace transport technologies will form the first link in this human endeavor. The...mechanical properties such as tranverse strength and shear properties and, more importantly, due to their high temperature capabilities [1]. The
NASA Astrophysics Data System (ADS)
Pulliam, Elias; Hoover, George; Tiparti, Dhruv; Ryu, Donghyeon
2017-04-01
Aerospace structural systems are prone to structural damage during their use by vibration, impact, material degradation, and other factors. Due to the harsh environments in which aerospace structures operate, aerospace structures are susceptible to various types of damage and often their structural integrity is jeopardized unless damage onset is detected in timely manner. Yet, current state-of-the-art sensor technologies are still limited for structural health monitoring (SHM) of aerospace structures due to their high power consumption, need for large form factor design, and manageable integration into aerospace structures. This study proposes a design of multilayered self-powered strain sensor by coupling mechano-luminescent (ML) property of copper-doped zinc sulfide (ZnS:Cu) and mechano-optoelectronic (MO) property of poly(3-hexylthiophene) (P3HT). One functional layer of the self-powered strain sensor is ZnS:Cu-based elastomeric composites that emit light in response to mechanical deformation. Another functional layer is P3HT-based thin films that generate direct current (DC) under light illumination and DC magnitude changes with applied strain. First, ML light emission characteristics of ZnS:Cu-based composites are studied under cyclic tensile strain with two various maximum strain up to 10% and 15% at various loading frequencies from 5 Hz to 20 Hz. Second, piezo-optical properties of P3HT-based thin films are investigated by acquiring light absorption of the thin films at various strains from 0% to 2% tensile strain. Last, micro-mechanical properties of the P3HT-based thin films are characterized using nanoindentation.
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Kulis, Michael J.; Psarras, Peter C.; Ball, David W.; Timko, Michael T.; Wong, Hsi-Wu; Peck, Jay; Chianelli, Russell R.
2014-01-01
Transportation fuels production (including aerospace propellants) from non-traditional sources (gases, waste materials, and biomass) has been an active area of research and development for decades. Reducing terrestrial waste streams simultaneous with energy conversion, plentiful biomass, new low-cost methane sources, and/or extra-terrestrial resource harvesting and utilization present significant technological and business opportunities being realized by a new generation of visionary entrepreneurs. We examine several new approaches to catalyst fabrication and new processing technologies to enable utilization of these nontraditional raw materials. Two basic processing architectures are considered: a single-stage pyrolysis approach that seeks to basically re-cycle hydrocarbons with minimal net chemistry or a two-step paradigm that involves production of supply or synthesis gas (mainly carbon oxides and H2) followed by production of fuel(s) via Sabatier or methanation reactions and/or Fischer-Tröpsch synthesis. Optimizing the fraction of product stream relevant to targeted aerospace (and other transportation) fuels via modeling, catalyst fabrication and novel reactor design are described. Energy utilization is a concern for production of fuels for either terrestrial or space operations; renewable sources based on solar energy and/or energy efficient processes may be mission enabling. Another important issue is minimizing impurities in the product stream(s), especially those potentially posing risks to personnel or operations through (catalyst) poisoning or (equipment) damage. Technologies being developed to remove (and/or recycle) heteroatom impurities are briefly discussed as well as the development of chemically robust catalysts whose activities are not diminished during operation. The potential impacts on future missions by such new approaches as well as balance of system issues are addressed.
NASA Technical Reports Server (NTRS)
Hepp, A. F.; Kulis, M. J.; Psarras, P. C.; Ball, D. W.; Timko, M. T.; Wong, H.-W.; Peck, J.; Chianelli, R. R.
2014-01-01
Transportation fuels production (including aerospace propellants) from non-traditional sources (gases, waste materials, and biomass) has been an active area of research and development for decades. Reducing terrestrial waste streams simultaneous with energy conversion, plentiful biomass, new low-cost methane sources, and/or extra-terrestrial resource harvesting and utilization present significant technological and business opportunities being realized by a new generation of visionary entrepreneurs. We examine several new approaches to catalyst fabrication and new processing technologies to enable utilization of these non-traditional raw materials. Two basic processing architectures are considered: a single-stage pyrolysis approach that seeks to basically re-cycle hydrocarbons with minimal net chemistry or a two-step paradigm that involves production of supply or synthesis gas (mainly carbon oxides and hydrogen) followed by production of fuel(s) via Sabatier or methanation reactions and/or Fischer-Tropsch synthesis. Optimizing the fraction of product stream relevant to targeted aerospace (and other transportation) fuels via modeling, catalyst fabrication and novel reactor design are described. Energy utilization is a concern for production of fuels for either terrestrial or space operations; renewable sources based on solar energy and/or energy efficient processes may be mission enabling. Another important issue is minimizing impurities in the product stream(s), especially those potentially posing risks to personnel or operations through (catalyst) poisoning or (equipment) damage. Technologies being developed to remove (and/or recycle) heteroatom impurities are briefly discussed as well as the development of chemically robust catalysts whose activity are not diminished during operation. The potential impacts on future missions by such new approaches as well as balance of system issues are addressed.
Method of making a flexible diaphragm
NASA Technical Reports Server (NTRS)
Lerma, Guillermo (Inventor)
1987-01-01
A diaphragm suitable for extreme temperature usage, such as encountered in critical aerospace applications, is fabricated by a unique method, and of a unique combination of materials, which include multilayered lay-ups of diaphragm materials sandwiched between layers of bleeder fabrics which, after being formed in the desired shape on a mold, are vacuum sealed and then cured under pressure, in a heated autoclave, to produce a bond capable of withstanding extreme temperatures.
Mechanical Testing of Silicon Carbide on MISSE-7
2012-07-15
JS) ii Abstract Silicon carbide ( SiC ) mechanical test specimens were included on the second Optical and Reflector Materials Experiment (ORMatE II...2. Vendor 2 EFS Weibull Results (normalized to Extra Disks Weibull parameters) 12 1. Introduction Silicon carbide ( SiC ) mechanical test...AEROSPACE REPORT NO ATR-2012(8921)-5 Mechanical Testing of Silicon Carbide on MISSE-7 Jul> 15. 2012 David B. Witkin Space Materials Laboratory
Smart Materials, Structures, and Mathematical Issues for Active Damage Control
1997-10-01
composites at both low and high velocities. The effect of low volume fractions (3% and 6%) of embedded Nitinol fibers on the impact-absorbing ability...ICI Wilton Materials Research Center General Dynamics Lockheed-Martin Hercules Aerospace Company U.S. Nitinol Owens-Corning DSB Associates...Reduction in a Plate," submitted to AIAA Journal. Paine, J. S. N., Rogers, C. A. 1993. "Characterization of Interfacial Adhesion of Nitinol Fibers
X-ray simulation for structural integrity for aerospace components - A case study
NASA Astrophysics Data System (ADS)
Singh, Surendra; Gray, Joseph
2016-02-01
The use of Integrated Computational Materials Engineering (ICME) has rapidly evolved from an emerging technology to the industry standards in Materials, Manufacturing, Chemical, Civil, and Aerospace engineering. Despite this the recognition of the ICME merits has been somewhat lacking within NDE community. This is due in part to the makeup of NDE practitioners. They are a very diverse but regimented group. More than 80% of NDE experts are trained and certified as NDT Level 3's and auditors in order to perform their daily inspection jobs. These jobs involve detection of attribute of interest, which may be a defect or condition or both, in a material. These jobs are performed in strict compliance with procedures that have been developed over many years by trial-and-error with minimal understanding of the underlying physics and interplay between the NDE methods setup parameters. It is not in the nature of these trained Level 3's experts to look for alternate or out-of-the box, solutions. Instead, they follow the procedures for compliance as required by regulatory agencies. This approach is time-consuming, subjective, and is treated as a bottleneck in today's manufacturing environments. As such, there is a need for new NDE tools that provide rapid, high quality solutions for studying structural and dimensional integrity in parts at a reduced cost. NDE simulations offer such options by a shortening NDE technique development-time, attaining a new level in the scientific understanding of physics of interactions between interrogating energy and materials, and reducing costs. In this paper, we apply NDE simulation (XRSIM as an example) for simulating X-Ray techniques for studying aerospace components. These results show that NDE simulations help: 1) significantly shorten NDE technique development-time, 2) assist in training NDE experts, by facilitating the understanding of the underlying physics, and 3) improve both capability and reliability of NDE methods in terms of coverage maps.
China's space development history: A comparison of the rocket and satellite sectors
NASA Astrophysics Data System (ADS)
Erickson, Andrew S.
