Science.gov

Sample records for aerospace pneumatic control

  1. Pneumatic Spoiler Controls Airfoil Lift

    NASA Technical Reports Server (NTRS)

    Hunter, D.; Krauss, T.

    1991-01-01

    Air ejection from leading edge of airfoil used for controlled decrease of lift. Pneumatic-spoiler principle developed for equalizing lift on helicopter rotor blades. Also used to enhance aerodynamic control of short-fuselage or rudderless aircraft such as "flying-wing" airplanes. Leading-edge injection increases maneuverability of such high-performance fixed-wing aircraft as fighters.

  2. F-15 Pneumatic Forbody Controls

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A series of test have been conducted in the Langley 30-by-60 Foot Tunnel to determine the effectiveness of several forebody control devices on a 10-percent-scale model of the F-15E. These test are part of a cooperative research program with the U.S. Air Force Wright Laboratory and the McDonnell Aircraft Company to determine the suitability of applying forebody controls to the F-15E aircraft. The forebody controls under investigation included mechanical concepts, such as deflectable strakes and rotating-randome devices, and pneumatic concepts, such as slotted-nozzle blowing. All these concepts are designed to provide increased maneuverability by enhancing yaw control at high angles of attack where conventional rudders become ineffective. Results from the tests show that the F-15E is well suited for the application of forebody-controls technology. After conducting a number of parametric variations, several mechanical and pneumatic forebody control options were identified that were capable of providing high levels of yaw control while minimizing the impact on other aircraft systems. Other desirable characteristics exhibited by these concepts were that the control effectiveness was retained over wide ranges of sideslip and that the level of yawing moment was easily controlled by varying either the mechanical deflection or the blowing rate. Subsequent piloted simulation studies conducted by the McDonnell Aircraft Company have shown that these improved levels of yaw control would significantly enhance the maneuverability of the aircraft. The promising results that were obtained during these tests have spawned interest in a flight-test program and possible future application to the F-15E aircraft.

  3. Guidelines help design pneumatic control systems

    SciTech Connect

    Curry, R.N.

    1981-01-26

    The three areas of particular interest to the gas-transmission engineer about pneumatic-instrument-operated control valves are (1) the fail-position probability of a system, (2) the designated action required for each component in the pneumatic circuit, and (3) the schematically defined position of each component. Compared with self-operated control valves, the instrument-operated systems perform many more functions; they can control the flow and the volume or flow-volume combinations, with both pressure override and underride, and will adapt conveniently to remote operation. Schematic diagrams illustrate the numerous system designs possible for pressure-regulation, flow-control, and relief-valve duties.

  4. Assessment of Pneumatic Controller Emission Measurements ...

    EPA Pesticide Factsheets

    Oil and Natural Gas (ONG) production facilities have the potential to emit greenhouse gases such as methane (CH4) and other hydrocarbons (HCs) to the atmosphere. ONG production sites have multiple emission sources including storage tank venting, enclosed combustion devices, engine exhaust, pneumatic controllers and uncontrolled leaks. Accounting for up to 37.8 percent of CH4 emissions, pneumatic controllers are one of the most significant sources of CH4 in ONG production field operations. Recent measurement studies used the only commercially-available high volume sampling (HVS) technology (Bacharach Hi Flow Sampler, Bacharach, Inc., New Kensington, PA) to quantify CH4 emission rates of pneumatic devices on ONG production pads and compare to inventory estimates. Other studies indicate that this HVS may malfunction, causing underestimates of emissions in certain scenarios encountered in ONG production and should not be used for some sources such as heavy emissions from condensate storage tanks. The HVS malfunction can occur on relatively large emissions, where the measured leak concentrations exceed 5%, and is ascribed to a sensor transition failure in the instrument. The HVS malfunction is believed to be exacerbated by several factors (large emission rates, amount of non-CH4 HCs in the emission stream, non-optimal HVS calibration frequency, firmware, and emission measurement coupling geometries). The degree to which HVS measurements of emissions from pneumatic co

  5. Transforming insect electromyograms into pneumatic muscle control

    NASA Astrophysics Data System (ADS)

    Rutter, Brandon; Mu, Laiyong; Ritzmann, Roy; Quinn, Roger

    2006-05-01

    Robots can serve as hardware models for testing biological hypotheses. Both for this reason and to improve the state of the art of robotics, we strive to incorporate biological principles of insect locomotion into robotic designs. Previous research has resulted in a line of robots with leg designs based on walking and climbing movements of the cockroach Blaberus discoidalis. The current version, Robot V, uses muscle-like Braided Pneumatic Actuators (BPAs). In this paper, we use recorded electromyograms (EMGs) to drive robot joint motion. A muscle activation model was developed that transforms EMGs recorded from behaving cockroaches into appropriate commands for the robot. The transform is implemented by multiplying the EMG by an input gain thus generating an input pressure signal, which is used to drive a one-way closed loop pressure controller. The actuator then can be modeled as a capacitance with input rectification. The actuator exhaust valve is given a leak rate, making the transform a leaky integrator for air pressure, which drives the output force of the actuator. We find parameters of this transform by minimizing the difference between the robot motion produced and that observed in the cockroach. Although we have not reproduced full-amplitude cockroach motion using this robot, results from evaluation on reduced-amplitude cockroach angle data strongly suggest that braided pneumatic actuators can be used as part of a physical model of a biological system.

  6. Pneumatic load compensating or controlling system

    NASA Technical Reports Server (NTRS)

    Rogers, J. R. (Inventor)

    1975-01-01

    A pneumatic load compensating or controlling system for restraining a load with a predetermined force or applying a predetermined force to the load is described; it includes a source of pressurized air, a one-way pneumatic actuator operatively connected to a load, and a fluid conduit fluidically connecting the actuator with the source of pressurized air. The actuator is of the piston and cylinder type, and the end of the fluid conduit is connected to the upper or lower portion of the cylinder whereby the actuator alternatively and selectively restrains the load with a predetermined force or apply a predetermined force to the load. Pressure regulators are included within the system for variably selectively adjusting the pressurized fluid to predetermined values as desired or required; a pressure amplifier is included within the system for multiplying the pressurized values so as to achieve greater load forces. An accumulator is incorporated within the system as a failsafe operating mechanism, and visual and aural alarm devices, operatively associated with pressure detecting apparatus, readily indicate the proper or improper functioning of the system.

  7. Adaptive control with aerospace applications

    NASA Astrophysics Data System (ADS)

    Gadient, Ross

    Robust and adaptive control techniques have a rich history of theoretical development with successful application. Despite the accomplishments made, attempts to combine the best elements of each approach into robust adaptive systems has proven challenging, particularly in the area of application to real world aerospace systems. In this research, we investigate design methods for general classes of systems that may be applied to representative aerospace dynamics. By combining robust baseline control design with augmentation designs, our work aims to leverage the advantages of each approach. This research contributes the development of robust model-based control design for two classes of dynamics: 2nd order cascaded systems, and a more general MIMO framework. We present a theoretically justified method for state limiting via augmentation of a robust baseline control design. Through the development of adaptive augmentation designs, we are able to retain system performance in the presence of uncertainties. We include an extension that combines robust baseline design with both state limiting and adaptive augmentations. In addition we develop an adaptive augmentation design approach for a class of dynamic input uncertainties. We present formal stability proofs and analyses for all proposed designs in the research. Throughout the work, we present real world aerospace applications using relevant flight dynamics and flight test results. We derive robust baseline control designs with application to both piloted and unpiloted aerospace system. Using our developed methods, we add a flight envelope protecting state limiting augmentation for piloted aircraft applications and demonstrate the efficacy of our approach via both simulation and flight test. We illustrate our adaptive augmentation designs via application to relevant fixed-wing aircraft dynamics. Both a piloted example combining the state limiting and adaptive augmentation approaches, and an unpiloted example with

  8. Continued Development and Application of Circulation Control Pneumatic Technology to Advanced Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1998-01-01

    Personnel of the Georgia Tech Research Institute (GTRI) Aerospace and Transportation Lab have completed a four-year grant program to develop and evaluate the pneumatic aerodynamic technology known as Circulation Control (CC) or Circulation Control Wing (CCW) for advanced transport aircraft. This pneumatic technology, which employs low-level blowing from tangential slots over round or near-round trailing edges of airfoils, greatly augments the circulation around a lifting or control surface and thus enhances the aerodynamic forces and moments generated by that surface. Two-dimensional force augmentations as high as 80 times the input blowing momentum coefficient have been recorded experimentally for these blown devices, thus providing returns of 8000% on the jet momentum expended. A further benefit is the absence of moving parts such as mechanical flaps, slats, spoilers, ailerons, elevators and rudders from these pneumatic surfaces, or the use of only very small, simple, blown aerodynamic surfaces on synergistic designs which integrate the lift, drag and control surfaces. The application of these devices to advanced aircraft can offer significant benefits in their performance, efficiency, simplicity, reliability, economic cost of operation, noise reduction, and safety of flight. To further develop and evaluate this potential, this research effort was conducted by GTRI under grant for the NASA Langley Research Center, Applied Aerodynamics Division, Subsonic Aerodynamics Branch, between June 14, 1993 and May 31, 1997.

  9. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    SciTech Connect

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    2014-12-10

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  10. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    NASA Astrophysics Data System (ADS)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    2014-12-01

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  11. A Synchronous Mutual Position Control for Vertical Pneumatic Servo System

    NASA Astrophysics Data System (ADS)

    Shibata, Satoru; Yamamoto, Tomonori; Jindai, Mitsuru

    Synchronous control of mutual position for two vertical-type pneumatic servo systems is discussed for practical use in this study. In the proposed control system, a fuzzy controller is used in each pneumatic servo system so that the output of each plant can follow the reference input. A PD controller is introduced to realize the synchronization of both pneumatic servo systems, in which the outputs from this controller are the inputs for revision to both plants. A fuzzy virtual reference generator that can adjust the reference input to both fuzzy controllers adaptively by fuzzy rules is constructed to improve the transient performances of both axes. In addition, the adjustment controller produces a representative value of both cylinder outputs, which is used to synthesize the inputs to the fuzzy virtual reference generator, in order to reach a compromise between the follow-up ability to the reference input in each axis and synchronization of both axes. The applicability of the proposed method is confirmed by experiments using two existent vertical-type pneumatic servo systems.

  12. Adaptive backstepping slide mode control of pneumatic position servo system

    NASA Astrophysics Data System (ADS)

    Ren, Haipeng; Fan, Juntao

    2016-09-01

    With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental results show that the designed controller can achieve better tracking performance, as compared with some existing methods.

  13. Low-energy pneumatic control of forebody vortices

    NASA Technical Reports Server (NTRS)

    Roos, Frederick W.

    1994-01-01

    This research will be exploring the prospect of employing bluntness, known to suppress the tendency toward asymmetry on slender forebodies, jointly with pneumatic manipulation as a system of forebody asymmetry control. The influences of jet location and direction, blowing rate, relative noise bluntness, angle of attack, and state of flow separation feeding the vortices (laminar vs. turbulent) will be evaluated.

  14. Control and monitoring system for clinically employed pneumatic blood pumps.

    PubMed

    Normann, N A; Henrichsen, D W; Cooper, T G; King, R E; Noon, G P; DeBakey, M E

    1977-01-01

    Instantaneous position of the flexing member in pneumatic blood pumps is monitored on-line by measuring the electrical capacitance across the gas space within the pump. Monitor output is utilized in closed-loop pump control and for automatic pump shutdown in response to operational abnormalities. Thus, safety and efficacy are enhanced through operational optimization, automatic safety features, and facilitated evaluation.

  15. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Hydraulic or pneumatic power and control-materials and... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component (such as pipe runs, fittings, flanges, and standard valves) for hydraulic or pneumatic power and...

  16. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic or pneumatic power and control-materials and... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component (such as pipe runs, fittings, flanges, and standard valves) for hydraulic or pneumatic power and...

  17. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Hydraulic or pneumatic power and control-materials and... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component (such as pipe runs, fittings, flanges, and standard valves) for hydraulic or pneumatic power and...

  18. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Hydraulic or pneumatic power and control-materials and... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component (such as pipe runs, fittings, flanges, and standard valves) for hydraulic or pneumatic power and...

  19. Neuro-Fuzzy Control for Pneumatic Servo System

    NASA Astrophysics Data System (ADS)

    Shibata, Satoru; Jindai, Mitsuru; Yamamoto, Tomonori; Shimizu, Akira

    A learning method for acquiring the appropriate fuzzy rules using error back propagation to improve the control performance of the pneumatic servo system is presented in this paper. In the proposed method, two criteria are defined and are adjusted so as to minimize them using error back propagation. These criteria are defined on the fuzzy rules, that is, shapes of membership functions of antecedent clause and real values of consequent clause in the fuzzy controller. Two differentiating coefficients of the plant, used in error back propagation with respect to those criteria, are estimated by the newly established neural network. Moreover, sigmoid function is introduced for the connection of the neural network to compensate for the effect of non-linearity of the system. The method was applied to an existent vertical type pneumatic servo system and proved its effectiveness for practical use.

  20. Design and Control of a Pneumatically Actuated Transtibial Prosthesis

    PubMed Central

    Zheng, Hao; Shen, Xiangrong

    2015-01-01

    This paper presents the design and control of a pneumatically actuated transtibial prosthesis, which utilizes a pneumatic cylinder-type actuator to power the prosthetic ankle joint to support the user's locomotion. The pneumatic actuator has multiple advantages over the traditional electric motor, such as light weight, low cost, and high power-to-weight ratio. The objective of this work is to develop a compact and lightweight transtibial prosthesis, leveraging the multiple advantages provided by this highly competitive actuator. In this paper, the design details of the prosthesis are described, including the determination of performance specifications, the layout of the actuation mechanism, and the calculation of the torque capacity. Through the authors’ design calculation, the prosthesis is able to provide sufficient range of motion and torque capacity to support the locomotion of a 75 kg individual. The controller design is also described, including the underlying biomechanical analysis and the formulation of the finite-state impedance controller. Finally, the human subject testing results are presented, with the data indicating that the prosthesis is able to generate a natural walking gait and sufficient power output for its amputee user. PMID:26146497

  1. Pneumatic system structure for circulation control aircraft

    NASA Technical Reports Server (NTRS)

    Krauss, Timothy A. (Inventor); Roman, Stephan (Inventor); Beurer, Robert J. (Inventor)

    1986-01-01

    A plenum for a circulation control rotor aircraft which surrounds the rotor drive shaft (18) and is so constructed that the top (32), outer (38) and bottom (36) walls through compressed air is admitted are fixed to aircraft structure and the inner wall (34) through which air passes to rotor blades (14) rotates with the drive shaft and rotor blades.

  2. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    Actively controlled mechanical seals have recently been developed for industrial use. This study investigates the feasibility of using such seals for aerospace applications. In a noncontacting mechanical seal, the film thickness depends on the geometry of the seal interface. The amount of coning, which is a measure of the radial convergence or divergence of the seal interface, has a primary effect on the film thickness. Active control of the film thickness is established by controlling the coning with a piezoelectric material. A mathematical model has been formulated to predict the performance of an actively controlled mechanical seal.

  3. Materials Control for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Ferguson, Michael

    2005-01-01

    The distant future of mankind and the ultimate survivability of the human race, as it is known today, will depend on mans' ability to break earthly bonds and establish new territorial positions throughout the universe. Man must therefore be positioned to not only travel to, but also, to readily adapt to numerous and varying environments. For this mass migration across the galaxies nothing is as import to the human race as is NASA's future missions into Low Earth Orbit (LEO), to the moon, and/or Mars. These missions will form the building blocks to eternity for mankind. From these missions, NASA will develop the foundations for these building blocks based on sound engineering and scientific principles, both known and yet to be discovered. The integrity of the program will lead to development, tracking and control of the most basic elements of hardware production: That being development and control of applications of space flight materials. Choosing the right material for design purposes involves many considerations, such as governmental regulations associated with manufacturing operations, both safety of usage and of manufacturing, general material usage requirements, material longevity and performance requirements, material interfacing compatibility and material usage environments. Material performance is subject to environmental considerations in as much as a given material may perform exceptionally well at standard temperatures and pressures while performing poorly under non-standard conditions. These concerns may be found true for materials relative to the extreme temperatures and vacuum gradients of high altitude usage. The only way to assure that flight worthy materials are used in design is through testing. However, as with all testing, it requires both time on schedule and cost to the operation. One alternative to this high cost testing approach is to rely on a materials control system established by NASA. The NASA community relies on the MAPTIS materials

  4. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    The main objective is to determine the feasibility of utilizing controllable mechanical seals for aerospace applications. A potential application was selected as a demonstration case: the buffer gas seal in a LOX (liquid oxygen) turbopump. Currently, floating ring seals are used in this application. Their replacement with controllable mechanical seals would result in substantially reduced leakage rates. This would reduce the required amount of stored buffer gas, and therefore increase the vehicle payload. For such an application, a suitable controllable mechanical seal was designed and analyzed.

  5. Pneumatic oscillator circuits for timing and control of integrated microfluidics.

    PubMed

    Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E

    2013-11-05

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices.

  6. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Hydraulic or pneumatic power and control-materials and...) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Materials and Pressure Design § 128.240 Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping...

  7. Computational Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Sharpe, Lonnie, Jr.; Shen, Ji Yao

    1994-01-01

    The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years of the project. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed. A theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modelling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide a embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes.

  8. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1994-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100 C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changed suddenly.

  9. Computational control of flexible aerospace systems

    NASA Technical Reports Server (NTRS)

    Sharpe, Lonnie, Jr.; Shen, Ji Yao

    1994-01-01

    The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed based on several incomplete versions. The verification of the code had been conducted by comparing the results with those examples for which the exact theoretical solutions can be obtained. The theoretical background of the package and the verification examples has been reported in a technical paper submitted to the Joint Applied Mechanics & Material Conference, ASME. A brief USER'S MANUAL had been compiled, which includes three parts: (1) Input data preparation; (2) Explanation of the Subroutines; and (3) Specification of control variables. Meanwhile, a theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modeling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide an embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes.

  10. Computational control of flexible aerospace systems

    NASA Astrophysics Data System (ADS)

    Sharpe, Lonnie, Jr.; Shen, Ji Yao

    1994-12-01

    The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed based on several incomplete versions. The verification of the code had been conducted by comparing the results with those examples for which the exact theoretical solutions can be obtained. The theoretical background of the package and the verification examples has been reported in a technical paper submitted to the Joint Applied Mechanics & Material Conference, ASME. A brief USER'S MANUAL had been compiled, which includes three parts: (1) Input data preparation; (2) Explanation of the Subroutines; and (3) Specification of control variables. Meanwhile, a theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modeling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide an embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes.

  11. An electromagnetic microvalve for pneumatic control of microfluidic systems.

    PubMed

    Liu, Xuling; Li, Songjing

    2014-10-01

    An electromagnetic microvalve for pneumatic control of microfluidic devices has been designed, fabricated, and tested. The microvalve is composed of two parts: a miniature electromagnetic actuator and a valve body. The electromagnetic actuator consists mainly of a thin polydimethylsiloxane (PDMS)-based elastomer, which acts as the valve diaphragm. The diaphragm, used as a solid hydraulic medium, converts the large contact area of a valve core into a small contact area of valve head while maintaining a large stroking force. This microvalve remains closed because of a compressed mechanical spring force generated by the actuator. On the other hand, when a voltage is applied, the valve core moves up, relaxing the thin PDMS membrane, opening the microvalve. The fast open response (~17 ms) of the valve was achieved with a leak rate as low as 0.026 sccm at 200 KPa (N2) pressure. We tested the pertinent dynamic parameters such as flow rate in on/off mode, flow rate of duty cycles, and actuated frequencies in pulse width modulation (PWM) mode. Our method provides a simple, cheap, and small microvalve that avoids the bulky and expensive external pressure control solenoid manifold. This allows it to be easily integrated into portable and disposable devices.

  12. Abdominal Palpation Haptic Device for Colonoscopy Simulation Using Pneumatic Control.

    PubMed

    Cheng, M; Marinovic, W; Watson, M; Ourselin, S; Passenger, J; De Visser, H; Salvado, O; Riek, S

    2012-01-01

    In this paper, we describe the development of a haptic device to be used in a simulator aiming to train the skills of gastroenterology assistants in abdominal palpation during colonoscopy, as well as to train team interaction skills for the colonoscopy team. To understand the haptic feedback forces to be simulated by the haptic device, we conducted an experiment with five participants of varying BMI. The applied forces and displacements were measured and hysteresis modeling was used to characterize the experimental data. These models were used to determine the haptic feedback forces required to simulate a BMI case in response to the real-time user interactions. The pneumatic haptic device consisted of a sphygmomanometer bladder as the haptic interface and a fuzzy controller to regulate the bladder pressure. The haptic device showed good steady state and dynamic response was adequate for simulating haptic interactions. Tracking accuracy averaged 94.2 percent within 300 ms of the reference input while the user was actively applying abdominal palpation and minor repositioning.

  13. An investigation of the effects of pneumatic actuator design on slip control for heavy vehicles

    NASA Astrophysics Data System (ADS)

    Miller, Jonathan I.; Cebon, David

    2013-01-01

    Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3 ms and orifice diameters around 8 mm provide the best performance.

  14. Actively Controlled Shaft Seals for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.; Wolff, Paul

    1995-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  15. Actively controlled shaft seals for aerospace applications

    NASA Astrophysics Data System (ADS)

    Salant, Richard F.

    1995-07-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  16. Pneumatic motor powered Thrust Vector Control (TVC) for liquid propelled launch vehicles

    NASA Astrophysics Data System (ADS)

    Malone, Mark C.; Evans, P. S.

    1992-02-01

    Recent studies performed for the Titan 4 launch vehicle indicate significant potential advantages in replacing the current stage 1 and 2 recirculating hydraulic TVC (thrust vector control) system with a PMA (pneumatic mechanical actuation) system. Some of the advantages of a PMA system over the recirculating hydraulic system include reduced part count and weight, reduced maintenance and life-cycle cost, and improved mission reliability. PMA technology, used in aircraft applications since the 1960s, is well suited in launch vehicle TVC applications where an existing pneumatic pressure source is available. A typical pneumatic motor TVC consists of a pneumatic power source, a dual rotor pneumatic motor, a gear box, a ball screw actuator, and the associated closed-loop servo-control elements. One key issue with implementing this mechanical approach is designing a TVC system to withstand large load transient disturbances during liquid engine starting. Hydraulic actuator transient loads have exceeded 60,000 lb(sub f) for a 30,000 lb(sub f) stall design actuator during ground starts of the Titan 3B, Stage 1 engine. A PMA TVC system must also withstand these start transients without imparting excessive reaction loads to the engine nozzle and thrust structure. Work completed to date with Martin Marietta to examine pneumatic motor powered TVC options and technology benefits is presented. The load transient issue is discussed along with potential solutions and the associated trades. General background on PMA technology and experience base is also presented.

  17. Position control of an electro-pneumatic system based on PWM technique and FLC.

    PubMed

    Najjari, Behrouz; Barakati, S Masoud; Mohammadi, Ali; Futohi, Muhammad J; Bostanian, Muhammad

    2014-03-01

    In this paper, modeling and PWM based control of an electro-pneumatic system, including the four 2-2 valves and a double acting cylinder are studied. Dynamic nonlinear behavior of the system, containing fast switching solenoid valves and a pneumatic cylinder, as well as electrical, magnetic, mechanical, and fluid subsystems are modeled. A DC-DC power converter is employed to improve solenoid valve performance and suppress system delay. Among different position control methods, a proportional integrator derivative (PID) controller and fuzzy logic controller (FLC) are evaluated. An experimental setup, using an AVR microcontroller is implemented. Simulation and experimental results verify the effectiveness of the proposed control strategies.

  18. Controllable pneumatic generator based on the catalytic decomposition of hydrogen peroxide

    SciTech Connect

    Kim, Kyung-Rok; Kim, Kyung-Soo Kim, Soohyun

    2014-07-15

    This paper presents a novel compact and controllable pneumatic generator that uses hydrogen peroxide decomposition. A fuel micro-injector using a piston-pump mechanism is devised and tested to control the chemical decomposition rate. By controlling the injection rate, the feedback controller maintains the pressure of the gas reservoir at a desired pressure level. Thermodynamic analysis and experiments are performed to demonstrate the feasibility of the proposed pneumatic generator. Using a prototype of the pneumatic generator, it takes 6 s to reach 3.5 bars with a reservoir volume of 200 ml at the room temperature, which is sufficiently rapid and effective to maintain the repetitive lifting of a 1 kg mass.

  19. Controllable pneumatic generator based on the catalytic decomposition of hydrogen peroxide.

    PubMed

    Kim, Kyung-Rok; Kim, Kyung-Soo; Kim, Soohyun

    2014-07-01

    This paper presents a novel compact and controllable pneumatic generator that uses hydrogen peroxide decomposition. A fuel micro-injector using a piston-pump mechanism is devised and tested to control the chemical decomposition rate. By controlling the injection rate, the feedback controller maintains the pressure of the gas reservoir at a desired pressure level. Thermodynamic analysis and experiments are performed to demonstrate the feasibility of the proposed pneumatic generator. Using a prototype of the pneumatic generator, it takes 6 s to reach 3.5 bars with a reservoir volume of 200 ml at the room temperature, which is sufficiently rapid and effective to maintain the repetitive lifting of a 1 kg mass.

  20. Controllable pneumatic generator based on the catalytic decomposition of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Rok; Kim, Kyung-Soo; Kim, Soohyun

    2014-07-01

    This paper presents a novel compact and controllable pneumatic generator that uses hydrogen peroxide decomposition. A fuel micro-injector using a piston-pump mechanism is devised and tested to control the chemical decomposition rate. By controlling the injection rate, the feedback controller maintains the pressure of the gas reservoir at a desired pressure level. Thermodynamic analysis and experiments are performed to demonstrate the feasibility of the proposed pneumatic generator. Using a prototype of the pneumatic generator, it takes 6 s to reach 3.5 bars with a reservoir volume of 200 ml at the room temperature, which is sufficiently rapid and effective to maintain the repetitive lifting of a 1 kg mass.

  1. [The research on linear control of pneumatic artificial muscles used in medical robots].

    PubMed

    Lin, Linang-ming; Tian, She-ping; Yan, Guo-zheng

    2002-01-01

    This paper presents the properties of Pneumatic artificial muscles and its application in medical robots. The linear model construction and minimum predictive error control algorithm for artificial muscles are discussed here too. This paper provides the experimental results of linear adaptive control, which show the control algorithm has certain applicable value.

  2. Vibration control of a pneumatic driven piezoelectric flexible manipulator using self-organizing map based multiple models

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-li; Qiu, Zhi-cheng; Zhang, Xian-min; Han, Jian-da

    2016-03-01

    A kind of hybrid pneumatic-piezoelectric flexible manipulator system has been presented in the paper. A hybrid driving scheme is achieved by combining of a pneumatic proportional valve based pneumatic drive and a piezoelectric actuator bonded to the flexible beam. The system dynamics models are obtained based on system identification approaches, using the established experimental system. For system identification of the flexible piezoelectric manipulator subsystem, parametric estimation methods are utilized. For the pneumatic driven system, a single global linear model is not accurate enough to describe its dynamics, due to the high nonlinearity of the pneumatic driven system. Therefore, a self-organizing map (SOM) based multi-model system identification approach is used to get multiple local linear models. Then, a SOM based multi-model inverse controller and a variable damping pole-placement controller are applied to the pneumatic drive and piezoelectric actuator, respectively. Experiments on pneumatic driven vibration control, piezoelectric vibration control and hybrid vibration control are conducted, utilized proportional and derivative (PD) control, SOM based multi-model inverse controller, and the variable damping pole-placement controller. Experimental results demonstrate that the investigated control algorithms can improve the vibration control performance of the pneumatic driven flexible piezoelectric manipulator system.

  3. Design and Control of a 1-DOF MRI Compatible Pneumatically Actuated Robot with Long Transmission Lines

    PubMed Central

    Yang, Bo; Tan, U-Xuan; McMillan, Alan; Gullapalli, Rao; Desai, Jaydev P.

    2011-01-01

    This paper presents the design and control of an MRI-compatible 1-DOF needle driver robot and its precise position control using pneumatic actuation with long transmission lines. MRI provides superior image quality compared to other imaging modalities such as CT or ultrasound, but imposes severe limitations on the material and actuator choice (to prevent image distortion) due to its strong magnetic field. We are primarily interested in developing a pneumatically actuated breast biopsy robot with a large force bandwidth and precise targeting capability during radio-frequency ablation (RFA) of breast tumor, and exploring the possibility of using long pneumatic transmission lines from outside the MRI room to the device in the magnet to prevent any image distortion whatsoever. This paper presents a model of the entire pneumatic system. The pneumatic lines are approximated by a first order system with time delay, because its dynamics are governed by the telegraph equation with varying coefficients and boundary conditions, which cannot be solved precisely. The slow response of long pneumatic lines and valve subsystems make position control challenging. This is further compounded by the presence of non-uniform friction in the device. Sliding mode control (SMC) was adopted, where friction was treated as an uncertainty term to drive the system onto the sliding surface. Three different controllers were designed, developed, and evaluated to achieve precise position control of the RFA probe. Experimental results revealed that all SMCs gave satisfactory performance with long transmission lines. We also performed several experiments with a 3-DOF fiber-optic force sensor attached to the needle driver to evaluate the performance of the device in the MRI under continuous imaging. PMID:22058649

  4. Precision Position Control of Pneumatic Servo Table Embedded with Aerostatic Bearing

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Hung; Hsu, Tzu-Yung; Pai, Kei-Ren; Shih, Ming-Chang

    This paper treats the control of a pneumatic servo table combining the air cylinders and sliding guides embedded with aerostatic bearing. Since compressed air flows into the small gap between the bearing and the sliding guide, the cylinder floats around the air film and on the guide surface of the table. The friction forces of the pneumatic servo table are measured, and the relation of frictional force and speed is plotted. The hybrid self-tuning fuzzy controller with the velocity compensators and dead-zone are proposed in this paper. From the experimental results, in case of different position, the positioning accuracy can reach the 0.04μm.

  5. Troubleshooting of an Electromechanical System (Westinghouse PLC Controlling a Pneumatic Robot). High-Technology Training Module.

    ERIC Educational Resources Information Center

    Tucker, James D.

    This training module on the troubleshooting of an electromechanical system, The Westinghouse Programmable Logic Controller (PLC) controlling a pneumatic robot, is used for a troubleshooting unit in an electromechanical systems/robotics and automation systems course. In this unit, students locate and repair a defect in a PLC-operated machine. The…

  6. An online tuned novel nonlinear PI controller for stiction compensation in pneumatic control valves.

    PubMed

    Mishra, Puneet; Kumar, Vineet; Rana, K P S

    2015-09-01

    A novel Nonlinear PI Controller (NPIC) has been proposed for effective control of flow process employing a sticky pneumatic control valve. The proposed control scheme has been inherited from a classical PI control structure with a difference that the integral gain has been varied in accordance with the instantaneous error and the rate of change of error. The tuning of controller has been carried out online using Differential Evolution algorithm. To evaluate the effectiveness of the proposed controller, a comparative study with the conventional PI controller has also been carried out for the setpoint tracking, disturbance rejection and robustness to parameter uncertainties on account of operating point change on a laboratory scale nonlinear flow process. Based on these intensive experimental evidences, it has been concluded that the NPIC performed far better than the conventional PI controller for all the case studies and suppressed effectively any stiction induced oscillations.

  7. Pneumatic shutoff and time-delay valve operates at controlled rate

    NASA Technical Reports Server (NTRS)

    Horning, J. L.; Tomlinson, L. E.

    1966-01-01

    Shutoff and time delay valve, which incorporates a metering spool that moves at constant velocity under pneumatic pressure and spring compression, increases fluid-flow area at a uniform rate. Diaphragm areas, control cavity volume, and bleed-orifice size may be varied to give any desired combination of time delay and spool travel time.

  8. 40 CFR 60.5390 - What standards apply to pneumatic controller affected facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What standards apply to pneumatic controller affected facilities? 60.5390 Section 60.5390 Protection of Environment ENVIRONMENTAL PROTECTION... reconstructed on or after October 15, 2013, at a location between the wellhead and a natural gas...

  9. 40 CFR 60.5390 - What standards apply to pneumatic controller affected facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What standards apply to pneumatic controller affected facilities? 60.5390 Section 60.5390 Protection of Environment ENVIRONMENTAL PROTECTION... at a location between the wellhead and a natural gas processing plant must have a bleed rate...

  10. Pneumatic-Controlled Fluidic Microdevices for Executing NOT, NOR, and NAND Logic Functions

    NASA Astrophysics Data System (ADS)

    Chang, Hsing-Cheng; Tsou, Chingfu; Lai, Chi-Chih; Huang, Ming-Che

    2008-03-01

    Novel pneumatic-controlled logic microdevices based on a microelectromechanical system (MEMS) compatible process and microfluidic control technology have been developed for executing the universal basic logic functions of NOT, NOR, and NAND. The main fabrication processes for the logic microdevices include anisotropic silicon bulk etching, silicone rubber membrane formation, wafer bonding and packaging. The dynamic characteristics and pneumatic-controlled performance of the elastic membranes have been measured using an equipped fluidic instrument, which indicates their potential application to safety monitoring for preventing electric-induced disasters. All logic functions of the microdevices have been demonstrated to correspond exactly to the related truth tables. The newly developed logic microdevices are capable of controlling a liquid or gas system with high sensitivity in a wide dynamic range, and with strong immunity from temperature fluctuations.

