Science.gov

Sample records for aerospace nickel cadmium

  1. Aerospace Nickel-cadmium Cell Verification

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Strawn, D. Michael; Hall, Stephen W.

    2001-01-01

    During the early years of satellites, NASA successfully flew "NASA-Standard" nickel-cadmium (Ni-Cd) cells manufactured by GE/Gates/SAFF on a variety of spacecraft. In 1992 a NASA Battery Review Board determined that the strategy of a NASA Standard Cell and Battery Specification and the accompanying NASA control of a standard manufacturing control document (MCD) for Ni-Cd cells and batteries was unwarranted. As a result of that determination, standards were abandoned and the use of cells other than the NASA Standard was required. In order to gain insight into the performance and characteristics of the various aerospace Ni-Cd products available, tasks were initiated within the NASA Aerospace Flight Battery Systems Program that involved the procurement and testing of representative aerospace Ni-Cd cell designs. A standard set of test conditions was established in order to provide similar information about the products from various vendors. The objective of this testing was to provide independent verification of representative commercial flight cells available in the marketplace today. This paper will provide a summary of the verification tests run on cells from various manufacturers: Sanyo 35 Ampere-hour (Ali) standard and 35 Ali advanced Ni-Cd cells, SAFr 50 Ah Ni-Cd cells and Eagle-Picher 21 Ali Magnum and 21 Ali Super Ni-CdTM cells from Eagle-Picher were put through a full evaluation. A limited number of 18 and 55 Ali cells from Acme Electric were also tested to provide an initial evaluation of the Acme aerospace cell designs. Additionally, 35 Ali aerospace design Ni-MH cells from Sanyo were evaluated under the standard conditions established for this program. Ile test program is essentially complete. The cell design parameters, the verification test plan and the details of the test result will be discussed.

  2. Cadmium migration in aerospace nickel cadmium cells

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1976-01-01

    The effects of temperature, the nature of separator material, charge and discharge, carbonate contamination, and the mode of storage are studied with respect to the migration of active material from the negative toward the positive plate. A theoretical model is proposed which takes into account the solubility of cadmium in various concentrations of hydroxide and carbonate at different temperatures, the generation of the cadmiate ion, Cd(OH)3(-), during discharge, the migration of the cadmiate ion and particulate Cd(OH)2 due to electrophoretic effects and the movement of electrolyte in and out of the negative plate and, finally, the recrystallization of cadmiate ion in the separator as Cd(OH)2. Application of the theoretical model to observations of cadmium migration in cycled cells is also discussed.

  3. Aerospace nickel-cadmium cell separator qualifications program

    NASA Technical Reports Server (NTRS)

    Francis, R. W.; Haag, R. L.

    1986-01-01

    The present space qualified nylon separator, Pellon 2505 ML, is no longer available for aerospace nickel-cadmium (NiCd) cells. As a result of this anticipated unavailability, a joint Government program between the Air Force Space Division and the Naval Research Laboratory was established. Four cell types were procured with both the old qualified and the new unqualified separators. Acceptance, characterization, and life cycling tests are to be performed at the Naval Weapons Support Center, Crane, Ind. (NWSC/Crane). The scheduling and current status of this program are discussed and the progress of testing and available results are projected.

  4. Guidelines for the Procurement of Aerospace Nickel Cadmium Cells

    NASA Technical Reports Server (NTRS)

    Thierfelder, Helmut

    1997-01-01

    NASA has been using a Modular Power System containing "standard" nickel cadmium (NiCd) batteries, composed of "standard" NiCd cells. For many years the only manufacturer of the NASA "standard" NiCd cells was General Electric Co. (subsequently Gates Aerospace and now SAFT). This standard cell was successfully used in numerous missions. However, uncontrolled technical changes, and changes in industrial restructuring require a new approach. General Electric (now SAFT Aerospace Batteries) had management changes, new manufacturers entered the market (Eagle-Picher Industries, ACME Electric Corporation, Aerospace Division, Sanyo Electric Co.) and battery technology advanced. New NASA procurements for aerospace NiCd cells will have specifications unique to the spacecraft and mission requirements. This document provides the user/customer guidelines for the new approach to procuring of and specifying performance requirements for highly reliable NiCd cells and batteries. It includes details of key parameters and their importance. The appendices contain a checklist, detailed calculations, and backup information.

  5. Separator Qualification for Aerospace Nickel-cadmium Cells

    NASA Technical Reports Server (NTRS)

    Milden, M. J.

    1984-01-01

    The development plans for a new separator for nickel cadmium (NiCd) cells is described. Research includes acceptance testing, operation in a charge/discharge characterization matrix, and life testing in low earth orbit (LEO) and geosynchronous (GEO) orbit under real time and accelerated conditions.

  6. Review of electrochemical impregnation for nickel cadmium cells. [aerospace applications

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1977-01-01

    A method of loading active material within the electrodes of nickel cadmium cells is examined. The basic process of electrochemical impregnation of these electrodes is detailed, citing the principle that when current is applied reactions occur which remove hydrogen ions from solution, making the interior of the plaque less acidic. Electrodes result which are superior in energy density, stability, and life. The technology is reviewed and illustrated with typical performance data. Recommendations are made for additional research and development.

  7. NASA specification for manufacturing and performance requirements of NASA standard aerospace nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    1988-01-01

    On November 25, 1985, the NASA Chief Engineer established a NASA-wide policy to maintain and to require the use of the NASA standard for aerospace nickel-cadmium cells and batteries. The Associate Administrator for Safety, Reliability, Maintainability, and Quality Assurance stated on December 29, 1986, the intent to retain the NASA standard cell usage policy established by the Office of the Chief Engineer. The current NASA policy is also to incorporate technological advances as they are tested and proven for spaceflight applications. This policy will be implemented by modifying the existing standard cells or by developing new NASA standards and their specifications in accordance with the NASA's Aerospace Battery Systems Program Plan. This NASA Specification for Manufacturing and Performance Requirements of NASA Standard Aerospace Nickel-Cadmium Cells is prepared to provide requirements for the NASA standard nickel-cadmium cell. It is an interim specification pending resolution of the separator material availability. This specification has evolved from over 15 years of nickel-cadmium cell experience by NASA. Consequently, considerable experience has been collected and cell performance has been well characterized from many years of ground testing and from in-flight operations in both geosynchronous (GEO) and low earth orbit (LEO) applications. NASA has developed and successfully used two standard flight qualified cell designs.

  8. Investigation of long term storage effects on aerospace nickel-cadmium cell performance

    NASA Technical Reports Server (NTRS)

    Yi, T. Y.

    1986-01-01

    A study on evaluation of the long term storage effects on aerospace nickel-cadmium cells currently being performed at NASA/Goddard Space Flight Center (GSFC) is described. A number of cells of 6 Ah and 12 Ah capacities which were stored in shorted condition for 8 to 9 years at the GSFC were selected for this study. These cells will undergo electrical acceptance testing the the GSFC, and life cycling at the NASA Battery Test Facility at the Naval Weapons Facility at the Naval Weapons Support Center (NWSC) in Crane, Indiana; in addition, some cells from the study will undergo destructive analyses.

  9. Effects of long term storage on aerospace nickel cadmium cell performance

    NASA Astrophysics Data System (ADS)

    Yi, Thomas Y.

    1987-09-01

    Evaluation of the long term effects on aerospace nickel cadmium cells is described. A number of 6Ah and 12Ah capacity cells which were stored in shorted condition for 9 to 11 years at the Goddard Space Flight Center were selected for the study. Of the three tests which were initiated (initial and final destruction analyses of the test cells, electrical characterization tests, and life cycling tests) only the electrical characterization tests are completed; the other tests are scheduled to be completed by February 1987. The preliminary electrial performance data from the life cycling test and chemical composition data from the destructive testing indicate no anomalous behavior.

  10. Investigation of long term storage effects on aerospace nickel-cadmium cell performance

    NASA Astrophysics Data System (ADS)

    Yi, T. Y.

    1986-09-01

    A study on evaluation of the long term storage effects on aerospace nickel-cadmium cells currently being performed at NASA/Goddard Space Flight Center (GSFC) is described. A number of cells of 6 Ah and 12 Ah capacities which were stored in shorted condition for 8 to 9 years at the GSFC were selected for this study. These cells will undergo electrical acceptance testing the the GSFC, and life cycling at the NASA Battery Test Facility at the Naval Weapons Facility at the Naval Weapons Support Center (NWSC) in Crane, Indiana; in addition, some cells from the study will undergo destructive analyses.

  11. Effects of long term storage on aerospace nickel cadmium cell performance

    NASA Technical Reports Server (NTRS)

    Yi, Thomas Y.

    1987-01-01

    Evaluation of the long term effects on aerospace nickel cadmium cells is described. A number of 6Ah and 12Ah capacity cells which were stored in shorted condition for 9 to 11 years at the Goddard Space Flight Center were selected for the study. Of the three tests which were initiated (initial and final destruction analyses of the test cells, electrical characterization tests, and life cycling tests) only the electrical characterization tests are completed; the other tests are scheduled to be completed by February 1987. The preliminary electrial performance data from the life cycling test and chemical composition data from the destructive testing indicate no anomalous behavior.

  12. Sinter of uniform, predictable, blemish-free nickel plaque for large aerospace nickel cadmium cells

    NASA Technical Reports Server (NTRS)

    Seiger, H. N.

    1975-01-01

    A series of nickel slurry compositions were tested. Important slurry parameters were found to be the nature of the binder, a pore former and the method of mixing. A slow roll mixing which is non-turbulent successfully eliminated entrapped air so that bubbles and pockets were avoided in the sinter. A slurry applicator was developed which enabled an equal quantity of slurry to be applied to both sides of the grid. Sintering in a furnace having a graded atmosphere characteristic, ranging from oxidizing to strongly reducing, improved adhesion of porous sinter to grid and resulted in a uniform welding of nickel particles to each other throughout the plaque. Sintering was carried out in a horizontal furnace having three heating zones and 16 heating control circuits. Tests used for plaque evaluation include (1) appearance, (2) grid location and adhesion, (3) mechanical strength, (4) thickness, (5) weight per unit area, (6) void volume per unit area, (7) surface area and (8) electrical resistance. Plaque material was impregnated using Heliotek proprietary processes and 100 AH cells were fabricated.

  13. Electrodeposited Zinc-Nickel as an Alternative to Cadmium Plating for Aerospace Application

    NASA Technical Reports Server (NTRS)

    Mcmillan, V. C.

    1991-01-01

    Corrosion evaluation studies were conducted on 4130 alloy steel samples coated with electrodeposited zinc-nickel and samples coated with electrodeposited cadmium. The zinc nickel was deposited by the selection electrochemical metallizing process. These coated samples were exposed to a 5-percent salt fog environment at 35 plus or minus 2 C for a period ranging from 96 to 240 hours. An evaluation of the effect of dichromate coatings on the performance of each plating was conducted. The protection afforded by platings with a dichromate seal was compared to platings without the seal. During the later stages of testing, deposit adhesion and the potential for hydrogen entrapment were also evaluated.

  14. Nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Rubin, E. J.; Turchan, M. J.

    1974-01-01

    A high energy density nickel cadmium cell of aerospace quality was designed. The approach used was to utilize manufacturing techniques which produce highly uniform and controlled starting materials in addition to improvements in the overall design. Parameters controlling the production of plaque and both positive and negative plate were studied. Quantities of these materials were produced and prototype cells were assembled to test the proposed design.

  15. Analysis of 12 AH aerospace nickel-cadmium cells from the design variable program

    NASA Technical Reports Server (NTRS)

    Vasanth, Kunigahalli L.; Morrow, George

    1987-01-01

    The Design Variable Program of NASA/GSFC provided a systematic approach to evaluate the performance of 12 Ampere-Hour Nickel-Cadmium cells of different designs. Design Variables tested in this program included teflonated negative plates, silver treated negative plates, lightly loaded negative plates, positive plates with no cadmium treatment, plate design of 1968 utilizing old and new processing techniques and electrochemically impregnated positive plates. These cells were life cycled in a Low-Earth Orbit (LEO) regime for 3 to 4 years. Representative cells taken from the Design Variable Program were examined via chemical, electrochemical and surface analyses. The results indicate the following: (1) positive swelling and carbonate content in the electrolyte increase as a function of number of cycles; (2) electrolyte distribution follows a general order NEG greater than POS greater than SEP; (3) control and No PQ groups outperformed the rest of the groups; and (4) the polyproylene group exhibited heavy cadmium migration and poor performance.

  16. Screen test for cadmium and nickel plates as developed and used within the Aerospace Corporation

    NASA Technical Reports Server (NTRS)

    Phan, A. H.; Zimmerman, A. H.

    1994-01-01

    A new procedure described here was recently developed to quantify loading uniformity of nickel and cadmium plates and to screen finished electrodes prior to cell assembly. The technique utilizes the initial solubility rates of the active material in a standard chemical deloading solution at fixed conditions. The method can provide a reproducible indication of plate loading uniformity in situations where high surface loading limits the free flow of deloading solution into the internal porosity of the sinter plate. A preliminary study indicates that 'good' cell performance is associated with higher deloading rates.

  17. Characterization of the physico-chemical properties of polymeric materials for aerospace flight. [nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Rock, M.; Khan, S. Z.

    1980-01-01

    Factors contributing to the final failure of Ni-Cd batteries are listed. A differential thermal analyzer was used to study several positive and negative battery electrodes. The negative plates show a very large peak (endotherm) between 245 C and 250C. The second endotherm occurs at 300C indicating the decomposition of Cd(OH)2. In positive plates, a first weak endotherm occurs at 100C, which indicates loss of H2O from Ni(OH)2(H2O)n molecules. A second large endotherm occurs in the range of 290C to 300C, indicating the decomposition of Ni(OH2) to NiO and H2O. Atomic absorption spectroscopy was used to determine nickel, cobalt, cadmium, and potassium content in battery electrolytes and electrodes. Results are presented in tables.

  18. COMSAT's destructive physical analysis of aerospace nickel-cadmium cells for NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Robbins, Kathleen M. B.; Rao, Gopalakrishna M.; Yi, Thomas Y.

    1993-01-01

    Over the past 5 years, COMSAT has performed numerous destructive physical analyses (DPA's) on NASA-Goddard-supplied nickel-cadmium (Ni/Cd) cells. The samples included activated but uncycled cells, wet stored cells, cycled cells, and anomalous cells. The DPA's provided visual, morphological, and chemical analyses of the cell components. The DPA data for the analyzed cells are presented. For the cells investigated, the leading cause of poor performance, as determined by DPA, has been poor negative electrode utilization, which resulted in negative-electrode-limiting operation.

  19. Characterization of the physico-chemical properties of polymeric materials for aerospace flight. [differential thermal and atomic absorption spectroscopic analysis of nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Rock, M.

    1981-01-01

    Electrodes and electrolytes of nickel cadmium sealed batteries were analyzed. Different thermal analysis of negative and positive battery electrodes was conducted and the temperature ranges of occurrence of endotherms indicating decomposition of cadmium hydroxide and nickel hydroxide are identified. Atomic absorption spectroscopy was used to analyze electrodes and electrolytes for traces of nickel, cadmium, cobalt, and potassium. Calibration curves and data are given for each sample analyzed. Instrumentation and analytical procedures used for each method are described.

  20. Sealed-cell nickel-cadmium battery applications manual

    NASA Technical Reports Server (NTRS)

    Scott, W. R.; Rusta, D. W.

    1979-01-01

    The design, procurement, testing, and application of aerospace quality, hermetically sealed nickel-cadmium cells and batteries are presented. Cell technology, cell and battery development, and spacecraft applications are emphasized. Long term performance is discussed in terms of the effect of initial design, process, and application variables. Design guidelines and practices are given.

  1. Nickel cadmium battery expert system

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The applicability of artificial intelligence methodologies for the automation of energy storage management, in this case, nickel cadmium batteries, is demonstrated. With the Hubble Space Telescope Electrical Power System (HST/EPS) testbed as the application domain, an expert system was developed which incorporates the physical characterization of the EPS, in particular, the nickel cadmium batteries, as well as the human's operational knowledge. The expert system returns not only fault diagnostics but also status and advice along with justifications and explanations in the form of decision support.

  2. Statistically determined nickel cadmium performance relationships

    NASA Technical Reports Server (NTRS)

    Gross, Sidney

    1987-01-01

    A statistical analysis was performed on sealed nickel cadmium cell manufacturing data and cell matching data. The cells subjected to the analysis were 30 Ah sealed Ni/Cd cells, made by General Electric. A total of 213 data parameters was investigated, including such information as plate thickness, amount of electrolyte added, weight of active material, positive and negative capacity, and charge-discharge behavior. Statistical analyses were made to determine possible correlations between test events. The data show many departures from normal distribution. Product consistency from one lot to another is an important attribute for aerospace applications. It is clear from these examples that there are some significant differences between lots. Statistical analyses are seen to be an excellent way to spot those differences. Also, it is now proven beyond doubt that battery testing is one of the leading causes of statistics.

  3. Results of a technical analysis of the Hubble Space Telescope nickel-cadmium and nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1991-01-01

    The Hubble Space Telescope (HST) Program Office requested the expertise of the NASA Aerospace Flight Battery Systems Steering Committee (NAFBSSC) in the conduct of an independent assessment of the HST's battery system to assist in their decision of whether to fly nickel-cadmium or nickel-hydrogen batteries on the telescope. In response, a subcommittee to the NAFBSSC was organized with membership comprised of experts with background in the nickel-cadmium/nickel-hydrogen secondary battery/power systems areas. The work and recommendations of that subcommittee are presented.

  4. Market for nickel-cadmium batteries

    NASA Astrophysics Data System (ADS)

    Putois, F.

    Besides the lead/acid battery market, which has seen a tremendous development linked with the car industry, the alkaline rechargeable battery market has also been expanded for more than twenty years, especially in the field of portable applications with nickel-cadmium batteries. Today, nickel-cadmium batteries have to face newcomers on the market, such as nickel-metal hydride, which is another alkaline couple, and rechargeable lithium batteries; these new battery systems have better performances in some areas. This work illustrates the status of the market for nickel-cadmium batteries and their applications. Also, for two major applications—the cordless tool and the electric vehicles—the competitive situation of nickel-cadmium batteries; facing new systems such as nickel-metal hydride and lithium ion cells are discussed.

  5. Requirements specification for nickel cadmium battery expert system

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The requirements for performance, design, test, and qualification of a computer program identified as NICBES, Nickel Cadmium Battery Expert System, is established. The specific spacecraft power system configuration selected was the Hubble Space Telescope (HST) Electrical Power System (EPS) Testbed. Power for the HST comes from a system of 13 Solar Panel Arrays (SPAs) linked to 6 Nickel Cadmium Batteries which are connected to 3 Busses. An expert system, NICBES, will be developed at Martin Marietta Aerospace to recognize a testbed anomaly, identify the malfunctioning component and recommend a course of action. Besides fault diagnosis, NICBES will be able to evaluate battery status, give advice on battery status and provide decision support for the operator. These requirements are detailed.

  6. Nickel-Cadmium Cell Design Variable Program Data Analysis

    NASA Technical Reports Server (NTRS)

    Morrow, G. W.

    1985-01-01

    A program was undertaken in conjunction with the General Electric Company to evaluate 9 of the more important nickel cadmium aerospace cell designs that are currently being used or that have been used in the past 15 years. Design variables tested in this program included teflonated negative plates, silver treated negative plates, light plate loading level, no positive plate cadmium treatment, plate design of 1968 utilizing both old and new processing techniques, and electrochemically impregnated positive plates. The data acquired from these test packs in a low Earth orbit cycling regime is presented and analyzed here. This data showed conclusively that the cells manufactured with no positive plate cadmium treatment outperformed all other cell designs in all aspects of the program and that the cells with teflonated negative electrodes performed very poorly.

  7. Analysis of nickel-cadmium battery reliability data containing zero failures

    NASA Technical Reports Server (NTRS)

    Denson, William K.; Klein, Glenn C.

    1992-01-01

    An analysis of reliability data on Nickel-Cadmium (NiCd) batteries (for use in spacecraft) is presented. The data were collected by Gates Aerospace and represent a substantial reliability database. The data were taken from the performance of 183 satellites which were in operation from between .1 and 22 years, for a total of 278 million cell-hours of operation.

  8. Capacity fade in nickel cadmium and nickel hydrogen cells

    NASA Technical Reports Server (NTRS)

    Edgar, Tim; Hayden, Jeff; Pickett, David F.; Abrams-Blakemore, Bruce; Liptak, ED

    1993-01-01

    Research and operational experience with capacity fade in nickel cadmium and nickel hydrogen cells are summarized in outline form. The theoretical causes of capacity fade are reviewed and the role of cell storage, positive electrodes, and cobalt additives are addressed. Three examples of observed capacity fade are discussed: INTELSAT 5, INTELSAT 6, and an Explorer platform. Finally, prevention and recovery methods are addressed and the current status of Eagle Picher/Hughes research is discussed.

  9. Program Diagnoses Nickel/Cadmium Batteries

    NASA Technical Reports Server (NTRS)

    Johnson, Yvette B.; Bykat, Alex

    1993-01-01

    Nickel Cadmium Battery Expert System-2 (NICBES2) computer program is prototype expert-system program for diagnosis and management of health of nickel/cadmium batteries. Intended to support evaluation of performance of batteries in Hubble Space Telescope spacecraft and to alert personnel to possible malfunctions. Oversees status of batteries by evaluating data gathered in orbit packets, and when so merits, raises alarm and provides diagnosis of faults as well as advice on actions to be taken to remedy condition giving rise to alarm. Provides history of statuses of batteries pertaining to health of batteries, and graphical display to help operator assimilate information generated. Written in C language.

  10. Evaluation of overcharge protection life in nickel cadmium cells with non-nylon separators

    SciTech Connect

    Scoles, D.L.; Johnson, Z.W.; Hayden, J.W.; Pickett, D.F. Jr.

    1997-12-01

    Hydrogen gassing and the potential for cell rupture in aerospace nickel cadmium cells is directly related to loss of overcharge protection built into the cell during manufacturing. It is well known that cells having nylon separators contribute to this loss via a hydrolysis reaction of the nylon in the potassium hydroxide electrolyte environment in the cell. The hydrolysis reaction produces lower chain organics which are oxidized by the positive electrode and oxygen. Oxidation of the organics diminishes the overcharge protection. With introduction of the Super NiCd and the Magnum nickel cadmium cells the nylon hydrolysis reaction is eliminated, but any reducing agent in the cell such as nickel or an organic additive can contribute to loss of overcharge protection. The present effort describes analyses made to evaluate the extent of overcharge protection loss in cells which do not have nylon hydrolysis and quantifies the diminished amount of overcharge protection loss as a result of eliminating nylon from aerospace cells.

  11. The development of nickel-metal hydride technology for use in aerospace applications

    NASA Astrophysics Data System (ADS)

    Rampel, Guy; Johnson, Herschel; dell, Dan; Wu, Tony; Puglisi, Vince

    1992-02-01

    The nickel metal hydride technology for battery application is relatively immature even though this technology was made widely known by Philips' scientists as long ago as 1970. Recently, because of the international environmental regulatory pressures being placed on cadmium in the workplace and in disposal practices, battery companies have initiated extensive development programs to make this technology a viable commercial operation. These hydrides do not pose a toxilogical threat as does cadmium. Also, they provide a higher energy density and specific energy when compared to the other nickel based battery technologies. For these reasons, the nickel metal hydride electrochemisty is being evaluated as the next power source for varied applications such as laptop computers, cellular telephones, electric vehicles, and satellites. A parallel development effort is under way to look at aerospace applications for nickel metal hydride cells. This effort is focused on life testing of small wound cells of the commercial type to validate design options and development of prismatic design cells for aerospace applications.

  12. The development of nickel-metal hydride technology for use in aerospace applications

    NASA Technical Reports Server (NTRS)

    Rampel, Guy; Johnson, Herschel; Dell, Dan; Wu, Tony; Puglisi, Vince

    1992-01-01

    The nickel metal hydride technology for battery application is relatively immature even though this technology was made widely known by Philips' scientists as long ago as 1970. Recently, because of the international environmental regulatory pressures being placed on cadmium in the workplace and in disposal practices, battery companies have initiated extensive development programs to make this technology a viable commercial operation. These hydrides do not pose a toxilogical threat as does cadmium. Also, they provide a higher energy density and specific energy when compared to the other nickel based battery technologies. For these reasons, the nickel metal hydride electrochemisty is being evaluated as the next power source for varied applications such as laptop computers, cellular telephones, electric vehicles, and satellites. A parallel development effort is under way to look at aerospace applications for nickel metal hydride cells. This effort is focused on life testing of small wound cells of the commercial type to validate design options and development of prismatic design cells for aerospace applications.

  13. Thermodynamics of nickel-cadmium and nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Macdonald, Digby D.; Challingsworth, Mark L.

    1993-01-01

    Thermodynamic parameters for Nickel-Cadmium (NiCad) and Nickel-Hydrogen (NiH2) batteries are calculated for temperatures ranging from 273.15K (0 C) to 373.15K (100 C). For both systems, we list equilibrium and thermoneutral voltages for the cells, and in the case of the NiH2 battery, these data are provide for hydrogen fugacities ranging from 0.01 to 100 (atm) to simulate the full discharged and charged states. The quality of the input thermodynamic data are assessed and the effect of assuming different cell reactions is analyzed.

  14. Screen test for cadmium and nickel plates

    NASA Technical Reports Server (NTRS)

    Phan, Angie H.; Zimmerman, Albert H.

    1994-01-01

    A new procedure is described which was recently developed to quantify loading uniformity of nickel and cadmium plates and to screen finished electrodes prior to cell assembly. The technique utilizes the initial solubility rates of the active material in a standard chemical deloading solution at fixed conditions. The method can provide a reproducible indication of plate loading uniformity in situations where high surface loading limits the free flow of deloading solution into the internal porosity of the sinter plate. A preliminary study indicates that 'good' cell performance is associated with higher deloading rates.

  15. Nickel hydrogen and silver zinc battery cell modeling at the Aerospace Corporation

    SciTech Connect

    Zimmerman, A.H.

    1996-02-01

    A nickel hydrogen battery cell model has been fully developed and implemented at The Aerospace Corporation. Applications of this model to industry needs for the design of better cells, power system design and charge control thermal management, and long-term performance trends will be described. Present efforts will be described that are introducing the silver and zinc electrode reactions into this model architecture, so that the model will be able to predict performance for not only silver zinc cells, but also nickel zinc, silver hydrogen, and silver cadmium cells. The silver zinc cell modeling effort is specifically designed to address the concerns that arise most often in launch vehicle applications: transient response, power-on voltage regulation, hot or cold operation, electrolyte spewing, gas venting, self-discharge, separator oxidation, and oxalate crystal growth. The specific model features that are being employed to address these issues will be described.

  16. Contribution to the knowledge of nickel hydroxide electrodes. 5. Analysis and electrochemical behavior of cadmium nickel hydroxides

    NASA Technical Reports Server (NTRS)

    Bode, H.; Dennstedt, W.

    1981-01-01

    Electrochemical experiments performed at sintered and bulk electrodes show that beta nickel hydroxide contains an electrochemically inactive proportion of cadmium hydroxide of up to 10%. The electrochemically ineffective cadmium hydroxide is homogeneously dissolved in beta nickel hydroxide.

  17. Accelerated test plan for nickel cadmium spacecraft batteries

    NASA Technical Reports Server (NTRS)

    Hennigan, T. J.

    1973-01-01

    An accelerated test matrix is outlined that includes acceptance, baseline and post-cycling tests, chemical and physical analyses, and the data analysis procedures to be used in determining the feasibility of an accelerated test for sealed, nickel cadmium cells.

  18. Reduction by monovalent zinc, cadmium, and nickel cations

    NASA Technical Reports Server (NTRS)

    Meyerstein, D.; Mulac, W. A.

    1969-01-01

    Understanding of chemical properties of monovalent transition metal cations in aqueous solutions was obtained by a study of kinetics of reduction of different inorganic substrates by zinc, cadmium, and nickel.

  19. Adsorption of Cadmium, Nickel and Zinc in a Brazilian Oxisoil

    NASA Astrophysics Data System (ADS)

    Casagrande, José Carlos; Martins, Susian Christian; Soares, Marcio Roberto

    2010-05-01

    The adsorption reactions mechanisms provide the understanding of the pollutant fate metals and often control the bioavailability and transport of heavy metals ions in soil, indicating the preventive environmental control. The cadmium, nickel and zinc behavior in the soils are explained by the reactions of adsorption, influenced by pH and ionic strength. The objective of this work was to study the influence of those factors on cadmium, nickel and zinc adsorption in an oxisol. It was studied the Cd, Ni and Zn adsorption in soil samples of the State of São Paulo (Anionic "Xanthic" Acrudox), collected in surface and in depth and submitted to solutions of Ca(NO3)2 1,0; 0,1 and 0,01 mol L-1. The pH of the samples from 3,0 to 10,0 was varied adding NaOH or HCl 4 mol L-1 not surpassing 2% of the electrolyte volume. The soil samples received 5,0 mg dm-3 of cadmium, nickel and zinc, ratio 1:10 (2,0 g of soil: 20 solution ml) and were shacked for 24 hours. The cadmium, nickel and zinc adsorption increased with pH, reaching it picks at pH 7,0 for cadmium and approximately at pH 6,0 for nickel and zinc. This indicates that zinc and nickel have higher affinity than cadmium with the soil colloids, because it reached the maximum adsorption in a small pH value. In other words, the amount of negative charges necessary to promote the maximum adsorption was small for zinc. The influence of ionic strengths was small for cadmium, nickel and zinc adsorption, being similar from pH 3,0 to 10,0, in surface soil layer and in depth, demonstrating that competition with Ca2+ for the retention colloid sites of the soils didn't interfere in the adsorption. In that way, it is supposed that cadmium, nickel and zinc binding energy is high in a soil rich in Fe and Al oxides. Adsorption of cadmium, nickel and zinc was similar for the ionic strengths, not depending on PZSE. The cadmium, nickel and zinc adsorption increased with pH elevation, with small ionic strength influence. Nickel and zinc have

  20. Second Plateau Voltage in Nickel-cadmium Cells

    NASA Technical Reports Server (NTRS)

    Vasanth, K. L.

    1984-01-01

    Sealed nickel cadmium cells having large number of cycles on them are discharged using Hg/HgO reference electrode. The negative electrode exhibits the second plateau. A SEM of negative plates of such cells show a number of large crystals of cadmium hydroxide. The large crystals on the negative plates disappear after continuous overcharging in flooded cells.

  1. Modified NASA standard nickel-cadmium cell designs

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1992-01-01

    The experimental design, parameters, and testing of a modified NASA standard nickel-cadmium cell are discussed. Modifications regarding positive plate loading levels and nickel attack levels, loading levels for the negative plates, interelectrode spacing, and the positive electrode impregnation process are addressed.

  2. Bipolar Nickel-hydrogen Batteries for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Koehler, C. W.; Vanommering, G.; Puester, N. H.; Puglisi, V. J.

    1984-01-01

    A bipolar nickel-hydrogen battery which effectively addresses all key requirements for a spacecraft power system, including long-term reliability and low mass, is discussed. The design of this battery is discussed in the context of system requirements and nickel-hydrogen battery technology in general. To achieve the ultimate goal of an aerospace application of a bipolar Ni-H2 battery several objectives must be met in the design and development of the system. These objectives include: maximization of reliability and life; high specific energy and energy density; reasonable cost of manufacture, test, and integration; and ease in scaling for growth in power requirements. These basic objectives translate into a number of specific design requirements, which are discussed.

  3. A nickel-cadmium battery reconditioning circuit

    NASA Technical Reports Server (NTRS)

    Lanier, R.

    1977-01-01

    The circuit presented is simple and small enough to be included in a typical battery charge/power control assembly, yet provides the advantage of a complete ground-type battery reconditioning discharge. Test results on the circuit when used to recondition two 24 cell, 20 A-h nickel-cadmium batteries are given. These results show that a battery reconditioned with this circuit returns to greater than 90 percent of its original capacity (greater than nameplate capacity) and follows a typical new battery degradation curve even after over 20,000 simulated orbital cycles for a 4 year period. Applications of the circuit are considered along with recommendations relative to its use. Its application in low voltage (22 to 36 Vdc) power systems and in high voltage (100 to 150 Vdc) power systems is discussed. The implications are that the high voltage systems have a greater need for battery reconditioning than their low voltage counterparts, and that using these circuit techniques, the expected life of a battery in low Earth orbit can be up to 5 years.

  4. Nickel cadmium battery operations and performance

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna; Prettyman-Lukoschek, Jill; Calvin, Richard; Berry, Thomas; Bote, Robert; Toft, Mark

    1994-01-01

    The Earth Radiation Budget Satellite (ERBS), Compton Gamma Ray Observatory (CGRO), Upper Atmosphere Research Satellite (UARS), and Extreme Ultraviolet Explorer (EUVE) spacecraft are operated from NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. On-board power subsystems for each satellite employ NASA Standard 50 Ampere-hour (Ah) nickel-cadmium batteries in a parallel configuration. To date, these batteries have exhibited degradation over periods from several months (anomalous behavior, UARS and CGRO (MPS-1); to little if any, EUVE) to several years (old age, normal behavior, ERBS). Since the onset of degraded performance, each mission's Flight Operations Team (FOT), under the direction of their cognizant GSFC Project Personnel and Space Power Application Branch's Engineers has closely monitored the battery performance and implemented several charge control schemes in an effort to extend battery life. Various software and hardware solutions have been developed to minimize battery overcharge. Each of the four sections of this paper covers a brief overview of each mission's operational battery management and its associated spacecraft battery performance. Also included are new operational procedures developed on-orbit that may be of special interest to future mission definition and development.

  5. Electrolyte management considerations in modern nickel hydrogen and nickel cadmium cell and battery designs

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.; Zimmerman, A. H.

    1995-01-01

    In the early 1980's the NASA Lewis group addressed the topic of designing nickel hydrogen cells for LEO applications. As published in 1984, the design addressed the topics of gas management, liquid management, plate expansion, and the recombination of oxygen during overcharge. This design effort followed principles set forth in an earlier Lewis paper that addressed the topic of pore size engineering. At about that same time, the beneficial effect on cycle life of lower electrolyte concentrations was verified by Hughes Aircraft as part of a Lewis funded study. A succession of life cycle tests of these concepts have been carried out that essentially verified all of this earlier work. During these past two decades, some of the mysteries involved in the active material of the nickel electrode have been resolved by careful research efforts carried out at several laboratories. At The Aerospace Corporation, Dr. Zimmerman has been developing a sophisticated model of an operating nickel hydrogen cell which will be used to model certain mechanisms that have contributed to premature failures in nickel hydrogen and nickel cadmium cells. During the course of trying to understand and model abnormal nickel hydrogen cell behaviors, we have noted that not enough attention has been paid to the potassium ion content in these cells, and more recently batteries. Several of these phenomenon have been well known in the area of alkaline fuel cells, but only recently have they been examined as they might impact alkaline cell designs. This paper will review three general areas where the potassium ion content can impact the performance and life of nickel hydrogen and nickel cadmium devices, Once these phenomenon are understood conceptually, the impact of potassium content on a potential cell design can be evaluated with the aid of an accurate model of an operating cell or battery. All three of these areas are directly related to the volume tolerance and pore size engineering aspects of the

  6. Study of process variables associated with manufacturing hermetically-sealed nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Miller, L.; Doan, D. J.; Carr, E. S.

    1971-01-01

    A program to determine and study the critical process variables associated with the manufacture of aerospace, hermetically-sealed, nickel-cadmium cells is described. The determination and study of the process variables associated with the positive and negative plaque impregnation/polarization process are emphasized. The experimental data resulting from the implementation of fractional factorial design experiments are analyzed by means of a linear multiple regression analysis technique. This analysis permits the selection of preferred levels for certain process variables to achieve desirable impregnated plaque characteristics.

  7. Magnum(R) NiCd advanced nickel-cadmium battery cells

    NASA Technical Reports Server (NTRS)

    Scoles, Darren

    1995-01-01

    The Power Systems Department of Eagle-Picher Industries, Inc., located in Colorado Springs, Colorado, had developed a long-life advanced Nickel-Cadmium battery cell for aerospace applications. This battery cell, known as the MAGNUM NiCd cell, offers significant life expectancy increase over traditional NiCd battery cells. In addition, it offers significant cost reduction from the Super NiCd battery cell (developed by Hughes Aircraft Company and manufactured by the Power Systems Department of Eagle-Picher Industries, Inc.).

  8. Non-gassing nickel-cadmium battery electrodes and cells

    NASA Technical Reports Server (NTRS)

    Luksha, E.; Gordy, D. J.

    1972-01-01

    The concept of a negative limited nongassing nickel-cadmium battery was demonstrated by constructing and testing practical size experimental cells of approximately 25 Ah capacity. These batteries operated in a gas-free manner and had measured energy densities of 10-11 Wh/lb. Thirty cells were constructed for extensive testing. Some small cells were tested for over 200 cycles at 100% depth. For example, a small cell with an electrodeposited cadmium active mass on a silver screen still had 55% of its theoretical capacity (initial efficiency was 85%). There was no evidence of deterioration of gassing properties with cycling of the nickel electrodes. The charge temperature was observed to be the most critical variable governing nickel electrode gassing. This variable was shown to be age dependent. Four types of cadmium electrodes were tested: an electrodeposited cadmium active mass on a cadmium or silver substrate, a porous sintered silver substrate based electrode, and a Teflon bonded pressed cadmium electrode. The electrodeposited cadmium mass on a silver screen was found to be the best all-around electrode from a performance point of view and from the point of view of manufacturing them in a size required for a 25 Ah size battery.

  9. Advanced nickel-cadmium batteries for geosynchronous spacecraft

    NASA Technical Reports Server (NTRS)

    Pickett, David F.; Lim, Hong S.; Krause, Stanley J.; Verzwyvelt, Scott A.

    1987-01-01

    A nickel cadmium battery was developed that can be operated at 80 percent depth of discharge in excess of 10 years in a geosynchronous orbit application, and has about a 30 percent weight savings per spacecraft over present nickel cadmium batteries when used with a 1000 watts eclipse load. The approach used in the development was to replace nylon separators with inert polymer impregnated zirconia, use electrochemically deposited plates in place of conventional chemically precipitated ones, and use an additive to extend negative plate lifetime. The design has undergone extensive testing using both engineering and protoflight cell configurations.

  10. Didymium compound improves nickel-cadmium cell

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Nickel electrodes impregnated with an additive solution of didymium hydrate and nitric acid mixed with nickel nitrate increases ampere-hour capacity of cells and does not affect the voltage characteristics.

  11. Overview of nickel metal hydride battery technology for aerospace applications. Technical report

    SciTech Connect

    Wasz, M.L.

    1996-08-22

    For thirty years, the scientific community has investigated using intermetallic metal hydrides as hydrogen reservoirs and electrodes for secondary batteries. They are now replacing nickel-cadmium batteries in small electronics and may become attractive for aerospace applications. Metal hydride batteries do not require high-pressure containers, and prismatic cell designs are possible. With alloying, a wide range of operational temperatures can be achieved; however, large batteries require thermal control to dissipate and supply heat during high-rate charging and discharging. Recent investigations have concentrated on optimizing electrode capacity and cycle life by manipulating alloy compositions, microstructures, particle sizes, crystallinity, and surface chemistry. Despite intensive efforts, the discharge capacity of the metal hydrides has not improved beyond 250-400 mAh/g, and inherent deterioration processes apparently related to the formation of the hydride phase make metal hydrides unreliable choices for satellite applications demanding more than 500-2000 cycles. Additionally, the long-term effects of exposure of these materials to the potassium-hydroxide electrolyte during low-cycle, long-life missions is not known. This review surveys the status of research and commercial development of metal-hydride cells and evaluates the potential advantages and applications of metal-hydride batteries for aerospace use.

  12. Modelling a nickel cadmium battery as a homogeneous device

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul J.; Fan, Deyuan; White, Ralph E.

    1990-01-01

    A computer model of the nickel-cadmium (Ni-Cd) battery cell has been developed. This one-dimensional macrohomogeneous model predicts performance for Ni-Cd battery cells based on electrochemical phenomena. Reaction rates, concentrations, current densities, porosities, and potentials are predicted over a range of conditions. A description of the model, some initial results, and plans for continued development are presented.

  13. Oxygen recombination in the sealed nickel-cadmium cell

    NASA Technical Reports Server (NTRS)

    Zimmerman, Al H.; Barrera, Tom P.

    1991-01-01

    The purpose of this study was to determine what parameters are most critical for controlling overcharge pressure in a sealed nickel cadmium cell. Topics covered in viewgraph format are: parameters examined; oxygen evolution and recombination; experimental test description; and effect of parameters on recombination rate.

  14. Properties of nickel-cadmium separators. [ion exchange membrances

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1977-01-01

    The thickness, moisture content, exchange capacity, tensile strength, diffusion characteristics, stability, and electrical properties are discussed for the 2291 radiation-grafted separator used in military vented nickel cadmium aircraft batteries. A regression analysis of separator resistance as a function of temperature and KOH concentration is included.

  15. Nickel-cadmium cell life test

    NASA Technical Reports Server (NTRS)

    Wheeler, J. R.; Coates, D. K.

    1985-01-01

    Over 6,9000 Low Earth Orbit cycles were accumulated at 30% Depth of Discharge on twelve INTELSAT-design nickel-hydrogen cells. Physical equipment and cells are described. Performance characteristics are seen to be uniform. Further testing is planned to seek a failure mode, and also to investigate the effects of a new additive for nickel-hydrogen cells. Initial results indicate improved performance at higher temperatures and diminished swelling of positive nickel plates.

  16. High energy density micro-fiber based nickel electrode for aerospace batteries

    NASA Technical Reports Server (NTRS)

    Francisco, Jennifer; Chiappetti, Dennis; Coates, Dwaine

    1996-01-01

    The nickel electrode is the specific energy limiting component in battery systems such as nickel-hydrogen, nickel-metal hydride and nickel-zinc. Lightweight, high energy density nickel electrodes have been developed which deliver in excess of 180 mAh/g at the one-hour discharge rate. These electrodes are based on a highly porous, nickel micro-fiber (less than 10 micron diameter) substrate, electrochemically impregnated with nickel-hydroxide active material. Electrodes are being tested both as a flooded half-cell and in full nickel-hydrogen and nickel-metal hydride cells. The electrode technology developed is applicable to commercial nickel-based batteries for applications such as electric vehicles, cellular telephones and laptop computers and for low-cost, high energy density military and aerospace applications.

  17. High energy density micro-fiber based nickel electrode for aerospace batteries

    SciTech Connect

    Francisco, J.; Chiappetti, D.; Coates, D.

    1996-11-01

    The nickel electrode is the specific energy limiting component in battery systems such as nickel-hydrogen, nickel-metal hydride and nickel-zinc. Lightweight, high energy density nickel electrodes have been developed which deliver in excess of 180 mAh/g at the one-hour discharge rate. These electrodes are based on a highly porous, nickel micro-fiber (< 10 micron diameter) substrate, electrochemically impregnated with nickel-hydroxide active material. Electrodes are being tested both as a flooded half-cell and in full nickel-hydrogen and nickel-metal hydride cells. The electrode technology developed is applicable to commercial nickel-based batteries for applications such as electric vehicles, cellular telephones and laptop computers and for low-cost, high energy density military and aerospace applications.

  18. High energy density micro-fiber based nickel electrode for aerospace batteries

    SciTech Connect

    Francisco, J.; Chiappetti, D.; Coates, D.

    1996-02-01

    The nickel electrode is the specific energy limiting component in battery systems such as nickel-hydrogen, nickel-metal hydride and nickel-zinc. Lightweight, high energy density nickel electrodes have been developed which deliver in excess of 180 mAh/g at the one-hour discharge rate. These electrodes are based on a highly porous, nickel micro-fiber (less than 10 micron diameter) substrate, electrochemically impregnated with nickel-hydroxide active material. Electrodes are being tested both as a flooded half-cell and in full nickel-hydrogen and nickel-metal hydride cells. The electrode technology developed is applicable to commercial nickel-based batteries for applications such as electric vehicles, cellular telephones and laptop computers and for low-cost, high energy density military and aerospace applications.