2014-10-01
China is the most recent great power to emerge in aerospace. It has become the first developing nation to achieve some measure of aerospace production capability across the board. Outside the developed aerospace powers, only China has demonstrated competence concerning all aspects of a world-class aerospace industry: production of advanced rockets, satellites, and aircraft and of their supporting engineering, materials, and systems. As an emerging great power during the Cold War, China was still limited in resources, technology access, and capabilities. It thereby faced difficult choices and constraints. Yet it achieved increasing, though uneven, technological levels in different aerospace sub-sectors. Explaining this variance can elucidate challenges and opportunities confronting developing nations sharing limitations that previously constrained China. Rockets (missiles and space launch vehicles/SLVs) and satellites (military and civilian) were two areas of early achievement for China, and represent this article's two in-depth case studies. Initial import of American and Soviet knowledge and technology, coupled with national resources focused under centralized leadership, enabled China to master missiles and satellites ahead of other systems. Early in the Cold War, great power status hinged on atomic development. China devoted much of its limited technical resources to producing nuclear weapons in order to “prevent nuclear blackmail,” “break the superpowers' monopoly,” and thereby secure great power status. Beijing's second strategic priority was to develop reliable ballistic missiles to credibly deliver warheads, thereby supporting nuclear deterrence. Under Chairman Mao Zedong's direction and the guidance of the American-educated Dr. Qian Xuesen (H.S. Tsien), missile development became China's top aerospace priority. Satellites were also prioritized for military-strategic reasons and because they could not be purchased from abroad following the Sino-Soviet split. By the Cold War's end, China had achieved comprehensive rocket and satellite capabilities. Today it is pursuing cutting-edge systems in both areas, continuing formidable indigenous development while absorbing foreign technology where possible. To understand the reasons for China's aerospace development trajectory it is necessary to consider closely its specific history and larger context. The article will therefore examine the decision-making, organization, and technological development that made such progress possible.2
NASA Technical Reports Server (NTRS)
Evans, D. G.; Miller, T. J.
1978-01-01
The NASA-Lewis Research Center (LeRC) has conducted, and has sponsored with industry and universities, extensive research into many of the technology areas related to gas turbine propulsion systems. This aerospace-related technology has been developed at both the component and systems level, and may have significant potential for application to the automotive gas turbine engine. This paper summarizes this technology and lists the associated references. The technology areas are system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.
Space Vehicle Terrestrial Environment Design Requirements Guidelines
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.
2006-01-01
The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.
NASA Technical Reports Server (NTRS)
Mendez, Bruce
1988-01-01
The National Aerospace Plane is an extremely versatile and adaptable aircraft. It can be developed into an Orient Express that would dramatically improve trade with countries in Asia and elsewhere: a commuter transport to ferry men and materials to space, an advanced tactical fighter or bomber, and an unparalleled high altitude spy-plane to observe troubled spots all over the globe. Utilizing the technology developed by this pilot program, it will be possible to quickly and easily get to low Earth orbit, go halfway around the world in a fraction of the time it previously took, and lead the world in the development of advanced technology to improve our lives and the lives of many others.
Methods of video and shearography inspection
NASA Technical Reports Server (NTRS)
Lansing, Matthew D.; Bullock, Michael W.; Gnacek, William J.
1995-01-01
The goal of this research effort was to study methods of video image correlation and electronic shearography for nondestructive evaluation of aerospace components. Methods of physical load application must be developed before interrogations with these methods may be used to qualify hardware. To that end, inspection procedures were developed for a variety of aerospace components and material systems. Experiments were also conducted from which the relationship between the control settings of the electronic shearography apparatus may be related to flaw detectability. A short feasibility study was conducted to determine the applicability of electronic shearography to the determination of the stress intensity factor of a Mode 1 crack tip by measurement of the localized zone of three dimensional plasticity
Evaluation of Li/CF(x)Cells For Aerospace Applications
NASA Technical Reports Server (NTRS)
Vaidyanathan, Hari; Rao, Gopalakrishna M.
2007-01-01
Panasonic commercialized LiICF(x) cell technology in the 1970's. This technology was a promising primary battery for Aerospace applications such as: Exploration missions, Launch vehicles, Tools and more. This technology offers Wide operation temperature range, Low self-discharge and High specific energy CF(x) cathode material has a theoretical specific energy of 2260 Wh/Kg. Specific energy however achieved as of now is only 10% of theoretical value unless used at a very low rate of C/1000. Research both at Government Labs and Industries is currently in progress to improve the performance. This viewgraph presentation describes the cells, and reviews the results of some of the research using tables and charts.
Polymer Energy Rechargeable System Battery Being Developed
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2003-01-01
Long description. Illustrations of discotic liquid crystals, rod-coil polymers, lithium-ion conducting channel dilithium phthalocyanine (Li2Pc) from top and side, novel star polyethylene oxide structures, composite polyethylene oxide materials (showing polyethylene oxide + lithium salt, carbon atoms and oxygen atoms), homopolyrotaxanes, and diblock copolymers In fiscal year 2000, NASA established a program to develop the next generation, lithium-based, polymer electrolyte batteries for aerospace applications. The goal of this program, known as Polymer Energy Rechargeable Systems (PERS), is to develop a space-qualified, advanced battery system embodying polymer electrolyte and lithium-based electrode technologies and to establish world-class domestic manufacturing capabilities for advanced batteries with improved performance characteristics that address NASA s future aerospace battery requirements.
NASA Technical Reports Server (NTRS)
Price J. M.; Ortega, R.
1998-01-01
Probabilistic method is not a universally accepted approach for the design and analysis of aerospace structures. The validity of this approach must be demonstrated to encourage its acceptance as it viable design and analysis tool to estimate structural reliability. The objective of this Study is to develop a well characterized finite population of similar aerospace structures that can be used to (1) validate probabilistic codes, (2) demonstrate the basic principles behind probabilistic methods, (3) formulate general guidelines for characterization of material drivers (such as elastic modulus) when limited data is available, and (4) investigate how the drivers affect the results of sensitivity analysis at the component/failure mode level.
Hercules Aerospace flywheel test results
NASA Astrophysics Data System (ADS)
Steele, R. S., Jr.; Babelay, E. F., Jr.; Sutton, B. J.
1981-06-01
The detailed results of the spin test evaluation of the Hercules Aerospace flywheel at the Oak Ridge Flywheel Evaluation Laboratory (ORFEL) are presented. Details of the static evaluation with radiography and measures of weight, inertia and natural frequencies are included. The flywheel was spun four times with the maximum speed being increased with each run. During the final run, the flywheel achieved 372 rps and stored 0.714 kWhr of kinetic energy at 37 Whr/kg. The ultimate speed was limited by a composite transverse strength that was somewhat lower than that used in the design of the flywheel. This resulted in internal cracking of the flywheel and, eventually, the loss of material from the outer circumference.
Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems
NASA Technical Reports Server (NTRS)
Liu, Xuan; Furrer, David; Kosters, Jared; Holmes, Jack
2018-01-01
Over the last few decades, advances in high-performance computing, new materials characterization methods, and, more recently, an emphasis on integrated computational materials engineering (ICME) and additive manufacturing have been a catalyst for multiscale modeling and simulation-based design of materials and structures in the aerospace industry. While these advances have driven significant progress in the development of aerospace components and systems, that progress has been limited by persistent technology and infrastructure challenges that must be overcome to realize the full potential of integrated materials and systems design and simulation modeling throughout the supply chain. As a result, NASA's Transformational Tools and Technology (TTT) Project sponsored a study (performed by a diverse team led by Pratt & Whitney) to define the potential 25-year future state required for integrated multiscale modeling of materials and systems (e.g., load-bearing structures) to accelerate the pace and reduce the expense of innovation in future aerospace and aeronautical systems. This report describes the findings of this 2040 Vision study (e.g., the 2040 vision state; the required interdependent core technical work areas, Key Element (KE); identified gaps and actions to close those gaps; and major recommendations) which constitutes a community consensus document as it is a result of over 450 professionals input obtain via: 1) four society workshops (AIAA, NAFEMS, and two TMS), 2) community-wide survey, and 3) the establishment of 9 expert panels (one per KE) consisting on average of 10 non-team members from academia, government and industry to review, update content, and prioritize gaps and actions. The study envisions the development of a cyber-physical-social ecosystem comprised of experimentally verified and validated computational models, tools, and techniques, along with the associated digital tapestry, that impacts the entire supply chain to enable cost-effective, rapid, and revolutionary design of fit-for-purpose materials, components, and systems. Although the vision focused on aeronautics and space applications, it is believed that other engineering communities (e.g., automotive, biomedical, etc.) can benefit as well from the proposed framework with only minor modifications. Finally, it is TTT's hope and desire that this vision provides the strategic guidance to both public and private research and development decision makers to make the proposed 2040 vision state a reality and thereby provide a significant advancement in the United States global competitiveness.
NASA Technical Reports Server (NTRS)
1984-01-01
The indirect effects of lightning on digital systems, ground system protection, and the corrosion properties of conductive materials are addressed. The responses of a UH-60A helicopter and tactical shelters to lightning and nuclear electromagnetic pulses are discussed.
The Top 10 Careers for the 1990s.
ERIC Educational Resources Information Center
Price, Paul
1988-01-01
Reports on a survey of experts from industry and academia which attempted to identify the top ten major career fields for engineers, including materials, biotechnology, automation and robotics, computer engineering, metals and mining, neural modeling, along with marine, aerospace, environmental and energy-related engineering. (TW)
X-ray lasers. Citations from the International Aerospace Abstracts data base
NASA Technical Reports Server (NTRS)
Mauk, S. C.
1980-01-01
Various aspects of X-ray lasers are discussed in approximately 122 citations. Included are laser plasmas and outputs, plasma radiation, far ultraviolet radiation, gamma rays, optical pumping, optical resonators, and electron transitions. Laser applications, laser materials, and laser fusion are also included.
NASA Technical Reports Server (NTRS)
1972-01-01
New and improved materials, equipment, and techniques in measurement technology, developed by the aerospace industry, are presented for economic development in other industries. The developments are grouped as follows: (1) surface measurement, (2) alignment and orientation of bodies, (3) fluid measurement, (4) linear and angular measurements, and (5) force measurements.
Aerospace Bibliography, Fourth Edition.
ERIC Educational Resources Information Center
National Aerospace Education Council, Washington, DC.