  11. Hybrid Control Systems: Design and Analysis for Aerospace Applications

    DTIC Science & Technology

    2009-02-28

    COVERED (From - To) 15-02-2006 - 30-11-200! 4. TITLE AND SUBTITLE Hybrid control systems : Design and analysis for aerospace applications 5a...of this research was to contribute to the fundamental understanding of hybrid control systems and to explore the use of hybrid feedback in problems...of interest to the Air Force. We aimed to provide a solid, foundational understanding of hybrid systems that will enable the vast potential of hybrid

  12. Direct adaptive fuzzy control of a translating piezoelectric flexible manipulator driven by a pneumatic rodless cylinder

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-cheng; Wang, Bin; Zhang, Xian-min; Han, Jian-da

    2013-04-01

    This study presents a novel translating piezoelectric flexible manipulator driven by a rodless cylinder. Simultaneous positioning control and vibration suppression of the flexible manipulator is accomplished by using a hybrid driving scheme composed of the pneumatic cylinder and a piezoelectric actuator. Pulse code modulation (PCM) method is utilized for the cylinder. First, the system dynamics model is derived, and its standard multiple input multiple output (MIMO) state-space representation is provided. Second, a composite proportional derivative (PD) control algorithms and a direct adaptive fuzzy control method are designed for the MIMO system. Also, a time delay compensation algorithm, bandstop and low-pass filters are utilized, under consideration of the control hysteresis and the caused high-frequency modal vibration due to the long stroke of the cylinder, gas compression and nonlinear factors of the pneumatic system. The convergence of the closed loop system is analyzed. Finally, experimental apparatus is constructed and experiments are conducted. The effectiveness of the designed controllers and the hybrid driving scheme is verified through simulation and experimental comparison studies. The numerical simulation and experimental results demonstrate that the proposed system scheme of employing the pneumatic drive and piezoelectric actuator can suppress the vibration and achieve the desired positioning location simultaneously. Furthermore, the adopted adaptive fuzzy control algorithms can significantly enhance the control performance.

  13. Guidance and Control strategies for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Hibey, J. L.; Naidu, D. S.; Charalambous, C. D.

    1989-01-01

    A neighboring optimal guidance scheme was devised for a nonlinear dynamic system with stochastic inputs and perfect measurements as applicable to fuel optimal control of an aeroassisted orbital transfer vehicle. For the deterministic nonlinear dynamic system describing the atmospheric maneuver, a nominal trajectory was determined. Then, a neighboring, optimal guidance scheme was obtained for open loop and closed loop control configurations. Taking modelling uncertainties into account, a linear, stochastic, neighboring optimal guidance scheme was devised. Finally, the optimal trajectory was approximated as the sum of the deterministic nominal trajectory and the stochastic neighboring optimal solution. Numerical results are presented for a typical vehicle. A fuel-optimal control problem in aeroassisted noncoplanar orbital transfer is also addressed. The equations of motion for the atmospheric maneuver are nonlinear and the optimal (nominal) trajectory and control are obtained. In order to follow the nominal trajectory under actual conditions, a neighboring optimum guidance scheme is designed using linear quadratic regulator theory for onboard real-time implementation. One of the state variables is used as the independent variable in reference to the time. The weighting matrices in the performance index are chosen by a combination of a heuristic method and an optimal modal approach. The necessary feedback control law is obtained in order to minimize the deviations from the nominal conditions.

  14. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1993-01-01

    An electronically controlled mechanical seal for use as the purge gas seal in a liquid oxygen turbo pump has been fabricated and tested under transient operating conditions. The thickness of the lubricating film is controlled by adjusting the coning of the carbon face. This is accomplished by applying a voltage to a piezoelectric actuator to which the carbon face is bonded. The seal has been operated with a closed-loop control system that utilizes either the leakage rate or the seal face temperature as the feedback. Both speed and pressure transients have been imposed on the seal. The transient tests have demonstrated that the seal is capable of maintaining low leakage rates while limiting the face temperatures.

  15. Guidance and control strategies for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Hibey, Joseph L.; Naidu, Desineni S.

    1990-01-01

    The first part of the report concerns broadly the summary of the work done in the areas of singular perturbations and time scales (SPaTS), aerobraking technology, guidance and aerocruise. The synergistic plane change problem connected with orbital transfer employing aeroassist technology, is addressed. The mission involves transfer from high Earth orbit to low Earth orbit with plane change being performed within the atmosphere. The complete mission consists of a deorbit phase, atmospheric phase, and finally reorbit phase. The atmospheric maneuver is composed of an entry mode, a cruise mode, and finally an exit mode. During the cruise mode, constant altitude and velocity are maintained by means of bank angle control with constant thrust or thrust control with constant bank angle. Comparisons between these two control strategies bring out some interesting features.

  16. A Randomized Controlled Trial of Massage and Pneumatic Compression for Ultramarathon Recovery.

    PubMed

    Hoffman, Martin D; Badowski, Natalie; Chin, Joseph; Stuempfle, Kristin J

    2016-05-01

    Study Design Randomized controlled trial. Background Postexercise recovery techniques are widely used, but little research has examined their effectiveness. Objectives To examine the effectiveness of massage and pneumatic compression on recovery from a 161-km ultramarathon. Methods Participants in the 2015 161-km Western States Endurance Run were randomized to a 20-minute postrace intervention of massage, intermittent sequential pneumatic compression, or supine rest. Each subject completed two 400-m runs at maximum speed before the race and on days 3 and 5 after the race, and also provided muscle pain and soreness ratings and overall muscular fatigue scores before and for 7 days after the race. Results Among the 72 runners who finished the race and completed the study, comparison among intervention groups revealed no significant group or interaction effect on 400-m run time, but there was a significant (P<.0001) time effect. Immediately posttreatment, massage resulted in lower muscle pain and soreness ratings compared with the supine-rest control condition (P<.0001), while both massage (P<.0001) and pneumatic compression (P<.01) resulted in lower overall muscular fatigue scores compared with the control group. There were no significant differences between groups in any outcome 1 to 7 days after the race. Conclusion Single 20-minute sessions of postrace massage and intermittent sequential pneumatic compression provide some immediate subjective benefit. There is no evidence, however, that such treatments provide extended subjective or functional benefits of clinical importance. The trial was registered at www.clinicaltrials.gov (NCT02530190). Level of Evidence Therapy, level 1b. J Orthop Sports Phys Ther 2016;46(5):320-326. Epub 23 Mar 2016. doi:10.2519/jospt.2016.6455.

  17. Aerospace plane guidance using geometric control theory

    NASA Technical Reports Server (NTRS)

    Van Buren, Mark A.; Mease, Kenneth D.

    1990-01-01

    A reduced-order method employing decomposition, based on time-scale separation, of the 4-D state space in a 2-D slow manifold and a family of 2-D fast manifolds is shown to provide an excellent approximation to the full-order minimum-fuel ascent trajectory. Near-optimal guidance is obtained by tracking the reduced-order trajectory. The tracking problem is solved as regulation problems on the family of fast manifolds, using the exact linearization methodology from nonlinear geometric control theory. The validity of the overall guidance approach is indicated by simulation.

  18. Guidance and control strategies for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Hibey, Joseph L.; Naidu, D. S.

    1987-01-01

    A simplified method of matched asymptotic expansions was developed where the common part in composite solution is generated as a polynomial in stretched variable instead of actually evaluating the same from the outer solution. This methodology was applied to the solution of the exact equations for three dimensional atmospheric entry problems. Compared to previous works, the present simplified methodology yields explicit analytical expressions for various components of the composite solution without resorting to any type of transcendental equations to be solved only by numerical methods. The optimal control problem arising in the noncoplanar orbital transfer employing aeroassist was also addressed.

  19. Guidance and control strategies for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Naidu, Desineni S.; Hibey, Joseph L.

    1988-01-01

    The optimal control problem arising in coplanar, orbital transfer employing aeroassist technology is addressed. The maneuver involves the transfer from high Earth orbit to low Earth orbit. A performance index is chosen the minimize the fuel consumpltion for the transfer. Simulations are carried out for establishing a corridor of entry conditions which are suitable for flying the spacecraft through the atmosphere. A highlight of the paper is the application of an efficient multiple shooting method for taming the notorious nonlinear, two-point, boundary value problem resulting from optimization procedure.

  20. A comparison of hydraulic, pneumatic, and electro-mechanical actuators for general aviation flight controls

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Rice, M.; Eysink, H.

    1979-01-01

    Mathematical models for electromechanical (EM), pneumatic and hydraulic actuations are discussed. It is shown that EM and hydraulic actuators provide better and faster time responses than pneumatic actuators but EM actuators utilizing the recently developed samarium-cobalt technology have significant advantages in terms of size, weight and power requirements. In terms of ease and flexibility of installation EM actuators apparently have several advantages over hydraulic actuators, and cost is a primary reason for the popularity of EM actuation for secondary control function since no additional systems need to be added to the aircraft. While new rare earth magnets are currently in developmental stage, costs are relatively high; but continued research should bring prices down.

  1. Pneumatic Valve Operated by Multiplex Pneumatic Transmission

    NASA Astrophysics Data System (ADS)

    Nishioka, Yasutaka; Suzumori, Koichi; Kanda, Takefumi; Wakimoto, Shuichi

    A pneumatic system has several advantages, which are cheapness, lightweight, and reliability to human and environment. These advantages are adapted to some research areas, such as industrial lines, medical and nursing cares, and rehabilitation tools. However, the pneumatic system needs several devices; compressor, air tube, and control valve. This research aim to downsize pneumatic system. In this paper, a new method of multiplex pneumatic transmission for multi-pneumatic servo system is proposed. The valve for this system consists of two vibrators supported by springs, which was designed with simple and cheap structure. The working principle of the valve is vibrators resonance from multiplex pneumatic transmission and it is possible to work as ON/OFF valves without electric wire. Dynamic simulation was used to confirm the working principle of the resonance driving system. A prototype device confirming the principle was designed and developed based on the simulation. The experiments show that this new control system works very well to control two separated valves through single pneumatic tube.

  2. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics.

    PubMed

    Liu, Wenming; Wang, Jian-Chun; Wang, Jinyi

    2015-02-21

    Three-dimensional tumor culture methods offer a high degree of biological and clinical relevance to in vitro models as well as cancer therapy. However, a straightforward, dynamic, and high-throughput method for micro-manipulation of 3D tumors is not yet well established. In this study, we present a novel and simple strategy for producing biomimetic 3D tumors in a controllable, high throughput manner based on an integrated microfluidic system with well-established pneumatic microstructures. Serial manipulations, including one-step cell localization, array-like self-assembly, and real-time analysis of 3D tumors, are accomplished smoothly in the microfluidic device. The recovery of tumor products from the chip is performed by dynamic off-switch of the pneumatic microstructures. In addition, this microfluidic platform is demonstrated to be capable of producing multiple types of 3D tumors and performing the evaluation of tumor targeting by nanomedicine. The pneumatic microfluidic-based 3D tumor production shows potential for research on tumor biology, tissue engineering, and drug delivery.

  3. Methane emissions from process equipment at natural gas production sites in the United States: pneumatic controllers.

    PubMed

    Allen, David T; Pacsi, Adam P; Sullivan, David W; Zavala-Araiza, Daniel; Harrison, Matthew; Keen, Kindal; Fraser, Matthew P; Daniel Hill, A; Sawyer, Robert F; Seinfeld, John H

    2015-01-06

    Emissions from 377 gas actuated (pneumatic) controllers were measured at natural gas production sites and a small number of oil production sites, throughout the United States. A small subset of the devices (19%), with whole gas emission rates in excess of 6 standard cubic feet per hour (scf/h), accounted for 95% of emissions. More than half of the controllers recorded emissions of 0.001 scf/h or less during 15 min of measurement. Pneumatic controllers in level control applications on separators and in compressor applications had higher emission rates than controllers in other types of applications. Regional differences in emissions were observed, with the lowest emissions measured in the Rocky Mountains and the highest emissions in the Gulf Coast. Average methane emissions per controller reported in this work are 17% higher than the average emissions per controller in the 2012 EPA greenhouse gas national emission inventory (2012 GHG NEI, released in 2014); the average of 2.7 controllers per well observed in this work is higher than the 1.0 controllers per well reported in the 2012 GHG NEI.

  4. Motion and force controlled vibration testing. [of aerospace hardware

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.; Boatman, David J.; Kern, Dennis L.

    1990-01-01

    A technique for controlling both the input acceleration and force in vibration tests is proposed to alleviate the overtesting risks and the problems associated with response limiting in conventional vibration tests of aerospace hardware. Previous research on impedance and force controlled vibration tests is reviewed and a simple equation governing the dual control of acceleration and force is derived. A practical method for implementing the dual control technique in random vibration tests has been demonstrated in JPL's environmental test facility using a conventional digital controller operating in the extremal mode. The dual control technique provides appropriate real-time notching of the input acceleration and a corresponding reduction of the test item response at resonances. Issues concerning the need for force and acceleration phase information, the adequacy of specifying the blocked force, and the derivation of the total force for multipoint supports are discussed.

  5. Pneumatic vortical flow control at high angles of attack

    NASA Technical Reports Server (NTRS)

    Tavella, Domingo A.; Schiff, Lewis B.; Cummings, Russell M.

    1990-01-01

    The injection of thin, high-momentum jets of air into the fuselage forebody boundary layers of the F-18 aircraft is explored numerically as a means of controlling the onset of fuselage vortices and of generating yaw control forces. The study was carried out for an angle of attack of 30 deg with symmetrical and asymmetrical blowing configurations. One-sided blowing results in a strongly asymmetrical flow pattern in the fore portion of the fuselage, leading to a net lateral force.

  6. Development of Opto-Pneumatic On/Off Control Valve

    NASA Astrophysics Data System (ADS)

    Akagi, Tetsuya; Dohta, Shujiro; Matsushita, Hisashi

    An optical servo system is a new control system that can be used in hazardous environments. The purpose of our study is to develop such an optical control system. In a previous study, we had realized an optical control system that executed cart positioning using optical control signals instead of electric signals. We developed an optical servo valve in which the output pressure was proportional to input optical power. As a next step, we need to develop another type of optical valve in order to get higher pressure-gain. In this study, we propose and produce an optical on/off valve that consists of an optical on/off device and a fluid amplifier, and the structure, operating principle and fundamental characteristics of the valve are investigated. As the result, we obtain a higher output pressure of the tested valve compared with the previous one. And we propose the analytical model of the optical on/off device and identify the system parameters. We confirm their validity by comparing them with experimental results. And finally, we improve the dynamics of the device by using a feedback passage plate based on analytical results of the device.

  7. Computational optimization of a pneumatic forebody flow control concept

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Tavella, Domingo; Schiff, Lewis B.

    1991-01-01

    The effectiveness of a tangential slot blowing concept for generating lateral control forces on an aircraft forebody is analyzed using computational fluid dynamics. The flow about a fighter forebody is computed using a multiple-zone, thin-layer Navier-Stokes code. Tangential slot blowing is modeled by the use of an actuator plane. The effects of slot location and slot length on the efficiency of the system are analyzed. Results of the study indicate that placement of the slot near the nose of the aircraft greatly enhances the efficiency of the system, while the length and circumferential location of the slot are of secondary importance. Efficiency is defined by the amount of side force or yawing moment obtained per unit blowing coefficient. The effect of sideslip on the system is also analyzed. The system is able to generate incremental changes in forces and moments in flows with sideslip angles up to 10 deg comparable to those obtained at zero sideslip. These results are used to determine a baseline configuration for an experimental study of the tangential slot blowing concept.

  8. Dynamic Analysis of Sounding Rocket Pneumatic System Revision

    NASA Technical Reports Server (NTRS)

    Armen, Jerald

    2010-01-01

    The recent fusion of decades of advancements in mathematical models, numerical algorithms and curve fitting techniques marked the beginning of a new era in the science of simulation. It is becoming indispensable to the study of rockets and aerospace analysis. In pneumatic system, which is the main focus of this paper, particular emphasis will be placed on the efforts of compressible flow in Attitude Control System of sounding rocket.

  9. Lateral control at high angles of attack using pneumatic blowing through a chined forebody

    NASA Technical Reports Server (NTRS)

    Arena, A. S., Jr.; Nelson, R. C.; Schiff, L. B.

    1993-01-01

    Directional control through the use of pneumatic blowing was investigated on a generic subscale model with a chined forebody with blowing through a chine slot in a direction normal to the forebody surface. Comparisons are made with a vertical tail on and off, and with control through rudder deflection. Force and moment data were obtained for various blowing coefficients over a 0-75 deg alpha range, and flow visualization was also conducted in order to see qualitative effects on the flowfield. Blowing through a chined forebody generates yaw moments at large alpha where control surfaces lose their effectiveness; these moments are much larger than obtained by jet thrust alone, since the forebody flowfield is modified through the interaction of the jet with the chine vortices. Directional control increased with angle of attack for a given blowing coefficient until a maximum was reached. Further increases in angle of attack results in a rapid loss of effectiveness. For angles of attack above 60 deg, yaw moments are generated by simple jet thrust effect. The effectiveness of the pneumatic system depended on tail configuration.

  10. A novel BCI-controlled pneumatic glove system for home-based neurorehabilitation.

    PubMed

    Coffey, Aodhán L; Leamy, Darren J; Ward, Tomás E

    2014-01-01

    Commercially available devices for Brain-Computer Interface (BCI)-controlled robotic stroke rehabilitation are prohibitively expensive for many researchers who are interested in the topic and physicians who would utilize such a device. Additionally, they are cumbersome and require a technician to operate, increasing the inaccessibility of such devices for home-based robotic stroke rehabilitation therapy. Presented here is the design, implementation and test of an inexpensive, portable and adaptable BCI-controlled hand therapy device. The system utilizes a soft, flexible, pneumatic glove which can be used to deflect the subject's wrist and fingers. Operation is provided by a custom-designed pneumatic circuit. Air flow is controlled by an embedded system, which receives serial port instruction from a PC running real-time BCI software. System tests demonstrate that glove control can be successfully driven by a real-time BCI. A system such as the one described here may be used to explore closed loop neurofeedback rehabilitation in stroke relatively inexpensively and potentially in home environments.

  11. Electric power processing, distribution and control for advanced aerospace vehicles.

    NASA Technical Reports Server (NTRS)

    Krausz, A.; Felch, J. L.

    1972-01-01

    The results of a current study program to develop a rational basis for selection of power processing, distribution, and control configurations for future aerospace vehicles including the Space Station, Space Shuttle, and high-performance aircraft are presented. Within the constraints imposed by the characteristics of power generation subsystems and the load utilization equipment requirements, the power processing, distribution and control subsystem can be optimized by selection of the proper distribution voltage, frequency, and overload/fault protection method. It is shown that, for large space vehicles which rely on static energy conversion to provide electric power, high-voltage dc distribution (above 100 V dc) is preferable to conventional 28 V dc and 115 V ac distribution per MIL-STD-704A. High-voltage dc also has advantages over conventional constant frequency ac systems in many aircraft applications due to the elimination of speed control, wave shaping, and synchronization equipment.

  12. Open loop pneumatic control of a Lysholm engine or turbine exhaust pressure

    SciTech Connect

    Plonski, B.A.

    1981-07-17

    A Lysholm engine, or helical screw expander, is currently being evaluated at the University of California, Berkeley for staging with a conventional turbine in geothermal energy conversion. A pneumatic closed loop, proportional-integral control system was implemented to control the Lysholm engine's exhaust pressure for performance testing of the engine at constant inlet/outlet pressure ratios. The control system will also be used to control the exhaust pressure of the conventional turbine during future testing of the staged Lysholm-turbine system. Analytical modeling of the control system was performed and successful tuning was achieved by applying Ziegler-Nichol's tuning method. Stable control and quick response, of approximately 1 minute, was demonstrated for load and set point changes in desired exhaust pressures.

  13. Control of a pneumatic power active lower-limb orthosis with filter-based iterative learning control

    NASA Astrophysics Data System (ADS)

    Huang, Chia-En; Chen, Jian-Shiang

    2014-05-01

    A filter-based iterative learning control (FILC) scheme is developed in this paper, which consists in a proportional-derivative (PD) feedback controller and a feedforward filter. Moreover, based on two-dimensional system theory, the stability of the FILC system is proven. The design criteria for a wavelet transform filter (WTF) - chosen as the feedforward filter - and the PD feedback controller are also given. Finally, using a pneumatic power active lower-limb orthosis (PPALO) as the controlled plant, the wavelet-based iterative learning control (WILC) implementation and the orchestration of a trajectory tracking control simulation are given in detail and the overall tracking performance is validated.

  14. Investigation of the closed-loop control of a pneumatic conveying system using tomographic imaging

    NASA Astrophysics Data System (ADS)

    Deloughry, Richard; Pickup, Elaine

    2001-02-01

    The subject of pneumatic conveying of solids is a complex one. The flow regime present in a conveying system is dependent upon: the size and shape of the particles to be conveyed, the geometry and orientation of the conveying pipe, the relative densities of the solid and the conveying air. The variable parameters present are the velocity of the conveying air and the solids mass flow rate. The variation of these two factors dictates the presence of either dilute or dense phase flow. At Manchester Metropolitan University a pneumatic conveying system transporting polyethylene nibs, was used to investigate the implementation of a Proportional and Integral control system using a tomographic imaging system in the feedback loop. The aim of the investigative work was to achieve control of the air velocity and solids loading factor for the conveying system to maintain dilute phase flow at a prescribed level. The solids material conveyed was sensed using a PC based electrical tomographic imaging system and this was used to control the air velocity in the conveying system.

  15. Closed loop control of a pneumatic conveying system using tomographic imaging

    NASA Astrophysics Data System (ADS)

    Deloughry, Richard; Pickup, Elaine; Ponnapalli, Prasad

    2001-07-01

    The subject of pneumatic conveying of solids is a complex one. The flow regime present in a conveying system is dependent upon: the size and shape of the particles to be conveyed, the geometry and orientation of the conveying pipe, the relative densities of the solid and the conveying air. The variable parameters present are the velocity of the conveying air and the solids mass flow rate. The variation of these two factors dictates the presence of either dilute or dense phase flow. At Manchester Metropolitan University a pneumatic conveying system, transporting polyethylene nibs, was used to investigate the implementation of a proportional and integral control system using a tomographic imaging system in the feedback loop. The aim of the investigative work was to achieve control of the air velocity and solids loading factor for the conveying system to maintain dilute phase flow at a prescribed dune level. The solids material conveyed was sensed using a PC based electrical tomographic imaging system and this was used to control the air velocity in the conveying system.

  16. Grasping with a soft glove: intrinsic impedance control in pneumatic actuators.

    PubMed

    Paoletti, P; Jones, G W; Mahadevan, L

    2017-03-01

    The interaction of a robotic manipulator with unknown soft objects represents a significant challenge for traditional robotic platforms because of the difficulty in controlling the grasping force between a soft object and a stiff manipulator. Soft robotic actuators inspired by elephant trunks, octopus limbs and muscular hydrostats are suggestive of ways to overcome this fundamental difficulty. In particular, the large intrinsic compliance of soft manipulators such as 'pneu-nets'-pneumatically actuated elastomeric structures-makes them ideal for applications that require interactions with an uncertain mechanical and geometrical environment. Using a simple theoretical model, we show how the geometric and material nonlinearities inherent in the passive mechanical response of such devices can be used to grasp soft objects using force control, and stiff objects using position control, without any need for active sensing or feedback control. Our study is suggestive of a general principle for designing actuators with autonomous intrinsic impedance control.

  17. Pneumatic squirming robot based on flexible pneumatic actuator

    NASA Astrophysics Data System (ADS)

    Yang, Qinghua; Zhang, Libin; Bao, Guanjun; Ruan, Jian

    2005-12-01

    The design of a kind of pneumatic squirming robot is presented. It is based on the use of flexible pneumatic actuator. The flexible pneumatic actuator was made of caoutchouc. Its working principle is described. The structure, working principle, pneumatic and electrical control system of the pneumatic squirming robot are designed. All of the actuator's driving and squirming parts are composed of pneumatic elements. The vacuum osculums, which act as feet, are connected to the flexible pneumatic actuator. When the vacuum pumps operate, vacuum will be produced in the corresponding osculums, which can adsorb on the contacting surface and orient the robot. The actuator, operating under air pressure, drives the robot. By controlling the vacuum pumps and the actuator, straight and bending squirming of this robot can be obtained.

  18. Proceedings of the Fifth NASA/NSF/DOD Workshop on Aerospace Computational Control

    NASA Technical Reports Server (NTRS)

    Wette, M. (Editor); Man, G. K. (Editor)

    1993-01-01

    The Fifth Annual Workshop on Aerospace Computational Control was one in a series of workshops sponsored by NASA, NSF, and the DOD. The purpose of these workshops is to address computational issues in the analysis, design, and testing of flexible multibody control systems for aerospace applications. The intention in holding these workshops is to bring together users, researchers, and developers of computational tools in aerospace systems (spacecraft, space robotics, aerospace transportation vehicles, etc.) for the purpose of exchanging ideas on the state of the art in computational tools and techniques.

  19. Dynamic response characteristics of a circulation control rotor model pneumatic system

    NASA Technical Reports Server (NTRS)

    Watkins, C. B.; Reader, K. R.; Dutta, S. K.

    1985-01-01

    Numerical and experimental simulation of unsteady airflow through the control valve and slotted air duct of a circulation control rotor is described. The numerical analysis involves the solution of the quasi-one-dimensional compressible fluid-dynamic equations in the blade air duct together with the coupled isentropic flow equations for flow into the blade through the valve and out of the blade through the Coanda slot. Numerical solutions are compared with basic experimental results obtained for a mockup of a circulation control rotor and its pneumatic valving system. The pneumodynamic phenomena that were observed are discussed with particular emphasis on the characteristic system time lags associated with the response of the flow variables to transient and periodic control valve inputs.

  20. Pneumatic Flap Performance for a 2D Circulation Control Airfoil, Steady and Pulsed

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.

    2005-01-01

    Circulation Control technologies have been around for 65 years, and have been successfully demonstrated in laboratories and flight vehicles alike, yet there are few production aircraft flying today that implement these advances. Circulation Control techniques may have been overlooked due to perceived unfavorable trade offs of mass flow, pitching moment, cruise drag, noise, etc. Improvements in certain aspects of Circulation Control technology are the focus of this paper. This report will describe airfoil and blown high lift concepts that also address cruise drag reduction and reductions in mass flow through the use of pulsed pneumatic blowing on a Coanda surface. Pulsed concepts demonstrate significant reductions in mass flow requirements cor Circulation Control, as well as cruise drag concepts that equal or exceed conventional airfoil systems.

  1. Advances in Pneumatic-Controlled High-Lift Systems Through Pulsed Blowing

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Englar, Robet J.

    2003-01-01

    Circulation Control technologies have been around for 65 years, and have been successfully demonstrated in laboratories and flight vehicles alike. Yet there are few production aircraft flying today that implement these advances. Circulation Control techniques may have been overlooked due to perceived unfavorable trade offs of mass flow, pitching moment, cruise drag, noise, etc. Improvements in certain aspects of Circulation Control technology are the focus of this paper. This report will describe airfoil and blown high lift concepts that also address cruise drag reduction and reductions in mass flow through the use of pulsed pneumatic blowing on a Coanda surface. Pulsed concepts demonstrate significant reductions in mass flow requirements for Circulation Control, as well as cruise drag concepts that equal or exceed conventional airfoil systems.

  2. Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2004-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  3. Development of X-Y servo pneumatic-piezoelectric hybrid actuators for position control with high response, large stroke and nanometer accuracy.

    PubMed

    Chiang, Mao-Hsiung

    2010-01-01

    This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally.

  4. FAT-based adaptive control for pneumatic servo systems with mismatched uncertainties

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Chang; Huang, An-Chyau

    2008-08-01

    In this paper, a function approximation technique (FAT)-based adaptive controller is proposed for pneumatic servo systems with variable payload and uncertain disturbances. The system model is firstly described by a set of non-autonomous state equations with mismatched uncertainties. Since the uncertainties are time-varying and their variation bounds are not available, most traditional robust designs or adaptive strategies are not directly applicable. The FAT-based design is proposed here to estimate these uncertainties so that the closed-loop stability can be proved by using the Lyapunov-like theory. The problem in dealing with the mismatched uncertainties is circumvented by using the multiple-surface sliding control (MSSC) algorithm. Experimental results justify that the proposed scheme can give good performance regardless of various uncertainties.

  5. Genetic algorithm based active vibration control for a moving flexible smart beam driven by a pneumatic rod cylinder

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-cheng; Shi, Ming-li; Wang, Bin; Xie, Zhuo-wei

    2012-05-01

    A rod cylinder based pneumatic driving scheme is proposed to suppress the vibration of a flexible smart beam. Pulse code modulation (PCM) method is employed to control the motion of the cylinder's piston rod for simultaneous positioning and vibration suppression. Firstly, the system dynamics model is derived using Hamilton principle. Its standard state-space representation is obtained for characteristic analysis, controller design, and simulation. Secondly, a genetic algorithm (GA) is applied to optimize and tune the control gain parameters adaptively based on the specific performance index. Numerical simulations are performed on the pneumatic driving elastic beam system, using the established model and controller with tuned gains by GA optimization process. Finally, an experimental setup for the flexible beam driven by a pneumatic rod cylinder is constructed. Experiments for suppressing vibrations of the flexible beam are conducted. Theoretical analysis, numerical simulation and experimental results demonstrate that the proposed pneumatic drive scheme and the adopted control algorithms are feasible. The large amplitude vibration of the first bending mode can be suppressed effectively.

  6. Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, part 2

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr. (Compiler)

    1991-01-01

    A collection of papers presented at the Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems is given. The papers address modeling, systems identification, and control of flexible aircraft, spacecraft and robotic systems.

  7. Analysis of a pneumatic forebody flow control concept about a full aircraft geometry

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Rizk, Yehia M.; Murman, Scott M.; Lanser, Wendy R.; Meyn, Larry A.; Schiff, Lewis B.

    1992-01-01

    A full aircraft geometry is used to computationally analyze the effectiveness of a pneumatic forebody flow control concept. An overset grid technique is employed to model the aircraft and slot geometry. Steady-state solutions for both isolated forebody and full aircraft configurations are carried out using a thin-layer Navier-Stokes flow solver. A solution obtained using the full aircraft geometry and a flight sideslip condition investigates the effect of sideslip on the leading edge extention vortex burst point. A no-sideslip blowing solution using the isolated forebody at full-scale wind tunnel test conditions is compared with experimental data to determine the accuracy of the numerical method. A solution employing the full geometry and slot blowing at flight conditions is obtained.

  8. Tracking control of a leg rehabilitation machine driven by pneumatic artificial muscles using composite fuzzy theory.

    PubMed

    Chang, Ming-Kun

    2014-01-01

    It is difficult to achieve excellent tracking performance for a two-joint leg rehabilitation machine driven by pneumatic artificial muscles (PAMs) because the system has a coupling effect, highly nonlinear and time-varying behavior associated with gas compression, and the nonlinear elasticity of bladder containers. This paper therefore proposes a T-S fuzzy theory with supervisory control in order to overcome the above problems. The T-S fuzzy theory decomposes the model of a nonlinear system into a set of linear subsystems. In this manner, the controller in the T-S fuzzy model is able to use simple linear control techniques to provide a systematic framework for the design of a state feedback controller. Then the LMI Toolbox of MATLAB can be employed to solve linear matrix inequalities (LMIs) in order to determine controller gains based on the Lyapunov direct method. Moreover, the supervisory control can overcome the coupling effect for a leg rehabilitation machine. Experimental results show that the proposed controller can achieve excellent tracking performance, and guarantee robustness to system parameter uncertainties.

  9. Tracking Control of a Leg Rehabilitation Machine Driven by Pneumatic Artificial Muscles Using Composite Fuzzy Theory

    PubMed Central

    2014-01-01

    It is difficult to achieve excellent tracking performance for a two-joint leg rehabilitation machine driven by pneumatic artificial muscles (PAMs) because the system has a coupling effect, highly nonlinear and time-varying behavior associated with gas compression, and the nonlinear elasticity of bladder containers. This paper therefore proposes a T-S fuzzy theory with supervisory control in order to overcome the above problems. The T-S fuzzy theory decomposes the model of a nonlinear system into a set of linear subsystems. In this manner, the controller in the T-S fuzzy model is able to use simple linear control techniques to provide a systematic framework for the design of a state feedback controller. Then the LMI Toolbox of MATLAB can be employed to solve linear matrix inequalities (LMIs) in order to determine controller gains based on the Lyapunov direct method. Moreover, the supervisory control can overcome the coupling effect for a leg rehabilitation machine. Experimental results show that the proposed controller can achieve excellent tracking performance, and guarantee robustness to system parameter uncertainties. PMID:24778583

  10. Multi-application controls: Robust nonlinear multivariable aerospace controls applications

    NASA Technical Reports Server (NTRS)

    Enns, Dale F.; Bugajski, Daniel J.; Carter, John; Antoniewicz, Bob

    1994-01-01

    This viewgraph presentation describes the general methodology used to apply Honywell's Multi-Application Control (MACH) and the specific application to the F-18 High Angle-of-Attack Research Vehicle (HARV) including piloted simulation handling qualities evaluation. The general steps include insertion of modeling data for geometry and mass properties, aerodynamics, propulsion data and assumptions, requirements and specifications, e.g. definition of control variables, handling qualities, stability margins and statements for bandwidth, control power, priorities, position and rate limits. The specific steps include choice of independent variables for least squares fits to aerodynamic and propulsion data, modifications to the management of the controls with regard to integrator windup and actuation limiting and priorities, e.g. pitch priority over roll, and command limiting to prevent departures and/or undesirable inertial coupling or inability to recover to a stable trim condition. The HARV control problem is characterized by significant nonlinearities and multivariable interactions in the low speed, high angle-of-attack, high angular rate flight regime. Systematic approaches to the control of vehicle motions modeled with coupled nonlinear equations of motion have been developed. This paper will discuss the dynamic inversion approach which explicity accounts for nonlinearities in the control design. Multiple control effectors (including aerodynamic control surfaces and thrust vectoring control) and sensors are used to control the motions of the vehicles in several degrees-of-freedom. Several maneuvers will be used to illustrate performance of MACH in the high angle-of-attack flight regime. Analytical methods for assessing the robust performance of the multivariable control system in the presence of math modeling uncertainty, disturbances, and commands have reached a high level of maturity. The structured singular value (mu) frequency response methodology is presented

  11. Adaptive model-based assistive control for pneumatic direct driven soft rehabilitation robots.

    PubMed

    Wilkening, Andre; Ivlev, Oleg

    2013-06-01

    Assistive behavior and inherent compliance are assumed to be the essential properties for effective robot-assisted therapy in neurological as well as in orthopedic rehabilitation. This paper presents two adaptive model-based assistive controllers for pneumatic direct driven soft rehabilitation robots that are based on separated models of the soft-robot and the patient's extremity, in order to take into account the individual patient's behavior, effort and ability during control, what is assumed to be essential to relearn lost motor functions in neurological and facilitate muscle reconstruction in orthopedic rehabilitation. The high inherent compliance of soft-actuators allows for a general human-robot interaction and provides the base for effective and dependable assistive control. An inverse model of the soft-robot with estimated parameters is used to achieve robot transparency during treatment and inverse adaptive models of the individual patient's extremity allow the controllers to learn on-line the individual patient's behavior and effort and react in a way that assist the patient only as much as needed. The effectiveness of the controllers is evaluated with unimpaired subjects using a first prototype of a soft-robot for elbow training. Advantages and disadvantages of both controllers are analyzed and discussed.