  19. First principles nickel-cadmium and nickel hydrogen spacecraft battery models

    NASA Technical Reports Server (NTRS)

    Timmerman, P.; Ratnakumar, B. V.; Distefano, S.

    1996-01-01

    The principles of Nickel-Cadmium and Nickel-Hydrogen spacecraft battery models are discussed. The Ni-Cd battery model includes two phase positive electrode and its predictions are very close to actual data. But the Ni-H2 battery model predictions (without the two phase positive electrode) are unacceptable even though the model is operational. Both models run on UNIX and Macintosh computers.

  20. Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium.

    PubMed

    Nongmaithem, Nabakishor; Roy, Ayon; Bhattacharya, Prateek Madhab

    2016-01-01

    Fourteen Trichoderma isolates were evaluated for their tolerance to two heavy metals, nickel and cadmium. Three isolates, MT-4, UBT-18, and IBT-I, showed high levels of nickel tolerance, whereas MT-4, UBT-18, and IBT-II showed better tolerance of cadmium than the other isolates. Under nickel stress, biomass production increased up to a Ni concentration of 60ppm in all strains but then decreased as the concentrations of nickel were further increased. Among the nickel-tolerant isolates, UBT-18 produced significantly higher biomass upon exposure to nickel (up to 150ppm); however, the minimum concentration of nickel required to inhibit 50% of growth (MIC50) was highest in IBT-I. Among the cadmium-tolerant isolates, IBT-II showed both maximum biomass production and a maximum MIC50 value in cadmium stress. As the biomass of the Trichoderma isolates increased, a higher percentage of nickel removal was observed up to a concentration of 40ppm, followed by an increase in residual nickel and a decrease in biomass production at higher nickel concentrations in the medium. The increase in cadmium concentrations resulted in a decrease in biomass production and positively correlated with an increase in residual cadmium in the culture broth. Nickel and cadmium stress also influenced the sensitivity of the Trichoderma isolates to soil fungistasis. Isolates IBT-I and UBT-18 were most tolerant to fungistasis under nickel and cadmium stress, respectively. PMID:26991295

  1. Lead, Cadmium and Nickel Contents of Some Medicinal Agents.

    PubMed

    Nessa, Fazilatun; Khan, S A; Abu Shawish, K Y I

    2016-01-01

    Thirty nine brands of pharmaceutical dosage forms (28 tablets, 4 syrups, 6 suspensions and one chewing gum) that are available in United Arab Emirates pharmaceutical markets were investigated for the presence of three heavy metals; lead, cadmium and nickel. Amongst the samples, 13 products were manufactured locally in United Arab Emirates and 26 products were imported from around the world. The samples were prepared by acid digestion procedure and the resultant solutions were analyzed for heavy metals by using a validated graphite furnace atomic absorption spectrometric method. Calibration curves were achieved using different concentration of lead, nickel and cadmium ranged from 0.001 to 0.05 μg/ml. The mean recoveries of metals from the samples were 86.4 to 97%. The %relative standard deviation for the intraassay and interday precision for the metals were <5%. Amongst the 39 samples of pharmaceutical dosage form all exhibited a positive response for lead, cadmium and nickel except three products whose Ni levels were below quantification level. The products contained variable amounts of heavy metals as of 0.0017 to 11.88 μg lead; 0.0011 to 0.5559 μg cadmium and 0.0011 to 2.6428 μg nickel, respectively. Based on maximum recommended daily dose (g) of these products, maximum daily ingested mass of lead was 0.0034 to 11.88 μg/d, 0.0013 to 0.56 μg/d for cadmium and 0.0011 to 2.64 μg/d for nickel, respectively. The results were compared with those of oral permitted daily exposure levels of United State Pharmacopeial National Formulary 2013. All the products were safe to consume and contained lower level of lead, cadmium and nickel than Oral Permitted Daily Exposure levels, except three products which showed higher level of lead than oral permitted daily exposure levels. Hence the raw materials used in manufacturing of these medicinal agents might be responsible for the presence of higher level of lead. PMID:27168689

  2. Lead, Cadmium and Nickel Contents of Some Medicinal Agents

    PubMed Central

    Nessa, Fazilatun; Khan, S. A.; Abu Shawish, K.Y.I.

    2016-01-01

    Thirty nine brands of pharmaceutical dosage forms (28 tablets, 4 syrups, 6 suspensions and one chewing gum) that are available in United Arab Emirates pharmaceutical markets were investigated for the presence of three heavy metals; lead, cadmium and nickel. Amongst the samples, 13 products were manufactured locally in United Arab Emirates and 26 products were imported from around the world. The samples were prepared by acid digestion procedure and the resultant solutions were analyzed for heavy metals by using a validated graphite furnace atomic absorption spectrometric method. Calibration curves were achieved using different concentration of lead, nickel and cadmium ranged from 0.001 to 0.05 μg/ml. The mean recoveries of metals from the samples were 86.4 to 97%. The %relative standard deviation for the intraassay and interday precision for the metals were <5%. Amongst the 39 samples of pharmaceutical dosage form all exhibited a positive response for lead, cadmium and nickel except three products whose Ni levels were below quantification level. The products contained variable amounts of heavy metals as of 0.0017 to 11.88 μg lead; 0.0011 to 0.5559 μg cadmium and 0.0011 to 2.6428 μg nickel, respectively. Based on maximum recommended daily dose (g) of these products, maximum daily ingested mass of lead was 0.0034 to 11.88 μg/d, 0.0013 to 0.56 μg/d for cadmium and 0.0011 to 2.64 μg/d for nickel, respectively. The results were compared with those of oral permitted daily exposure levels of United State Pharmacopeial National Formulary 2013. All the products were safe to consume and contained lower level of lead, cadmium and nickel than Oral Permitted Daily Exposure levels, except three products which showed higher level of lead than oral permitted daily exposure levels. Hence the raw materials used in manufacturing of these medicinal agents might be responsible for the presence of higher level of lead. PMID:27168689

  3. Lightweight porous plastic plaque. [nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Reid, M.

    1978-01-01

    The porosity and platability of various materials were investigated to determine a suitable substrate for nickel-plated electrodes. Immersion, ultrasonics, and flow-through plating techniques were tried using nonproprietary formulations, and proprietary phosphide and boride baths. Modifications to the selected material include variations in formulation and treatment, carbon loading to increase conductivity, and the incorporation of a grid. Problems to be solved relate to determining conductivities and porosities as a function of amount of nickel plated on the plastics; loading; charge and discharge curves of electrodes at different current densities; cell performance; and long-term degradation of electrodes.

  4. A mathematical model of a sealed nickel-cadmium battery

    NASA Technical Reports Server (NTRS)

    Fan, Deyuan; White, Ralph E.

    1991-01-01

    A mathematical model for the charge and discharge of a sealed nickel-cadmium (Ni-Cd) battery is presented. The model is used to study the effect of transport properties of the electrolyte and kinetic parameters of the electrode reactions on the cell performance during the charge and discharge period. The model can also be used to demonstrate the changes of cell performance during cycling. Some comparisons between model predictions and experimental results indicate that the model predictions appear to fit the experimental data well. Sensitivity analyses illustrate that the sealed nickel-cadmium battery operates under activation control. It is also shown theoretically that oxygen generated on the positive electrode during charge is reduced electrochemically on the negative electrode.

  5. Electrolyte Management Considerations in Modern Nickel Hydrogen and Nickel Cadmium Cell and Battery Designs

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Zimmerman, Albert H.

    1996-01-01

    This paper reviews three general areas where the potassium ion content can impact the performance and life of nickel hydrogen and nickel cadmium cells. Sample calculations of the concentration or volume changes that can take place within operating cells are presented. With the aid of an accurate model of an operating cell or battery, the impact of changes of potassium ion content within a potential cell design can be estimated. All three of these areas are directly related to the volume tolerance and pore size engineering aspects of the components used in the cell or battery design.

  6. ACID-VOLATILE SULFIDE AS A FACTOR MEDIATING CADMIUM AND NICKEL BIOAVAILABILITY IN CONTAMINATED SEDIMENTS

    EPA Science Inventory

    We investigated the influence of sulfide, measured as acid-volatile sulfide (AVS), on the bioavailability of cadmium and nickel in sediments. eventeen samples from an estuarine system heavily contaminated with cadmium and nickel were analyzed for AVS and simultaneously extracted ...

  7. Program maintenance manual for nickel cadmium battery expert system, version 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Nickel-Cadmium Battery Expert System (NICBES) is an expert system for fault diagnosis and advice of the nickel-cadmium batteries found in the Hubble Space Telescope (HST). The system application and security, equipment environment, and the program maintenance procedures are examined.

  8. High performance nickel-cadmium cells for electric vehicles

    NASA Astrophysics Data System (ADS)

    Cornu, Jean-Pierre

    A new concept of a cadmium electrode associated with a lighter nickel structure, a multi-cell module technology, allows the proposal of a very promisig alternative power source for electric vehicle (EV) batteries, the usable specific energy being 31% of the theoretical value. Every characteristic of this Ni-Cd module (i.e., specific energy and power, energy and power density, energy efficiency, life and reliability) gives the best performing EV battery, to date. Thus, with the efficient support of two major French car manufacturers and the French government, SAFT will launch, during Spring '95, the first pilot line of EV Ni-Cd module manufacturing.

  9. NASA 50 amp hour nickel cadmium battery waste heat determination

    NASA Technical Reports Server (NTRS)

    Mueller, V. C.

    1980-01-01

    A process for determining the waste heat generated in a 50-ampere-hour, nickel cadmium battery as a function of the discharge rate is described and results are discussed. The technique involved is essentially calibration of the battery as a heat transfer rate calorimeter. The tests are run at three different levels of battery activity, one at 40-watts of waste heat generated, one at 60, and one at 100. Battery inefficiency ranges from 14 to 18 percent at discharge rates of 284 to 588 watts, respectively and top-of-cell temperatures of 20 C.

  10. Modelling a nickel-cadmium battery as a heterogeneous device

    NASA Technical Reports Server (NTRS)

    Glueck, Peter R.; Timmerman, Paul J.

    1990-01-01

    A common failure mode for nickel-cadmium batteries involves a nonuniform degradation of the performance of individual cells. This behavior is manifested as a divergence in voltage during cyclic operation. An empirically based performance model is presented which simulates a battery composed of heterogeneous cells. Battery performance is studied as a function of the distribution of cell performance characteristics. The technique has successfully predicted cell voltage divergence behavior observed during cycle life testing. It is noted that this work enhances understanding of life-test results and may improve life-test design and data analysis.

  11. Nondestructive evaluation techniques for nickel-cadmium aerospace battery cells

    NASA Technical Reports Server (NTRS)

    Haak, R.; Tench, D.

    1982-01-01

    The ac impedance characteristics of Ni-Cd cells as an in-situ, nondestructive means of determining cell lifetime, particularly with respect to the probability of premature failure were evaluated. Emphasis was on evaluating Ni-Cd cell impedance over a wide frequency range (10,000 to 0.0004 Hz) as the cells were subjected to charge/discharge cycle testing. The results indicate that cell degradation is reflected in the low frequency (Warburg) impedance characteristics associated with diffusion processes. The Warburg slope (W) was found to steadily increase as a function of cell aging for completely discharged cells. In addition, based on data for two cells, a high or rapidly increasing value for W signals imminent cell failure by one mechanism. Degradation by another mechanism is apparently reflected in a fall-off (roll-over) of W at lower frequencies. As a secondary result, the frequency dependence of the absolute cell impedance at low frequencies (5 - 500 mHz) was found to be a good indication of the cell state-of-charge.

  12. Analysis for nickel (3 and 4) in positive plates from nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Lewis, Harlan L.

    1994-01-01

    The NASA-Goddard procedure for destructive physical analysis (DPA) of nickel-cadmium cells contains a method for analysis of residual charged nickel as NiOOH in the positive plates at complete cell discharge, also known as nickel precharge. In the method, the Ni(III) is treated with an excess of an Fe(II) reducing agent and then back titrated with permanganate. The Ni(III) content is the difference between Fe(II) equivalents and permanganate equivalents. Problems have arisen in analysis at NAVSURFWARCENDIV, Crane because for many types of cells, particularly AA-size and some 'space-qualified' cells, zero or negative Ni(III) contents are recorded for which the manufacturer claims 3-5 percent precharge. Our approach to this problem was to reexamine the procedure for the source of error, and correct it or develop an alternative method.

  13. Qualification Testing of General Electric 50 Ah Nickel-Cadmium Cells with New Separator and New Positive Plate Processing

    NASA Technical Reports Server (NTRS)

    Morrow, G. W.

    1986-01-01

    Forty-two 50 Ah aerospace nickel-cadmium cells were delivered to Goddard Space Flight Center (GSFC) by General Electric (GE) in February, 1985, for the purpose of evaluating and qualifying a new nylon separator material Pellon 2536, and the new GE Positive Plate Nickel Attack Control Passivation process. Testing began in May, 1985, at the Naval Weapons Support Center (NWSC) in Crane, Indiana with standard initial evaluation tests. Life cycling in both Low Earth Orbit (LEO) and Geosynchronous Orbit (GEO) began in July, 1985, with approximately 1200 LEO cycles complete at this writting. Early test results show that cells with positive plate passivation exhibit higher than normal charge voltage characteristics. Other aspects of performance were nominal.

  14. The 1999 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, J. C. (Compiler)

    2000-01-01

    This document contains the proceedings of the 32nd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 16-18, 1999. The workshop was attended by scientists and engineers from various agencies of the US Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, nickel-cadmium, lithium-ion, and silver-zinc technologies.

  15. The 2001 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeff C. (Compiler)

    2002-01-01

    This document contains the proceedings of the 34th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center, November 27-29, 2001. The workshop was attended by scientists and engineers from various agencies of the US Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind. The subjects covered included nickel-hydrogen, nickel-cadmium, lithium-ion, and silver-zinc technologies.

  16. Pulmonary response to cadmium and nickel coated fly ash

    SciTech Connect

    Bajpai, R.; Waseem, M.; Kaw, J.L.

    1994-12-31

    Pulmonary reaction to fly ash coated with cadmium (Cd) or nickel (Ni) and to native fly ash was studied in rats after intratracheal inoculation of dust suspensions. The histopathological alterations and changes in biochemical and cellular constituents of the bronchoalveolar lavage were correlated with the metal content in lungs and kidneys. More Ni was adsorbed than Cd on fly ash particulates. Metal-coated fly ash was more toxic than uncoated fly ash. Cd-coated fly ash produced significantly more histopathological and biochemical changes than Ni-coated fly ash. A high concentration of Cd was detected in the kidneys of rats exposed to Cd-coated fly ash. 32 refs., 7 figs., 2 tabs.

  17. Hughes advanced nickel-cadmium batteries: An update

    NASA Technical Reports Server (NTRS)

    Bogner, R. Sam

    1991-01-01

    After delivering a significant data base on boilerplate and prototype advanced nickel cadmium (Ni/Cd) battery cells, Hughes decided to start using the Advanced Ni/Cd batteries on several of their flight programs. The advanced cell can been operated at 80 percent depth of discharge (DOD) for more than 10 years, and possibly 15 years, in geosynchronous earth orbit (GEO) applications. This cell offers an important weight saving over the standard Ni/Cd cell that is usually only operated at 50 to 60 percent DOD in GEO applications. The negative and positive electrodes are manufactured using electrochemical deposition methods which reduce the sinter corrosion problems encountered by the chemical deposition process used in the standard cells. The degradable nylon separators used in standard cells was replaced by polymer impregnated Zirconia separators.

  18. A flooded-starved design for nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1986-01-01

    A somewhat analogous situation among groupings of alkaline fuel cells is described where the stochastic aspects were much more accurately documented and then it was illustrated how this problem was eliminated using straight forward principles of pore size engineering. This is followed by a suggested method of adapting these same design principles to nickel-cadmium cells. It must be kept in mind that when cells are cycled to typically twenty percent depth of discharge that eighty percent of the weight of the cell is simply dead weight. Some of this dead weight might be put to better use by trading it for a scheme that would increase the time during which the cell would be working more closely to its optimum set of operating parameters.

  19. Nickel-cadmium Battery Cell Reversal from Resistive Network Effects

    NASA Technical Reports Server (NTRS)

    Zimmerman, A. H.

    1985-01-01

    During the individual cell short-down procedures often used for storing or reconditioning nickel-cadmium (Ni-Cd) batteries, it is possible for significant reversal of the lowest capacity cells to occur. The reversal is caused by the finite resistance of the common current-carrying leads in the resistive network that is generally used during short-down. A model is developed to evaluate the extent of such a reversal in any specific battery, and the model is verified by means of data from the short-down of a f-cell, 3.5-Ah battery. Computer simulations of short-down on a variety of battery configurations indicate the desirability of controlling capacity imbalances arising from cell configuration and battery management, limiting variability in the short-down resistors, minimizing lead resistances, and optimizing lead configurations.

  20. The 20 watt-hour per kilogram nickel cadmium energy storage for Intelsat V

    NASA Technical Reports Server (NTRS)

    Armantrout, J.

    1980-01-01

    The life durability of a nickel cadmium energy storage battery for the INTELSAT 5 Satellite is discussed. Configuration performance characteristics of the battery are given as well as a summary of some of the flight battery tests.

  1. Parallel 50 ampere hour nickel cadmium battery performance in the Modular Power Subsystems (MPS)

    NASA Technical Reports Server (NTRS)

    Webb, D. A.

    1980-01-01

    The thermal performance of 50-ampere-hour, nickel cadmium batteries for use in a modular spacecraft is examined in near-Earth orbit simulation. Battery voltage and temperature profiles for temperature extreme cycles are given and discussed.

  2. The NASA Standard 20 Ampere Hour Nickel-Cadmium Battery Manual

    NASA Technical Reports Server (NTRS)

    Webb, D. A.

    1979-01-01

    The NASA standard 20 ampere hour spacecraft nickel-cadmium battery in described. Mechanical electrical and thermal data are supplied. Both qualification and acceptance tests are described. Information on handling and storage is given.

  3. The 1997 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1998-01-01

    This document contains the proceedings of the 30th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 18-20, 1997. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-cadmium, nickel-hydrogen, nickel-metal hydride, lithium, lithium-ion, and silver-zinc technologies, as well as various aspects of nickel electrode design.

  4. The cadmium electrode: Review of the status of research

    NASA Technical Reports Server (NTRS)

    Gross, S.; Glockling, R. J.

    1976-01-01

    Investigations characterizing the negative cadmium electrode used in a nickel cadmium battery cell are summarized with citations to references where more detailed information is available. Emphasis is placed on data pertinent to aerospace applications. An evaluation of some of the published results of cadmium electrode research is included.

  5. Performance of Nickel-Cadmium Batteries on the GOES I-K Series of Weather Satellites

    NASA Technical Reports Server (NTRS)

    Singhal, Sat P.; Rao, Gopalakrishna M.; Alsbach, Walter G.

    1997-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Geostationary Operational Environmental Satellite (GOES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the GOES series consists of 5 spacecraft (originally named GOES I-M), three of which are in orbit and two more in development. Each of five spacecraft carry two Nickel-Cadmium batteries, with batteries designed and manufactured by Space Systems Loral (SS/L) and cells manufactured by Gates Aerospace Batteries (sold to SAFT in 1993). The battery, which consists of 28 cells with a 12 Ah capacity, provides the spacecraft power needs during the ascent phase and during the semi-annual eclipse seasons lasting for approximately 45 days each. The maximum duration eclipses are 72 minutes long which result in a 60 percent depth of discharge (DOD) of the batteries. This paper provides a description of the batteries, reconditioning setup, DOD profile during a typical eclipse season, and flight performance from the 3 launched spacecraft (now GOES 8, 9, and 10) in orbit.

  6. Performance of Nickel-Cadmium Batteries on the GOES 1-K Series of Weather Satellites

    NASA Technical Reports Server (NTRS)

    Singhal, Sat P.; Alsbach, Walter G.; Rao, Gopalakrishna M.

    1998-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Geostationary Operational Environmental Satellite (GOES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the GOES series consists of five spacecraft (originally named GOES 1-M), three of which are in orbit and and two more in development. Each of the five spacecraft carries two Nickel-Cadmium battery, with batteries designed by Space Systems Loral (SS/L) and cells manufactured by Gates Aerospace Batteries (sold to SAFT in 1993). The battery, which consists of 28 cells with a 12 Ah capacity, provides the spacecraft power needs during the ascent phase and during the semi-annual eclipse seasons lasting for approximately 45 days each. The maximum duration eclipses are 72 minutes long which result in a 60 percent depth of discharge (DOD) of the batteries. This paper provides a description of the batteries, reconditioning setup, DOD profile during a typical eclipse season, and flight performance from the three launched spacecraft (now GOES 8, 9, and 10) in orbit.

  7. Electrolyte concentration changes during operation of the nickel cadmium cell

    NASA Technical Reports Server (NTRS)

    Halpert, G.

    1975-01-01

    The concentration and distribution of aqueous potassium hydroxide (KOH) electrolyte in a sealed nickel cadmium cell is considered. The reactions at both electrodes during charge and discharge involve the production or utilization of hydroxyl ion (OH) or water (H2O) which directly affects concentration. Changes in electrolyte concentration relative to the individual electrode reactions is discussed. Quantitative values are provided for the changes in concentration for 6, 12, and 20 ah cells with accepted quantities of precharge and accepted initial quantity of 31% aqueous KOH. Consideration is given to a more correct equation which includes net changes in hydroxyl concentration in addition to water. Also, expected concentrations of electrolyte in cells in the fully charged, 75% charged, 50% charged, 25% charged and discharged condition are calculated. The expected concentration changes for cells in the accelerated tests are also tabulated and compared with measured values. All calculations are made on the assumption that there are no side reactions. Various properties which depend on KOH concentration are listed. The variables include O2, H2, and Cd(OH)2 solubilities in addition to viscosity and conductivity.

  8. Effect of nickel and cadmium chloride on autonomic and behavioral thermoregulation in mice

    SciTech Connect

    Gordon, C.J.; Stead, A.G.

    1986-01-01

    Male BALB/c mice were injected intraperitoneally (i.p.) with nickel chloride (0, 5, 10, and 15 mg/kg) or cadmium chloride (0, 2, 4, and 6 mg/kg) while preferred ambient temperature (Ta) and activity were measured. Both metals caused drastic reductions in preferred Ta and activity within 30-min postinjection. Preferred Ta and activity were depressed for up to 90 min following nickel and cadmium injection. In a second experiment, body temperature was measured 60 min following the injection of nickel or cadmium chloride at a Ta of 20, 30, or 35 C. Nickel and cadmium caused a drastic reduction in body temperature when injected at a Ta of 20 and 30 C but produced either no effect or only a slight elevation in body temperature at a Ta of 35 C. In a third experiment, metabolic rate was measured continuously for 60 min following the i.p. injection of a relatively large dose of nickel (15 mg/kg) or cadmium chloride (6 mg/kg) at a Ta of 20, 30, and 35 C. Both metals caused significant reductions in metabolic rate at Ta's of 20 and 30 C.

  9. The 1990 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Kennedy, Lewis M. (Compiler)

    1991-01-01

    This document contains the proceedings of the 21st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on December 4-6, 1990. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers as well as participation in like kind from the European Space Agency member nations. The subjects covered included nickel-cadmium, nickel-hydrogen, silver-zinc, lithium based chemistries, and advanced technologies as they relate to high reliability operations in aerospace applications.

  10. The 1993 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1994-01-01

    This document contains the proceedings of the 26th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on 16-18 Nov. 1993. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-cadmium, nickel-hydrogen, nickel-metal hydride, and lithium based technologies, as well as advanced technologies including various bipolar designs.

  11. The 1992 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1993-01-01

    This document contains the proceedings of the 23rd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 15-19, 1992. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-cadmium, nickel-hydrogen, nickel-metal hydride, and lithium based technologies, as well as advanced technologies including sodium-sulfur and various bipolar designs.

  12. Water hyacinths for removal of cadmium and nickel from polluted waters

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1975-01-01

    Removal of cadmium and nickel from static water systems utilizing water hyacinths (Eichhornia crassipes (Mart.) Solms) was investigated. This aquatic plant demonstrated the ability to rapidly remove heavy metals from aqueous systems by root absorption and concentration. Water hyacinths demonstrated the ability to absorb and concentrate up to 0.67 mg of cadmium and 0.50 mg of nickel per gram of dry plant material when exposed for a 24-hour period to waters polluted with from 0.578 to 2.00 ppm of these toxic metals. It is found that one hectare of water hyacinths has the potential of removing 300 g of cadmium or nickel from 240,000 liters of water polluted with these metals during a 24-hour period.

  13. NICBES2 - NICKEL CADMIUM BATTERY EXPERT SYSTEM-2

    NASA Technical Reports Server (NTRS)

    Johnson, Y. B.

    1994-01-01

    The Nickel Cadmium Battery Expert System-2 (NICBES2) is a prototype diagnostic expert system for Nickel Cadmium Battery Health Management. NICBES2 is intended to support evaluation of the performance of Hubble Space Telescope spacecraft batteries, and to alert personnel to possible malfunctions. To achieve this, NICBES2 provides a reasoning system supported by appropriate battery domain knowledge. NICBES2 oversees the status of the batteries by evaluating data gathered in orbit packets, and when the status so merits, raises an alarm and provides fault diagnosis as well as advice on the actions to be taken to remedy the particular alarm. In addition to diagnosis and advice, it provides status history of the batteries' health, and a graphical display capability to help in assimilation of the information by the operator. NICBES2 is composed of three cooperating processes driven by a program written in SunOS C. A serial port process gathers incoming data from an RS-232 connection and places it into a raw data pipe. The data handler processes read this information from the raw data pipe and perform statistical data reduction to generate a set of reduced data files per orbit. The expert system process starts the Quintus Prolog interpreter and the expert system and then uses the reduced data files for the generation of status and advice information. The expert system presents the user with an interface window composed of six subwindows: Battery Status, Advice Selection, Support, Battery Selection, Graphics, and Actions. The Battery status subwindow can provide a display of the current status of a battery. Similarly, advice on battery reconditioning, charging, and workload can be obtained from the Advice Selection subwindow. A display of trends for the last orbit and over a sequence of the last twelve orbits is available in the Graph subwindow. A WHY button is available to give the user an explanation of the rules that the expert system used in determining the current

  14. Copper, cadmium, and nickel accumulation in crayfish populations near copper-nickel smelters at Sudbury, Ontario, Canada

    SciTech Connect

    Bagatto, G.; Aikhan, M.A.

    1987-03-01

    The Sudbury basin, an elliptical 646 square mile depression containing a number of freshwater reservoirs, has been subjected to extreme ecological disturbances from logging, mining and smelting activities. The purpose of the present study was to compare tissue concentration of copper, cadmium and nickel in freshwater crayfish at selected distances of the habitat from the emission source. Various tissue concentrations in crayfish from the sites were also examined to determine if particular body tissues were specific sites for metal accumulation.

  15. Cadmium, copper and nickel levels in vegetables from industrial and residential areas of Lagos City, Nigeria.

    PubMed

    Yusuf, A A; Arowolo, T A; Bamgbose, O

    2003-03-01

    The levels of cadmium, copper and nickel in five different edible vegetables, Talinum triangulare, Celosia trigyna, Corchorus olitorus, Venomia amygydalina and Telfaria accidentalis, and the soils in which they were grown, from three industrial and three residential areas of Lagos City, Nigeria, were determined using atomic absorption spectrophotometry. The results obtained for these three heavy metals from the industrial areas were higher than those of the residential areas as a result of pollution. Industrial area results for vegetables ranged between 1.13 and 1.67 microg/g for cadmium; 25.08 and 56.84 microg/g for copper and 1.33 and 2.06 microg/g for nickel. There were statistically significant differences (P<0.05) between the levels of copper and nickel in all the vegetables studied from industrial and residential areas, while there was no statistically significant difference for cadmium. The results also show that Corchorus olitorus (bush okra) has the ability to accumulate more copper and nickel than the other vegetable studied but has the least ability to accumulate cadmium. PMID:12504169

  16. Nickel cadmium cell designs negative to positive material ratio and precharge levels

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1977-01-01

    A review is made of the factors affecting the choices of negative-to-positive materials ratio and negative precharge in nickel-cadmium cells. The effects of these variables on performance are given, and the different methods for setting precharge are evaluated. The effects of special operating requirements on the design are also discussed.

  17. Results of continuous synchronous orbit testing of sealed nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1981-01-01

    Test results from continuous synchronous orbit testing of sealed nickel cadmium cells are presented. The synchronous orbit regime simulates a space satellite maintaining a position over a fixed point on earth as the earth rotates on its axis and revolves about the sun. Characteristics of each lot of cells, test conditions, and charge control methods are described.

  18. Charge control of nickel-cadmium batteries by coulometer and third electrode method

    NASA Technical Reports Server (NTRS)

    Ford, F.; Paulkovitch, J.

    1968-01-01

    Combined coulometer/third electrode control circuit for a nickel-cadmium battery included at least one cell of the third electrode type is illustrated. The coulometer/third electrode sensing circuit controls the series regulator as necessary to maintain the sensing voltage at the preset sensing level.

  19. The JPL/NASA/TAMU nickel-cadmium battery model development status

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul

    1993-01-01

    A discussion of the development of a fundamental cell model is presented in vugraph format. The nickel oxide layer is described in terms of the electronic conductivity of the oxide layer and proton diffusion through the oxide layer. The kinetic and conductivity expressions for the cadmium electrode were improved. The development process yielded performance predictions that are significantly improved.

  20. NASA standard 50Ah nickel cadmium battery cell: Cell-level performance history

    NASA Technical Reports Server (NTRS)

    Toft, Mark R.

    1992-01-01

    The concept and design for a NASA standard Nickel-Cadmium (NiCd) battery was developed from 1975 to 1977. The cell was first manufactured in 1977-1978. A performance history of this cell design is presented in viewgraph form.

  1. Accelerated test program for sealed nickel-cadmium spacecraft batteries/cells

    NASA Technical Reports Server (NTRS)

    Goodman, L. A.

    1976-01-01

    The feasibility was examined of inducing an accelerated test on sealed Nickel-Cadmium batteries or cells as a tool for spacecraft projects and battery users to determine: (1) the prediction of life capability; (2) a method of evaluating the effect of design and component changes in cells; and (3) a means of reducing time and cost of cell testing.

  2. Electrochemical models for the discharge characteristics of the nickel cadmium cell

    NASA Technical Reports Server (NTRS)

    Spritzer, M. S.

    1981-01-01

    The potential time characteristics of a preconditioned fully charged cell discharge at constant current was studied. Electrochemical principles applied to the sealed nickel cadmium cell and its behavior and to predict operating characteristics were described. A thermodynamic approach to arrive at several related but different equations and its discharge are reported.

  3. SORBENT CAPTURE OF NICKEL, LEAD, AND CADMIUM IN A LABORATORY SWIRL FLAME INCINERATOR

    EPA Science Inventory

    The paper gives results of an investigation of the in-situ capture of toxic metals by sorbents in a small semi-industrial scale 82 kW research combustor. The metals considered, nickel, lead, and cadmium, were introduced into the system as aqueous nitrate solutions sprayed down th...

  4. Lysozyme levels in rabbit lung after inhalation of nickel, cadmium, cobalt, and copper chlorides

    SciTech Connect

    Lundborg, M.; Camner, P.

    1984-08-01

    Groups of rabbits were exposed to chlorides of nickel, cadmium, copper, and cobalt at concentrations ranging from 0.2 to 0.6 mg/m/sup 3/ (as metal) for 4 to 6 weeks (5 days/weeks, 6 hr/day). Activity of lysozyme (muramidase) in lavage fluid, in alveolar macrophages, and in culture medium from macrophages incubated at 37/sup 0/C for 1 and 20 hr was estimated using the lyso-plate technique, agar plates with heat-killed Micrococcus lysodeikticus. In the nickel-exposed rabbits lysozyme activity in the mucous membrane from the left main bronchus was also estimated. Following nickel exposure the lysozyme level was significantly decreased in lavage fluid, macrophages, and in culture medium from incubated macrophages but remained unchanged in the mucous membrane. After exposure to cadmium, copper, and cobalt, lysozyme levels increased or were unchanged.

  5. Sealed aerospace metal-hydride batteries

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  6. Mathematical modeling of a nickel-cadmium battery

    NASA Technical Reports Server (NTRS)

    Fan, Deyuan; White, Ralph E.

    1991-01-01

    Extensions are presented for a mathematical model of an Ni-CD cell (Fan and White, 1991). These extensions consist of intercalation thermodynamics for the nickel electrode and oxygen generation and reduction reactions during charge and overcharge. The simulated results indicate that intercalation may be important in the nickel electrode and that including the oxygen reactions provides a means of predicting the efficiency of the cell on charge and discharge.

  7. Kinetics of accumulation of the intermetallic compound of nickel and cadmium during storage of charged cadmium electrodes in alkali

    SciTech Connect

    Reshetov, V.A.; Grachev, D.K.; Pen'kova, L.I.; L'vova, L.A.; Ryabskaya, I.A.; Logvinets, N.P.

    1983-05-20

    When charged cadmium electrodes containing nickelous hydroxide (NHO) are stored in alkali an intermetallic compound (IMC) of the composition Ni/sub 5/Cd/sub 21/ is formed. The appearance of a step corresponding to oxidation of the IMC at a potential more positive by 0.12-0.18 V than the potential of the principal discharge process leads to appreciable lowering of the electrode capacity after storage. A systematic study was carried out of the kinetics of accumulation of the IMC at various temperatures and with additions of various amounts of NHO in order to elucidate the mechanism of formation of the intermetallic compound and to examine the possibility of predicting the loss of capacity of cadmium electrodes during storage. A kinetic equation, which can be used for predicting capacity losses of charged cadmium electrodes because of formation of the intermetallic compound Ni/sub 5/Cd/sub 21/ in them during storage, is proposed. The two-step form of the kinetic curves indicates that the IMC can be formed in cadmium electrodes during storage by two parallel mechanisms, involving both Ni/sup 0/ and Ni/sup 2 +/.

  8. Fabrication and testing of negative-limited sealed nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Luksha, E.; Kohl, K. C.

    1973-01-01

    The design, construction, and testing of 100,20Ah and 100,3Ah negative-limited sealed cells are reported. The required physical dimensions of the hardware and components necessary to produce 20 and 3 Ah cells were established. The stainless steel cans and covers have been ordered. The covers contain two ceramic seals. The fabrication of electrodes was started. About 55% (879 electrodes) of the required cadmium electrodes has been prepared. About 44% of the porous nickel substrates (plaques) required for the preparation of the nickel oxide electrodes has been completed.

  9. The 100 kW space station. [regenerative fuel cells and nickel hydrogen and nickel cadmium batteries for solar arrays

    NASA Technical Reports Server (NTRS)

    Mckhann, G.

    1977-01-01

    Solar array power systems for the space construction base are discussed. Nickel cadmium and nickel hydrogen batteries are equally attractive relative to regenerative fuel cell systems at 5 years life. Further evaluation of energy storage system life (low orbit conditions) is required. Shuttle and solid polymer electrolyte fuel cell technology appears adequate; large units (approximately four times shuttle) are most appropriate and should be studied for a 100 KWe SCB system. A conservative NiH2 battery DOD (18.6%) was elected due to lack of test data and offers considerable improvement potential. Multiorbit load averaging and reserve capacity requirements limit nominal DOD to 30% to 50% maximum, independent of life considerations.

  10. A 50 AH nickel cadmium battery activation and charge retention parametric study for LANDSAT-D

    NASA Technical Reports Server (NTRS)

    Tasevoli, M.

    1982-01-01

    An alternate nickel-cadmium cell activation scheme was developed which significantly reduces battery dissipation while maintaining the cell active material in the proper electrochemical state. The new procedure of charging at C/20 for 8 hours, C/10 for 6 hours and followed by C/5 to a voltage limit of 1.430 volt/cell significantly reduces the heat dissipation and charge period when compared to the standard activation practice of charging at C/20 for 48 hours. In addition, subsequent discharge voltage profiles using the new scheme are higher when compared to the standard practice. The effects of extended open-circuit periods on nickel-cadmium cell results in a capacity loss of approximately 0.7 percent and 1.4 percent per day at 23 and 35 degrees Celsius, respectively.

  11. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 1, Part 3

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume I: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries of the program's operations.

  12. Modelling of nickel-cadmium batteries using porous electrode theory

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul J.; Di Stefano, Salvador; Glueck, Peter R.; Perrone, David E.

    1991-01-01

    A porous electrode modeling technique is discussed which is considered a viable means for quantitatively predicting Ni-Cd cell performance. The authors describe the integration of the cell model into a battery model useful in the design and operation of aerospace applications. Test data from a sealed boilerplate cell are presented for constant current charge and discharge conditions. Performance predictions for similar cases have been performed, and a comparison to the boilerplate data is made. Areas for further development are also noted.

  13. Design and test of a 100 ampere-hour nickel cadmium battery module

    NASA Technical Reports Server (NTRS)

    Gaston, S.; Wertheim, M.; Burgess, F. S.; Lehrfeld, D.; Winegard, A.

    1973-01-01

    A feasibility study was conducted on the design and construction of a flight-worthy replaceable battery module consisting of four 100 A.H. nickel-cadmium rechargeable cells for large manned space vehicles. The module is planned to weigh less than 43 pounds and be fully maintainable in a zero-g environment by one man without use of special tools. An active environmental control system was designed for the temperature control of the module.

  14. Recycling of spent nickel-cadmium batteries based on bioleaching process

    SciTech Connect

    Zhu Nanwen; Zhang Lehua; Li Chunjie; Cai Chunguang

    2003-07-01

    Only 1-2 percent of discarded dry batteries are recovered in China. It is necessary to find an economic and environmentally friendly process to recycle dry batteries in this developing country. Bioleaching is one of the few techniques applicable for the recovery of the toxic metals from hazardous spent batteries. Its principle is the microbial production of sulphuric acid and simultaneous leaching of metals. In this study, a system consisting of a bioreactor, settling tank and leaching reactor was developed to leach metals from nickel-cadmium batteries. Indigenous thiobacilli, proliferated by using nutritive elements in sewage sludge and elemental sulphur as substrates, was employed in the bioreactor to produce sulphuric acid. The overflow from the bioreactor was conducted into the settling tank. The supernatant in the settling tank was conducted into the leaching reactor, which contained the anode and cathodic electrodes obtained from nickel-cadmium batteries. The results showed that this system was valid to leach metals from nickel-cadmium batteries, and that the sludge drained from the bottom of the settling tank could satisfy the requirements of environmental protection agencies regarding agricultural use.

  15. End-of-life nickel-cadmium accumulators: characterization of electrode materials and industrial Black Mass.

    PubMed

    Hazotte, Claire; Leclerc, Nathalie; Diliberto, Sébastien; Meux, Eric; Lapicque, Francois

    2015-01-01

    The aim of this paper is the characterization of spent NiCd batteries and the characterization of an industrial Black Mass obtained after crushing spent NiCd batteries and physical separation in a treatment plant. The characterization was first performed with five cylindrical NiCd batteries which were manually dismantled. Their characterization includes mass balance of the components, active powders elemental analysis and phase identification by X-ray powder diffraction. Chemical speciation of the two metals was also investigated. For cadmium, speciation was previously developed on solid synthetic samples. In a spent battery, the active powders correspond to about 43% of the battery weight. The other components are the separator and polymeric pieces (5%), the support plates (25%) and the carbon steel external case (27%). The sequential procedure shows that the nickel in the positive powders from the dismantled Ni-Cd batteries is distributed between Ni0 (39.7%), Ni(OH)2 (58.5%) and NiOOH (1.8%). Cadmium in the negative powder is about 99.9% as the Cd(OH)2 form with 0.1% of metal cadmium. In the industrial Black Mass, the distribution of cadmium is the same, whereas the distribution of nickel is Ni0 (46.9%), Ni(OH)2 (43.2%) and NiOOH (9.9%). This material contains also 1.8% cobalt and approx. 1% iron. PMID:25192032

  16. Alternate charging profiles for the onboard nickel cadmium batteries of the Explorer Platform/Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Prettyman-Lukoschek, Jill S.

    1995-01-01

    The Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft power is provided by the Modular Power Subsystems (MPS) which contains three 50 ampere-hour Nickel Cadmium (NiCd) batteries. The batteries were fabricated by McDonnell Douglas Electronics Systems Company, with the cells fabricated by Gates Aerospace Batteries (GAB), Gainesville, Florida. Shortly following launch, the battery performance characteristics showed similar signatures as the anomalous performance observed on both the Upper Atmosphere Research Satellite (UARS) and the Compton Gamma Ray Observatory (CGRO). This prompted the development and implementation of alternate charging profiles to optimize the spacecraft battery performance. The Flight Operations Team (FOT), under the direction of Goddard Space Flight Center's (GSFC) EP/EUVE Project and Space Power Applications Branch have monitored and managed battery performance through control of the battery Charge to Discharge (C/D) ratio and implementation of a Solar Array (SA) offset. This paper provides a brief overview of the EP/EUVE mission, the MPS, the FOT's battery management for achieving the alternate charging profile, and the observed spacecraft battery performance.

  17. Nickel cadmium battery operations on-orbit: Trials, tribulations, and success on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Miller, Scott D.

    1994-01-01

    The Upper Atmosphere Research Satellite (UARS), designed, built, integrated, tested, and operated by NASA and Martin Marietta is a low-Earth orbiting, Earth-observing spacecraft which was launched via Space Shuttle Discovery on September 12, 1991 and deployed three days later. The Modular Power Subsystem (MPS) onboard the satellite is equipped with three NASA Standard 50 Ampere-hour (Ah) nickel-cadmium (NiCd) batteries. McDonnell Douglas Electronics Systems Company fabricated the MPS, and batteries from Gates Aerospace Batteries cells. Nominal battery performance was achieved for the first four months of spacecraft operation. First evidence of anomalous battery performance was observed in January 1992, after the first maximum beta angle (low Depth of Discharge) period. Since then, the Flight Operations Team (FOT), under the direction of Goddard Space Flight Center's UARS Project and Space Power Application Branch, has monitored and managed battery performance by adjusting solar array offset angle, conducting periodic deep discharge, and controlling battery recharge ratio. This paper covers a brief overview of the UARS, the FOT's operational battery management, and the observed spacecraft battery performance.

  18. Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A.

    PubMed Central

    Schmidt, T; Schlegel, H G

    1994-01-01

    The nickel-cobalt-cadmium resistance genes carried by plasmid pTOM9 of Alcaligenes xylosoxidans 31A are located on a 14.5-kb BamHI fragment. By random Tn5 insertion mutagenesis, the fragment was shown to contain two distinct nickel resistance loci, ncc and nre. The ncc locus causes a high-level combined nickel, cobalt, and cadmium resistance in strain AE104, which is a cured derivative of the metal-resistant bacterium Alcaligenes eutrophus CH34. ncc is not expressed in Escherichia coli. The nre locus causes low-level nickel resistance in both Alcaligenes and E. coli strains. The nucleotide sequence of the ncc locus revealed seven open reading frames designated nccYXHCBAN. The corresponding predicted proteins share strong similarities with proteins encoded by the metal resistance loci cnr (cnrYXHCBA) and czc (czcRCBAD) of A. eutrophus CH34. When different DNA fragments carrying ncc genes were heterologously expressed under the control of the bacteriophage T7 promoter, five protein bands representing NccA (116 kDa), NccB (40 kDa), NccC (46 kDa), NccN (23.5 kDa), and NccX (16.5 kDa) were detected. Images PMID:7961470

  19. Initial evaluation tests of General Electric Company 26.5 ampere-hour nickel-cadmium spacecraft cells with auxiliary electrodes for the TIROS-N and NOAA-A satellites

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1978-01-01

    This evaluation test program had the purpose to insure that all cells put into the life cycle program are of high quality by the screening of cells found to have electrolyte leakage, internal shorts, low capacity, or inability of any cell to recover its open-circuit voltage above 1.150 volts during the internal short test. Test limits specify those values at which a cell is to be terminated from charge or discharge. Requirements are referenced to as normally expected values based on past performance of aerospace nickel-cadmium cells with demonstrated life characteristics. A requirement does not constitute a limit for discontinuance from test.