This annotated bibliography, intended for elementary and secondary school teachers, their pupils, and general adult readers contains grade level coded lists of books, reference works, periodicals, and teaching aids dealing with astronomy and space flight subjects. The reading material is listed alphabetically by author. The teaching aids in Part…
Study to minimize hydrogen embrittlement of ultrahigh-strength steels
NASA Technical Reports Server (NTRS)
Elsea, S. T.; Fletcher, E. E.; Groeneveld, T. P.
1967-01-01
Hydrogen-stress cracking in high-strength steels is influenced by hydrogen content of the material and its hydrogen absorption tendency. Non-embrittling cleaning, pickling, and electroplating processes are being studied. Protection from this hydrogen embrittlement is important to the aerospace and aircraft industries.
Quantitative Inspection Technologies for Aging Military Aircraft
2013-11-01
Continue exploring the application of THz/FTIR for advanced aerospace materials, e.g., Thermal Barrier Coatings (TBCs) and Ceramic Matrix Composites...With On-Board Impedance- Matching Buffers ...Specimen. The Inverted Foil Conductivity Of 1.348%IACS Agrees With The DCPD Value Of 1.342%IACS
Applications of aerospace technology in the electric power industry
NASA Technical Reports Server (NTRS)
Johnson, F. D.; Heins, C. F.
1974-01-01
Existing applications of NASA contributions to disciplines such as combustion engineering, mechanical engineering, materials science, quality assurance and computer control are outlined to illustrate how space technology is used in the electric power industry. Corporate strategies to acquire relevant space technology are described.
Challenges of NDE Simulation Tool Challenges of NDE Simulation Tool
NASA Technical Reports Server (NTRS)
Leckey, Cara A. C.; Juarez, Peter D.; Seebo, Jeffrey P.; Frank, Ashley L.
2015-01-01
Realistic nondestructive evaluation (NDE) simulation tools enable inspection optimization and predictions of inspectability for new aerospace materials and designs. NDE simulation tools may someday aid in the design and certification of advanced aerospace components; potentially shortening the time from material development to implementation by industry and government. Furthermore, modeling and simulation are expected to play a significant future role in validating the capabilities and limitations of guided wave based structural health monitoring (SHM) systems. The current state-of-the-art in ultrasonic NDE/SHM simulation cannot rapidly simulate damage detection techniques for large scale, complex geometry composite components/vehicles with realistic damage types. This paper discusses some of the challenges of model development and validation for composites, such as the level of realism and scale of simulation needed for NASA' applications. Ongoing model development work is described along with examples of model validation studies. The paper will also discuss examples of the use of simulation tools at NASA to develop new damage characterization methods, and associated challenges of validating those methods.
Prediction of Burst Pressure in Multistage Tube Hydroforming of Aerospace Alloys.
Saboori, M; Gholipour, J; Champliaud, H; Wanjara, P; Gakwaya, A; Savoie, J
2016-08-01
Bursting, an irreversible failure in tube hydroforming (THF), results mainly from the local plastic instabilities that occur when the biaxial stresses imparted during the process exceed the forming limit strains of the material. To predict the burst pressure, Oyan's and Brozzo's decoupled ductile fracture criteria (DFC) were implemented as user material models in a dynamic nonlinear commercial 3D finite-element (FE) software, ls-dyna. THF of a round to V-shape was selected as a generic representative of an aerospace component for the FE simulations and experimental trials. To validate the simulation results, THF experiments up to bursting were carried out using Inconel 718 (IN 718) tubes with a thickness of 0.9 mm to measure the internal pressures during the process. When comparing the experimental and simulation results, the burst pressure predicated based on Oyane's decoupled damage criterion was found to agree better with the measured data for IN 718 than Brozzo's fracture criterion.
Ultrasonic NDE Simulation for Composite Manufacturing Defects
NASA Technical Reports Server (NTRS)
Leckey, Cara A. C.; Juarez, Peter D.
2016-01-01
The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.
A Comparison of Quasi-Static Indentation and Drop-Weight Impact Testing on Carbon-Epoxy Laminates
NASA Technical Reports Server (NTRS)
Prabhakaran, R.
2001-01-01
The project had two objectives: 1) The primary objective was to characterize damage tolerance of composite materials. To accomplish this, polymer matrix composites were to be subjected to static indentation as well as low-velocity impacts and the results analyzed. 2) A second objective was to investigate the effects of laser shock peening on the damage tolerance of aerospace materials, such as aluminum alloys, in terms of crack nucleation and crack propagation. The impact testing was proposed to be performed using a Dynatup drop tower. The specimens were to be placed over a square opening in a steel platen and impacted with a hemispherical tup. The damage was to be characterized in the laminate specimens. The damage tolerance of aerospace alloys was to be studied by conducting fatigue tests on aluminum alloy specimens with prior shock peening treatment. The crack length was to be monitored by a microscope and the crack propagation rate, da/dN, determined.
Drifting Recovery Base Concept for GEO Derelict Object Capture
NASA Technical Reports Server (NTRS)
Bacon, John B.
2009-01-01
Over 250 objects hover within 6 m/sec of perfect geostationary orbit. Over half of these objects lie within 0.1 m/sec of the GEO velocity. Such items have 62% of the total velocity required to achieve Earth gravitational escape. A conceptual architecture is proposed to clean this orbit area of derelict objects while providing a demonstration mission for many facets of future asteroid mining operations. These near-GEO objects average nearly 2000kg each, consisting of (typically functioning) power systems, batteries, and large quantities of components and raw aerospace-grade refined materials. Such a demonstration collection system could capture, collect and remove all GEO derelict objects in an international effort to create a depot of components and of aerospace-grade raw materials--with a total mass greater than that of the International Space Station--as a space scrap depot ready for transfer to lunar or Mars orbit, using only two heavy-lift launches and 2-3 years of on-orbit operations.
NASA Technical Reports Server (NTRS)
Fusaro, Robert L. (Editor); Achenbach, J. D. (Editor)
1993-01-01
The present volume on tribological materials and NDE discusses liquid lubricants for advanced aircraft engines, a liquid lubricant for space applications, solid lubricants for aeronautics, and thin solid-lubricant films in space. Attention is given to the science and technology of NDE, tools for an NDE engineering base, experimental techniques in ultrasonics for NDE and material characterization, and laser ultrasonics. Topics addressed include thermal methods of NDE and quality control, digital radiography in the aerospace industry, materials characterization by ultrasonic methods, and NDE of ceramics and ceramic composites. Also discussed are smart materials and structures, intelligent processing of materials, implementation of NDE technology on flight structures, and solid-state weld evaluation.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Noebe, Ronald D.; Stanford, Malcolm; Padula, Santo A.
2011-01-01
Mechanical components (bearings, gears, mechanisms) typically utilize hard materials to minimize wear and attain long life. In such components, heavily loaded contact points (e.g., meshing gear teeth, bearing ball-raceway contacts) experience high contact stresses. The combination of high hardness, heavy loads and high elastic modulus often leads to damaging contact stress. In addition, mechanical component materials, such as tool steel or silicon nitride exhibit limited recoverable strain (typically less than 1 percent). These material attributes can lead to Brinell damage (e.g., denting) particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this paper, a superelastic alloy, 60NiTi, is considered for rolling element bearing applications. A series of Rockwell and Brinell hardness, compressive strength, fatigue and tribology tests are conducted and reported. The combination of high hardness, moderate elastic modulus, large recoverable strain, low density, and intrinsic corrosion immunity provide a path to bearings largely impervious to shock load damage. It is anticipated that bearings and components made from alloys with such attributes can alleviate many problems encountered in advanced aerospace applications.
Helping Aircraft Engines Lighten Up
NASA Technical Reports Server (NTRS)
2004-01-01
High-temperature polyimide/carbon fiber matrix composites are developed by the Polymers Branch at NASA's Glenn Research Center. These materials can withstand high temperatures and have good processing properties, which make them particularly useful for jet and rocket engines and for components such as fan blades, bushings, and duct segments. Applying polyimide composites as components for aerospace structures can lead to substantial vehicle weight reductions. A typical polyimide composite is made up of layers of carbon or glass fibers glued together by a high-temperature polymer to make the material strong, stiff, and lightweight. Organic molecules containing carbon, nitrogen, oxygen, and hydrogen within the polyimide keep the material s density low, resulting in the light weight. The strength of a component or part made from a polyimide comes mainly from the reinforcing high-strength fibers. The strength of the carbon fibers coupled with the stiffness of polyimides allows engineers to make a very rigid structure without it being massive. Another benefit of a polyimide s suitability for aerospace applications is its reduced need for machining. When polyimide parts are removed from a mold, they are nearly in their final shape. Usually, very little machining is needed before a part is ready for use.
NASA Astrophysics Data System (ADS)
Manan, N. H.; Majid, D. L.; Romli, F. I.
2016-10-01
Sandwich structures with honeycomb core are known to significantly improve stiffness at lower weight and possess high flexural rigidity. They have found wide applications in aerospace as part of the primary structures, as well as the interior paneling and floors. High performance aluminum and aramid are the typical materials used for the purpose of honeycomb core whereas in other industries, materials such as fibre glass, carbon fibre, Nomex and also Kevlar reinforced with polymer are used. Recently, growing interest in developing composite structures with natural fibre reinforcement has also spurred research in natural fibre honeycomb material. The majority of the researches done, however, have generally emphasized on the usage of random chopped fibre and only a few are reported on development of honeycomb structure using unidirectional fibre as the reinforcement. This is mainly due to its processing difficulties, which often involve several stages to account for the arrangement of fibres and curing. Since the use of unidirectional fibre supports greater strength compared to random chopped fibre, a single-stage process in conjunction with vacuum infusion is suggested with a mould design that supports fibre arrangement in the direction of honeycomb loading.