  12. Observer-Based Magnetic Bearing Controller Developed for Aerospace Flywheels

    NASA Technical Reports Server (NTRS)

    Le, Dzu K.; Provenza, Andrew J.

    2002-01-01

    A prototype of a versatile, observer-based magnetic bearing controller for aerospace flywheels was successfully developed and demonstrated on a magnetic bearing test rig (see the photograph) and an actual flywheel module. The objective of this development included a fast, yet low risk, control development process, and a robust, high-performance controller for a large variety of flywheels. This required a good system model, an efficient development procedure, and a model-based controller that addressed the key problems associated with flywheel and bearing imbalance, sensor error, and vibration. The model used in this control development and tuning procedure included the flexible rotor dynamics and motor-induced vibrations. Such a model was essential for low-risk scheduling of speed-dependent control parameters and for reliable evaluation of novel control strategies. The successfully tested control prototype utilized an extended Kalman filter to estimate the true rotor principal-axis motion from the raw sensor position feedback. For control refinement, the extended Kalman filter also estimated and eliminated the combined effects of mass-imbalance and sensor runouts from the input data. A key advantage of the design based on the extended Kalman filter is its ability to accurately estimate both the rotor's principal-axis position and gyroscopic rates with the least amount of phase lag. This is important for control parameter scheduling to dampen the gyroscopic motions. Because of large uncertainties in the magnetic bearing and imbalance characteristics, this state-estimation scheme alone is insufficient for containing the rotor motion within the desired 1-mil excursion radius. A nonlinear gain adjustment based on an estimation of the principal-axis orbit size was needed to provide a coarse (nonoptimal), but robust, control of the orbit growth. Control current minimization was achieved with a (steepest gradient) search of synchronous errors in the principal

  13. Tracking Control of a 2-DOF Arm Actuated by Pneumatic Muscle Actuators Using Adaptive Fuzzy Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Chang, Ming-Kun; Wu, Jui-Chi

    Pneumatic muscle actuators (PMAs) have the highest power/weight ratio and power/volume ratio of any actuator. Therefore, they can be used not only in the rehabilitation engineering, but also as an actuator in robots, including industrial robots and therapy robots. It is difficult to achieve excellent tracking performance using classical control methods because the compressibility of gas and the nonlinear elasticity of bladder container causes parameter variations. An adaptive fuzzy sliding mode control is developed in this study. The fuzzy sliding surface can be used to reduce fuzzy rule numbers, and the adaptive control law is used to modify fuzzy rules on-line. A model matching technique is then adopted to adjust scaling factors. The experimental results show that this control strategy can attain excellent tracking performance.

  14. Application of pneumatic lift and control surface technology to advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1996-01-01

    The application of pneumatic (blown) aerodynamic technology to both the lifting and the control surfaces of advanced transport aircraft can provide revolutionary changes in the performance and operation of these vehicles, ranging in speed regime from Advanced Subsonic Transports to the High Speed Civil Transport, and beyond. This technology, much of it based on the Circulation Control Wing blown concepts, can provide aerodynamic force augmentations of 80 to 100 (i.e., return of 80-100 pounds of force per pound of input momentum from the blowing jet). This can be achieved without use of external mechanical surfaces. Clever application of this technology can provide no-moving-part lifting surfaces (wings/tails) integrated into the control system to greatly simplify aircraft designs while improving their aerodynamic performance. Lift/drag ratio may be pneumatically tailored to fit the current phase of the flight, and takeoff/landing performance can be greatly improved by reducing ground roll distances and liftoff/touchdown speeds. Alternatively, great increases in liftoff weights and payloads are possible, as are great reductions in wing and tail planform size, resulting in optimized cruise wing designs. Furthermore, lift generation independent of angle of attack provides much promise for increased safety of flight in the severe updrafts/downdrafts of microbursts and windshears, which is further augmented by the ability to sustain flight at greatly reduced airspeeds. Load-tailored blown wings can also reduce tip vorticity during highlift operations and the resulting vortex wake hazards near terminal areas. Reduced noise may also be possible as these jets can be made to operate at low pressures. The planned presentation will support the above statements through discussions of recent experimental and numerical (CFD) research and development of these advanced blown aerodynamic surfaces, portions of which have been conducted for NASA. Also to be presented will be

  15. 49 CFR 236.590 - Pneumatic apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Pneumatic apparatus. 236.590 Section 236.590..., Train Control and Cab Signal Systems Inspection and Tests; Locomotive § 236.590 Pneumatic apparatus. Automatic train stop, train control, or cab signal pneumatic apparatus shall be inspected, cleaned, and...

  16. 49 CFR 236.590 - Pneumatic apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Pneumatic apparatus. 236.590 Section 236.590..., Train Control and Cab Signal Systems Inspection and Tests; Locomotive § 236.590 Pneumatic apparatus. Automatic train stop, train control, or cab signal pneumatic apparatus shall be inspected, cleaned, and...

  17. Craniocervical Pneumatization

    PubMed Central

    Quigley, Alan James; Shannon, Helen

    2013-01-01

    Craniocervical bony pneumatization is a rare finding, with limited numbers of cases reported in the literature. It is thought to be linked to Eustachian tube dysfunction and a ball valve mechanism, and has a link with recurrent Valsalva maneuvers. We report a case of pneumatization of the occiput, atlas (C1) and axis (C2) in a patient with extensive ENT (Ear, Nose and Throat) surgical history who presented following a fall. Plain film, CT and MRI images are presented. PMID:24421950

  18. Three Dimensional Solution of Pneumatic Active Control of Forebody Vortex Asymmetry

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; SharafEl-Din, Hazem H.; Liu, C. H.

    1995-01-01

    Pneumatic active control of asymmetric vortical flows around a slender pointed forebody is investigated using the three dimensional solution for the compressible thin-layer Navier-Stokes equation. The computational applications cover the normal and tangential injection control of asymmetric flows around a 5 degree semi-apex angle cone at a 40 degree angle of attack, 1.4 freestream Mach number and 6 x 10(exp 6) freestream Reynolds number (based on the cone length). The effective tangential angle range of 67.5 approaches minus 67.5 degrees is used for both normal and tangential ports of injection. The effective axial length of injection is varied from 0.03 to 0.05. The computational solver uses the implicit, upwind, flux difference splitting finite volume scheme, and the grid consists of 161 x 55 x 65 points in the wrap around, normal and axial directions, respectively. The results show that tangential injection is more effective than normal injection.

  19. Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications.

    PubMed

    Clime, Liviu; Brassard, Daniel; Geissler, Matthias; Veres, Teodor

    2015-06-07

    This paper reports a novel method of controlling liquid motion on a centrifugal microfluidic platform based on the integration of a regulated pressure pump and a programmable electromechanical valving system. We demonstrate accurate control over the displacement of liquids within the system by pressurizing simultaneously multiple ports of the microfluidic device while the platform is rotating at high speed. Compared to classical centrifugal microfluidic platforms where liquids are solely driven by centrifugal and capillary forces, the method presented herein adds a new degree of freedom for fluidic manipulation, which represents a paradigm change in centrifugal microfluidics. We first demonstrate how various core microfluidic functions such as valving, switching, and reverse pumping (i.e., against the centrifugal field) can be easily achieved by programming the pressures applied at dedicated access ports of the microfluidic device. We then show, for the first time, that the combination of centrifugal force and active pneumatic pumping offers the possibility of mixing fluids rapidly (~0.1 s) and efficiently based on the creation of air bubbles at the bottom of a microfluidic reservoir. Finally, the suitability of the developed platform for performing complex bioanalytical assays in an automated fashion is demonstrated in a DNA harvesting experiment where recovery rates of about 70% were systematically achieved. The proposed concept offers the interesting prospect to decouple basic microfluidic functions from specific material properties, channel dimensions and fabrication tolerances, surface treatments, or on-chip active components, thus promoting integration of complex assays on simple and low-cost microfluidic cartridges.

  20. Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles.

    PubMed

    Lenz, Alexander; Anderson, Sean R; Pipe, A G; Melhuish, Chris; Dean, Paul; Porrill, John

    2009-12-01

    In this paper, a model of cerebellar function is implemented and evaluated in the control of a robot eye actuated by pneumatic artificial muscles. The investigated control problem is stabilization of the visual image in response to disturbances. This is analogous to the vestibuloocular reflex (VOR) in humans. The cerebellar model is structurally based on the adaptive filter, and the learning rule is computationally analogous to least-mean squares, where parameter adaptation at the parallel fiber/Purkinje cell synapse is driven by the correlation of the sensory error signal (carried by the climbing fiber) and the motor command signal. Convergence of the algorithm is first analyzed in simulation on a model of the robot and then tested online in both one and two degrees of freedom. The results show that this model of neural function successfully works on a real-world problem, providing empirical evidence for validating: 1) the generic cerebellar learning algorithm; 2) the function of the cerebellum in the VOR; and 3) the signal transmission between functional neural components of the VOR.

  1. Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots.

    PubMed

    Umedachi, T; Vikas, V; Trimmer, B A

    2016-03-10

    Robots that can easily interact with humans and move through natural environments are becoming increasingly essential as assistive devices in the home, office and hospital. These machines need to be safe, effective, and easy to control. One strategy towards accomplishing these goals is to build the robots using soft and flexible materials to make them much more approachable and less likely to damage their environment. A major challenge is that comparatively little is known about how best to design, fabricate and control deformable machines. Here we describe the design, fabrication and control of a novel soft robotic platform (Softworms) as a modular device for research, education and public outreach. These robots are inspired by recent neuromechanical studies of crawling and climbing by larval moths and butterflies (Lepidoptera, caterpillars). Unlike most soft robots currently under development, the Softworms do not rely on pneumatic or fluidic actuators but are electrically powered and actuated using either shape-memory alloy microcoils or motor tendons, and they can be modified to accept other muscle-like actuators such as electroactive polymers. The technology is extremely versatile, and different designs can be quickly and cheaply fabricated by casting elastomeric polymers or by direct 3D printing. Softworms can crawl, inch or roll, and they are steerable and even climb steep inclines. Softworms can be made in any shape but here we describe modular and monolithic designs requiring little assembly. These modules can be combined to make multi-limbed devices. We also describe two approaches for controlling such highly deformable structures using either model-free state transition-reward matrices or distributed, mechanically coupled oscillators. In addition to their value as a research platform, these robots can be developed for use in environmental, medical and space applications where cheap, lightweight and shape-changing deformable robots will provide new

  2. Pneumatic soil removal tool

    DOEpatents

    Neuhaus, John E.

    1992-01-01

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

  3. Pneumatic soil removal tool

    DOEpatents

    Neuhaus, J.E.

    1992-10-13

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

  4. Wind Tunnel Results of Pneumatic Forebody Vortex Control Using Rectangular Slots a Chined Forebody

    NASA Technical Reports Server (NTRS)

    Alexander, Michael; Meyn, Larry A.

    1994-01-01

    A subsonic wind tunnel investigation of pneumatic vortex flow control on a chined forebody using slots was accomplished at a dynamic pressure of 50 psf resulting in a R(n)/ft of 1.3 x 10(exp 6). Data were acquired from angles of attack ranging from -4deg to +34deg at side slips of +0.4deg and +10.4deg. The test article used in this study was the 10% scale Fighter Lift and Control (FLAC) advanced diamond winged, vee-tailed fighter configuration. Three different slot blowing concepts were evaluated; outward, downward, and tangential with ail blowing accomplished asymmetrically. The results of three different mass flows (0.067, 0.13, and 0.26 lbm/s; C(sub mu)'s of less than or equal to 0.006, 0.011. and 0.022 respectively) were analyzed and reported. Test data are presented on the effects of mass flows, slot lengths and positions and blowing concepts on yawing moment and side force generation. Results from this study indicate that the outward and downward blowing slots developed yawing moment and side force increments in the direction opposite of the blowing side while the tangential blowing slots generated yawing moment and side force increments in the direction towards the blowing side. The outward and downward blowing slots typically produced positive pitching moment increments while the tangential blowing slots typically generated negative pitching moment increments. The slot blowing nearest the forebody apex was most effective at generating the largest increments and as the slot was moved aft or increased in length, its effectiveness at generating forces and moments diminished.

  5. Haptic control of a pneumatic muscle actuator to provide resistance for simulated isokinetic exercise; part II: control development and testing.

    PubMed

    Hall, Kara L; Phillips, Chandler A; Reynolds, David B; Mohler, Stanley R; Rogers, Dana B; Neidhard-Doll, Amy T

    2015-01-01

    Pneumatic muscle actuators (PMAs) have a high power to weight ratio and possess unique characteristics which make them ideal actuators for applications involving human interaction. PMAs are difficult to control due to nonlinear dynamics, presenting challenges in system implementation. Despite these challenges, PMAs have great potential as a source of resistance for strength training and rehabilitation. The objective of this work was to control a PMA for use in isokinetic exercise, potentially benefiting anyone in need of optimal strength training through a joint's range of motion. The controller, based on an inverse three-element phenomenological model and adaptive nonlinear control, allows the system to operate as a type of haptic device. A human quadriceps dynamic simulator was developed (as described in Part I of this work) so that control effectiveness and accommodation could be tested prior to human implementation. Tracking error results indicate that the control system is effective at producing PMA displacement and resistance necessary for a scaled, simulated neuromuscular actuator to maintain low-velocity isokinetic movement during simulated concentric and eccentric knee extension.

  6. Control of Speed and Power in a Humanoid Robot Arm Using Pneumatic Actuators for Human-Robot Coexisting Environment

    NASA Astrophysics Data System (ADS)

    Hoshino, Kiyoshi

    A new type of humanoid robot arm which can coexist and be interactive with human beings are looked for. For the purpose of implementation of human smooth and fast movement to a pneumatic robot, the author used a humanoid robot arm with pneumatic agonist-antagonist actuators as endoskeletons which has control mechanism in the stiffness of each joint, and the controllability was experimentally discussed. Using Kitamori's method to experimentally decide the control gains and using I-PD controller, three joints of the humanoid robot arm were experimentally controlled. The damping control algorithm was also adopted to the wrist joint, to modify the speed in accordance with the power. The results showed that the controllability to step-wise input was less than one degree in error to follow the target angles, and the time constant was less than one second. The simultaneous input of command to three joints was brought about the overshoot of about ten percent increase in error. The humanoid robot arm can generate the calligraphic motions, moving quickly at some times but slowly at other times, or particularly softly on some occasions but stiffly on other occasions at high accuracy.

  7. Mishap risk control for advanced aerospace/composite materials

    NASA Technical Reports Server (NTRS)

    Olson, John M.

    1994-01-01

    Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.

  8. Feasibility and testing of lighweight, energy efficient, additive manufactured pneumatic control valve

    SciTech Connect

    Love, Lonnie J.; Mell, Ellen

    2015-02-01

    AeroValve s innovative pneumatic valve technology recycles compressed air through the valve body with each cycle of the valve, and was reported to reduce compressed air requirements by an average of 25% 30%.This technology collaboration project between ORNL and Aerovalve confirms the energy efficiency of valve performance. Measuring air consumption per work completed, the AeroValve was as much as 85% better than the commercial Festo valve.

  9. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III.

    ERIC Educational Resources Information Center

    Savler, D. S.; Mackin, T. E.

    This book, one in the series on Aerospace Education III, includes a discussion of the essentials of propulsion, control, and guidance and the conditions of space travel. Chapter 1 provides a brief account of basic laws of celestial mechanics. Chapters 2, 3, and 4 are devoted to the chemical principles of propulsion. Included are the basics of…

  10. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III. Instructional Unit II.

    ERIC Educational Resources Information Center

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This curriculum guide is prepared for the Aerospace Education III series publication entitled "Space Technology: Propulsion, Control and Guidance of Space Vehicles." It provides guidelines for each chapter. The guide includes objectives, behavioral objectives, suggested outline, orientation, suggested key points, suggestions for…

  11. Active Nonlinear Feedback Control for Aerospace Systems. Processor

    DTIC Science & Technology

    1990-12-01

    relating to the role of nonlinearities in feedback control. These area include Lyapunov function theory, chaotic controllers, statistical energy analysis , phase robustness, and optimal nonlinear control theory.

  12. Generalized Predictive and Neural Generalized Predictive Control of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.

    2000-01-01

    The research work presented in this thesis addresses the problem of robust control of uncertain linear and nonlinear systems using Neural network-based Generalized Predictive Control (NGPC) methodology. A brief overview of predictive control and its comparison with Linear Quadratic (LQ) control is given to emphasize advantages and drawbacks of predictive control methods. It is shown that the Generalized Predictive Control (GPC) methodology overcomes the drawbacks associated with traditional LQ control as well as conventional predictive control methods. It is shown that in spite of the model-based nature of GPC it has good robustness properties being special case of receding horizon control. The conditions for choosing tuning parameters for GPC to ensure closed-loop stability are derived. A neural network-based GPC architecture is proposed for the control of linear and nonlinear uncertain systems. A methodology to account for parametric uncertainty in the system is proposed using on-line training capability of multi-layer neural network. Several simulation examples and results from real-time experiments are given to demonstrate the effectiveness of the proposed methodology.

  13. Theory and Applications of Optimal Control in Aerospace Systems,

    DTIC Science & Technology

    1981-07-01

    CONTROL OF LINEAR QUADRATIC SYSTEM. Consider, as a particular case of the general problem defined in section 2, a lineal , system with quadratic cost... LARSON Proceeding of the IFAC Stochastic Control Symposium, Budapest, 1974. [36] G. CAMPION "Optimal control of non-linear stochastic systems by...dynamics, an r-component algebraic (or transcendental) equation representing the output, and an r-component equation representing the observation: dx (t

  14. The National Aero-Space Plane, the guidance and control engineer's dream or nightmare?

    NASA Astrophysics Data System (ADS)

    Sanchez, Felix

    Major technical challenges associated with the National Aerospace Plane (NASP) Program are discussed, including the ones viewed from a controls perspective. Design and engineering challenges encountered in the propulsion system, the structural material selection, and the computational fluid dynamic mechanisms to predict Mach 8+ regimes, are briefly discussed. Emphasis is put on those significant challenges in the guidance and control fields relating to vehicle management systems, integrated propulsion/flight control, optimal vehicle trajectory control, and challenges in the associated fields on instrumentation and information systems. An insight into the complexity of the problem is provided, and the importance of guidance and control in future NASP achievements is highlighted.

  15. Advanced instrumentation for next-generation aerospace propulsion control systems

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.; Cross, G. S.; Lorenzo, Carl F.

    1993-01-01

    New control concepts for the next generation of advanced air-breathing and rocket engines and hypersonic combined-cycle propulsion systems are analyzed. The analysis provides a database on the instrumentation technologies for advanced control systems and cross matches the available technologies for each type of engine to the control needs and applications of the other two types of engines. Measurement technologies that are considered to be ready for implementation include optical surface temperature sensors, an isotope wear detector, a brushless torquemeter, a fiberoptic deflectometer, an optical absorption leak detector, the nonintrusive speed sensor, and an ultrasonic triducer. It is concluded that all 30 advanced instrumentation technologies considered can be recommended for further development to meet need of the next generation of jet-, rocket-, and hypersonic-engine control systems.

  16. Contamination control engineering design guidelines for the aerospace community

    NASA Technical Reports Server (NTRS)

    Tribble, A. C. (Principal Investigator); Boyadjian, B.; Davis, J.; Haffner, J.; McCullough, E.

    1996-01-01

    Thermal control surfaces, solar arrays, and optical devices may be adversely affected by a small quantity of molecular and/or particulate contamination. What is rarely discussed is how one: (1) quantifies the level of contamination that must be maintained in order for the system to function properly, and (2) enforces contamination control to ensure compliance with requirements. This document is designed to address these specific issues and is intended to serve as a handbook on contamination control for the reader, illustrating process and methodology while providing direction to more detailed references when needed. The effects of molecular contamination on reflecting and transmitting surfaces are examined and quantified in accordance with MIL STD 1246C. The generation, transportation, and deposition of molecular contamination is reviewed and specific examples are worked to illustrate the process a design engineer can use to estimate end of life cleanliness levels required by solar arrays, thermal control surfaces, and optical surfaces. A similar process is used to describe the effect of particulate contamination as related to percent area coverage (PAC) and bi-directional reflectance distribution function (BRDF). Relationships between PAC and surface cleanliness, which include the effects of submicron sized particles, are developed and BRDF is related to specific sensor design parameters such as Point Source Transmittance (PST). The pros and cons of various methods of preventing, monitoring, and cleaning surfaces are examined and discussed.

  17. Accelerometer-based estimation and modal velocity feedback vibration control of a stress-ribbon bridge with pneumatic muscles

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohan; Schauer, Thomas; Goldack, Arndt; Bleicher, Achim; Schlaich, Mike

    2016-09-01

    Lightweight footbridges are very elegant but also prone to vibration. By employing active vibration control, smart footbridges could accomplish not only the architectural concept but also the required serviceability and comfort. Inertial sensors such as accelerometers allow the estimation of nodal velocities and displacements. A Kalman filter together with a band-limited multiple Fourier linear combiner (BMFLC) is applied to enable a drift-free estimation of these signals for the quasi-periodic motion under pedestrian excitation without extra information from other kinds of auxiliary sensors. The modal velocities of the structure are determined by using a second Kalman filter with the known applied actuator forces as inputs and the estimated nodal displacement and velocities as measurements. The obtained multi-modal velocities are then used for feedback control. An ultra-lightweight stress-ribbon footbridge built in the Peter-Behrens- Halle at the Technische Universitat Berlin served as the research object. Using two inertial sensors in optimal points we can estimate the dominant modal characteristics of this bridge. Real-time implementation and evaluation results of the proposed estimator will be presented in comparison to signals derived from classical displacement encoders. The real-time estimated modal velocities were applied in a multi-modal velocity feedback vibration control scheme with lightweight pneumatic muscle actuators. Experimental results demonstrate the feasibility of using inertial sensors for active vibration control of lightweight footbridges.

  18. Development of body weight support gait training system using pneumatic Mckibben actuators -control of lower extremity orthosis.

    PubMed

    Mat Dzahir, M A; Nobutomo, T; Yamamoto, S I

    2013-01-01

    Recently, robot assisted therapy devices are increasingly used for spinal cord injury (SCI) rehabilitation in assisting handicapped patients to regain their impaired movements. Assistive robotic systems may not be able to cure or fully compensate impairments, but it should be able to assist certain impaired functions and ease movements. In this study, the control system of lower extremity orthosis for the body weight support gait training system which implements pneumatic artificial muscle (PAM) is proposed. The hip and knee joint angles of the gait orthosis system are controlled based on the PAM coordinates information from the simulation. This information provides the contraction data for the mono- and bi-articular PAMs that are arranged as posterior and anterior actuators to simulate the human walking motion. The proposed control system estimates the actuators' contraction as a function of hip and knee joint angles. Based on the contraction model obtained, input pressures for each actuators are measured. The control system are performed at different gait cycles and two PMA settings for the mono- and bi-articular actuators are evaluated in this research. The results showed that the system was able to achieve the maximum muscle moment at the joints, and able to perform the heel contact movement. This explained that the antagonistic mono- and bi-articular actuators worked effectively.

  19. Additional Development and Systems Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Willie, F. Scott; Lee, Warren J.

    1999-01-01

    In the Task I portion of this NASA research grant, configuration development and experimental investigations have been conducted on a series of pneumatic high-lift and control surface devices applied to a generic High Speed Civil Transport (HSCT) model configuration to determine their potential for improved aerodynamic performance, plus stability and control of higher performance aircraft. These investigations were intended to optimize pneumatic lift and drag performance; provide adequate control and longitudinal stability; reduce separation flowfields at high angle of attack; increase takeoff/climbout lift-to-drag ratios; and reduce system complexity and weight. Experimental aerodynamic evaluations were performed on a semi-span HSCT generic model with improved fuselage fineness ratio and with interchangeable plain flaps, blown flaps, pneumatic Circulation Control Wing (CCW) high-lift configurations, plain and blown canards, a novel Circulation Control (CC) cylinder blown canard, and a clean cruise wing for reference. Conventional tail power was also investigated for longitudinal trim capability. Also evaluated was unsteady pulsed blowing of the wing high-lift system to determine if reduced pulsed mass flow rates and blowing requirements could be made to yield the same lift as that resulting from steady-state blowing. Depending on the pulsing frequency applied, reduced mass flow rates were indeed found able to provide lift augmentation at lesser blowing values than for the steady conditions. Significant improvements in the aerodynamic characteristics leading to improved performance and stability/control were identified, and the various components were compared to evaluate the pneumatic potential of each. Aerodynamic results were provided to the Georgia Tech Aerospace System Design Lab. to conduct the companion system analyses and feasibility study (Task 2) of theses concepts applied to an operational advanced HSCT aircraft. Results and conclusions from these

  20. Experiments in advanced control concepts for space robotics - An overview of the Stanford Aerospace Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Hollars, M. G.; Cannon, R. H., Jr.; Alexander, H. L.; Morse, D. F.

    1987-01-01

    The Stanford University Aerospace Robotics Laboratory is actively developing and experimentally testing advanced robot control strategies for space robotic applications. Early experiments focused on control of very lightweight one-link manipulators and other flexible structures. The results are being extended to position and force control of mini-manipulators attached to flexible manipulators and multilink manipulators with flexible drive trains. Experimental results show that end-point sensing and careful dynamic modeling or adaptive control are key to the success of these control strategies. Free-flying space robot simulators that operate on an air cushion table have been built to test control strategies in which the dynamics of the base of the robot and the payload are important.

  1. Integrated software health management for aerospace guidance, navigation, and control systems: A probabilistic reasoning approach

    NASA Astrophysics Data System (ADS)

    Mbaya, Timmy

    Embedded Aerospace Systems have to perform safety and mission critical operations in a real-time environment where timing and functional correctness are extremely important. Guidance, Navigation, and Control (GN&C) systems substantially rely on complex software interfacing with hardware in real-time; any faults in software or hardware, or their interaction could result in fatal consequences. Integrated Software Health Management (ISWHM) provides an approach for detection and diagnosis of software failures while the software is in operation. The ISWHM approach is based on probabilistic modeling of software and hardware sensors using a Bayesian network. To meet memory and timing constraints of real-time embedded execution, the Bayesian network is compiled into an Arithmetic Circuit, which is used for on-line monitoring. This type of system monitoring, using an ISWHM, provides automated reasoning capabilities that compute diagnoses in a timely manner when failures occur. This reasoning capability enables time-critical mitigating decisions and relieves the human agent from the time-consuming and arduous task of foraging through a multitude of isolated---and often contradictory---diagnosis data. For the purpose of demonstrating the relevance of ISWHM, modeling and reasoning is performed on a simple simulated aerospace system running on a real-time operating system emulator, the OSEK/Trampoline platform. Models for a small satellite and an F-16 fighter jet GN&C (Guidance, Navigation, and Control) system have been implemented. Analysis of the ISWHM is then performed by injecting faults and analyzing the ISWHM's diagnoses.

  2. On the efficiency of active flow control with pneumatic jets at Mach numbers between 0.3 and 0.7

    NASA Astrophysics Data System (ADS)

    Pickel, C.; Sonnemann, D.; Ehlert, M.; Kähler, C. J.

    2014-04-01

    The project generally investigates the effect of pneumatic vortex generators on flows within a Mach number range of 0.3-0.7. The efficiency of pneumatic jet actuators to control flow separation was investigated since years. It has been shown that at low Mach numbers the separation of boundary layers can be delayed and avoided, if the velocity ratio between the actuator jet and the free-stream is sufficiently high and the orientation of the jet axis is properly chosen. However, with increasing free-stream velocity, the ratio decreases as w jet must stay below the speed of sound to avoid significant losses due to shock-waves. Thus, the effectivity of slotted pneumatic jet actuators becomes questionable. The scope of this investigation is to identify the potential of this active flow control method at technical relevant Mach numbers. The blowing height is shown as a function of varying Mach number M ∞, velocity ratio w jet/ u ∞ and Reynolds number Re set by the total pressure of the test facility p t.

  3. Effect of sequential pneumatic compression therapy on venous blood velocity, refilling time, pain and quality of life in women with varicose veins: a randomized control study

    PubMed Central

    Yamany, Abeer; Hamdy, Bassant

    2016-01-01

    [Purpose] The aim of this study was to investigate the effects of sequential pneumatic compression therapy on venous blood flow, refilling time, pain level, and quality of life in women with varicose veins. [Subjects and Methods] Twenty-eight females with varicose veins were selected and randomly allocated to a control group, and experimental group. Maximum and mean venous blood velocities, the refilling time, pain by visual analog scale and quality of life by Aberdeen Varicose Veins Questionnaire were measured in all patients before and after six weeks of treatment. Both groups received lower extremity exercises; in addition, patients in the experimental group received sequential pneumatic compression therapy for 30 minutes daily, five days a week for six weeks. [Results] All measured parameters improved significantly in both groups, comparison of post treatment measurements between groups showed that the maximum and mean blood flow velocity, the pain level, and quality of life were significantly higher in the experimental group compared with the control group. On the other hand there was no significant difference between groups for refilling time. [Conclusion] Sequential pneumatic compression therapy with the applied parameters was an effective modality for increasing venous blood flow, reducing pain, and improving quality of women life with varicose veins. PMID:27512247

  4. Aerospace Community. Aerospace Education I.

    ERIC Educational Resources Information Center

    Mickey, V. V.

    This book, one in the series on Aerospace Education I, emphasizes the two sides of aerospace--military aerospace and civilian aerospace. Chapter 1 includes a brief discussion on the organization of Air Force bases and missile sites in relation to their missions. Chapter 2 examines the community services provided by Air Force bases. The topics…

  5. Linear-parameter-varying gain-scheduled control of aerospace systems

    NASA Astrophysics Data System (ADS)

    Barker, Jeffrey Michael

    The dynamics of many aerospace systems vary significantly as a function of flight condition. Robust control provides methods of guaranteeing performance and stability goals across flight conditions. In mu-syntthesis, changes to the dynamical system are primarily treated as uncertainty. This method has been successfully applied to many control problems, and here is applied to flutter control. More recently, two techniques for generating robust gain-scheduled controller have been developed. Linear fractional transformation (LFT) gain-scheduled control is an extension of mu-synthesis in which the plant and controller are explicit functions of parameters measurable in real-time. This LFT gain-scheduled control technique is applied to the Benchmark Active Control Technology (BACT) wing, and compared with mu-synthesis control. Linear parameter-varying (LPV) gain-scheduled control is an extension of Hinfinity control to parameter varying systems. LPV gain-scheduled control directly incorporates bounds on the rate of change of the scheduling parameters, and often reduces conservatism inherent in LFT gain-scheduled control. Gain-scheduled LPV control of the BACT wing compares very favorably with the LFT controller. Gain-scheduled LPV controllers are generated for the lateral-directional and longitudinal axes of the Innovative Control Effectors (ICE) aircraft and implemented in nonlinear simulations and real-time piloted nonlinear simulations. Cooper-Harper and pilot-induced oscillation ratings were obtained for an initial design, a reference aircraft and a redesign. Piloted simulation results for the initial LPV gain-scheduled control of the ICE aircraft are compared with results for a conventional fighter aircraft in discrete pitch and roll angle tracking tasks. The results for the redesigned controller are significantly better than both the previous LPV controller and the conventional aircraft.

  6. Suppression of pressure oscillations in an open cavity by passive pneumatic control

    NASA Technical Reports Server (NTRS)

    Chokani, N.; Kim, I.

    1991-01-01

    A computational investigation has been conducted to determine the effectiveness of a passive control technique in suppressing the oscillations in an open cavity exposed to a supersonic flow. Time-accurate solutions of the unsteady, Reynolds-averaged, Navier-Stokes equations were obtained with an explicit predictor-corrector algorithm; the passive control was implemented through the use of a simple linear pressure-velocity law along the porous cavity floor. The computational code was validated by comparisons with experimental data for the cavity flow without control. The computational results with control demonstrate that the oscillations are suppressed; the fluid dynamic mechanism of the control is seen to be a stabilization of the free-shear layer. Spectral analysis of the unsteady data shows that the resonant frequencies are essentially unchanged by the control. Beneficial reductions in the cavity resonant drag are also observed.

  7. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    2005-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the NASA (National Aeronautics and Space Administration) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  8. The Petrocarb pneumatic feeding system: A proven method for feeding particulate solids at controlled rates. [for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Reintjes, H.

    1977-01-01

    An outline of the principal features of the Petrocarb Pneumatic Feeding System is given. Early development and various commercial applications are included. It is concluded that the Petrocarb Injection System is capable of feeding dry solids into most of the processes being developed for utilizing coal.

  9. Design, fabrication and test of a pneumatically controlled, renewable, microfluidic bead trapping device for sequential injection analysis applications

    SciTech Connect

    Shao, Guocheng; Lu, Donglai; Fu, Zhifeng; Du, Dan; Ozanich, Richard M.; Wang, Wanjun; Lin, Yuehe

    2016-01-01

    This paper describes the design, fabrication, and testing of a pneumatically controlled,renewable, microfluidic device for conducting bead-based assays in an automated sequential injection analysis system. The device used a “brick wall”-like pillar array (pillar size: 20 μm length X 50 μm width X 45 μm height) with 5 μm gaps between the pillars serving as the micro filter. The flow channel where bead trapping occurred is 500 μm wide X 75 μm deep. An elastomeric membrane and an air chamber were located underneath the flow channel. By applying pressure to the air chamber, the membrane is deformed and pushed upward against the filter structure. This effectively traps beads larger than 5 μm and creates a “bed” or micro column of beads that can be perfused and washed with liquid samples and reagents. Upon completion of the assay process, the pressure is released and the beads are flushed out from underneath the filter structure to renew the device. Mouse IgG was used as a model analyte to test the feasibility of using the proposed device for immunoassay applications. Resulting microbeads from an on-chip fluorescent immunoassay were individually examined using flow cytometry. The results show that the fluorescence signal intensity distribution is fairly narrow indicating high chemical reaction uniformity among the beads population. Electrochemical onchip assay was also conducted. A detection limit of 0.1 ng/mL1 ppb was achieved and good device reliability and repeatability were demonstrated. The novel microfluidic-based beadstrapping device thus opens up a new pathway to design micro-bead based biosensor immunoassays for clinical and othervarious applications.