  20. Aerospace Battery Activities at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.

    2006-01-01

    Goddard Space Flight Center has "pioneered" rechargeable secondary battery design, test, infusion and in-orbit battery management among NASA installations. Nickel cadmium batteries of various designs and sizes have been infused for LEO, GEO and Libration Point spacecraft. Nickel-Hydrogen batteries have currently been baselined for the majority of our missions. Li-Ion batteries from ABSL, JSB, SaFT and Lithion have been designed and tested for aerospace application.

  1. Corrosion characteristics of nickel alloys. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Zollars, G. F.

    1979-01-01

    This bibliography cites 118 articles from the international literature concerning corrosion characteristics of nickel alloys. Articles dealing with corrosion resistance, corrosion tests, intergranular corrosion, oxidation resistance, and stress corrosion cracking of nickel alloys are included.

  2. Role of Cadmium and Nickel in Estrogen Receptor Signaling and Breast Cancer: Metalloestrogens or Not?

    PubMed Central

    Aquino, Natalie B.; Sevigny, Mary B.; Sabangan, Jackielyn; Louie, Maggie C.

    2012-01-01

    During the last half-century, incidences of breast cancer have increased globally. Various factors—genetic and environmental— have been implicated in the initiation and progression of this disease. One potential environmental risk factor that has not received a lot of attention is the exposure to heavy metals. While several mechanisms have been put forth describing how high concentrations of heavy metals play a role in carcinogenesis, it is unclear whether chronic, low-level exposure to certain heavy metals (i.e. cadmium and nickel), can directly result in the development and progression of cancer. Cadmium and nickel have been hypothesized to play a role in breast cancer development by acting as metalloestrogens— metals that bind to estrogen receptors and mimic the actions of estrogen. Since the lifetime exposure to estrogen is a well-established risk factor for breast cancer, anything that mimics its activity will likely contribute to the etiology of the disease. However, heavy metals, depending on their concentration, are capable of binding to a variety of proteins and may exert their toxicities by disrupting multiple cellular functions, complicating the analysis of whether heavy metal-induced carcinogenesis is mediated by the estrogen receptor. The purpose of this review is to discuss the various epidemiological, in vivo, and in vitro studies that show a link between the heavy metals, cadmium and nickel, and breast cancer development. We will particularly focus on the studies that test whether or not these two metals act as metalloestrogens in order to assess the strength of the data supporting this hypothesis. PMID:22970719

  3. An evaluation of potentially useful separator materials for nickel-cadmium (Ni-Cd] satellite batteries

    NASA Technical Reports Server (NTRS)

    Baker, H. A.; Toner, S. D.; Cuthrell, W. F.

    1974-01-01

    An evaluation intended to determine the potential suitability and probable efficacy of a group of separator materials for use in nickel-cadmium (Ni-Cd) satellite batteries was carried out. These results were obtained using test procedures established in an earlier evaluation of other separator materials, some of which were used in experimental battery cells subjected to simulated use conditions. The properties that appear to be most important are: high electrolyte absorptivity, good electrolyte retention, low specific resistivity, rapid wettability and low resistance to air permeation. Wicking characteristics and wet-out time seem to be more important with respect to the initial filling of the battery with the electrolyte.

  4. The 100 ampere-hour nickel cadmium battery development program, volume 1

    NASA Technical Reports Server (NTRS)

    Gaston, S.

    1974-01-01

    A program to develop a long-life, reliable and safe 100 ampere-hour sealed nickel-cadmium cell and battery module with ancillary charge control and automated test equipment to fulfill the requirements of a large Manned Orbital Space Station which uses Solar Arrays as its prime source for 25 kW of electrical power was conducted. A sealed 100 ampere-hour cell with long life potential and a replaceable, space maintainable battery module has been developed for Manned Space Station applications. The 100 ampere-hour cell has been characterized for initial (early life) anticipated conditions.

  5. Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents

    SciTech Connect

    Holan, Z.R.; Volesky, B.

    1995-05-01

    Native fungal biomass of fungi Absidia orchids, Penicillium chrysogenum, Rhizopus arrhizus, Rhizopus nugricans, and modified spruce sawdust (Picea engelmanii) sequestered metals in the following decreasing preference: Pb>Cd>Ni. The highest metal uptake was q{sub max}=351 mg Pb/g for A. orchidis biomass. P. chrysogenum biomass could accumulate cadmium best at 56 mg Cd/G. The sorption of nickel was the weakest always at >5 mg Ni/g. The spruce sawdust was modified by crosslinking, oxidation to acidic oxoforms, and by substitution. The highest metal uptake was observed in phosorylated sawdust reaching q{sub max}=224 mg Pb/g, 56 mg Cd/g, and 26 mg Ni/g. The latter value is comparable to the value of nickel sorption by wet commercial resin Duolite GT-73. Some improvement in metal uptake was also observed after reinforcement of fungal biomass. 40 refs., 5 figs., 3 tabs.

  6. Study of process variables associated with manufacturing hermetically-sealed nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Miller, L.

    1974-01-01

    A two year study of the major process variables associated with the manufacturing process for sealed, nickel-cadmium, areospace cells is summarized. Effort was directed toward identifying the major process variables associated with a manufacturing process, experimentally assessing each variable's effect, and imposing the necessary changes (optimization) and controls for the critical process variables to improve results and uniformity. A critical process variable associated with the sintered nickel plaque manufacturing process was identified as the manual forming operation. Critical process variables identified with the positive electrode impregnation/polarization process were impregnation solution temperature, free acid content, vacuum impregnation, and sintered plaque strength. Positive and negative electrodes were identified as a major source of carbonate contamination in sealed cells.

  7. Material Use in the United States - Selected Case Studies for Cadmium, Cobalt, Lithium, and Nickel in Rechargeable Batteries

    USGS Publications Warehouse

    Wilburn, David R.

    2008-01-01

    This report examines the changes that have taken place in the consumer electronic product sector as they relate to (1) the use of cadmium, cobalt, lithium, and nickel contained in batteries that power camcorders, cameras, cell phones, and portable (laptop) computers and (2) the use of nickel in vehicle batteries for the period 1996 through 2005 and discusses forecasted changes in their use patterns through 2010. Market penetration, material substitution, and technological improvements among nickel-cadmium (NiCd), nickel-metal-hydride (NiMH), and lithium-ion (Li-ion) rechargeable batteries are assessed. Consequences of these changes in light of material consumption factors related to disposal, environmental effects, retail price, and serviceability are analyzed in a series of short case studies.

  8. Survey of cosmetics for arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel content.

    PubMed

    Hepp, Nancy M; Mindak, William R; Gasper, John W; Thompson, Christopher B; Barrows, Julie N

    2014-01-01

    As part of efforts to assess amounts of inorganic element contamination in cosmetics, the U.S. Food and Drug Administration contracted a private laboratory to determine the total content of seven potentially toxic or allergenic elements in 150 cosmetic products of 12 types (eye shadows, blushes, lipsticks, three types of lotions, mascaras, foundations, body powders, compact powders, shaving creams, and face paints). Samples were analyzed for arsenic, cadmium, chromium, cobalt, lead, and nickel by inductively coupled plasma-mass spectrometry and for mercury by cold vapor atomic fluorescence spectrometry. The methods used to determine the elements were tested for validity by using standard reference materials with matrices similar to the cosmetic types. The cosmetic products were found to contain median values of 0.21 mg/kg arsenic, 3.1 mg/kg chromium, 0.91 mg/kg cobalt, 0.85 mg/kg lead, and 2.7 mg/kg nickel. The median values for cadmium and mercury were below the limits of detection of the methods. The contract requirements, testing procedures, and findings from the survey are described. PMID:25043485

  9. Hubble Space Telescope six-battery nickel-cadmium mission simulation test

    NASA Technical Reports Server (NTRS)

    Jackson, Lorna G.; Bush, John R., Jr.; Lanier, John R., Jr.

    1989-01-01

    A simulation test of the six-battery nickel-cadmium mission to determine battery life and electrical power system (EPS) performance characteristics for the Hubble Space Telescope (HST) program, is described. The basic HST power system requirements are to provide power generation, energy storage, and EPS control and distribution for 2.5 years with the nickel-cadmium (NiCd) batteries at an end of life solar array of 2 years. Mission simulation life testing begain in April of 1986, and the batteries have completed their 2.5 year mission requirement. Conditions as close as practical to the actual predicted mission profiles were used. These included solar array degradation, load variations, beta angle changes, temperature changes (with excursions to 10 C), battery reconditioning, safemode simulations, and off-normal roll activities. Discounting system cycling interruptions caused by hardware, software, human error, and periodic updates and revisions, the HST EPS breadboard hardware operated continuously for 30 months and demonstrated the power system's ability to meet the HST requirement.

  10. Nickel metal hydride LEO cycle testing

    NASA Technical Reports Server (NTRS)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  11. Report of investigations into charge cadmium reactivity: Nickel-cadmium cell ESD 91-86

    NASA Technical Reports Server (NTRS)

    Lewis, Harlan L.

    1992-01-01

    In Aug. 1990, a presentation was given at the 25th Ann. IECEC meeting on the results of Destructive Physical Analysis (DPA) on two successive sets of Ni-Cd cells. The cells were of two different separator types, Pellon 2505 and 2536. One cell of each separator type was analyzed on two occasions; the first pair were analyzed to establish baseline data on essentially new cells; the second pair were analyzed after the cells had been on charge-discharge cycling for a year in connection with a satellite simulation study. The gas composition found in the cells, the absence of charged cadmium in the analytical data, and the appearance of dried out portions on the Cd plates in the one year cell S/N 7 which used Pellon 2505 as its separator material, were questions which arose. These concerns are answered and the observational results are clarified.

  12. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.

    PubMed

    Nogueira, C A; Margarido, F

    2012-01-01

    At the end of their life, Ni-Cd batteries cause a number of environmental problems because of the heavy metals they contain. Because of this, recycling of Ni-Cd batteries has been carried out by dedicated companies using, normally, pyrometallurgical technologies. As an alternative, hydrometallurgical processes have been developed based on leaching operations using several types of leachants. The effect of factors like temperature, acid concentration, reaction time, stirring speed and grinding of material on the leaching yields of metals contained in anodic and cathodic materials (nickel, cadmium and cobalt) using sulphuric acid, is herein explained based on the structural composition of the electrode materials. The nickel, cobalt and cadmium hydroxide phases, even with a small reaction time (less than 15 minutes) and low temperature (50 degrees C) and acid concentration (1.1 M H2SO4), were efficiently leached. However, leaching of the nickel metallic phase was more difficult, requiring higher values of temperature, acid concentration and reaction time (e.g. 85 degrees C, 1.1 M H2SO4 and 5 h, respectively) in order to obtain a good leaching efficiency for anodic and cathodic materials (70% and 93% respectively). The stirring speed was not significant, whereas the grinding of electrode materials seems to promote the compaction of particles, which appears to be critical in the leaching of Ni degrees. These results allowed the identification and understanding of the relationship between the structural composition of electrode materials and the most important factors that affect the H2SO4 leaching of spent Ni-Cd battery electrodes, in order to obtain better metal-recovery efficiency. PMID:22519122

  13. In Flight Performance of a Six Ampere-hour Nickel-cadmium Battery in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Mcdermott, J. K.

    1984-01-01

    Flight data for 17,000 orbital cycles are reviewed and summarized. The nickel cadmium battery system operated without failure or abnormality. Battery trend analysis used in determining the feasibility of extending mission life is discussed. The life test data for 20% depth of discharge indicates design life requirements would be reached even at a deeper depth of discharge.

  14. Acceptance tests and manufacturer relationships for 20 amphere-hour sealed nickel-cadmium cells using discharge parameters

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.

    1980-01-01

    One hundred and forty-six 20 ampere-hour sealed nickel cadmium cells from five manufacturers were detected using preliminary tests which do not require life testing and do not reduce the expected life of the cells. Differences between individual cells were also detected, using these tests, allowing a comparison of variability of cell construction by and between manufacturers.

  15. Progress in the development of lightweight nickel electrode for aerospace applications

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1992-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) cells and batteries. These electrodes are lighter in weight and have higher specific energy than the heavy sintered state of the art nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber, felt, and nickel plated plastic) are fabricated into nickel electrodes by electrochemically impregnating them with active material. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C, 1.37C, 2.0C, and 2.74C. The electrodes that pass the initial tests are life cycle tested at 40 and 80 percent depths of discharge (DOD). Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. Over 7,000 cycles of life cycle testing have been accumulated at 40 percent DOD, using the lightweight fiber electrode in a boiler plate Ni-H2 cell with stable voltage.

  16. Special tests and destructive physical analyses as used by the Aerospace Corporation with nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Zimmerman, A. H.; Quinzio, M. V.; Thaller, L. H.

    1992-01-01

    The destructive physical analysis (DPA) of electrochemical devices is an important part of the overall test. Specific tests were developed to investigate the degradation mode or the failure mechanism that surfaces during the course of a cell being assembled, acceptance tested, and life-cycle tested. The tests that have been developed are peculiar to the cell chemistry under investigation. Tests are often developed by an individual or group of researchers as a result of their particular interest in an unresolved failure mechanism or degradation mode. A series of production, operational, and storage issues that were addressed by the Electrochemistry Group at The Aerospace Corporation are addressed. As a result of these investigations, as well as associated research studies carried out to develop a clearer understanding of the nickel oxyhydroxide electrode, a series of unique and useful specialized tests were developed. Some of these special tests were assembled to describe the methods that were found to be particularly useful in resolving a wide spectrum of manufacturing, operational, and storage issues related to nickel-hydrogen cells. The general methodology of these tests is given here with references listed to provide the reader with a more detailed understanding of the tests. The tests are classified according to the sequencing, starting with the impregnation of the nickel plaque material and culminating with the storage of completed cells. The details of the wet chemical procedures that were found to be useful because of their accuracy and reproducibility are given. The equations used to make the appropriate calculations are listed.

  17. Special tests and destructive physical analyses as used by the Aerospace Corporation with nickel-hydrogen cells

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. H.; Quinzio, M. V.; Thaller, L. H.

    1992-11-01

    The destructive physical analysis (DPA) of electrochemical devices is an important part of the overall test. Specific tests were developed to investigate the degradation mode or the failure mechanism that surfaces during the course of a cell being assembled, acceptance tested, and life-cycle tested. The tests that have been developed are peculiar to the cell chemistry under investigation. Tests are often developed by an individual or group of researchers as a result of their particular interest in an unresolved failure mechanism or degradation mode. A series of production, operational, and storage issues that were addressed by the Electrochemistry Group at The Aerospace Corporation are addressed. As a result of these investigations, as well as associated research studies carried out to develop a clearer understanding of the nickel oxyhydroxide electrode, a series of unique and useful specialized tests were developed. Some of these special tests were assembled to describe the methods that were found to be particularly useful in resolving a wide spectrum of manufacturing, operational, and storage issues related to nickel-hydrogen cells. The general methodology of these tests is given here with references listed to provide the reader with a more detailed understanding of the tests. The tests are classified according to the sequencing, starting with the impregnation of the nickel plaque material and culminating with the storage of completed cells. The details of the wet chemical procedures that were found to be useful because of their accuracy and reproducibility are given. The equations used to make the appropriate calculations are listed.

  18. Carcinogenic sulfide salts of nickel and cadmium induce H2O2 formation by human polymorphonuclear leukocytes.

    PubMed

    Zhong, Z J; Troll, W; Koenig, K L; Frenkel, K

    1990-12-01

    Some derivatives of nickel, cadmium, and cobalt are carcinogenic in humans and/or animals but their mechanisms of action are not known. We show that they are capable of stimulating human polymorphonuclear leukocytes (PMNs), as measured by H2O2 formation, a known tumor promoter. Most effective were the carcinogens nickel subsulfide, which caused a 550% net increase in H2O2 over that formed by resting PMNs, followed by cadmium sulfide, 400%, and nickel disulfide, 200%. Nickel sulfide and cobalt sulfide caused statistically nonsignificant increases of 45 and 20%, respectively. Noncarcinogenic barium and manganese sulfides, and sulfates of nickel, cadmium, and cobalt were inactive. The enhancement of H2O2 formation by CdS and Ni3S2 (1 mumol/2.5 x 10(5) PMNs) was comparable to that mediated by the potent tumor promoter 12-O-tetradecanoylphorbol-13-acetate, used at 0.5 and 1 nM, respectively. Concurrent treatment of 12-O-tetradecanoylphorbol-13-acetate-stimulated PMNs with Ni3S2 or NiS caused a decrease in H2O2 accumulation from that expected if the effects were additive. Including catalase in the reaction mixture proved that the oxidant formed by stimulated PMNs was H2O2, whereas adding superoxide dismutase showed that superoxide was also present in PMN samples treated with NiS but not with Ni3S2. Since nickel- and cadmium-containing particulates are deposited in the lungs and cause infiltration of PMNs, the ability to activate those cells and induce H2O2 formation may contribute to their carcinogenicity. PMID:2253206

  19. Prediction Model for the Life of Nickel-cadmium Batteries in Geosynchronous Orbit Satellites

    NASA Technical Reports Server (NTRS)

    Engleman, J. H.; Zirkes-Falco, M. B.; Bogner, R. S.; Pickett, D. F., Jr.

    1984-01-01

    A mathematical model is described which predicts the service life of nickel-cadmium batteries designed for geosynchronous orbit satellites. Regression analysis technique is used to analyze orbital data on second generation trickle charged batteries. The model gives average cell voltage as a function of design parameters, operating parameters and time. The voltage model has the properties of providing a good fit to the data, good predictive capability, and agreement with known battery performance characteristics. Average cell voltage can be predicted to within 0.02 volts for up to 8 years. This modeling shows that these batteries will operate reliably for 10 years. Third-generation batteries are expected to operate even longer.

  20. Sources, transport and alterations of metal compounds: an overview. I. Arsenic, beryllium, cadmium, chromium, and nickel.

    PubMed Central

    Fishbein, L

    1981-01-01

    An overview is presented of the current state of knowledge of the salient aspects of the sources, transport, and alterations of arsenic, beryllium, cadmium, chromium, and nickel. This information is considered vital for a better assessment of the scope of potential human hazard to these ubiquitous toxicants and their compounds. Stress is focused on both natural and industrial activities, particularly on the latter's projected trends. Increasing use patterns per se of most of these metals, as well as aspects of waste disposal and the anticipated increased combustion of fossil fuels for power generation and space heating (particularly in the United States), are major causes of potential health concern. Additionally, attention is drawn to the need for increased research to fill the gaps in our knowledge in these vital areas, all in the hope of permitting a more facile identification and quantification of the potential hazard to exposure to these agents. PMID:7023934

  1. A study of degradation of plates for nickel-cadmium spacecraft cells

    NASA Technical Reports Server (NTRS)

    Scott, W. R.

    1974-01-01

    The relative merits of coining and not coining of sintered nickel oxide and cadmium plates was investigated. Sample plate materials from most commercial cell suppliers were obtained and characterized for properties that may correlate with the tendency toward physical disintegration during handling and over long periods of time in the cell. Special test methods were developed to obtain comparative data in a short time. A wide range of physical properties and coining thickness was observed, resulting in a range of responses. The stronger materials resisted loss of sinter better than weaker materials whether or not coined. Coining improved handling and resistance to electrochemical cycling of weaker materials. The mechanism of break-down of positive plate edges under cycling appears to be the same as that of thickening and blistering. Brittle, nonadherent sinter, resulting from certain impregnation processes, is the most vulnerable to degradation. It is concluded that the latter type of materials should be coined, but coining of strong materials is optional.

  2. A study of degradation of plates for nickel-cadmium spacecraft cells. [feasibility of coining

    NASA Technical Reports Server (NTRS)

    Scott, W. R.

    1973-01-01

    The relative merits of coining and not coining of sintered nickel-oxide and cadmium plates was investigated. A survey of the industry including cell manufactures and users was made and results summarized. Sample plate materials from most commercial cell suppliers were obtained and characterized for properties that may correlate with the tendency toward physical disintegration during handling and over long periods of time in the cell. Special test methods were developed to obtain comparative data in a short time. A wide range of physical properties and coining thicknesses was observed, resulting in a range of responses. The stronger, less brittle materials resisted loss of sinter better than weaker materials whether or not coined. Coining improved handling and resistance to electrochemical cycling in all materials tested. An apparent exception was found to be due to improper coining of a tapered edge.

  3. A study of short test and charge retention test methods for nickel-cadmium spacecraft cells

    NASA Technical Reports Server (NTRS)

    Scott, W. R.

    1975-01-01

    Methods for testing nickel-cadmium cells for internal shorts and charge retention were studied. Included were (a) open circuit voltage decay after a brief charge, (b) open circuit voltage recovery after shorting, and (c) open circuit voltage decay and capacity loss after a full charge. The investigation included consideration of the effects of prior history, of conditioning cells prior to testing, and of various test method variables on the results of the tests. Sensitivity of the tests was calibrated in terms of equivalent external resistance. The results were correlated. It was shown that a large number of variables may affect the results of these tests. It is concluded that the voltage decay after a brief charge and the voltage recovery methods are more sensitive than the charged stand method, and can detect an internal short equivalent to a resistance of about (10,000/C)ohms where "C' is the numerical value of the capacity of the cell in ampere hours.

  4. Voltage-temperature charge verification testing of 34 ampere-hour nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Timmerman, P. J.; Bondeson, D. W.

    1986-01-01

    This testing was designed to evaluate various voltage-temperature (V-T) charge curves for use in low-Earth-orbit (LEO) applications of nickel-cadmium battery cells. The trends established relating V-T level to utilizable capacity were unexpected. The trends toward lower capacity at higher V-T levels was predominant in this testing. This effect was a function of the V-T level, the temperature, and the cell history. This effect was attributed to changes occurring in the positive plate. The results imply that for some applications, the use of even lower V-T levels may be warranted. The need to limit overcharge, especially in the early phases of missions, is underlined by this test program.

  5. In vivo effects of nickel and cadmium in rats on lipid peroxidation and ceruloplasmin activity

    SciTech Connect

    Sole, J.; Huguet, J.; Arola, L.; Romeu, A. )

    1990-05-01

    Before Ni(II) and Cd(II), or any other metallic ion, can interact intracellulary, it must penetrate the cell membrane. The latter, therefore, is a primary target for toxic metals. Damage to cell membranes may allow a greater uptake of metal and thus injury may extend to more critical targets, although loss of plasmatic membrane functionality may be a crucial factor to explain the interactions of these metals with cellular components. In this sense the present study has been carried out. Factors that have been investigated in order to prove the membrane response of nickel and cadmium toxicity include lipid peroxidation, since divalent ions of transition metals can promote lipid peroxidation and this evidently contributes to the toxicity of certain metals and to metal interaction with ceruloplasmin, as its ferroxidase and scavenger of superoxide radicals activities are important protective mechanisms in vivo against peroxidative damage.

  6. High discharge rate characteristics of nickel-cadmium batteries for pulse load filtering

    NASA Technical Reports Server (NTRS)

    Gearing, G. M.; Cimino, M. B.; Fritts, D. H.; Leonard, J. F.; Terzuoli, A. J., Jr.

    1985-01-01

    Several tests of specially fabricated nickel-cadmium batteries having circular disk type electrodes were considered. These batteries were evaluated as filter elements between a constant current power supply and a five hertz pulsed load demanding approximately twice the power supply current during the load on portion of the cycle. Short tests lasting 10,000 cycles were conducted at up to a 21 C rate and an equivalent energy density of over 40 Joules per pound. In addition, two batteries were subjected to 10 to the 7 charge/discharge cycles, one at a 6.5 C rate and the other at a 13 C rate. Assuming an electrode to battery weight ratio of 0.5, these tests represent an energy density of about 7 and 14 Joules per pound respectively. Energy density, efficiency, capacitance, average voltage, and available capacity were tracked during these tests. After 10 to the 7 cycles, capacity degradation was negligible for one battery and about 20% for the other. Cadmium electrode failure may be the factor limiting lifetime at extremely low depth of discharge cycling. The output was examined and a simple equivalent circuit was proposed.

  7. Effect of Storage on Performance of Super Nickel-Cadmium Cells

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna M.

    1997-01-01

    A study was undertaken to examine the capacity maintenance features of SUPER nickel-cadmium cells when stored for extended periods to determine whether the features change when the same kinds of positive plates as that used in nickel-hydrogen cells are used, The cells maintained their capacity when stored at 0 C in the discharged state and at 0 C in the charged state by continuously trickle charging. There was a capacity loss when stored in the open-circuit condition at 28 C. A cycling test at 17% depth of discharge for 2400 cycles using cells stored at various conditions showed that cells maintained good end of discharge voltage regardless of their storage history. However, the EOD voltages of stored cells were lower by 10 mV compared to those of fresh cells. The capacity at the end of the cycling test decreased for the stored cells by 2-7 Ah. The storage related capacity loss is lower for SUPER Ni-Cd cells compared to that of Ni-H2 cells containing a hydrogen precharge. The results suggest the pivotal role of hydrogen pressure in the capacity loss phenomenon.

  8. NASA Aerospace Flight Battery Systems Program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; O'Donnell, Patricia M.

    1990-01-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance and reliability of batteries for space power systems. The program plan has been modified in the past year to reflect changes in the agency's approach to battery related problems that are affecting flight programs. Primary attention in the Battery Program is being devoted to the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs. As part of a unified Battery Program, the development of a nickel-hydrogen standard and primary cell issues are also being pursued to provide high-performance NASA Standards and space qualified state-of-the-art primary cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  9. NASA aerospace flight battery systems program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Odonnell, Patricia M.

    1990-01-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance and reliability of batteries for space power systems. The program plan has been modified in the past year to reflect changes in the agency's approach to battery related problems that are affecting flight programs. Primary attention in the Battery Program is being devoted to the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs. As part of a unified Battery Program, the development of a nickel-hydrogen standard and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art primary cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  10. Cycle life test. Evaluation program for secondary spacecraft cells. [performance tests on silver zinc batteries, silver cadmium batteries, and nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1976-01-01

    Considerable research is being done to find more efficient and reliable means of starting electrical energy for orbiting satellites. Rechargeable cells offer one such means. A test program is described which has been established in order to further the evaluation of certain types of cells and to obtain performance and failure data as an aid to their continued improvement. The purpose of the program is to determine the cycling performance capabilities of packs of cells under different load and temperature conditions. The various kinds of cells tested were nickel-cadmium, silver-cadmium, and silver-zinc sealed cells. A summary of the results of the life cycling program is given in this report.

  11. Study of nickel electrode oxidation as a function of 80% depth of discharge cycling

    SciTech Connect

    Pickett, D.F. Jr.; Scoles, D.L.; Johnson, Z.W.; Hayden, J.W.; Pennington, R.D.

    1997-12-31

    Oxidation of nickel sinter used in nickel oxide electrodes in aerospace nickel cadmium cells leads to hydrogen gassing and the potential for cell rupture. The oxidation is directly related to loss of overcharge protection built into the cell during manufacturing. In nickel hydrogen cells, excessive oxidation of the nickel sinter can eventually lead to a burst before leak situation and is a potential source of failure. It is well known that nickel cadmium cells having nylon separators contribute to loss of overcharge via a hydrolysis reaction of the nylon in the potassium hydroxide electrolyte environment in the cell. The hydrolysis reaction produces lower chain organics which are oxidized by the positive electrode and oxygen. Oxidation of the organics diminishes the overcharge protection. With introduction of the Super NiCd{trademark} and the Magnum{trademark} nickel cadmium cells the nylon hydrolysis reaction is eliminated, but any reducing agent in the cell such as nickel or an organic additive can contribute to loss of overcharge protection. The present effort describes chemical analyses made to evaluate the extent of overcharge protection loss in nickel cadmium cells which do not have nylon hydrolysis, and quantifies the amount of hydrogen buildup in nickel hydrogen cells which are subjected to 80% depth of discharge cycling with and without the presence of cadmium in the positive electrode.

  12. Comparison of extractants for plant-available zinc, cadmium, nickel, and copper in contaminated soils

    SciTech Connect

    Haq, A.U.; Bates, T.E.; Soon, Y.K.

    1980-07-01

    The objective of this study was to find a suitable extractant(s) for plant-available metals in metal contaminated soils. Swiss chard (Beta vulgaris L. Fordhook Giant) was grown in greenhouse pots on 46 Ontario soils varying in degree of contamination with metals. The soils had been contaminated with metals to varying degrees over a period of years. After 40 days, the plants were harvested and Zn, Cd, Ni, and Cu concentrations were measured. Each soil was extracted with nine different extractants: aqua regia, 0.01M EDTA, 0.005M DTPA, 0.02M NTA, 0.5N CH/sub 3/COOH, 1N CH/sub 3/COONH/sub 4/, 0.6N HCl + 0.05N AlCl/sub 3/, (COOH)/sub 2/ + (COONH/sub 4/)/sub 2/, and H/sub 2/O. Zinc, cadmium, nickel, and copper concentrations in Swiss chard were correlated with the amounts of soil Zn, Cd, Ni, and Cu removed by each extractant. Of the nine soil extractants, CH/sub 3/COONH/sub 4/ was the best predictor of plant-available Zn if only extractable Zn and soil pH were included as independent variables in a regression equation. Acetic acid was the best extractant for prediction of both plant-available Cd and Ni when soil pH was included in the equation. Attempts to find a suitable soil extractant for plant-available Cu were unsuccessful.

  13. Nickel cadmium battery evaluation, modeling, and application in an electric vehicle

    NASA Astrophysics Data System (ADS)

    Lynch, William Alfred

    A battery testing facility was set up in the battery evaluation laboratory. This system includes a set of current regulators which were fabricated in the UMASS. Lowell labs and a PC based data acquisition system. Batteries were charged or discharged at any rate within system ratings, and data including battery voltage, current, temperature and impedance were stored by a PC. STM5.140 type nickel-cadmium electric vehicle batteries were subjected to various test procedures using the battery testing facility. The results from these tests were used to determine battery characteristics. An electrical component battery model was also developed using the test data. The validity of the battery model was verified through experimental testing, and it was found to be accurate. Additionally, improved battery charging algorithms were developed which resulted in significant improvements in battery efficiency. Electric car operation with STM5.140 type of batteries was evaluated. Realistic road test data were analyzed experimentally and using the battery model. No battery abuse was found under EV driving conditions. The performance of the STM5.140 battery under abuse conditions was evaluated and it was found that it performs reasonably well under all abuse conditions tested. The model and test methodologies may be incorporated into complete electric vehicle models in order to assist in the design and operation of current and future electric vehicles.

  14. Assessment of cadmium, lead, and nickel levels in hair care products marketed in Turkey.

    PubMed

    Sipahi, Hande; Charehsaz, Mohammad; Sonmez, Ipek; Soykut, Buğra; Erdem, Onur; Aydin, Ahmet

    2014-01-01

    This study evaluated the content of cadmium (Cd), lead (Pb), and nickel (Ni) in 105 hair care products commercially available in Turkey. Cd, Pb, and Ni were detected in 40%, 21.91%, and 94.29% of the samples, respectively. Maximum Cd concentrations were detected in two shampoo samples, and the highest Pb level was found in a hair conditioner, all of them were herbal-based formulations. The highest mean levels of Ni were detected in hairstyling agents. The overall results were lower than the Canadian and German regulatory limits; however, according to the European Council Directive and Turkish Cosmetic Legislation, Cd, Pb, and Ni are listed as the substances that are prohibited in any amounts in cosmetics. Moreover, Ni content of 17.14% of the samples was above the limit of allergic contact dermatitis. It is known that these toxic metals tend to accumulate in body and prolonged use of them may potentially pose threat to human health. Thus, regular market monitoring and safer limits should be seriously considered especially for susceptible groups of the population like the pediatric group. PMID:25423743

  15. Application of sequential extraction analysis to electrokinetic remediation of cadmium, nickel and zinc from contaminated soils.

    PubMed

    Giannis, Apostolos; Pentari, Despina; Wang, Jing-Yuan; Gidarakos, Evangelos

    2010-12-15

    An enhanced electrokinetic process for the removal of cadmium (Cd), nickel (Ni) and zinc (Zn) from contaminated soils was performed. The efficiency of the chelate agents nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA) and diaminocycloexanetetraacetic acid (DCyTA) was examined under constant potential gradient (1.23 V/cm). The results showed that chelates were effective in desorbing metals at a high pH, with metal-chelate anion complexes migrating towards the anode. At low pH, metals existing as dissolved cations migrated towards the cathode. In such conflicting directions, the metals accumulated in the middle of the cell. Speciation of the metals during the electrokinetic experiments was performed to provide an understanding of the distribution of the Cd, Ni and Zn. The results of sequential extraction analysis revealed that the forms of the metals could be altered from one fraction to another due to the variation of physico-chemical conditions throughout the cell, such as pH, redox potential and the chemistry of the electrolyte solution during the electrokinetic treatment. It was found that binding forms of metals were changed from the difficult type to easier extraction type. PMID:20833468

  16. Evaluation Program for Secondary Spacecraft Cells: Synchronous Orbit Testing of Sealed Nickel Cadmium Cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1977-01-01

    Performance data concerning sealed nickel-cadmium cells operating under a synchronous orbit regime are presented. A space satellite maintaining a position over a fixed point on earth as the earth rotates on its axis and revolves about the sun was simulated. Results include: (1) exposure to synchronous orbit testing at a temperature of 40 C yields less than 6 years of life; (2) performance at -20 C presents a low capacity problem; (3) the capacity check, performed at the middle of each show period, provides a temporary red reconditioning effect on the cells in that the end-of-discharge voltages are higher, for approximately 7 to 10 days, following the capacity check than they were 7 to 10 days prior to the capacity check; (4) all the test packs at -20 C and 40 C have either failed or were discontinued because of low capacity; and (5) test packs at temperatures of 0 C and 10 C have delivered the best capacity during life and packs tested at 20 C showed better life capability than packs tested at -20 C and 40 C.

  17. Hydrometallurgical route to recover nickel, cobalt and cadmium from spent Ni-Cd batteries

    NASA Astrophysics Data System (ADS)

    Fernandes, Aline; Afonso, Julio Carlos; Bourdot Dutra, Achilles Junqueira

    2012-12-01

    In this work a hydrometallurgical route to recover nickel, cobalt and cadmium after leaching spent Ni-Cd batteries with hydrochloric acid was investigated. Co(II) and Cd(II) were both recovered by solvent extraction. Cd(II) was first extracted (99.7 wt.%) with pure tri-n-butylphosphate (TBP), in the original leachate acidity (5.1 mol L-1), in two stages at 25 °C with an aqueous/organic (A/O) phase ratio = 1 v/v. The Co(II) present in the raffinate (free acidity 4.1 mol L-1) was extracted with Alamine 336 or Alamine 304 (10 vol.% in kerosene) at 25 °C with an A/O ratio = 1 in two stages. 97.5 wt.% of Co(II) was extracted using Alamine 336 while only 90.4 wt.% was extracted in the case of Alamine 304. Ni(II) was isolated from the raffinate as oxalate after addition of ammonium oxalate at pH 2.

  18. Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of a Rat Liver Derived Cell Line

    PubMed Central

    Permenter, Matthew G.; Lewis, John A.; Jackson, David A.

    2011-01-01

    Many heavy metals, including nickel (Ni), cadmium (Cd), and chromium (Cr) are toxic industrial chemicals with an exposure risk in both occupational and environmental settings that may cause harmful outcomes. While these substances are known to produce adverse health effects leading to disease or health problems, the detailed mechanisms remain unclear. To elucidate the processes involved in the toxicity of nickel, cadmium, and chromium at the molecular level and to perform a comparative analysis, H4-II-E-C3 rat liver-derived cell lines were treated with soluble salts of each metal using concentrations derived from viability assays, and gene expression patterns were determined with DNA microarrays. We identified both common and unique biological responses to exposure to the three metals. Nickel, cadmium, chromium all induced oxidative stress with both similar and unique genes and pathways responding to this stress. Although all three metals are known to be genotoxic, evidence for DNA damage in our study only exists in response to chromium. Nickel induced a hypoxic response as well as inducing genes involved in chromatin structure, perhaps by replacing iron in key proteins. Cadmium distinctly perturbed genes related to endoplasmic reticulum stress and invoked the unfolded protein response leading to apoptosis. With these studies, we have completed the first gene expression comparative analysis of nickel, cadmium, and chromium in H4-II-E-C3 cells. PMID:22110744

  19. Determination of lead, cadmium and nickel in hennas and other hair dyes sold in Turkey.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-08-01

    The concentrations of lead, nickel and cadmium in various hennas and synthetic hair dyes were determined by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS). For this purpose, 1 g of sample was digested using 4 mL of hydrogen peroxide (30%) and 8 mL of nitric acid (65%). The digests were diluted to 15 mL and the analytes were determined by HR-CS GFAAS. All determinations of Pb and Cd were performed using NH4H2PO4 as a modifier. The analytes in hair certified reference materials (CRMs) were found within the uncertainty limits of the certified values. In addition, the analyte concentrations added to hair dye were recovered between 95 and 110%. The limits of detection of the method were 48.90, 3.90 and 12.15 ng g(-1) for Pb, Cd and Ni, respectively and the characteristic concentrations were 8.70, 1.42 and 6.30 ng g(-1), respectively. Finally, the concentrations of the three analytes in various synthetic hair dyes with different brands, shades and formulae as well as in two henna varieties were determined using aqueous standards for calibration. The concentrations of Pb, Cd and Ni in hair dyes were in the ranges of LOD-0.56 μg g(-1), LOD-0.011 ng g(-1) and 0.030-0.37 μg g(-1), respectively, whereas those in the two hennas were 0.60-0.93 μg g(-1), 0.033-0.065 ng g(-1) and 0.49-1.06 μg g(-1), respectively. PMID:27184940

  20. Arsenic, cadmium, mercury and nickel stimulate cell growth via NADPH oxidase activation.

    PubMed

    Mohammadi-Bardbori, Afshin; Rannug, Agneta

    2014-11-10

    Exposure to metals and metalloids including arsenic, cadmium, mercury, and nickel has been a worldwide health problem for several decades. The aim of this study was to learn how metal-induced oxidative stress triggers cell proliferation, a process of great significance for cancer. NADPH oxidase (NOX) activity and cell proliferation were measured as endpoints in both NOX-deficient and NOX-proficient cells. The X chromosome linked CGD (X-CGD) human promyelocytic leukemia PLB-985 cells lacking gp91phox and the X-CGD cells re-transfected with gp91phox (X-CGD-gp91(phox)) were used together with immortalized human keratinocyte cells (HaCaT). The cells were exposed to different concentrations of the metals alone or together with the NOX inhibitor, diphenyleneiodonium (DPI). We found that the studied metals increased NOX activity. They stimulated cell proliferation in HaCaT and X-CGD-gp91(phox) cells at concentrations below 1μM but not in the X-CGD cells that lack functional NOX. Addition of DPI attenuated the metal-induced cell proliferation. At concentrations above 1μM these metals inhibited cell proliferation. Based on these findings, we propose that many environmental pollutants, including metals and also endogenous NOX-activators such as oxidants and growth factors, interfere with cell growth kinetics by increasing the levels of the diffusible molecule H2O2. Here, we provide evidence that NOXs is central to the mechanism of metal-mediated reactive oxygen species production and stimulation of cell proliferation. PMID:25446860

  1. A proposed methodology for the assessment of arsenic, nickel, cadmium and lead levels in ambient air.

    PubMed

    Santos, Germán; Fernández-Olmo, Ignacio

    2016-06-01

    Air quality assessment, required by the European Union (EU) Air Quality Directive, Directive 2008/50/EC, is part of the functions attributed to Environmental Management authorities. Based on the cost and time consumption associated with the experimental works required for the air quality assessment in relation to the EU-regulated metal and metalloids, other methods such as modelling or objective estimation arise as competitive alternatives when, in accordance with the Air Quality Directive, the levels of pollutants permit their use at a specific location. This work investigates the possibility of using statistical models based on Partial Least Squares Regression (PLSR) and Artificial Neural Networks (ANNs) to estimate the levels of arsenic (As), cadmium (Cd), nickel (Ni) and lead (Pb) in ambient air and their application for policy purposes. A methodology comprising the main steps that should be taken into consideration to prepare the input database, develop the model and evaluate their performance is proposed and applied to a case of study in Santander (Spain). It was observed that even though these approaches present some difficulties in estimating the individual sample concentrations, having an equivalent performance they can be considered valid for the estimation of the mean values - those to be compared with the limit/target values - fulfilling the uncertainty requirements in the context of the Air Quality Directive. Additionally, the influence of the consideration of input variables related to atmospheric stability on the performance of the studied statistical models has been determined. Although the consideration of these variables as additional inputs had no effect on As and Cd models, they did yield an improvement for Pb and Ni, especially with regard to ANN models. PMID:26950629

  2. Characterization of the 20-Ah nickel-cadmium cell used for energy storage on the Orbiting Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Ford, F. E.

    1972-01-01

    Tests were conducted on 20-Ah sealed nickel cadmium cells to evaluate initial and long-term performance at various charge rates, temperatures and voltage-control levels. An average ampere-hour recharge of 103 percent per orbit at 13 C was able to maintain cell capacity; required watt-hour recharge on an orbital basis was 8 to 10 percent greater than required ampere-hour recharge. Cells exhibited an early life burn-in characteristic. A discharge after periods of repetitive cycling yielded two voltage plateaus which were temporarily eliminated by the discharge.

  3. Qualification testing of General Electric 50 Ah nickel-cadmium cells with Pellon 2536 separator and passivated positive plates

    NASA Technical Reports Server (NTRS)

    Morrow, George W.

    1987-01-01

    Forty-two 50 Ah nickel-cadmium cells were delivered to the Goddard Space Flight Center (GSFC) by General Electric (GE) in February, 1985 for the purpose of evaluating and qualifying a nonwoven nylon separator material, Pellon 2536, and the GE positive plate nickel attack control gas passivation process. Testing began May, 1985 at the Naval Weapons Support Center (NWSC) in Crane, Indiana with GSFC standard initial evaluation tests. Life cycling in both Low Earth Orbit (LEO) and Geosynchronous Orbit (GEO) began in July, 1985 with approximately 6500 LEO cycles and three GEO eclipse seasons completed. After early problems in maintaining test pack temperature control, all packs are performing well but are exhibiting higher than normal charge voltage characteristics.

  4. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low earth orbit

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for Space Station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  5. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low Earth orbit

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for space station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  6. Removal of nickel and cadmium heavy metals using nanofiber membranes functionalized with (3-mercaptopropyl)trimethoxysilane (TMPTMS).

    PubMed

    Zahabi, Saeed Reza; Hosseini Ravandi, Seyed Abdolkarim; Allafchian, Alireza

    2016-08-01

    Functionalized nanofibrous membranes have been produced via electrospinning with a polymer solution of 19% (w/w) of nylon 66 prepared in a formic acid/chloroform mixture (75:25 v/v). The optimum parameters of electrospinning, like voltage, flow rate, tip and collector distances, were achieved and produced nanofiber membranes with a thickness of 287 nm. Then the nanofiber membranes were functionalized by (3-mercaptopropyl)trimethoxysilane (TMPTMS) at various amounts. Three different initial concentrations of metal ions and three different levels of pH were chosen. The effect of filtration process parameters such as the initial concentration of metal solution, pH of the solution, and the amount of functionalizer trimethoxysilane (TMPTMS) on the adsorption was studied. In surveying filtration process parameters, the results showed that metal ion rejection increased by increasing the pH of the solution and decreased by increasing the initial concentration of the effluent. By increasing the amount of functionalizer, removal efficiency increased. The results showed that the maximum efficiency of absorption of cadmium and nickel were 93.0 and 97.6%, respectively, and the filtering mechanism of the membrane is the blocking pores type. The adsorption data of cadmium and nickel ions fitted particularly well with the Freundlich isotherm. PMID:27441858

  7. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells

    SciTech Connect

    Adámik, Matej; Bažantová, Pavla; Navrátilová, Lucie; Polášková, Alena; Pečinka, Petr; Holaňová, Lucie; Brázdová, Marie

    2015-01-02

    Highlights: • DNA binding of p53 family core domains is inhibited by cadmium, cobalt and nickel. • Binding to DNA protects p53 family core domains from metal induced inhibition. • Cadmium, cobalt and nickel induced inhibition was reverted by EDTA in vitro. - Abstract: Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt, which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50 μM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA–protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA–p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed.