Liquid Nitrogen Removal of Critical Aerospace Materials
NASA Technical Reports Server (NTRS)
Noah, Donald E.; Merrick, Jason; Hayes, Paul W.
2005-01-01
Identification of innovative solutions to unique materials problems is an every-day quest for members of the aerospace community. Finding a technique that will minimize costs, maximize throughput, and generate quality results is always the target. United Space Alliance Materials Engineers recently conducted such a search in their drive to return the Space Shuttle fleet to operational status. The removal of high performance thermal coatings from solid rocket motors represents a formidable task during post flight disassembly on reusable expended hardware. The removal of these coatings from unfired motors increases the complexity and safety requirements while reducing the available facilities and approved processes. A temporary solution to this problem was identified, tested and approved during the Solid Rocket Booster (SRB) return to flight activities. Utilization of ultra high-pressure liquid nitrogen (LN2) to strip the protective coating from assembled space shuttle hardware marked the first such use of the technology in the aerospace industry. This process provides a configurable stream of liquid nitrogen (LN2) at pressures of up to 55,000 psig. The performance of a one-time certification for the removal of thermal ablatives from SRB hardware involved extensive testing to ensure adequate material removal without causing undesirable damage to the residual materials or aluminum substrates. Testing to establish appropriate process parameters such as flow, temperature and pressures of the liquid nitrogen stream provided an initial benchmark for process testing. Equipped with these initial parameters engineers were then able to establish more detailed test criteria that set the process limits. Quantifying the potential for aluminum hardware damage represented the greatest hurdle for satisfying engineers as to the safety of this process. Extensive testing for aluminum erosion, surface profiling, and substrate weight loss was performed. This successful project clearly demonstrated that the liquid nitrogen jet possesses unique strengths that align remarkably well with the unusual challenges that space hardware and missile manufacturers face on a regular basis. Performance of this task within the confines of a critical manufacturing facility marks a milestone in advanced processing.
NASA Technical Reports Server (NTRS)
2000-01-01
Genoa is a software product that predicts progressive aging and failure in a variety of materials. It is the result of a SBIR contract between the Glenn Research Center and Alpha Star Corporation. Genoa allows designers to determine if the materials they plan on applying to a structure are up to the task or if alternate materials should be considered. Genoa's two feature applications are its progressive failure simulations and its test verification. It allows for a reduction in inspection frequency, rapid design solutions, and manufacturing with low cost materials. It will benefit the aerospace, airline, and automotive industries, with future applications for other uses.
Accelerated lifetime test of vibration isolator made of Metal Rubber material
NASA Astrophysics Data System (ADS)
Ao, Hongrui; Ma, Yong; Wang, Xianbiao; Chen, Jianye; Jiang, Hongyuan
2017-01-01
The Metal Rubber material (MR) is a kind of material with nonlinear damping characteristics for its application in the field of aerospace, petrochemical industry and so on. The study on the lifetime of MR material is impendent to its application in engineering. Based on the dynamic characteristic of MR, the accelerated lifetime experiments of vibration isolators made of MR working under random vibration load were conducted. The effects of structural parameters of MR components on the lifetime of isolators were studied and modelled with the fitting curves of degradation data. The lifetime prediction methods were proposed based on the models.
Characterization of Carbon Nanotube Reinforced Nickel
NASA Technical Reports Server (NTRS)
Gill, Hansel; Hudson, Steve; Bhat, Biliyar; Munafo, Paul M. (Technical Monitor)
2002-01-01
Carbon nanotubes are cylindrical molecules composed of carbon atoms in a regular hexagonal arrangement. If nanotubes can be uniformly dispersed in a supporting matrix to form structural materials, the resulting structures could be significantly lighter and stronger than current aerospace materials. Work is currently being done to develop an electrolyte-based self-assembly process that produces a Carbon Nanotube/Nickel composite material with high specific strength. This process is expected to produce a lightweight metal matrix composite material, which maintains it's thermal and electrical conductivities, and is potentially suitable for applications such as advanced structures, space based optics, and cryogenic tanks.
Nanotechnology Aerospace Applications (Applications aerospatiales de la nanotechnologie) (CD-ROM)
ABSTRACT: The Educational Notes contain the abstracts and the lecture material of ten presentations, which provide a general introduction into... commercialisation . The lectures were held in October and November 2006 in four cities, namely Seattle, USA, Montreal, CAN, Ljubljana, SVN, and Bordeaux, FRA. The
NASA Technical Reports Server (NTRS)
Miller, L.
1980-01-01
A facility which produces electrodes for spacecraft power supplies is described. The electrode assembly procedures are discussed. A number of design features in the production process are reported including a batch operation mode and an independent equipment module design approach for transfering the electrode materials from process tank to process tank.
Combustion toxicology of epoxy/carbon fiber composites
NASA Technical Reports Server (NTRS)
Cagliostro, D. E.
1981-01-01
A combustion toxicology test was developed to screen materials for aerospace applications. The system is called the radiant panel test facility. A description of the facility and some preliminary results from tests on a Navy 3501-6AS composite, a typical composite for fighter aircraft, are presented.
Stealth Aircraft Technology. (Latest Citations from the Aerospace Database)
NASA Technical Reports Server (NTRS)
1995-01-01
The bibliography contains citations concerning design, manufacture, and history of aircraft incorporating stealth technology. Citations focus on construction materials, testing, aircraft performance, and technology assessment. Fighter aircraft, bombers, missiles, and helicopters represent coverage. (Contains 50-250 citations and includes a subject term index and title list.)
Use of cooling air heat exchangers as replacements for hot section strategic materials
NASA Technical Reports Server (NTRS)
Gauntner, J. W.
1983-01-01
Because of financial and political constraints, strategic aerospace materials required for the hot section of future engines might be in short supply. As an alternative to these strategic materials, this study examines the use of a cooling air heat exchanger in combination with less advanced hot section materials. Cycle calculations are presented for future turbofan systems with overall pressure ratios to 65, bypass ratios near 13, and combustor exit temperatures to 3260 R. These calculations quantify the effect on TSFC of using a decreased materials technology in a turbofan system. The calculations show that the cooling air heat exchanger enables the feasibility of these engines.
NASA Thermographic Inspection of Advanced Composite Materials
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott
2004-01-01
As the use of advanced composite materials continues to increase in the aerospace community, the need for a quantitative, rapid, in situ inspection technology has become a critical concern throughout the industry. In many applications it is necessary to monitor changes in these materials over an extended period of time to determine the effects of various load conditions. Additionally, the detection and characterization of defects such as delaminations, is of great concern. This paper will present the application of infrared thermography to characterize various composite materials and show the advantages of different heat source types. Finally, various analysis methodologies used for quantitative material property characterization will be discussed.
Studies of molecular properties of polymeric materials
NASA Technical Reports Server (NTRS)
Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.
1990-01-01
Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.
NASA Technical Reports Server (NTRS)
St.clair, Terry L.
1991-01-01
The aerospace and electronics industries have an ever increasing need for higher performance materials. In recent years, linear aromatic polyimides have been proven to be a superior class of materials for various applications in these industries. The use of this class of polymers as adhesives is continuing to increase. Several NASA Langley developed polyimides show considerable promise as adhesives because of their high glass transition temperatures, thermal stability, resistance to solvents/water, and their potential for cost effective manufacture.
2012-01-12
fabrication of the composite indicate physical deformities and defects, including entanglement of carbon nanotubes and fused contacts, that are understood...working distance, and spot size, 2.5) of MWCNT array batch of which the composite was made and tested: (a) Entanglements of Individual Nanotubes...electron, photon and phonon) in these materials is critical to their reliable and robust performance, thus accommodating denser circuits 2 and higher
2010-03-01
of sub-routines Thermal history • Abaqus FEM engine mature applied within ABAQUS Residual stress & Distortion • Unknown maturity for HTC • Focused...investment. The committee’s ICME vision is comprehensive, expansive , and involves the entire materials community. The scope of this white paper is...Software • Continuum FEM for fluid flow, heat Mold Fill • FEM implementation mature flow and stress analysis Thermal & mushy zone history • Needs
High performance mixed bisimide resins and composites based thereon
NASA Technical Reports Server (NTRS)
Parker, J. A.; ations.
1986-01-01
Mixtures of bismaleimide/biscitraconirnide resins produces materials which have better handling, processing or mechanical and thermal properties, particularly in graphite composites, than materials made with the individual resins. The mechanical strength of cured graphite composites prepared from a 1:1 copolymer of such bisimide resins is excellent at both ambient and elevated temperatures. The copolymer mixture provides improved composites which are lighter than metals and replace metals in many aerospace applications.
Cyber Technology for Materials and Structures in Aeronautics and Aerospace
NASA Technical Reports Server (NTRS)
Pipes, R. Byron
1999-01-01
This report summarizes efforts undertaken during the 1998-99 program year and includes a survey of the field of computational mechanics, a discussion of biomimetics and intelligent simulation, a survey of the field of biomimetics, an illustration of biomimetics and computational mechanics through the example of the high performance composite tensile structure. In addition, the preliminary results of a state-of-the art survey of composite materials technology is presented.