  10. Pneumatic gap sensor and method

    DOEpatents

    Bagdal, Karl T.; King, Edward L.; Follstaedt, Donald W.

    1992-01-01

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment.

  11. Pneumatic gap sensor and method

    DOEpatents

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment. 6 figs.

  12. High-voltage, high-power, solid-state remote power controllers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1985-01-01

    Two general types of remote power controller (RPC) that combine the functions of a circuit breaker and a switch were developed for use in direct-current (dc) aerospace systems. Power-switching devices used in these designs are the relatively new gate-turnoff thyristor (GTO) and poweer metal-oxide-semiconductor field-effect transistors (MOSFET). The various RPC's can switch dc voltages to 1200 V and currents to 100 A. Seven different units were constructed and subjected to comprehensive laboratory and thermal vacuum testing. Two of these were dual units that switch both positive and negative voltages simultaneously. The RPC's using MOSFET's have slow turnon and turnoff times to limit voltage spiking from high di/dt. The GTO's have much faster transition times. All RPC's have programmable overload tripout and microsecond tripout for large overloads. The basic circuits developed can be used to build switchgear limited only by the ratings of the switching device used.

  13. State observer-based sliding mode control for semi-active hydro-pneumatic suspension

    NASA Astrophysics Data System (ADS)

    Ren, Hongbin; Chen, Sizhong; Zhao, Yuzhuang; Liu, Gang; Yang, Lin

    2016-02-01

    This paper proposes an improved virtual reference model for semi-active suspension to coordinate the vehicle ride comfort and handling stability. The reference model combines the virtues of sky-hook with ground-hook control logic, and the hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high-speed condition. Suspension state observer based on unscented Kalman filter is designed. A sliding mode controller (SMC) is developed to track the states of the reference model. The stability of the SMC strategy is proven by means of Lyapunov function taking into account the nonlinear damper characteristics and sprung mass variation of the vehicle. Finally, the performance of the controller is demonstrated under three typical working conditions: the random road excitation, speed bump road and sharp acceleration and braking. The simulation results indicated that, compared with the traditional passive suspension, the proposed control algorithm can offer a better coordination between vehicle ride comfort and handling stability. This approach provides a viable alternative to costlier active suspension control systems for commercial vehicles.

  14. A sensitivity study for pneumatic vortex control on a chined forebody

    NASA Technical Reports Server (NTRS)

    Boalbey, R. E.; Ely, W. L.; Robinson, B. A.

    1993-01-01

    A study was conducted to assess the sensitivity of yaw control on a chined forebody to the longitudinal location of a blowing slot at the chine edge. In addition, the effects of port blowing were also studied. NASA Langley's thin-layer Navier-Stokes code CFL3D was used to compare flow field characteristics and total yawing moment coefficients for the blowing configurations. Based upon equivalent blowing momentum coefficients, a significant increase in yaw control effectiveness was attained from the forward slot, relative to the aft slot, and port blowing was less effective than either slot blowing configuration.

  15. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Michaud, Vince

    2015-01-01

    NASA Aerospace Medicine overview - Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.

  16. Pneumatic robotic systems for upper limb rehabilitation.

    PubMed

    Morales, Ricardo; Badesa, Francisco Javier; García-Aracil, Nicolás; Sabater, José María; Pérez-Vidal, Carlos

    2011-10-01

    The aim of rehabilitation robotic area is to research on the application of robotic devices to therapeutic procedures. The goal is to achieve the best possible motor, cognitive and functional recovery for people with impairments following various diseases. Pneumatic actuators are attractive for robotic rehabilitation applications because they are lightweight, powerful, and compliant, but their control has historically been difficult, limiting their use. This article first reviews the current state-of-art in rehabilitation robotic devices with pneumatic actuation systems reporting main features and control issues of each therapeutic device. Then, a new pneumatic rehabilitation robot for proprioceptive neuromuscular facilitation therapies and for relearning daily living skills: like taking a glass, drinking, and placing object on shelves is described as a case study and compared with the current pneumatic rehabilitation devices.

  17. Flight evaluation of pneumatic forebody vortex control in post-stall flight

    NASA Technical Reports Server (NTRS)

    Walchli, Lawrence A.

    1994-01-01

    The following topics are discussed: (1) X-29 description; Vortex Flow Control (VFC) technology description; (3) X-29 VFC wind tunnel results (forebody only); (4) X-29 VFC wind tunnel results (full configuration yawing moment); (5) X-29 VFC wind tunnel results (full configuration C(sub n) with sideslip); (6) X-29VFC wind tunnel results (full configuration pitching moment); (7) VFC optimized nozzle details; (8) X-29 forebody nozzle configuration; (9) X-29 VFC system stored gas schematic; (10) X-29 VFC system stored gas installation; (11) VFC effectiveness at zero sideslip; (12) VFC effectiveness at 35 AOA with sideslip; (13) 'VFC Roll' at 40 AOA; (14) Effects of VFC on wing rock; (15) Integrated controls C(sub n) prediction; (16) Proposed F-15 with lateral control laws with active VFC; (17) Simulated F-15 roll performance with active VFC; (18) Simulated F-15 spin recovery with active VFC; (19) Test team restructuring; (20) testbed selection; (21) Simulation for risk reduction; (22) Benefits of high pressure system; and (23) Advanced weapon system integration.

  18. Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks.

    PubMed

    Yadav, Vivek; Padhi, Radhakant; Balakrishnan, S N

    2007-07-01

    An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A 1-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.

  19. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This presentation describes the current CDB activities in support of the NASA Aeronautics Research Mission, with an emphasis on activities under the Integrated Vehicle Health Management (IVHM) and Integrated Resilient Aircraft Control (IRAC) projects of the Aviation Safety Program. Under IVHM, CDB focus is on developing advanced techniques for monitoring the health of the aircraft engine gas path with a focus on reliable and early detection of sensor, actuator and engine component faults. Under IRAC, CDB focus is on developing adaptive engine control technologies which will increase the probability of survival of aircraft in the presence of damage to flight control surfaces or to one or more engines. The technology development plans are described as well as results from recent research accomplishments.

  20. Wind tunnel investigation of a high lift system with pneumatic flow control

    NASA Astrophysics Data System (ADS)

    Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu

    2016-06-01

    Next generation passenger aircrafts require more efficient high lift systems under size and mass constraints, to achieve more fuel efficiency. This can be obtained in various ways: to improve/maintain aerodynamic performance while simplifying the mechanical design of the high lift system going to a single slotted flap, to maintain complexity and improve the aerodynamics even more, etc. Laminar wings have less efficient leading edge high lift systems if any, requiring more performance from the trailing edge flap. Pulsed blowing active flow control (AFC) in the gap of single element flap is investigated for a relatively large model. A wind tunnel model, test campaign and results and conclusion are presented.

  1. Reduced-impact sliding pressure control valve for pneumatic hammer drill

    DOEpatents

    Polsky, Yarom [Oak Ridge, TN; Grubelich, Mark C [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM

    2012-05-15

    A method and means of minimizing the effect of elastic valve recoil in impact applications, such as percussive drilling, where sliding spool valves used inside the percussive device are subject to poor positioning control due to elastic recoil effects experienced when the valve impacts a stroke limiting surface. The improved valve design reduces the reflected velocity of the valve by using either an energy damping material, or a valve assembly with internal damping built-in, to dissipate the compression stress wave produced during impact.

  2. Rotary pneumatic valve

    DOEpatents

    Hardee, Harry C.

    1991-01-01

    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  3. Basic Pneumatics. Instructor's Guide.

    ERIC Educational Resources Information Center

    Fessehaye, Michael

    This instructor's guide is designed for use by industrial vocational teachers in teaching a course on basic pneumatics. Covered in the individual units are the following topics: an introduction to pneumatics (including the operation of a service station hoist); fundamentals and physical laws; air compressors (positive displacement compressors;…

  4. Wheel slide protection control using a command map and Smith predictor for the pneumatic brake system of a railway vehicle

    NASA Astrophysics Data System (ADS)

    Lee, Nam-Jin; Kang, Chul-Goo

    2016-10-01

    In railway vehicles, excessive sliding or wheel locking can occur while braking because of a temporarily degraded adhesion between the wheel and the rail caused by the contaminated or wet surface of the rail. It can damage the wheel tread and affect the performance of the brake system and the safety of the railway vehicle. To safeguard the wheelset from these phenomena, almost all railway vehicles are equipped with wheel slide protection (WSP) systems. In this study, a new WSP algorithm is proposed. The features of the proposed algorithm are the use of the target sliding speed, the determination of a command for WSP valves using command maps, and compensation for the time delay in pneumatic brake systems using the Smith predictor. The proposed WSP algorithm was verified using experiments with a hardware-in-the-loop simulation system including the hardware of the pneumatic brake system.

  5. Simulink-Based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV)

    NASA Technical Reports Server (NTRS)

    Christhilf, David m.; Bacon, Barton J.

    2006-01-01

    The Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) is a Simulink-based approach to providing an engineering quality desktop simulation capability for finding trim solutions, extracting linear models for vehicle analysis and control law development, and generating open-loop and closed-loop time history responses for control system evaluation. It represents a useful level of maturity rather than a finished product. The layout is hierarchical and supports concurrent component development and validation, with support from the Concurrent Versions System (CVS) software management tool. Real Time Workshop (RTW) is used to generate pre-compiled code for substantial component modules, and templates permit switching seamlessly between original Simulink and code compiled for various platforms. Two previous limitations are addressed. Turn around time for incorporating tabular model components was improved through auto-generation of required Simulink diagrams based on data received in XML format. The layout was modified to exploit a Simulink "compile once, evaluate multiple times" capability for zero elapsed time for use in trimming and linearizing. Trim is achieved through a Graphical User Interface (GUI) with a narrow, script definable interface to the vehicle model which facilitates incorporating new models.

  6. Electric versus hydraulics versus pneumatics

    SciTech Connect

    Not Available

    1985-01-01

    This book presents a collection of papers from a conference which considered the advantages and disadvantages of electric, hydraulic and pneumatic drives and actuators. The volume follows on the success of the 1983 conference on electric and hydraulic drives. Topics considered include fork lift trucks - an ideal application for regenerative transmissions; a hybrid-electric power system with hydrostatic transmission; electrics and hydraulics on roadheader machinery; hydraulic, electrical, pneumatic control - which way to go. an electrically-powered servo to drive the two axes of a missile launching platform - pros and cons when compared with the traditional hydraulic solution; the encapsulation of a novel intrinsically safe displacement transducer; mobile cryogenic pumping systems; automation of a wood-turning machine, hydraulic or electric. The choice of a servo motor for a specific application; developments in the design and control of pneumatic linear actuators; compressed air purification for instrumentation in the high technology industries; trends in prime mover choice for powered hand tools; and choosing the drive system for the right application.

  7. Improving dynamic performances of PWM-driven servo-pneumatic systems via a novel pneumatic circuit.

    PubMed

    Taghizadeh, Mostafa; Ghaffari, Ali; Najafi, Farid

    2009-10-01

    In this paper, the effect of pneumatic circuit design on the input-output behavior of PWM-driven servo-pneumatic systems is investigated and their control performances are improved using linear controllers instead of complex and costly nonlinear ones. Generally, servo-pneumatic systems are well known for their nonlinear behavior. However, PWM-driven servo-pneumatic systems have the advantage of flexibility in the design of pneumatic circuits which affects the input-output linearity of the whole system. A simple pneumatic circuit with only one fast switching valve is designed which leads to a quasi-linear input-output relation. The quasi-linear behavior of the proposed circuit is verified both experimentally and by simulations. Closed loop position control experiments are then carried out using linear P- and PD-controllers. Since the output position is noisy and cannot be directly differentiated, a Kalman filter is designed to estimate the velocity of the cylinder. Highly improved tracking performances are obtained using these linear controllers, compared to previous works with nonlinear controllers.

  8. Pneumatic Variable Series Elastic Actuator.

    PubMed

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-08-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

  9. Microfluidic Pneumatic Logic Circuits and Digital Pneumatic Microprocessors for Integrated Microfluidic Systems

    PubMed Central

    Rhee, Minsoung

    2010-01-01

    We have developed pneumatic logic circuits and microprocessors built with microfluidic channels and valves in polydimethylsiloxane (PDMS). The pneumatic logic circuits perform various combinational and sequential logic calculations with binary pneumatic signals (atmosphere and vacuum), producing cascadable outputs based on Boolean operations. A complex microprocessor is constructed from combinations of various logic circuits and receives pneumatically encoded serial commands at a single input line. The device then decodes the temporal command sequence by spatial parallelization, computes necessary logic calculations between parallelized command bits, stores command information for signal transportation and maintenance, and finally executes the command for the target devices. Thus, such pneumatic microprocessors will function as a universal on-chip control platform to perform complex parallel operations for large-scale integrated microfluidic devices. To demonstrate the working principles, we have built 2-bit, 3-bit, 4-bit, and 8-bit microprecessors to control various target devices for applications such as four color dye mixing, and multiplexed channel fluidic control. By significantly reducing the need for external controllers, the digital pneumatic microprocessor can be used as a universal on-chip platform to autonomously manipulate microfluids in a high throughput manner. PMID:19823730

  10. Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems.

    PubMed

    Rhee, Minsoung; Burns, Mark A

    2009-11-07

    We have developed pneumatic logic circuits and microprocessors built with microfluidic channels and valves in polydimethylsiloxane (PDMS). The pneumatic logic circuits perform various combinational and sequential logic calculations with binary pneumatic signals (atmosphere and vacuum), producing cascadable outputs based on Boolean operations. A complex microprocessor is constructed from combinations of various logic circuits and receives pneumatically encoded serial commands at a single input line. The device then decodes the temporal command sequence by spatial parallelization, computes necessary logic calculations between parallelized command bits, stores command information for signal transportation and maintenance, and finally executes the command for the target devices. Thus, such pneumatic microprocessors will function as a universal on-chip control platform to perform complex parallel operations for large-scale integrated microfluidic devices. To demonstrate the working principles, we have built 2-bit, 3-bit, 4-bit, and 8-bit microprocessors to control various target devices for applications such as four color dye mixing, and multiplexed channel fluidic control. By significantly reducing the need for external controllers, the digital pneumatic microprocessor can be used as a universal on-chip platform to autonomously manipulate microfluids in a high throughput manner.

  11. First Approach of Pneumatic Anthropomorphic Hand

    DTIC Science & Technology

    2001-10-25

    weight and minimum consumption, minimum control and natural appearance. Keywords- Anthropomorphic, hand, Pneumatic system, Prosthesis 1. INTRODUCTION...and controls that are compared with the tasks that Human hand can carry out. Each project determines the diverse possibilities of manipulation and...increases the possibilities of acceptance of prosthesis by the user. Multiple degrees of freedom of the prosthesis are difficult to control independently

  12. Military Aerospace. Aerospace Education II.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is a revised publication in the series on Aerospace Education II. It describes the employment of aerospace forces, their methods of operation, and some of the weapons and equipment used in combat and combat support activities. The first chapter describes some of the national objectives and policies served by the Air Force in peace and…

  13. Aerospace Environment. Aerospace Education I.

    ERIC Educational Resources Information Center

    Savler, D. S.; Smith, J. C.

    This book is one in the series on Aerospace Education I. It briefly reviews current knowledge of the universe, the earth and its life-supporting atmosphere, and the arrangement of celestial bodies in outer space and their physical characteristics. Chapter 1 includes a brief survey of the aerospace environment. Chapters 2 and 3 examine the…

  14. 49 CFR 236.590 - Pneumatic apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop.... Automatic train stop, train control, or cab signal pneumatic apparatus shall be inspected, cleaned, and...

  15. 49 CFR 236.590 - Pneumatic apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop.... Automatic train stop, train control, or cab signal pneumatic apparatus shall be inspected, cleaned, and...

  16. 49 CFR 236.590 - Pneumatic apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop.... Automatic train stop, train control, or cab signal pneumatic apparatus shall be inspected, cleaned, and...

  17. Aerospace Technology.

    ERIC Educational Resources Information Center

    Paschke, Jean; And Others

    1991-01-01

    Describes the Sauk Rapids (Minnesota) High School aviation and aerospace curriculum that was developed by Curtis Olson and the space program developed by Gerald Mayall at Philadelphia's Northeast High School. Both were developed in conjunction with NASA. (JOW)

  18. Integration of pyrotechnics into aerospace systems

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Schimmel, Morry L.

    1993-01-01

    The application of pyrotechnics to aerospace systems has been resisted because normal engineering methods cannot be used in design and evaluation. Commonly used approaches for energy sources, such as electrical, hydraulic and pneumatic, do not apply to explosive and pyrotechnic devices. This paper introduces the unique characteristics of pyrotechnic devices, describes how functional evaluations can be conducted, and demonstrates an engineering approach for pyrotechnic integration. Logic is presented that allows evaluation of two basic types of pyrotechnic systems to demonstrate functional margin.

  19. Control design for robust stability in linear regulators: Application to aerospace flight control

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1986-01-01

    Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.

  20. [Development of an adaptive pneumatic tourniquet].

    PubMed

    Liu, Hongyun; Zhang, Zhengbo; Li, Kaiyuan; Guo, Junyan; Wang, Weidong

    2012-06-01

    A new adaptive pneumatic tourniquet was developed for limb operation and first-aid. The crucial hardware circuits of the adaptive pneumatic tourniquet were designed based on the microprocessor C8051F340 and blood pressure module CSN602, software was programmed and an experiment was carried out for verifying the system. Results showed that the prototype could measure accurately systolic blood pressure, heart rate and other relative parameters and the designed device could adjust tourniquet cuff's pressure through inflation and deflation according to systolic blood pressure and limb circumference. This designed system integrated the advantages of the adaptive pneumatic tourniquet, and could be used for controlling life-threatening extremity hemorrhage operation and maintaining a bloodless opeation field.

  1. "Fly-by-Wireless": A Revolution in Aerospace Vehicle Architecture for Instrumentation and Control

    NASA Technical Reports Server (NTRS)

    Studor, George

    2007-01-01

    Aerospace vehicle programs have always counted on the cables and connectors to provide power, grounding, data and time synchronization throughout a vehicle's life-cycle. Even with numerous improvements, wiring and connector problems and sensors continue to be key failure points, causing many hours of troubleshooting and replacement. Costly flight delays have been precipitated by the need to troubleshoot cables/connections, and/or repair a sensor. Wiring continues to be too expensive to remove once it is installed, even with the weight penalties. Miles of test instrumentation and low flight sensor wires still plague the aerospace industry. New technology options for data connectivity, processing and micro/nano manufacturing are making it possible to retrofit existing vehicles, like the Space Shuttle. New vehicles can now develop architectures that provide for and take advantage of alternatives to wired connectivity. This project motivates the aerospace industry and technology providers to establish: (1) A new emphasis for system engineering approaches to reduce cables and connectors. (2) Provisions for modularity and accessibility in the vehicle architecture. (3) A set of technologies that support alternatives to wired connectivity.

  2. Pneumatic stowing seals mines

    SciTech Connect

    Brezovec, D.

    1983-11-01

    A pneumatic stowing technique has been used in the US to seal entries to abandoned mines. Limestone mixed with dry cement or bentonite is blown into the opening. Sealing can be accomplished in much less time than with traditional concrete block/clay plug methods.

  3. Pneumatic tools for vitreoretinal surgery.

    PubMed

    Romano, Mario R; Vallejo-Garcia, Jose Luis; Randazzo, Alessandro; Vinciguerra, Paolo

    2012-01-01

    One of the difficulties of microsurgery is learning how to control physiological tremors. The pneumatic tool eliminates the physiological tremor, but no tactile feedback is provided. The manual tremor when closing the forceps is completely eliminated and the exact target can be more easily grabbed. Forceps closure pressure can rise up to 50 psi, whereas the scissors can be used in two modes: multicut and proportional. When performing bimanual surgery the pedal range is divided into two steps: in the first step, the forceps are controlled, and in the second step, the forceps remain closed. At the same time the scissors start to work in the preselected mode. No adverse events occurred and no iatrogenic retinal breaks were produced. Precision and control sensation were a grateful surprise.

  4. Spot-Welding Gun With Adjustable Pneumatic Spring

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.

    1990-01-01

    Proposed spot-welding gun equipped with pneumatic spring, which could be bellows or piston and cylinder, exerts force independent of position along stroke. Applies accurate controlled force to joint welded, without precise positioning at critical position within stroke.

  5. Pneumatic osteoarthritis knee brace.

    PubMed

    Stamenović, Dimitrije; Kojić, Milos; Stojanović, Boban; Hunter, David

    2009-04-01

    Knee osteoarthritis is a chronic disease that necessitates long term therapeutic intervention. Biomechanical studies have demonstrated an improvement in the external adduction moment with application of a valgus knee brace. Despite being both efficacious and safe, due to their rigid frame and bulkiness, current designs of knee braces create discomfort and difficulties to patients during prolonged periods of application. Here we propose a novel design of a light osteoarthritis knee brace, which is made of soft conforming materials. Our design relies on a pneumatic leverage system, which, when pressurized, reduces the excessive loads predominantly affecting the medial compartment of the knee and eventually reverses the malalignment. Using a finite-element analysis, we show that with a moderate level of applied pressure, this pneumatic brace can, in theory, counterbalance a greater fraction of external adduction moment than the currently existing braces.

  6. Prevention of deep vein thrombosis in potential neurosurgical patients. A randomized trial comparing graduated compression stockings alone or graduated compression stockings plus intermittent pneumatic compression with control

    SciTech Connect

    Turpie, A.G.; Hirsh, J.; Gent, M.; Julian, D.; Johnson, J.

    1989-03-01

    In a randomized trial of neurosurgical patients, groups wearing graduated compression stockings alone (group 1) or graduated compression stockings plus intermittent pneumatic compression (IPC) (group 2) were compared with an untreated control group in the prevention of deep vein thrombosis (DVT). In both active treatment groups, the graduated compression stockings were continued for 14 days or until hospital discharge, if earlier. In group 2, IPC was continued for seven days. All patients underwent DVT surveillance with iodine 125-labeled fibrinogen leg scanning and impedance plethysmography. Venography was carried out if either test became abnormal. Deep vein thrombosis occurred in seven (8.8%) of 80 patients in group 1, in seven (9.0%) of 78 patients in group 2, and in 16 (19.8%) of 81 patients in the control group. The observed differences among these rates are statistically significant. The results of this study indicate that graduated compression stockings alone or in combination with IPC are effective methods of preventing DVT in neurosurgical patients.

  7. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    This abstract describes the content of a presentation for ground rounds at Mt. Sinai School of Medicine. The presentation contains three sections. The first describes the history of aerospace medicine beginning with early flights with animals. The second section of the presentation describes current programs and planning for future missions. The third section describes the medical challenges of exploration missions.

  8. Pneumatic conveyance apparatus and process

    DOEpatents

    Heckendorn, Frank M.; Matzolf, Athneal D.; Hera, Kevin R.

    2010-05-04

    A pneumatic nozzle capable of removing dry solid debris, liquids, and mixtures of solid and liquid waste is provided. The pneumatic nozzle uses a pressurized gas stream to push materials through the nozzle. The force of a pressurized gas stream provides a partial vacuum to allow material to be introduced into an opening of a nozzle via a slight suction force. Thereafter, individual particles and materials introduced into the pneumatic nozzle are pushed by a stream of pressurized gas through the nozzle.

  9. Continued Development and Improvement of Pneumatic Heavy Vehicles

    SciTech Connect

    Robert J. Englar

    2005-07-15

    The objective of this applied research effort led by Georgia Tech Research Institute is the application of pneumatic aerodynamic technology previously developed and patented by us to the design of an appropriate Heavy Vehicle (HV) tractor-trailer configuration, and experimental confirmation of this pneumatic configuration's improved aerodynamic characteristics. In Phases I to IV of our previous DOE program (Reference 1), GTRI has developed, patented, wind-tunnel tested and road-tested blown aerodynamic devices for Pneumatic Heavy Vehicles (PHVs) and Pneumatic Sports Utility Vehicles (PSUVs). To further advance these pneumatic technologies towards HV and SUV applications, additional Phase V tasks were included in the first year of a continuing DOE program (Reference 2). Based on the results of the Phase IV full-scale test programs, these Phase V tasks extended the application of pneumatic aerodynamics to include: further economy and performance improvements; increased aerodynamic stability and control; and safety of operation of Pneumatic HVs. Continued development of a Pneumatic SUV was also conducted during the Phase V program. Phase V was completed in July, 2003; its positive results towards development and confirmation of this pneumatic technology are reported in References 3 and 4. The current Phase VI of this program was incrementally funded by DOE in order to continue this technology development towards a second fuel economy test on the Pneumatic Heavy Vehicle. The objectives of this current Phase VI research and development effort (Ref. 5) fall into two categories: (1) develop improved pneumatic aerodynamic technology and configurations on smaller-scale models of the advanced Pneumatic Heavy Vehicle (PHV); and based on these findings, (2) redesign, modify, and re-test the modified full-scale PHV test vehicle. This second objective includes conduct of an on-road preliminary road test of this configuration to prepare it for a second series of SAE Type-U fuel

  10. Analysis of fine coal pneumatic systems

    SciTech Connect

    Mathur, M.P.; Rohatgi, N.D.; Klinzing, G.E.

    1987-01-01

    Many fossil fuel energy processes depend on the movement of solids by pneumatic transport. Despite the considerable amount of work reported in the literature on pneumatic transport, the design of new industrial systems for new products continues to rely to a great extent on empiricism. A pilot-scale test facility has been constructed at Pittsburgh Energy Technology Center (PETC) and is equipped with modern sophisticated measuring techniques (such as Pressure Transducers, Auburn Monitors, Micro Motion Mass flowmeters) and an automatic computer-controlled data acquisition system to study the effects of particle pneumatic transport. Pittsburgh Seam and Montana rosebud coals of varying size consist and moisture content were tested in the atmospheric and pressurized coal flow test loops (AP/CFTL and HP/CFTL) at PETC. The system parameters included conveying gas velocity, injector tank pressure, screw conveyor speed, pipe radius, and pipe bends. In the following report, results from the coal flow tests were presented and analyzed. Existing theories and correlations on two-phase flows were reviewed. Experimental data were compared with values calculated from empirically or theoretically derived equations available in the literature, and new correlations were proposed, when applicable, to give a better interpretation of the data and a better understanding of the various flow regimes involved in pneumatic transport. 55 refs., 56 figs., 6 tabs.

  11. A New Type of Motor: Pneumatic Step Motor

    PubMed Central

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2011-01-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  12. Low-order design and high-order simulation of active closed-loop control for aerospace structures under construction

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.

    1989-01-01

    Partially constructed/assembled structures in space are complicated enough but their dynamics will also be operating in closed-loop with feedback controllers. The dynamics of such structures are modeled by large-scale finite element models. The model dimension L is extremely large (approximately 10,000) while the numbers of actuators (M) and sensors (P) are small. The model parameters M(sub m) mass matrix, D(sub o) damping matrix, and K(sub o) stiffness matrix, are all symmetric and sparse (banded). Thus simulation of open-loop structure models of very large dimension can be accomplished by special integration techniques for sparse matrices. The problem of simulation of closed-loop control of such structures is complicated by the addition of controllers. Simulation of closed-loop controlled structures is an essential part of the controller design and evaluation process. Current research in the following areas is presented: high-order simulation of actively controlled aerospace structures; low-order controller design and SCI compensation for unmodeled dynamics; prediction of closed-loop stability using asymptotic eigenvalue series; and flexible robot manipulator control experiment.

  13. Microfluidic pressure amplifier circuits and electrostatic gates for pneumatic microsystems

    SciTech Connect

    Tice, Joshua D.; Bassett, Thomas A.; Desai, Amit V.; Apblett, Christopher A.; Kenis, Paul J. A.

    2016-09-20

    An electrostatic actuator is provide that can include a fluidic line, a first electrode, and a second electrode such that a gate chamber portion of the fluidic line is sandwiched between the first electrode and the second electrode. The electrostatic actuator can also include a pressure-balancing channel in fluid communication with the gate chamber portion where the first electrode is sandwiched between the pressure-balancing channel and the gate chamber portion. A pneumatic valve system is provided which includes an electrostatic gate and a fluidic channel fluidly separate from a fluidic control line. A pneumatic valve portion of the fluidic control line can be positioned relative to a portion of the fluidic channel such that expansion of the pneumatic valve portion restricts fluid flow through the fluidic channel. Methods of using an electrostatic actuator and a pneumatic valve system are also provided.

  14. Aerospace Dermatology.

    PubMed

    Arora, Gp Capt Sandeep

    2017-01-01

    Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry.

  15. Aerospace Dermatology

    PubMed Central

    Arora, Gp Capt Sandeep

    2017-01-01

    Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry. PMID:28216729

  16. Effects of plyometric and pneumatic explosive strength training on neuromuscular function and dynamic balance control in 60-70year old males.

    PubMed

    Piirainen, Jarmo M; Cronin, Neil J; Avela, Janne; Linnamo, Vesa

    2014-04-01

    The present study compared neuromuscular adaptations to 12weeks of plyometric (PLY) or pneumatic (PNE) power training and their effects on dynamic balance control. Twenty-two older adults aged 60-70 (PLY n=9, PNE n=11) participated in the study. Measurements were conducted at Pre, 4, 8 and 12weeks. Dynamic balance was assessed as anterior-posterior center of pressure (COP) displacement in response to sudden perturbations. Explosive isometric knee extension and plantar flexion maximal voluntary contractions (MVCs) were performed. Maximal drop jump performance from optimal dropping height was measured in a sledge ergometer. Increases in knee extensor and ankle plantar flexor torque and muscle activity were higher and occurred sooner in PNE, whereas in drop jumping, PLY showed a clearer increase in optimal drop height (24%, p<0.01) after 8weeks of training and soleus muscle activity after 12weeks of training. In spite of these training mode specific adaptations, both groups showed similar improvements in dynamic balance control after 4weeks of training (PLY 38%, p<0.001; PNE 31%, p<0.001) and no change thereafter. These results show that although power and plyometric training may involve different neural adaptation mechanisms, both training modes can produce similar improvements in dynamic balance control in older individuals. As COP displacement was negatively correlated with rapid knee extension torque in both groups (PLY r=-0.775, p<0.05; PNE r=-0.734, p<0.05) after training, the results also highlight the importance of targeting rapid force production when training older adults to improve dynamic balance.

  17. Pneumatic Pellet-Transporting System

    NASA Technical Reports Server (NTRS)

    Wood, George; Pugsley, Robert A.

    1992-01-01

    Pneumatic system transports food pellets to confined animals. Flow of air into venturi assembly entrains round pellets, drawing them from reservoir into venturi for transport by airflow. Pneumatic pellet-transporting system includes venturi assembly, which creates flow of air that draws pellets into system.

  18. Pneumatization of the sphenoid sinus.

    PubMed

    Terra, E R; Guedes, F R; Manzi, F R; Bóscolo, F N

    2006-01-01

    This paper describes a case of pneumatization of the sphenoid sinus in the pterygoid process and greater wing of the sphenoid bone, observed on a panoramic radiograph. Conventional radiographs and computerized tomography in axial and coronal sections confirmed the presence of the pneumatization of these structures.

  19. A pneumatic cylinder driving polyhedron mobile mechanism

    NASA Astrophysics Data System (ADS)

    Ding, Wan; Kim, Sung-Chan; Yao, Yan-An

    2012-03-01

    A novel pneumatic cylinder driving polyhedron mobile mechanism is proposed in this paper. The mechanism is comprised of 5 tetrahedrons which includes a pneumatic cylinder in each edge. It locomotes by rolling and the rolling principle refers to the center of mass (CM) of the mechanism moved out of the supporting area and let it tip over through the controlling of the motion sequence of these cylinders. Firstly, the mathematical model is built to analysis the relation between the configuration and the CM of the mechanism. Then, a binary control strategy is developed to simplify and improve the control of this mobile mechanism. After that, dynamic simulation is performed to testify the analytical validity and feasibility of the rolling gaits. At last, a prototype is fabricated to achieve the rolling successfully to demonstrate the proposed concept.

  20. Rigidified pneumatic composites

    NASA Astrophysics Data System (ADS)

    van Dessel, Steven

    2000-10-01

    The overall objective of the research presented in this dissertation was to address global issues of adequate housing for all and the need for more sustainable human settlement. In order to address these, the emerging technology of rigidified pneumatic composites was investigated. Rigidified pneumatic composites (RPC) are defined as thin flexible membrane structures that are pneumatically deployed. After deployment, these structures harden due to chemical or physical change of the membrane. Because of this change, these structures do no longer require pneumatic pressure to maintain their shape. For the first time, a systematic listing of the various means available to develop polymeric materials useful in RPC technology is presented. With the aim to reduce the cost of RPC structures, a new material was proposed, developed, and evaluated. This material involved the formation of a semi-interpenetrating polymer network based on poly vinyl chloride and an acrylate based reactive plasticizer. The economical and environmental performances of RPC structures using this new material were assessed by means of a case study. In this study, the performance of RPC technology was compared with that of a typical wood light frame structure in the application of a small single-family house. The study indicated that the cost of ownership in present day value for the RPC structure was approximately 33% less than the cost of a comparable wood light frame structure. The study also indicated that significant environmental benefits exist with the use of RPC structures. It was found that the RPC structure used significantly less resources compared to the wood light frame structure. About 3.5 times less materials coming from non-renewable fossil resources, about 2.5 times less materials coming from trees, and about 19 times less materials coming from inorganic resources was used in the RPC structure relative to the wood light frame structure. The study concluded with pointing out various

  1. Pneumatic energy storage

    SciTech Connect

    Flowers, D.

    1995-09-19

    An essential component to hybrid electric and electric vehicles is energy storage. A power assist device could also be important to many vehicle applications. This discussion focuses on the use of compressed gas as a system for energy storage and power in vehicle systems. Three possible vehicular applications for which these system could be used are discussed in this paper. These applications are pneumatically driven vehicles, series hybrid electric vehicles, and power boost for electric and conventional vehicles. One option for a compressed gas system is as a long duration power output device for purely pneumatic and hybrid cars. This system must provide enough power and energy to drive under normal conditions for a specified time or distance. The energy storage system for this use has the requirement that it will be highly efficient, compact, and have low mass. Use of a compressed gas energy storage as a short duration, high power output system for conventional motor vehicles could reduce engine size or reduce transient emissions. For electric vehicles this kind of system could lengthen battery life by providing battery load leveling during accelerations. The system requirements for this application are that it be compact and have low mass. The efficiency of the system is a secondary consideration in this application.