  8. Adsorption edge study about cadmium, copper, nickel and zinc adsorption by variable charge soils

    NASA Astrophysics Data System (ADS)

    Casagrande, J. C.; Mouta, E. R.; Soares, M. R.

    2009-04-01

    The improper discharge of industrial and urban residues and the inadvertent use of fertilizers and pesticides can result in soil and water pollution and improve the potential of trace metals to enter in the human food chain. Adsorption reactions occur at the solid/liquid interface and are the most important mechanisms for controlling the activity of metal ions in soil solution. In a complex system with amphoteric behavior, the comprehension of the mobility, availability and fate of pollutants in the soil system is crucial for the prediction of the environmental consequences and for development of prevention/remediation strategies. A comparative study of cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) adsorption by highly weathered soils was carried out. Surface (0-0.2m) and subsoil (B horizon) samples were taken from a Rhodic Kandiudalf (RH), an Anionic "Xanthic" Acrudox (XA) and an Anionic "Rhodic" Acrudox (RA), located in brazilian humid tropical area. As the pH and the ionic strength are important environmental factors influencing the solution chemistry of heavy metals in variable charge systems, adsorption envelopes, in a batch adsorption experiment, were elaborated by reacting, for 24 h, soil samples with individual 0.01, 0.1 and 1.0 mol L-1 Ca(NO3)2 aqueous solutions containing nitrate salts of the adsorptive heavy metal (Cd, Cu, Ni and Zn) at the initial concentration of 5 mg L-1, with an increasing pH value from 3.0 to 8.0. pH50-100%, the difference between the pH of 100 and 50 percent metal adsorption was determined. A sharp increase of adsorption density (adsorption edge) was observed within a very narrow pH range, usually less than two pH units. Commonly, the relative affinity of a soil for a metal cation increases with the tendency of the cation to form inner-sphere surface complexes. This may be caused by differences in extent of hydrolysis of Cu ions and in affinity of adsorption sites for Cu. In general, subsurface samples showed low pH50

  9. Distribution of copper, nickel, and cadmium in the surface waters of the North Atlantic and North Pacific Ocean

    SciTech Connect

    Boyle, E.A.; Huested, S.S.; Jones, S.P.

    1981-09-20

    Concentrations of copper, nickel, and cadmium have been determined for about 250 surface water samples. Nonupwelling open-ocean concentrations of these metals are Cu, 0.5-1.4 nmol/kg: Ni, 1-2 nmol/kg; and Cd, less than 10 pmol/kg. In the equatorial Pacific upwelling zone, concentrations of Ni (3 nmol/kg) and Cd (80 pmol/kg) are higher than in the open ocean, but Cu (0.9 nmol/kg) is not significantly enriched. Metal concentrations are higher in cool, nutrient-rich eastern boundary currents: Cu, 1.5 nmol/kg: Ni, 3.5 nmol/kg and Cd, 30-50 pmol/kg. Copper is distinctly higher in the coastal waters of the Gulf of Panama (3--4 nmol/kg) and also higher in the shelf waters north of the Gulf Stream (2.5 nmol/kg): these copper enrichments may be caused by copper remobilized from mildly reducing shelf sediments and maintained by a coastal nutrient trap. In the open ocean, events of high-Cu water (1.5--3.5 nmol/kg) are seen on scales up to 60 km; presumably, these are due to the advection of coastal water into the ocean interior. The lowest copper concentrations in the North Pacific central gyre (0.5 nmol/kg: (Bruland, 1980) are lower than in the Sargasso Sea (1.3 nmol/kg), while for nickel the lowest concentrations are 2 nmol/kg in both the North Pacific and the North Atlantic. Nickel and cadmium, while generally correlated with the nutrients in surface waters, show distinct regional changes in their element-nutrient correlations. The residual concentrations of trace metals in the surface waters of the ocean can be explained if biological discrimination against trace metals relative to phosphorus increases as productivity decreases.

  10. Initial Evaluation tests of 20.0 amphere-hour sealed nickel-cadmium cells manufactured for NASA's standard cell program

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1979-01-01

    Evaluation tests of 116 nickel cadmium cells provided by four manufacturers are described. Each manufacturer's group of cells, on the average, indicated an increase in plate stack thickness following the test. No limits or requirements were exceeded by any of the cells manufactured by General Electric. Limits/requirements exceeded during the charge portion of the testing are given.

  11. The 1991 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1992-01-01

    The proceedings from the workshop are presented. The subjects covered include nickel-cadmium, nickel-hydrogen, silver-zinc, and lithium based technologies, as well as advanced technologies including nickel-metal hydride and sodium-sulfur.

  12. The 1991 NASA Aerospace Battery Workshop

    SciTech Connect

    Brewer, J.C.

    1992-02-01

    The proceedings from the workshop are presented. The subjects covered include nickel-cadmium, nickel-hydrogen, silver-zinc, and lithium based technologies, as well as advanced technologies including nickel-metal hydride and sodium-sulfur.

  13. Micro-macroscopic coupled modeling of batteries and fuel cells. 2: Application to nickel-cadmium and nickel-metal hydride cells

    SciTech Connect

    Gu, W.B.; Wang, C.Y.; Liaw, B.Y.

    1998-10-01

    The micro-macroscopic coupled model developed in a companion paper is applied to predict the discharge and charge behaviors of nickel-cadmium (Ni-Cd) and nickel-metal hydride (Ni-MH) cells. The model integrates important microscopic phenomena such as proton or hydrogen diffusion and conduction of electrons in active materials into the macroscopic calculations of species and charge transfer. Simulation results for a full Ni-Cd cell and single MH electrode are presented and validated against the pseudo two-dimensional numerical model in the literature. In good agreement with the previous results, the present family of models is computationally more efficient and is particularly suitable for simulations of complex test conditions, such as the dynamic stress test and pulse charging for electric vehicles. In addition, a mathematical model for full Ni-MH cells is presented and sample simulations are performed for discharge and recharge with oxygen generation and recombination taken into account. These gas reactions represent an important mechanism for battery overcharge in the electric vehicle application.

  14. NASA Aerospace Flight Battery Systems Program: An Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1992-01-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  15. Photoelectrochemical behavior of nanocomposite films of cadmium sulfide, or titanium dioxide, and nickel

    SciTech Connect

    Tacconi, N.R. de; Wenren, H.; Rajeshwar, K.

    1997-09-01

    This paper concerns the photoelectrochemical characterization of nanocrystalline composite (nanocomposite) films of nickel and CdS (hereafter designated as Ni/CdS) in aqueous sulfite electrolyte. Experiments were also conducted on Ni/TiO{sub 2} film electrodes in the same electrolyte to delineate the role of nickel electrochemistry in the photoelectrochemical behavior of the two nanocomposite electrodes. Systematic enhancement of the photocurrent was observed for Ni/CdS on repeated potential cycling in the sulfite electrolyte. Similar behavior was also seen for Ni/TiO{sub 2}, but the enhancement effect was much smaller. The enhancement effect arises from incipient corrosion and subsequent passivation of the nickel matrix, as shown by voltammetry on nickel electrodes in the sulfite medium. The variant behavior seen for Ni/CdS and Ni/TiO{sub 2} in turn is attributable to the different degrees of electrochemical stability of nickel in the two composites. The passivation layer on nickel is shown to be Ni(OH){sub 2} by x-ray photoelectron spectroscopy. Other aspects of the data presented include steeper onset near the bandgap cutoff wavelength in the photoaction spectrum for Ni/CdS (relative to the anodically prepared CdS thin film counterpart), lower background currents in the dark for Ni/TiO{sub 2} (relative to nickel), and stabilization of the nickel matrix against corrosion (in the dark) by the occluded TiO{sub 2} particles.

  16. NICKEL HYDROXIDES

    SciTech Connect

    MCBREEN,J.

    1997-11-01

    Nickel hydroxides have been used as the active material in the positive electrodes of several alkaline batteries for over a century. These materials continue to attract a lot of attention because of the commercial importance of nickel-cadmium and nickel-metal hydride batteries. This review gives a brief overview of the structure of nickel hydroxide battery electrodes and a more detailed review of the solid state chemistry and electrochemistry of the electrode materials. Emphasis is on work done since 1989.

  17. Deep Discharge Reconditioning and Shorted Storage of Batteries. [nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Ritterman, P. F.

    1982-01-01

    The identification and measurement of hydrogen recombination in sealed nickel-cadium cells makes deep reconditioning on a battery basis safe and feasible. Deep reconditioning improves performance and increases life of nickel-cadium batteries in geosynchronous orbit applications. The hydrogen mechanism and supporting data are presented. Parameter cell design experiments are described which led to the definition of nickel-cadium cells capable of high rate overdischarge without detriment to specific energy. Nickel-cadium calls of identical optimum design were successfully cycled for 7 seasons in simulation of geosynchronous orbit at 75 percent depth-of-discharge with extensive midseason and end-of-season overdischarge at rates varying from C/20 to C/4. Destructive physical analysis and cyclin data indicated no deterioration or the development of dangerous pressures as a result of the cycling with overdischarge.

  18. Cadmium

    Integrated Risk Information System (IRIS)

    Cadmium ; CASRN 7440 - 43 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  19. Performance of Nickel-Cadmium Batteries on the GOES-1 Series of Weather Satellites

    NASA Technical Reports Server (NTRS)

    Singhal, Sat P.; Alsbach, Walter G.; Rao, Gopalakrishna M.

    1999-01-01

    This is an errata from an original paper published in the 1997 NASA Aerospace Battery workshop proceedings. A minor change was made to the second equation on page 98 and table 4 was revised during the final preparation of the paper. These changes were inadvertently left out of the final proceedings. These pages are reproduced in their entirety.

  20. Evaluation program for secondary spacecraft cells: Initial evaluation tests of General Electric Company 12.0 ampere-hour nickel-cadmium spacecraft cells for the international ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1976-01-01

    An evaluation test program was conducted to insure that all cells put into the life cycle program are of high quality by the screening of cells found to have electrolyte leakage, internal shorts, low capacity, or inability of any cell to recover its open-circuit voltage above 1.150 volts during the internal short test. The 20 cells were manufactured for the National Aeronautics and Space Administration, Goddard Space Flight Center (GSFC). The cells are from a lot of 175 cells procured for the International Ultraviolet Explorer project. Due to a change in requirements, the project selected to use 6.0 ampere-hour cells. Therefore, the remaining cells of this lot have been placed in storage at GSFC for use on a future GSFC project. All the cells are rated at 12.0 ampere-hours and contain double ceramic seals. Test limits specify those values in which a cell is to be terminated from a particular charge or discharge. Requirements are referred to as normally expected values based on past performance of aerospace nickel cadmium cells with demonstrated life characteristics.

  1. Nickel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agricultural significance of nickel (Ni) is becoming increasingly apparent; yet, relative few farmers, growers, specialists or researchers know much about its function in crops, nor symptoms of deficiency or toxicity. The body of knowledge is reviewed regarding Ni’s background, uptake, transloc...

  2. Aluminium, nickel, cadmium and lead in candy products and assessment of daily intake by children in Spain.

    PubMed

    Marín-Martínez, Ruth; Barber, Xavier; Cabrera-Vique, Carmen; Carbonell-Barrachina, Ángel A; Vilanova, Eugenio; García-Hernández, Vanessa M; Roche, Enrique; Garcia-Garcia, Elena

    2016-01-01

    Aluminium (Al), nickel (Ni), cadmium (Cd) and lead (Pb) levels in a total of 263 samples of 12 types of candies widely consumed in Spain, were evaluated. Samples were analysed using an ICP-MS method after acidic sample mineralization. Concentration ranges of Al, Ni, Cd and Pb were 21.28-62.91 µg g(-1), 0.40-1.27 µg g(-1), 0.12-1.01 µg g(-1) and 1.03-7.14 µg g(-1), respectifgvely. Statistically significant positive correlations were calculated between concentrations of Ni-Al and Pb-Cd (p-values < 0.05). Taking into consideration the relatively high metal content, together with the high caloric density of these products, as well as high content of particular nutrients such as sugars that can induce development of certain pathologies like obesity and caries, indicate that frequent consumption of candy products is not recommended. PMID:26684054

  3. Response of Saccharomyces cerevisiae to cadmium and nickel stress: the use of the sugar cane vinasse as a potential mitigator.

    PubMed

    Oliveira, Ricardo Pinheiro de Souza; Basso, Luiz Carlos; Junior, Adalberto Pessoa; Penna, Thereza Christina Vessoni; Del Borghi, Marco; Converti, Attilio

    2012-01-01

    Most of the metals released from industrial activity, among them are cadmium (Cd) and nickel (Ni), inhibit the productivity of cultures and affect microbial metabolism. In this context, the aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Cd and Ni on cell growth, viability, budding rate and trehalose content of Saccharomyces cerevisiae, likely because of adsorption and chelating action. For this purpose, the yeast was grown batch-wise in YED medium supplemented with selected amounts of vinasse and Cd or Ni. The negative effects of Cd and Ni on S. cerevisiae growth and the mitigating one of sugar cane vinasse were quantified by an exponential model. Without vinasse, the addition of increasing levels of Cd and Ni reduced the specific growth rate, whereas in its presence no reduction was observed. Consistently with the well-proved toxicity of both metals, cell viability and budding rate progressively decreased with increasing their concentration, but in the presence of vinasse the situation was remarkably improved. The trehalose content of S. cerevisiae cells followed the same qualitative behavior as cell viability, even though the negative effect of both metals on this parameter was stronger. These results demonstrate the ability of sugar cane vinasse to mitigate the toxic effects of Cd and Ni. PMID:21809054

  4. The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides.

    PubMed

    Duarte, Bernardo; Delgado, Marta; Caçador, Isabel

    2007-10-01

    Some plants have high ability to absorb heavy metals in high concentrations. In this study, Halimione portulacoides was tested in conjunction with citric acid, in order to evaluate the possible use of this plant in phytoremediation processes in salt marshes. Two different concentrations of chelator were used combined with two heavy metal concentrations. When 25microM of citric acid was applied, Cd uptake and translocation was enhanced while for Ni these processes were almost inhibited. Increasing citric acid concentration to 50microM, Ni absorption decreased by the roots while for Cd there was still an increase in root uptake. Analysing translocation with this concentration of chelator, a decreased metal content in the upper organs for both metals was observed. While for Cd an optimal concentration of 25microM of citric acid was observed for phytoremediative processes, for nickel neither concentrations of chelator showed advantages for application in this remediative method. PMID:17585999

  5. Degradation mechanisms of nylon separator materials for a nickel-cadmium cell in KOH electrolytes

    SciTech Connect

    Lim, H.S.; Margerum, J.D.; Verzwyvelt, S.A.; Lackner, A.M.; Knechtli, R.C.

    1989-03-01

    Degradation reactions of a nylon 6 battery separator material have been studied in 4-34% aqueous KOH electrolytes at 35/sup 0/-110/sup 0/C. In a Ni/Cd cell, this degradation involves a slow hydrolysis reaction followed by fast electrochemical oxidations of the hydrolysis reaction products. Arrhenius activation energy of the hydrolysis reaction in 34% KOH was 20.0 +- 0.3 kcal/mole. A plot of the hydrolysis rate at 100/sup 0/C vs. hydroxyl ion concentration gave a rate maximum at about 16% KOH, and the mechanism for this effect is discussed. Electrochemical oxidations of the hydrolysis product, 6-aminocaproate ion, appear to proceed rapidly in several sequential steps at a nickel oxide electrode. In a Ni/Cd cell, the combination of nylon separator hydrolysis followed by electrochemical oxidation of the products can seriously degrade the battery lifetime. The rate of the hydrolysis of nylon 66 separator material was approximately one half of that of the nylon 6 material.

  6. Phytostabilization of nickel by the zinc and cadmium hyperaccumulator Solanum nigrum L. Are metallothioneins involved?

    PubMed

    Ferraz, Pedro; Fidalgo, Fernanda; Almeida, Agostinho; Teixeira, Jorge

    2012-08-01

    Some heavy metals (HM) are highly reactive and consequently can be toxic to living cells when present at high levels. Consequently, strategies for reducing HM toxicity in the environmental must be undertaken. This work focused on evaluating the Nickel (Ni) accumulation potential of the hyperaccumulator Solanum nigrum L., and the participation of metallothioneins (MT) in the plant Ni homeostasis. Metallothioneins (MT) are gene-encoded metal chelators that participate in the transport, sequestration and storage of metals. After different periods of exposure to different Ni concentrations, plant biometric and biochemical parameters were accessed to determine the effects caused by this pollutant. Semi-quantitative RT-PCR reactions were performed to investigate the specific accumulation of MT-related transcripts throughout the plant and in response to Ni exposure. The data obtained revealed that Ni induced toxicity symptoms and accumulated mostly in roots, where it caused membrane damage in the shock-treated plants, with a parallel increase of free proline content, suggesting that proline participates in protecting root cells from oxidative stress. The MT-specific mRNA accumulation analysis showed that MT2a- and MT2d-encoding genes are constitutively active, that Ni stimulated their transcript accumulation, and also that Ni induced the de novo accumulation of MT2c- and MT3-related transcripts in shoots, exerting no influence on MT1 mRNA accumulation. These results strongly suggest the involvement of MT2a, MT2c, MT2d and MT3 in S. nigrum Ni homeostasis and detoxification, this way contributing to the clarification of the roles the various types of MTs play in metal homeostasis and detoxification in plants. PMID:22763093

  7. Uptake and transport of radioactive nickel and cadmium into three vegetables after wet aerial contamination.

    PubMed

    Fismes, Joëlle; Echevarria, Guillaume; Leclerc-Cessac, Elisabeth; Morel, Jean Louis

    2005-01-01

    Knowledge of radionuclide or trace element retention and translocation to plants following an aerial contamination event, for example, sprinkling with contaminated water, is necessary for the evaluation of human exposure through consumption of contaminated vegetables. The fate of 63Ni and 109Cd in all plant parts of three different vegetables after wet deposition on leaves or on fruits was studied. Lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), and bean (Phaseolus vulgaris L.) grown under controlled conditions in a growth chamber were contaminated with 63Ni and 109Cd either on leaves, by means of two different contamination methods (a single early contamination and a repetitive one), or on bean husks (third contamination method: a single contamination at a late stage). Spiked and nonspiked organs were harvested at maturity and radionuclide contents were measured. The fraction retained was on average 56% of the initially administered doses of 63Ni and 87% of 109Cd. The leaf-to-other organ translocation factor was considerably higher for 63Ni (on average 43% of retained radioactivity) than for 109Cd (8%). Nickel-63 migrated throughout the whole plant following foliar contamination, and mainly toward young leaves, seeds in formation, and sink organs, whereas 109Cd migrated to a much lesser extent and only to the organs that were closest to the spiked one, and not at all into fruit. After a fruit contamination event, both radionuclides were translocated into the seeds of spiked fruits. Radionuclide retention and translocation were not affected by plant species, but principally by the type of organ contaminated. PMID:16091602

  8. A review of nickel hydrogen battery technology

    SciTech Connect

    Smithrick, J.J.; Odonnell, P.M.

    1995-05-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market.

  9. Determination of copper, nickel, cobalt, silver, lead, cadmium, and mercury ions in water by solid-phase extraction and the RP-HPLC with UV-Vis detection.

    PubMed

    Hu, Qiufen; Yang, Guangyu; Zhao, Yiyun; Yin, Jiayuan

    2003-03-01

    A new method for the simultaneous determination of seven heavy metal ions in water by solid-phase extraction and reversed-phase high-performance liquid chromatography (RP-HPLC) was developed. The copper, nickel, cobalt, silver, lead, cadmium, and mercury ions were pre-column derivatized with tetra( m-aminophenyl)porphyrin (T m-APP) to form colored chelates. The metal-T m-APP chelates in 100 mL of sample were preconcentrated to 1 mL by solid-phase extraction with a C(18 )cartridge; an enrichment factor of 100 was achieved. The chelates were separated on a Waters Xterra()RP(18) column by gradient elution with methanol (containing 0.05 mol L(-1) pyrrolidine-acetic acid buffer salt, pH 10.0) and acetone (containing 0.05 mol L(-1) pyrrolidine-acetic acid buffer salt, pH 10.0) as mobile phase at a flow rate of 1.0 mL min(-1) and detected with a photodiode array detector. The detection limits of copper, cobalt, nickel, silver, lead, cadmium, and mercury are 2, 2, 3, 4, 3, 3, and 3 ng L(-1), respectively, in the original sample. The method was also applied to the determination of these metals in water with good results. PMID:12664186

  10. The 1996 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1997-01-01

    The 1996 Workshop was held on three consecutive days and was divided into five sessions. The first day consisted of a General Primary Battery Session and a Nickel-Hydrogen Battery On-Orbit Reconditioning Experience Focused Session. The second day consisted of a Nickel-Hydrogen Session and a Nickel-Cadmium Session. The third and final day was devoted to an Other Secondary Technologies Session which covered sodium-sulfur, nickel-zinc, nickel-metal hydride, and lithium ion technologies.

  11. Accelerated cycle life performance for ovonic nickel-metal hydride cells

    NASA Technical Reports Server (NTRS)

    Otzinger, Burton M.

    1991-01-01

    Nickel-Metal Hydride (Ni-MH) rechargeable batteries have emerged as the leading candidate for commercial replacement of nickel-cadmium (Ni-Cd) batteries. An important incentive is that the Ni-MH cell provides approximately twice the capacity of a Ni-Cd cell for a given size. A six-cell battery was committed to an accelerated cycle life test to determine the effect of separation type on performance. Results of the test may also show the Ni-MH battery to be a replacement candidate for the aerospace Ni-Cd battery.

  12. Evaluation program for secondary spacecraft cells: Initial evaluation tests of Eagle-Picher Industries, Incorporated 6.0 ampere-hour, nickel-cadmium spacecraft cells for separator material evaluation

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1975-01-01

    Several groups of nickel cadmium cells were tested for the durability of their separator materials. The cells were rated at 6.0 ampere-hours, and contained double ceramic seals. Two cells in each group were fitted with pressure gauge assemblies. Results are presented for various brands of separator materials.

  13. Aerospace Community. Aerospace Education I.

    ERIC Educational Resources Information Center

    Mickey, V. V.

    This book, one in the series on Aerospace Education I, emphasizes the two sides of aerospace--military aerospace and civilian aerospace. Chapter 1 includes a brief discussion on the organization of Air Force bases and missile sites in relation to their missions. Chapter 2 examines the community services provided by Air Force bases. The topics…

  14. Nickel hydrogen batteries: An overview

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Odonnell, Patricia M.

    1994-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A LeRC innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass,volume, and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a reduction in

  15. Modification of Chitin with Kraft Lignin and Development of New Biosorbents for Removal of Cadmium(II) and Nickel(II) Ions

    PubMed Central

    Wysokowski, Marcin; Klapiszewski, Łukasz; Moszyński, Dariusz; Bartczak, Przemysław; Szatkowski, Tomasz; Majchrzak, Izabela; Siwińska-Stefańska, Katarzyna; Bazhenov, Vasilii V.; Jesionowski, Teofil

    2014-01-01

    Novel, functional materials based on chitin of marine origin and lignin were prepared. The synthesized materials were subjected to physicochemical, dispersive-morphological and electrokinetic analysis. The results confirm the effectiveness of the proposed method of synthesis of functional chitin/lignin materials. Mechanism of chitin modification by lignin is based on formation of hydrogen bonds between chitin and lignin. Additionally, the chitin/lignin materials were studied from the perspective of waste water treatment. The synthetic method presented in this work shows an attractive and facile route for producing low-cost chitin/lignin biosorbents with high efficiency of nickel and cadmium adsorption (88.0% and 98.4%, respectively). The discovery of this facile method of synthesis of functional chitin/lignin materials will also have a significant impact on the problematic issue of the utilization of chitinous waste from the seafood industry, as well as lignin by-products from the pulp and paper industry. PMID:24727394

  16. Modification of chitin with kraft lignin and development of new biosorbents for removal of cadmium(II) and nickel(II) ions.

    PubMed

    Wysokowski, Marcin; Klapiszewski, Łukasz; Moszyński, Dariusz; Bartczak, Przemysław; Szatkowski, Tomasz; Majchrzak, Izabela; Siwińska-Stefańska, Katarzyna; Bazhenov, Vasilii V; Jesionowski, Teofil

    2014-04-01

    Novel, functional materials based on chitin of marine origin and lignin were prepared. The synthesized materials were subjected to physicochemical, dispersive-morphological and electrokinetic analysis. The results confirm the effectiveness of the proposed method of synthesis of functional chitin/lignin materials. Mechanism of chitin modification by lignin is based on formation of hydrogen bonds between chitin and lignin. Additionally, the chitin/lignin materials were studied from the perspective of waste water treatment. The synthetic method presented in this work shows an attractive and facile route for producing low-cost chitin/lignin biosorbents with high efficiency of nickel and cadmium adsorption (88.0% and 98.4%, respectively). The discovery of this facile method of synthesis of functional chitin/lignin materials will also have a significant impact on the problematic issue of the utilization of chitinous waste from the seafood industry, as well as lignin by-products from the pulp and paper industry. PMID:24727394

  17. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Michaud, Vince

    2015-01-01

    NASA Aerospace Medicine overview - Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.

  18. Real and potential nickel hydrogen superiority

    NASA Technical Reports Server (NTRS)

    Betz, F. E.

    1983-01-01

    Events from the development and orbital flight experience with a nickel hydrogen battery are described. The events highlight characteristics of nickel hydrogen which afford superior capability in overcharge, overdischarge and state of charge evaluation, when compared to the nickel cadmium electrochemical system. Some developments in nickel hydrogen technology that provide the potential of furthering nickel hydrogen superiority for satellite applications are also discussed.

  19. Synthesis, structure and antifungal activity of thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) and nickel(II), copper(II) and cadmium(II) complexes: unsymmetrical coordination mode of nickel complex.

    PubMed

    Alomar, Kusaï; Landreau, Anne; Allain, Magali; Bouet, Gilles; Larcher, Gérald

    2013-09-01

    The reaction of nickel(II), copper(II) chlorides and cadmium(II) chloride and bromide with thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) (2,3BTSTCH2) leads to a series of new complexes: [Ni(2,3BTSTCH)]Cl, [Cu(2,3BTSTC)], [CdCl2(2,3BTSTCH2)] and [CdBr2(2,3BTSTCH2)]. The crystal structures of the ligand and of [Ni(2,3BTSTCH)]Cl complex have been determined. In this case, we remark an unusual non-symmetrical coordination mode for the two functional groups: one acting as a thione and the second as a deprotonated thiolate. All compounds have been tested for their antifungal activity against human pathogenic fungi: Candida albicans, Candida glabrata and Aspergillus fumigatus, the cadmium complexes exhibit the highest antifungal activity. Cytotoxicity was evaluated using two biological methods: human MRC5 cultured cells and brine shrimp Artemia salina bioassay. PMID:23792913

  20. Silver and lanthanum as effective modifiers in trace determination of cadmium in nickel-base alloys by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Tsai, Suh-Jen Jane; Chang, Li-Lin; Chang, Shiow-Ing

    1997-01-01

    Trace cadmium in nickel-base superalloys was determined by a stabilized temperature platform furnace using atomic absorption spectrometry with a deuterium arc background correction system. The volatility of cadmium limits the pyrolysis temperature. This prevents the removal of the interfering alloy matrix at the thermal pretreatment step. Hence, an enormously high background signal has been observed. Chemical modifiers including ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2pyridylazo)resorcinol, 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol, Triton-X 100, EDTA, potassium nitrate, palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, lanthanum oxide, lanthanum chloride and silver nitrate have been studied. Matrix interferences were effectively reduced by silver and lanthanum. The 100-300°C increase in the pyrolysis temperature effectively reduced the non-specific absorption from the alloy matrix. Interferences from foreign ions were also investigated. The merit of the proposed method was increased by the excellent agreement between the certified and the experimental values of Cd in the standard reference material, IN100, and the recovery obtained (100-104%). The precision of six successive replicate measurements was 4.9% with Ag modifier and 2.5% with La modifier, respectively. The results of analysing Tracealloy B were also satisfactory.

  1. Aerospace energy systems laboratory: Requirements and design approach

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    The NASA Ames-Dryden Flight Research Facility at Edwards, California, operates a mixed fleet of research aircraft employing nickel-cadmium (NiCd) batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has developed over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.

  2. Welding and brazing of nickel and nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mortland, J. E.; Evans, R. M.; Monroe, R. E.

    1972-01-01

    The joining of four types of nickel-base materials is described: (1) high-nickel, nonheat-treatable alloys, (2) solid-solution-hardening nickel-base alloys, (3) precipitation-hardening nickel-base alloys, and (4) dispersion-hardening nickel-base alloys. The high-nickel and solid-solution-hardening alloys are widely used in chemical containers and piping. These materials have excellent resistance to corrosion and oxidation, and retain useful strength at elevated temperatures. The precipitation-hardening alloys have good properties at elevated temperature. They are important in many aerospace applications. Dispersion-hardening nickel also is used for elevated-temperature service.

  3. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 2, Part 3; Appendices

    NASA Technical Reports Server (NTRS)

    Jung, David S,; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume II Appendices to Part 3 - Volume I.

  4. Effects of Cadmium on Nickel Tolerance and Accumulation in Alyssum species and Cabbage Grown in Nutrient Solution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nickel phytoextraction using hyperaccumulator plant species to accumulate Ni from mineralized and contaminated soils rich in Ni is an emerging technology. Serpentinite derived soils which contain Ni ore value have a very low ratio of Ca:Mg among soils due the nature of the parent rock. In crop plant...

  5. Nickel hydrogen cells, an historic overview

    NASA Technical Reports Server (NTRS)

    Miller, L.

    1981-01-01

    The development of the nickel hydrogen battery system was primarily for replacement of the nickel cadmium battery and for space power systems. A chronological review of the major events and milestones leading up to the current system status is summarized.

  6. An Overview of the NASA Aerospace Flight Battery Systems Program

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2003-01-01

    The NASA Aerospace Flight Battery Systems Program is an agency-wide effort aimed at ensuring the quality, safety, reliability and performance of flight battery systems for NASA applications. The program provides for the validation of primary and secondary cell and battery level technology advances to ensure their availability and readiness for use in NASA missions. It serves to bridge the gap between the development of technology advances and the realization and incorporation of these advances into mission applications. The program is led by the Glenn Research Center and involves funded task activities at each of the NASA mission centers and JPL. The overall products are safe, reliable, high quality batteries for mission applications. The products are defined along three product lines: 1. Battery Systems Technology - Elements of this task area cover the systems aspects of battery operation and generally apply across chemistries. This includes the development of guidelines documents, the establishment and maintenance of a central battery database that serves a central repository for battery characterization and verification test data from tests performed under the support of this program, the NASA Battery Workshop, and general test facility support. 2. Secondary Battery Technology - l h s task area focuses on the validation of battery technology for nickel-cadmium, nickel-hydrogen, nickel-metal-hydride and lithium-ion secondary battery systems. Standardized test regimes are used to validate the quality of a cell lot or cell design for flight applications. In this area, efforts are now concentrated on the validation and verification of lithium-ion battery technology for aerospace applications. 3. Primary Battery Technology - The safety and reliability aspects for primary lithium battery systems that are used in manned operations on the Shuttle and International Space Station are addressed in the primary battery technology task area. An overview of the task areas

  7. Lithium-Ion Polymer Rechargeable Battery Developed for Aerospace and Military Applications

    NASA Technical Reports Server (NTRS)

    Hagedorn, orman H.

    1999-01-01

    A recently completed 3 -year project funded by the Defense Advanced Research Projects Agency (DARPA) under the Technology Reinvestment Program has resulted in the development and scaleup of new lithium-ion polymer battery technology for military and aerospace applications. The contractors for this cost-shared project were Lockheed Martin Missiles & Space and Ultralife Batteries, Inc. The NASA Lewis Research Center provided contract management and technical oversight. The final products of the project were a portable 15-volt (V), 10-ampere-hour (A-hr) military radio battery and a 30-V, 50-A-hr marine/aerospace battery. Lewis will test the 50-A-hr battery. The new lithium-ion polymer battery technology offers a threefold or fourfold reduction in mass and volume, relative to today s commonly used nickel-cadmium, nickel-hydrogen, and nickel-metal hydride batteries. This is of special importance for orbiting satellites. It has been determined for a particular commercial communications satellite that the replacement of 1 kg of battery mass with 1 kg of transponder mass could increase the annual revenue flow by $100 000! Since this lithium-ion polymer technology offers battery mass reductions on the order of hundreds of kilograms for some satellites, the potential revenue increases are impressive.

  8. Trends in aerospace structures

    NASA Technical Reports Server (NTRS)

    Card, M. F.

    1978-01-01

    Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.

  9. Military Aerospace. Aerospace Education II.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is a revised publication in the series on Aerospace Education II. It describes the employment of aerospace forces, their methods of operation, and some of the weapons and equipment used in combat and combat support activities. The first chapter describes some of the national objectives and policies served by the Air Force in peace and…

  10. Aerospace Environment. Aerospace Education I.

    ERIC Educational Resources Information Center

    Savler, D. S.; Smith, J. C.

    This book is one in the series on Aerospace Education I. It briefly reviews current knowledge of the universe, the earth and its life-supporting atmosphere, and the arrangement of celestial bodies in outer space and their physical characteristics. Chapter 1 includes a brief survey of the aerospace environment. Chapters 2 and 3 examine the…

  11. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri.

    PubMed

    Cornu, Jean-Yves; Deinlein, Ulrich; Höreth, Stephan; Braun, Manuel; Schmidt, Holger; Weber, Michael; Persson, Daniel P; Husted, Søren; Schjoerring, Jan K; Clemens, Stephan

    2015-04-01

    Elevated nicotianamine synthesis in roots of Arabidopsis halleri has been established as a zinc (Zn) hyperaccumulation factor. The main objective of this study was to elucidate the mechanism of nicotianamine-dependent root-to-shoot translocation of metals. Metal tolerance and accumulation in wild-type (WT) and AhNAS2-RNA interference (RNAi) plants were analysed. Xylem exudates were subjected to speciation analysis and metabolite profiling. Suppression of root nicotianamine synthesis had no effect on Zn and cadmium (Cd) tolerance but rendered plants nickel (Ni)-hypersensitive. It also led to a reduction of Zn root-to-shoot translocation, yet had the opposite effect on Ni mobility, even though both metals form coordination complexes of similar stability with nicotianamine. Xylem Zn concentrations were positively, yet nonstoichiometrically, correlated with nicotianamine concentrations. Two fractions containing Zn coordination complexes were detected in WT xylem. One of them was strongly reduced in AhNAS2-suppressed plants and coeluted with (67) Zn-labelled organic acid complexes. Organic acid concentrations were not responsive to nicotianamine concentrations and sufficiently high to account for complexing the coordinated Zn. We propose a key role for nicotianamine in controlling the efficiency of Zn xylem loading and thereby the formation of Zn coordination complexes with organic acids, which are the main Zn ligands in the xylem but are not rate-limiting for Zn translocation. PMID:25545296

  12. Effect of pre-exposure to cadmium and silver on nickel induced toxic manifestations in mice: Possible role of ceruloplasmin and metallothionein

    SciTech Connect

    Srivastava, R.C.; Husain, M.M.; Srivastava, S.K.; Hasan, S.K.; Lai, A.

    1995-05-01

    Recent studies from our laboratory and elsewhere have provided strong evidence for the involvement of reactive oxygen species (ROS) in nickel (Ni) toxicity. The toxic manifestations of Ni are further evident from animal studies where it caused significant depletion in serum ceruloplasmin (CP) activity. CP has been implicated in a variety of crucially important cellular functions including its role in the protection against oxidative damage and as a carrier for the transport of essential metals. Since there is a lack of information about its role in Ni toxicity, an attempt was made to evaluate its implication(s) during Ni exposure. Administration of cadmium chloride (CdCl{sub 2}) or silver nitrate (AgNO{sub 3}) in mice respectively enhance or deplete the activity of serum SP. Besides, both the salts induce metallothioneins (MT), which also serve as an efficient scavenger of ROS. We therefore, studied the effect of Cd and Ag under various predisposing conditions on the protection against Ni-mediated toxic manifestations by evaluating (i) hepatic lipid peroxidation (ii) Ni content in target tissues and (iii) mortality in mice. Our results demonstrate that Cd pretreatment(s) provided significant protection against Ni-mediated toxic responses and reflect the possible interplay of the induced levels of CP and MT. 19 refs., 2 figs., 2 tabs.

  13. Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light.

    PubMed

    Yan, Zhiping; Sun, Zijun; Liu, Xiang; Jia, Hongxing; Du, Pingwu

    2016-02-28

    Photocatalytic hydrogen production from water in a noble-metal-free system has attracted much attention in recent years. Herein we report on the use of core/shell cadmium sulfide/graphitic carbon nitride (CdS/g-C3N4) heterojunction nanorods modified by nickel hydroxide (Ni(OH)2) as a highly efficient photocatalyst for visible light-driven hydrogen production from water. Due to efficient separation of the photoexcited charge carriers in the CdS/g-C3N4 core/shell nanorods and the synergistic effect of Ni(OH)2, the optimal hydrogen evolution rate over Ni(OH)2-CdS/g-C3N4 is 115.18 μmol h(-1) mg(-1) under visible light irradiation (λ > 420 nm), which is ∼26 times higher than the CdS/g-C3N4 nanorod composite without Ni(OH)2 and ∼7 times better than the 0.5 wt% Pt-CdS/g-C3N4 nanorod composite. The apparent quantum efficiency is ∼16.7% at an excitation of 450 nm. During photocatalysis, no degradation of Ni(OH)2 was observed based on the XPS data, indicating that it is a robust cocatalyst. Moreover, the present photocatalyst showed excellent photocatalytic stability for hydrogen production and the turnover number (TON) reached ∼24,600 over 90 hours. PMID:26862011

  14. Nickel-Hydrogen Batteries - An Overview

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; ODonnell, Patricia M.

    1996-01-01

    This article on nickel-hydrogen batteries is an overview of the various nickel-hydrogen battery design options, technical accomplishments, validation test results, and trends. There is more than one nickel-hydrogen battery design, each having its advantage for specific applications. The major battery designs are Individual Pressure Vessel (IPV), Common Pressure Vessel (CPV), bipolar, and low-pressure metal hydride. State-of-the-art nickel-hydrogen batteries are replacing nickel-cadmium batteries in almost all geosynchronous Earth orbit applications requiring power above 1 kW. However, for the more severe Low-Earth Orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000-10,000 cycles at 60 - 80 % DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel-hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep Depths of Discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low-cost satellites. Hence, the challenge is to reduce battery mass, volume, and cost. A key is to develop a lightweight nickel electrode and alternate battery designs. A CPV nickel-hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume, and manufacturing costs. A 10-A-h CPV battery has successfully provided power on the relatively short-lived Clementine spacecraft. A bipolar nickel -hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 % DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high-pulse power capability. A low-pressure aerospace nickel-metal-hydride battery cell has been developed and is on the market. It is a prismatic design that has the advantage of a significant reduction in volume and a reduction in manufacturing cost.

  15. A review of nickel hydrogen battery technology

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  16. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation.

    PubMed

    Wang, Jiu-Ju; Li, Zhi-Jun; Li, Xu-Bing; Fan, Xiang-Bing; Meng, Qing-Yuan; Yu, Shan; Li, Cheng-Bo; Li, Jia-Xin; Tung, Chen-Ho; Wu, Li-Zhu

    2014-05-01

    Natural photosynthesis offers the concept of storing sunlight in chemical form as hydrogen (H2), using biomass and water. Herein we describe a robust artificial photocatalyst, nickel-hybrid CdS quantum dots (Nih-CdS QDs) made in situ from nickel salts and CdS QDs stabilized by 3-mercaptopropionic acid, for visible-light-driven H2 evolution from glycerol and water. With visible light irradiation for 20 h, 403.2 μmol of H2 was obtained with a high H2 evolution rate of approximately 74.6 μmol h(-1)  mg(-1) and a high turnover number of 38 405 compared to MPA-CdS QDs (mercaptopropionic-acid-stabilized CdS quantum dots). Compared to CdTe QDs and CdSe QDs, the modified CdS QDs show the greatest affinity toward Ni(2+) ions and the highest activity for H2 evolution. X-ray photoelectron spectroscopy (XPS), inductively-coupled plasma atomic emission spectrometry (ICP-AES), and photophysical studies reveal the chemical nature of the Nih-CdS QDs. Electron paramagnetic resonance (EPR) and terephthalate fluorescence measurements clearly demonstrate water splitting to generate ⋅OH radicals. The detection of DMPO-H and DMPO-C radicals adduct in EPR also indicate that ⋅H radicals and ⋅C radicals are the active species in the catalytic cycle. PMID:24692310

  17. Aerospace Technology.

    ERIC Educational Resources Information Center

    Paschke, Jean; And Others

    1991-01-01

    Describes the Sauk Rapids (Minnesota) High School aviation and aerospace curriculum that was developed by Curtis Olson and the space program developed by Gerald Mayall at Philadelphia's Northeast High School. Both were developed in conjunction with NASA. (JOW)

  18. Cadmium(II), nickel(II), and zinc(II) complexes of vacataporphyrin: a variable annulene conformation inside a standard porphyrin frame.

    PubMed

    Pacholska-Dudziak, Ewa; Skonieczny, Janusz; Pawlicki, Miłosz; Szterenberg, Ludmiła; Latos-Grazyński, Lechosław

    2005-11-28

    5,10,15,20-Tetraaryl-21-vacataporphyrin, 1 (butadieneporphyrin, annulene-porphyrin hybrid), which contains a vacant space instead of heteroatomic bridge, gives diamagnetic zinc(II) 1-ZnCl and cadmium(II) 1-CdCl and paramagnetic nickel(II) 1-NiCl complexes. A metal ion is bound in the macrocyclic cavity by three pyrrolic nitrogens. Coordination imposes a steric constraint on the geometry of the ligand and leads to two stereoisomers with a butadiene fragment oriented toward 1-MCl-i or outward 1-MCl-o of the macrocyclic center. 1-CdCl-o, 1-ZnCl-o, and the free base share a common 1H NMR spectral pattern as the basic structural features of 1 are preserved after metal ion insertion. The 1H NMR spectra of 1-CdCl-i and 1-ZnCl-i reflect a decrease of aromaticity accounted for by the inverted butadiene geometry. The proximity of the butadiene fragment to the metal ion induces direct couplings between the spin-active nucleus of the metal ((111/113)Cd) and the adjacent 1H nuclei of butadiene. The pattern of chemical shifts detected for isomeric 1-NiCl-i and 1-NiCl-o is typical for high-spin nickel(II) complexes of porphyrin analogues. Resonances 2,3-H of 1-NiCl-o or 1-NiCl-i present the chemical shift typical for the beta-H pyrrolic position despite the vacancy in the location of nitrogen-21. Coordination of imidazole, methanol-d4, acetonitrile-d3, or chloride converts 1-NiCl-i and 1-NiCl-o into distinct species which contain two axial ligands: 1-Ni(Im)2+; 1-Ni(CD3OD)2+; 1-Ni(CD3CN)2+; 1-Ni(Cl)2-. The density functional theory (DFT) has been applied to model the molecular and electronic structure of feasible 1-CdCl stereoisomers. The total energies calculated using the B3LYP/LANL2DZ approach demonstrate a very small energy difference (2.3 kcal/mol) between 1-CdCl-o and 1-CdCl-i stereoisomers consistent with their concurrent formation. PMID:16296834

  19. Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light

    NASA Astrophysics Data System (ADS)

    Yan, Zhiping; Sun, Zijun; Liu, Xiang; Jia, Hongxing; Du, Pingwu

    2016-02-01

    Photocatalytic hydrogen production from water in a noble-metal-free system has attracted much attention in recent years. Herein we report on the use of core/shell cadmium sulfide/graphitic carbon nitride (CdS/g-C3N4) heterojunction nanorods modified by nickel hydroxide (Ni(OH)2) as a highly efficient photocatalyst for visible light-driven hydrogen production from water. Due to efficient separation of the photoexcited charge carriers in the CdS/g-C3N4 core/shell nanorods and the synergistic effect of Ni(OH)2, the optimal hydrogen evolution rate over Ni(OH)2-CdS/g-C3N4 is 115.18 μmol h-1 mg-1 under visible light irradiation (λ > 420 nm), which is ~26 times higher than the CdS/g-C3N4 nanorod composite without Ni(OH)2 and ~7 times better than the 0.5 wt% Pt-CdS/g-C3N4 nanorod composite. The apparent quantum efficiency is ~16.7% at an excitation of 450 nm. During photocatalysis, no degradation of Ni(OH)2 was observed based on the XPS data, indicating that it is a robust cocatalyst. Moreover, the present photocatalyst showed excellent photocatalytic stability for hydrogen production and the turnover number (TON) reached ~24 600 over 90 hours.Photocatalytic hydrogen production from water in a noble-metal-free system has attracted much attention in recent years. Herein we report on the use of core/shell cadmium sulfide/graphitic carbon nitride (CdS/g-C3N4) heterojunction nanorods modified by nickel hydroxide (Ni(OH)2) as a highly efficient photocatalyst for visible light-driven hydrogen production from water. Due to efficient separation of the photoexcited charge carriers in the CdS/g-C3N4 core/shell nanorods and the synergistic effect of Ni(OH)2, the optimal hydrogen evolution rate over Ni(OH)2-CdS/g-C3N4 is 115.18 μmol h-1 mg-1 under visible light irradiation (λ > 420 nm), which is ~26 times higher than the CdS/g-C3N4 nanorod composite without Ni(OH)2 and ~7 times better than the 0.5 wt% Pt-CdS/g-C3N4 nanorod composite. The apparent quantum efficiency is ~16.7% at an

  20. Lead, mercury, cadmium, chromium, nickel, copper, zinc, calcium, iron, manganese and chromium (VI) levels in Nigeria and United States of America cement dust.