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning analytical techniques using constitutive equations, applied to materials under stress. The properties explored with these techniques include viscoelasticity, thermoelasticity, and plasticity. While many of the references are general as to material type, most refer to specific metals or composites, or to specific shapes, such as flat plate or spherical vessels. (Contains 50-250 citations and includes a subject term index and title list.)
NASA Technical Reports Server (NTRS)
Scott, Elaine P.
1996-01-01
A thermal stress analysis is an important aspect in the design of aerospace structures and vehicles such as the High Speed Civil Transport (HSCT) at the National Aeronautics and Space Administration Langley Research Center (NASA-LaRC). These structures are complex and are often composed of numerous components fabricated from a variety of different materials. The thermal loads on these structures induce temperature variations within the structure, which in turn result in the development of thermal stresses. Therefore, a thermal stress analysis requires knowledge of the temperature distributions within the structures which consequently necessitates the need for accurate knowledge of the thermal properties, boundary conditions and thermal interface conditions associated with the structural materials. The goal of this proposed multi-year research effort was to develop estimation methodologies for the determination of the thermal properties and interface conditions associated with aerospace vehicles. Specific objectives focused on the development and implementation of optimal experimental design strategies and methodologies for the estimation of thermal properties associated with simple composite and honeycomb structures. The strategy used in this multi-year research effort was to first develop methodologies for relatively simple systems and then systematically modify these methodologies to analyze complex structures. This can be thought of as a building block approach. This strategy was intended to promote maximum usability of the resulting estimation procedure by NASA-LARC researchers through the design of in-house experimentation procedures and through the use of an existing general purpose finite element software.
NASA-UVA Light Aerospace Alloy and Structures Technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1995-01-01
The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The general aim is to produce relevant data and basic understanding of material mechanical response, environment/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated students for aerospace technologies. Specific technical objectives are presented for each of the following research projects: time-temperature dependent fracture in advanced wrought ingot metallurgy, and spray deposited aluminum alloys; cryogenic temperature effects on the deformation and fracture of Al-Li-Cu-In alloys; effects of aging and temperature on the ductile fracture of AA2095 and AA2195; mechanisms of localized corrosion in alloys 2090 and 2095; hydrogen interactions in aluminum-lithium alloys 2090 and selected model alloys; mechanisms of deformation and fracture in high strength titanium alloys (effects of temperature and hydrogen and effects of temperature and microstructure); evaluations of wide-panel aluminum alloy extrusions; Al-Si-Ge alloy development; effects of texture and precipitates on mechanical property anisotropy of Al-Cu-Mg-X alloys; damage evolution in polymeric composites; and environmental effects in fatigue life prediction - modeling crack propagation in light aerospace alloys.
Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.
2002-01-01
Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.
Metal- matrix composite processing technologies for aircraft engine applications
NASA Astrophysics Data System (ADS)
Pank, D. R.; Jackson, J. J.
1993-06-01
Titanium metal-matrix composites (MMC) are prime candidate materials for aerospace applications be-cause of their excellent high-temperature longitudinal strength and stiffness and low density compared with nickel- and steel-base materials. This article examines the steps GE Aircraft Engines (GEAE) has taken to develop an induction plasma deposition (IPD) processing method for the fabrication of Ti6242/SiC MMC material. Information regarding process methodology, microstructures, and mechani-cal properties of consolidated MMC structures will be presented. The work presented was funded under the GE-Aircraft Engine IR & D program.
An instrument for spatial conductivity measurements of high Tc superconducting (HTSC) materials
NASA Technical Reports Server (NTRS)
Vansant, T.
1991-01-01
High T(sub c) Superconducting (HTSC) thin films are suggested for use in a number of aerospace applications such as an IR bolometer and as electromagnetic shielding. As part of its flight assurance role, the Materials Branch of the Goddard Space Flight Center has initiated development of an instrument capable of measuring variations in conductivity for flat samples using an eddy current testing device and an X-Y positioning table. This instrument was used to examine bulk HTSC samples. System changes that would enable characterization of thin film materials are discussed.
Development of experimental systems for material sciences under microgravity
NASA Technical Reports Server (NTRS)
Tanii, Jun; Obi, Shinzo; Kamimiyata, Yotsuo; Ajimine, Akio
1988-01-01
As part of the Space Experiment Program of the Society of Japanese Aerospace Companies, three experimental systems (G452, G453, G454) have been developed for materials science studies under microgravity by the NEC Corporation. These systems are to be flown as Get Away Special payloads for studying the feasibility of producing new materials. Together with the experimental modules carrying the hardware specific to the experiment, the three systems all comprise standard subsystems consisting of a power supply, sequence controller, temperature controller, data recorder, and video recorder.
NASA Technical Reports Server (NTRS)
Hirsch, David; Williams, Jim; Beeson, Harold
2009-01-01
This slide presentation reviews the use of ground test data in reference to flammability to spacecraft environments. It reviews the current approach to spacecraft fire safety, the challenges to fire safety that the Constellation program poses, the current trends in the evaluation of the Constellation materials flammability, and the correlation of test data from ground flammability tests with the spacecraft environment. Included is a proposal for testing and the design of experiments to test the flammability of materials under similar spacecraft conditions.
Clinical application of bio ceramics
NASA Astrophysics Data System (ADS)
Anu, Sharma; Gayatri, Sharma
2016-05-01
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
Clinical application of bio ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com
Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.
Recent advances in AM OLED technologies for application to aerospace and military systems
NASA Astrophysics Data System (ADS)
Sarma, Kalluri R.; Roush, Jerry; Chanley, Charles
2012-06-01
While initial AM OLED products have been introduced in the market about a decade ago, truly successful commercialization of OLEDs has started only a couple of years ago, by Samsung Mobile Display (SMD), with small high performance displays for smart phone applications. This success by Samsung has catalyzed significant interest in AM OLED technology advancement and commercialization by other display manufacturers. Currently, significant manufacturing capacity for AM OLED displays is being established by the industry to serve the growing demand for these displays. The current development in the AM OLED industry are now focused on the development and commercialization of medium size (~10") AM OLED panels for Tablet PC applications and large size (~55") panels for TV applications. This significant progress in commercialization of AM OLED technology is enabled by major advances in various enabling technologies that include TFT backplanes, OLED materials and device structures and manufacturing know-how. In this paper we will discuss these recent advances, particularly as they relate to supporting high performance applications such as aerospace and military systems, and then discuss the results of the OLED testing for aerospace applications.
Per- and polyfluoroalkyl substances (PFAS) are a large group of manufactured compounds used in a variety of industries, such as aerospace, automotive, textiles, and electronics, and are used in some food packaging and firefighting materials. For example, they may be used to make ...
2011-12-31
current methods used for aluminum-skinned aircraft. To this end, a series of medium-scale fire experiments were performed on aerospace composite materials...History.....................................................................................................................4 3. METHODS , ASSUMPTIONS AND...4.3. Agent Cost Analysis ..........................................................................................................21 5. CONCLUSIONS
Portraying Careers Awareness in Aviation.
ERIC Educational Resources Information Center
Buckingham, Roy A.; Amato, Vincent
1980-01-01
Discusses the purpose of the half-day program at Indiana State University which provides some notion of careers available in the aviation industry focusing on the professional pilot career. It utilizes the simulators and aviation teaching materials within the Aerospace Department's inventory to help orient college-bound high school students to…
NASA Technical Reports Server (NTRS)
2004-01-01
The proceedings of this symposium consist of abstracts of talks presented by interns at NASA Glenn Research Center (GRC). The interns assisted researchers at GRC in projects which primarily address the following topics: aircraft engines and propulsion, spacecraft propulsion, fuel cells, thin film photovoltaic cells, aerospace materials, computational fluid dynamics, aircraft icing, management, and computerized simulation.
Directory of aerospace safety specialized information sources
NASA Technical Reports Server (NTRS)
Fullerton, E. A.; Rubens, L. S.; Mandel, G.; Mckenna, P. J.
1974-01-01
Directory aids safety specialists in locating information sources and individual experts in engineering-related fields. Lists 170 organizations and approximately 300 individuals who can provide safety-related technical information in form of documentation, data, and consulting expertise. Information on hazard and failure cause identification, accident analysis, and materials characteristics are covered.
2013-08-26
Magazine, 2004, Vol. 60, No. 68, pp. 7-11. 2. A. Wrigley: Aerospace Metals, American Metal Market , of May 1994. 3. L. L. Sherir: in Corrosion 1...Electrochemistry and Engineering, ASTM STP 801, T. W. Crooker and B. N Leis, Eds., American Society for Testing and Materials, 1983, pp. 5-25. 8. B. Fitzsimons
1993-05-19
The Laboratories Theory, Modeling and Simulation , • ATP Characterization J Education and Human Resources • MTC Facilities -- NBSR and CNRF MISSION...34 Automiated System for Composite Analysis (ASCA).Y -Basis for usefri(eadly numerical methods to describe composite laminates and predict ?heir response
2013-08-15
ARTHUR BROWN (AST, AEROSPACE METALLIC MATERIALS) LOADS A CERAMIC COATED SILICON WAFER INTO A KRATOS (ELECTRON SPECTROSCOPY FOR CHEMICAL ANALYSIS) TO PERFORM X-RAY PHOTOELECTRON SPECTROSCOPY (XPS). XPS IS A TECHNIQUE THAT ANALYZES THE SURFACE CHEMISTRY OF A SAMPLE BY IRRADIATING IT WITH X-RAYS AND MEASURING THE NUMBER AND KINETIC ENERGY OF ELECTRON THAT ESCAPE.
Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials
NASA Astrophysics Data System (ADS)
Jothi, Sathiskumar
Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and to improve the resistance to hydrogen embrittlement in aerospace materials are also suggested. This knowledge can play an important role in the development of new hydrogen embrittlement resistant materials. A novel micro/macro-scale coupled finite element method incorporating multi-scale experimental data is presented with which it is possible to perform full scale component analyses in order to investigate hydrogen embrittlement at the design stage. Finally, some preliminary and very encouraging results of grain boundary engineering based techniques to develop alloys that are resistant to hydrogen induced failure are presented. Keywords: Hydrogen embrittlement; Aerospace materials; Ariane 5 combustion chamber; Pulse plated nickel; Nickel based super alloy 718; SSRT test; Weldability test; TDA; SEM/EBSD; Hydrogen induced hot and cold cracking; Multiscale modelling and experimental methods.
NASA Technical Reports Server (NTRS)
Hinkley, Jeffrey A.; Connell, John W.
2012-01-01
In choosing a polymer-matrix composite material for a particular application, a number of factors need to be weighed. Among these are mechanical requirements, fabrication method (e.g. press-molding, resin infusion, filament winding, tape layup), and use conditions. Primary among the environmental exposures encountered in aerospace structures are moisture and elevated temperatures, but certain applications may require resistance to other fluids and solvents, alkaline agents, thermal cycling, radiation, or rapid, localized heating (for example, lightning strike). In this chapter, the main classes of polymer resin systems found in aerospace composites will be discussed. Within each class, their responses to environmental factors and the associated degradation mechanisms will be reviewed.
Intercalated graphite fiber composites as EMI shields in aerospace structures
NASA Technical Reports Server (NTRS)
Gaier, James R.
1990-01-01
The requirements for electromagnetic interference (EMI) shielding in aerospace structures are complicated over that of ground structures by their weight limitations. As a result, the best EMI shielding materials must blend low density, high strength, and high elastic modulus with high shielding ability. In addition, fabrication considerations including penetrations and joints play a major role. The EMI shielding properties are calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compared to preliminary experimental results and to shields made from aluminum. Calculations indicate that EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding properties alone.
Zhao, Yingjun; Schagerl, Martin; Viechtbauer, Christoph
2017-01-01
The concept of lightweight design is widely employed for designing and constructing aerospace structures that can sustain extreme loads while also being fuel-efficient. Popular lightweight materials such as aluminum alloy and fiber-reinforced polymers (FRPs) possess outstanding mechanical properties, but their structural integrity requires constant assessment to ensure structural safety. Next-generation structural health monitoring systems for aerospace structures should be lightweight and integrated with the structure itself. In this study, a multi-walled carbon nanotube (MWCNT)-based polymer paint was developed to detect distributed damage in lightweight structures. The thin film’s electromechanical properties were characterized via cyclic loading tests. Moreover, the thin film’s bulk conductivity was characterized by finite element modeling. PMID:28773084
High energy density micro-fiber based nickel electrode for aerospace batteries
NASA Technical Reports Server (NTRS)
Francisco, Jennifer; Chiappetti, Dennis; Coates, Dwaine
1996-01-01
The nickel electrode is the specific energy limiting component in battery systems such as nickel-hydrogen, nickel-metal hydride and nickel-zinc. Lightweight, high energy density nickel electrodes have been developed which deliver in excess of 180 mAh/g at the one-hour discharge rate. These electrodes are based on a highly porous, nickel micro-fiber (less than 10 micron diameter) substrate, electrochemically impregnated with nickel-hydroxide active material. Electrodes are being tested both as a flooded half-cell and in full nickel-hydrogen and nickel-metal hydride cells. The electrode technology developed is applicable to commercial nickel-based batteries for applications such as electric vehicles, cellular telephones and laptop computers and for low-cost, high energy density military and aerospace applications.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - John Cassanto of ITA looks at the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
2003-05-05
KENNEDY SPACE CENTER, FLA. - John Cassanto of ITA looks at the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.
Hercules Aerospace flywheel test results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, R.S. Jr.; Babelay, E.F. Jr.; Sutton, B.J.
1981-06-01
The detailed results of the spin test evaluation of the Hercules Aerospace flywheel at the Oak Ridge Flywheel Evaluation Laboratory (ORFEL) are presented. Details of the static evaluation with radiography and measures of weight, inertia, and natural frequencies are included. The flywheel was spun four times with the maximum speed being increased with each run. During the final run, the flywheel achieved 372 rps and stored 0.714 kWhr of kinetic energy at 37 Whr/kg. The ultimate speed was limited by a composite transverse strength that was somewhat lower than that used in the design of the flywheel. This resulted inmore » internal cracking of the flywheel and, eventually, the loss of material from the outer circumference.« less
National Aerospace Plane Integrated Fuselage/Cryotank Risk Reduction program
NASA Astrophysics Data System (ADS)
Dayton, K. E.
1993-06-01
The principal objectives and results of the National Aerospace Plane (NASP) Integrated Risk Reduction program are briefly reviewed. The program demonstrated the feasibility of manufacturing lightweight advanced composite materials for single-stage-to-orbit hypersonic flight vehicle applications. A series of combined load simulation tests (thermal, mechanical, and cryogenic) demonstrated proof of concept performance for an all unlined composite cryogenic fuel tank with flat end bulkheads and a high-temperature thin-shell advanced composite fuselage. Temperatures of the fuselage were as high as 1300 F, with 100 percent bending and shear loads applied to the tank while filled with 850 gallons of cryogenic fluid hydrogen (-425 F). Leak rates measured on and around the cryotank shell and bulkheads were well below acceptable levels.
Materials Design for Joinable, High Performance Aluminum Alloys
NASA Astrophysics Data System (ADS)
Glamm, Ryan James
An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron microscopy are used to characterize the composition, size, and phase fraction evolution for the automotive alloy strengthening precipitates. It is determined that the dominant precipitate at peak hardness is a metastable T' phase. The automotive alloy is friction stir processed and found to lose hardness in the heat affected zones surrounding the nugget. A post weld heat treatment nearly recovers the heat affected zones to base hardness. The post weld heat treatment is compatible with the current automotive paint bake step, showing design for processability. Tensile tests confirm the base alloy strength meets the automotive strength goal.
A brief review on fly ash and its use in surface engineering
NASA Astrophysics Data System (ADS)
Bhajantri, Vishwanath; Krishna, Prasad; Jambagi, Sudhakar
2018-04-01
Fly ash is a by-product obtained from coal power plants. Over the past two decades, handling this industrial waste has been a great challenge for many developing countries. However, this menace can be used in many industrial applications viz., civil, automobile and aerospace applications. In civil industry, the fly ash has been used in concreate to enhance the porosity that increases the curing time of the concrete. The fly ash has been gaining importance these days as a feedstock material for many thermal spray processes. In automobile sector, the fly ash has been used as a thermal barrier coating in IC engines, whereas in aerospace industry, which demands lighter and stronger materials, the fly ash has been used as a reinforcement material. Hence, so far, fly ash has been used as an either single or a composite feed stock material in thermal spray processes. The fly ash with other materials like alumina, titania and red mud have been deposited using thermal spray processes. These coatings have exhibited higher wear, corrosion and erosion resistance as compared to the uncoated specimens. In this paper, a brief review on fly ash and its use, especially its use as a feed stock in thermal spray coating, is presented. Therefore, the use of fly ash has opened a new frontier of research in thermal spray coating area where economically viable coatings can be produced using industrial waste like fly ash.
CCARES: A computer algorithm for the reliability analysis of laminated CMC components
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Gyekenyesi, John P.
1993-01-01
Structural components produced from laminated CMC (ceramic matrix composite) materials are being considered for a broad range of aerospace applications that include various structural components for the national aerospace plane, the space shuttle main engine, and advanced gas turbines. Specifically, these applications include segmented engine liners, small missile engine turbine rotors, and exhaust nozzles. Use of these materials allows for improvements in fuel efficiency due to increased engine temperatures and pressures, which in turn generate more power and thrust. Furthermore, this class of materials offers significant potential for raising the thrust-to-weight ratio of gas turbine engines by tailoring directions of high specific reliability. The emerging composite systems, particularly those with silicon nitride or silicon carbide matrix, can compete with metals in many demanding applications. Laminated CMC prototypes have already demonstrated functional capabilities at temperatures approaching 1400 C, which is well beyond the operational limits of most metallic materials. Laminated CMC material systems have several mechanical characteristics which must be carefully considered in the design process. Test bed software programs are needed that incorporate stochastic design concepts that are user friendly, computationally efficient, and have flexible architectures that readily incorporate changes in design philosophy. The CCARES (Composite Ceramics Analysis and Reliability Evaluation of Structures) program is representative of an effort to fill this need. CCARES is a public domain computer algorithm, coupled to a general purpose finite element program, which predicts the fast fracture reliability of a structural component under multiaxial loading conditions.
Vaccum Gas Tungsten Arc Welding, phase 1
NASA Astrophysics Data System (ADS)
Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.
1995-03-01
This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.
Vaccum Gas Tungsten Arc Welding, phase 1
NASA Technical Reports Server (NTRS)
Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.
1995-01-01
This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.
Standardization of shape memory alloy test methods toward certification of aerospace applications
NASA Astrophysics Data System (ADS)
Hartl, D. J.; Mabe, J. H.; Benafan, O.; Coda, A.; Conduit, B.; Padan, R.; Van Doren, B.