  2. Development of robot hand with pneumatic actuator and construct of master-slave system.

    PubMed

    Nishino, Shinya; Tsujiuchi, Nobutaka; Koizumi, Takayuki; Komatsubara, Hiroyuki; Kudawara, Tatuwo; Shimizu, Mikio

    2007-01-01

    Recently, research has concentrated on robots that can coexist with people and be of use to them. Such a robot needs to be both safe and flexible. Here, we use a pneumatic actuator as the driving source of a robot hand. We develop a pneumatic actuator driven by low pressure because we consider that the conventional pneumatic actuator is inadequate for the driving source of a robot hand. First, we examine the characteristics of our new pneumatic actuator. Next, we develop a five-fingered robot hand using this pneumatic actuator. The robot hand produced is both safe and flexible. We construct a master-slave system to enable the robot hand to perform the same operations as a human hand. Next, we make a joint model that has one degree of freedom using a pneumatic actuator. We construct a control system for the joint model and verify its control performance.

  3. Aerospace Education - An Overview

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Discusses the surge of interest throughout the country in aerospace education and discusses what aerospace education is, the implications in career education and the relevance of aerospace education in the curriculum. (BR)

  4. Basic Aerospace Education Library

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Lists the most significant resource items on aerospace education which are presently available. Includes source books, bibliographies, directories, encyclopedias, dictionaries, audiovisuals, curriculum/planning guides, aerospace statistics, aerospace education statistics and newsletters. (BR)

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 37: The impact of political control on technical communications: A comparative study of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Flammia, Madelyn; Kennedy, John M.

    1994-01-01

    Until the recent dissolution of the Soviet Union, the Communist Party exerted a strict control of access to and dissemination of scientific and technical information (STI). This article presents models of the Soviet-style information society and the Western-style information society and discusses the effects of centralized governmental control of information on Russian technical communication practices. The effects of political control on technical communication are then used to interpret the results of a survey of Russian and U.S. aerospace engineers and scientists concerning the time devoted to technical communication, their collaborative writing practices and their attitudes toward collaboration, the kinds of technical documents they produce and use, and their use of computer technology, and their use of and the importance to them of libraries and technical information centers. The data are discussed in terms of tentative conclusions drawn from the literature. Finally, we conclude with four questions concerning government policy, collaboration, and the flow of STI between Russian and U.S. aerospace engineers and scientists.

  6. Aerospace gerontology

    NASA Technical Reports Server (NTRS)

    Comfort, A.

    1982-01-01

    The relevancy of gerontology and geriatrics to the discipline of aerospace medicine is examined. It is noted that since the shuttle program gives the facility to fly passengers, including specially qualified older persons, it is essential to examine response to acceleration, weightlessness, and re-entry over the whole adult lifespan, not only its second quartile. The physiological responses of the older person to weightlessness and the return to Earth gravity are reviewed. The importance of the use of the weightless environment to solve critical problems in the fields of fundamental gerontology and geriatrics is also stressed.

  7. Origin of postcranial skeletal pneumaticity in dinosaurs.

    PubMed

    Wedel, Mathew J

    2006-06-01

    The sauropodomorph Thecodontosaurus caducus and theropod Coelophysis bauri are the earliest known dinosaurs with postcranial skeletal pneumaticity. In both taxa, postcranial pneumatic features are confined to the cervical vertebrae. This distribution of pneumaticity in the skeleton is most consistent with pneumatization by diverticula of cervical air sacs similar to those of birds. Other hypotheses, including pneumatization by diverticula of the lungs, larynx and trachea, or cranial air spaces, are less well-supported.

  8. Microfluidic Pneumatic Cages: A Novel Approach for In-chip Crystal Trapping, Manipulation and Controlled Chemical Treatment

    PubMed Central

    Abrishamkar, Afshin; Paradinas, Markos; Bailo, Elena; Rodriguez-Trujillo, Romen; Pfattner, Raphael; Rossi, René M.; Ocal, Carmen; deMello, Andrew J.; Amabilino, David B.; Puigmartí-Luis, Josep

    2016-01-01

    The precise localization and controlled chemical treatment of structures on a surface are significant challenges for common laboratory technologies. Herein, we introduce a microfluidic-based technology, employing a double-layer microfluidic device, which can trap and localize in situ and ex situ synthesized structures on microfluidic channel surfaces. Crucially, we show how such a device can be used to conduct controlled chemical reactions onto on-chip trapped structures and we demonstrate how the synthetic pathway of a crystalline molecular material and its positioning inside a microfluidic channel can be precisely modified with this technology. This approach provides new opportunities for the controlled assembly of structures on surface and for their subsequent treatment. PMID:27500740

  9. Pneumatic stowing seals mines

    SciTech Connect

    Brezovec, D.

    1983-11-01

    A mechanized technique to seal abandoned mines has been used successfully to close 13 openings at Duquesne Light Co.'s mined-out Warwick No. 2 mine, near Greensboro, Pa. The mechanized system, which uses a pneumatic stower and crushed limestone, closed the entries more economically and in less time than it would have taken to install traditional concrete block stopping and clay plug seals, according to John C. Draper. Draper, a mining engineer with Duquesne Light's coal department, was in charge of installing the Warwick seals in a Bureau of Mines-sponsored field test on the pneumatic sealing technique. The lowest estimated cost for installing conventional stopping and plug closures for the 13 Warwick openings was $225,000, says Draper, while the openings were closed using the mechanized system for $245,000. Draper says the newer stopping cost more in the instance because work was stopped often to gather information for the experiment. The experimental closures were installed in 38 days. The job would have taken at least 149 days if traditional closures were being installed, Draper say. To install a traditional concrete block/clay plug closure, the mine opening must be cleaned thoroughly and the roof must be supported for some 3 ft from the outside. Then a solid wall or stopping must be built 25 ft from the surface and the entry must be packed with clay to the surface. Much of this job requires workers to remain underground. In pneumatic stowing, 1 1/2-in. crushed limestone with fines is conveyed through a pipeline and into the mine opening under low air pressure. Watertight seals can be installed by blowing about 10 ft of rock into the opening against the top to act as roof support. Safety posts are installed and about 10 or 15 ft of mine entry is cleaned. About 2 in. of raw cement or bentonite is placed on the floor and limestone mixed with dry cement or bentonite is blown into the opening.

  10. Filling the expertise gap. [aeroservoelasticity,structures,stability and control design of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Abel, Irving

    1988-01-01

    Aeroelasticity, structures, and stability-and-control specialists can work in concerted fashion during the early design phases of future aircraft to achieve active control of naturally unstable configurations. In order to take full advantage of active control, attention must be given by designers to control-law synthesis, and to tools for the efficient synthesis and analysis of complex flexible-aircraft control systems. Analysts must consider interfaces among unsteady aerodynamics, structures, and control theory, as explored by the theory of analytic continuation for unsteady aerodynamics.

  11. The Aerospace Age. Aerospace Education I.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is written for use only in the Air Force ROTC program and cannot be purchased on the open market. The book describes the historical development of aerospace industry. The first chapter contains a brief review of the aerospace environment and the nature of technological changes brought by the aerospace revolution. The following chapter…

  12. AI aerospace components

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Murphy, Terri B.; Rasmussen, Arthur N.; Mcfarland, Robert Z.; Montgomery, Ronnie E.; Pohle, George E.; Heard, Astrid E.; Atkinson, David J.; Wedlake, William E.; Anderson, John M.

    1991-01-01

    An evaluation is made of the application of novel, AI-capabilities-related technologies to aerospace systems. Attention is given to expert-system shells for Space Shuttle Orbiter mission control, manpower and processing cost reductions at the NASA Kennedy Space Center's 'firing rooms' for liftoff monitoring, the automation of planetary exploration systems such as semiautonomous mobile robots, and AI for battlefield staff-related functions.

  13. Guidance of Autonomous Aerospace Vehicles for Vertical Soft Landing using Nonlinear Control Theory

    DTIC Science & Technology

    2015-08-11

    Philosophy of Adaptive Dynamic Inversion . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Control Synthesis using Feed-Back Linearization Method...Dynamic Inversion for Quadrotor Control 18 where T is total thrust (N), h is the perpendicular distance between rotor plane and roll-pitch plane passing...in for further details. 2.2 Neuro-Adaptive Dynamic Inversion for Quadrotor Control The baseline controller is evaluated using dynamics inversion

  14. Performance Monitoring and Assessment of Neuro-Adaptive Controllers for Aerospace Applications Using a Bayesian Approach

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Guenther, Kurt; Hodgkinson, John; Jacklin, Stephen; Richard, Michael; Schumann, Johann; Soares, Fola

    2005-01-01

    Modern exploration missions require modern control systems-control systems that can handle catastrophic changes in the system's behavior, compensate for slow deterioration in sustained operations, and support fast system ID. Adaptive controllers, based upon Neural Networks have these capabilities, but they can only be used safely if proper verification & validation (V&V) can be done. In this paper we present our V & V approach and simulation result within NASA's Intelligent Flight Control Systems (IFCS).

  15. Noncertainty equivalent nonlinear adaptive control and its applications to mechanical and aerospace systems

    NASA Astrophysics Data System (ADS)

    Seo, Dong Eun

    Adaptive control has long focused on establishing stable adaptive control methods for various nonlinear systems. Existing methods are mostly based on the certainty equivalence principle which states that the controller structure developed in the deterministic case (without uncertain system parameters) can be used for controlling the uncertain system along by adopting a carefully determined parameter estimator. Thus, the overall performance of the regulating/tracking control depends on the performance of the parameter estimator, which often results in the poor closed-loop performance compared with the deterministic control because the parameter estimate can exhibit wide variations compared to their true values in general. In this dissertation, we introduce a new adaptive control method for nonlinear systems where unknown parameters are estimated to within an attracting manifold and the proposed control method always asymptotically recovers the closed-loop error dynamics of the deterministic case control system. Thus, the overall performance of this new adaptive control method is comparable to that of the deterministic control method, something that is usually impossible to obtain with the certainty equivalent control method. We apply the noncertainty equivalent adaptive control to study application arising in the n degree of freedom (DOF) robot control problem and spacecraft attitude control. Especially, in the context of the spacecraft attitude control problem, we developed a new attitude observer that also utilizes an attracting manifold, while ensuring that the estimated attitude matrix confirms at all instants to the special group of rotation matrices SO(3). As a result, we demonstrate for the first time a separation property of the nonlinear attitude control problem in terms of the observer/controller based closed-loop system. For both the robotic and spacecraft attitude control problems, detailed derivations for the controller design and accompanying stability

  16. Applications of aerospace technology in industry, a technology transfer profile: Contamination control

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The strong influence NASA-sponsored research has had on the development of solutions to difficult contamination problems is considered. The contamination control field is comprised of an industrial base, supplying the tools of control; a user base, adopting control techniques; and a technical base, expanding the concepts of control. Both formal and informal mechanisms used by NASA to communicate a variety of technical advances are reviewed and certain examples of the expansion of the user base through technology transfer are given. Issues related to transfer of NASA-generated contamination control technology are emphasized.

  17. Formulation of a minimum variance deconvolution technique for compensation of pneumatic distortion in pressure sensing devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1990-01-01

    Increasingly, aircraft system designs require that aerodynamic parameters derived from pneumatic measurements be employed as control-system feedbacks. Such high frequency pressure measurements' accuracy is compromised by pressure distortion due to frictional attenuation and pneumatic resonance within the sensing system. A pneumatic distortion model is here formulated and reduced to a low-order state-variable model which retains most of the full model's dynamic characteristics. This reduced-order model is coupled with standard results from minimum variance estimation theory to develop an algorithm to compensate for pneumatic-distortion effects.

  18. Control system estimation and design for aerospace vehicles with time delay

    NASA Technical Reports Server (NTRS)

    Allgaier, G. R.; Williams, T. L.

    1972-01-01

    The problems of estimation and control of discrete, linear, time-varying systems are considered. Previous solutions to these problems involved either approximate techniques, open-loop control solutions, or results which required excessive computation. The estimation problem is solved by two different methods, both of which yield the identical algorithm for determining the optimal filter. The partitioned results achieve a substantial reduction in computation time and storage requirements over the expanded solution, however. The results reduce to the Kalman filter when no delays are present in the system. The control problem is also solved by two different methods, both of which yield identical algorithms for determining the optimal control gains. The stochastic control is shown to be identical to the deterministic control, thus extending the separation principle to time delay systems. The results obtained reduce to the familiar optimal control solution when no time delays are present in the system.

  19. Instrumented Pneumatic-Impact Tester

    NASA Technical Reports Server (NTRS)

    Shelley, Richard M.; Armendariz, Norman

    1993-01-01

    Pneumatic-impact tester is small pressure chamber equipped with specimen holder and optical port. Device designed to test susceptibility of polymeric material to ignition by "pneumatic impact" in high-pressure gaseous oxygen. Used to determine differences among susceptibilities to ignition of different materials and of different batches of nominally same material proposed for use in systems containing pressurized oxygen. Also used to show characteristics of ignition and combustion.

  20. Research on optimal control, stabilization and computational algorithms for aerospace applications

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1984-01-01

    The research carried out in the areas of optimal control and estimation theory and its applications under this grant is reviewed. A listing of the 257 publications that document the research results is presented.

  1. NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)

    1994-01-01

    Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.

  2. Research on optimal control, stabilization and computational algorithms for aerospace applications

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1985-01-01

    The research carried out in the areas of optimal control and estimation theory and its applications under this grant is reviewed. A listing of the 257 publications that document the research results is presented.

  3. Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 2

    NASA Technical Reports Server (NTRS)

    Bernard, Douglas E. (Editor); Man, Guy K. (Editor)

    1989-01-01

    This volume of the conference proceedings contain papers and discussions in the following topical areas: Parallel processing; Emerging integrated capabilities; Low order controllers; Real time simulation; Multibody component representation; User environment; and Distributed parameter techniques.

  4. Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1

    NASA Technical Reports Server (NTRS)

    Bernard, Douglas E. (Editor); Man, Guy K. (Editor)

    1989-01-01

    Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft.

  5. NASA Dryden Status: Aerospace Control and Guidance Sub-Committee Meeting 109

    NASA Technical Reports Server (NTRS)

    Jacobson, Steven R.

    2012-01-01

    NASA Dryden has been engaging in some exciting work that will enable lighter weight and more fuel efficient vehicles through advanced control and dynamics technologies. The main areas of emphasis are Enabling Light-weight Flexible Structures, real time control surface optimization for fuel efficiency and autonomous formation flight. This presentation provides a description of the current and upcoming work in these areas. Additionally, status is for the Dreamchaser pilot training activity and KQ-X autonomous aerial refueling.

  6. Performance Monitoring and Assessment of Neuro-Adaptive Controllers for Aerospace Applications Using a Bayesian Approach

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Jacklin, Stephen; Schumann, Johann; Guenther, Kurt; Richard, Michael; Soares, Fola

    2005-01-01

    Modem aircraft, UAVs, and robotic spacecraft pose substantial requirements on controllers in the light of ever increasing demands for reusability, affordability, and reliability. The individual systems (which are often nonlinear) must be controlled safely and reliably in environments where it is virtually impossible to analyze-ahead of time- all the important and possible scenarios and environmental factors. For example, system components (e.g., gyros, bearings of reaction wheels, valves) may deteriorate or break during autonomous UAV operation or long-lasting space missions, leading to a sudden, drastic change in vehicle performance. Manual repair or replacement is not an option in such cases. Instead, the system must be able to cope with equipment failure and deterioration. Controllability of the system must be retained as good as possible or re-established as fast as possible with a minimum of deactivation or shutdown of the system being controlled. In such situations the control engineer has to employ adaptive control systems that automatically sense and correct themselves whenever drastic disturbances and/or severe changes in the plant or environment occur.

  7. Rotor position and vibration control for aerospace flywheel energy storage devices and other vibration based devices

    NASA Astrophysics Data System (ADS)

    Alexander, B. X. S.

    Flywheel energy storage has distinct advantages over conventional energy storage methods such as electrochemical batteries. Because the energy density of a flywheel rotor increases quadratically with its speed, the foremost goal in flywheel design is to achieve sustainable high speeds of the rotor. Many issues exist with the flywheel rotor operation at high and varying speeds. A prominent problem is synchronous rotor vibration, which can drastically limit the sustainable rotor speed. In a set of projects, the novel Active Disturbance Rejection Control (ADRC) is applied to various problems of flywheel rotor operation. These applications include rotor levitation, steady state rotation at high speeds and accelerating operation. Several models such as the lumped mass model and distributed three-mass models have been analyzed. In each of these applications, the ADRC has been extended to cope with disturbance, noise, and control effort optimization; it also has been compared to various industry-standard controllers such as PID and PD/observer, and is proven to be superior. The control performance of the PID controller and the PD/observer currently used at NASA Glenn has been improved by as much as an order of magnitude. Due to the universality of the second order system, the results obtained in the rotor vibration problem can be straightforwardly extended to other vibrational systems, particularly, the MEMS gyroscope. Potential uses of a new nonlinear controller, which inherits the ease of use of the traditional PID, are also discussed.

  8. Smart Multifunctional Coatings for Corrosion Detection and Control in the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2015-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  9. The psychiatrist's role in aerospace operations.

    PubMed

    Sledge, W H; Boydstun, J A

    1980-08-01

    This paper presents two unique aspects of aerospace psychiatry: the influence of the specialized stressors and occupational requirements of an aviation career and the ambiguous role of the aerospace psychiatrist. Aerospace psychiatrists have multiple, sometimes conflicting, responsibilities to the organization and society (the social control task) and to the individual aviator (the humanistic and medical tasks). In the two case reports below the authors describe airmen who had vasovagal syncope and how the psychiatrist intervened and resolved these conflicting tasks.

  10. Electronically controled mechanical seal for aerospace applications -- Part 1: Design, analysis, and steady state tests

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.; Wolff, Paul; Navon, Samuel

    1994-01-01

    An electronically-controlled mechanial seal, for use as the purge gas seal in a liquid oxygen turbopump, has been designed, analyzed, and built. The thickness of the lubricating film between the faces is controlled by adjusting the coning of the carbon face. This is done by applying a voltage across a piezoelectric element to which the carbon face is bound. Steady state tests have shown that the leakage rate (and film thickness) can be adjusted over a substantial range, utilizing the available range of voltage.

  11. A Pneumatic Actuated Microfluidic Beads-Trapping Device

    SciTech Connect

    Shao, Guocheng; Cai, Ziliang; Wang, Jun; Wang, Wanjun; Lin, Yuehe

    2011-08-20

    The development of a polydimethylsiloxane (PDMS) microfluidic microbeads trapping device is reported in this paper. Besides fluid channels, the proposed device includes a pneumatic control chamber and a beads-trapping chamber with a filter array structure. The pneumatic flow control chamber and the beads-trapping chamber are vertically stacked and separated by a thin membrane. By adjusting the pressure in the pneumatic control chamber, the membrane can either be pushed against the filter array to set the device in trapping mode or be released to set the device in releasing mode. In this paper, a computational fluid dynamics simulation was conducted to optimize the geometry design of the filter array structure; the device fabrication was also carried out. The prototype device was tested and the preliminary experimental results showed that it can be used as a beads-trapping unit for various biochemistry and analytical chemistry applications, especially for flow injection analysis systems.

  12. Refined Synthesis and Characterization of Controlled Diameter, Narrow Size Distribution Microparticles for Aerospace Research Applications

    NASA Technical Reports Server (NTRS)

    Tiemsin, Pacita I.; Wohl, Christopher J.

    2012-01-01

    Flow visualization using polystyrene microspheres (PSL)s has enabled researchers to learn a tremendous amount of information via particle based diagnostic techniques. To better accommodate wind tunnel researchers needs, PSL synthesis via dispersion polymerization has been carried out at NASA Langley Research Center since the late 1980s. When utilizing seed material for flow visualization, size and size distribution are of paramount importance. Therefore, the work described here focused on further refinement of PSL synthesis and characterization. Through controlled variation of synthetic conditions (chemical concentrations, solution stirring speed, temperature, etc.) a robust, controllable procedure was developed. The relationship between particle size and salt concentration, MgSO4, was identified enabling the determination of PSL diameters a priori. Suggestions of future topics related to PSL synthesis, stability, and size variation are also described.

  13. Further Analysis of Thermal Control Coatings on MISSE for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Kenny, Mike; McNulty, Robert; Finckenor, Miria

    2009-01-01

    Many different passive thermal control materials were flown as part of the Materials on International Space Station Experiment. Engineers and scientists at the Marshall Space Flight Center have analyzed a number of these materials, including Z93P zinc oxide/potassium silicate coating, YB-71P zinc orthotitanate/potassium silicate coating, NZOT, which is a low-cost alternative to YB-71P, several electrically conductive/static dissipative thermal control coatings, as well as black coatings for part marking and automated rendezvous and capture. These were exposed to the low Earth orbital environment of atomic oxygen, ultraviolet radiation, thermal cycling, and hard vacuum, though atomic oxygen exposure was very limited for some samples. Results from the one-year exposure of MISSE-3 and MISSE-4 are compared to the four-year exposure of MISSE-1 and MISSE-2. Solar absorptance, infrared emittance, and mass measurements indicate the durability of these materials to withstand the space environment. The effect of contamination from an active space station on the performance of white thermal control coatings is discussed.

  14. An Overview of Brazilian Developments in Beamed Energy Aerospace Propulsion and Vehicle Performance Control

    SciTech Connect

    Minucci, M. A. S.

    2008-04-28

    Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies--IEAv, in collaboration with the Rensselaer Polytechnic Institute--RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO{sub 2} TEA lasers. Flow visualization, model pressure and heat flux measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO{sub 2} TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.

  15. An Overview of Brazilian Developments in Beamed Energy Aerospace Propulsion and Vehicle Performance Control

    NASA Astrophysics Data System (ADS)

    Minucci, M. A. S.

    2008-04-01

    Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies—IEAv, in collaboration with the Rensselaer Polytechnic Institute—RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO2 TEA lasers. Flow visualization, model pressure and heat flux measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO2 TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.

  16. Autonomic and Apoptotic, Aeronautical and Aerospace Systems, and Controlling Scientific Data Generated Therefrom

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)

    2015-01-01

    A self-managing system that uses autonomy and autonomicity is provided with the self-* property of autopoiesis (self-creation). In the event of an agent in the system self-destructing, autopoiesis auto-generates a replacement. A self-esteem reward scheme is also provided and can be used for autonomic agents, based on their performance and trust. Art agent with greater self-esteem may clone at a greater rate compared to the rate of an agent with lower self-esteem. A self-managing system is provided for a high volume of distributed autonomic/self-managing mobile agents, and autonomic adhesion is used to attract similar agents together or to repel dissimilar agents from an event horizon. An apoptotic system is also provided that accords an "expiry date" to data and digital objects, for example, that are available on the internet, which finds usefulness not only in general but also for controlling the loaning and use of space scientific data.

  17. 116. PNEUMATIC SUPPLY PANEL IN CENTER OF VEHICLE MECHANICAL SYSTEMS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. PNEUMATIC SUPPLY PANEL IN CENTER OF VEHICLE MECHANICAL SYSTEMS ROOM (111) OF LSB (BLDG. 770), FACING NORTH. CONTROLS FOR FLOW AND PRESSURE REGULATION OF NITROGEN ON RIGHT SIDE OF PANEL; CONTROLS FOR HELIUM ON LEFT SIDE OF PANEL (AT LEFT EDGE OF PHOTO). - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. 117. PNEUMATIC SUPPLY PANEL IN CENTER OF VEHICLE MECHANICAL SYSTEMS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. PNEUMATIC SUPPLY PANEL IN CENTER OF VEHICLE MECHANICAL SYSTEMS ROOM (111), LSB (BLDG. 770), FACING NORTH. CONTROLS FOR FLOW AND PRESSURE REGULATION OF HELIUM ON LEFT SIDE OF PANEL; CONTROLS FOR NITROGEN ON RIGHT SIDE OF PANEL (AT RIGHT EDGE OF PHOTO). - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. Automatix Incorporated in aerospace applications

    NASA Astrophysics Data System (ADS)

    Hilmer, C.

    1983-03-01

    Robotic assembly and artificial vision applications are currently employed or have potential in aerospace manufacturing. Automatix vision guided robotics have been used for electronic component assembly, welding of aluminum alloys with both gas metal arc welding (MIG). Other applications include gas tungsten arc welding (TIG), and visual gauging. The unique control concept has provided a single robotic controller with virtual robotic arm interchangeability.

  20. Optical Information Processing for Aerospace Applications 2

    NASA Technical Reports Server (NTRS)

    Stermer, R. L. (Compiler)

    1984-01-01

    Current research in optical processing, and determination of its role in future aerospace systems was reviewed. It is shown that optical processing offers significant potential for aircraft and spacecraft control, pattern recognition, and robotics. It is demonstrated that the development of optical devices and components can be implemented in practical aerospace configurations.

  1. Development of aerospace nursing.

    PubMed

    Barron, N J

    1975-04-01

    In the initial development, the primary purpose of the USAF aerospace nursing program was to prepare the nurse to function as an integral member of the aerospace medical team in support of bioastronautics, occupational health and aerospace medical research programs. The absence of an expanded manned space program has required the aerospace nurse to redirect her energies toward the immediate needs of the aerospace medicine program. Many of the aerospace nurse's more specific functions are dependent upon the mission objectives of the command and military base to which she is assigned. Aerospace nursing reflects a concern for the total health needs of the Air Force community and the application of a holistic approach. It includes all aspects of health and all environmental hazards which alter health. The development of aerospace nursing paves the way for this expanded view of nursing practice.

  2. An Aerospace Workshop

    ERIC Educational Resources Information Center

    Hill, Bill

    1972-01-01

    Describes the 16-day, 10,000 mile national tour of the nation's major aerospace research and development centers by 65 students enrolled in Central Washington State College's Summer Aerospace Workshop. (Author/MB)

  3. An electromagnetic pneumatic blood pump driver.

    PubMed

    Whalen, R L; Briskman, R N

    1988-01-01

    An electromagnetic pneumatic pump driver has been developed with the goals of enhanced mechanical reliability and simplicity of operation. The new driver eliminates failure prone components such as solenoid valves or pressure regulators common to conventional pneumatic drive systems, has only a single moving part, and provides for closed-loop operation in which stroke volume and dP/dT are controlled on each beat in real time. Power is provided by a high force (178 N) electromagnetic linear actuator. This assembly uses a high energy density neodymium-iron-boron permanent magnet, low loss vanadium alloy pole pieces, and an energized moving coil. The nominal stroke length of the actuator is 1.7 cm. During operation, the moving coil always remains within a fixed annular air gap, resulting in a measured force output versus applied power linearity of better than 92% over its stroke range. The coil is directly attached to the free end of a 10 cm diameter, 21 convolution, welded titanium metal bellows that forms the gas containing element of the system. The comparatively low pressure gradients across the bellows in this application result in a predicted life for the bellows in excess of 10(9) cycles. Bellows position and internal pressure are monitored continuously to control the pneumatic output. The linear actuator total excursion and velocity are adjusted on each beat using a closed-loop servo system. This results in a pump driver with no operator required adjustment of drive pressure. Instead, there are user selected settings of stroke volume, operating mode, and fill sensitivity.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. An ankle-foot orthosis powered by artificial pneumatic muscles.

    PubMed

    Ferris, Daniel P; Czerniecki, Joseph M; Hannaford, Blake

    2005-05-01

    We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury.

  5. An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles

    PubMed Central

    Ferris, Daniel P.; Czerniecki, Joseph M.; Hannaford, Blake

    2005-01-01

    We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury. PMID:16082019

  6. Aerospace Industry and Research. Aerospace Education II.

    ERIC Educational Resources Information Center

    Mackin, T. E.

    This book, to be used in the Air Force ROTC program only, discusses various aspects of the aerospace industry and its importance to the society. Not only does a modern and strong aerospace technology help in national defense, but it is a major economic industry as well. The vast number of people employed could shake the roots of economic…

  7. Does intermittent pneumatic compression reduce the risk of post stroke deep vein thrombosis? The CLOTS 3 trial: study protocol for a randomized controlled trial

    PubMed Central

    2012-01-01

    Abstract Background Approximately 80,000 patients each year are admitted to UK hospitals with an acute stroke and are immobile. At least 10% will develop a proximal Deep Vein Thrombosis in the first month and 1.5% a pulmonary embolus. Although hydration, antiplatelet treatment and early mobilisation may reduce the risk of deep vein thrombosis, there are currently no preventive strategies which have been clearly shown to be both effective and safe. Anticoagulation increases the risks of bleeding and compression stockings are ineffective. Systematic reviews of small randomized trials of intermittent pneumatic compression have shown that this reduces the risk of deep vein thrombosis in patients undergoing surgery, but that there are few data concerning its use after stroke. The CLOTS trial 3 aims to determine whether, compared with best medical care, best medical care plus intermittent pneumatic compression in immobile stroke patients reduces the risk of proximal deep vein thrombosis. Methods/Design CLOTS Trial 3 is a parallel group multicentre trial; with centralized randomisation (minimisation) to ensure allocation concealment. Over 80 centres in the UK will recruit 2800 immobile stroke patients within the first 3 days of their hospital admission. Patients will be allocated to best medical care or best medical care plus intermittent pneumatic compression. Ultrasonographers will perform a Compression Duplex Ultrasound Scan to detect deep vein thrombosis in each treatment group at about 7-10 days and 25-30 days. The primary outcome cluster includes symptomatic or asymptomatic deep vein thrombosis in the popliteal or femoral veins detected on either scan. Patients are then followed up by postal or telephone questionnaire at 6 months from randomisation to detect later symptomatic deep vein thrombosis and pulmonary emboli and to establish their functional outcome (Oxford handicap scale) and quality of life (EQ5D-3 L). The ultrasonographers performing the scans are

  8. Pneumatic Conveying of Seed Cotton: Minimum Velocity and Pressure Drop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electricity is a major cost for cotton gins, representing approximately 20% of variable costs. Fans used for pneumatic conveying consume the majority of electricity at cotton gins. Development of control systems to reduce the air velocity used for conveying seed cotton could significantly decrease e...

  9. Pneumatic Conveying of Seed Cotton: Minimum Velocity and Pressure Drop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electricity is major cost for cotton gins, representing approximately 20% of the industry’s variable costs. Fans used for pneumatic conveying consume the majority of electricity at cotton gins. Development of control systems to reduce the air velocity used for conveying seed cotton could significant...

  10. Dynamics of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.

  11. Model for pneumatic pellet injection

    SciTech Connect

    Hogan, J.T.; Milora, S.L.; Schuresko, D.D.

    1983-07-01

    A hydrodynamic code has been developed to model the performance of pneumatic pellet injection systems. The code describes one dimensional, unsteady compressible gas dynamics, including gas friction and heat transfer to the walls in a system with variable area. The mass, momentum, and energy equations are solved with an iterated Lax-Wendroff scheme with additional numerical viscosity. The code is described and comparisons with experimental data are presented.

  12. 21 CFR 878.5910 - Pneumatic tourniquet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5910 Pneumatic tourniquet... patient's limb and inflated to reduce or totally occlude circulation during surgery. (b)...

  13. 21 CFR 878.5910 - Pneumatic tourniquet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5910 Pneumatic tourniquet... patient's limb and inflated to reduce or totally occlude circulation during surgery. (b)...

  14. 21 CFR 878.5910 - Pneumatic tourniquet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5910 Pneumatic tourniquet... patient's limb and inflated to reduce or totally occlude circulation during surgery. (b)...

  15. 21 CFR 878.5910 - Pneumatic tourniquet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5910 Pneumatic tourniquet... patient's limb and inflated to reduce or totally occlude circulation during surgery. (b)...

  16. 21 CFR 878.5910 - Pneumatic tourniquet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices § 878.5910 Pneumatic tourniquet... patient's limb and inflated to reduce or totally occlude circulation during surgery. (b)...

  17. Application of Model-based Prognostics to a Pneumatic Valves Testbed

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Kulkarni, Chetan S.; Gorospe, George

    2014-01-01

    Pneumatic-actuated valves play an important role in many applications, including cryogenic propellant loading for space operations. Model-based prognostics emphasizes the importance of a model that describes the nominal and faulty behavior of a system, and how faulty behavior progresses in time, causing the end of useful life of the system. We describe the construction of a testbed consisting of a pneumatic valve that allows the injection of faulty behavior and controllable fault progression. The valve opens discretely, and is controlled through a solenoid valve. Controllable leaks of pneumatic gas in the testbed are introduced through proportional valves, allowing the testing and validation of prognostics algorithms for pneumatic valves. A new valve prognostics approach is developed that estimates fault progression and predicts remaining life based only on valve timing measurements. Simulation experiments demonstrate and validate the approach.

  18. Aerospace Applications of Microprocessors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An assessment of the state of microprocessor applications is presented. Current and future requirements and associated technological advances which allow effective exploitation in aerospace applications are discussed.

  19. Supercomputing in Aerospace

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Yee, Helen

    1987-01-01

    Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics.

  20. Aerospace and military

    SciTech Connect

    Adam, J.A.; Esch, K

    1990-01-01

    This article reviews military and aerospace developments of 1989. The Voyager spacecraft returned astounding imagery from Neptune, sophisticated sensors were launched to explore Venus and Jupiter, and another craft went into earth orbit to explore cosmic rays, while a huge telescope is to be launched early in 1990. The U.S. space shuttle redesign was completed and access to space has become no longer purely a governmental enterprise. In the military realm, events within the Soviet bloc, such as the Berlin Wall's destruction, have popularized arms control. Several big treaties could be signed within the year. Massive troop, equipment, and budget reductions are being considered, along with a halt or delay of major new weapons systems. For new missions, the U.S. military is retreating to its role of a century ago - patrolling the nation's borders, this time against narcotics traffickers.

  1. Aerospace applications of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-01-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  2. Aerospace applications of magnetic bearings

    NASA Astrophysics Data System (ADS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-05-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  3. A skin indentation system using a pneumatic bellows.

    PubMed

    Ferguson-Pell, M; Hagisawa, S; Masiello, R D

    1994-01-01

    A pneumatic indentation system using a copper bellows has been developed for physiological studies where a controlled uniaxial compressive force is required to be applied to the surface of the skin. Such a system is useful for studies where the physiological response of the tissues is to be monitored following a known loading history. The indentation system is driven by a vacuum/compression pneumatic pump through solenoid valves under closed-loop computer control. A load cell placed between the indentor and bellows monitors the applied force providing a feedback signal to the computer. The signal from the computer activates the valves supplying air pressure to the bellows, and the applied force is controlled using a digital closed-loop protocol. This system can be used to provide a controlled loading sequence to the skin without utilizing gravitational forces, which allows the subject to keep a more natural position during the experiment.