    PubMed

    Ogunbileje, J O; Sadagoparamanujam, V-M; Anetor, J I; Farombi, E O; Akinosun, O M; Okorodudu, A O

    2013-03-01

    This study was aimed at investigating the relative abundance of heavy metals in cement dust from different cement dust factories in order to predict their possible roles in the severity of cement dust toxicity. The concentrations of total mercury (Hg), copper (Cu), chromium (Cr), cadmium (Cd), nickel (Ni), manganese (Mn), lead (Pb), iron (Fe) and chromium (VI) (Cr (VI)) levels in cement dust and clinker samples from Nigeria and cement dust sample from the United States of America (USA) were determined using graphite furnace atomic absorption (GFAAS), while Zn and Ca were measured by flame atomic absorption spectrophotometry (FAAS), and Cr (VI) by colorimetric method. Total Cu, Ni and Mn were significantly higher in cement dust sample from USA (p<0.05), also, both total Cr and Cr (VI) were 5.4-26 folds higher in USA cement dust compared with Nigeria cement dust or clinker (p<0.001). Total Cd was higher in both Nigeria cement dust and clinker (p<0.05 and p<0.001), respectively. Mercury was more in both Nigeria cement dust and clinker (p<0.05), while Pb was only significantly higher in clinker from Nigeria (p<0.001). These results show that cement dust contain mixture of metals that are known human carcinogens and also have been implicated in other debilitating health conditions. Additionally, it revealed that metal content concentrations are factory dependent. This study appears to indicate the need for additional human studies relating the toxicity of these metals and their health impacts on cement factory workers. PMID:23261125

  1. Acartia tonsa eggs as a biomonitor to evaluate bioavailability/toxicity of persistent contaminants in anoxic/sulfidic conditions: The case of cadmium and nickel.

    PubMed

    Sei, Sandra; Invidia, Marion; Giannetto, Marco; Gorbi, Gessica

    2016-10-01

    The evaluation of toxicity due to persistent pollutants in anoxic aquatic environments has met with various problems, as most test organisms can not withstand oxygen lack and exposure to free sulfide. We evaluated the suitability of the eggs of the brackish copepod Acartia tonsa for bioassays in anoxic/sulfidic conditions: when exposed to deep hypoxia and free sulfide, the eggs become quiescent and are able to resume hatching after restoring normoxic conditions. Tests with cadmium and nickel were performed in normoxic and deeply hypoxic conditions and in anoxic water containing H2S or H2S+FeSO4 on an equimolar basis. Active and quiescent eggs showed equivalent sensitivity to the metals, both suffering significant reductions in hatching success at 89μM Cd and 17μM Ni. As expected on the basis of the SEM/AVS model, Cd toxicity was almost completely suppressed in presence of sulfides. Dissolved Cd concentration drastically dropped and hatching success was generally >80%, as against values <6% observed in sulfide-free water, indicating that the applied experimental procedure can simulate metal-sulfide interaction. Ni toxicity was only slightly reduced by the presence of sulfides. High dissolved Ni concentrations were detected and mean hatching percentages were ≤32%, suggesting that Ni bioavailability/toxicity was only partially controlled by excess reactive sulfides. The results suggest that A. tonsa eggs could be a useful biomonitor to evaluate toxicity due persistent contaminants in anoxic conditions and the role of sulfides in reducing metal bioavailability/toxicity. PMID:27235834

  2. Diffusion Limitations in Root Uptake of Cadmium and Zinc, But Not Nickel, and Resulting Bias in the Michaelis Constant1[W][OA

    PubMed Central

    Degryse, Fien; Shahbazi, Afsaneh; Verheyen, Liesbeth; Smolders, Erik

    2012-01-01

    It has long been recognized that diffusive boundary layers affect the determination of active transport parameters, but this has been largely overlooked in plant physiological research. We studied the short-term uptake of cadmium (Cd), zinc (Zn), and nickel (Ni) by spinach (Spinacia oleracea) and tomato (Lycopersicon esculentum) in solutions with or without metal complexes. At same free ion concentration, the presence of complexes, which enhance the diffusion flux, increased the uptake of Cd and Zn, whereas Ni uptake was unaffected. Competition effects of protons on Cd and Zn uptake were observed only at a very large degree of buffering, while competition of magnesium ions on Ni uptake was observed even in unbuffered solutions. These results strongly suggest that uptake of Cd and Zn is limited by diffusion of the free ion to the roots, except at very high degree of solution buffering, whereas Ni uptake is generally internalization limited. All results could be well described by a model that combined a diffusion equation with a competitive Michaelis-Menten equation. Direct uptake of the complex was estimated to be a major contribution only at millimolar concentrations of the complex or at very large ratios of complex to free ion concentration. The true Km for uptake of Cd2+ and Zn2+ was estimated at <5 nm, three orders of magnitude smaller than the Km measured in unbuffered solutions. Published Michaelis constants for plant uptake of Cd and Zn likely strongly overestimate physiological ones and should not be interpreted as an indicator of transporter affinity. PMID:22864584

  3. Evaluation program for secondary spacecraft cells: Initial evaluation tests of General Electric Company 40.0 ampere hour nickel cadmium spacecraft cells for the tracking data relay satellite system

    NASA Technical Reports Server (NTRS)

    Hall, S. W.

    1980-01-01

    Average end of charge voltages and pressures, and capacity output in ampere hours are presented. Test limits specify those values at which a cell is to be terminated from charge or discharge. Requirements are based on past cell performance data. The requirement does not constitute a limit for discontinuance from testing. The nickel cadmium batteries were screened for internal shorts, low capacity, electrolyte leakage, or inability of any cell to recover its open circuit voltage above 1.150 volts during the internal short test.

  4. The 2000 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, J. C. (Compiler)

    2001-01-01

    This document contains the proceedings of the 33nd annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 14-16, 2000. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, lithium-ion, lithium-sulfur, and silver-zinc technologies.

  5. The 1998 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1999-01-01

    This document contains the proceedings of the 31st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on October 27-29, 1998. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, silver-hydrogen, nickel-metal hydride, and lithium-based technologies, as well as results from destructive physical analyses on various cell chemistries.

  6. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    This abstract describes the content of a presentation for ground rounds at Mt. Sinai School of Medicine. The presentation contains three sections. The first describes the history of aerospace medicine beginning with early flights with animals. The second section of the presentation describes current programs and planning for future missions. The third section describes the medical challenges of exploration missions.

  7. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry.

    PubMed

    Silva, Edson Luiz; Roldan, Paulo dos Santos; Giné, Maria Fernanda

    2009-11-15

    A procedure for simultaneous separation/preconcentration of copper, zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-114). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L(-1), 0.3 mL, 0.15% (w/v), 50 degrees C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n=9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0, and 6.3 microg L(-1), respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples. PMID:19646812

  8. Cadmium plating replacements

    SciTech Connect

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  9. Cadmium plating replacements

    NASA Technical Reports Server (NTRS)

    Nelson, Mary J.; Groshart, Earl C.

    1995-01-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  10. Adsorption Study on Moringa Oleifera Seeds and Musa Cavendish as Natural Water Purification Agents for Removal of Lead, Nickel and Cadmium from Drinking Water

    NASA Astrophysics Data System (ADS)

    Aziz, N. A. A.; Jayasuriya, N.; Fan, L.

    2016-07-01

    The effectiveness of plant based materials Moringa oleifera (Moringa) seeds and Musa cavendish (banana peel) for removing heavy metals namely lead (Pb), nickel (Ni) and cadmium (Cd) from contaminated groundwater was studied. Tests were carried out with individual and combined biomass at neutral pH condition on synthetic groundwater samples. The optimum biomass doses were determined as 200 mg/L for single biomass and 400 mg/L (in the ratio of 200 mg/L: 200 mg/L) for combined biomasses and used for adsorption isotherm studies with contact time of 30 minutes. Results showed that combined biomasses was able to met the Pb, Ni and Cd WHO standards from higher Pb, Ni and Cd initial concentrations which were up to 40 µg/L, 50 µg/L 9 µg/L, respectively compared to individual biomass of Moringa seed and banana peel. Moringa seeds exhibited the highest removal of Pb (81%) while the combined biomasses was most effective in removing Ni (74%) and Cd (97%) over wider their initial concentration ranges. The experimental data were linearized with Langmuir and Freundlich adsorption isotherm models. Freundlich model described the Pb adsorption better than the Langmuir model for all the tested biomasses. However, the Langmuir model fit better with the experimental data of Ni adsorption by Moringa seeds. Both models showed negligible differences in the coefficient of determination (R2) when applied for Ni and Cd adsorption on banana peel and combined biomasses, suggesting that there were multiple layers on the biomass interacting with the metals. Chemisorption is suggested to be involved in Pb adsorption for all tested biomasses as the value of nF calculated was lower than one. This type of adsorption could explain the phenomenon of different behavior of Pb removal and the higher Pb adsorption capacity (represented by KF values) compared to Ni and Cd. The study demonstrates that Moringa seeds, banana peel and their combination have the potential to be used as a natural alternative

  11. A simple method based on ICP-MS for estimation of background levels of arsenic, cadmium, copper, manganese, nickel, lead, and selenium in blood of the Brazilian population.

    PubMed

    Nunes, Juliana A; Batista, Bruno L; Rodrigues, Jairo L; Caldas, Naise M; Neto, Jose A G; Barbosa, Fernando

    2010-01-01

    Throughout the world, biomonitoring has become the standard for assessing exposure of individuals to toxic elements as well as for responding to serious environmental public health problems. However, extensive biomonitoring surveys require rapid and simple analytical methods. Thus, a simple and high-throughput method is proposed for the determination of arsenic (As), cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se) in blood samples by using inductively coupled plasma-mass spectrometry (ICP-MS). Prior to analysis, 200 microl of blood samples was mixed with 500 microl of 10% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 10 min, and subsequently diluted to 10 ml with a solution containing 0.05% w/v ethylenediamine tetraacetic acid (EDTA) + 0.005% v/v Triton X-100. After that, samples were directly analyzed by ICP-MS (ELAN DRC II). Rhodium was selected as an internal standard with matrix-matching calibration. Method detection limits were 0.08, 0.04, 0.5, 0.09, 0.12, 0.04, and 0.1 microg//L for As, Cd, Cu, Mn, Ni, Pb, and Se, respectively. Validation data are provided based on the analysis of blood samples from the trace elements inter-\\comparison program operated by the Institut National de Sante Publique du Quebec, Canada. Additional validation was provided by the analysis of human blood samples by the proposed method and by using electrothermal atomic absorption spectrometry (ETAAS). The method was subsequently applied for the estimation of background metal blood values in the Brazilian population. In general, the mean concentrations of As, Cd, Cu, Mn, Ni, Pb, and Se in blood were 1.1, 0.4, 890, 9.6, 2.1, 65.4, and 89.3 microg/L, respectively, and are in agreement with other global populations. Influences of age, gender, smoking habits, alcohol consumption, and geographical variation on the values were also considered. Smoking habits influenced the levels of Cd in blood. The levels of Cu, Mn, and Pb were

  12. Aerospace gerontology

    NASA Technical Reports Server (NTRS)

    Comfort, A.

    1982-01-01

    The relevancy of gerontology and geriatrics to the discipline of aerospace medicine is examined. It is noted that since the shuttle program gives the facility to fly passengers, including specially qualified older persons, it is essential to examine response to acceleration, weightlessness, and re-entry over the whole adult lifespan, not only its second quartile. The physiological responses of the older person to weightlessness and the return to Earth gravity are reviewed. The importance of the use of the weightless environment to solve critical problems in the fields of fundamental gerontology and geriatrics is also stressed.

  13. Factors Affecting Nickel-oxide Electrode Capacity in Nickel-hydrogen Cells

    NASA Technical Reports Server (NTRS)

    Ritterman, P. F.

    1984-01-01

    The nickel-oxide electrode common to the nickel hydrogen and nickel cadmium cell is by design the limiting or capacity determining electrode on both charge and discharge. The useable discharge capacity from this electrode, and since it is the limiting electrode, the useable discharge capacity of the cell as well, can and is optimized by rate of charge, charge temperature and additives to electrode and electrolyte. Recent tests with nickel hydrogen cells and tests performed almost 25 years ago with nickel cadmium cells indicate an improvement of capacity as a result of using increased electrolyte concentration.

  14. Basic Aerospace Education Library

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Lists the most significant resource items on aerospace education which are presently available. Includes source books, bibliographies, directories, encyclopedias, dictionaries, audiovisuals, curriculum/planning guides, aerospace statistics, aerospace education statistics and newsletters. (BR)

  15. Aerospace Education - An Overview

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Discusses the surge of interest throughout the country in aerospace education and discusses what aerospace education is, the implications in career education and the relevance of aerospace education in the curriculum. (BR)

  16. The 1971 NASA/Goddard-Aerospace Industry Battery Workshop, volume 2

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The proceedings of the final two sessions the conference on nickel-cadmium batteries are reported. The major subject areas covered in these two sessions include: (1) materials and pre-charge, and (2) thermal problems experienced with nickel-cadmium batteries.

  17. The 1994 27th Annual NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1995-01-01

    The proceedings of the 27th Annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 15-17, 1994 are presented. The workshop was attended by representatives from various government agencies, as well as contractors and manufacturers, both U.S. and abroad. The subjects covered included: (1) nickel-cadium; (2) nickel-hydrogen, (3) nickel-metal hydride, and (4) lithium based technologies, as well as flight and ground test data.

  18. Nickel cadmium battery performance modelling

    NASA Technical Reports Server (NTRS)

    Clark, K.; Halpert, G.; Timmerman, P.

    1989-01-01

    The development of a model to predict cell/battery behavior given databases of temperature is described. The model accommodates batteries of various structural as well as thermal designs. Cell internal design modifications can be accommodated as long as the databases reflect the cell's performance characteristics. Operational parameters can be varied to simulate any number of charge or discharge methods under any orbital regime. The flexibility of the model stems from the broad scope of input variables and allows the prediction of battery performance under simulated mission or test conditions.

  19. The Aerospace Age. Aerospace Education I.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is written for use only in the Air Force ROTC program and cannot be purchased on the open market. The book describes the historical development of aerospace industry. The first chapter contains a brief review of the aerospace environment and the nature of technological changes brought by the aerospace revolution. The following chapter…

  20. Development of a lightweight nickel electrode

    NASA Technical Reports Server (NTRS)

    Britton, D. L.; Reid, M. A.

    1984-01-01

    Nickel electrodes made using lightweight plastic plaque are about half the weight of electrodes made from state of the art sintered nickel plaque. This weight reduction would result in a significant improvement in the energy density of batteries using nickel electrodes (nickel hydrogen, nickel cadmium and nickel zinc). These lightweight electrodes are suitably conductive and yield comparable capacities (as high as 0.25 AH/gm (0.048 AH/sq cm)) after formation. These lightweight electrodes also show excellent discharge performance at high rates.

  1. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent.

    PubMed

    Yang, Guangyu; Fen, Weibo; Lei, Chun; Xiao, Weilie; Sun, Handong

    2009-02-15

    A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent was studied. Trace amounts of chromium, nickel, silver, cobalt, copper, cadmium and lead were reacted with 2-(2-quinolinil-azo)-4-methyl-1,3-dihydroxidobenzene (QAMDHB) followed by adsorption onto MCI GEL CHP 20Y solid phase extraction column, and 1.0molL(-1) HNO(3) was used as eluent. The metal ions in 300mL solution can be concentrated to 1.0mL, representing an enrichment factor of 300 was achieved. The recoveries of analytes at pH 8.0 with 1.0g of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 1.4ngL(-1) for Cr(III), 1.0ngL(-1) for Ni(II), 0.85ngL(-1) for Ag(I), 1.2ngL(-1) for Co(II), 1.0ngL(-1) for Cu(II), 1.2ngL(-1) for Cd(II) and 1.3ngL(-1) for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials, and the presented procedure was applied to the determination of analytes in biological, water and soil samples with good results (recoveries range from 89 to 104%, and R.S.D.% lower than 3.2%. The results agreed with the standard value or reference method). PMID:18562094

  2. Mineral commodity profiles: Cadmium

    USGS Publications Warehouse

    Butterman, W.C.; Plachy, Jozef

    2004-01-01

    Overview -- Cadmium is a soft, low-melting-point metal that has many uses. It is similar in abundance to antimony and bismuth and is the 63d element in order of crustal abundance. Cadmium is associated in nature with zinc (and, less closely, with lead and copper) and is extracted mainly as a byproduct of the mining and processing of zinc. In 2000, it was refined in 27 countries, of which the 8 largest accounted for two-thirds of world production. The United States was the third largest refiner after Japan and China. World production in 2000 was 19,700 metric tons (t) and U.S. production was 1,890 t. In the United States, one company in Illinois and another in Tennessee refined primary cadmium. A Pennsylvania company recovered cadmium from scrap, mainly spent nickel-cadmium (NiCd) batteries. The supply of cadmium in the world and in the United States appears to be adequate to meet future industrial needs; the United States has about 23 percent of the world reserve base.

  3. Mineral of the month: cadmium

    USGS Publications Warehouse

    Klimasauskas, Edward

    2005-01-01

    Cadmium, which was once used almost exclusively for pigments, now has many diverse applications. Cadmium’s low melting point, excellent electrical conductivity and resistance to corrosion make it valuable for many products including batteries, electroplated coatings, stabilizers for plastics, solar cells and nonferrous alloys. Today’s cadmium is primarily used in rechargeable batteries, accounting for about 78 percent of consumption in 2004. In 2000, an estimated 3.5 billion consumer batteries were sold in the United States, of which almost 10 percent were nickel-cadmium batteries.

  4. Characterization of physiochemical properties of polymeric and electrochemical materials for aerospace flight

    NASA Technical Reports Server (NTRS)

    Rock, M.; Kunigahalli, V.; Khan, S.; Mcnair, A.

    1984-01-01

    Nickel-cadmium rechargeable batteries are a vital and reliable energy storage source for aerospace applications. As the demand for longer life and more reliable space batteries increases, the understanding and solving of cell aging factors and mechanisms become essential. Over the years, many cell designs and manufacturing process changes have been developed and implemented. Cells fabricated with various design features were life cycled in a simulated low-Earth orbit regime. Following the test program, a comprehensive electrochemical analysis of cell components was undertaken to study cell degradation mechanisms. Discharge voltage degradation or voltage plateau has been observed during orbit cycling, but, its cause and explanation have been the subject of much discussion. A Hg/HgO reference electrode was used to monitor the reference versus each electrode potential during the discharge of a cycled cell. The results indicate that the negative electrode was responsible for the voltage plateau. Cell analysis revealed large crystals of cadmium hydroxide on the surface of the negative electrode and throughout the separator.

  5. Sealed nickel-zinc battery

    SciTech Connect

    Gibbard, H. F.; Menard, C. J.; Murray Jr., R. C.; Putt, R. A.; Valentine, T. W.

    1985-11-12

    A sealed, rechargeable nickel-zinc cell includes a zinc electrode active mass essentially free of zinc metal when at full discharge, a carboxylated styrene-butadiene binder retaining the zinc electrode mixture in a coherent structure, a predetermined amount of cadmium being included in the zinc electrode mixture, a separator preferably comprising at least two layers of material free of any adhesive binding the layers together and a wicking layer positioned between the nickel positive electrode and the separator.

  6. Nickel Hydrogen Battery Expert System

    NASA Astrophysics Data System (ADS)

    Johnson, Yvette B.; McCall, Kurt E.

    The Nickel Cadmium Battery Expert System-2, or 'NICBES-2', which was used by the NASA HST six-battery testbed, was subsequently converted into the Nickel Hydrogen Battery Expert System, or 'NICHES'. Accounts are presently given of this conversion process and future uses being contemplated for NICHES. NICHES will calculate orbital summary data at the end of each orbit, and store these files for trend analyses and rules-generation.

  7. Nickel-hydrogen bipolar battery systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1982-01-01

    Nickel-hydrogen cells are currently being manufactured on a semi-experimental basis. Rechargeable nickel-hydrogen systems are described that more closely resemble a fuel cell system than a traditional nickel-cadmium battery pack. This has been stimulated by the currently emerging requirements related to large manned and unmanned low earth orbit applications. The resultant nickel-hydrogen battery system should have a number of features that would lead to improved reliability, reduced costs as well as superior energy density and cycle lives as compared to battery systems constructed from the current state-of-the-art nickel-hydrogen individual pressure vessel cells.

  8. Cadmium recycling in the United States in 2000

    USGS Publications Warehouse

    Plachy, Jozef

    2003-01-01

    Recycling of cadmium is a young and growing industry that has been influenced by environmental concerns and regulatory constraints. Domestic recycling of cadmium began in 1989 as a byproduct of processing of spent nickel-cadmium batteries. In 1995, International Metals Reclamation Co. Inc. expanded its operations by building a dedicated cadmium recycling plant. In 2000, an estimated 13 percent of cadmium consumption in the United States was sourced from recycled cadmium, which is derived mainly from old scrap or, to lesser degree, new scrap. The easiest forms of old scrap to recycle are small spent nickel-cadmium batteries followed by flue dust generated during recycling of galvanized steel and small amounts of alloys that contain cadmium. Most of new scrap is generated during manufacturing processes, such as nickel-cadmium battery production. All other uses of cadmium are in low concentrations and, therefore, difficult to recycle. Consequently, much of this cadmium is dissipated and lost. The amount of cadmium in scrap that was unrecovered in 2000 was estimated to be 2,030 metric tons, and an estimated 285 tons was recovered. Recycling efficiency was estimated to be about 15 percent.

  9. Cadmium Recycling in the United States in 2000

    USGS Publications Warehouse

    Plachy, Jozef

    2003-01-01

    Recycling of cadmium is a young and growing industry that has been influenced by environmental concerns and regulatory constraints. Domestic recycling of cadmium began in 1989 as a byproduct of processing of spent nickel-cadmium batteries. In 1995, International Metals Reclamation Co. Inc. expanded its operations by building a dedicated cadmium recycling plant. In 2000, an estimated 13 percent of cadmium consumption in the United States was sourced from recycled cadmium, which is derived mainly from old scrap or, to lesser degree, new scrap. The easiest forms of old scrap to recycle are small spent nickel-cadmium batteries followed by flue dust generated during recycling of galvanized steel and small amounts of alloys that contain cadmium. Most of new scrap is generated during manufacturing processes, such as nickel-cadmium battery production. All other uses of cadmium are in low concentrations and, therefore, difficult to recycle. Consequently, much of this cadmium is dissipated and lost. The amount of cadmium in scrap that was unrecovered in 2000 was estimated to be 2,030 t, and an estimated 285 t was recovered. Recycling efficiency was estimated to be about 15 percent.

  10. Conservation of Strategic Aerospace Materials (COSAM)

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    Research efforts to reduce the dependence of the aerospace industry on strategic metals, such as cobalt (Co), columbium (Cb), tantalum (Ta), and chromium (Cr), by providing the materials technology needed to minimize the strategic metal content of critical aerospace components for gas turbine engines are addressed. Thrusts in three technology areas are identified: near term activities in the area of strategic element substitution; intermediate-range activities in the area of materials processing; and long term, high risk activities in the area of 'new classes' of high temprature metallic materials. Specifically, the role of cobalt in nickel-base and cobalt-base superalloys vital to the aerospace industry is examined along with the mechanical and physical properties of intermetallics that will contain a minimum of the stragetic metals.

  11. An Aerospace Workshop

    ERIC Educational Resources Information Center

    Hill, Bill

    1972-01-01

    Describes the 16-day, 10,000 mile national tour of the nation's major aerospace research and development centers by 65 students enrolled in Central Washington State College's Summer Aerospace Workshop. (Author/MB)

  12. Advances in lightweight nickel electrode technology

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine; Paul, Gary; Daugherty, Paul

    1989-01-01

    Studies are currently underway to further the development of lightweight nickel electrode technology. Work is focused primarily on the space nickel-hydrogen system and nickel-iron system but is also applicable to the nickel-cadmium and nickel-zinc systems. The goal is to reduce electrode weight while maintaining or improving performance, thereby increasing electrode energy density. Two basic electrode structures are being investigated. The first is the traditional nickel sponge produced from sintered nickel-carbonyl powder. The second is a new material for this application which consists of a non-woven mat of nickel fiber. Electrodes are being manufactured, tested, and evaluated at the electrode and cell level.

  13. Advances in lightweight nickel electrode technology

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine; Paul, Gary; Wheeler, James R.; Daugherty, Paul

    1989-01-01

    Studies are currently underway to further the development of lightweight nickel electrode technology. Work is focused primarily on the space nickel-hydrogen system and nickel-iron system but is also applicable to the nickel-cadmium and nickel-zinc systems. The goal is to reduce electrode weight while maintaining or improving performance thereby increasing electrode energy density. Two basic electrode structures are being investigated. The first is the traditional nickel sponge produced from sintered nickel-carbonyl powder and the second is a new material for this application which consists of a non-woven mat of nickel fiber. Electrodes are being manufactured, tested and evaluated at the electrode and cell level.

  14. Rechargeable nickel-zinc batteries

    NASA Technical Reports Server (NTRS)

    Soltis, D. G.

    1977-01-01

    Device proves superiority in having two and one half to three times the energy content of popular lead-zinc or nickel-cadmium batteries. Application to electric utility vehicles improved acceleration rate and nearly doubled driving range between rechargings. Unit contributes substantially toward realization of practical urban electrical automobiles.

  15. Temperature-controlled ionic liquid-based ultrasound-assisted microextraction for preconcentration of trace quantity of cadmium and nickel by using organic ligand in artificial saliva extract of smokeless tobacco products

    NASA Astrophysics Data System (ADS)

    Arain, Sadaf Sadia; Kazi, Tasneem Gul; Arain, Asma Jabeen; Afridi, Hassan Imran; Baig, Jameel Ahmed; Brahman, Kapil Dev; Naeemullah; Arain, Salma Aslam

    2015-03-01

    A new approach was developed for the preconcentration of cadmium (Cd) and nickel (Ni) in artificial saliva extract of dry snuff (brown and black) products using temperature-controlled ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (TIL-UDLLμE) followed by electrothermal atomic absorption spectrometry (ETAAS). The Cd and Ni were complexed with ammonium pyrrolidinedithiocarbamate (APDC), extracted in ionic liquid drops, 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6]. The multivariate strategy was applied to estimate the optimum values of experimental variables influence the % recovery of analytes by TIL-UDLLμE method. At optimum experimental conditions, the limit of detection (3s) were 0.05 and 0.14 μg L-1 while relative standard deviations (% RSD) were 3.97 and 3.55 for Cd and Ni respectively. After extraction, the enhancement factors (EF) were 87 and 79 for Cd and Ni, respectively. The RSD for six replicates of 10 μg L-1 Cd and Ni were 3.97% and 3.55% respectively. To validate the proposed method, certified reference material (CRM) of Virginia tobacco leaves was analyzed, and the determined values of Cd and Ni were in good agreement with the certified values. The concentration of Cd and Ni in artificial saliva extracts corresponds to 39-52% and 21-32%, respectively, of the total contents of both elements in dry brown and black snuff products.

  16. Temperature-controlled ionic liquid-based ultrasound-assisted microextraction for preconcentration of trace quantity of cadmium and nickel by using organic ligand in artificial saliva extract of smokeless tobacco products.

    PubMed

    Arain, Sadaf Sadia; Kazi, Tasneem Gul; Arain, Asma Jabeen; Afridi, Hassan Imran; Baig, Jameel Ahmed; Brahman, Kapil Dev; Naeemullah; Arain, Salma Aslam

    2015-03-01

    A new approach was developed for the preconcentration of cadmium (Cd) and nickel (Ni) in artificial saliva extract of dry snuff (brown and black) products using temperature-controlled ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (TIL-UDLLμE) followed by electrothermal atomic absorption spectrometry (ETAAS). The Cd and Ni were complexed with ammonium pyrrolidinedithiocarbamate (APDC), extracted in ionic liquid drops, 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6]. The multivariate strategy was applied to estimate the optimum values of experimental variables influence the % recovery of analytes by TIL-UDLLμE method. At optimum experimental conditions, the limit of detection (3s) were 0.05 and 0.14μgL(-1) while relative standard deviations (% RSD) were 3.97 and 3.55 for Cd and Ni respectively. After extraction, the enhancement factors (EF) were 87 and 79 for Cd and Ni, respectively. The RSD for six replicates of 10μgL(-1) Cd and Ni were 3.97% and 3.55% respectively. To validate the proposed method, certified reference material (CRM) of Virginia tobacco leaves was analyzed, and the determined values of Cd and Ni were in good agreement with the certified values. The concentration of Cd and Ni in artificial saliva extracts corresponds to 39-52% and 21-32%, respectively, of the total contents of both elements in dry brown and black snuff products. PMID:25523044

  17. The 1971 NASA/Goddard-Aerospace Industry Battery Workshop, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The proceedings are reported for the first two sessions of the conference on nickel-cadmium batteries. These two sessions were mainly devoted to discussions of: (1) separators and seals, and (2) cell performance and specification experience.

  18. Nickel-hydrogen bipolar battery system

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1982-01-01

    Rechargeable nickel-hydrogen systems are described that more closely resemble a fuel cell system than a traditional nickel-cadmium battery pack. This was stimulated by the currently emerging requirements related to large manned and unmanned low Earth orbit applications. The resultant nickel-hydrogen battery system should have a number of features that would lead to improved reliability, reduced costs as well as superior energy density and cycle lives as compared to battery systems constructed from the current state-of-the-art nickel-hydrogen individual pressure vessel cells.

  19. Supercomputing in Aerospace

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Yee, Helen

    1987-01-01

    Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics.

  20. Aerospace Applications of Microprocessors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An assessment of the state of microprocessor applications is presented. Current and future requirements and associated technological advances which allow effective exploitation in aerospace applications are discussed.

  1. Preliminary results: Root cause investigation of orbital anomalies and failures in NASA standard 50 ampere-hour nickel-cadmium batteries

    NASA Technical Reports Server (NTRS)

    Toft, Mark R.

    1993-01-01

    Two lots of NASA standard 50 A.H. Ni-Cd battery cells, manufactured by Gates Aerospace Batteries and built into batteries by McDonnell Douglas, have experienced significant performance problems. The two lots were used on the Compton Gamma Ray Observatory and the Upper Atmosphere Research Satellite. Both of these satellites are Low Earth Orbital (LEO) satellites containing batteries on a parallel bus charged to NASA standard V/T curves using a NASA standard power regulator. The following preliminary conclusions were reached: (1) several plate and cell parameters have migrated within their spec limits over the years (in some cases, from one extreme to the other); (2) several parametric relationships, not generally monitored and therefore not under specification control, have also migrated over the years; (3) many of these changes appear to have taken place as a natural consequence of changes in GE/GAB materials and processes; (4) several of these factors may be 'conspiring' to aggravate known cell failure mechanisms (factors such as heavier plate, less teflon and/or less-uniform teflon, and less electrolyte) but all are still in spec (where specs exist); (5) the weight of the evidence collected to characterize the anomalies and to characterize the negative electrode itself, strongly suggests that alterations to the structure, composition, uniformity, and efficiency of the negative electrode are at the heart of the battery performance problems currently being experienced; and (6) further investigation at all levels (plate, cell, battery, and system) continues to be warranted.

  2. Flight Weight Design Nickel-Hydrogen Cells Using Lightweight Nickel Fiber Electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.; Willis, Bob; Pickett, David F.

    2003-01-01

    The goal of this program is to develop a lightweight nickel electrode for advanced aerospace nickel-hydrogen cells and batteries with improved specific energy and specific volume. The lightweight nickel electrode will improve the specific energy of a nickel-hydrogen cell by >50%. These near-term advanced batteries will reduce power system mass and volume, while decreasing the cost, thus increasing mission capabilities and enabling small spacecraft missions. This development also offers a cost savings over the traditional sinter development methods for fabrication. The technology has been transferred to Eagle-Picher, a major aerospace battery manufacturer, who has scaled up the process developed at NASA GRC and fabricated electrodes for incorporation into flight-weight nickel-hydrogen cells.

  3. NASA's activities in the conservation of strategic aerospace materials

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1980-01-01

    The United States imports 50-100 percent of certain metals critical to the aerospace industry, namely, cobalt, columbium, chromium, and tantalum. In an effort to reduce this dependence on foreign sources, NASA is planning a program called Conservation of Strategic Aerospace Materials (COSAM), which will provide technology minimizing strategic metal content in the components of aerospace structures such as aircraft engines. With a proposed starting date of October 1981, the program will consist of strategic element substitution, process technology development, and alternate materials research. NASA's two-fold pre-COSAM studies center on, first, substitution research involving nickel-base and cobalt-base superalloys (Waspaloy, Udimet-700, MAE-M247, Rene 150, HA-188) used in turbine disks, low-pressure blades, turbine blades, and combustors; and, second, alternate materials research devoted initially to investigating possible structural applications of the intermetallic alloys nickel aluminide and iron aluminide.

  4. Aerospace - Aviation Education.

    ERIC Educational Resources Information Center

    Martin, Arthur I.; Jones, K. K.

    This document outlines the aerospace-aviation education program of the State of Texas. In this publication the course structures have been revised to fit the quarter system format of secondary schools in Texas. The four courses outlined here have been designed for students who will be consumers of aerospace products, spinoffs, and services or who…

  5. NASA's activities in the conservation of strategic aerospace materials

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1980-01-01

    The primary objective of the Conservation of Strategic Aerospace Materials (COSAM) Program is to help reduce the dependence of the United States aerospace industry on strategic metals by providing the materials technology needed to minimize the strategic metal content of critical aerospace components with prime emphasis on components for gas turbine engines. Initial emphasis was placed in the area of strategic element substinction. Specifically, the role of cobalt in nickel base and cobalt base superalloys vital to the aerospace industry is being examined in great detail by means of cooperative university-industry-government research efforts. Investigations are underway in the area of "new classes" of alloys. Specifically, a study was undertaken to investigate the mechanical and physical properties of intermetallics that contain a minimum of the strategic metals. Current plans for the much larger COSAM Program are also presented.

  6. Characterization of physio-chemical properties of polymeric and electrochemical materials for aerospace flight

    NASA Technical Reports Server (NTRS)

    Rock, M.; Kunigahalli, V.; Khan, S.; Mcnair, A.

    1984-01-01

    Sealed nickel cadmium cells having undergone a large number of cycles were discharged using the Hg/HgO reference electrode. The negative electrode exhibited the second plateau. SEM of negative plates of such cells show clusters of large crystals of cadmium hydroxide. These large crystals on the negative plates disappear after continuous overcharging in flooded cells. Atomic Absorption Spectroscopy and standard wet chemical methods are being used to determine the cell materials viz: nickel, cadmium, cobalt, potassum and carbonate. The anodes and cathodes are analyzed after careful examination and the condition of the separator material is evaluated.

  7. Main sources of lead and cadmium

    SciTech Connect

    Not Available

    1989-03-01

    Lead-acid batteries used in cars accounted for 65% of the lead in MSW in 1986, and rechargeable nickel-cadmium batteries contributed 52% of the cadmium discarded in the U.S. since 1980. According to an EPA draft report, other major sources of lead are consumer electronics 27%; glass and ceramics, 4%; and such plastic items as PVC resins. Other less significant sources of lead are soldered cans, pigments, brass and bronze products, light bulbs, rubber products, used oil, and lead foil wine bottle wrappers. Cadmium comes from other sources in addition to nickel-cadmium batteries. Plastics using cadmium as stabilizer (mainly PVC) or in pigments contribute 28% of the total amount entering the waste stream. Consumer electronics account for 9% (including cadmium-plated steel chassis on old TV sets and radios); appliances which used to be built with cadmium-plated parts to resist corrosion, 5% pigments, particularly those used in non-newspaper printing inks, textile dyes and paints, 4%; and glass and ceramics, 1.6% of the total.

  8. Self discharge of nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Holleck, G.

    1977-01-01

    Values for the capacity loss with time, naturally on open circuit stand, and information regarding the minimum amount of circuit charge needed to keep the cell charged can be determined from the self-discharge behavior of nickel hydrogen cells. Furthermore, the rate of reaction between hydrogen and a charged nickel electrode is also open for nickel cadmium batteries. In a nickel hydrogen cell, the hydrogen is stored as pressurized gas and the cell stack with the charge that is oxidized nickel-hydroxide electrode is in direct contact with the hydrogen. Therefore, the rate of reaction can be measured easily and precisely by monitoring the charge, the change in hydrogen pressure with time. Measures made on twelve 15 ampere hour nickel hydrogen cells of different stack configurations built for COMSAT are discussed.

  9. Development of nickel hydrogen battery expert system

    NASA Technical Reports Server (NTRS)

    Shiva, Sajjan G.

    1990-01-01

    The Hubble Telescope Battery Testbed employs the nickel-cadmium battery expert system (NICBES-2) which supports the evaluation of performances of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 also provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort to modify NICBES-2 to accommodate nickel-hydrogen battery environment in testbed is described.

  10. Novel Nanolaminates for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Volz, Martin; Mazuruk, consty

    2006-01-01

    Nanolaminate manufacturing (NLM) is a new way of developing materials whose properties can far exceed those of homogeneous materials. Traditional alloys, composites and bulk laminates tend to average the properties of the materials from which they were made. With nanostructured materials, the high density of interfaces between dissimilar materials results in novel material properties. For example, materials made -from alternating nanoscale layers of metals and oxides have exhibited thermal conductivities far below those of the oxides themselves. Also, metallic nanolaminates can have peak strengths 100 times lager than the bulk constituent metals. Recent work at MSFC has focused on the development of nickel/aluminum oxide (Ni/Al2O3)) nanolaminates. Ni/Al2O3 nanolaminates are expected to have better strength, creep and fatigue resistance, oxygen compatibility, and corrosion resistance than the traditional metal-matrix composites of this material, which has been used in a variety of aerospace applications. A chemical vapor deposition (CW) system has been developed and optimized for the deposition of nanolaminates. Nanolaminates with layer thicknesses between 10 and 300 nm have been successfully grown and characterization has included scanning electron microscopy (SEM) and atomic force microscopy (AFM) Nanolaminates have a large variety of potential applications. They can be tailored to have both very small and anisotropic thermal conductivities and are promising as thermal coatings for both rock$ engine components and aerobraking structures. They also have the potential to be used in aerospace applications where strength at high temperatures, corrosion resistance or resistance to hydrogen embrittlement is important. Both CVD and magnetron sputtering facilities are available for the deposition of nanolayered materials. Characterization equipment includes SEM, AFM, X-ray diffraction, transmission electron microscopy, optical profilometry, and mechanical tensile pull

  11. Evaluating Aerospace Workshops.

    ERIC Educational Resources Information Center

    Leonard, Rex L.

    1978-01-01

    Declining enrollments in aerospace teacher workshops suggest the need for evaluation and cost effectiveness measurements. A major purpose of this article is to illustrate some typical evaluation methodologies, including the semantic differential. (MA)

  12. Aerospace bibliography, seventh edition

    NASA Technical Reports Server (NTRS)

    Blashfield, J. F. (Compiler)

    1983-01-01

    Space travel, planetary probes, applications satellites, manned spaceflight, the impacts of space exploration, future space activities, astronomy, exobiology, aeronautics, energy, space and the humanities, and aerospace education are covered.

  13. Ninteenth Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings of the 19th Aerospace Mechanisms Symposium are reported. Technological areas covered include space lubrication, bearings, aerodynamic devices, spacecraft/Shuttle latches, deployment, positioning, and pointing. Devices for spacecraft docking and manipulator and teleoperator mechanisms are also described.

  14. Concentrations of cadmium, Cobalt, Lead, Nickel, and Zinc in Blood and Fillets of Northern Hog Sucker (Hypentelium nigricans) from streams contaminated by lead-Zinc mining: Implications for monitoring

    USGS Publications Warehouse

    Schmitt, C.J.; Brumbaugh, W.G.; May, T.W.

    2009-01-01

    Lead (Pb) and other metals can accumulate in northern hog sucker (Hypentelium nigricans) and other suckers (Catostomidae), which are harvested in large numbers from Ozark streams by recreational fishers. Suckers are also important in the diets of piscivorous wildlife and fishes. Suckers from streams contaminated by historic Pb-zinc (Zn) mining in southeastern Missouri are presently identified in a consumption advisory because of Pb concentrations. We evaluated blood sampling as a potentially nonlethal alternative to fillet sampling for Pb and other metals in northern hog sucker. Scaled, skin-on, bone-in "fillet" and blood samples were obtained from northern hog suckers (n = 75) collected at nine sites representing a wide range of conditions relative to Pb-Zn mining in southeastern Missouri. All samples were analyzed for cadmium (Cd), cobalt (Co), Pb, nickel (Ni), and Zn. Fillets were also analyzed for calcium as an indicator of the amount of bone, skin, and mucus included in the samples. Pb, Cd, Co, and Ni concentrations were typically higher in blood than in fillets, but Zn concentrations were similar in both sample types. Concentrations of all metals except Zn were typically higher at sites located downstream from active and historic Pb-Zn mines and related facilities than at nonmining sites. Blood concentrations of Pb, Cd, and Co were highly correlated with corresponding fillet concentrations; log-log linear regressions between concentrations in the two sample types explained 94% of the variation for Pb, 73-83% of the variation for Co, and 61% of the variation for Cd. In contrast, relations for Ni and Zn explained <12% of the total variation. Fillet Pb and calcium concentrations were correlated (r = 0.83), but only in the 12 fish from the most contaminated site; concentrations were not significantly correlated across all sites. Conversely, fillet Cd and calcium were correlated across the range of sites (r = 0.78), and the inclusion of calcium in the fillet

  15. Concentrations of cadmium, cobalt, lead, nickel, and zinc in blood and fillets of northern hog sucker (Hypentelium nigricans) from streams contaminated by lead-zinc mining: implications for monitoring.