2015-08-01
The response of shape memory alloy (SMA) components employed as actuators has enabled a number of adaptable aero-structural solutions. However, there are currently no industry or government-accepted standardized test methods for SMA materials when used as actuators and their transition to commercialization and production has been hindered. This brief fast track communication introduces to the community a recently initiated collaborative and pre-competitive SMA specification and standardization effort that is expected to deliver the first ever regulatory agency-accepted material specification and test standards for SMA as employed as actuators for commercial and military aviation applications. In the first phase of this effort, described herein, the team is working to review past efforts and deliver a set of agreed-upon properties to be included in future material certification specifications as well as the associated experiments needed to obtain them in a consistent manner. Essential for the success of this project is the participation and input from a number of organizations and individuals, including engineers and designers working in materials and processing development, application design, SMA component fabrication, and testing at the material, component, and system level. Going forward, strong consensus among this diverse body of participants and the SMA research community at large is needed to advance standardization concepts for universal adoption by the greater aerospace community and especially regulatory bodies. It is expected that the development and release of public standards will be done in collaboration with an established standards development organization.
Molecular dynamics modelling of mechanical properties of polymers for adaptive aerospace structures
NASA Astrophysics Data System (ADS)
Papanikolaou, Michail; Drikakis, Dimitris; Asproulis, Nikolaos
2015-02-01
The features of adaptive structures depend on the properties of the supporting materials. For example, morphing wing structures require wing skin materials, such as rubbers that can withstand the forces imposed by the internal mechanism while maintaining the required aerodynamic properties of the aircraft. In this study, Molecular Dynamics and Minimization simulations are being used to establish well-equilibrated models of Ethylene-Propylene-Diene Monomer (EPDM) elastomer systems and investigate their mechanical properties.
1994-03-01
including foreign nations. This technical report has been reviewed and is approved for publication. THEODORE J. ART, Chief RALPa. PEELMAN, Chief Materials...I hour Der response. including th’ tume for reviewing instructions. searchring existing data sources. gathering and maintaining the data reeded, and...completing and reviewing the collection of inlormation Send comments rtgarding this burden estimate or any other aspect of this collection of
2013-03-01
latter strategy. Mixtures of titanium powders and TiO2 particles were employed as starting materials and consolidated by spark - plasma sintering and...were consolidated in a carbon container installed in the spark - plasma sintering (SPS) equipment under vacuum condition (ɞ Pa) at a temperature of...evaluation of tensile properties of the wrought pure titanium materials consolidated by sintering and hot extrusion process, a theoretical approach using
NASA Technical Reports Server (NTRS)
Carpenter, J. L., Jr.
1976-01-01
This bibliography is comprised of approximately 1,600 reference citations related to four problem areas in the mechanics of failure in aerospace structures. The bibliography represents a search of the literature published in the period 1962-1976, the effort being largely limited to documents published in the United States. Listings are subdivided into the four problem areas: Hydrogen Embrittlement; Protective Coatings; Composite Materials; and Nondestructive Evaluation. An author index is included.
Computational Electromagnetic Modeling of SansEC(Trade Mark) Sensors
NASA Technical Reports Server (NTRS)
Smith, Laura J.; Dudley, Kenneth L.; Szatkowski, George N.
2011-01-01
This paper describes the preliminary effort to apply computational design tools to aid in the development of an electromagnetic SansEC resonant sensor composite materials damage detection system. The computational methods and models employed on this research problem will evolve in complexity over time and will lead to the development of new computational methods and experimental sensor systems that demonstrate the capability to detect, diagnose, and monitor the damage of composite materials and structures on aerospace vehicles.
Practical Considerations of Design, Fabrication and Tests for Composite Materials,
1982-09-01
ORGANIZATION ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE L’ATLANTIQUE NORD) .1 AGARD Lecture Series No. 124...of Materials Science University of Bath Claverton Down Bath AB2 7AY UK SPEAKERS Dr A.R. Bunsell Dr J.J.Gerharz Ecole Naioiiale Sup~rieure des Fra...unhofer Institfit fuer Mines de Paris Betriebsfestigkeit (IBF) Centre des Mat~riaux Darmstadt Route Nationale 7, B.P. 87 Germany 91003 Evry Cedex France
Finite element analysis of composites materials for aerospace applications
NASA Astrophysics Data System (ADS)
Nurhaniza, M.; Ariffin, M. K. A.; Ali, Aidy; Mustapha, F.; Noraini, A. W.
2010-05-01
Composites materials are intended to be used more extensively as an alternative of aluminum structure in aircraft and aerospace applications. This is due to their attractive properties as high strength-to-weight ratio and stiffness-to-weight ratio. Besides that it clarifies the growing interest for composites materials due to advantages of lightweight, high strength, high stiffness, superior fatigue life, tremendous corrosion resistance and low cost manufacturing. In this study, a finite element analysis (FEA) of fiberglass unidirectional E-type was analyzed in the framework of ABAQUS finite element commercial software. The analysis was done to quantify the mechanical properties and response of unidirectional E-glass in term of tensile, compression and thermal responses. From the analysis, the maximum and minimum values of stress and strain for E-glass 21xK43 Gevetex and Silenka E-glass 1200tex were obtained and stress-strain curve is presented. The ultimate load of failure, elastic behavior, tensile strength and other properties for each laminated plates under tensile and thermal-stress are determined from stress-strain curves. The simulation will run twice for each material where the first simulation based on orientation angles of 45° for ply-1, -45° for ply-2 and 90° for ply-3 while the second simulation, the orientation angles is 0° for all plies. The simulation is successfully conducted and verified by experimental data.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed.
2010-10-26
NASA Langley Aerospace Engineer Jill Lynette Hanna Prince receives the Women in Aerospace Achievement in Aerospace award from North Carolina State Professor Robert Tolson during the Women in Aerospace organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
1993-01-01
Small Business Innovation Research (SBIR) contracts led to two commercial instruments and a new subsidiary for Physical Sciences, Inc. (PSI). The FAST system, originally developed for testing the effect of space environment on materials, is now sold commercially for use in aging certification of materials intended for orbital operation. The Optical Temperature Monitor was designed for precise measurement of high temperatures on certain materials to be manufactured in space. The original research was extended to the development of a commercial instrument that measures and controls fuel gas temperatures in industrial boilers. PSI created PSI Environmental Instruments to market the system. The company also offers an Aerospace Measurement Service that has evolved from other SBIR contracts.
Use of cooling air heat exchangers as replacements for hot section strategic materials
NASA Technical Reports Server (NTRS)
Gauntner, J. W.
1983-01-01
Because of financial and political constraints, strategic aerospace materials required for the hot section of future engines might be in short supply. As an alternative to these strategic materials, this study examines the use of a cooling air heat exchanger in combination with less advanced hot section materials. Cycle calculations are presented for future turbofan systems with overall pressure ratios to 65, bypass ratios near 13, and combustor exit temperatures to 3260 R. These calculations quantify the effect on TSFC of using a decreased materials technology in a turbofan system. The calculations show that the cooling air heat exchanger enables the feasibility of these engines. Previously announced in STAR as N83-34946
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Shyamsunder, Loukham; Rajan, Subramaniam; Blankenhorn, Gunther
2017-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. The aerospace community has identified several key capabilities which are currently lacking in the available material models in commercial transient dynamic finite element codes. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.
Index of international publications in aerospace medicine.
DOT National Transportation Integrated Search
1993-02-01
The Index of International Publications in Aerospace Medicine is a comprehensive listing of international publications in clinical aerospace medicine, operational aerospace medicine, aerospace physiology, environmental medicine/physiology, diving med...
Index of international publications in aerospace medicine
DOT National Transportation Integrated Search
2001-08-01
The Index of International Publications in Aerospace Medicine is a comprehensive listing of international publications in clinical aerospace medicine, operational aerospace medicine, aerospace physiology, environmental medicine/physiology, diving med...
Shock-loading response of advanced materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, G.T. III
1993-08-01
Advanced materials, such as composites (metal, ceramic, or polymer-matrix), intermetallics, foams (metallic or polymeric-based), laminated materials, and nanostructured materials are receiving increasing attention because their properties can be custom tailored specific applications. The high-rate/impact response of advanced materials is relevant to a broad range of service environments such as the crashworthiness of civilian/military vehicles, foreign-object-damage in aerospace, and light-weight armor. Increased utilization of these material classes under dynamic loading conditions requires an understanding of the relationship between high-rate/shock-wave response as a function of microstructure if we are to develop models to predict material behavior. In this paper the issues relevantmore » to defect generation, storage, and the underlying physical basis needed in predictive models for several advanced materials will be reviewed.« less
Research and Development Activities in Italy in the Field of Aerospace Structures and Materials,
1979-03-01
jointly by the Istituto di Tecnologia Aerospaziale of the University of Roma and Selenia, under the sponsorship of the CNR—SAS, is now under way to...satellites bearing antennas requiring very high directivity . The Istituto di Tecnologia Aeroapaziale of the University of Rome was responsable for
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
..., advisor, faculty member, and others as appropriate. The nomination letter(s) must communicate the... upon teacher (parent or legal guardian in the case of home schooled applicants), advisor, or faculty... innovative concept written by the student(s) being nominated (no page limit). All materials should be...
Research priorities for advanced fibrous composites
NASA Technical Reports Server (NTRS)
Baumann, K. J.; Swedlow, J. L.