  4. Aerospace - Aviation Education.

    ERIC Educational Resources Information Center

    Martin, Arthur I.; Jones, K. K.

    This document outlines the aerospace-aviation education program of the State of Texas. In this publication the course structures have been revised to fit the quarter system format of secondary schools in Texas. The four courses outlined here have been designed for students who will be consumers of aerospace products, spinoffs, and services or who…

  5. RANGE INCREASER FOR PNEUMATIC GAUGES

    DOEpatents

    Fowler, A.H.; Seaborn, G.B. Jr.

    1960-09-27

    An improved pneumatic gage is offered in which the linear range has been increased without excessive air consumption. This has been accomplished by providing an expansible antechamber connected to the nozzle of the gage so that the position of the nozzle with respect to the workpiece is varied automatically by variation in pressure within the antechamber. This arrangement ensures that the nozzle-to-workpiece clearance is maintained within certain limits, thus obtaining a linear relation of air flow to nozzle-to-workpiece clearance over a wider range.

  6. A Study of Gas Economizing Pneumatic Cylinder

    NASA Astrophysics Data System (ADS)

    Li, T. C.; Wu, H. W.; Kuo, M. J.

    2006-10-01

    The pneumatic cylinder is the most typical actuator in the pneumatic equipment, and its mechanism is so simple that it is often used to operate point to point driving without the feedback loop in various automatic machines. But, the energy efficiency of pneumatic system is very poor compared with electrical systems and hydraulic systems. So, it is very important to discuss the energy saving for the pneumatic cylinder systems. In this thesis, we proposed three methods to apply the reduction in the air consumed for pneumatic cylinder systems. An air charge accumulator is used to absorb the exhausted compress air and a boost valve boosted the air to the higher pressure for used again. From the experiments, the direct used cylinder exhaust air may save about 40% of compress air.

  7. Manual of Documentation Practices Applicable to Defence-Aerospace Scientific and Technical Information. Volume IV: Sections 10--Security Storage and Control; 11--Organisation and Management; 12--Networks and External Sources of Information.

    ERIC Educational Resources Information Center

    Schuler, S. C., Ed.

    The last of four volumes in a series describing the basic documentation practices involved in the initial setting up and subsequent operation of an information-library organization to provide defense-aerospace scientific and technical information services, this manual consists of three sections. In "Security Storage and Control," Michael…

  8. Optimizing pneumatic conveying of biomass materials

    NASA Astrophysics Data System (ADS)

    DiCianni, Matthew Edward Michael

    2011-12-01

    Biomass is a readily available but underutilized energy resource. One of the main challenges is the inability of biomass feed stocks like corn stover or wood chips to flow freely without intermittent jamming. This research integrated an automated pneumatic conveying system to efficiently transport biomass into a biomass reactor. Material was held in a storage container until an end effector attached to a 3-axis controller engaged the material to flow through pneumatic vacuum in the carrier fluid of air. The material was disengaged from the carrier fluid through centripetal forces induced by a cyclone separator. As the air was pulled out of the cyclone, the biomass drops out the bottom due to gravitational forces and fell into a secondary storage hopper. The second storage container was for testing purposes only, where the actual apparatus would use a vertically oriented lock hopper to feed material into the biomass reactor. In the experimental test apparatus, sensors measured the storage hopper weight (mass-flow rate), pressure drop from the blower, and input power consumption of the motor. Parameters that were adjusted during testing include pipe diameter, material type, and motor speed. Testing indicated that decreasing the motor speed below its maximum still allows for conveyance of the material without blockage forming in the piping. The data shows that the power consumption of the system can be reduced based on the size and weight of the material introduced to the conveying pipe. Also, conveying certain materials proved to be problematic with particular duct diameters. Ultimately, an optimal duct diameter that can perform efficiently for a broad range of materials was chosen for the given system. Through these improvements, the energy return on investment will be improved for biomass feed stocks, which is taking a step in the right direction to secure the nation's energy independence.

  9. Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus.

    PubMed

    Wedel, Mathew J; Taylor, Michael P

    2013-01-01

    Skeletal pneumaticity is found in the presacral vertebrae of most sauropod dinosaurs, but pneumaticity is much less common in the vertebrae of the tail. We describe previously unrecognized pneumatic fossae in the mid-caudal vertebrae of specimens of Giraffatitan and Apatosaurus. In both taxa, the most distal pneumatic vertebrae are separated from other pneumatic vertebrae by sequences of three to seven apneumatic vertebrae. Caudal pneumaticity is not prominent in most individuals of either of these taxa, and its unpredictable development means that it may be more widespread than previously recognised within Sauropoda and elsewhere in Saurischia. The erratic patterns of caudal pneumatization in Giraffatitan and Apatosaurus, including the pneumatic hiatuses, show that pneumatic diverticula were more broadly distributed in the bodies of the living animals than are their traces in the skeleton. Together with recently published evidence of cryptic diverticula--those that leave few or no skeletal traces--in basal sauropodomorphs and in pterosaurs, this is further evidence that pneumatic diverticula were widespread in ornithodirans, both across phylogeny and throughout anatomy.

  10. Caudal Pneumaticity and Pneumatic Hiatuses in the Sauropod Dinosaurs Giraffatitan and Apatosaurus

    PubMed Central

    Wedel, Mathew J.; Taylor, Michael P.

    2013-01-01

    Skeletal pneumaticity is found in the presacral vertebrae of most sauropod dinosaurs, but pneumaticity is much less common in the vertebrae of the tail. We describe previously unrecognized pneumatic fossae in the mid-caudal vertebrae of specimens of Giraffatitan and Apatosaurus. In both taxa, the most distal pneumatic vertebrae are separated from other pneumatic vertebrae by sequences of three to seven apneumatic vertebrae. Caudal pneumaticity is not prominent in most individuals of either of these taxa, and its unpredictable development means that it may be more widespread than previously recognised within Sauropoda and elsewhere in Saurischia. The erratic patterns of caudal pneumatization in Giraffatitan and Apatosaurus, including the pneumatic hiatuses, show that pneumatic diverticula were more broadly distributed in the bodies of the living animals than are their traces in the skeleton. Together with recently published evidence of cryptic diverticula—those that leave few or no skeletal traces—in basal sauropodomorphs and in pterosaurs, this is further evidence that pneumatic diverticula were widespread in ornithodirans, both across phylogeny and throughout anatomy. PMID:24205162

  11. Electric versus pneumatic power in hand prostheses for children.

    PubMed

    Plettenburg, D H

    1989-01-01

    Most externally powered hand prostheses for children with a unilateral congenital below-elbow amputation are myoelectrically controlled. All of them are electrically powered. Despite the success of fitting children with this kind of prostheses, there are some disadvantages: prosthetic weight is high, operating speed is low, the system is vulnerable and its size prohibits fitting it to patients with a long fore-arm stump. It will be shown that pneumatic power can overcome most of these disadvantages.

  12. Ninteenth Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings of the 19th Aerospace Mechanisms Symposium are reported. Technological areas covered include space lubrication, bearings, aerodynamic devices, spacecraft/Shuttle latches, deployment, positioning, and pointing. Devices for spacecraft docking and manipulator and teleoperator mechanisms are also described.

  13. Aerospace bibliography, seventh edition

    NASA Technical Reports Server (NTRS)

    Blashfield, J. F. (Compiler)

    1983-01-01

    Space travel, planetary probes, applications satellites, manned spaceflight, the impacts of space exploration, future space activities, astronomy, exobiology, aeronautics, energy, space and the humanities, and aerospace education are covered.

  14. Development of pneumatic thrust-deflecting powered-lift systems

    NASA Technical Reports Server (NTRS)

    Englar, R. J.; Nichols, J. H., Jr.; Harris, M. J.; Eppel, J. C.; Shovlin, M. D.

    1986-01-01

    Improvements introduced into the Circulation Control Wing/Upper Surface Blowing (CCW/USB) STOL concept (Harris et al., 1982) are described along with results of the full-scale static ground tests and model-scale wind tunnel investigations. Tests performed on the full-scale pneumatic thrust-deflecting system installed on the NASA QSRA aircraft have demonstrated that, relative to the original baseline configuration, a doubling of incremental thrust deflection due to blowing resulted from improvements that increased the blowing span and momentum, as well as from variations in blowing slot height and geometry of the trailing edge. A CCW/Over the Wing model has been built and tested, which was shown to be equivalent to the CCW/USB system in terms of pneumatic thrust deflection and lift generation, while resolving the problem of cruise thrust loss due to exhaust scrubbing on the wing upper surface.

  15. Comprehensive integration of homogeneous bioassays via centrifugo-pneumatic cascading.

    PubMed

    Godino, Neus; Gorkin, Robert; Linares, Ana V; Burger, Robert; Ducrée, Jens

    2013-02-21

    This work for the first time presents the full integration and automation concept for a range of bioassays leveraged by cascading a centrifugo-pneumatic valving scheme to sequentially move several liquids through shared channel segments for multi-step sample preparation into the detection zone. This novel centrifugo-pneumatic liquid handling significantly simplifies system manufacture by obviating the need for complex surface functionalization procedures or hybrid material integration, as it is common in conventional valving methods such as capillary burst valves or sacrificial valves. Based on the centrifugo-pneumatic valving scheme, this work presents a toolkit of operational elements implementing liquid loading/transfer, metering, mixing and sedimentation in a microstructured polymer disc. As a proof of concept for the broad class of homogeneous bioassays, the full integration and automation of a colorimetric nitrate/nitrite test for the detection of clinically relevant nitric oxide (NO) in whole blood is implemented. First, 40 μL of plasma is extracted from a 100 μL sample of human blood, incubated for one hour with the enzymatic mixture (60 μL), and finally reacted with 100 μL of colorimetric (Greiss) reagents. Following just a single loading phase at the beginning of the process, all of these steps are automated through the centrifugo-pneumatic cascade with a high level of flow control and synchronization. Our system shows good correlation with controls up to 50 μM of nitrate, which adequately covers the healthy human range (4 to 45.3 μM).

  16. Pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer.

    PubMed

    Yoshimura, Toshio; Takagi, Atsushi

    2004-09-01

    This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and functions by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.

  17. International Conference on Aerospace Trends...2001 - From Aeroplane to Aerospace Plane, Thiruvananthapuram, India, June 27, 28, 1991, Proceedings

    NASA Astrophysics Data System (ADS)

    1991-08-01

    Consideration is given to operational characteristics of future launch vehicles, trends in propulsion technology, technology challenges in the development of cryogenic propulsion systems for future reusable space-launch vehicles, estimation of the overall drag coefficient of an aerospace plane, and self-reliance in aerospace structures. Attention is also given to basic design concepts for smart actuators for aerospace plane control, a software package for the preliminary design of a helicopter, and multiconstraint wing optimization.

  18. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    NASA Astrophysics Data System (ADS)

    Hocking, Erica G.; Wereley, Norman M.

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30-80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible.

  19. Cybersecurity for aerospace autonomous systems

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  20. Pneumatic fracturing of low permeability media

    SciTech Connect

    Schuring, J.R.

    1996-08-01

    Pneumatic fracturing of soils to enhance the removal and treatment of dense nonaqueous phase liquids is described. The process involves gas injection at a pressure exceeding the natural stresses and at a flow rate exceeding the permeability of the formation. The paper outlines geologic considerations, advantages and disadvantages, general technology considerations, low permeability media considerations, commercial availability, efficiency, and costs. Five case histories of remediation using pneumatic fracturing are briefly summarized. 11 refs., 2 figs., 1 tab.

  1. Promising pneumatic punchers for borehole drilling

    SciTech Connect

    A.A. Lipin

    2005-03-15

    The state of borehole drilling by downhole pneumatic punchers and their potential use in open and underground mining as well as in exploration for reliable sampling are analyzed. Performance specification is presented for the new-generation pneumatic punchers equipped with a pin tool, effectively operating at a compressed-air pressure of 0.5-0.7 MPa, and with an additional extended exhaust from the power stroke chamber during working cycle.

  2. Environmentally regulated aerospace coatings

    NASA Technical Reports Server (NTRS)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  3. Aerospace engineering educational program

    NASA Technical Reports Server (NTRS)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  4. The 18th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics concerning aerospace mechanisms, their functional performance, and design specifications are presented. Discussed subjects include the design and development of release mechanisms, actuators, linear driver/rate controllers, antenna and appendage deployment systems, position control systems, and tracking mechanisms for antennas and solar arrays. Engine design, spaceborne experiments, and large space structure technology are also examined.

  5. An Energy-Based Thermodynamic Stabilization Framework for Hybrid Control Design of Large-Scale Aerospace Systems

    DTIC Science & Technology

    2009-02-27

    exchanged by means of line-of-sight sensors that experience periodic communication dropouts due to agent motion. Variation in network topology in...respiratory, and cardiovascular function by man- ual control based on the clinician’s experience and intuition. Open-loop control by clinical personnel can be...to ap- pear. [29] W. M. Haddad and J. M. Bailey, "Closed-Loop Control for Intensive Care Unit Seda- tion," Best Prac. Res. Clinical Anaesthesiology

  6. Parameter estimation of large flexible aerospace structures with application to the control of the Maypole Deployable Reflector

    NASA Technical Reports Server (NTRS)

    Balas, M. J.

    1981-01-01

    Systems such as the Maypole deployable reflector have a distributed parameter nature. The flexible column and hoop structure and the circular antenna of 30-100 meter diameter which it supports are described by partial, rather than ordinary, differential equations. Progress completed in reduced order modelling andd controller design and digital parameter estimation and control is summarized. Topics covered include depolyment and on-orbit operation; quasi-static (steady state) operation; dynamic distributed parameter system; autoregressive moving average identification; frequency domain procedures; direct or implicit active control; adaptive observers; parameter estimation using a linear reinforcement learning factor; feedback control; and reduced order modeling for nonlinear systems.

  7. [Is pneumatic sample transport system also a carrier for microorganisms?].

    PubMed

    Alpat, Saygin Nayman; Ozgüneş, Ilhan; Aybey, Aşkin Derya; Ertem, Osman Turgut; Akşit, Filiz

    2009-07-01

    The purpose of this study was to evaluate the possible infection and contamination risk of the pneumatic system used in our hospital and to establish essential infection control measures. The study was conducted in a quaternary health care center with 1.000 bed capacity. A total of 614 specimens were taken 2 times weekly from the pneumatic transport system and its carriers at 22 wards, 5 intensive care units, 3 laboratories, 2 blood taking units, and pharmacy. Samples were also obtained from the fingertips of 33 subjects using the system, before and after contact with the carriers. A questionnaire that consisted of 8 questions was applied to 224 subjects who worked in those units, evaluating the degree of compliance to the obligations for the cleaning of the pneumatic system and carriers and their approach in case of visible pollution at the system. Bacterial growth was observed in 15.2% (45/296) of samples in the 1st week and 7.6% (18/238) of the samples in the 2nd week, making a total of 11.8% (63/534) bacterial growth. No growth was detected from the areas where the carriers were placed. Of these 69.8% were coagulase negative staphylococci, 11.1% diphteroids, 7.9% Acinetobacter Iwoffii, 4.8% Staphylococcus aureus, 4.8% Bacillus spp. and 1.6% Enterococcus durans. Acinetobacter baumannii and Aspergillus were detected at two fingertip samples taken before the contact with carriers, while again A. baumannii and Enterobacter cloacae were detected at the samples following contact. Moreover, 31.3% of the subjects noted that they cleaned the carriers only if any visible contamination was present. In addition, 14.3% reported that they have encountered broken or spilled up material in the system for more than 5 times, 10.3% reported that they followed the instructions in case of presence of infected material inside the carriers, 23.7% reported that they always washed their hands after any contact with the carriers, 9.8% noted that they always used gloves during contact

  8. Study of Pneumatic Servo Loading System in Double-Sided Polishing

    NASA Astrophysics Data System (ADS)

    Qian, N.; Ruan, J.; Li, W.

    2006-10-01

    The precise double-sided polishing process is one of the main methods to get the ultra-smooth surface of workpiece. In double-sided polishing machine, a loading system is required to be able to precisely control the load superimposed on the workpiece, while the polishing is being carried out. A pneumatic servo loading system is proposed for this purpose. In the pneumatic servo system, the servo valve, which acts both the electrical to mechanical converter and the power amplifier, has a substantial influence on the performance of the loading system. Therefore a specially designed pneumatic digital servo valve is applied in the control system. In this paper, the construction of the pneumatic servo loading system in double-sided polishing machine and control strategy associated with the digital servo valve are first addressed. The mathematical model of the system established and the hardware of the pneumatic servo system is designed. Finally, the experiments are carried out by measuring the practical load on the workpiece and the quality of the surface finish. It is demonstrated that the error rate of load is less than 5% and a super-smooth surface of silicon wafer with roughness Ra 0.401 nm can be obtained.

  9. History of Suction-Type Laminar-Flow Control with Emphasis on Flight Resrearch: Monographs in Aerospace History Number 13

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.

    1999-01-01

    The paper contains the following sections: Foreword; Preface; Laminar-Flow Control Concepts and Scope of Monograph; Early Research on Suction-Type Laminar-Flow Control (Research from the 1930s through the War Years; Research from after World War II to the Mid-1960s); Post X-21 Research on Suction-Type Laminar-Flow Control; Status of Laminar-Flow Control Technology in the Mid-1990s; Glossary; Document 1-Aeronautics Panel, AACB, R&D Review, Report of the Subpanel on Aeronautic Energy Conservation/Fuels; Document 2-Report of Review Group on X-21A Laminar Flow Control Program; Document 3-Langley Research Center Announcement, Establishment of Laminar Flow Control Working Group; Document 4-Intercenter Agreement for Laminar Flow Control Leading Edge Glove Flights, LaRC and DFRC; Document 5-Flight Report NLF-144, of AFTIF-111 Aircraft with the TACT Wing Modified by a Natural Laminar Flow Glove; Document 6-Flight Record, F-16XL Supersonic Laminar Flow Control Aircraft; Index; and About the Author.

  10. Combustion Processes in the Aerospace Environment

    NASA Technical Reports Server (NTRS)

    Huggett, Clayton

    1969-01-01

    The aerospace environment introduces new and enhanced fire hazards because the special atmosphere employed may increase the frequency and intensity of fires, because the confinement associated with aerospace systems adversely affects the dynamics of fire development and control, and because the hostile external environments limit fire control and rescue operations. Oxygen enriched atmospheres contribute to the fire hazard in aerospace systems by extending the list of combustible fuels, increasing the probability of ignition, and increasing the rates of fire spread and energy release. A system for classifying atmospheres according to the degree of fire hazard, based on the heat capacity of the atmosphere per mole of oxygen, is suggested. A brief exploration of the dynamics of chamber fires shows that such fires will exhibit an exponential growth rate and may grow to dangerous size in a very short time. Relatively small quantities of fuel and oxygen can produce a catastrophic fire in a closed chamber.

  11. Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  12. Frontier Aerospace Opportunities

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2014-01-01

    Discussion and suggested applications of the many ongoing technology opportunities for aerospace products and missions, resulting in often revolutionary capabilities. The, at this point largely unexamined, plethora of possibilities going forward, a subset of which is discussed, could literally reinvent aerospace but requires triage of many possibilities. Such initial upfront homework would lengthen the Research and Development (R&D) time frame but could greatly enhance the affordability and performance of the evolved products and capabilities. Structural nanotubes and exotic energetics along with some unique systems approaches are particularly compelling.

  13. Design of flat pneumatic artificial muscles

    NASA Astrophysics Data System (ADS)

    Wirekoh, Jackson; Park, Yong-Lae

    2017-03-01

    Pneumatic artificial muscles (PAMs) have gained wide use in the field of robotics due to their ability to generate linear forces and motions with a simple mechanism, while remaining lightweight and compact. However, PAMs are limited by their traditional cylindrical form factors, which must increase radially to improve contraction force generation. Additionally, this form factor results in overly complicated fabrication processes when embedded fibers and sensor elements are required to provide efficient actuation and control of the PAMs while minimizing the bulkiness of the overall robotic system. In order to overcome these limitations, a flat two-dimensional PAM capable of being fabricated using a simple layered manufacturing process was created. Furthermore, a theoretical model was developed using Von Karman’s formulation for large deformations and the energy methods. Experimental characterizations of two different types of PAMs, a single-cell unit and a multi-cell unit, were performed to measure the maximum contraction lengths and forces at input pressures ranging from 0 to 150 kPa. Experimental data were then used to verify the fidelity of the theoretical model.

  14. Aerospace Education. NSTA Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2008

    2008-01-01

    National Science Teachers Association (NSTA) has developed a new position statement, "Aerospace Education." NSTA believes that aerospace education is an important component of comprehensive preK-12 science education programs. This statement highlights key considerations that should be addressed when implementing a high quality aerospace education…

  15. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The following areas of NASA's responsibilities are examined: (1) the Space Transportation System (STS) operations and evolving program elements; (2) establishment of the Space Station program organization and issuance of requests for proposals to the aerospace industry; and (3) NASA's aircraft operations, including research and development flight programs for two advanced X-type aircraft.

  16. Aerospace at Saint Francis.

    ERIC Educational Resources Information Center

    Aviation/Space, 1980

    1980-01-01

    Discusses an aviation/aerospace program as a science elective for 11th and 12th year students. This program is multi-faceted and addresses the needs of a wide variety of students. Its main objective is to present aviation and space sciences which will provide a good base for higher education in these areas. (SK)

  17. Aerospace applications of batteries

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    1993-01-01

    NASA has developed battery technology to meet the demanding requirements for aerospace applications; specifically, the space vacuum, launch loads, and high duty cycles. Because of unique requirements and operating environments associated with space applications, NASA has written its own standards and specifications for batteries.

  18. Aerospace Bibliography, Third Edition.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This third edition bibliography lists books and teaching aids related to aeronautics and space. Aeronautics titles are limited to aerospace-related research subjects, and books on astronomy to those directly related to space exploration. Also listed are pertinent references like pamphlets, films, film strips, booklets, charts, pictures,…

  19. Aerospace technology comes home.

    PubMed

    Coleman, C

    1997-07-01

    Science is expanding the options for homebound patients. Many of the new technologies coming into the home care industry are the result of aerospace innovations. What are these new technologies, and what can the home care industry expect to see in the future.

  20. Aerospace Bibliography. Seventh Edition.

    ERIC Educational Resources Information Center

    Blashfield, Jean F., Comp.

    Provided for teachers and the general adult reader is an annotated and graded list of books and reference materials dealing with aerospace subjects. Only non-fiction books and pamphlets that need to be purchased from commercial or government sources are included. Free industrial materials and educational aids are not included because they tend to…

  1. A magnetorheological fluid embedded pneumatic vibration isolator allowing independently adjustable stiffness and damping

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaocong; Jing, Xingjian; Cheng, Li

    2011-08-01

    A magnetorheological (MR) fluid embedded pneumatic vibration isolator (MrEPI) with hybrid and compact connection of pneumatic spring and MR damping elements is proposed in this study. The proposed MrEPI system allows independent nonlinear stiffness and damping control with considerable maneuverable ranges. Meanwhile, it allows convenient switching between different passive and active vibration control modes, thus providing more flexibility and versatility in applications. To demonstrate the advantageous dynamic performance of the MrEPI, a nonlinear non-dimensional dynamic model is developed with full consideration of the nonlinear elements involved. A systematic analysis is therefore conducted which can clearly reveal the influence on system output performance caused by each physically important parameter and provide a useful insight into the analysis and design of nonlinear vibration isolators with pneumatic and MR elements.

  2. Combination of the Flow Disturbance Observer and Base Plate Jerk Feedback in a Pneumatic Positioning Stage

    NASA Astrophysics Data System (ADS)

    Wali, Mohebullah; Wakui, Shinji

    Pneumatic actuation systems are commonly used to drive the positioning stage due to several merits. However, one of the critical demerits of the pneumatic systems is the problem of the compressibility, which results in the flow disturbance. Another problem of the positioning stage can be addressed to the vibration which occurs due to the active condition of the base plate. This paper concerns the mentioned two issues in a pneumatic positioning stage. In order to suppress the flow disturbance and to reduce the horizontal vibration of the stage due to the reaction force, a combined control scheme is proposed. This scheme is composed of the fusion of flow disturbance observer (FDOB) and base plate jerk feedback (BPJFB) scheme. An enhanced experimental methodology is provided to successfully implement the fusion of the mentioned feedback controllers. The results show the effectiveness of the proposed method.

  3. Evaluation of posterior clinoid process pneumatization by multidetector computed tomography.

    PubMed

    Burulday, Veysel; Akgül, Mehmet Hüseyin; Muluk, Nuray Bayar; Ozveren, Mehmet Faik; Kaya, Ahmet

    2016-10-21

    In the present study, we investigated the types and ratio of posterior clinoid process (PCP) pneumatization in paranasal sinus multidetector computed tomography (MDCT). Paranasal MDCT images of 541 subjects (227 males, 314 females), between 15 and 65 years old, were included into the study. Pneumatization of anterior clinoid process and pneumatization types (I, II, or III) were evaluated in the males and females. PCP pneumatization was detected in 20.7 % of the males and 11.5 % of the females. Right, left, and bilateral PCP pneumatizations were detected in 7.9, 5.7, and 7.0 % of the males and 2.9, 3.2, and 4.5 % of the females, respectively. PCP pneumatization of the males is significantly higher than the females. The most detected type of pneumatization was type I (61.2 %) for all groups. In right, left, and bilateral pneumatizations separately, type I pneumatization was the most detected pneumatization type with the ratio of the 70.4, 65.2, and 50.0 %, respectively. In males, type I (61.7 %), and similarly in females, type I (60.6 %) pneumatization were detected more. Type II and type III pneumatizations were detected in decreasing order in both groups. In younger subjects, pneumatization of posterior clinoid process was found as higher, and in older subjects, PCP pneumatization was found as lower. Sclerosis process related to the aging may be responsible for the lower pneumatization ratios in older subjects. Structure of the surrounding regions of PCP is important for surgical procedures related to cavernous sinus, basilar apex aneurysms, and mass lesions. Preoperative radiological examinations are useful for operative planning. Any anomalies to PCP can cause unnecessary injury to the neurovascular complex structure around the cavernous sinus or postclinoidectomy CSF fistulas. Posterior clinoidectomies should be avoided in patients with type III PCP pneumatization to prevent CSF fistulas.

  4. NASA aerospace battery systems program update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Schulze, Norman R.

    1989-01-01

    An overview of a battery systems program designed to enhance the safety, reliability, and performance of NASA's aerospace primary and secondary batteries as well as battery power systems is presented. The status of research in all three areas is reviewed. The approach to achieving the program objectives involves increasing the fundamental understanding of primary and secondary cells; providing for improved nickel-cadmium manufacturing process control; providing for the establishment of a NASA standard nickel-hydrogen cell design; establishing specifications, design and operational guidelines for both primary and secondary cells and batteries; providing training relating to the above areas; and opening and maintaining communication lines within NASA and the aerospace battery community.

  5. Pneumatic Rupture of Rectosigmoid; a Case Report.

    PubMed

    Montazeri, Mohammad; Farhangi, Bahman; Montazeri, Mahmood

    2014-01-01

    Pneumatic rectosigmoid rapture is usually occurred following the inappropriate fun by direct entering a high volume of the air through the pneumatic device to the anus. Such an event was reported for the first time in 1904 by Stone. Diagnosis and treatment of such injuries are often delayed because of some social limitations and preventing the patient form explaining the event. Colon sigmoid rupture and pneumoperitoneum is one of the most dangerous and life treating complications of entering a high volume of the air to the rectum in a short time. There are only a few reports regarding the similar cases. Here, a case of pneumatic rectosigmoid rapture was reported in a 53 year-old male following an inappropriate fun.

  6. 7 CFR 3201.86 - Pneumatic equipment lubricants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Pneumatic equipment lubricants. 3201.86 Section 3201... PROCUREMENT Designated Items § 3201.86 Pneumatic equipment lubricants. (a) Definition. Lubricants designed... this part, will give a procurement preference for qualifying biobased pneumatic equipment...

  7. 7 CFR 3201.86 - Pneumatic equipment lubricants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Pneumatic equipment lubricants. 3201.86 Section 3201... PROCUREMENT Designated Items § 3201.86 Pneumatic equipment lubricants. (a) Definition. Lubricants designed... this part, will give a procurement preference for qualifying biobased pneumatic equipment...

  8. 21 CFR 870.2780 - Hydraulic, pneumatic, or photoelectric plethysmographs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hydraulic, pneumatic, or photoelectric... § 870.2780 Hydraulic, pneumatic, or photoelectric plethysmographs. (a) Identification. A hydraulic... using hydraulic, pneumatic, or photoelectric measurement techniques. (b) Classification. Class...

  9. 21 CFR 870.2780 - Hydraulic, pneumatic, or photoelectric plethysmographs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hydraulic, pneumatic, or photoelectric... § 870.2780 Hydraulic, pneumatic, or photoelectric plethysmographs. (a) Identification. A hydraulic... using hydraulic, pneumatic, or photoelectric measurement techniques. (b) Classification. Class...

  10. 21 CFR 870.2780 - Hydraulic, pneumatic, or photoelectric plethysmographs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydraulic, pneumatic, or photoelectric... § 870.2780 Hydraulic, pneumatic, or photoelectric plethysmographs. (a) Identification. A hydraulic... using hydraulic, pneumatic, or photoelectric measurement techniques. (b) Classification. Class...

  11. 21 CFR 870.2780 - Hydraulic, pneumatic, or photoelectric plethysmographs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hydraulic, pneumatic, or photoelectric... § 870.2780 Hydraulic, pneumatic, or photoelectric plethysmographs. (a) Identification. A hydraulic... using hydraulic, pneumatic, or photoelectric measurement techniques. (b) Classification. Class...

  12. 21 CFR 870.2780 - Hydraulic, pneumatic, or photoelectric plethysmographs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hydraulic, pneumatic, or photoelectric... § 870.2780 Hydraulic, pneumatic, or photoelectric plethysmographs. (a) Identification. A hydraulic... using hydraulic, pneumatic, or photoelectric measurement techniques. (b) Classification. Class...

  13. 21 CFR 882.4370 - Pneumatic cranial drill motor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pneumatic cranial drill motor. 882.4370 Section... drill motor. (a) Identification. A pneumatic cranial drill motor is a pneumatically operated power source used with removable rotating surgical cutting tools or drill bits on a patient's skull....

  14. 21 CFR 882.4370 - Pneumatic cranial drill motor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pneumatic cranial drill motor. 882.4370 Section... drill motor. (a) Identification. A pneumatic cranial drill motor is a pneumatically operated power source used with removable rotating surgical cutting tools or drill bits on a patient's skull....

  15. 21 CFR 882.4370 - Pneumatic cranial drill motor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pneumatic cranial drill motor. 882.4370 Section... drill motor. (a) Identification. A pneumatic cranial drill motor is a pneumatically operated power source used with removable rotating surgical cutting tools or drill bits on a patient's skull....

  16. 49 CFR 236.817 - Switch, electro-pneumatic.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Switch, electro-pneumatic. 236.817 Section 236.817 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Switch, electro-pneumatic. A switch operated by an electro-pneumatic switch-and-lock movement....

  17. 49 CFR 236.817 - Switch, electro-pneumatic.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Switch, electro-pneumatic. 236.817 Section 236.817 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Switch, electro-pneumatic. A switch operated by an electro-pneumatic switch-and-lock movement....

  18. 49 CFR 236.817 - Switch, electro-pneumatic.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Switch, electro-pneumatic. 236.817 Section 236.817 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Switch, electro-pneumatic. A switch operated by an electro-pneumatic switch-and-lock movement....

  19. PNEUMATIC PUMP TEST FOR DESIGN OF SOIL VACUUM EXTRACTION

    EPA Science Inventory

    In-situ pneumatic pumping tests were performed to estimate the pneumatic permeability at a site containing soils contaminated with aviation gasoline. Determination of pneumatic permeability was necessary to evaluate soil-air discharge or pore volume exchange rates. Pressure propa...

  20. 49 CFR 236.817 - Switch, electro-pneumatic.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Switch, electro-pneumatic. 236.817 Section 236.817 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Switch, electro-pneumatic. A switch operated by an electro-pneumatic switch-and-lock movement....

  1. 49 CFR 236.817 - Switch, electro-pneumatic.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Switch, electro-pneumatic. 236.817 Section 236.817 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Switch, electro-pneumatic. A switch operated by an electro-pneumatic switch-and-lock movement....

  2. 21 CFR 882.4370 - Pneumatic cranial drill motor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pneumatic cranial drill motor. 882.4370 Section 882.4370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... drill motor. (a) Identification. A pneumatic cranial drill motor is a pneumatically operated...

  3. 21 CFR 882.4370 - Pneumatic cranial drill motor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pneumatic cranial drill motor. 882.4370 Section 882.4370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... drill motor. (a) Identification. A pneumatic cranial drill motor is a pneumatically operated...

  4. Guide to Canadian Aerospace-Related Industries

    DTIC Science & Technology

    1990-08-01

    sensing devices, ground power units, motor Winnipeg-based maioutacturer and supplier of portable heaters and generators, test stands, search lights...division also manu- using an electric motor power package. factures a wide selection of tachometer generators and valves. The company also manutactures its...and fabrication capabilities, and automated numerically controlled process * Bristol Aerospace Ltd - rocket motor case development. and inspection

  5. Aircraft of Today. Aerospace Education I.

    ERIC Educational Resources Information Center

    Savler, D. S.

    This textbook gives a brief idea about the modern aircraft used in defense and for commercial purposes. Aerospace technology in its present form has developed along certain basic principles of aerodynamic forces. Different parts in an airplane have different functions to balance the aircraft in air, provide a thrust, and control the general…

  6. The 15th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technological areas covered include: aerospace propulsion; aerodynamic devices; crew safety; space vehicle control; spacecraft deployment, positioning, and pointing; deployable antennas/reflectors; and large space structures. Devices for payload deployment, payload retention, and crew extravehicular activities on the space shuttle orbiter are also described.

  7. Pneumatically switchable graded index metamaterial lens

    NASA Astrophysics Data System (ADS)

    Khodasevych, I. E.; Shadrivov, I. V.; Powell, D. A.; Rowe, W. S. T.; Mitchell, A.