    PubMed

    Schmitt, C J; Brumbaugh, W G; May, T W

    2009-04-01

    Lead (Pb) and other metals can accumulate in northern hog sucker (Hypentelium nigricans) and other suckers (Catostomidae), which are harvested in large numbers from Ozark streams by recreational fishers. Suckers are also important in the diets of piscivorous wildlife and fishes. Suckers from streams contaminated by historic Pb-zinc (Zn) mining in southeastern Missouri are presently identified in a consumption advisory because of Pb concentrations. We evaluated blood sampling as a potentially nonlethal alternative to fillet sampling for Pb and other metals in northern hog sucker. Scaled, skin-on, bone-in "fillet" and blood samples were obtained from northern hog suckers (n = 75) collected at nine sites representing a wide range of conditions relative to Pb-Zn mining in southeastern Missouri. All samples were analyzed for cadmium (Cd), cobalt (Co), Pb, nickel (Ni), and Zn. Fillets were also analyzed for calcium as an indicator of the amount of bone, skin, and mucus included in the samples. Pb, Cd, Co, and Ni concentrations were typically higher in blood than in fillets, but Zn concentrations were similar in both sample types. Concentrations of all metals except Zn were typically higher at sites located downstream from active and historic Pb-Zn mines and related facilities than at nonmining sites. Blood concentrations of Pb, Cd, and Co were highly correlated with corresponding fillet concentrations; log-log linear regressions between concentrations in the two sample types explained 94% of the variation for Pb, 73-83% of the variation for Co, and 61% of the variation for Cd. In contrast, relations for Ni and Zn explained <12% of the total variation. Fillet Pb and calcium concentrations were correlated (r = 0.83), but only in the 12 fish from the most contaminated site; concentrations were not significantly correlated across all sites. Conversely, fillet Cd and calcium were correlated across the range of sites (r = 0.78), and the inclusion of calcium in the fillet

  16. Nickel accumulation and nickel oxalate precipitation by Aspergillus niger.

    PubMed

    Magyarosy, A; Laidlaw, R D; Kilaas, R; Echer, C; Clark, D S; Keasling, J D

    2002-07-01

    A strain of Aspergillus niger isolated from a metal-contaminated soil was able to grow in the presence of cadmium, chromium, cobalt, copper, and unusually high levels of nickel on solid (8.0 mM) and in liquid (6.5 mM) media. This fungus removed >98% of the nickel from liquid medium after 100 h of growth but did not remove the other metals, as determined by inductively coupled plasma spectroscopy. Experiments with non-growing, live fungal biomass showed that nickel removal was not due to biosorption alone, as little nickel was bound to the biomass at the pH values tested. Furthermore, when the protonophore carbonyl cyanide p-(trifluoremetoxy) phenyl hydrazone (FCCP) was added to the actively growing fungus nickel removal was inhibited, supporting the hypothesis that energy metabolism is essential for metal removal. Analytical electron microscopy of thin-sectioned fungal biomass revealed that metal removed from the broth was localized in the form of small rectangular crystals associated with the cell walls and also inside the cell. X-ray and electron diffraction analysis showed that these crystals were nickel oxalate dihydrate. PMID:12111174

  17. Environmentally regulated aerospace coatings

    NASA Technical Reports Server (NTRS)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  18. Aerospace engineering educational program

    NASA Technical Reports Server (NTRS)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  19. Frontier Aerospace Opportunities

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2014-01-01

    Discussion and suggested applications of the many ongoing technology opportunities for aerospace products and missions, resulting in often revolutionary capabilities. The, at this point largely unexamined, plethora of possibilities going forward, a subset of which is discussed, could literally reinvent aerospace but requires triage of many possibilities. Such initial upfront homework would lengthen the Research and Development (R&D) time frame but could greatly enhance the affordability and performance of the evolved products and capabilities. Structural nanotubes and exotic energetics along with some unique systems approaches are particularly compelling.

  20. Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  1. Aerospace Education. NSTA Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2008

    2008-01-01

    National Science Teachers Association (NSTA) has developed a new position statement, "Aerospace Education." NSTA believes that aerospace education is an important component of comprehensive preK-12 science education programs. This statement highlights key considerations that should be addressed when implementing a high quality aerospace education…

  2. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The following areas of NASA's responsibilities are examined: (1) the Space Transportation System (STS) operations and evolving program elements; (2) establishment of the Space Station program organization and issuance of requests for proposals to the aerospace industry; and (3) NASA's aircraft operations, including research and development flight programs for two advanced X-type aircraft.

  3. Aerospace Bibliography. Seventh Edition.

    ERIC Educational Resources Information Center

    Blashfield, Jean F., Comp.

    Provided for teachers and the general adult reader is an annotated and graded list of books and reference materials dealing with aerospace subjects. Only non-fiction books and pamphlets that need to be purchased from commercial or government sources are included. Free industrial materials and educational aids are not included because they tend to…

  4. Aerospace at Saint Francis.

    ERIC Educational Resources Information Center

    Aviation/Space, 1980

    1980-01-01

    Discusses an aviation/aerospace program as a science elective for 11th and 12th year students. This program is multi-faceted and addresses the needs of a wide variety of students. Its main objective is to present aviation and space sciences which will provide a good base for higher education in these areas. (SK)

  5. An analysis of nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Turner, J. B., Jr.

    1982-01-01

    Temperature effects, reconditioning, divergencies, capacity, charge rates, depth of discharge, and cell matching and their effects on battery life are discussed. The development of a practical strategy for predicting battery life by subjecting cells to simulated cyclic operation is also addressed.

  6. Positive electrodes of nickel-cadmium batteries

    NASA Technical Reports Server (NTRS)

    Wabner, D. W.; Kandler, L.; Krienke, W.

    1985-01-01

    Ni hydroxide sintered electrodes which are filled electrochemically are superior to chemically treated electrodes. In the electrochemical process, the hydroxide grows on the Ni grains and possesses a well-defined porous structure. Diffusion and conducting mechanisms are therefore facilitated.

  7. Flow of Cadmium from Rechargeable Batteries in the United States, 1996-2007

    USGS Publications Warehouse

    Wilburn, David R.

    2007-01-01

    Cadmium metal has been found to be toxic to humans and the environment under certain conditions; therefore, a thorough understanding of the use and disposal of the metal is warranted. Most of the cadmium used in the United States comes from imported products. In 2007, more than 83 percent of the cadmium used in the United States was contained in batteries, mostly in rechargeable nickel-cadmium batteries used in popular consumer products such as cordless phones and power tools. The flow of cadmium contained in rechageable nickel-cadmium batteries used in the United States was tracked for the years 1996 to 2007. The amount of cadmium metal contained in imported products in 2007 was estimated to be about 1,900 metric tons, or about 160 percent higher than the reported cadmium production in the United States from all primary and secondary sources. Although more than 40,000 metric tons of cadmium was estimated to be contained in nickel-cadmium rechargeable batteries that became obsolete during the 12-year study period, not all of this material was sent to municipal solid waste landfills. About 27 percent of the material available for recovery in the United States was recycled domestically in 2007; the balance was discarded in municipal solid waste landfills, exported for recycling, retained in temporary storage, or thrown away.

  8. Wetlife Study of Nickel Hydrogen Cells

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A study was undertaken to determine the residual Nickel Precharge, and to understand the Performance and Cycle Life of Aged Nickel Hydrogen cells that were in cold storage up to thirteen (13) years. Comsat Technical Services, Aerospace Corporation, and NSWC/Crane test data to date indicate a nominal electrical performance with a small second plateau and the presence of Nickel Precharge in the cells: Cell Teardown, Plate (active Nickel Precharge determination), and Electrolyte Analyses are in progress. Preliminary Thermal Imaging data indicates that older the cell greater the heat generation, but cell over charge (capacity) could dominate heat generation. U.S. Govt. cells has completed 1150 nominal 60% LEO cycles. The completion date for this study is January 31, 2008.

  9. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  10. Materials for aerospace

    SciTech Connect

    Steinberg, M.A.

    1986-10-01

    Early last year the US Office of Science and Technology put forward an agenda for American aerospace activity in the coming decades. The plan established goals for subsonic, supersonic and transatmospheric hypersonic flight. Those goals, together with Reagan Administration's programs for a space station and the Strategic Defense Initiative, serve as a driving force for extensive improvements in the materials that enable airplanes and spacecraft to function efficiently. The development of materials, together with advances in the technology of fabricating parts, will play a key role in aerospace systems of the future. Among the materials developments projected for the year 2000 are new composites and alloys for structural members; superalloys, ceramics and glass composites for propulsion systems, and carbon-carbon composites (carbon fibers in a carbon matrix) for high-temperature applications in places where resistance to heat and ablation is critical. 5 figures.

  11. Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Rouse, Doris J.

    1984-01-01

    The objective of the Research Triangle Institute Technology Transfer Team is to assist NASA in achieving widespread utilization of aerospace technology in terrestrial applications. Widespread utilization implies that the application of NASA technology is to benefit a significant sector of the economy and population of the Nation. This objective is best attained by stimulating the introduction of new or improved commercially available devices incorporating aerospace technology. A methodology is presented for the team's activities as an active transfer agent linking NASA Field Centers, industry associations, user groups, and the medical community. This methodology is designed to: (1) identify priority technology requirements in industry and medicine, (2) identify applicable NASA technology that represents an opportunity for a successful solution and commercial product, (3) obtain the early participation of industry in the transfer process, and (4) successfully develop a new product based on NASA technology.

  12. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  13. AI aerospace components

    SciTech Connect

    Heindel, T.A.; Murphy, T.B.; Rasmussen, A.N.; Mcfarland, R.Z.; Montgomery, R.E.; Pohle, G.E.; Heard, A.E.; Atkinson, D.J.; Wedlake, W.E.; Anderson, J.M. Mitre Corp., Houston, TX Unisys Corp., Houston, TX Rockwell International Corp., El Segundo, CA NASA, Kennedy Space Center, Cocoa Beach, FL JPL, Pasadena, CA Lockheed Missiles and Space Co., Inc., Austin, TX McDonnell Douglas Electronic Systems Co., McLean, VA )

    1991-10-01

    An evaluation is made of the application of novel, AI-capabilities-related technologies to aerospace systems. Attention is given to expert-system shells for Space Shuttle Orbiter mission control, manpower and processing cost reductions at the NASA Kennedy Space Center's 'firing rooms' for liftoff monitoring, the automation of planetary exploration systems such as semiautonomous mobile robots, and AI for battlefield staff-related functions.

  14. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report from the Aerospace Safety Advisory Panel (ASAP) contains findings, recommendations, and supporting material concerning safety issues with the space station program, the space shuttle program, aeronautics research, and other NASA programs. Section two presents findings and recommendations, section three presents supporting information, and appendices contain data about the panel membership, the NASA response to the March 1993 ASAP report, and a chronology of the panel's activities during the past year.

  15. Unmanned Aerospace Vehicle Workshop

    SciTech Connect

    Vitko, J. Jr.

    1995-04-01

    The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

  16. The 2004 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Super NiCd(TradeMark) Energy Storage for Gravity Probe-B Relativity Mission; Hubble Space Telescope 2004 Battery Update; The Development of Hermetically Sealed Aerospace Nickel-Metal Hydride Cell; Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System; Cell Equalization of Lithium-Ion Cells; The Long-Term Performance of Small-Cell Batteries Without Cell-Balancing Electronics; Identification and Treatment of Lithium Battery Cell Imbalance under Flight Conditions; Battery Control Boards for Li-Ion Batteries on Mars Exploration Rovers; Cell Over Voltage Protection and Balancing Circuit of the Lithium-Ion Battery; Lithium-Ion Battery Electronics for Aerospace Applications; Lithium-Ion Cell Charge Control Unit; Lithium Ion Battery Cell Bypass Circuit Test Results at the U.S. Naval Research Laboratory; High Capacity Battery Cell By-Pass Switches: High Current Pulse Testing of Lithium-Ion; Battery By-Pass Switches to Verify Their Ability to Withstand Short-Circuits; Incorporation of Physics-Based, Spatially-Resolved Battery Models into System Simulations; A Monte Carlo Model for Li-Ion Battery Life Projections; Thermal Behavior of Large Lithium-Ion Cells; Thermal Imaging of Aerospace Battery Cells; High Rate Designed 50 Ah Li-Ion Cell for LEO Applications; Evaluation of Corrosion Behavior in Aerospace Lithium-Ion Cells; Performance of AEA 80 Ah Battery Under GEO Profile; LEO Li-Ion Battery Testing; A Review of the Feasibility Investigation of Commercial Laminated Lithium-Ion Polymer Cells for Space Applications; Lithium-Ion Verification Test Program; Panasonic Small Cell Testing for AHPS; Lithium-Ion Small Cell Battery Shorting Study; Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-Time Profiles; Update on Development of Lithium-Ion Cells for Space Applications at JAXA; Foreign Comparative Technology: Launch Vehicle Battery Cell Testing; 20V, 40 Ah Lithium Ion Polymer

  17. Aerospace structures supportability

    NASA Astrophysics Data System (ADS)

    Smith, Howard Wesley

    1989-04-01

    This paper is about supportability in its general sense, with emphasis on aerospace structures. Reliability and maintainability (R&M) are described and defined from the standpoint of both structural analysis. Accessability, inspectability, and replaceability are described as design attributes. Reliability and probability of failure are shown to be in the domain of the analysis. Availability and replaceability are traditional logistic responsibilities which are influenced by supportability engineers. The USAF R&M 2000 process is described, and the R&M 1988 Workshop at Wright-Patterson Air Force Base is also included in the description.

  18. The Aerospace Environment. Aerospace Education I. Instructor Handbook.

    ERIC Educational Resources Information Center

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This publication provides guidelines for teachers using the textbook entitled "Aerospace Environment," published in the Aerospace Education I series. Major categories included in each chapter are objectives, behavioral objectives, suggested outline, orientation, suggested key points, instructional aids, projects, and further reading. Background…

  19. Limitless Horizons: Careers in Aerospace.

    ERIC Educational Resources Information Center

    Lewis, Mary H.

    This is a manual for acquainting students with pertinent information relating to career choices in aerospace science, engineering, and technology. The first chapter presents information about the aerospace industry by describing disciplines typical of this industry. The National Aeronautics and Space Administration's (NASA) classification system…

  20. Limitless Horizons. Careers in Aerospace

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1980-01-01

    A manual is presented for use by counselors in career guidance programs. Pertinent information is provided on choices open in aerospace sciences, engineering, and technology. Accredited institutions awarding degrees in pertinent areas are listed as well as additional sources of aerospace career information. NASA's role and fields of interest are emphasized.

  1. Aerospace Activities and Language Development

    ERIC Educational Resources Information Center

    Jones, Robert M.; Piper, Martha

    1975-01-01

    Describes how science activities can be used to stimulate language development in the elementary grades. Two aerospace activities are described involving liquid nitrogen and the launching of a weather balloon which integrate aerospace interests into the development of language skills. (BR)

  2. Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel-metal-hydride batteries

    NASA Astrophysics Data System (ADS)

    Rodrigues, Luiz Eduardo Oliveira Carmo; Mansur, Marcelo Borges

    The separation of rare earth elements, cobalt and nickel from NiMH battery residues is evaluated in this paper. Analysis of the internal content of the NiMH batteries shows that nickel is the main metal present in the residue (around 50% in weight), as well as potassium (2.2-10.9%), cobalt (5.1-5.5%), rare earth elements (15.3-29.0%) and cadmium (2.8%). The presence of cadmium reveals that some Ni-Cd batteries are possibly labeled as NiMH ones. The leaching of nickel and cobalt from the NiMH battery powder with sulfuric acid is efficient; operating variables temperature and concentration of H 2O 2 has no significant effect for the conditions studied. A mixture of rare earth elements is separated by precipitation with NaOH. Finally, solvent extraction with D2EHPA (di-2-ethylhexyl phosphoric acid) followed by Cyanex 272 (bis-2,4,4-trimethylpentyl phosphinic acid) can separate cadmium, cobalt and nickel from the leach liquor. The effect of the main operating variables of both leaching and solvent extraction steps are discussed aiming to maximize metal separation for recycling purposes.

  3. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    NASA Technical Reports Server (NTRS)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-01-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  4. Nickel subsulfide

    Integrated Risk Information System (IRIS)

    Nickel subsulfide ; CASRN 12035 - 72 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  5. Nickel carbonyl

    Integrated Risk Information System (IRIS)

    Nickel carbonyl ; CASRN 13463 - 39 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  6. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Aerospace Safety Advisory Panel (ASAP) provided oversight on the safety aspects of many NASA programs. In addition, ASAP undertook three special studies. At the request of the Administrator, the panel assessed the requirements for an assured crew return vehicle (ACRV) for the space station and reviewed the organization of the safety and mission quality function within NASA. At the behest of Congress, the panel formed an independent, ad hoc working group to examine the safety and reliability of the space shuttle main engine. Section 2 presents findings and recommendations. Section 3 consists of information in support of these findings and recommendations. Appendices A, B, C, and D, respectively, cover the panel membership, the NASA response to the findings and recommendations in the March 1992 report, a chronology of the panel's activities during the reporting period, and the entire ACRV study report.

  7. Aerospace in the future

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1980-01-01

    National research and technology trends are introduced in the environment of accelerating change. NASA and the federal budget are discussed. The U.S. energy dependence on foreign oil, the increasing oil costs, and the U.S. petroleum use by class are presented. The $10 billion aerospace industry positive contribution to the U.S. balance of trade of 1979 is given as an indicator of the positive contribution of NASA in research to industry. The research work of the NASA Lewis Research Center in the areas of space, aeronautics, and energy is discussed as a team effort of government, the areas of space, aeronautics, and energy is discussed as a team effort of government, industry, universities, and business to maintain U.S. world leadership in advanced technology.

  8. Aerospace Human Factors

    NASA Technical Reports Server (NTRS)

    Jordan, Kevin

    1999-01-01

    The following contains the final report on the activities related to the Cooperative Agreement between the human factors research group at NASA Ames Research Center and the Psychology Department at San Jose State University. The participating NASA Ames division has been, as the organization has changed, the Aerospace Human Factors Research Division (ASHFRD and Code FL), the Flight Management and Human Factors Research Division (Code AF), and the Human Factors Research and Technology Division (Code IH). The inclusive dates for the report are November 1, 1984 to January 31, 1999. Throughout the years, approximately 170 persons worked on the cooperative agreements in one capacity or another. The Cooperative Agreement provided for research personnel to collaborate with senior scientists in ongoing NASA ARC research. Finally, many post-MA/MS and post-doctoral personnel contributed to the projects. It is worth noting that 10 former cooperative agreement personnel were hired into civil service positions directly from the agreements.

  9. Aerospace and military

    SciTech Connect

    Adam, J.A.; Esch, K

    1990-01-01

    This article reviews military and aerospace developments of 1989. The Voyager spacecraft returned astounding imagery from Neptune, sophisticated sensors were launched to explore Venus and Jupiter, and another craft went into earth orbit to explore cosmic rays, while a huge telescope is to be launched early in 1990. The U.S. space shuttle redesign was completed and access to space has become no longer purely a governmental enterprise. In the military realm, events within the Soviet bloc, such as the Berlin Wall's destruction, have popularized arms control. Several big treaties could be signed within the year. Massive troop, equipment, and budget reductions are being considered, along with a halt or delay of major new weapons systems. For new missions, the U.S. military is retreating to its role of a century ago - patrolling the nation's borders, this time against narcotics traffickers.

  10. Dynamics of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.

  11. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a 5-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASAs safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are "one deep." The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting "brain drain" could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has little flexibility to begin long lead-time items for upgrades or contingency planning.

  12. Nickel allergy and orthodontics.

    PubMed

    Rahilly, G; Price, N

    2003-06-01

    Nickel is the most common metal to cause contact dermatitis in orthodontics. Nickel-containing metal alloys, such as nickel-titanium and stainless steel, are widely used in orthodontic appliances. Nickel-titanium alloys may have nickel content in excess of 50 per cent and can thus potentially release enough nickel in the oral environment to elicit manifestations of an allergic reaction. Stainless steel has a lower nickel content (8 per cent). However, because the nickel is bound in a crystal lattice it is not available to react. Stainless steel orthodontic components are therefore very unlikely to cause nickel hypersensitivity. This article discusses the diagnosis of nickel allergy in orthodontics and describes alternative products that are nickel free or have a very low nickel content, which would be appropriate to use in patients diagnosed with a nickel allergy. PMID:12835436

  13. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  14. Overview of the Design, Development, and Application of Nickel-hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Zimmerman, Albert H.

    2003-01-01

    This document provides an overview of the design, development, and application of nickel-hydrogen (Ni-H2) battery technology for aerospace applications. It complements and updates the information presented in NASA RP-1314, NASA Handbook for Nickel- Hydrogen Batteries, published in 1993. Since that time, nickel-hydrogen batteries have become widely accepted for aerospace energy storage requirements and much more has been learned. The intent of this document is to capture some of that additional knowledge. This document addresses various aspects of nickel-hydrogen technology including the electrochemical reactions, cell component design, and selection considerations; overall cell and battery design considerations; charge control considerations; and manufacturing issues that have surfaced over the years that nickel-hydrogen battery technology has been the major energy storage technology for geosynchronous and low-Earth-orbiting satellites.

  15. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  16. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  17. Aerospace management techniques: Commercial and governmental applications

    NASA Technical Reports Server (NTRS)

    Milliken, J. G.; Morrison, E. J.

    1971-01-01

    A guidebook for managers and administrators is presented as a source of useful information on new management methods in business, industry, and government. The major topics discussed include: actual and potential applications of aerospace management techniques to commercial and governmental organizations; aerospace management techniques and their use within the aerospace sector; and the aerospace sector's application of innovative management techniques.

  18. Cadmium carcinogenesis in review.

    PubMed

    Waalkes, M P

    2000-04-01

    Cadmium is an inorganic toxicant of great environmental and occupational concern which was classified as a human carcinogen in 1993. Occupational cadmium exposure is associated with lung cancer in humans. Cadmium exposure has also, on occasion, been linked to human prostate cancer. The epidemiological data linking cadmium and pulmonary cancer are much stronger than for prostatic cancer. Other target sites for cadmium carcinogenesis in humans (liver, kidney, stomach) are considered equivocal. In rodents, cadmium causes tumors at several sites and by various routes. Cadmium inhalation in rats results in pulmonary adenocarcinomas, supporting a role in human lung cancer. Prostate tumors and preneoplastic proliferative lesions can be induced in rats after cadmium ingestion or injection. Prostatic carcinogenesis in rats occurs only at cadmium doses below those that induce chronic degeneration and dysfunction of the testes, a well-known effect of cadmium, confirming the androgen dependency of prostate tumors. Other targets of cadmium in rodents include the testes, adrenals, injection sites, and hematopoietic system. Various treatments can modify cadmium carcinogenesis including supplemental zinc, which prevents cadmium-induced injection site and testicular tumors while facilitating prostatic tumors. Cadmium is poorly mutagenic and probably acts through indirect mechanisms, although the precise mechanisms remain unknown. PMID:10830873

  19. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Annual Report of the Aerospace Safety Advisory Panel (ASAP) presents results of activities during calendar year 2001. The year was marked by significant achievements in the Space Shuttle and International Space Station (ISS) programs and encouraging accomplishments by the Aerospace Technology Enterprise. Unfortunately, there were also disquieting mishaps with the X-43, a LearJet, and a wind tunnel. Each mishap was analyzed in an orderly process to ascertain causes and derive lessons learned. Both these accomplishments and the responses to the mishaps led the Panel to conclude that safety and risk management is currently being well served within NASA. NASA's operations evidence high levels of safety consciousness and sincere efforts to place safety foremost. Nevertheless, the Panel's safety concerns have never been greater. This dichotomy has arisen because the focus of most NASA programs has been directed toward program survival rather than effective life cycle planning. Last year's Annual Report focused on the need for NASA to adopt a realistically long planning horizon for the aging Space Shuttle so that safety would not erode. NASA's response to the report concurred with this finding. Nevertheless, there has been a greater emphasis on current operations to the apparent detriment of long-term planning. Budget cutbacks and shifts in priorities have severely limited the resources available to the Space Shuttle and ISS for application to risk-reduction and life-extension efforts. As a result, funds originally intended for long-term safety-related activities have been used for operations. Thus, while safety continues to be well served at present, the basis for future safety has eroded. Section II of this report develops this theme in more detail and presents several important, overarching findings and recommendations that apply to many if not all of NASA's programs. Section III of the report presents other significant findings, recommendations and supporting

  20. Norwegian Aerospace Activities: an Overview

    NASA Technical Reports Server (NTRS)

    Arnesen, T. (Editor); Rosenberg, G. (Editor)

    1986-01-01

    Excerpts from a Governmental Investigation concerning Norwegian participation in the European Space Organization (ESA) is presented. The implications and advantages of such a move and a suggestion for the reorganization of Norwegian Aerospace activity is given.

  1. The FASST Aerospace Student Forum

    ERIC Educational Resources Information Center

    David, Leonard

    1976-01-01

    Describes a three-day Forum for the Advancement of Students in Science and Technology (FASST), at which students from 20 colleges and universities and six Soviet students discussed the application of aerospace technology to the problems of society. (MLH)

  2. AeroSpace Days 2013

    NASA Video Gallery

    At the eighth annual AeroSpace Days, first mom in space, Astronaut AnnaFisher, and Sen. Louise Lucas, interacted with students from Mack BennJr. Elementary School in Suffolk, Va. through NASA’s...

  3. Heat transfer in aerospace propulsion

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

    1988-01-01

    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

  4. Ball Aerospace AMSD Progress Update

    NASA Technical Reports Server (NTRS)

    Blair, Mark; Brown, Robert; Chaney, David; Lightsey, Paul; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The current status of the Advanced Mirror System Demonstrator program being performed by Ball Aerospace is presented. The hexagonal low-areal density Beryllium mirror blank has been fabricated and undergoing polishing at the time of this presentation.

  5. Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03.

    PubMed

    Webb, Sharon; Bartos, James; Boles, Rhonda; Hasty, Elaine; Thuotte, Ethel; Thiex, Nancy J

    2014-01-01

    A single-laboratory validation study was conducted for the simultaneous determination of arsenic, cadmium, calcium, cobalt, copper, chromium, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in all major types of commercial fertilizer products by microwave digestion and inductively coupled plasma-optical emission spectroscopy analysis. This validation study proposes an extension and modification of AOAC 2006.03. The extension is the inclusion of calcium, copper, iron, magnesium, manganese, and zinc, and the modification is incorporation of hydrochloric acid in the digestion system. This dual acid digestion utilizes both hydrochloric and nitric acids in a 3 to 9 mL volume ratio/100 mL. In addition to 15 of the 30 original validation materials used in the 2006.03 collaborative study, National Institute of Standards and Technology Standard Reference Material 695 and Magruder 2009-06 were incorporated as accuracy materials. The main benefits of this proposed method are a significant increase in laboratory efficiency when compared to the use of both AOAC Methods 965.09 and 2006.03 to achieve the same objective and an enhanced recovery of several metals. PMID:25051614

  6. 32nd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Walker, S. W. (Compiler); Boesiger, Edward A. (Compiler)

    1998-01-01

    The proceedings of the 32nd Aerospace Mechanism Symposium are reported. NASA John F. Kennedy Space Center (KSC) hosted the symposium that was held at the Hilton Oceanfront Hotel in Cocoa Beach, Florida on May 13-15, 1998. The symposium was cosponsored by Lockheed Martin Missiles and Space and the Aerospace Mechanisms Symposium Committee. During these days, 28 papers were presented. Topics included robotics, deployment mechanisms, bearing, actuators, scanners, boom and antenna release, and test equipment.

  7. Cadmium and the kidney.

    PubMed Central

    Friberg, L

    1984-01-01

    The paper is a review of certain aspects of importance of cadmium and the kidney regarding the assessment of risks and understanding of mechanisms of action. The review discusses the following topics: history and etiology of cadmium-induced kidney dysfunction and related disorders; cadmium metabolism, metallothionein and kidney dysfunction; cadmium in urine as indicator of body burden, exposure and kidney dysfunction; cadmium levels in kidney and liver as indicators of kidney dysfunction; characteristics of early kidney dysfunction; the critical concentration concept; critical concentrations of cadmium in kidney cortex; and prognosis. PMID:6734547

  8. NICKEL COATED URANIUM ARTICLE

    DOEpatents

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  9. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Aerospace Safety Advisory Panel (ASAP) monitored NASA's activities and provided feedback to the NASA Administrator, other NASA officials and Congress throughout the year. Particular attention was paid to the Space Shuttle, its launch processing and planned and potential safety improvements. The Panel monitored Space Shuttle processing at the Kennedy Space Center (KSC) and will continue to follow it as personnel reductions are implemented. There is particular concern that upgrades in hardware, software, and operations with the potential for significant risk reduction not be overlooked due to the extraordinary budget pressures facing the agency. The authorization of all of the Space Shuttle Main Engine (SSME) Block II components portends future Space Shuttle operations at lower risk levels and with greater margins for handling unplanned ascent events. Throughout the year, the Panel attempted to monitor the safety activities related to the Russian involvement in both space and aeronautics programs. This proved difficult as the working relationships between NASA and the Russians were still being defined as the year unfolded. NASA's concern for the unique safety problems inherent in a multi-national endeavor appears appropriate. Actions are underway or contemplated which should be capable of identifying and rectifying problem areas. The balance of this report presents 'Findings and Recommendations' (Section 2), 'Information in Support of Findings and Recommendations' (Section 3) and Appendices describing Panel membership, the NASA response to the March 1994 ASAP report, and a chronology of the panel's activities during the reporting period (Section 4).

  10. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  11. Aerospace Safety Advisory Panel

    NASA Astrophysics Data System (ADS)

    1989-03-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  12. Characteristics Of Quallion's Lithium-Ion Cells For Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Nakahara, Hiroshi; Tsukamoto, Hisashi; Beach, Paul; Visco, Vincent

    2011-10-01

    Rechargeable batteries that are presently in use in space missions include: Silver-Zinc (Ag-Zn), Nickel- Cadmium (Ni-Cd), Nickel-Hydrogen (Ni-H2), and more recently, Lithium-Ion batteries. In space applications, lithium-ion batteries offer significant mass and volume advantages (three- to four-fold) compared to standard Ni-Cd and Ni-H2 batteries. To address this need, Quallion LLC has developed custom true prismatic Li ion cells for use in Low Earth Orbit (LEO) & Geosynchronous Earth Orbit (GEO) applications: a 15Ah cell (QL015KA) and a 72Ah cell (QL075KA). In addition to using Quallion's patented long life lithium-ion chemistry, these cells are also Zero-VoltTM enabled, allowing for battery recovery in loss of spacecraft attitude and lower maintenance before launching.

  13. Nickel anode electrode

    DOEpatents

    Singh, Prabhakar; Benedict, Mark

    1987-01-01

    A nickel anode electrode fabricated by oxidizing a nickel alloying material to produce a material whose exterior contains nickel oxide and whose interior contains nickel metal throughout which is dispersed the oxide of the alloying material and by reducing and sintering the oxidized material to form a product having a nickel metal exterior and an interior containing nickel metal throughout which is dispersed the oxide of the alloying material.

  14. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, Dean H.; Nelson, Art J.; Ahrenkiel, Richard K.

    1996-01-01

    A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.

  15. Mechanisms of Cadmium Carcinogenesis

    EPA Science Inventory

    Cadmium is a transition metal and an ubiquitous environmental and industrial pollutant. Laboratory animal studies and epidemiological studies have shown that exposure to cadmium is associated with various organ toxicities and carcinogenic effects. Several national and internation...

  16. Cadmium and zinc relationships.

    PubMed Central

    Elinder, C G; Piscator, M

    1978-01-01

    Cadmium and zinc concentrations in kidney and liver have been measured under different exposure situations in different species including man. The results show that zinc increases almost equimolarly with cadmium in kidney after long-term low-level exposure to cadmium, e.g., in man, horse, pig, and lamb. In contrast, the increase of zinc follows that of cadmium to only a limited extent, e.g., in guinea pig, rabbit, rat, mouse, and chicks. In liver, the cadmium--zinc relationship seems to be reversed in such a way that zinc increases with cadmium more markedly in laboratory animals than in higher mammals. These differences between cadmium and zinc relationships in humans and large farm animals and those in commonly used laboratory animals must be considered carefully before experimental data on cadmium and zinc relationships in laboratory animals can be extrapolated to humans. PMID:720298

  17. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a five-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASA's safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are 'one deep.' The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting 'brain drain' could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. The major NASA programs are also limited in their ability to plan property for the future. This is of particular concern for the Space Shuttle and ISS because these programs are scheduled to operate well into the next century. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has

  18. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This annual report is based on the activities of the Aerospace Safety Advisory Panel in calendar year 2000. During this year, the construction of the International Space Station (ISS) moved into high gear. The launch of the Russian Service Module was followed by three Space Shuttle construction and logistics flights and the deployment of the Expedition One crew. Continuous habitation of the ISS has begun. To date, both the ISS and Space Shuttle programs have met or exceeded most of their flight objectives. In spite of the intensity of these efforts, it is clear that safety was always placed ahead of cost and schedule. This safety consciousness permitted the Panel to devote more of its efforts to examining the long-term picture. With ISS construction accelerating, demands on the Space Shuttle will increase. While Russian Soyuz and Progress spacecraft will make some flights, the Space Shuttle remains the primary vehicle to sustain the ISS and all other U.S. activities that require humans in space. Development of a next generation, human-rated vehicle has slowed due to a variety of technological problems and the absence of an approach that can accomplish the task significantly better than the Space Shuttle. Moreover, even if a viable design were currently available, the realities of funding and development cycles suggest that it would take many years to bring it to fruition. Thus, it is inescapable that for the foreseeable future the Space Shuttle will be the only human-rated vehicle available to the U.S. space program for support of the ISS and other missions requiring humans. Use of the Space Shuttle will extend well beyond current planning, and is likely to continue for the life of the ISS.

  19. Nickel-Hydrogen Cell Testing Experience, NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.

    1999-01-01

    The objectives of the project were to test the Nickel-Hydrogen Cell to: (1) verify the Aerospace Cell Flight Worthiness, (2) Elucidate the Aerospace Cell Thermal Behavior, (3) Develop the Aerospace Battery Assembly Design(s) and In-orbit Battery Management plan(s) and (4) Understand the Aerospace Cell Failure Mechanism. The tests included the LEO and GEO Life cycle tests, Calorimetric Analysis, Destructive Physical analysis, and special tests. Charts show the Mission Profile Cycling Data, Stress Cycling Data. The test data complies with the mission requirements, validating the flight worthiness of batteries. The nominal stress and mission profile cycling performance test shows the charge voltage as high as 1.60V and recharge ratio greater than 1.05. It is apparent that the electrochemical signatures alone do not provide conclusive proof for Nickel precharge. The researchers recommend a gas and positive plate analyses for further confirmation.

  20. Cadmium exposure and nephropathy in a 28-year-old female metals worker.

    PubMed Central

    Wittman, Richard; Hu, Howard

    2002-01-01

    A 28-year-old female presented for evaluation of left flank pain and polyuria after having been exposed to cadmium in the jewelry manufacturing industry for approximately 3 years. This patient possessed both elevated 24-hr urinary ss2-microglobulin and elevated blood cadmium levels. Approximately 6 months after initial presentation, the patient resigned from her job due to shortness of breath, chest pain, and anxiety. Exposure to cadmium in the jewelry industry is a significant source of occupational cadmium exposure. Other occupational sources include the manufacture of nickel-cadmium batteries, metal plating, zinc and lead refining, smelting of cadmium and lead, and production of plastics. Cadmium is also an environmental pollutant that accumulates in leafy vegetables and plants, including tobacco. Major toxicities anticipated from cadmium exposure involve the renal, pulmonary, and, to a lesser extent, gastrointestinal systems. These include the development of renal proximal tubular dysfunction, glomerular damage with progressive renal disease, and respiratory symptoms including pneumonitis and emphysema. Low-level cadmium exposure has also been associated with increased urinary calcium excretion and direct bone toxicity, effects that recent research suggests may result in the development of osteoporosis. The body burden of cadmium, over half of which may reside in the kidneys, is most often measured through the use of urinary cadmium levels. Blood cadmium measurements generally reflect current or recent exposure and are especially useful in cases with a short exposure period and only minimal accumulation of cadmium in the kidneys. Both ss2-microglobulin and alpha1-microglobulin serve as organ-specific, early-effect biomarkers of tubular proteinuria and thus play a role in identifying early signs of cadmium-induced renal damage in those with potential exposures. In addition to ensuring workplace compliance with Occupational Safety and Health Administration

  1. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  2. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  3. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report presents the results of the Aerospace Safety Advisory Panel (ASAP) activities during 2002. The format of the report has been modified to capture a long-term perspective. Section II is new and highlights the Panel's view of NASA's safety progress during the year. Section III contains the pivotal safety issues facing NASA in the coming year. Section IV includes the program area findings and recommendations. The Panel has been asked by the Administrator to perform several special studies this year, and the resulting white papers appear in Appendix C. The year has been filled with significant achievements for NASA in both successful Space Shuttle operations and International Space Station (ISS) construction. Throughout the year, safety has been first and foremost in spite of many changes throughout the Agency. The relocation of the Orbiter Major Modifications (OMMs) from California to Kennedy Space Center (KSC) appears very successful. The transition of responsibilities for program management of the Space Shuttle and ISS programs from Johnson Space Center (JSC) to NASA Headquarters went smoothly. The decision to extend the life of the Space Shuttle as the primary NASA vehicle for access to space is viewed by the Panel as a prudent one. With the appropriate investments in safety improvements, in maintenance, in preserving appropriate inventories of spare parts, and in infrastructure, the Space Shuttle can provide safe and reliable support for the ISS for the foreseeable future. Indications of an aging Space Shuttle fleet occurred on more than one occasion this year. Several flaws went undetected in the early prelaunch tests and inspections. In all but one case, the problems were found prior to launch. These incidents were all handled properly and with safety as the guiding principle. Indeed, launches were postponed until the problems were fully understood and mitigating action could be taken. These incidents do, however, indicate the need to analyze the

  4. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During 1997, the Aerospace Safety Advisory Panel (ASAP) continued its safety reviews of NASA's human space flight and aeronautics programs. Efforts were focused on those areas that the Panel believed held the greatest potential to impact safety. Continuing safe Space Shuttle operations and progress in the manufacture and testing of primary components for the International Space Station (ISS) were noteworthy. The Panel has continued to monitor the safety implications of the transition of Space Shuttle operations to the United Space Alliance (USA). One area being watched closely relates to the staffing levels and skill mix in both NASA and USA. Therefore, a section of this report is devoted to personnel and other related issues that are a result of this change in NASA's way of doing business for the Space Shuttle. Attention will continue to be paid to this important topic in subsequent reports. Even though the Panel's activities for 1997 were extensive, fewer specific recommendations were formulated than has been the case in recent years. This is indicative of the current generally good state of safety of NASA programs. The Panel does, however, have several longer term concerns that have yet to develop to the level of a specific recommendation. These are covered in the introductory material for each topic area in Section 11. In another departure from past submissions, this report does not contain individual findings and recommendations for the aeronautics programs. While the Panel devoted its usual efforts to examining NASA's aeronautic centers and programs, no specific recommendations were identified for inclusion in this report. In lieu of recommendations, a summary of the Panel's observations of NASA's safety efforts in aeronautics and future Panel areas of emphasis is provided. With profound sadness the Panel notes the passing of our Chairman, Paul M. Johnstone, on December 17, 1997, and our Staff Assistant, Ms. Patricia M. Harman, on October 5, 1997. Other

  5. Cadmium content of human cancellous bone.

    PubMed

    Knuuttila, M; Lappalainen, R; Olkkonen, H; Lammi, S; Alhava, E M

    1982-01-01

    The cadmium content of human cancellous bone was related to age, sex, bone loss, physical properties, and elemental composition. Bone specimens from the anterior iliac crest were collected from 889 cadavers with a normal mineral status, and from 50 cadavers which had bone loss from chronic diseases and immobilization. The element concentrations were analyzed using atomic absorption spectrophotometry. Bone fluoride levels ere determined with the ion specific electrode, the mineral density with the gamma ray attenuation method, and the compressive strength with a strain transducer. The data were analyzed using multiple linear regression analysis. The mean cadmium content of 0.22 +/- 9.16 micrograms/g dry weight (+/- SD) in the samples did not change with age and its content was slightly greater in males than in females. Furthermore, no statistically significant relation was found in cadmium content to bone loss changes or to the calcium content of bone. The cadmium content had a high statistically significant positive correlation with the strontium and nickel content. PMID:7138079

  6. Cadmium content of human cancellous bone

    SciTech Connect

    Knuuttila, M.; Lappalainen, R.; Olkkonen, H.; Lammi, S.; Albava, E.M.

    1982-09-01

    The cadmium content of human cancellous bone was related to age, sex, bone loss, physical properties, and elemental composition. Bone specimens from the anterior iliac crest were collected from 88 cadavers with a normal mineral status, and from 50 cadavers which had bone loss from chronic diseases and immobilization. The element concentrations were analyzed using atomic absorption spectrophotometry. Bone fluoride levels were determined with the ion specific electrode, the mineral density with the gamma ray attenuation method, and the compressive strength with a strain transducer. The data were analyzed using multiple linear regression analysis. The mean cadmium content of 0.22 +/- 0.16 ..mu..g/g dry weight (+/- SD) in the samples did not change with age and its content was slightly greater in males than in females. Furthermore, no statistically significant relationship was found in cadmium content to bone loss changes or to the calcium content of bone. The cadmium content had a high statistically significant positive correlation with the strontium and nickel content.

  7. High performance nickel electrodes for space power applications

    NASA Technical Reports Server (NTRS)

    Adanuvor, Prosper K.; Pearson, Johnnie A.; Miller, Brian; Tatarchuk, Bruce; Britton, Doris L.

    1995-01-01

    The specific energy density and the performance of nickel electrodes are generally limited by the electrode microstructure and the nature of the active material within the electrode matrix. Progress is being made in our laboratory in a collaborative effort with NASA-LEWIS Research Center to develop lighter weight, mechanically stable and highly efficient nickel electrodes for aerospace applications. Our approach is based on an electrode microstructure fabricated from a mixture of nickel fibers as small as 2 micro m diameter and cellulose fibers. Results will be presented to show the optimum conditions for impregnating this electrode microstructure with nickel hydroxide active material. Performance data in half-cell tests and cycle life data will also be presented. The flexibility of this electrode microstructure and the significant advantages it offers in terms of weight and performance will be demonstrated, in particular its ability to accept charge at high rates and to discharge at high rates.

  8. Superfund dredging restoration results in widespread regional reduction in cadmium in blue crabs.

    PubMed

    Levinton, Jeffrey S; Pochron, Sharon T; Kane, Michael W

    2006-12-15

    A nickel-cadmium battery factory released about 53 tons of mostly cadmium and nickel hydroxide suspended solid waste between 1953 and 1979 into Foundry Cove, which is tidally connected to the Hudson River estuary. A major Superfund dredging cleanup in 1994-1995 removed most of the cadmium from the sediment from within Foundry Cove. Here, we demonstrate that the cleanup reduced cadmium tissue concentrations (hepatopancreas and leg muscle) in an important fishery species, the blue crab Callinectes sapidus near Foundry Cove, but also across a broad reach of the Hudson River. Before the cleanup, cadmium concentrations in crabs were 4-5 times higher on average than after the cleanup and geographic variation in crab cadmium concentration along the Hudson River estuary was strongly reduced after the cleanup. The factor of reduction in crab tissue concentrations was far less than the factor of reduction of export of cadmium from Foundry Cove into the Hudson or the factor of reduction of cadmium sediment concentrations within the cove following the cleanup. This unique study demonstrates the efficacy of a major dredging cleanup and quantifies the spatial and temporal impact of the cleanup. It demonstrates that cleanup of a point source can have dramatic effects over large spatial scales. PMID:17256500

  9. Challenges in aerospace medicine education.

    PubMed

    Grenon, S Marlene; Saary, Joan

    2011-11-01

    Aerospace medicine training and research represents a dream for many and a challenge for most. In Canada, although some opportunities exist for the pursuit of education and research in the aerospace medicine field, they are limited despite the importance of this field for enabling safe human space exploration. In this commentary, we aim to identify some of the challenges facing individuals wishing to get involved in the field as well as the causal factors for these challenges. We also explore strategies to mitigate against these. PMID:22097645

  10. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)

    1997-01-01

    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  11. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Clark-Ingram, M.; Hessler, S. L.