1981-01-01
Priorities for research in advanced laminated fibrous composite materials are presented. Supporting evidence is presented in two bodies, including a general literature survey and a survey of aerospace composite hardware and service experience. Both surveys were undertaken during 1977-1979. Specific results and conclusions indicate that a significant portion of contemporary published research diverges from recommended priorites.
High char yield epoxy curing agents
NASA Technical Reports Server (NTRS)
Delvigs, P.; Serafini, T. T.; Vanucci, R. D.
1981-01-01
Class of imide-amine curing agents preserves structural integrity, prevents fiber release, and is fully compatible with conventional epoxy resins; agents do not detract from composite properties while greatly reducing char yield. Materials utilizing curing are used in aerospace, automotive, and other structural components where deterioration must be minimized and fiber release avoided in event of fire.
Multipurpose Corrosion Inhibitors for Aerospace Materials in Naval Environments
1987-06-04
Figure 1. The (da/dN i vs. AK plot is typica: of tr " curves obtained. The abbreviations MA. CTM and DNBM stand for moist air. dichromate - tellurate ...plastic deformation which occurs by the movement of dislocations to the surface (19) is the precursor of the cracking process in metals. Since
Chinese-English Technical Dictionaries. Volume 1, Aviation and Space.
ERIC Educational Resources Information Center
Library of Congress, Washington, DC. Aerospace Technology Div.
The present dictionary is the first of a series of Chinese-English technical dictionaries under preparation by the Aerospace Technology Division of the Library of Congress. The purpose of the series is to provide rapid reference tools for translators, abstractors, and research analysts concerned with scientific and technical materials published in…
Spacecraft Charging Technology, 1978
NASA Technical Reports Server (NTRS)
1979-01-01
The interaction of the aerospace environment with spacecraft surfaces and onboard, high voltage spacecraft systems operating over a wide range of altitudes from low Earth orbit to geosynchronous orbit is considered. Emphasis is placed on control of spacecraft electric potential. Electron and ion beams, plasma neutralizers material selection, and magnetic shielding are among the topics discussed.
Nuclear Energy Research Initiative (NERI) Program. 2nd Quarterly Technical Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2000-02-22
The research activities have been underway. We have located a large body of source material from aerospace, shipbuilding and manufacturing businesses that is serving the basis for identifying improvement methodologies. Our work on developing the three models proposed to capture the extent of the improvement possibilities has been ongoing.
Towards a Multi-Scale Understanding of Thermoacoustic Fatigue in Aerospace Materials and Structure
2016-05-31
for public release: distribution unlimited. 3.1.3 Pulsed laser Litron Nano This is a commercially available laser (Nano L200-10, Litron, Rugby , England...to disseminate recent research support by AFOSR and EOARD and associated work supported via European Union FP7 grants entitled ‘AD- VISE’ (Grant no
Safety and maintenance engineering: A compilation
NASA Technical Reports Server (NTRS)
1974-01-01
A compilation is presented for the dissemination of information on technological developments which have potential utility outside the aerospace and nuclear communities. Safety of personnel engaged in the handling of hazardous materials and equipment, protection of equipment from fire, high wind, or careless handling by personnel, and techniques for the maintenance of operating equipment are reported.
1993-10-01
aviators from continued flying duties. Surgical, Necropsy, and Forensic Material", Br Heart J 40, p 468, 1978. The ultimate disposition for all aviators... Hypnosis , acupuncture and other measures are often tried but appear to have a low long-term success rate. 6. Eriksson S. Pulmonary emphysema and alpha-l
NASA Technical Reports Server (NTRS)
1990-01-01
A brief but comprehensive review is given of the technical accomplishments of the NASA Lewis Research Center during the past year. Topics covered include instrumentation and controls technology; internal fluid dynamics; aerospace materials, structures, propulsion, and electronics; space flight systems; cryogenic fluids; Space Station Freedom systems engineering, photovoltaic power module, electrical systems, and operations; and engineering and computational support.
Ground Operations Aerospace Language (GOAL)
NASA Technical Reports Server (NTRS)
1973-01-01
GOAL, is a test engineer oriented language designed to be used to standardize procedure terminology and as the test programming language to be used for ground checkout operations in a space vehicle launch environment. The material presented concerning GOAL includes: (1) a historical review, (2) development objectives and requirements, (3) language scope and format, and (4) language capabilities.
Ceramic honeycomb structures and the method thereof
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Cagliostro, Domenick E. (Inventor)
1987-01-01
The subject invention pertains to a method of producing an improved composite-composite honeycomb structure for aircraft or aerospace use. Specifically, the subject invention relates to a method for the production of a lightweight ceramic-ceramic composite honeycomb structure, which method comprises: (1) pyrolyzing a loosely woven fabric/binder having a honeycomb shape and having a high char yield and geometric integrity after pyrolysis at between about 700 and 1,100 C; (2) substantially evenly depositing at least one layer of ceramic material on the pyrolyzed fabric/binder of step (1); (3) recovering the coated ceramic honeycomb structure; (4) removing the pyrolyzed fabric/binder of the structure of step (3) by slow pyrolysis at between 700 and 1000 C in between about a 2 to 5% by volume oxygen atmosphere for between about 0.5 and 5 hr.; and (5) substantially evenly depositing on and within the rigid hollow honeycomb structure at least one additional layer of the same or a different ceramic material by chemical vapor deposition and chemical vapor infiltration. The honeycomb shaped ceramic articles have enhanced physical properties and are useful in aircraft and aerospace uses.
NASA Technical Reports Server (NTRS)
Walsh, Daniel W.
1994-01-01
Aluminum alloys containing lithium are particularly attractive to the aerospace structural designer. Lithium's density is only 0.53 g/cc, thus an addition of one weight percent lithium not only increases yield strength, but decreases the density by almost three percent while increasing the modulus by over six percent. The fact that lithium improves these physical properties simultaneously has led to intense study and development of the alloy system. Heretofore, problems in large scale alloy production have retarded commercial development. During the last fifteen years, advances in production technology have rekindled interest in Al-Li alloys, and aluminum suppliers have developed many candidate aerospace materials. However, if these alloys are to be employed successfully, a more complete understanding of their nonequilibrium metallurgy is required. Peel and Starke have each pointed out that an understanding of the weldability of these alloys is a critical step in their implementation. This study addresses the critical lack of information on the environmental compatibility of welded Al 2195 components. Corrosion data for these systems is incomplete, particularly for welded materials exposed to sea water or sea water condensate.
NASA Technical Reports Server (NTRS)
2001-01-01
Triton atomic Oxygen Resistant polymers TOR(TM), were developed by Chelmsford, Massachusetts-based Triton Systems, Inc., through a Small Business Innovation Research (SBIR) contract from NASA's Langley Research Center. The new family of polymers comes from a Langley-developed polymer technology, which marks a new class of aerospace materials that resist the extreme effects of low Earth orbit (LEO). When applied to spacecraft surfaces, TOR polymers protect against erosion caused by the atomic oxygen and radiation present in space. Other polymers, such as Teflon(R) and Kapton(R), are subject to degradation from atomic oxygen and ultraviolet radiation, but TOR polymers use atomic oxygen to their advantage. A long-lasting protective barrier means major savings in the cost of spacecraft maintenance and the time spent performing repairs. While the obvious application of this material lies with the aerospace industry, an underlying benefit is found in the field of electronics. TOR polymers can be made electrically conductive, and then utilized in the creation of sensors that react to the presence of chemical and biological agents by exhibiting a detectable change in electrical conductivity. These sensors have applications in the defense, medical, and industrial sectors.
High-speed imaging on static tensile test for unidirectional CFRP
NASA Astrophysics Data System (ADS)
Kusano, Hideaki; Aoki, Yuichiro; Hirano, Yoshiyasu; Kondo, Yasushi; Nagao, Yosuke
2008-11-01
The objective of this study is to clarify the fracture mechanism of unidirectional CFRP (Carbon Fiber Reinforced Plastics) under static tensile loading. The advantages of CFRP are higher specific stiffness and strength than the metal material. The use of CFRP is increasing in not only the aerospace and rapid transit railway industries but also the sports, leisure and automotive industries. The tensile fracture mechanism of unidirectional CFRP has not been experimentally made clear because the fracture speed of unidirectional CFRP is quite high. We selected the intermediate modulus and high strength unidirectional CFRP laminate which is a typical material used in the aerospace field. The fracture process under static tensile loading was captured by a conventional high-speed camera and a new type High-Speed Video Camera HPV-1. It was found that the duration of fracture is 200 microseconds or less, then images taken by a conventional camera doesn't have enough temporal-resolution. On the other hand, results obtained by HPV-1 have higher quality where the fracture process can be clearly observed.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2003-01-01
PS300 is a high-temperature solid lubricant coating originally developed to lubricate nickel-based superalloy shafts operating against foil air bearings in Oil-Free turbomachinery applications. PS300 is a plasma-spray-deposited coating developed at the NASA Glenn Research Center. It is available for non-exclusive licensing and has found applications in aerospace and industry. PS300 reduces friction and wear from below room temperature to over 650 C in both oxidizing and reducing environments. Early development centered on coating nickel-based shafts for use in turbomachinery. Potential industrial and aerospace customers, however, expressed interest in using the coating on a wide variety of substrates including steels, stainless steels, and nonferrous alloys like aluminum and titanium. To support this interest, a research program was carried out at Glenn in which nine different substrate candidate materials were evaluated for suitability with the PS300 coating. The materials were first coated with PS300 and then tested for coating strength and adhesion both before and after exposure to high-temperature air.