    2013-01-01

    A low-profile pneumatically switchable graded index metamaterial lens operating at 9 GHz is proposed and practically demonstrated. An effective graded refractive index is engineered using an array of electric resonators of differing resonant frequency. Normal orientation of the resonators allows ultrathin single metamaterial layer lens design. Switching between focusing and non-focusing states is practically demonstrated by shorting the gaps in split ring resonators and eliminating the resonant response and the phase difference between the elements across the lens with pneumatically actuated metal patches that are pressed against the gaps of the resonators as the pressure in the chamber is reduced.

  8. Proceedings of the NASA Aerospace Technology Symposium 2002

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Fink, Mary M. (Editor); Schaaf, Michaela M. (Editor)

    2002-01-01

    Reports are presented from the NASA Aerospace Technology Symposium 2002 on the following: Geo-Referenced Altitude Hold For Latex Ballons; NASA Spaceport Research: Opportunities For space Grant and EPSCoR Involvement; Numerical Simulation Of The Combustion Of Fuel Droplets: Applications, Aircraft/Spacecraft Flight Control, Guidance Navigation; Expertise In System Dynamics and Control, Control Theory and Aerospace Education Ooutreach Opportunities; and Technology For The Improvement Of General Aviation Security: A Needs Assessmemt.

  9. Powered glove with electro-pneumatic actuation unit for the disabled

    NASA Astrophysics Data System (ADS)

    Kawakami, Kosuke; Kumano, Shinichi; Moromugi, Shunji; Ishimatsu, Takakazu

    2007-12-01

    Authors have been developing a powered glove for people suffering from paralysis on their fingers to support their daily activity. Small air cylinders are used as actuators for this glove. Pneumatically-driven system has high advantages in case soft actuation is preferable. However, there are some problems to be solved in the pneumatically-driven system if the system is supposed to be used in our daily life. Huge air compressor is needed and solenoid valves emit loud sound for example. These problems are hurdles to commercialize the powered glove. To solve these problems authors have developed a new actuation unit by integrating an electric cylinder and an air cylinder. This actuation unit has advantages of both the electric actuation and the pneumatic actuation. Its advanced grip control ability has demonstrated through several experiments. The experimental results are reported in this paper.

  10. Eccentric variation of corneal sensitivity to pneumatic stimulation at different temperatures and with CO2.

    PubMed

    Situ, P; Simpson, T L; Fonn, D

    2007-09-01

    The purpose was to measure corneal sensitivity at multiple corneal positions using pneumatic stimuli, at room temperature and at ocular surface temperature (with and without CO(2) added), in 15 healthy participants. Sensitivity of central, mid-peripheral, and peripheral cornea was measured using a computer-controlled modified Belmonte esthesiometer to deliver pneumatic cool (air at 20 degrees C), mechanical (air at 50 degrees C), and chemical stimuli (air at 50 degrees C with CO(2) added). The ascending method of limits and method of constant stimuli were adopted to determine the threshold to these stimuli at each location. Sensitivity across the cornea using pneumatic stimuli at different temperatures and chemical stimuli varied only slightly. These patterns of variation are different to what has been previously reported using Cochet-Bonnet esthesiometry.

  11. Report on Quality Control Review of the Deloitte & Touche, LLP and Defense Contract Audit Agency FY 2008 Single Audit of The Aerospace Corporation

    DTIC Science & Technology

    2010-10-29

    and reporting requircmcnts of Office of Management and Budget (OMB) Circular A-B3, "Audits of States, Local Governments , and NOll-Profit...both Government Auditing Standards and the American Institute ofCeltified Public Accountants’ audit standards...space-related programs managed by other Federal agencies, international organizations, and foreign governments when in the national interest. Aerospace

  12. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  13. Trends in aerospace structures

    NASA Technical Reports Server (NTRS)

    Card, M. F.

    1978-01-01

    Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.

  14. Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    Rouse, Doris J.

    1984-01-01

    The objective of the Research Triangle Institute Technology Transfer Team is to assist NASA in achieving widespread utilization of aerospace technology in terrestrial applications. Widespread utilization implies that the application of NASA technology is to benefit a significant sector of the economy and population of the Nation. This objective is best attained by stimulating the introduction of new or improved commercially available devices incorporating aerospace technology. A methodology is presented for the team's activities as an active transfer agent linking NASA Field Centers, industry associations, user groups, and the medical community. This methodology is designed to: (1) identify priority technology requirements in industry and medicine, (2) identify applicable NASA technology that represents an opportunity for a successful solution and commercial product, (3) obtain the early participation of industry in the transfer process, and (4) successfully develop a new product based on NASA technology.

  15. An Aerospace Nation

    DTIC Science & Technology

    2016-05-25

    aircraft order share of Boeing or Air - bus in recent years.24 America’s leadership in the high-technology sector is also faltering and, if not corrected...Executive Order 9781, establishing the Air Coordinating Commit- tee, with the mission to “examine aviation problems and development affecting more...robotics, drones, information technologies, energy research, and aerospace design. Establish a New Air and Space Structure Like its predecessor

  16. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report from the Aerospace Safety Advisory Panel (ASAP) contains findings, recommendations, and supporting material concerning safety issues with the space station program, the space shuttle program, aeronautics research, and other NASA programs. Section two presents findings and recommendations, section three presents supporting information, and appendices contain data about the panel membership, the NASA response to the March 1993 ASAP report, and a chronology of the panel's activities during the past year.

  17. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  18. Vertebral Pneumaticity in the Ornithomimosaur Archaeornithomimus (Dinosauria: Theropoda) Revealed by Computed Tomography Imaging and Reappraisal of Axial Pneumaticity in Ornithomimosauria

    PubMed Central

    Watanabe, Akinobu; Eugenia Leone Gold, Maria; Brusatte, Stephen L.; Benson, Roger B. J.; Choiniere, Jonah; Davidson, Amy; Norell, Mark A.

    2015-01-01

    Among extant vertebrates, pneumatization of postcranial bones is unique to birds, with few known exceptions in other groups. Through reduction in bone mass, this feature is thought to benefit flight capacity in modern birds, but its prevalence in non-avian dinosaurs of variable sizes has generated competing hypotheses on the initial adaptive significance of postcranial pneumaticity. To better understand the evolutionary history of postcranial pneumaticity, studies have surveyed its distribution among non-avian dinosaurs. Nevertheless, the degree of pneumaticity in the basal coelurosaurian group Ornithomimosauria remains poorly known, despite their potential to greatly enhance our understanding of the early evolution of pneumatic bones along the lineage leading to birds. Historically, the identification of postcranial pneumaticity in non-avian dinosaurs has been based on examination of external morphology, and few studies thus far have focused on the internal architecture of pneumatic structures inside the bones. Here, we describe the vertebral pneumaticity of the ornithomimosaur Archaeornithomimus with the aid of X-ray computed tomography (CT) imaging. Complementary examination of external and internal osteology reveals (1) highly pneumatized cervical vertebrae with an elaborate configuration of interconnected chambers within the neural arch and the centrum; (2) anterior dorsal vertebrae with pneumatic chambers inside the neural arch; (3) apneumatic sacral vertebrae; and (4) a subset of proximal caudal vertebrae with limited pneumatic invasion into the neural arch. Comparisons with other theropod dinosaurs suggest that ornithomimosaurs primitively exhibited a plesiomorphic theropod condition for axial pneumaticity that was extended among later taxa, such as Archaeornithomimus and large bodied Deinocheirus. This finding corroborates the notion that evolutionary increases in vertebral pneumaticity occurred in parallel among independent lineages of bird

  19. Aerospace Engineering Systems

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: Physics-based analysis tools for filling the design space database; Distributed computational resources to reduce response time and cost; Web-based technologies to relieve machine-dependence; and Artificial intelligence technologies to accelerate processes and reduce process variability. Activities such as the Advanced Design Technologies Testbed (ADTT) project at NASA Ames Research Center study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities will be reported.

  20. Pneumatic interactive gait rehabilitation orthosis: design and preliminary testing.

    PubMed

    Belforte, G; Eula, G; Appendino, S; Sirolli, S

    2011-02-01

    Motor rehabilitation techniques based on passive movement of the lower limbs have been developed over the past 15 years. Gait training automation is the latest innovation in these techniques. This paper describes the design and development of a pneumatic interactive gait rehabilitation orthosis (PIGRO), as well as the first experimental results obtained with healthy subjects. PIGRO consists of a modular and size-adaptable exoskeleton, pneumatic actuation systems for the six actuated degrees of freedom (DoF), and a control unit. The foot orthosis and ankle actuation can be removed and/or replaced with orthopaedic shoes so as to permit gait rehabilitation while advancing between parallel bars with ground contact and partial body weight support (i.e. not walking in place). Control logic provides closed-loop position control independently on each joint, with position feedback for each joint in real time. Imposed curves are physiological joint angles: it is also possible to choose between activating one or both legs and to modify curves to obtain different gait patterns if required. The paper concludes with a presentation of experimental results for the device's performance.

  1. Distortion Of Pressure Signals In Pneumatic Tubes

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Gilyard, Glenn B.; Curry, Robert; Lindsey, William

    1993-01-01

    NASA technical memorandum describes experimental investigation of distorting effects of propagation of pressure signals along narrow pneumatic tubes from pressure-sensing orifices on surfaces of models or aircraft to pressure sensors distant from orifices. Pressure signals distorted principally by frictional damping along walls of tubes and by reflections at orifice and sensor ends.

  2. Pneumatic boot for helicopter rotor deicing

    NASA Technical Reports Server (NTRS)

    Blaha, B. J.; Evanich, P. L.

    1981-01-01

    Pneumatic deicer boots for helicopter rotor blades were tested. The tests were conducted in the 6 by 9 ft icing research tunnel on a stationary section of a UH-IH helicopter main rotor blade. The boots were effective in removing ice and in reducing aerodynamic drag due to ice.

  3. PNEUMATIC FRACTIONATOR FOR CLEANING GINNED LINT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pneumatic fractionator has long been used to determine foreign matter content of seed cotton at the USDA Cotton Ginning Laboratories. Spawned from discussions at a Cotton Incorporated Lint Cleaning Summit and building on 1970s research at the Southwestern Cotton Ginning Research Laboratory, an e...

  4. Enhancing in situ bioremediation with pneumatic fracturing

    SciTech Connect

    Anderson, D.B.; Peyton, B.M.; Liskowitz, J.L.; Fitzgerald, C.; Schuring, J.R.

    1994-04-01

    A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing.

  5. [Pneumatic dilatation of achalasia: local experience in treating 41 patients].

    PubMed

    Honein, Khalil; Slim, Rita; Yaghi, César; Kheir, Bahaa; Bou Jaoudé, Joseph; Sayegh, Raymond

    2007-01-01

    L'achalasia is the best known primary motor disorder of the esophagus in which the lower esophageal sphincter (LES) has abnormally high resting pressure and incomplete relaxation with swallowing. Pneumatic dilatation (PD) remains the first choice of treatment. Our aim was to report, in a retrospective way, our experience in treating with pneumatic dilatation 41 achalasia patients admitted to the gastroenterology unit at Hôtel-Dieu de France (HDF) hospital between 1994 and 2004. A total of 46 dilatations were performed in 41 patients with achalasia [20 males and 21 females, the mean age was 46.8 years (range, 15-90)]. All patients underwent an initial dilatation by inflating a 35 mm balloon to 7 psi three times successively under fluoroscopic control. The need for subsequent dilatation with the same technique or for surgical treatment was based on symptom assessment. The mean follow-up period was 36.7 months (3 mo-7 years). Among the patients whose follow-up information was available, a satisfactory result was achieved in 29 patients (80.5%) after only one or two sessions of pneumatic dilatation. Esophageal perforation as a short-term complication was observed in one patient (2.17%). Seven patients were referred for surgery (one for esophageal perforation and six for persistent or recurrent symptoms). In conclusion, performing balloon dilatation under fluoroscopic observation is simple, safe and efficacious for treating patients with achalasia. Referral to repeated PD or to surgical myotomy should be discussed in case of no response to a first session of PD.

  6. Comparitive Assessment of Isokinetic and Pneumatic Lower Limb Strength in Functionally-Limited Elderly Subjects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to investigate the relationship between isokinetic and pneumatic knee extensor strength in functionally-limited elders and to compare the respective changes in knee extensor peak torque and one repetition maximum strength (1RM) after a randomized controlled progressive ...

  7. LPT. Low power test (TAN641) interior. Heating and ventilating pneumatic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Low power test (TAN-641) interior. Heating and ventilating pneumatic and electrical control panel. Contract nearly complete. Photographer: Jack L. Anderson. Date: December 19, 1957. INEEL negative no. 57-6198 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  8. Study on application of aerospace technology to improve surgical implants

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Youngblood, J. L.

    1982-01-01

    The areas where aerospace technology could be used to improve the reliability and performance of metallic, orthopedic implants was assessed. Specifically, comparisons were made of material controls, design approaches, analytical methods and inspection approaches being used in the implant industry with hardware for the aerospace industries. Several areas for possible improvement were noted such as increased use of finite element stress analysis and fracture control programs on devices where the needs exist for maximum reliability and high structural performance.

  9. Pneumatically Actuated Miniature Peristaltic Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Feldman, Sabrina; Feldman, Jason; Svehla, Danielle

    2003-01-01

    Pneumatically actuated miniature peristaltic vacuum pumps have been proposed for incorporation into advanced miniature versions of scientific instruments that depend on vacuum for proper operation. These pumps are expected to be capable of reaching vacuum-side pressures in the torr to millitorr range (from .133 down to .0.13 Pa). Vacuum pumps that operate in this range are often denoted roughing pumps. In comparison with previously available roughing pumps, these pumps are expected to be an order of magnitude less massive and less power-hungry. In addition, they would be extremely robust, and would operate with little or no maintenance and without need for oil or other lubricants. Portable mass spectrometers are typical examples of instruments that could incorporate the proposed pumps. In addition, the proposed pumps could be used as roughing pumps in general laboratory applications in which low pumping rates could be tolerated. The proposed pumps could be designed and fabricated in conventionally machined and micromachined versions. A typical micromachined version (see figure) would include a rigid glass, metal, or plastic substrate and two layers of silicone rubber. The bottom silicone layer would contain shallow pump channels covered by silicone arches that could be pushed down pneumatically to block the channels. The bottom silicone layer would be covered with a thin layer of material with very low gas permeability, and would be bonded to the substrate everywhere except in the channel areas. The top silicone layer would be attached to the bottom silicone layer and would contain pneumatic- actuation channels that would lie crosswise to the pump channels. This version is said to be micromachined because the two silicone layers containing the channels would be fabricated by casting silicone rubber on micromachined silicon molds. The pneumatic-actuation channels would be alternately connected to a compressed gas and (depending on pump design) either to atmospheric

  10. Aerospace Nickel-cadmium Cell Verification

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Strawn, D. Michael; Hall, Stephen W.

    2001-01-01

    During the early years of satellites, NASA successfully flew "NASA-Standard" nickel-cadmium (Ni-Cd) cells manufactured by GE/Gates/SAFF on a variety of spacecraft. In 1992 a NASA Battery Review Board determined that the strategy of a NASA Standard Cell and Battery Specification and the accompanying NASA control of a standard manufacturing control document (MCD) for Ni-Cd cells and batteries was unwarranted. As a result of that determination, standards were abandoned and the use of cells other than the NASA Standard was required. In order to gain insight into the performance and characteristics of the various aerospace Ni-Cd products available, tasks were initiated within the NASA Aerospace Flight Battery Systems Program that involved the procurement and testing of representative aerospace Ni-Cd cell designs. A standard set of test conditions was established in order to provide similar information about the products from various vendors. The objective of this testing was to provide independent verification of representative commercial flight cells available in the marketplace today. This paper will provide a summary of the verification tests run on cells from various manufacturers: Sanyo 35 Ampere-hour (Ali) standard and 35 Ali advanced Ni-Cd cells, SAFr 50 Ah Ni-Cd cells and Eagle-Picher 21 Ali Magnum and 21 Ali Super Ni-CdTM cells from Eagle-Picher were put through a full evaluation. A limited number of 18 and 55 Ali cells from Acme Electric were also tested to provide an initial evaluation of the Acme aerospace cell designs. Additionally, 35 Ali aerospace design Ni-MH cells from Sanyo were evaluated under the standard conditions established for this program. Ile test program is essentially complete. The cell design parameters, the verification test plan and the details of the test result will be discussed.

  11. Experimental characterization of the effects of pneumatic tubing on unsteady pressure measurements

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Lindsey, William T.; Curry, Robert E.; Gilyard, Glenn B.

    1990-01-01

    Advances in aircraft control system designs have, with increasing frequency, required that air data be used as flight control feedback. This condition requires that these data be measured with accuracy and high fidelity. Most air data information is provided by pneumatic pressure measuring sensors. Typically unsteady pressure data provided by pneumatic sensing systems are distorted at high frequencies. The distortion is a result of the pressure being transmitted to the pressure sensor through a length of connective tubing. The pressure is distorted by frictional damping and wave reflection. As a result, air data provided all-flush, pneumatically sensed air data systems may not meet the frequency response requirements necessary for flight control augmentation. Both lab and flight test were performed at NASA-Ames to investigate the effects of this high frequency distortion in remotely located pressure measurement systems. Good qualitative agreement between lab and flight data are demonstrated. Results from these tests are used to describe the effects of pneumatic distortion in terms of a simple parametric model.

  12. Prognostics for Ground Support Systems: Case Study on Pneumatic Valves

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai

    2011-01-01

    Prognostics technologies determine the health (or damage) state of a component or sub-system, and make end of life (EOL) and remaining useful life (RUL) predictions. Such information enables system operators to make informed maintenance decisions and streamline operational and mission-level activities. We develop a model-based prognostics methodology for pneumatic valves used in ground support equipment for cryogenic propellant loading operations. These valves are used to control the flow of propellant, so failures may have a significant impact on launch availability. Therefore, correctly predicting when valves will fail enables timely maintenance that avoids launch delays and aborts. The approach utilizes mathematical models describing the underlying physics of valve degradation, and, employing the particle filtering algorithm for joint state-parameter estimation, determines the health state of the valve and the rate of damage progression, from which EOL and RUL predictions are made. We develop a prototype user interface for valve prognostics, and demonstrate the prognostics approach using historical pneumatic valve data from the Space Shuttle refueling system.

  13. System Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.; Tai, Jimmy C.; Kirby, Michelle M.; Roth, Bryce A.

    1999-01-01

    The primary aspiration of this study was to objectively assess the feasibility of the application of a low speed pneumatic technology, in particular Circulation Control (CC) to an HSCT concept. Circulation Control has been chosen as an enabling technology to be applied on a generic High Speed Civil Transport (HSCT). This technology has been proven for various subsonic vehicles including flight tests on a Navy A-6 and computational application on a Boeing 737. Yet, CC has not been widely accepted for general commercial fixed-wing use but its potential has been extensively investigated for decades in wind tunnels across the globe for application to rotorcraft. More recently, an experimental investigation was performed at Georgia Tech Research Institute (GTRI) with application to an HSCT-type configuration. The data from those experiments was to be applied to a full-scale vehicle to assess the impact from a system level point of view. Hence, this study attempted to quantitatively assess the impact of this technology to an HSCT. The study objective was achieved in three primary steps: 1) Defining the need for CC technology; 2) Wind tunnel data reduction; 3) Detailed takeoff/landing performance assessment. Defining the need for the CC technology application to an HSCT encompassed a preliminary system level analysis. This was accomplished through the utilization of recent developments in modern aircraft design theory at Aerospace Systems Design Laboratory (ASDL). These developments include the creation of techniques and methods needed for the identification of technical feasibility show stoppers. These techniques and methods allow the designer to rapidly assess a design space and disciplinary metric enhancements to enlarge or improve the design space. The takeoff and landing field lengths were identified as the concept "show-stoppers". Once the need for CC was established, the actual application of data and trends was assessed. This assessment entailed a reduction of the

  14. Experimental Development and Evaluation of Pneumatic Powered-Lift Super-STOL Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Campbell, Bryan A.

    2005-01-01

    The powered-lift Channel Wing concept has been combined with pneumatic Circulation Control aerodynamic and propulsive technology to generate a Pneumatic Channel Wing (PCW) configuration intended to have Super-STOL or VSTOL capability while eliminating many of the operational problem areas of the original Channel Wing vehicle. Wind-tunnel development and evaluations of a PCW powered model conducted at Georgia Tech Research Institute (GTRI) have shown substantial lift capabilities for the blown configuration (CL values of 10 to 11). Variation in blowing of the channel was shown to be more efficient than variation in propeller thrust in terms of lift generation. Also revealed was the ability to operate unstalled at very high angles of attack of 40 deg - 45 deg, or to achieve very high lift at much lower angle of attack to increase visibility and controllability. In order to provide greater flexibility in Super-STOL takeoffs and landings, the blown model also displayed the ability to interchange thrust and drag by varying blowing without any moving parts. A preliminary design study of this pneumatic vehicle based on the two technologies integrated into a simple Pneumatic Channel Wing configuration showed very strong Super-STOL potential. This paper presents these experimental results, discusses variations in the configuration geometry under development, and addresses additional considerations to extend this integrated technology to advanced design studies of PCW-type vehicles.

  15. Development of Pneumatic Channel Wing Powered-Lift Advanced Super-STOL Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Campbell, Bryan A.

    2002-01-01

    The powered-lift Channel Wing concept has been combined with pneumatic Circulation Control aerodynamic and propulsive technology to generate a Pneumatic Channel Wing configuration intended to have Super-STOL or VSTOL capability while eliminating many of the operational problem areas of the original Channel Wing vehicle. A preliminary design study of this pneumatic vehicle based on previous wind-tunnel and flight-test data for the two technologies integrated into a simple Pneumatic Channel Wing (PCW) configuration showed very strong Super-STOL potential. Wind-tunnel development and evaluations of a PCW powered model conducted at Georgia Tech Research Institute (GTRI) have shown substantial lift capabilities for the blown configuration (C(sub L) values of 8.5 to 9.0). Variation in blowing of the channel was shown to be more efficient than variation in propeller thrust. Also revealed was the ability to operate unstalled at very high angles of attack of 40 deg-45 deg, or to achieve very high lift at much lower angle of attack to increase visibility and controllability. In order to provide greater flexibility in Super-STOL takeoffs and landings, the blown model also displayed the ability to interchange thrust and drag by varying blowing without any moving parts. This paper presents these experimental results, discusses variations in the configuration geometry under development, and extends this integrated technology to advanced design studies of PCW-type vehicles.

  16. Limitless Horizons. Careers in Aerospace

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1980-01-01

    A manual is presented for use by counselors in career guidance programs. Pertinent information is provided on choices open in aerospace sciences, engineering, and technology. Accredited institutions awarding degrees in pertinent areas are listed as well as additional sources of aerospace career information. NASA's role and fields of interest are emphasized.

  17. Aerospace Activities and Language Development

    ERIC Educational Resources Information Center

    Jones, Robert M.; Piper, Martha

    1975-01-01

    Describes how science activities can be used to stimulate language development in the elementary grades. Two aerospace activities are described involving liquid nitrogen and the launching of a weather balloon which integrate aerospace interests into the development of language skills. (BR)

  18. Limitless Horizons: Careers in Aerospace.

    ERIC Educational Resources Information Center

    Lewis, Mary H.

    This is a manual for acquainting students with pertinent information relating to career choices in aerospace science, engineering, and technology. The first chapter presents information about the aerospace industry by describing disciplines typical of this industry. The National Aeronautics and Space Administration's (NASA) classification system…

  19. Pneumatic conveying of materials at partial gravity

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.; Koenig, Elissa; Knudsen, Christian W.; Gibson, Michael A.

    1992-01-01

    The feasibility of pneumatic transfer for the movement of regolith at a lunar base is evaluated. Operation of pneumatic conveying systems at partial (lunar and Mars) gravity on NASA's KC-135 aircraft allowed the determination of some key parameters necessary for the design of an operable system. Both horizontal and vertical transfer is studied. In the vertical experiment, the choking velocity for 150-micron glass spheres was determined to be 1/2 to 1/3 the velocity required at 1 g. Pressure drops were reduced by roughly the same amount. Determination of the saltation velocity in the horizontal run was problematic, but qualitatively similar results were obtained. Comparison of the partial g results to 1-g behavior and theoretical analysis is made.

  20. Pneumatic Proboscis Heat-Flow Probe

    NASA Technical Reports Server (NTRS)

    Zacny, Kris; Hedlund, Magnus; Mumm, Eric; Shasho, Jeffrey; Chu, Philip; Kumar, Nishant

    2013-01-01

    Heat flow is a fundamental property of a planet, and provides significant constraints on the abundance of radiogenic isotopes, the thermal evolution and differentiation history, and the mechanical properties of the lithosphere. Heat-flow measurements are also essential in achieving at least four of the goals set out by the National Research Council for future lunar exploration. The heat-flow probe therefore directly addresses the goal of the Lunar Geophysical Network, which is to understand the interior structure and composition of the Moon. A key challenge for heat flow measurement is to install thermal sensors to the depths approximately equal to 3 m that are not influenced by the diurnal, annual, and longer-term fluctuations of the surface thermal environment. In addition, once deployed, the heat flow probe should cause little disturbance to the thermal regime of the surrounding regolith. A heat-flow probe system was developed that has two novel features: (1) it utilizes a pneumatic (gas) approach, excavates a hole by lofting the lunar soil out of the hole, and (2) deploys the heat flow probe, which utilizes a coiled up tape as a thermal probe to reach greater than 3-meter depth. The system is a game-changer for small lunar landers as it exhibits extremely low mass, volume, and simple deployment. The pneumatic system takes advantage of the helium gas used for pressurizing liquid propellant of the lander. Normally, helium is vented once the lander is on the surface, but it can be utilized for powering pneumatic systems. Should sufficient helium not be available, a simple gas delivery system may be taken specifically for the heat flow probe. Either way, the pneumatic heat flow probe system would be much lighter than other systems that entirely rely on the electrical power of the lander.

  1. Pneumatic preloaded scanning science launch latch system

    NASA Technical Reports Server (NTRS)

    Kievit, J. C.

    1979-01-01

    A relatively simple system using a preloaded pneumatic piston latch with a pyrotechnic valve release was developed. The system was the only candidate that met all the imposed requirements utilizing reliable state-of-art components. The development of the latch system from its first use on Mariner '69 Mars Flyby Spacecraft through its most recent use on the Voyager Spacecraft that will fly to Jupiter and Saturn is reviewed.

  2. Automation technology for aerospace power management

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1982-01-01

    The growing size and complexity of spacecraft power systems coupled with limited space/ground communications necessitate increasingly automated onboard control systems. Research in computer science, particularly artificial intelligence has developed methods and techniques for constructing man-machine systems with problem-solving expertise in limited domains which may contribute to the automation of power systems. Since these systems perform tasks which are typically performed by human experts they have become known as Expert Systems. A review of the current state of the art in expert systems technology is presented, and potential applications in power systems management are considered. It is concluded that expert systems appear to have significant potential for improving the productivity of operations personnel in aerospace applications, and in automating the control of many aerospace systems.

  3. Paranasal pneumatization in extant and fossil Cercopithecoidea.

    PubMed

    Rae, Todd C

    2008-03-01

    Unlike most primates, extant cercopithecoids lack maxillary sinuses, which are pneumatic spaces in the facial skeleton lateral of the nasal cavity proper. Character state analysis of living cercopithecoids across well-supported topologies suggests that the sinus was lost at the origin of the superfamily, only to have evolved again convergently in extant macaques. Recent work has shown that a) the 'early loss' hypothesis is supported by the lack of any pneumatization in Victoriapithecus, a stem cercopithecoid, b) like extant macaques, the fossil cercopithecine Paradolichopithecus shows evidence of presence of the maxillary sinus (MS), and c) unlike extant colobines, the fossil colobine Libypithecus also possesses a maxillary sinus. To more fully assess the pattern of cercopithecoid sinus evolution, fossil taxa from both subfamilies (Colobinae, Cercopithecinae) were examined both visually and by computed tomography (CT). The observations were evaluated according to standard anatomical criteria for defining sinus spaces, and compared with data from all extant Old World monkey genera. Most taxa examined conformed to the pattern already discerned from extant cercopithecoids. Maxillary sinus absence in Theropithecus oswaldi, Mesopithecus, and Rhinocolobus is typical for all extant cercopithecids except Macaca. The fossil macaque Macaca majori possesses a well-developed maxillary sinus, as do all living species of the genus. Cercopithecoides, on the other hand, differs from all extant colobines in possessing a maxillary sinus. Thus, paranasal pneumatization has reemerged a minimum of two and possibly three times in cercopithecoids. The results suggest that maxillary sinus absence in cercopithecoids is due to suppression, rather than complete loss.

  4. Pneumatic compression hemodynamics in total hip arthroplasty.

    PubMed

    Westrich, G H; Specht, L M; Sharrock, N E; Sculco, T P; Salvati, E A; Pellicci, P M; Trombley, J F; Peterson, M

    2000-03-01

    A crossover study was performed to evaluate the effect of several pneumatic compression devices and active dorsoplantar flexion in 10 patients who underwent total hip arthroplasty. Using the Acuson 128XP/10 duplex ultrasound unit with a 5-MHz linear array probe, peak venous velocity and venous volume were assessed above and below the greater saphenous vein and common femoral vein junction. A computer generated randomization table was used to determine the order of the test conditions. The pneumatic compression devices evaluated included two foot pumps, one foot and calf pump, one calf pump, and three calf and thigh pumps. Statistical analyses included analysis of variance and analysis of variance with covariance between devices and patients. The covariates tested were the baseline measurements and the order in which the devices were tested. Differences between devices relate in part to the frequency and rate of inflation and the location and type of compression. Pulsatile calf and foot and calf pneumatic compression with a rapid inflation time produced the greatest increase in peak venous velocity, whereas compression of the calf and thigh showed the greatest increase in venous volume. Because patient and nursing compliance is essential to the success of mechanical prophylaxis for thromboembolic disease, the more simple, yet efficacious, devices that are easier to apply and less cumbersome appear to have a greater likelihood of success. In the active and alert patient, active dorsoplantar flexion should be encouraged.

  5. Pneumatic artificial muscles for trailing edge flap actuation: a feasibility study

    NASA Astrophysics Data System (ADS)

    Woods, Benjamin K. S.; Kothera, Curt S.; Sirohi, Jayant; Wereley, Norman M.

    2011-10-01

    In this study a novel aircraft trailing edge flap actuation system was developed and tested. Pneumatic artificial muscles (PAMs) were used as the driving elements of this system to demonstrate their feasibility and utility as an alternative aerospace actuation technology. A prototype flap/actuator system was integrated into a model wing section and tested on the bench-top under simulated airloads for flight at 100 m s-1 (M = 0.3) and in an open-jet wind tunnel at free stream velocities ranging up to 45 m s-1 (M = 0.13). Testing was performed for actuator pressures ranging from 0.069 to 0.62 MPa (10-90 psi) and actuation frequencies from 0.1 to 31 Hz. Results show that the PAM-driven trailing edge flap system can generate substantial and sustainable dynamic deflections, thereby proving the feasibility of using pneumatic artificial muscle actuators in a trailing edge flap system. Key issues limiting system performance are identified, that should be resolved in future research.

  6. NK-1 Removable Cryogenic Shroud (A Study of the Bimba Pneumatic Cylinder)

    SciTech Connect

    Anderson, K; Stefanescu, D

    2003-02-07

    The Mark 1 Cryostat requires a cryogenic shroud that must be retracted immediately before firing the NIF laser. This paper evaluates a pneumatic cylinder that has been chosen to open and close the shroud. After a variety of motion control and vacuum compatibility experiments, we concluded that the Bimba feedback control cylinder may be used to retract the shroud with certain modifications to its control system and additional rod seals.

  7. COST EFFECTIVE VOC EMISSION CONTROL STARTEGIES FOR MILITARY, AEROSPACE,AND INDUSTRIAL PAINT SPRAY BOOTH OPERATIONS: COMBINING IMPROVED VENTILATION SYSTEMS WITH INNOVATIVE, LOW COST EMISSION CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes a full-scale demonstration program in which several paint booths were modified for recirculation ventilation; the booth exhaust streams are vented to an innovative volatile organic compound (VOC) emission control system having extremely low operating costs. ...

  8. Comparison of pneumatic dilation with pneumatic dilation plus botulinum toxin for treatment of achalasia.

    PubMed

    Bakhshipour, Alireza; Rabbani, Romina; Shirani, Shapoor; Soleimani, Hosein A S L; Mikaeli, Javad

    2010-01-01

    Among the therapeutic options for achalasia are pneumatic dilatation (PD), an appropriate long-term therapy, and botulinum toxin injection (BT) that is a relatively short-term therapy. This study aimed to compare therapeutic effect of repetitive pneumatic dilation with a combined method (botulinum toxin injection and pneumatic dilation) in a group of achalasia patients who are low responder to two initial pneumatic dilations. Thirty-four patients with documented primary achalasia that had low response to two times PD (<50% decrease in symptom score and barium height at 5 minute in timed esophagogram after 3 month of late PD) were randomized to receive pneumatic dilation (n=18) or botulinum toxin injection and pneumatic dilation by four weeks interval (n=16), PD and BT+PD groups respectively. Symptom scores were evaluated before and at 1, 6 and 12 months after treatment. Clinical remission was defined as a decrease in symptom score > or = 50% of baseline. There were no significant differences between the two groups in gender, age and achalasia type. Remission rate of patients in BT-PD group in comparison with PD group were 87.5% vs. 67.1% (P = 0.7), 87.5% vs. 61.1% (P = 0.59) and 87.5% vs. 55.5% (P = 0.53) at 1, 6 and 12 months respectively .There were no major complications in either group. The mean symptom score decreased by 62.71% in the BT-PD group (P < 0.002) and 50.77% in the PD group (P < 0.01) at the end of the first year. Despite a better response rate in BT+PD group, a difference was not statistically significant. A difference may be meaningful if a large numbers of patients are included in the study.

  9. A high performance pneumatic braking system for heavy vehicles

    NASA Astrophysics Data System (ADS)

    Miller, Jonathan I.; Cebon, David

    2010-12-01

    Current research into reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, these algorithms require the knowledge of variables that are impractical to measure directly. This paper introduces a sliding mode braking force observer to support a sliding mode controller for air-braked heavy vehicles. The performance of the observer is examined through simulations and field testing of an articulated heavy vehicle. The observer operated robustly during single-wheel vehicle simulations, and provided reasonable estimates of surface friction from test data. The effect of brake gain errors on the controller and observer are illustrated, and a recursive least squares estimator is derived for the brake gain. The estimator converged within 0.3 s in simulations and vehicle trials.