    1997-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  12. Cadmium and renal cancer

    SciTech Connect

    Il'yasova, Dora; Schwartz, Gary G. . E-mail: gschwart@wfubmc.edu

    2005-09-01

    Background: Rates of renal cancer have increased steadily during the past two decades, and these increases are not explicable solely by advances in imaging modalities. Cadmium, a widespread environmental pollutant, is a carcinogen that accumulates in the kidney cortex and is a cause of end-stage renal disease. Several observations suggest that cadmium may be a cause of renal cancer. Methods: We performed a systematic review of the literature on cadmium and renal cancer using MEDLINE for the years 1966-2003. We reviewed seven epidemiological and eleven clinical studies. Results: Despite different methodologies, three large epidemiologic studies indicate that occupational exposure to cadmium is associated with increased risk renal cancer, with odds ratios varying from 1.2 to 5.0. Six of seven studies that compared the cadmium content of kidneys from patients with kidney cancer to that of patients without kidney cancer found lower concentrations of cadmium in renal cancer tissues. Conclusions: Exposure to cadmium appears to be associated with renal cancer, although this conclusion is tempered by the inability of studies to assess cumulative cadmium exposure from all sources including smoking and diet. The paradoxical findings of lower cadmium content in kidney tissues from patients with renal cancer may be caused by dilution of cadmium in rapidly dividing cells. This and other methodological problems limit the interpretation of studies of cadmium in clinical samples. Whether cadmium is a cause of renal cancer may be answered more definitively by future studies that employ biomarkers of cadmium exposure, such as cadmium levels in blood and urine.

  13. Characterization of Carbon Nanotube Reinforced Nickel

    NASA Technical Reports Server (NTRS)

    Gill, Hansel; Hudson, Steve; Bhat, Biliyar; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Carbon nanotubes are cylindrical molecules composed of carbon atoms in a regular hexagonal arrangement. If nanotubes can be uniformly dispersed in a supporting matrix to form structural materials, the resulting structures could be significantly lighter and stronger than current aerospace materials. Work is currently being done to develop an electrolyte-based self-assembly process that produces a Carbon Nanotube/Nickel composite material with high specific strength. This process is expected to produce a lightweight metal matrix composite material, which maintains it's thermal and electrical conductivities, and is potentially suitable for applications such as advanced structures, space based optics, and cryogenic tanks.

  14. Evaluation of the potential carcinogenicity of cadmium, cadium acetate, cadmium bromide, cadmium chloride. Final report

    SciTech Connect

    Not Available

    1988-06-01

    Cadmium is a probable human carcinogen, classified as weight-of-evidence Group B1 under the EPA Guidelines for Carcinogen Risk Assessment (U.S. EPA, 1986a). Evidence on potential carcinogenicity from animal studies is Sufficient, and the evidence from human studies is Limited. The potency factor (F) for cadmium is estimated to be 57.9/(mg/kg/day) (based on epidemiology data for cadmium workers), placing it in potency group 2 according to the CAG's methodology for evaluating potential carcinogens (U.S. EPA, 1986b). Cadmium weight of evidence and potency are based on epidemiology data for cadmium workers exposed to cadmium oxide and/or cadmium fume. Although human data for cadmium salts are lacking, due to the responsiveness of animals to soluble cadmium compounds, especially cadmium chloride, the weight of evidence and potency for cadmium acetate, cadmium bromide and cadmium chloride are considered to be the same as those cadmium compounds to which workers are exposed. Thus, cadmium acetate, cadmium bromide, and cadmium chloride are all classified as weight-of-evidence Group and the potency group, cadmium, cadmium acetate, cadmium bromide, and cadmium chloride are assigned MEDIUM hazard rankings for the purposes of RQ adjustment. Combining the weight-of-evidence group and the potency group, carbon tetrachloride is assigned a MEDIUM hazard ranking for the purposes of RQ adjustment.

  15. Aerospace Education for the Melting Pot.

    ERIC Educational Resources Information Center

    Joels, Kerry M.

    1979-01-01

    Aerospace education is eminently suited to provide a framework for multicultural education. Effective programs accommodating minorities' frames of reference to the rapidly developing disciplines of aerospace studies have been developed. (RE)

  16. Aerospace Education and the Elementary Teacher

    ERIC Educational Resources Information Center

    Jones, Robert M.

    1978-01-01

    This articles attempts to stimulate otherwise reluctant school teachers to involve aerospace education in their content repertoire. Suggestions are made to aid the teacher in getting started with aerospace education. (MDR)

  17. Accommodation of Nontraditional Aerospace Degree Aspirants

    ERIC Educational Resources Information Center

    Schukert, Michael A.

    1977-01-01

    Presents results of a national survey of institutions offering college level aerospace studies. Primary survey concern is the availability of nontraditional aerospace education programs; however, information pertaining to institution characteristics, program characteristics, and staffing are also included. (SL)

  18. Optical Information Processing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Current research in optical processing is reviewed. Its role in future aerospace systems is determined. The development of optical devices and components demonstrates that system concepts can be implemented in practical aerospace configurations.

  19. Aerospace Training. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Aerospace is an economic powerhouse that generates jobs and fuels our economy. Washington's community and technical colleges produce the world-class employees needed to keep it that way. With about 1,250 aerospace-related firms employing more than 94,000 workers, Washington has the largest concentration of aerospace expertise in the nation. To…

  20. Job Prospects for Aerospace Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1987-01-01

    Discusses the recent trends in job opportunities for aerospace engineers. Mentions some of the political, technological, and economic factors affecting the overall employment picture. Includes a description of the job prospects created by the general upswing of the large commercial aircraft market. (TW)

  1. 41st Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor)

    2012-01-01

    The proceedings of the 41st Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held in Pasadena Hilton, Pasadena, California on May 16-18, 2012. Lockheed Martin Space Systems cosponsored the symposium. Technology areas covered include gimbals and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and Mars Science Laboratory mechanisms.

  2. 35th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Doty, Laura W. (Technical Monitor)

    2001-01-01

    The proceedings of the 35th Aerospace Mechanisms Symposium are reported. Ames Research Center hosted the conference, which was held at the Four Points Sheraton, Sunnyvale, California, on May 9-11, 2001. The symposium was sponsored by the Mechanisms Education Association. Technology areas covered included bearings and tribology; pointing, solar array, and deployment mechanisms; and other mechanisms for spacecraft and large space structures.

  3. Careers in the Aerospace Industry.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Office of General Aviation.

    The document briefly presents career information in the field of aerospace industry. Employment exists in three areas: (1) professional and technical occupations in research and development (engineers, scientists, and technicians); (2) administrative, clerical, and related occupations (engineers, scientists, technicians, clerks, secretaries,…

  4. Technology utilization. [aerospace technology transfer

    NASA Technical Reports Server (NTRS)

    Kubokawa, C. C.

    1978-01-01

    NASA developed technologies were used to tackle problems associated with safety, transportation, industry, manufacturing, construction and state and local governments. Aerospace programs were responsible for more innovations for the benefit of mankind than those brought about by either major wars, or peacetime programs. Briefly outlined are some innovations for manned space flight, satellite surveillance applications, and pollution monitoring techniques.

  5. Graphical simulation for aerospace manufacturing

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Bien, Christopher

    1994-01-01

    Simulation software has become a key technological enabler for integrating flexible manufacturing systems and streamlining the overall aerospace manufacturing process. In particular, robot simulation and offline programming software is being credited for reducing down time and labor cost, while boosting quality and significantly increasing productivity.

  6. Ball Aerospace Actuator Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Kingsbury, Lana; Lightsey, Paul; Quigley, Phil; Rutkowski, Joel; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The ambient testing characterizing step size and repeatability for the Ball Aerospace Cryogenic Nano-Positioner actuators for the AMSD (Advanced Mirror System Demonstrator) program has been completed and are presented. Current cryogenic testing is underway. Earlier cryogenic test results for a pre-cursor engineering model are presented.

  7. Aerospace applications of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-01-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  8. Aerospace for the Very Young.

    ERIC Educational Resources Information Center

    2003

    This packet includes games and activities concerning aerospace education for the very young. It is designed to develop and strengthen basic concepts and skills in a non-threatening atmosphere of fun. Activities include: (1) "The Sun, Our Nearest Star"; (2) "Twinkle, Twinkle, Little Star, How I Wonder Where You Are"; (3) "Shadows"; (4) "The Earth…

  9. Aerospace/Aviation Science Occupations.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Occupational Education.

    The guide was developed to provide secondary students the opportunity to study aviation and aerospace education from the conceptual and career approach coupled with general education specifically related to science. Unit plans were prepared to motivate, develop skills, and offer counseling to the students of aviation science and occupational…

  10. 33rd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Litty, Edward C. (Compiler); Sevilla, Donald R. (Compiler)

    1999-01-01

    The proceedings of the 33rd Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held at the Pasadena Conference and Exhibition Center, Pasadena, California, on May 19-21, 1999. Lockheed Martin Missiles and Space cosponsored the symposium. Technology areas covered include bearings and tribology; pointing, solar array and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  11. Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense.

    PubMed

    Freeman, John L; Persans, Michael W; Nieman, Ken; Salt, David E

    2005-12-01

    The overexpression of serine acetyltransferase from the Ni-hyperaccumulating plant Thlaspi goesingense causes enhanced nickel and cobalt resistance in Escherichia coli. Furthermore, overexpression of T. goesingense serine acetyltransferase results in enhanced sensitivity to cadmium and has no significant effect on resistance to zinc. Enhanced nickel resistance is directly related to the constitutive overactivation of sulfur assimilation and glutathione biosynthesis, driven by the overproduction of O-acetyl-L-serine, the product of serine acetyltransferase and a positive regulator of the cysteine regulon. Nickel in the serine acetyltransferase-overexpressing strains is not detoxified by coordination or precipitation with sulfur, suggesting that glutathione is involved in reducing the oxidative damage imposed by nickel. PMID:16332856

  12. Nickel and Cobalt Resistance Engineered in Escherichia coli by Overexpression of Serine Acetyltransferase from the Nickel Hyperaccumulator Plant Thlaspi goesingense

    PubMed Central

    Freeman, John L.; Persans, Michael W.; Nieman, Ken; Salt, David E.

    2005-01-01

    The overexpression of serine acetyltransferase from the Ni-hyperaccumulating plant Thlaspi goesingense causes enhanced nickel and cobalt resistance in Escherichia coli. Furthermore, overexpression of T. goesingense serine acetyltransferase results in enhanced sensitivity to cadmium and has no significant effect on resistance to zinc. Enhanced nickel resistance is directly related to the constitutive overactivation of sulfur assimilation and glutathione biosynthesis, driven by the overproduction of O-acetyl-l-serine, the product of serine acetyltransferase and a positive regulator of the cysteine regulon. Nickel in the serine acetyltransferase-overexpressing strains is not detoxified by coordination or precipitation with sulfur, suggesting that glutathione is involved in reducing the oxidative damage imposed by nickel. PMID:16332856

  13. Nickel hydrogen battery expert system

    NASA Technical Reports Server (NTRS)

    Shiva, Sajjan G.

    1991-01-01

    The Hubble Telescope Battery Testbed at MSFC uses the Nickel Cadmium (NiCd) Battery Expert System (NICBES-2) which supports the evaluation of performance of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort is summarized which was used to modify NICBES-2 to accommodate Nickel Hydrogen (NiH2) battery environment now in MSFC testbed. The NICBES-2 is implemented on a Sun Microsystem and is written in SunOS C and Quintus Prolog. The system now operates in a multitasking environment. NICBES-2 spawns three processes: serial port process (SPP); data handler process (DHP); and the expert system process (ESP) in order to process the telemetry data and provide the status and action advice. NICBES-2 performs orbit data gathering, data evaluation, alarm diagnosis and action advice and status and history display functions. The adaptation of NICBES-2 to work with NiH2 battery environment required modification to all of the three component processes.

  14. NICKEL PLATING PROCESS

    DOEpatents

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  15. Lightning Protection Guidelines for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Goodloe, C. C.

    1999-01-01

    This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.

  16. Cadmium - A metallohormone?

    SciTech Connect

    Byrne, Celia; Divekar, Shailaja D.; Storchan, Geoffrey B.; Parodi, Daniela A.; Martin, Mary Beth

    2009-08-01

    Cadmium is a heavy metal that is often referred to as the metal of the 20th century. It is widely used in industry principally in galvanizing and electroplating, in batteries, in electrical conductors, in the manufacture of alloys, pigments, and plastics, and in the stabilization of phosphate fertilizers. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smoking, and, to a lesser degree, drinking water. Although the metal has no known physiological function, there is evidence to suggest that the cadmium is a potent metallohormone. This review summarizes the increasing evidence that cadmium mimics the function of steroid hormones, addresses our current understanding of the mechanism by which cadmium functions as a hormone, and discusses its potential role in development of the hormone dependent cancers.

  17. Cadmium in tobacco

    SciTech Connect

    Yue, L. )

    1992-03-01

    The present study was conducted to determine the cadmium level in tobacco planted in five main tobacco-producing areas, a cadmium polluted area, and in cigarettes produced domestically (54 brands). The results indicate that average cadmium content in tobacco was 1.48 (0.10-4.95 mg/kg), which was similar to that of Indian tobacco (1.24 mg/kg), but the cadmium of tobacco produced in the cadmium polluted area was quite high (8.60 mg/kg). The average cigarette cadmium was 1.05 micrograms/g (with filter tip) and 1.61 micrograms/g (regular cigarette). Therefore special attention should be paid to the soil used in planting tobacco.

  18. Cadmium--a metallohormone?

    PubMed

    Byrne, Celia; Divekar, Shailaja D; Storchan, Geoffrey B; Parodi, Daniela A; Martin, Mary Beth

    2009-08-01

    Cadmium is a heavy metal that is often referred to as the metal of the 20th century. It is widely used in industry principally in galvanizing and electroplating, in batteries, in electrical conductors, in the manufacture of alloys, pigments, and plastics, and in the stabilization of phosphate fertilizers. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smoking, and, to a lesser degree, drinking water. Although the metal has no known physiological function, there is evidence to suggest that the cadmium is a potent metallohormone. This review summarizes the increasing evidence that cadmium mimics the function of steroid hormones, addresses our current understanding of the mechanism by which cadmium functions as a hormone, and discusses its potential role in development of the hormone dependent cancers. PMID:19362102

  19. Cadmium - a metallohormone?

    PubMed Central

    Byrne, Celia; Divekar, Shailaja D.; Storchan, Geoffrey B.; Parodi, Daniela A.; Martin, Mary Beth

    2009-01-01

    Cadmium is a heavy metal that is often referred to as the metal of the 20th Century. It is widely used in industry principally in galvanizing and electroplating, in batteries, in electrical conductors, in the manufacture of alloys, pigments, and plastics, and in the stabilization of phosphate fertilizers. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smoking, and, to a lesser degree, drinking water. Although the metal has no known physiological function, there is evidence to suggest that the cadmium is a potent metallohormone. This review summarizes the increasing evidence that cadmium mimics the function of steroid hormones, addresses our current understanding of the mechanism by which cadmium functions as a hormone, and discusses its potential role in development of the hormone dependent cancers. PMID:19362102

  20. Lightweight, direct-radiating nickel hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Metcalfe, J. R.

    1986-01-01

    Two battery module configurations were developed which, in addition to integrating cylindrical nickel hydrogen (NiH2) cells into batteries, provide advances in the means of mounting, monitoring and thermal control of these cells. The main difference between the two modules is the physical arrangement of the cells: vertical versus horizontal. Direct thermal radiation to deep space is accomplished by substituting the battery structure for an exterior spacecraft panel. Unlike most conventional nickel-cadmium (NiCd) and NiH2 batteries, the cells are not tightly packed together; therefore ancillary heat conducting media to outside radiating areas, and spacecraft deck reinforcements for high mass concentration are not necessary. Testing included electrical characterization and a comprehensive regime of environmental exposures. The designs are flexible with respect to quantity and type of cells, orbit altitude and period, power demand profile, and the extent of cell parameter monitoring. This paper compares the characteristics of the two battery modules and summarizes their performance.

  1. Mechanisms of cadmium carcinogenicity in the gastrointestinal tract.

    PubMed

    Bishak, Yaser Khaje; Payahoo, Laleh; Osatdrahimi, Alireza; Nourazarian, Alireza

    2015-01-01

    Cancer, a serious public health problem in worldwide, results from an excessive and uncontrolled proliferation of the body cells without obvious physiological demands of organs. The gastrointestinal tract, including the esophagus, stomach and intestine, is a unique organ system. It has the highest cancer incidence and cancer- related mortality in the body and is influenceed by both genetic and environmental factors. Among the various chemical elements recognized in the nature, some of them including zinc, iron, cobalt, and copper have essential roles in the various biochemical and physiological processes, but only at low levels and others such as cadmium, lead, mercury, arsenic, and nickel are considered as threats for human health especially with chronic exposure at high levels. Cadmium, an environment contaminant, cannot be destroyed in nature. Through impairment of vitamin D metabolism in the kidney it causes nephrotoxicity and subsequently bone metabolism impairment and fragility. The major mechanisms involved in cadmium carcinogenesis could be related to the suppression of gene expression, inhibition of DNA damage repair, inhibition of apoptosis, and induction of oxidative stress. In addition, cadmium may act through aberrant DNA methylation. Cadmium affects multiple cellular processes, including signal transduction pathways, cell proliferation, differentiation, and apoptosis. Down-regulation of methyltransferases enzymes and reduction of DNA methylation have been stated as epigenetic effects of cadmium. Furthermore, increasing intracellular free calcium ion levels induces neuronal apoptosis in addition to other deleterious influence on the stability of the genome. PMID:25640397

  2. New environmental regulation for the aerospace industry: The aerospace NESHAP

    SciTech Connect

    Bauer, J.P.; Gampper, B.P.; Baker, J.M.

    1997-12-31

    40 CFR Part 63, Subpart GG, the National Emission Standard for Hazardous Air Pollutants for Aerospace Manufacturing and Rework Facilities, commonly referred to as the Aerospace NESHAP, was issued on September 1, 1995 and requires compliance by September 1, 1998. The regulation affects any facility that manufactures or reworks commercial, civil, or military aircraft vehicles or components and is a major source of Hazardous Air Pollutants (HAPs). The regulation targets reducing Volatile Organic Compound (VOC) and Hazardous Air Pollutant (HAP) emissions to the atmosphere. Processes affected by the new regulation include aircraft painting, paint stripping, chemical milling masking, solvent cleaning, and spray gun cleaning. Regulatory requirements affecting these processes are summarized, and different compliance options compared in terms of cost-effectiveness and industry acceptance. Strategies to reduce compliance costs and minimize recordkeeping burdens are also presented.

  3. Cadmium Toxicity and Treatment

    PubMed Central

    Bernhoft, Robin A.

    2013-01-01

    Cadmium is a heavy metal of considerable toxicity with destructive impact on most organ systems. It is widely distributed in humans, the chief sources of contamination being cigarette smoke, welding, and contaminated food and beverages. Toxic impacts are discussed and appear to be proportional to body burden of cadmium. Detoxification of cadmium with EDTA and other chelators is possible and has been shown to be therapeutically beneficial in humans and animals when done using established protocols. PMID:23844395

  4. Evaluation of nickel-hydrogen battery for space application

    NASA Technical Reports Server (NTRS)

    Billard, J. M.; Dupont, D.

    1983-01-01

    Results of electrical space qualification tests of nickel-hydrogen battery type HR 23S are presented. The results obtained for the nickel-cadmium battery type VO 23S are similar except that the voltage level and the charge conservation characteristics vary significantly. The electrical and thermal characteristics permit predictions of the following optimal applications: charge coefficient in the order of 1.3 to 1.4 at 20C; charge current density higher than C/10 at 20C; discharge current density from C/10 to C/3 at 20C; maximum discharge temperature: OC; storage temperature: -20C.

  5. Exploring the Molecular Mechanisms of Nickel-Induced Genotoxicity and Carcinogenicity: A Literature Review

    PubMed Central

    Cameron, Keyuna S.; Buchner, Virginia; Tchounwou, Paul B.

    2011-01-01

    Nickel, a naturally occurring element that exists in various mineral forms, is mainly found in soil and sediment, and its mobilization is influenced by the physicochemical properties of the soil. Industrial sources of nickel include metallurgical processes such as electroplating, alloy production, stainless steel, and nickel-cadmium batteries. Nickel industries, oil- and coal-burning power plants, and trash incinerators have been implicated in its release into the environment. In humans, nickel toxicity is influenced by the route of exposure, dose, and solubility of the nickel compound. Lung inhalation is the major route of exposure for nickel-induced toxicity. Nickel may also be ingested or absorbed through the skin. The primary target organs are the kidneys and lungs. Other organs such as the liver, spleen, heart and testes may also be affected to a lesser extent. Although the most common health effect is an allergic reaction, research has also demonstrated that nickel is carcinogenic to humans. The focus of the present review is on recent research concerning the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity. We first present a background on the occurrence of nickel in the environment, human exposure, and human health effects. PMID:21905451

  6. 38th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2006-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 38th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 38th AMs, hosted by the NASA Langley Research Center in Williamsburg, Virginia, was held May 17-19, 2006. During these three days, 34 papers were presented. Topics included gimbals, tribology, actuators, aircraft mechanisms, deployment mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  7. 37th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2004-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is reporting problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 37th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 37th AMS, hosted by the Johnson Space Center (JSC) in Galveston, Texas, was held May 19, 20 and 21, 2004. During these three days, 34 papers were presented. Topics included deployment mechanisms, tribology, actuators, pointing and optical mechanisms, Space Station and Mars Rover mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  8. 39th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, E. A. (Compiler)

    2008-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA Marshall Space Flight Center (MSFC) and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 39th symposium, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 39th AMS was held in Huntsville, Alabama, May 7-9, 2008. During these 3 days, 34 papers were presented. Topics included gimbals and positioning mechanisms, tribology, actuators, deployment mechanisms, release mechanisms, and sensors. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  9. 34th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2000-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. The National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for organizing the AMS. Now in its 34th year, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 34th AMS, hosted by the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland, was held May 10, 11 and 12, 2000. During these three days, 34 papers were presented. Topics included deployment mechanisms, bearings, actuators, pointing and optical mechanisms, Space Station mechanisms, release mechanisms, and test equipment. Hardware displays during the vendor fair gave attendees an opportunity to meet with developers of current and future mechanism components.

  10. Lattice Structures For Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Del Olmo, E.; Grande, E.; Samartin, C. R.; Bezdenejnykh, M.; Torres, J.; Blanco, N.; Frovel, M.; Canas, J.

    2012-07-01

    The way of mass reduction improving performances in the aerospace structures is a constant and relevant challenge in the space business. The designs, materials and manufacturing processes are permanently in evolution to explore and get mass optimization solutions at low cost. In the framework of ICARO project, EADS CASA ESPACIO (ECE) has designed, manufactured and tested a technology demonstrator which shows that lattice type of grid structures is a promising weight saving solution for replacing some traditional metallic and composite structures for space applications. A virtual testing methodology was used in order to support the design of a high modulus CFRP cylindrical lattice technology demonstrator. The manufacturing process, based on composite Automatic Fiber Placement (AFP) technology developed by ECE, allows obtaining high quality low weight lattice structures potentially applicable to a wide range of aerospace structures. Launcher payload adaptors, satellite platforms, antenna towers or instrument supports are some promising candidates.

  11. Third Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Cross, D. R. (Editor); Caruso, S. V. (Editor); Clark-Ingram, M. (Editor)

    1999-01-01

    The elimination of CFC's, Halons, TCA, other ozone depleting chemicals, and specific hazardous materials is well underway. The phaseout of these chemicals has mandated changes and new developments in aerospace materials and processes. We are beyond discovery and initiation of these new developments and are now in the implementation phase. This conference provided a forum for materials and processes engineers, scientists, and managers to describe, review, and critically assess the evolving replacement and clean propulsion technologies from the standpoint of their significance, application, impact on aerospace systems, and utilization by the research and development community. The use of these new technologies, their selection and qualification, their implementation, and the needs and plans for further developments are presented.

  12. Biological monitoring of nickel

    SciTech Connect

    Sunderman, F.W. Jr.; Aitio, A.; Morgan, L.G.; Norseth, T.

    1986-07-01

    Measurements of nickel in body fluids, excreta, and tissues from humans with occupational, environmental, and iatrogenic exposures to nickel compounds are comprehensively reviewed. Correlations between levels of human exposures to various classes of nickel compounds via inhalation, oral, or parenteral routes and the corresponding concentrations of nickel in biological samples are critically evaluated. Major conclusions include the following points: Measurements of nickel concentrations in body fluids, especially urine and serum, provide meaningful insights into the extent of nickel exposures, provided these data are interpreted with knowledge of the exposure routes, sources, and durations, the chemical identities and physical-chemical properties of the nickel compounds, and relevant clinical and physiological information, such as renal function. Nickel concentrations in body fluids should not be viewed as indicators of specific health risks, except in persons exposed to nickel carbonyl, for whom urine nickel concentrations provide prognostic guidance on the severity of the poisoning. In persons exposed to soluble nickel compounds (e.g., NiCl/sub 2/, NiSO/sub 4/), nickel concentrations in body fluids are generally proportional to exposure levels; absence of increased values usually indicates non-significant exposure; presence of increased values should be a signal to reduce the exposure. In persons exposed to less soluble nickel compounds (e.g., Ni/sub 3/S/sub 2/,NiO), increased concentrations of nickel in body fluids are indicative of significant nickel absorption and should be a signal to reduce the exposures to the lowest levels attainable with available technology; absence of increased values does not necessarily indicate freedom from the health risks (e.g., cancers of lung and nasal cavities) associated with exposures to certain relatively insoluble nickel compounds. 315 references.

  13. Improvement in electrochromic stability of electrodeposited nickel hydroxide thin film

    SciTech Connect

    Natarajan, C.; Matsumoto, H.; Nogami, G.

    1997-01-01

    The electrochromic nickel hydroxide thin film was anodically deposited from an aqueous solution. The effect of solution temperature, postheat-treatment temperature, and addition of cadmium on the electrochromic behavior (color/bleach durability cycle, response time, and coloration efficiency of the nickel hydroxide films in NaOH) were investigated. A significant increase in the color/bleach durability cycle from 500 (for the as-deposited film) to more than 5000 cycles (for the heat-treated film) was observed. The addition of cadmium increased the utilization of the active materials. It was found that the coloration efficiency was 40 cm{sup 2}/C and coloration and bleaching response time were 20 to 30 s and 8 to 10 s, respectively. The change in the electrochromic properties with heat-treatment temperature is discussed based on the physical and electrochemical analysis.

  14. Magnetic Gearboxes for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Alvarez-Valenzuela, Marco A.; Sanchez-Garcia-Casarrubios, Juan; Cristache, Christian; Valiente-Blanco, Ignacio

    2014-01-01

    Magnetic gearboxes are contactless mechanisms for torque-speed conversion. They present no wear, no friction and no fatigue. They need no lubricant and can be customized for other mechanical properties as stiffness or damping. Additionally, they can protect structures and mechanisms against overloads, limitting the transmitted torque. In this work, spur, planetary and "magdrive" or "harmonic drive" configurations are compared considering their use in aerospace applications. The most recent test data are summarized to provide some useful help for the design engineer.

  15. Soft impacts on aerospace structures

    NASA Astrophysics Data System (ADS)

    Abrate, Serge

    2016-02-01

    This article provides an overview of the literature dealing with three types of soft impacts of concern for the aerospace applications, namely impacts of rain drops, hailstones and birds against aircraft. It describes the physics of the problem as it has become better understood through experiments, analyses, and numerical simulations. Some emphasis has been placed on the material models and the numerical approaches used in modeling these three types of projectiles.

  16. 30th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Bradley, Obie H., Jr. (Compiler); Rogers, John F. (Compiler)

    1996-01-01

    The proceedings of the 30th Aerospace Mechanisms Symposium are reported. NASA Langley Research Center hosted the proceedings held at the Radisson Hotel in Hampton, Virginia on May 15-17, 1996, and Lockheed Martin Missiles and Space Company, Inc. co-sponsored the symposium. Technological areas covered include bearings and tribology; pointing, solar array, and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  17. KIBO Industry, innovates in aerospace

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on industry KIBO is postulated in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo entomocole industry is the first production company in Europe to human food, it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and in the universities of Angers, Nantes, Lille.

  18. KIBO Industry, innovates in aerospace

    NASA Astrophysics Data System (ADS)

    Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on this postulate KIBO in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo industry is the first entomocole production company creat in Europe to human food; it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and various universities in France.

  19. Ball Aerospace Hybrid Space Cryocoolers

    NASA Astrophysics Data System (ADS)

    Gully, W.; Glaister, D. S.; Hendershott, P.; Kotsubo, V.; Lock, J. S.; Marquardt, E.

    2008-03-01

    This paper describes the design, development, testing, and performance at Ball Aerospace of a long-life hybrid (combination of Stirling and Joule-Thomson [J-T] thermodynamic cycles) space cryocooler. Hybrid coolers are synergistic combinations of two thermodynamic cycles that combine advantages of each cycle to yield overall improved performance. Hybrid cooler performance advantages include: 1) load leveling of large heat loads; 2) remote cryogenic cooling with very low to negligible induced vibration and jitter; 3) very low redundant (off state) cooler penalties; 4) high power efficiency, especially at low temperatures; and 5) simplified system integration with capability to cross gimbals and no need for thermal straps or switches. Ball Aerospace is currently developing several different hybrid cooler systems. The 35 K hybrid cooler provides 2.0 W at 35 K and 8.5 W at 85 K with an emphasis on load leveling of high transient heat loads and remote, low vibration cooling. The 10 K hybrid cooler provides 200 mW at 10 K, 700 mW at 15 K, and 10.7 W at 85 K with an emphasis on power efficiency. In addition, Ball Aerospace built and tested a complete hybrid cooler that met the requirements of the JWST Mid-Infrared Instrument (MIRI) cooler including providing 80 mW at 6 K and 100 mW at 18 K for a total system (28 V) power of 310 W.

  20. Real time charge efficiency monitoring for nickel electrodes in NICD and NIH2 cells

    NASA Technical Reports Server (NTRS)

    Zimmerman, A. H.

    1987-01-01

    The charge efficiency of nickel-cadmium and nickel-hydrogen battery cells is critical in spacecraft applications for determining the amount of time required for a battery to reach a full state of charge. As the nickel-cadmium or nickel-hydrogen batteries approach about 90 percent state of charge, the charge efficiency begins to drop towards zero, making estimation of the total amount of stored charge uncertain. Charge efficiency estimates are typically based on prior history of available capacity following standardized conditions for charge and discharge. These methods work well as long as performance does not change significantly. A relatively simple method for determining charge efficiencies during real time operation for these battery cells would be a tremendous advantage. Such a method was explored and appears to be quite well suited for application to nickel-cadmium and nickel-hydrogen battery cells. The charge efficiency is monitored in real time, using only voltage measurements as inputs. With further evaluation such a method may provide a means to better manage charge control of batteries, particularly in systems where a high degree of autonomy or system intelligence is required.

  1. Blood Cadmium Level

    EPA Science Inventory

    This indicator describes the presence of cadmium in the blood of the U.S. population from 1999 to 2008. Cadmium is a metal that is toxic to humans and animals. This indicator shows how human exposure to this environmental contaminant has changed over time and how it varies...

  2. Process for producing cadmium sulfide on a cadmium telluride surface

    DOEpatents

    Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.

    1996-07-30

    A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.

  3. Elevated levels of whole blood nickel in a group of Sri Lankan women with endometriosis: a case control study

    PubMed Central

    2013-01-01

    Background Endometriosis is characterized by the persistence of endometrial tissue in ectopic sites outside the uterine cavity. Presence of nickel, cadmium and lead in ectopic endometrial tissue has been reported previously. While any association between blood levels of nickel and endometriosis is yet to be described in literature, conflicting reports are available with regards to cadmium and lead levels in blood and urine. Findings In fifty patients with endometriosis and fifty age-matched controls confirmed by laparoscopy or laparotomy, whole blood samples were collected and digested using supra pure 65% HNO3. Whole blood levels of nickel and lead were measured using Total Reflection X-ray Fluorescence (TXRF) while cadmium levels were evaluated using graphite furnace atomic absorption spectroscopy (GFASS). Women with endometriosis had significantly higher (P=0.016) geometric mean (95% CI) whole blood nickel levels [2.6(1.9-3.3) μg/L] as compared to women without endometriosis [0.8 (0.7-0.9) μg/L]. Whole blood levels of cadmium and lead were similar between the two groups. Conclusions Although women with endometriosis in this study population had higher levels of nickel in whole blood compared to controls, whether nickel could be considered as an aetiological factor in endometriosis remains inconclusive in view of the smaller sample that was evaluated. PMID:23317102

  4. High Performance Nickel Electrodes for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Adanuvor, Prosper K.; Pearson, Johnnie A.; Miller, Brian; Tatarchuk, Bruce; Britton, Doris L.

    1996-01-01

    Performance characteristics such as efficiency, specific energy density and power density of nickel electrodes are generally limited by the electrode microstructure and nature of the active material within the electrode matrix. Progress is being made in our laboratory in a collaborative effort with NASA-Lewis Research Center to develop lighter weight, mechanically stable and highly efficient nickel electrodes for aerospace applications. Our approach is based on an electrode microstructure fabricated from a mixture of nickel fibers as small as 2 microns diameter and cellulose fibers. Performance data in flooded cell tests and cycle life data are presented. Performance characteristics are compared to other electrode microstructures such as the Fibrex Fiber mat and the Fibrex Powder substrate. The flexibility of our electrode microstructure and the significant advantages it offers in terms of weight and performance are demonstrated, in particular, its ability to accept charge at high rates and to discharge at high rates.

  5. Perfluorodiethoxymethane on nickel and nickel oxide surfaces

    SciTech Connect

    Jacobson, J.

    1994-03-03

    The interaction of perfluorodiethoxymethane with a nickel single crystal, Ni(100); a nickel crystal with chemisorbed oxygen, Ni(100)-c(2x2)O; and a nickel crystal with nickel oxide crystallites, NiO(100) is investigated in an ultra high vacuum environment using thermal desorption spectroscopy and high resolution electron energy loss spectroscopy. Nickel, a component of hard disk drives and stainless steel, is used to represent metal surfaces in these {open_quotes}real{close_quotes} systems. Perfluorodiethoxymethane is used in this study as a model compound of industrial perfluoropolyether lubricants. These lubricants are known for their exceptional stability, except in the presence of metals. Perfluorodiethoxymethane contains the acetal group (-OCF{sub 2}O-), believed to be particularly vulnerable to attack in the presence of Lewis acids. Since the surfaces studied show increasing Lewis acidity at the nickel atom sites, one might expect to see increasing decomposition of perfluorodiethoxymethane due to acidic attack of the acetal group. No decomposition of perfluorodiethoxymethane is observed on the clean Ni(100) surface, while more research is needed to determine whether a small decomposition pathway is observed on the oxygenated surfaces, or whether sample impurities are interfering with results. The strength of the bonding of perfluorodiethoxymethane to the surface is found to increase as the nickel atoms sites become more acidic in moving from Ni(100) to Ni (100)-c(2x2)O to NiO (100).

  6. The Need for an Aerospace Pharmacy Residency

    NASA Technical Reports Server (NTRS)

    Bayuse, T.; Schuyler, C.; Bayuse, Tina M.

    2007-01-01

    This viewgraph poster presentation reviews the rationale for a call for a new program in residency for aerospace pharmacy. Aerospace medicine provides a unique twist on traditional medicine, and a specialty has evolved to meet the training for physicians, and it is becoming important to develop such a program for training in pharmacy designed for aerospace. The reasons for this specialist training are outlined and the challenges of developing a program are reviewed.

  7. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  8. Unification - An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Scientific and Technical Information (STI) represents the results of large investments in research and development (R&D) and the expertise of a nation and is a valuable resource. For more than four decades, NASA and its predecessor organizations have developed and managed the preeminent aerospace information system. NASA obtains foreign materials through its international exchange relationships, continually increasing the comprehensiveness of the NASA Aerospace Database (NAD). The NAD is de facto the international aerospace database. This paper reviews current NASA goals and activities with a view toward maintaining compatibility among international aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  9. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  10. Aerospace Activities in the Elementary School

    ERIC Educational Resources Information Center

    Jones, Robert M.; Wiggins, Kenneth E.

    1974-01-01

    Describes 17 activities which are aerospace oriented and yet provide an interdisciplinary approach to learning. Some of the activities described involve paper airplanes, parachutes, model rockets, etc. (BR)

  11. Managing complexity of aerospace systems

    NASA Astrophysics Data System (ADS)

    Tamaskar, Shashank

    Growing complexity of modern aerospace systems has exposed the limits of conventional systems engineering tools and challenged our ability to design them in a timely and cost effective manner. According to the US Government Accountability Office (GAO), in 2009 nearly half of the defense acquisition programs are expecting 25% or more increase in unit acquisition cost. Increase in technical complexity has been identified as one of the primary drivers behind cost-schedule overruns. Thus to assure the affordability of future aerospace systems, it is increasingly important to develop tools and capabilities for managing their complexity. We propose an approach for managing the complexity of aerospace systems to address this pertinent problem. To this end, we develop a measure that improves upon the state-of-the-art metrics and incorporates key aspects of system complexity. We address the problem of system decomposition by presenting an algorithm for module identification that generates modules to minimize integration complexity. We demonstrate the framework on diverse spacecraft and show the impact of design decisions on integration cost. The measure and the algorithm together help the designer track and manage complexity in different phases of system design. We next investigate how complexity can be used as a decision metric in the model-based design (MBD) paradigm. We propose a framework for complexity enabled design space exploration that introduces the idea of using complexity as a non-traditional design objective. We also incorporate complexity with the component based design paradigm (a sub-field of MBD) and demonstrate it on several case studies. The approach for managing complexity is a small but significant contribution to the vast field of complexity management. We envision our approach being used in concert with a suite of complexity metrics to provide an ability to measure and track complexity through different stages of design and development. This will not

  12. Cognitive engineering in aerospace applications

    NASA Technical Reports Server (NTRS)

    Woods, David D.

    1993-01-01

    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.

  13. Cybersecurity for aerospace autonomous systems

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  14. Aerospace materials for nonaerospace applications

    NASA Technical Reports Server (NTRS)

    Johnston, R. L.; Dawn, F. S.

    1974-01-01

    Many of the flame-resistant nonmetallic materials that were developed for the Apollo and Skylab programs are discussed for commercial and military applications. Interchanges of information are taking place with the government agencies, industries, and educational institutions, which are interested in applications of fire-safe nonmetallic materials. These materials are particularly applicable to the design of aircraft, mass transit interiors, residential and public building constructions, nursing homes and hospitals, and to other fields of fire safety applications. Figures 22, 23 and 24 show the potential nonaerospace applications of flame-resistant aerospace materials are shown.

  15. Aerospace Medical Support in Russia

    NASA Technical Reports Server (NTRS)

    Castleberry, Tara; Chamberlin, Blake; Cole, Richard; Dowell, Gene; Savage, Scott

    2011-01-01

    This slide presentation reviews the role of the flight surgeon in support of aerospace medical support operations at the Gagarin Cosmonaut Training Center (GCTC), also known as Star City, in Russia. The flight surgeon in this role is the medical advocate for non-russian astronauts, and also provides medical care for illness and injury for astronauts, family members, and guests as well as civil servants and contractors. The flight surgeon also provides support for hazardous training. There are various photos of the area, and the office, and some of the equipment that is used.

  16. Aerospace Payloads Leak Test Methodology

    NASA Technical Reports Server (NTRS)

    Lvovsky, Oleg; Grayson, Cynthia M.

    2010-01-01

    Pressurized and sealed aerospace payloads can leak on orbit. When dealing with toxic or hazardous materials, requirements for fluid and gas leakage rates have to be properly established, and most importantly, reliably verified using the best Nondestructive Test (NDT) method available. Such verification can be implemented through application of various leak test methods that will be the subject of this paper, with a purpose to show what approach to payload leakage rate requirement verification is taken by the National Aeronautics and Space Administration (NASA). The scope of this paper will be mostly a detailed description of 14 leak test methods recommended.

  17. National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    Piland, William M.

    1987-01-01

    An account is given of the technology development management objectives thus far planned for the DOD/NASA National Aero-Space Plane (NASP). The technology required by NASP will first be developed in ground-based facilities and then integrated during the design and construction of the X-30 experimental aircraft. Five airframe and three powerplant manufacturers are currently engaged in an 18-month effort encompassing design studies and tradeoff analyses. The first flight of the X-30 is scheduled for early 1993.

  18. Nickel hydroxide and other nanophase cathode materials for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Reisner, David E.; Salkind, Alvin J.; Strutt, Peter R.; Xiao, T. Danny

    The staff of US Nanocorp, Inc. are developing unique nanostructured materials for a wide range of applications in the areas of energy storage (batteries and ultracapacitors) and energy conversion (fuel cells and thermoelectric) devices. Many of the preparations of these materials exploit a wet synthesis process (patent pending) that is scaleable to large volume manufacturing and anticipated to be low in cost. Specifically, both the β-form of nickel hydroxide and the hollandite form of manganese dioxide have been synthesized. The hexagonal Ni(OH) 2 is anticipated to significantly boost energy densities in nickel-alkaline batteries, including nickel/cadmium, nickel/metal hydride and nickel/zinc. The nanophase MnO 2 microstructure exhibits an unusual tunnelled tubular geometry within a 'bird's nest' superstructure, and is expected to be of interest as an intercalation cathode material in lithium-ion systems as well as a catalyst for fuel cells. Characterization of these materials has been by the techniques of high resolution SEM and TEM, as well as XRD. Both Hg porosimetry and BET surface measurements for conventional and spherical nickel hydroxides are summarized. Pore distribution and electrochemical activity for the nanophase materials will be examined in the future.

  19. Process for removing and detoxifying cadmium from scrap metal including mixed waste

    SciTech Connect

    Kronberg, J.W.

    1994-07-01

    Cadmium-bearing scrap from nuclear applications, such as neutron shielding and reactor control and safety rods, must usually be handled as mixed waste since it is radioactive and the cadmium in it is both leachable and highly toxic. Removing the cadmium from this scrap, and converting it to a nonleachable and minimally radioactive form, would greatly simplify disposal or recycling. A process now under development will do this by shredding the scrap; leaching it with reagents which selectively dissolve out the cadmium; reprecipitating the cadmium as its highly insoluble sulfide; then fusing the sulfide into a glassy matrix to bring its leachability below EPA limits before disposal. Alternatively, the cadmium may be recovered for reuse. A particular advantage of the process is that all reagents (except the glass frit) can easily be recovered and reused in a nearly closed cycle, minimizing the risk of radioactive release. The process does not harm common metals such as aluminum, iron and stainless steel, and is also applicable to non-nuclear cadmium-bearing scrap such as nickel-cadmium batteries.

  20. 76 FR 58776 - U.S. Aerospace Supplier & Investment Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    .... 10:30-11:00 Coffee Break-- Networking. 11:00-12:30 Presentations: Canada's Aerospace Market, Quebec's... aerospace sub-markets was often in the top 5. Industry estimates expected Canada's aerospace sector...

  1. Nanotechnology research for aerospace applications

    NASA Astrophysics Data System (ADS)

    Agee, Forrest J.; Lozano, Karen; Gutierrez, Jose M.; Chipara, Mircea; Thapa, Ram; Chow, Alice

    2009-04-01

    Nanotechnology is impacting the future of the military and aerospace. The increasing demands for high performance and property-specific applications are forcing the scientific world to take novel approaches in developing programs and accelerating output. CONTACT or Consortium for Nanomaterials for Aerospace Commerce and Technology is a cooperative nanotechnology research program in Texas building on an infrastructure that promotes collaboration between universities and transitioning to industry. The participants of the program include the US Air Force Research Laboratory (AFRL), five campuses of the University of Texas (Brownsville, Pan American, Arlington, Austin, and Dallas), the University of Houston, and Rice University. Through the various partnerships between the intellectual centers and the interactions with AFRL and CONTACT's industrial associates, the program represents a model that addresses the needs of the changing and competitive technological world. Into the second year, CONTACT has expanded to twelve projects that cover four areas of research: Adaptive Coatings and Surface Engineering, Nano Energetics, Electromagnetic Sensors, and Power Generation and Storage. This paper provides an overview of the CONTACT program and its projects including the research and development of new electrorheological fluids with nanoladen suspensions and composites and the potential applications.

  2. Ultrasonic Characterization of Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  3. Nickel Hydride Complexes.

    PubMed

    Eberhardt, Nathan A; Guan, Hairong

    2016-08-10

    Nickel hydride complexes, defined herein as any molecules bearing a nickel hydrogen bond, are crucial intermediates in numerous nickel-catalyzed reactions. Some of them are also synthetic models of nickel-containing enzymes such as [NiFe]-hydrogenase. The overall objective of this review is to provide a comprehensive overview of this specific type of hydride complexes, which has been studied extensively in recent years. This review begins with the significance and a very brief history of nickel hydride complexes, followed by various methods and spectroscopic or crystallographic tools used to synthesize and characterize these complexes. Also discussed are stoichiometric reactions involving nickel hydride complexes and how some of these reactions are developed into catalytic processes. PMID:27437790

  4. Optical Information Processing for Aerospace Applications 2

    NASA Technical Reports Server (NTRS)

    Stermer, R. L. (Compiler)

    1984-01-01

    Current research in optical processing, and determination of its role in future aerospace systems was reviewed. It is shown that optical processing offers significant potential for aircraft and spacecraft control, pattern recognition, and robotics. It is demonstrated that the development of optical devices and components can be implemented in practical aerospace configurations.

  5. High Flight. Aerospace Activities, K-12.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  6. The 42nd Aerospace Mechanism Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor); Hakun, Claef (Editor)

    2014-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development, and flight certification of new mechanisms.

  7. NASA Elementary Aerospace Activities Free to Members

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1978

    1978-01-01

    Describes the contents of Elementary School Aerospace Activities: A Resource for Teachers. Activities examine a variety of topics in aerospace education and are intended to be used with children ages 5-11. The book is available from the Government Printing Office (GPO) for $3.00. (CP)

  8. Aerospace Power Technology for Potential Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.

    2012-01-01

    Aerospace technology that is being developed for space and aeronautical applications has great potential for providing technical advances for terrestrial power systems. Some recent accomplishments arising from activities being pursued at the National Aeronautics and Space Administration (NASA) Centers is described in this paper. Possible terrestrial applications of the new aerospace technology are also discussed.

  9. The 29th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Editor)

    1995-01-01

    The proceedings of the 29th Aerospace Mechanisms Symposium, which was hosted by NASA Johnson Space Center and held at the South Shore Harbour Conference Facility on May 17-19, 1995, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft.

  10. The 28th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Rohn, Douglas A. (Compiler)

    1994-01-01

    The proceedings of the 28th Aerospace Mechanisms Symposium, which was hosted by the NASA Lewis Research Center and held at the Cleveland Marriott Society Center on May 18, 19, and 20, 1994, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft.

  11. The 26th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The proceedings of the 26th Aerospace Mechanisms Symposium, which was held at the Goddard Space Flight Center on May 13, 14, and 15, 1992 are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors and other mechanisms for large space structures.

  12. Aerospace Resources for Science and Technology Education.

    ERIC Educational Resources Information Center

    Maley, Donald, Ed.; Smith, Kenneth L., Ed.

    This publication on Aerospace Programs is a special edition of "Technology Education" featuring descriptions of 15 select aerospace education programs from diverse localities spanning the full range of instructional levels. Following introductory material, the monograph contains the following largely unedited program descriptions: (1) summaries of…

  13. The 27th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Mancini, Ron (Compiler)

    1993-01-01

    The proceedings of the 27th Aerospace Mechanisms Symposium, which was held at ARC, Moffett Field, California, on 12-14 May 1993, are reported. Technological areas covered include the following: actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, robotic mechanisms, and other mechanisms for large space structures.

  14. iSTEM: The Aerospace Engineering Challenge

    ERIC Educational Resources Information Center

    English, Lyn D.; King, Donna T.; Hudson, Peter; Dawes, Les

    2014-01-01

    The authors developed The Paper Plane Challenge as one of a three-part response to The Aerospace Engineering Challenge. The Aerospace Engineering Challenge was the second of three multi-part activities that they had developed with the teachers during the year. Their aim was to introduce students to the exciting world of engineering, where they…

  15. Contaminated nickel scrap processing

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

  16. Nondestructive Evaluation for Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Cramer, Elliott; Perey, Daniel

    2015-01-01

    Nondestructive evaluation (NDE) techniques are important for enabling NASA's missions in space exploration and aeronautics. The expanded and continued use of composite materials for aerospace components and vehicles leads to a need for advanced NDE techniques capable of quantitatively characterizing damage in composites. Quantitative damage detection techniques help to ensure safety, reliability and durability of space and aeronautic vehicles. This presentation will give a broad outline of NASA's range of technical work and an overview of the NDE research performed in the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center. The presentation will focus on ongoing research in the development of NDE techniques for composite materials and structures, including development of automated data processing tools to turn NDE data into quantitative location and sizing results. Composites focused NDE research in the areas of ultrasonics, thermography, X-ray computed tomography, and NDE modeling will be discussed.

  17. Energy Storage for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.

    2001-01-01

    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.

  18. Automated design of aerospace structures

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Mccomb, H. G.

    1974-01-01

    The current state-of-the-art in structural analysis of aerospace vehicles is characterized, automated design technology is discussed, and an indication is given of the future direction of research in analysis and automated design. Representative computer programs for analysis typical of those in routine use in vehicle design activities are described, and results are shown for some selected analysis problems. Recent and planned advances in analysis capability are indicated. Techniques used to automate the more routine aspects of structural design are discussed, and some recently developed automated design computer programs are described. Finally, discussion is presented of early accomplishments in interdisciplinary automated design systems, and some indication of the future thrust of research in this field is given.

  19. ASAP Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the First Quarterly Report for the newly reconstituted Aerospace Safety Advisory Panel (ASAP). The NASA Administrator rechartered the Panel on November 18,2003, to provide an independent, vigilant, and long-term oversight of NASA's safety policies and programs well beyond Return to Flight of the Space Shuttle. The charter was revised to be consistent with the original intent of Congress in enacting the statute establishing ASAP in 1967 to focus on NASA's safety and quality systems, including industrial and systems safety, risk-management and trend analysis, and the management of these activities.The charter also was revised to provide more timely feedback to NASA by requiring quarterly rather than annual reports, and by requiring ASAP to perform special assessments with immediate feedback to NASA. ASAP was positioned to help institutionalize the safety culture of NASA in the post- Stafford-Covey Return to Flight environment.

  20. Cadmium transporters in the kidney and cadmium-induced nephrotoxicity.

    PubMed

    Yang, Hong; Shu, Yan

    2015-01-01

    Among the organs in which the environmental pollutant cadmium causes toxicity, the kidney has gained the most attention in recent years. Numerous studies have sought to unravel the exact pathways by which cadmium enters the renal epithelial cells and the mechanisms by which it causes toxicity in the kidney. The purpose of this review is to present the progress made on the mechanisms of cadmium transport in the kidney and the role of transporter proteins in cadmium-induced nephrotoxicity. PMID:25584611

  1. 43rd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A.

    2016-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Sponsored and organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 43rd symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 43rd AMS was held in Santa Clara, California on May 4, 5 and 6, 2016. During these three days, 42 papers were presented. Topics included payload and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and mechanism testing. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The high quality of this symposium is a result of the work of many people, and their efforts are gratefully acknowledged. This extends to the voluntary members of the symposium organizing committee representing the eight NASA field centers, LMSSC, and the European Space Agency. Appreciation is also extended to the session chairs, the authors, and particularly the personnel at ARC responsible for the symposium arrangements and the publication of these proceedings. A sincere thank you also goes to the symposium executive committee who is responsible for the year-to-year management of the AMS, including paper processing and preparation of the program. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

  2. Conceptual design for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Gratzer, Louis B.

    1989-01-01

    The designers of aircraft and more recently, aerospace vehicles have always struggled with the problems of evolving their designs to produce a machine which would perform its assigned task(s) in some optimum fashion. Almost invariably this involved dealing with more variables and constraints than could be handled in any computationally feasible way. With the advent of the electronic digital computer, the possibilities for introducing more variable and constraints into the initial design process led to greater expectations for improvement in vehicle (system) efficiency. The creation of the large scale systems necessary to achieve optimum designs has, for many reason, proved to be difficult. From a technical standpoint, significant problems arise in the development of satisfactory algorithms for processing of data from the various technical disciplines in a way that would be compatible with the complex optimization function. Also, the creation of effective optimization routines for multi-variable and constraint situations which could lead to consistent results has lagged. The current capability for carrying out the conceptual design of an aircraft on an interdisciplinary bases was evaluated to determine the need for extending this capability, and if necessary, to recommend means by which this could be carried out. Based on a review of available documentation and individual consultations, it appears that there is extensive interest at Langley Research Center as well as in the aerospace community in providing a higher level of capability that meets the technical challenges. By implication, the current design capability is inadequate and it does not operate in a way that allows the various technical disciplines to participate and cooperately interact in the design process. Based on this assessment, it was concluded that substantial effort should be devoted to developing a computer-based conceptual design system that would provide the capability needed for the near

  3. Plausible Mechanisms of Cadmium Carcinogenesis

    EPA Science Inventory

    Cadmium is a transition metal and an ubiquitous environmental and industrial pollutant. Laboratory animal studies and epidemiological studies have shown that exposure to cadmium is associated with various organ toxicities and carcinogenic effects. Several national and internation...

  4. Nickel Curie Point Engine

    ERIC Educational Resources Information Center

    Chiaverina, Chris; Lisensky, George

    2014-01-01

    Ferromagnetic materials such as nickel, iron, or cobalt lose the electron alignment that makes them attracted to a magnet when sufficient thermal energy is added. The temperature at which this change occurs is called the "Curie temperature," or "Curie point." Nickel has a Curie point of 627 K, so a candle flame is a sufficient…

  5. Cycle life status of SAFT VOS nickel-cadmium cells

    NASA Astrophysics Data System (ADS)

    Goualard, Jacques

    1993-02-01

    The SAFT prismatic VOS Ni-Cd cells have been flown in geosynchronous orbit since 1977 and in low earth orbit since 1983. Parallel cycling tests are performed by several space agencies in order to determine the cycle life for a wide range of temperature and depth of discharge (DOD). In low Earth orbit (LEO), the ELAN program is conducted on 24 Ah cells by CNES and ESA at the European Battery Test Center at temperatures ranging from 0 to 27 C and DOD from 10 to 40 percent. Data are presented up to 37,000 cycles. One pack (X-80) has achieved 49,000 cycles at 10 C and 23 percent DOD. The geosynchronous orbit simulation of a high DOD test is conducted by ESA on 3 batteries at 10 C and 70, 90, and 100 percent DOD. Thirty-one eclipse seasons are completed, and no signs of degradation have been found. The Air Force test at CRANE on 24 Ah and 40 Ah cells at 20 C and 80 percent DOD has achieved 19 shadow periods. Life expectancy is discussed. The VOS cell technology could be used for the following: (1) in geosynchronous conditions--15 yrs at 10-15 C and 80 percent DOD; and (2) in low earth orbit--10 yrs at 5-15 C and 25-30 percent DOD.

  6. Nickel-Cadmium Battery Operation Management Optimization Using Robust Design

    NASA Technical Reports Server (NTRS)

    Blosiu, Julian O.; Deligiannis, Frank; DiStefano, Salvador

    1996-01-01

    In recent years following several spacecraft battery anomalies, it was determined that managing the operational factors of NASA flight NiCd rechargeable battery was very important in order to maintain space flight battery nominal performance. The optimization of existing flight battery operational performance was viewed as something new for a Taguchi Methods application.

  7. The 50 AMP-hour nickel cadmium battery manual

    NASA Technical Reports Server (NTRS)

    Webb, D. A.

    1981-01-01

    The battery is designed with a minimum battery to cell weight ratio consistent with adequate containment for operating conditions and dynamic environments and minimized weight. The battery is fully qualified and the environments to which it was successfully subjected were selected by NASA Goddard to cover a wide range of probable uses. The battery is suitable for either near-Earth geosynchronous missions, is compatible with passive or active thermal control systems and may be electrically controlled by a variety of changing routines. The initial application of the 50 A.H. Battery is a near-Earth mission aboard the LANDSAT D Satellite.

  8. Cycle life status of SAFT VOS nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Goualard, Jacques

    1993-01-01

    The SAFT prismatic VOS Ni-Cd cells have been flown in geosynchronous orbit since 1977 and in low earth orbit since 1983. Parallel cycling tests are performed by several space agencies in order to determine the cycle life for a wide range of temperature and depth of discharge (DOD). In low Earth orbit (LEO), the ELAN program is conducted on 24 Ah cells by CNES and ESA at the European Battery Test Center at temperatures ranging from 0 to 27 C and DOD from 10 to 40 percent. Data are presented up to 37,000 cycles. One pack (X-80) has achieved 49,000 cycles at 10 C and 23 percent DOD. The geosynchronous orbit simulation of a high DOD test is conducted by ESA on 3 batteries at 10 C and 70, 90, and 100 percent DOD. Thirty-one eclipse seasons are completed, and no signs of degradation have been found. The Air Force test at CRANE on 24 Ah and 40 Ah cells at 20 C and 80 percent DOD has achieved 19 shadow periods. Life expectancy is discussed. The VOS cell technology could be used for the following: (1) in geosynchronous conditions--15 yrs at 10-15 C and 80 percent DOD; and (2) in low earth orbit--10 yrs at 5-15 C and 25-30 percent DOD.

  9. The development of aerospace polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1983-01-01

    Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.

  10. Mathematical modeling of the nickel/metal hydride battery system

    SciTech Connect

    Paxton, B K

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  11. Unification - An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  12. Fire response test methods for aerospace materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.

    1978-01-01

    Fire response methods which may be suitable for materials intended for aircraft and aerospace applications are presented. They address ignitability, smolder susceptibility, oxygen requirement, flash fire propensity, fire spread, heat release, fire containment, smoke evolution, and toxic gas evolution.

  13. Aerospace Medicine and Biology: Cumulative index, 1979

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This publication is a cumulative index to the abstracts contained in the Supplements 190 through 201 of 'Aerospace Medicine and Biology: A Continuing Bibliography.' It includes three indexes-subject, personal author, and corporate source.

  14. Fred Haise Honored at Aerospace Appreciation Night

    NASA Video Gallery

    Retired NASA astronaut and test pilot Fred Haise was honored recently by the Lancaster, Calif., Jethawks baseball team at its Aerospace Appreciation Night. Best known as one of the Apollo 13 crew, ...

  15. New insulation constructions for aerospace wiring applications

    NASA Technical Reports Server (NTRS)

    Slenski, George

    1994-01-01

    Outlined in this presentation is the background to insulation constructions for aerospace wiring applications, the Air Force wiring policy, the purpose and contract requirements of new insulation constructions, the test plan, and the test results.

  16. Unification: An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1991-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace business. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a view toward developing a scenario for establishing an international aerospace data base, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  17. Additive Manufacturing of Aerospace Propulsion Components

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  18. The 11th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Mechanical devices and drives developed for aerospace applications are described. Satellite flywheels, magnetic bearings, a missile umbilical system, a cartridge firing device, and an oiler for satellite bearing lubrication are among the topics discussed.

  19. The 20th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Numerous topics related to aerospace mechanisms were discussed. Deployable structures, electromagnetic devices, tribology, hydraulic actuators, positioning mechanisms, electric motors, communication satellite instruments, redundancy, lubricants, bearings, space stations, rotating joints, and teleoperators are among the topics covered.

  20. The 11th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Various mechanisms in aerospace engineering were presented at this conference. Specifications, design, and use of spacecraft and missile components are discussed, such as tail assemblies, radiometers, magnetormeters, pins, reaction wheels, ball bearings, actuators, mirrors, nutation dampers, airfoils, solar arrays, etc.

  1. The 25th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Twenty-two papers are documented regarding aeronautical and spacecraft hardware. Technological areas include actuators, latches, cryogenic mechanisms, vacuum tribology, bearings, robotics, ground support equipment for aerospace applications, and other mechanisms.

  2. Unification: An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.; Carroll, Bonnie C.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  3. The 24th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The proceedings of the symposium are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, and other mechanisms for large space structures.

  4. The 12th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mechanisms developed for various aerospace applications are discussed. Specific topics covered include: boom release mechanisms, separation on space shuttle orbiter/Boeing 747 aircraft, payload handling, spaceborne platform support, and deployment of spaceborne antennas and telescopes.

  5. Batteries called primary source of lead, cadmium in municipal waste

    SciTech Connect

    Not Available

    1989-04-01

    The US Environmental Protection Agency reports that lead-acid batteries, such as those used in automobiles, and rechargeable nickel-cadmium batteries used in consumer electronics equipment, are the primary sources of lead and cadmium in municipal trash and garbage. A report prepared for EPA analyzed existing data from 1970 to 1986 and made projections to the year 2000. Lead-acid batteries continue to constitute a major source of lead in garbage even though 80 percent of them are now recycled. As a result, EPA is calling for additional recycling of batteries. This study is an important step in implementing EPA's strategy for helping states and cities achieve the national goal of recycling and reducing 25 percent of all municipal garbage by 1992. The findings on batteries are the result of a study conducted for EPA because of concern over the levels of lead and cadmium found n ash (residue) from municipal waste incinerators. Lead and cadmium are two metals of particular concern in the solid waste stream. The metals can contaminate soil and groundwater when landfilled. They also may be found in some incinerator emissions.

  6. Low Nickel Diet in Dermatology

    PubMed Central

    Sharma, Ashimav D

    2013-01-01

    Nickel is a ubiquitous trace element and the commonest cause of metal allergy among the people. Nickel allergy is a chronic, recurring problem; females are affected more commonly than males. Nickel allergy may develop at any age. Once developed, it tends to persist life-long. Nickel is present in most of the dietary items and food is considered to be a major source of nickel exposure for the general population. Nickel in the diet of a nickel-sensitive person can provoke dermatitis. Careful selection of food with relatively low nickel concentration can bring a reduction in the total dietary intake of nickel per day. This can influence the outcome of the disease and can benefit the nickel sensitive patient. PMID:23723488

  7. Probability and Statistics in Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Howell, L. W.

    1998-01-01

    This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

  8. Novel Wiring Technologies for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  9. NASA Ames aerospace systems directorate research

    NASA Technical Reports Server (NTRS)

    Albers, James A.

    1991-01-01

    The Aerospace Systems Directorate is one of four research directorates at the NASA Ames Research Center. The Directorate conducts research and technology development for advanced aircraft and aircraft systems in intelligent computational systems and human-machine systems for aeronautics and space. The Directorate manages research and aircraft technology development projects, and operates and maintains major wind tunnels and flight simulation facilities. The Aerospace Systems Directorate's research and technology as it relates to NASA agency goals and specific strategic thrusts are discussed.

  10. Crew factors in the aerospace workplace

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Foushee, H. C.

    1990-01-01

    The effects of technological change in the aerospace workplace on pilot performance are discussed. Attention is given to individual and physiological problems, crew and interpersonal problems, environmental and task problems, organization and management problems, training and intervention problems. A philosophy and conceptual framework for conducting research on these problems are presented and two aerospace studies are examined which investigated: (1) the effect of leader personality on crew effectiveness and (2) the working undersea habitat known as Aquarius.

  11. Persistent neurotoxicity from a battery fire: is cadmium the culprit?

    PubMed

    Kilburn, K H; McKinley, K L

    1996-07-01

    Two train conductors had chest tightness, painful breathing, muscle cramps, and nausea after fighting a fire in a battery box under a passenger coach. Shortly thereafter, they became anosmic and had excessive fatigue, persistent headaches, sleep disturbances, irritability, unstable moods, and hypertension. Urinary cadmium and nickel levels were elevated. Neurobehavioral testing showed, in comparison to referents, prolonged reaction times, abnormal balance, prolonged blink reflex latency, severely constricted visual fields, and decreased vibration sense. Test scores showed that immediate verbal and visual recall were normal but delayed recall was reduced. Scores on overlearned information were normal. Tests measuring dexterity, coordination, decision making, and peripheral sensation and discrimination revealed abnormalities. Repeat testing 6 and 12 months after exposure showed persistent abnormalities. Cadmium and vinyl chloride are the most plausible causes of the neurotoxicity, but fumes from the fire may have contained other neurotoxic chemicals. PMID:8685756

  12. Reduced hydrogen cadmium plating

    SciTech Connect

    Hoeller, T.; Ross, L. ); Varma, R. ); Agarwala, V.S. )

    1991-01-01

    This paper demonstrates the advantages of using a periodic reverse pulse plating method, incorporating a fast cathodic pulse which is separated from the subsequent anodic/cathodic pulses by a long rest period in producing silvery cadmium coatings on steel from aqueous fluoroborate electrolyte. Also, the deposition obtained by combination of pulse currents and turbulent electrolyte flow system (forced convection of electrolyte, Re {approximately} 20-25,000) result in a near hydrogen-free electrodeposition of fine- grained cadmium. This is confirmed by the determination of diffusible hydrogen by the electrochemical (Barnach Electrode) method.

  13. Aerospace Technology Innovation. Volume 10

    NASA Technical Reports Server (NTRS)

    Turner, Janelle (Editor); Cousins, Liz (Editor); Bennett, Evonne (Editor); Vendette, Joel (Editor); West, Kenyon (Editor)

    2002-01-01

    Whether finding new applications for existing NASA technologies or developing unique marketing strategies to demonstrate them, NASA's offices are committed to identifying unique partnering opportunities. Through their efforts NASA leverages resources through joint research and development, and gains new insight into the core areas relevant to all NASA field centers. One of the most satisfying aspects of my job comes when I learn of a mission-driven technology that can be spun-off to touch the lives of everyday people. NASA's New Partnerships in Medical Diagnostic Imaging is one such initiative. Not only does it promise to provide greater dividends for the country's investment in aerospace research, but also to enhance the American quality of life. This issue of Innovation highlights the new NASA-sponsored initiative in medical imaging. Early in 2001, NASA announced the launch of the New Partnerships in Medical Diagnostic Imaging initiative to promote the partnership and commercialization of NASA technologies in the medical imaging industry. NASA and the medical imaging industry share a number of crosscutting technologies in areas such as high-performance detectors and image-processing tools. Many of the opportunities for joint development and technology transfer to the medical imaging market also hold the promise for future spin back to NASA.

  14. Graphite Nanoreinforcements for Aerospace Nanocomposites

    NASA Technical Reports Server (NTRS)

    Drzal, Lawrence T.

    2005-01-01

    New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.

  15. Materials Selection for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  16. Pulse plating of nickel deposits

    SciTech Connect

    Stimetz, C.J.; Stevenson, M.F.

    1980-02-01

    Pulse plated and conventional nickel deposits have been compared for differences in morphology, mechanical properties, and microstructure. The deposits were obtained from nickel sulfamate, nickel chloride, and Watts nickel plating solutions. No significant differences were found in the direct and pulse current deposits from the sulfamate and chloride solutions; however, significant differences in microstructure, yield strength, and microhardness were observed in deposits from the Watts nickel solution.

  17. Advanced nickel-hydrogen spacecraft battery development

    NASA Astrophysics Data System (ADS)

    Coates, Dwaine K.; Fox, Chris L.; Standlee, D. J.; Grindstaff, B. K.

    1994-02-01

    Eagle-Picher currently has several advanced nickel-hydrogen (NiH2) cell component and battery designs under development including common pressure vessel (CPV), single pressure vessel (SPV), and dependent pressure vessel (DPV) designs. A CPV NiH2 battery, utilizing low-cost 64 mm (2.5 in.) cell diameter technology, has been designed and built for multiple smallsat programs, including the TUBSAT B spacecraft which is currently scheduled (24 Nov. 93) for launch aboard a Russian Proton rocket. An advanced 90 mm (3.5 in.) NiH2 cell design is currently being manufactured for the Space Station Freedom program. Prototype 254 mm (10 in.) diameter SPV batteries are currently under construction and initial boilerplate testing has shown excellent results. NiH2 cycle life testing is being continued at Eagle-Picher and IPV cells have currently completed more than 89,000 accelerated LEO cycles at 15% DOD, 49,000 real-time LEO cycles at 30 percent DOD, 37,800 cycles under a real-time LEO profile, 30 eclipse seasons in accelerated GEO, and 6 eclipse seasons in real-time GEO testing at 75 percent DOD maximum. Nickel-metal hydride battery development is continuing for both aerospace and electric vehicle applications. Eagle-Picher has also developed an extensive range of battery evaluation, test, and analysis (BETA) measurement and control equipment and software, based on Hewlett-Packard computerized data acquisition/control hardware.

  18. Advanced nickel-hydrogen spacecraft battery development

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine K.; Fox, Chris L.; Standlee, D. J.; Grindstaff, B. K.

    1994-01-01

    Eagle-Picher currently has several advanced nickel-hydrogen (NiH2) cell component and battery designs under development including common pressure vessel (CPV), single pressure vessel (SPV), and dependent pressure vessel (DPV) designs. A CPV NiH2 battery, utilizing low-cost 64 mm (2.5 in.) cell diameter technology, has been designed and built for multiple smallsat programs, including the TUBSAT B spacecraft which is currently scheduled (24 Nov. 93) for launch aboard a Russian Proton rocket. An advanced 90 mm (3.5 in.) NiH2 cell design is currently being manufactured for the Space Station Freedom program. Prototype 254 mm (10 in.) diameter SPV batteries are currently under construction and initial boilerplate testing has shown excellent results. NiH2 cycle life testing is being continued at Eagle-Picher and IPV cells have currently completed more than 89,000 accelerated LEO cycles at 15% DOD, 49,000 real-time LEO cycles at 30 percent DOD, 37,800 cycles under a real-time LEO profile, 30 eclipse seasons in accelerated GEO, and 6 eclipse seasons in real-time GEO testing at 75 percent DOD maximum. Nickel-metal hydride battery development is continuing for both aerospace and electric vehicle applications. Eagle-Picher has also developed an extensive range of battery evaluation, test, and analysis (BETA) measurement and control equipment and software, based on Hewlett-Packard computerized data acquisition/control hardware.

  19. Cadmium-induced osteomalacia.

    PubMed Central

    Blainey, J D; Adams, R G; Brewer, D B; Harvey, T C

    1980-01-01

    The detailed study of a battery plate maker, who had worked with cadmium for 36 years, showed that proteinuria, typical of renal tubular dysfunction, had been observed for 25 years and during the last 12 years of his life the patient had suffered increasing disability from gross bone disease. Several bone biopsies and detailed metabolic studies showed typical severe osteomalacia, which responded well initially to calcium and vitamin D treatment. Examination of the liver both in life and after death showed a gross excess of cadmium. This was also found in the kidneys after death. Previously unreported changes were present in the bones, especially the lumbar vertebrae which were probably more the result of gross bone deformity than cadmium deposition. The mechanism of development of the severe acquired Fanconi syndrome was thought to be a combination of dietary calcium and vitamin D deficiency and impaired calcium absorption from abnormal vitamin D synthesis, related to the cadmium deposition in the renal tubules, which also caused the defect in renal tubular reabsorption. Images PMID:7426480

  20. CADMIUM PHOSPHATE GLASS

    DOEpatents

    Carpenter, H.W.; Johnson, P.D.

    1963-04-01

    A method of preparing a cadmium phosphate glass that comprises providing a mixture of solid inorganic compounds of cadmuim and phosphate having vaporizable components and heating the resulting composition to a temperature of at least 850 un. Concent 85% C is presented. (AEC)

  1. Nickel Curie point engine

    NASA Astrophysics Data System (ADS)

    Chiaverina, Chris; Lisensky, George

    2014-04-01

    Ferromagnetic materials such as nickel, iron, or cobalt lose the electron alignment that makes them attracted to a magnet when sufficient thermal energy is added. The temperature at which this change occurs is called the "Curie temperature," or "Curie point." Nickel has a Curie point of 627 K, so a candle flame is a sufficient heat source. A simple but elegant device illustrates this phenomenon beautifully.

  2. Mobile Computing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Swietek, Gregory E. (Technical Monitor)

    1994-01-01

    The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the

  3. Real time monitoring of electroless nickel plating

    NASA Astrophysics Data System (ADS)

    Rains, Aaron E.; Kline, Ronald A.

    2013-01-01

    This work deals with the design and manufacturing of the heat and chemical resistant transducer case required for on-line immersion testing, experimental design, data acquisition and signal processing. Results are presented for several depositions with an accuracy of two ten-thousandths of an inch in coating thickness obtained. Monitoring the deposition rate of Electroless Nickel (EN) plating in-situ will provide measurement of the accurate dimensions of the component being plated, in real time. EN is used as for corrosion and wear protection for automotive an - Electroless Nickel (EN) plating is commonly used for corrosion and wear protection for automotive and aerospace components. It plates evenly and symmetrically, theoretically allowing the part to be plated to its final dimension. Currently the standard approach to monitoring the thickness of the deposited nickel is to remove the component from the plating bath and physically measure the part. This can lead to plating problems such as pitting, non-adhesion of the deposit and contamination of the plating solution. The goal of this research effort is to demonstrate that plating thickness can be rapidly and accurately measured using ultrasonic testing. Here a special housing is designed to allow immersion of the ultrasonic transducers directly into the plating bath. An FFT based signal processing algorithm was developed to resolve closely spaced echoes for precise thickness determination. The technique in this research effort was found to be capable of measuring plating thicknesses to within 0.0002 inches. It is expected that this approach will lead to cost savings in many EN plating operations.

  4. Cadmium and cancer.

    PubMed

    Hartwig, Andrea

    2013-01-01

    Cadmium is an established human and animal carcinogen. Most evidence is available for elevated risk for lung cancer after occupational exposure; however, associations between cadmium exposure and tumors at other locations including kidney, breast, and prostate may be relevant as well. Furthermore, enhanced cancer risk may not be restricted to comparatively high occupational exposure, but may also occur via environmental exposure, for example in areas in close proximity to zinc smelters. The underlying mechanisms are still a matter of manifold research activities. While direct interactions with DNA appear to be of minor importance, elevated levels of reactive oxygen species (ROS) have been detected in diverse experimental systems, presumably due to an inactivation of detoxifying enzymes. Also, the interference with proteins involved in the cellular response to DNA damage, the deregulation of cell growth as well as resistance to apoptosis appears to be involved in cadmium-induced carcinogenicity. Within this context, cadmium has been shown to disturb nucleotide excision repair, base excision repair, and mismatch repair. Particularly sensitive targets appear to be proteins with zinc-binding structures, present in DNA repair proteins such as XPA, PARP-1 as well as in the tumor suppressor protein p53. Whether or not these interactions are due to displacement of zinc or due to reactions with thiol groups involved in zinc complexation or in other critical positions under realistic exposure conditions remains to be elucidated. Further potential mechanisms relate to the interference with cellular redox regulation, either by enhanced generation of ROS or by reaction with thiol groups involved in the regulation of signaling pathways. Particularly the combination of these multiple mechanisms may give rise to a high degree of genomic instability evident in cadmium-adapted cells, relevant not only for tumor initiation, but also for later steps in tumor development. PMID:23430782

  5. Chelating agents and cadmium intoxication

    SciTech Connect

    Shinobu, L.A.

    1985-01-01

    A wide range of conventional chelating agents have been screened for (a) antidotal activity in acute cadmium poisoning and (b) ability to reduce aged liver and kidney deposits of cadmium. Chelating agents belonging to the dithiocarbamate class have been synthesized and tested in both the acute and chronic modes of cadmium intoxication. Several dithiocarbamates, not only provide antidotal rescue, but also substantially decrease the intracellular deposits of cadmium associated with chronic cadmium intoxication. Fractionating the cytosol from the livers and kidneys of control and treated animals by Sephadex G-25 gel filtration clearly demonstrates that the dithiocarbamates are reducing the level of metallothionein-bound cadmium. However, the results of cell culture (Ehrlich ascites) studies designed to investigate the removal of cadmium from metallothionein and subsequent transport of the resultant cadmium complex across the cell membrane were inconclusive. In other in vitro investigations, the interaction between isolated native Cd, Zn-metallothionein and several chelating agents was explored. Ultracentrifugation, equilibrium dialysis, and Sephadex G-25 gel filtration studies have been carried out in an attempt to determine the rate of removal of cadmium from metallothionein by these small molecules. Chemical shifts for the relevant cadmium-dithiocarbamate complexes have been determined using natural abundance Cd-NMR.

  6. High surface area, low weight composite nickel fiber electrodes

    NASA Technical Reports Server (NTRS)

    Johnson, Bradley A.; Ferro, Richard E.; Swain, Greg M.; Tatarchuk, Bruce J.

    1993-01-01

    The energy density and power density of light weight aerospace batteries utilizing the nickel oxide electrode are often limited by the microstructures of both the collector and the resulting active deposit in/on the collector. Heretofore, these two microstructures were intimately linked to one another by the materials used to prepare the collector grid as well as the methods and conditions used to deposit the active material. Significant weight and performance advantages were demonstrated by Britton and Reid at NASA-LeRC using FIBREX nickel mats of ca. 28-32 microns diameter. Work in our laboratory investigated the potential performance advantages offered by nickel fiber composite electrodes containing a mixture of fibers as small as 2 microns diameter (Available from Memtec America Corporation). These electrode collectors possess in excess of an order of magnitude more surface area per gram of collector than FIBREX nickel. The increase in surface area of the collector roughly translates into an order of magnitude thinner layer of active material. Performance data and advantages of these thin layer structures are presented. Attributes and limitations of their electrode microstructure to independently control void volume, pore structure of the Ni(OH)2 deposition, and resulting electrical properties are discussed.

  7. Soil, nickel and low nickel food

    NASA Astrophysics Data System (ADS)

    Chami, Ziad Al; Cavoski, Ivana; Mondelli, Donato; Mimiola, Giancarlo; Miano, Teodoro

    2013-04-01

    Nickel is an ubiquitous trace element and occurs in soil, water, air and in the biosphere. Ni is an essential element for several plants, microorganisms and vertebrates. Human requirement for Ni has not been conclusively demonstrated. Nickel is normally present in human tissues at low concentration and, under conditions of high exposure, these levels may increase significantly. Food is the major source of Ni exposure. Nickel is present in many food products, especially vegetables. The amount of Ni present in vegetables is increasing because of environmental contamination and cultural practices. It has been demonstrated that the consumption of a Ni-rich diet can cause an increase of immunological disorders including Systemic Ni Allergy Syndrome (SNAS). The SNAS patients are currently treated with a diet that is closely Ni-free. Therefore, there is a need to produce certified and guaranteed vegetables with a low Ni concentration in the market. The proposed research aims to develop new methods for vegetable production and innovative cultural practices through a suitable choice of agricultural soil, cultivar, amendments and fertilizers as well as good agricultural practices in order to reduce Ni plant uptake and its translocation to the edible plant parts and therefore to produce Ni-free food products for SNAS patients.

  8. Advanced Materials and Coatings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2004-01-01

    In the application area of aerospace tribology, researchers and developers must guarantee the highest degree of reliability for materials, components, and systems. Even a small tribological failure can lead to catastrophic results. The absence of the required knowledge of tribology, as Professor H.P. Jost has said, can act as a severe brake in aerospace vehicle systems-and indeed has already done so. Materials and coatings must be able to withstand the aerospace environments that they encounter, such as vacuum terrestrial, ascent, and descent environments; be resistant to the degrading effects of air, water vapor, sand, foreign substances, and radiation during a lengthy service; be able to withstand the loads, stresses, and temperatures encountered form acceleration and vibration during operation; and be able to support reliable tribological operations in harsh environments throughout the mission of the vehicle. This presentation id divided into two sections: surface properties and technology practice related to aerospace tribology. The first section is concerned with the fundamental properties of the surfaces of solid-film lubricants and related materials and coatings, including carbon nanotubes. The second is devoted to applications. Case studies are used to review some aspects of real problems related to aerospace systems to help engineers and scientists to understand the tribological issues and failures. The nature of each problem is analyzed, and the tribological properties are examined. All the fundamental studies and case studies were conducted at the NASA Glenn Research Center.

  9. Self-discharge mechanism of sealed-type nickel/metal-hydride battery

    SciTech Connect

    Ikoma, Munehisa; Hoshina, Yasuko; Matsumoto, Isao; Iwakura, Chiaki

    1996-06-01

    Factors affecting the self-discharge rate of a nickel/metal-hydride (Ni-MH) battery, generally much higher than that of nickel/cadmium (Ni-Cd) battery, are investigated, and the self-discharge mechanism is discussed. Ammonia and amine participate in the shuttle reaction like nitrate ion in the Ni-Cd battery, resulting in acceleration of the self-discharge. When nonwoven fabric made of sulfonated-polypropylene is used as a separator instead of conventional polyamide separator, the self-discharge rate of the Ni-MH battery is strongly depressed, to the same level as that of Ni-Cd battery.

  10. Wireless Sensing Opportunities for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2007-01-01

    Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  11. Combustion Processes in the Aerospace Environment

    NASA Technical Reports Server (NTRS)

    Huggett, Clayton

    1969-01-01

    The aerospace environment introduces new and enhanced fire hazards because the special atmosphere employed may increase the frequency and intensity of fires, because the confinement associated with aerospace systems adversely affects the dynamics of fire development and control, and because the hostile external environments limit fire control and rescue operations. Oxygen enriched atmospheres contribute to the fire hazard in aerospace systems by extending the list of combustible fuels, increasing the probability of ignition, and increasing the rates of fire spread and energy release. A system for classifying atmospheres according to the degree of fire hazard, based on the heat capacity of the atmosphere per mole of oxygen, is suggested. A brief exploration of the dynamics of chamber fires shows that such fires will exhibit an exponential growth rate and may grow to dangerous size in a very short time. Relatively small quantities of fuel and oxygen can produce a catastrophic fire in a closed chamber.

  12. Heart-Lung Interactions in Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Guy, Harold J. B.; Prisk, Gordon Kim

    1991-01-01

    Few of the heart-lung interactions that are discussed have been studied in any detail in the aerospace environment, but is seems that many such interactions must occur in the setting of altered accelerative loadings and pressure breathing. That few investigations are in progress suggests that clinical and academic laboratory investigators and aerospace organizations are further apart than during the pioneering work on pressure breathing and acceleration tolerance in the 1940s. The purpose is to reintroduce some of the perennial problems of aviation physiology as well as some newer aerospace concerns that may be of interest. Many possible heart-lung interactions are pondered, by necessity often drawing on data from within the aviation field, collected before the modern understanding of these interactions developed, or on recent laboratory data that may not be strictly applicable. In the field of zero-gravity effects, speculation inevitably outruns the sparse available data.

  13. NSWC Crane Aerospace Cell Test History Database

    NASA Technical Reports Server (NTRS)

    Brown, Harry; Moore, Bruce

    1994-01-01

    The Aerospace Cell Test History Database was developed to provide project engineers and scientists ready access to the data obtained from testing of aerospace cell designs at Naval Surface Warfare Center, Crane Division. The database is intended for use by all aerospace engineers and scientists involved in the design of power systems for satellites. Specifically, the database will provide a tool for project engineers to review the progress of their test at Crane and to have ready access to data for evaluation. Additionally, the database will provide a history of test results that designers can draw upon to answer questions about cell performance under certain test conditions and aid in selection of a cell for a satellite battery. Viewgraphs are included.

  14. Knowledge-based diagnosis for aerospace systems

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.

    1988-01-01

    The need for automated diagnosis in aerospace systems and the approach of using knowledge-based systems are examined. Research issues in knowledge-based diagnosis which are important for aerospace applications are treated along with a review of recent relevant research developments in Artificial Intelligence. The design and operation of some existing knowledge-based diagnosis systems are described. The systems described and compared include the LES expert system for liquid oxygen loading at NASA Kennedy Space Center, the FAITH diagnosis system developed at the Jet Propulsion Laboratory, the PES procedural expert system developed at SRI International, the CSRL approach developed at Ohio State University, the StarPlan system developed by Ford Aerospace, the IDM integrated diagnostic model, and the DRAPhys diagnostic system developed at NASA Langley Research Center.

  15. Directory of aerospace safety specialized information sources

    NASA Technical Reports Server (NTRS)

    Fullerton, E. A.; Rubens, L. S.

    1973-01-01

    A directory is presented to make available to the aerospace safety community a handbook of organizations and experts in specific, well-defined areas of safety technology. It is designed for the safety specialist as an aid for locating both information sources and individual points of contact (experts) in engineering related fields. The file covers sources of data in aerospace design, tests, as well as information in hazard and failure cause identification, accident analysis, materials characteristics, and other related subject areas. These 171 organizations and their staff members, hopefully, should provide technical information in the form of documentation, data and consulting expertise. These will be sources that have assembled and collated their information, so that it will be useful in the solution of engineering problems. One of the goals of the project in the United States that have and are willing to share data of value to the aerospace safety community.

  16. Aerospace applications of advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Langenbeck, S. L.

    1993-01-01

    Advanced metallic materials within the Al-base family are being developed for applications on current and future aerospace vehicles. These advanced materials offer significant improvements in density, strength, stiffness, fracture resistance, and/or higher use temperature which translates into improved vehicle performance. Aerospace applications of advanced metallic materials include space structures, fighters, military and commercial transport aircraft, and missiles. Structural design requirements, including not only static and durability/damage tolerance criteria but also environmental considerations, drive material selections. Often trade-offs must be made regarding strength, fracture resistance, cost, reliability, and maintainability in order to select the optimum material for a specific application. These trade studies not only include various metallic materials but also many times include advanced composite materials. Details of material comparisons, aerospace applications, and material trades will be presented.

  17. Common Cause Failure Modeling: Aerospace Versus Nuclear

    NASA Technical Reports Server (NTRS)

    Stott, James E.; Britton, Paul; Ring, Robert W.; Hark, Frank; Hatfield, G. Spencer

    2010-01-01

    Aggregate nuclear plant failure data is used to produce generic common-cause factors that are specifically for use in the common-cause failure models of NUREG/CR-5485. Furthermore, the models presented in NUREG/CR-5485 are specifically designed to incorporate two significantly distinct assumptions about the methods of surveillance testing from whence this aggregate failure data came. What are the implications of using these NUREG generic factors to model the common-cause failures of aerospace systems? Herein, the implications of using the NUREG generic factors in the modeling of aerospace systems are investigated in detail and strong recommendations for modeling the common-cause failures of aerospace systems are given.

  18. Aerospace manpower transfer to small business enterprises

    NASA Technical Reports Server (NTRS)

    Green, M. K.

    1972-01-01

    The feasibility of a program to effect transfer of aerospace professional people from the ranks of the unemployed into gainful employment in the small business community was investigated. The effectiveness of accomplishing transfer of technology from the aerospace effort into the private sector through migration of people rather than products or hardware alone was also studied. Two basic methodologies were developed. One involves the matching of ex-aerospace professionals and small companies according to their mutual needs. A training and indoctrination program is aimed at familiarizing the professional with the small company environment, and a program of follow-up counseling is defined. The second methodology incorporates efforts to inform and arouse interest among the nonaerospace business community toward affirmative action programs that will serve mutual self-interests of the individuals, companies, and communities involved.

  19. Machine intelligence and autonomy for aerospace systems

    NASA Technical Reports Server (NTRS)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  20. The comprehensive aerospace index (CASI): Tracking the economic performance of the aerospace industry

    NASA Astrophysics Data System (ADS)

    Mattedi, Adriana Prest; Mantegna, Rosario Nunzio; Ramos, Fernando Manuel; Rosa, Reinaldo Roberto

    2008-12-01

    In this paper, we described the Comprehensive AeroSpace Index (CASI), a financial index aimed at representing the economic performance of the aerospace industry. CASI is build upon a data set of approximately 20 years of daily close prices set, from January 1987 to June 2007, from a comprehensive sample of leading aerospace-related companies with stocks negotiated on the New York Exchange (NYSE) and on the over-the-counter (OTC) markets. We also introduced the sub-indices CASI-AERO, for aeronautical segment, and CASI-SAT, for satellite segment, and considered the relation between them. These three indices are compared to others aerospace indices and to more traditional general financial indices like DJIA, S&P500 and Nasdaq. Our results have shown that the CASI is an index that describes very well the aerospace sector behavior, since it is able to reflect the aeronautical segment comportment as well as the satellite one. Therefore, in this sense, it can be considered as a representative index of the aerospace sector. Moreover, the creation of two sub-indices, the CASI-AERO and the CASI-SAT, allows to elucidate capital movements within the aerospace sector, particularly those of speculative nature, like the dot.com bubble and crash of 1998-2001.