  10. Pressurization, Pneumatic, and Vent Subsystems of the X-34 Main Propulsion System

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Steadman, T. E.; Brown, T. M.; Knight, K. C.; White, C. E., Jr.; Champion, R. H., Jr.

    1998-01-01

    In pressurization systems, regulators and orifices are use to control the flow of the pressurant. For the X-34 Main Propulsion System, three pressurization subsystem design configuration options were considered. In the first option, regulators were used while in the other options, orifices were considered. In each design option, the vent/relief system must be capable of relieving the pressurant flow without allowing the tank pressure to rise above proof, therefore, impacts on the propellant tank vent system were investigated and a trade study of the pressurization system was conducted. The analysis indicated that design option using regulators poses least risk. Then, a detailed transient thermal/fluid analysis of the recommended pressurization system was performed. Helium usage, thermodynamic conditions, and overpressurization of each propellant tank were evaluated. The pneumatic and purge subsystem is used for pneumatic valve actuation, Inter-Propellant Seal purges, Engine Spin Start, and engine purges at the required interface pressures, A transient analysis of the pneumatic and purge subsystem provided helium usage and flow rates to Inter-Propellant Seal and engine interfaces. Fill analysis of the helium bottles of pressurization and pneumatic subsystems during ground operation was performed. The required fill time and the stored

  11. Vacuum pressure generation via microfabricated converging-diverging nozzles for operation of automated pneumatic logic.

    PubMed

    Christoforidis, Theodore; Werner, Erik M; Hui, Elliot E; Eddington, David T

    2016-08-01

    Microfluidic devices with integrated pneumatic logic enable automated fluid handling without requiring external control instruments. These chips offer the additional advantage that they may be powered by vacuum and do not require an electricity source. This work describes a microfluidic converging-diverging (CD) nozzle optimized to generate vacuum at low input pressures, making it suitable for microfluidic applications including powering integrated pneumatic logic. It was found that efficient vacuum pressure was generated for high aspect ratios of the CD nozzle constriction (or throat) width to height and diverging angle of 3.6(o). In specific, for an inlet pressure of 42.2 psia (290.8 kPa) and a volumetric flow rate of approximately 1700 sccm, a vacuum pressure of 8.03 psia (55.3 kPa) was generated. To demonstrate the capabilities of our converging - diverging nozzle device, we connected it to a vacuum powered peristaltic pump driven by integrated pneumatic logic and obtained tunable flow rates from 0 to 130 μL/min. Finally, we demonstrate a proof of concept system for use where electricity and vacuum pressure are not readily available by powering a CD nozzle with a bicycle tire pump and pressure regulator. This system is able to produce a stable vacuum sufficient to drive pneumatic logic, and could be applied to power automated microfluidics in limited resource settings.

  12. Aerospace in the future

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1980-01-01

    National research and technology trends are introduced in the environment of accelerating change. NASA and the federal budget are discussed. The U.S. energy dependence on foreign oil, the increasing oil costs, and the U.S. petroleum use by class are presented. The $10 billion aerospace industry positive contribution to the U.S. balance of trade of 1979 is given as an indicator of the positive contribution of NASA in research to industry. The research work of the NASA Lewis Research Center in the areas of space, aeronautics, and energy is discussed as a team effort of government, the areas of space, aeronautics, and energy is discussed as a team effort of government, industry, universities, and business to maintain U.S. world leadership in advanced technology.

  13. Aerospace Safety Advisory Panel

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The Aerospace Safety Advisory Panel (ASAP) provided oversight on the safety aspects of many NASA programs. In addition, ASAP undertook three special studies. At the request of the Administrator, the panel assessed the requirements for an assured crew return vehicle (ACRV) for the space station and reviewed the organization of the safety and mission quality function within NASA. At the behest of Congress, the panel formed an independent, ad hoc working group to examine the safety and reliability of the space shuttle main engine. Section 2 presents findings and recommendations. Section 3 consists of information in support of these findings and recommendations. Appendices A, B, C, and D, respectively, cover the panel membership, the NASA response to the findings and recommendations in the March 1992 report, a chronology of the panel's activities during the reporting period, and the entire ACRV study report.

  14. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Aerospace Safety Advisory Panel (ASAP) provided oversight on the safety aspects of many NASA programs. In addition, ASAP undertook three special studies. At the request of the Administrator, the panel assessed the requirements for an assured crew return vehicle (ACRV) for the space station and reviewed the organization of the safety and mission quality function within NASA. At the behest of Congress, the panel formed an independent, ad hoc working group to examine the safety and reliability of the space shuttle main engine. Section 2 presents findings and recommendations. Section 3 consists of information in support of these findings and recommendations. Appendices A, B, C, and D, respectively, cover the panel membership, the NASA response to the findings and recommendations in the March 1992 report, a chronology of the panel's activities during the reporting period, and the entire ACRV study report.

  15. Aerospace Human Factors

    NASA Technical Reports Server (NTRS)

    Jordan, Kevin

    1999-01-01

    The following contains the final report on the activities related to the Cooperative Agreement between the human factors research group at NASA Ames Research Center and the Psychology Department at San Jose State University. The participating NASA Ames division has been, as the organization has changed, the Aerospace Human Factors Research Division (ASHFRD and Code FL), the Flight Management and Human Factors Research Division (Code AF), and the Human Factors Research and Technology Division (Code IH). The inclusive dates for the report are November 1, 1984 to January 31, 1999. Throughout the years, approximately 170 persons worked on the cooperative agreements in one capacity or another. The Cooperative Agreement provided for research personnel to collaborate with senior scientists in ongoing NASA ARC research. Finally, many post-MA/MS and post-doctoral personnel contributed to the projects. It is worth noting that 10 former cooperative agreement personnel were hired into civil service positions directly from the agreements.

  16. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a 5-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASAs safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are "one deep." The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting "brain drain" could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has little flexibility to begin long lead-time items for upgrades or contingency planning.

  17. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  18. Aerospace management techniques: Commercial and governmental applications

    NASA Technical Reports Server (NTRS)

    Milliken, J. G.; Morrison, E. J.

    1971-01-01

    A guidebook for managers and administrators is presented as a source of useful information on new management methods in business, industry, and government. The major topics discussed include: actual and potential applications of aerospace management techniques to commercial and governmental organizations; aerospace management techniques and their use within the aerospace sector; and the aerospace sector's application of innovative management techniques.

  19. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  20. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  1. Heat transfer in aerospace propulsion

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

    1988-01-01

    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

  2. AeroSpace Days 2013

    NASA Video Gallery

    At the eighth annual AeroSpace Days, first mom in space, Astronaut AnnaFisher, and Sen. Louise Lucas, interacted with students from Mack BennJr. Elementary School in Suffolk, Va. through NASA’s...

  3. Norwegian Aerospace Activities: an Overview

    NASA Technical Reports Server (NTRS)

    Arnesen, T. (Editor); Rosenberg, G. (Editor)

    1986-01-01

    Excerpts from a Governmental Investigation concerning Norwegian participation in the European Space Organization (ESA) is presented. The implications and advantages of such a move and a suggestion for the reorganization of Norwegian Aerospace activity is given.

  4. Web-Based Learning and Instruction Support System for Pneumatics

    ERIC Educational Resources Information Center

    Yen, Chiaming; Li, Wu-Jeng

    2003-01-01

    This research presents a Web-based learning and instructional system for Pneumatics. The system includes course material, remote data acquisition modules, and a pneumatic laboratory set. The course material is in the HTML format accompanied with text, still and animated images, simulation programs, and computer aided design tools. The data…

  5. Semi-autonomous liquid handling via on-chip pneumatic digital logic.

    PubMed

    Nguyen, Transon V; Duncan, Philip N; Ahrar, Siavash; Hui, Elliot E

    2012-10-21

    This report presents a liquid-handling chip capable of executing metering, mixing, incubation, and wash procedures largely under the control of on-board pneumatic circuitry. The only required inputs are four static selection lines to choose between the four machine states, and one additional line for power. State selection is simple: constant application of vacuum to an input causes the device to execute one of its four liquid handling operations. Programmed control of 31 valves, including fast coordinated cycling for peristaltic pumping, is accomplished by pneumatic digital logic circuits built out of microfluidic valves and channels rather than electronics, eliminating the need for the off-chip control machinery that is typically required for integrated microfluidics.

  6. Investigation of work parameters of SI engine dedicated to energetics aggregates with pneumatic injection system

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    The article presents the possibilities of alternative fuel combustion in the engine four- stroke spark ignition engines. Power of the motor was carried out pneumatic fuel injection system using a hot gas developed by Prof. Stanislaw Jarnuszkiewicz. Presented made the position of the measuring system with the power and results. The engine experimental at the time of the study was powered by a blend of alcohol and gasoline. The main aim of the study was the question of control fuel dosage, taking into account the energy needs of forcing the engine load. During the tests carried load characteristics control the motor using the power control quality. Another issue was the elimination of penetration of fuel to the engine lubrication system, a problem occurred in the initial study on the issue of the pneumatic fuel injection using the hot exhaust gases. In summary we present the findings of this phase of the study.

  7. A pneumatic transfer system for special form {sup 252}Cf

    SciTech Connect

    Gehrke, R.J.; Berry, S.M.; Grafwallner, E.G.; Hoggan, J.M.

    1996-09-01

    A pneumatic transfer system has been developed for use with series 100 Special Form {sup 252}Cf. It was developed to reduce the exposure to personnel handling sources of {sup 252}Cf with masses up to 150 {micro}g by permitting remotely activated two-way transfer between the storage container and the irradiation position. The pneumatic transfer system also permits transfers for reproducible repetitive irradiation periods. In addition to the storage container equipped with quick-release fittings, the transfer system consists of an irradiation station, a control box with momentary contact switches to activate the air-pressure control valves and indicators to identify the location of the source, and connecting air hose and electrical wire. A source of 20 psig air and 110 volt electrical power are required for operation of the transfer system which can be easily moved and set up by one individual in 5 to 10 minutes. Tests have shown that rarely does a source become lodged in the transfer tubing, but two methods have been developed to handle incomplete transfers of the {sup 252}Cf source. The first method consists of closing one air vent to allow a pressure impulse to propel the source to the opposite side. The second method applies to those {sup 252}Cf capsules with a threaded or tapped end to which a small ferromagnetic piece can be attached; an incompletely transferred source in the transfer tube can then be guided to a position of safety by surrounding the transfer tubing containing the capsule with a horseshoe magnet attached to the end of a long pole.

  8. National Aerospace Plane (NASP) program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Artists concept of the X-30 aerospace plane flying through Earth's atmosphere on its way to low-Earth orbit. the experimental concept is part of the National Aero-Space Plane Program. The X-30 is planned to demonstrate the technology for airbreathing space launch and hypersonic cruise vehicles. Photograph and caption published in Winds of Change, 75th Anniversary NASA publication (page 117), by James Schultz.

  9. 32nd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Walker, S. W. (Compiler); Boesiger, Edward A. (Compiler)

    1998-01-01

    The proceedings of the 32nd Aerospace Mechanism Symposium are reported. NASA John F. Kennedy Space Center (KSC) hosted the symposium that was held at the Hilton Oceanfront Hotel in Cocoa Beach, Florida on May 13-15, 1998. The symposium was cosponsored by Lockheed Martin Missiles and Space and the Aerospace Mechanisms Symposium Committee. During these days, 28 papers were presented. Topics included robotics, deployment mechanisms, bearing, actuators, scanners, boom and antenna release, and test equipment.

  10. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Annual Report of the Aerospace Safety Advisory Panel (ASAP) presents results of activities during calendar year 2001. The year was marked by significant achievements in the Space Shuttle and International Space Station (ISS) programs and encouraging accomplishments by the Aerospace Technology Enterprise. Unfortunately, there were also disquieting mishaps with the X-43, a LearJet, and a wind tunnel. Each mishap was analyzed in an orderly process to ascertain causes and derive lessons learned. Both these accomplishments and the responses to the mishaps led the Panel to conclude that safety and risk management is currently being well served within NASA. NASA's operations evidence high levels of safety consciousness and sincere efforts to place safety foremost. Nevertheless, the Panel's safety concerns have never been greater. This dichotomy has arisen because the focus of most NASA programs has been directed toward program survival rather than effective life cycle planning. Last year's Annual Report focused on the need for NASA to adopt a realistically long planning horizon for the aging Space Shuttle so that safety would not erode. NASA's response to the report concurred with this finding. Nevertheless, there has been a greater emphasis on current operations to the apparent detriment of long-term planning. Budget cutbacks and shifts in priorities have severely limited the resources available to the Space Shuttle and ISS for application to risk-reduction and life-extension efforts. As a result, funds originally intended for long-term safety-related activities have been used for operations. Thus, while safety continues to be well served at present, the basis for future safety has eroded. Section II of this report develops this theme in more detail and presents several important, overarching findings and recommendations that apply to many if not all of NASA's programs. Section III of the report presents other significant findings, recommendations and supporting

  11. Pneumatic tire-based piezoelectric power generation

    NASA Astrophysics Data System (ADS)

    Makki, Noaman; Pop-Iliev, Remon

    2011-03-01

    Plug-in Hybrid Electric Vehicles (PHEVs) and Extended Range Electric Vehicles (EREVs) currently mainly rely on Internal Combustion Engines (ICE) utilizing conventional fuels to recharge batteries in order to extend their range. Even though Piezo-based power generation devices have surfaced in recent years harvesting vibration energy, their output has only been sufficient to power up sensors and other such smaller devices. The permanent need for a cleaner power generation technique still remains. This paper investigates the possibility of using piezoceramics for power generation within the vehicle's wheel assembly by exploiting the rotational motion of the wheel and the continuously variable contact point between the pneumatic tire and the road.

  12. Revisiting Pneumatic Nail Gun Trigger Recommendations

    PubMed Central

    Albers, James; Lipscomb, Hester; Hudock, Stephen; Dement, John; Evanoff, Bradley; Fullen, Mark; Gillen, Matt; Kaskutas, Vicki; Nolan, James; Patterson, Dennis; Platner, James; Pompeii, Lisa; Schoenfisch, Ashley

    2015-01-01

    Summary Use of a pneumatic nail gun with a sequential actuation trigger (SAT) significantly diminishes the risk for acute traumatic injury compared to use of a contact actuation trigger (CAT) nail gun. A theoretically-based increased risk of work-related musculoskeletal disorders from use of a SAT nail gun, relative to CAT, appears unlikely and remains unproven. Based on current knowledge, the use of CAT nail guns cannot be justified as a safe alternative to SAT nail guns. This letter provides a perspective of ergonomists and occupational safety researchers recommending the use of the sequential actuation trigger for all nail gun tasks in the construction industry. PMID:26366020

  13. Revisiting Pneumatic Nail Gun Trigger Recommendations.

    PubMed

    Albers, James; Lowe, Brian; Lipscomb, Hester; Hudock, Stephen; Dement, John; Evanoff, Bradley; Fullen, Mark; Gillen, Matt; Kaskutas, Vicki; Nolan, James; Patterson, Dennis; Platner, James; Pompeii, Lisa; Schoenfisch, Ashley

    2015-03-01

    Use of a pneumatic nail gun with a sequential actuation trigger (SAT) significantly diminishes the risk for acute traumatic injury compared to use of a contact actuation trigger (CAT) nail gun. A theoretically-based increased risk of work-related musculoskeletal disorders from use of a SAT nail gun, relative to CAT, appears unlikely and remains unproven. Based on current knowledge, the use of CAT nail guns cannot be justified as a safe alternative to SAT nail guns. This letter provides a perspective of ergonomists and occupational safety researchers recommending the use of the sequential actuation trigger for all nail gun tasks in the construction industry.

  14. Pneumatic Artificial Muscle Actuation and Modeling

    NASA Astrophysics Data System (ADS)

    Leephakpreeda, Thananchai; Wickramatunge, Kanchana C.

    2009-10-01

    A Pneumatic Artificial Muscle (PAM) yields a natural muscle-like actuator with a high force to weight ratio, a soft and flexible structure, and adaptable compliance for a humanoid robot, rehabilitation and prosthetic appliances to the disabled, etc. To obtain optimum design and usage, the mechanical behavior of the PAM need to be understood. In this study, observations of experimental results reveal an empirical model for relations of physical variables, contraction and air pressure within the PAM, as compared to mechanical characteristics, such as stiffness or/and pulling forces of the PAM available now in market.

  15. A comparison between two pneumatic suspension architectures

    NASA Astrophysics Data System (ADS)

    Quaglia, G.; Scopesi, M.; Franco, W.

    2012-04-01

    The aim of this work is to assess and compare the mathematical models of two pneumatic suspension architectures and show how they can converge, after appropriate simplifications, to a general linear form. After making this model dimensionless, it will be used to study, with a transmissibility analysis, the behaviour of a mono-suspension (quarter-car model). Finally, an example of a design process will be shown to highlight the strengths and weaknesses of both architectures and to provide the reader with a practical design tool.

  16. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  17. Aerospace Safety Advisory Panel

    NASA Astrophysics Data System (ADS)

    1989-03-01

    This report provides findings, conclusions and recommendations regarding the National Space Transportation System (NSTS), the Space Station Freedom Program (SSFP), aeronautical projects and other areas of NASA activities. The main focus of the Aerospace Safety Advisory Panel (ASAP) during 1988 has been monitoring and advising NASA and its contractors on the Space Transportation System (STS) recovery program. NASA efforts have restored the flight program with a much better management organization, safety and quality assurance organizations, and management communication system. The NASA National Space Transportation System (NSTS) organization in conjunction with its prime contractors should be encouraged to continue development and incorporation of appropriate design and operational improvements which will further reduce risk. The data from each Shuttle flight should be used to determine if affordable design and/or operational improvements could further increase safety. The review of Critical Items (CILs), Failure Mode Effects and Analyses (FMEAs) and Hazard Analyses (HAs) after the Challenger accident has given the program a massive data base with which to establish a formal program with prioritized changes.

  18. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Aerospace Safety Advisory Panel (ASAP) monitored NASA's activities and provided feedback to the NASA Administrator, other NASA officials and Congress throughout the year. Particular attention was paid to the Space Shuttle, its launch processing and planned and potential safety improvements. The Panel monitored Space Shuttle processing at the Kennedy Space Center (KSC) and will continue to follow it as personnel reductions are implemented. There is particular concern that upgrades in hardware, software, and operations with the potential for significant risk reduction not be overlooked due to the extraordinary budget pressures facing the agency. The authorization of all of the Space Shuttle Main Engine (SSME) Block II components portends future Space Shuttle operations at lower risk levels and with greater margins for handling unplanned ascent events. Throughout the year, the Panel attempted to monitor the safety activities related to the Russian involvement in both space and aeronautics programs. This proved difficult as the working relationships between NASA and the Russians were still being defined as the year unfolded. NASA's concern for the unique safety problems inherent in a multi-national endeavor appears appropriate. Actions are underway or contemplated which should be capable of identifying and rectifying problem areas. The balance of this report presents 'Findings and Recommendations' (Section 2), 'Information in Support of Findings and Recommendations' (Section 3) and Appendices describing Panel membership, the NASA response to the March 1994 ASAP report, and a chronology of the panel's activities during the reporting period (Section 4).

  19. A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop

    PubMed Central

    Chin, Robin; Hsiao-Wecksler, Elizabeth T; Loth, Eric; Kogler, Géza; Manwaring, Scott D; Tyson, Serena N; Shorter, K Alex; Gilmer, Joel N

    2009-01-01

    Background A self-contained, self-controlled, pneumatic power harvesting ankle-foot orthosis (PhAFO) to manage foot-drop was developed and tested. Foot-drop is due to a disruption of the motor control pathway and may occur in numerous pathologies such as stroke, spinal cord injury, multiple sclerosis, and cerebral palsy. The objectives for the prototype PhAFO are to provide toe clearance during swing, permit free ankle motion during stance, and harvest the needed power with an underfoot bellow pump pressurized during the stance phase of walking. Methods The PhAFO was constructed from a two-part (tibia and foot) carbon composite structure with an articulating ankle joint. Ankle motion control was accomplished through a cam-follower locking mechanism actuated via a pneumatic circuit connected to the bellow pump and embedded in the foam sole. Biomechanical performance of the prototype orthosis was assessed during multiple trials of treadmill walking of an able-bodied control subject (n = 1). Motion capture and pressure measurements were used to investigate the effect of the PhAFO on lower limb joint behavior and the capacity of the bellow pump to repeatedly generate the required pneumatic pressure for toe clearance. Results Toe clearance during swing was successfully achieved during all trials; average clearance 44 ± 5 mm. Free ankle motion was observed during stance and plantarflexion was blocked during swing. In addition, the bellow component repeatedly generated an average of 169 kPa per step of pressure during ten minutes of walking. Conclusion This study demonstrated that fluid power could be harvested with a pneumatic circuit built into an AFO, and used to operate an actuated cam-lock mechanism that controls ankle-foot motion at specific periods of the gait cycle. PMID:19527526

  20. Interdisciplinary optimum design. [of aerospace structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.

  1. Axial and appendicular pneumaticity in Archaeopteryx.

    PubMed Central

    Christiansen, P; Bonde, N

    2000-01-01

    From the time of its discovery in 1860 to this day Archaeopteryx has been essential to our understanding of avian evolution. Despite the great diversity of plesiomorphic avialan (sensu Gauthier 1986) taxa discovered within the last decade, Archaeopteryx remains the most basal avialan taxon. A very unusual feature of extant birds is their lung structure, in which air diverticulae penetrate the bones. This has previously been reported in Archaeopteryx as well, in the cervical vertebrae of the Berlin specimen and in an anterior thoracal vertebra of the Eichstätt specimen. This indicates the presence of a cervical air sac. We show that the London specimen also has pneumatized anterior thoracal vertebrae, and, thus, that this feature was present in the most archaic avialans, as the London and Eichstätt specimens are different species. Furthermore, the pelvis of the London specimen shows clear signs of the presence of an abdominal air sac, indicating that at least two of the five air sacs present in modern birds were also present in Archaeopteryx. Evidence of pubic pneumaticity was also found in the same position in some extant ratites. PMID:11197125

  2. Scaling of pneumatic digital logic circuits.

    PubMed

    Duncan, Philip N; Ahrar, Siavash; Hui, Elliot E

    2015-03-07

    The scaling of integrated circuits to smaller dimensions is critical for achieving increased system complexity and speed. Digital logic circuits composed of pneumatic microfluidic components have to this point been limited to a circuit density of 2-4 gates cm(-2), constraining the complexity of the digital systems that can be achieved. We explored the use of precision machining techniques to reduce the size of pneumatic valves and resistors, and to achieve more accurate and efficient placement of ports and vias. In this way, we attained an order of magnitude increase in circuit density, reaching as high as 36 gates cm(-2). A 12-bit binary counter circuit composed of 96 gates was realized in an area of 360 mm(2). The reduction in size also brought an order of magnitude increase in speed. The frequency of a 13-stage ring oscillator increased from 2.6 Hz to 22.1 Hz, and the maximum clock frequency of a binary counter increased from 1/3 Hz to 6 Hz.

  3. Development of a Pneumatic Robot for MRI-guided Transperineal Prostate Biopsy and Brachytherapy: New Approaches.

    PubMed

    Song, Sang-Eun; Cho, Nathan B; Fischer, Gregory; Hata, Nobuhito; Tempany, Clare; Fichtinger, Gabor; Iordachita, Iulian

    2010-07-15

    Magnetic Resonance Imaging (MRI) guided prostate biopsy and brachytherapy has been introduced in order to enhance the cancer detection and treatment. For the accurate needle positioning, a number of robotic assistants have been developed. However, problems exist due to the strong magnetic field and limited workspace. Pneumatically actuated robots have shown the minimum distraction in the environment but the confined workspace limits optimal robot design and thus controllability is often poor. To overcome the problem, a simple external damping mechanism using timing belts was sought and a 1-DOF mechanism test result indicated sufficient positioning accuracy. Based on the damping mechanism and modular system design approach, a new workspace-optimized 4-DOF parallel robot was developed for the MRI-guided prostate biopsy and brachytherapy. A preliminary evaluation of the robot was conducted using previously developed pneumatic controller and satisfying results were obtained.

  4. Development of a Pneumatic Robot for MRI-guided Transperineal Prostate Biopsy and Brachytherapy: New Approaches

    PubMed Central

    Song, Sang-Eun; Cho, Nathan B.; Fischer, Gregory; Hata, Nobuhito; Tempany, Clare; Fichtinger, Gabor; Iordachita, Iulian

    2011-01-01

    Magnetic Resonance Imaging (MRI) guided prostate biopsy and brachytherapy has been introduced in order to enhance the cancer detection and treatment. For the accurate needle positioning, a number of robotic assistants have been developed. However, problems exist due to the strong magnetic field and limited workspace. Pneumatically actuated robots have shown the minimum distraction in the environment but the confined workspace limits optimal robot design and thus controllability is often poor. To overcome the problem, a simple external damping mechanism using timing belts was sought and a 1-DOF mechanism test result indicated sufficient positioning accuracy. Based on the damping mechanism and modular system design approach, a new workspace-optimized 4-DOF parallel robot was developed for the MRI-guided prostate biopsy and brachytherapy. A preliminary evaluation of the robot was conducted using previously developed pneumatic controller and satisfying results were obtained. PMID:21399734

  5. An animal model for the study of neuromuscular injury induced beneath and distal to a pneumatic tourniquet.

    PubMed

    Pedowitz, R A; Rydevik, B L; Gershuni, D H; Hargens, A R

    1990-11-01

    A well-controlled animal model is presented for the study of neuromuscular injury induced by a pneumatic tourniquet. This model comprises a curved tourniquet surrounded by a stiff exterior shell, both of which were specifically designed to fit the conical and oblong shape of the rabbit hindlimb. Computed tomographic imaging was used to assess transverse tissue displacement induced by tourniquet compression. The curved tourniquet/shell configuration occluded the distal arterial blood flow to the extremity at a significantly lower cuff inflation pressure than a straight tourniquet of equal width. The magnitude and distribution of tissue pressures in the subcutaneous and deep tissues beneath the tourniquet were similar to those recorded in previous human cadaver studies of tourniquet compression. This animal model will facilitate the quantitation and analysis of tissue injury induced beneath and distal to a pneumatic tourniquet. Such data can help define the critical pressure and time limits for the safe use of pneumatic tourniquets in extremity surgery.

  6. Pneumatic artificial muscle actuators for compliant robotic manipulators

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan Michael

    Robotic systems are increasingly being utilized in applications that require interaction with humans. In order to enable safe physical human-robot interaction, light weight and compliant manipulation are desirable. These requirements are problematic for many conventional actuation systems, which are often heavy, and typically use high stiffness to achieve high performance, leading to large impact forces upon collision. However, pneumatic artificial muscles (PAMs) are actuators that can satisfy these safety requirements while offering power-to-weight ratios comparable to those of conventional actuators. PAMs are extremely lightweight actuators that produce force in response to pressurization. These muscles demonstrate natural compliance, but have a nonlinear force-contraction profile that complicates modeling and control. This body of research presents solutions to the challenges associated with the implementation of PAMs as actuators in robotic manipulators, particularly with regard to modeling, design, and control. An existing PAM force balance model was modified to incorporate elliptic end geometry and a hyper-elastic constitutive relationship, dramatically improving predictions of PAM behavior at high contraction. Utilizing this improved model, two proof-of-concept PAM-driven manipulators were designed and constructed; design features included parallel placement of actuators and a tendon-link joint design. Genetic algorithm search heuristics were employed to determine an optimal joint geometry; allowing a manipulator to achieve a desired torque profile while minimizing the required PAM pressure. Performance of the manipulators was evaluated in both simulation and experiment employing various linear and nonlinear control strategies. These included output feedback techniques, such as proportional-integral-derivative (PID) and fuzzy logic, a model-based control for computed torque, and more advanced controllers, such as sliding mode, adaptive sliding mode, and

  7. The 2004 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Super NiCd(TradeMark) Energy Storage for Gravity Probe-B Relativity Mission; Hubble Space Telescope 2004 Battery Update; The Development of Hermetically Sealed Aerospace Nickel-Metal Hydride Cell; Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System; Cell Equalization of Lithium-Ion Cells; The Long-Term Performance of Small-Cell Batteries Without Cell-Balancing Electronics; Identification and Treatment of Lithium Battery Cell Imbalance under Flight Conditions; Battery Control Boards for Li-Ion Batteries on Mars Exploration Rovers; Cell Over Voltage Protection and Balancing Circuit of the Lithium-Ion Battery; Lithium-Ion Battery Electronics for Aerospace Applications; Lithium-Ion Cell Charge Control Unit; Lithium Ion Battery Cell Bypass Circuit Test Results at the U.S. Naval Research Laboratory; High Capacity Battery Cell By-Pass Switches: High Current Pulse Testing of Lithium-Ion; Battery By-Pass Switches to Verify Their Ability to Withstand Short-Circuits; Incorporation of Physics-Based, Spatially-Resolved Battery Models into System Simulations; A Monte Carlo Model for Li-Ion Battery Life Projections; Thermal Behavior of Large Lithium-Ion Cells; Thermal Imaging of Aerospace Battery Cells; High Rate Designed 50 Ah Li-Ion Cell for LEO Applications; Evaluation of Corrosion Behavior in Aerospace Lithium-Ion Cells; Performance of AEA 80 Ah Battery Under GEO Profile; LEO Li-Ion Battery Testing; A Review of the Feasibility Investigation of Commercial Laminated Lithium-Ion Polymer Cells for Space Applications; Lithium-Ion Verification Test Program; Panasonic Small Cell Testing for AHPS; Lithium-Ion Small Cell Battery Shorting Study; Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-Time Profiles; Update on Development of Lithium-Ion Cells for Space Applications at JAXA; Foreign Comparative Technology: Launch Vehicle Battery Cell Testing; 20V, 40 Ah Lithium Ion Polymer

  8. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a five-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASA's safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are 'one deep.' The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting 'brain drain' could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. The major NASA programs are also limited in their ability to plan property for the future. This is of particular concern for the Space Shuttle and ISS because these programs are scheduled to operate well into the next century. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has

  9. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    SciTech Connect

    Robert J. Englar

    2000-06-19

    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.

  10. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This annual report is based on the activities of the Aerospace Safety Advisory Panel in calendar year 2000. During this year, the construction of the International Space Station (ISS) moved into high gear. The launch of the Russian Service Module was followed by three Space Shuttle construction and logistics flights and the deployment of the Expedition One crew. Continuous habitation of the ISS has begun. To date, both the ISS and Space Shuttle programs have met or exceeded most of their flight objectives. In spite of the intensity of these efforts, it is clear that safety was always placed ahead of cost and schedule. This safety consciousness permitted the Panel to devote more of its efforts to examining the long-term picture. With ISS construction accelerating, demands on the Space Shuttle will increase. While Russian Soyuz and Progress spacecraft will make some flights, the Space Shuttle remains the primary vehicle to sustain the ISS and all other U.S. activities that require humans in space. Development of a next generation, human-rated vehicle has slowed due to a variety of technological problems and the absence of an approach that can accomplish the task significantly better than the Space Shuttle. Moreover, even if a viable design were currently available, the realities of funding and development cycles suggest that it would take many years to bring it to fruition. Thus, it is inescapable that for the foreseeable future the Space Shuttle will be the only human-rated vehicle available to the U.S. space program for support of the ISS and other missions requiring humans. Use of the Space Shuttle will extend well beyond current planning, and is likely to continue for the life of the ISS.

  11. Compensating for pneumatic distortion in pressure sensing devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Leondes, Cornelius T.

    1990-01-01

    A technique of compensating for pneumatic distortion in pressure sensing devices was developed and verified. This compensation allows conventional pressure sensing technology to obtain improved unsteady pressure measurements. Pressure distortion caused by frictional attenuation and pneumatic resonance within the sensing system makes obtaining unsteady pressure measurements by conventional sensors difficult. Most distortion occurs within the pneumatic tubing which transmits pressure impulses from the aircraft's surface to the measurement transducer. To avoid pneumatic distortion, experiment designers mount the pressure sensor at the surface of the aircraft, (called in-situ mounting). In-situ transducers cannot always fit in the available space and sometimes pneumatic tubing must be run from the aircraft's surface to the pressure transducer. A technique to measure unsteady pressure data using conventional pressure sensing technology was developed. A pneumatic distortion model is reduced to a low-order, state-variable model retaining most of the dynamic characteristics of the full model. The reduced-order model is coupled with results from minimum variance estimation theory to develop an algorithm to compensate for the effects of pneumatic distortion. Both postflight and real-time algorithms are developed and evaluated using simulated and flight data.

  12. Pneumatization degree of the anterior clinoid process: a new classification.

    PubMed

    Abuzayed, Bashar; Tanriover, Necmettin; Biceroglu, Huseyin; Yuksel, Odhan; Tanriover, Ozlem; Albayram, Sait; Akar, Ziya

    2010-07-01

    The objective of this study is to determine the incidence and degree of anterior clinoid process pneumatization, in addition highlighting to their clinical significance. Multidetector-row CT scans of the skull base were reviewed in 648 subjects between 2007 and 2008. The presence of pneumatized anterior clinoid process and its degree were studied and documented. These data were statistically analyzed. Pneumatization of the ACP was found in 62 of 648 patients (9.6%) including 32 (51.6%) men and 30 (48.4%) women. The age of these patients ranged from 21 to 82 years (mean, 41 +/- 15.7 years). Pneumatization of the ACP occurred only on the left side in 14 cases (22.6%), only on the right side in 11 cases (17.7%), and bilaterally in 37 patients (59.7%). ACP pneumatization Type I, in which less than 50% of the ACP is pneumatized, was found in 47 of 124 sides (38%), Type II, in which more than 50% but not totally pneumatized ACP, was found in 28 of 124 sides (22.6%), and Type III, in which the ACP is totally pneumatized, was found in 22 of 124 sides (17.7%). The incidence of Type I in the general population was 6.6%, Type II was 3.5%, and Type III was 2.5%. Radiologically recognizing the degree of ACP pneumatization is important in decreasing the incidence of surgical complications during anterior clinoidectomy. Proper intraoperative management can be undertaken with special attention to the new classification.

  13. Photogrammetric techniques for aerospace applications

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu; Burner, Alpheus W.; Jones, Thomas W.; Barrows, Danny A.

    2012-10-01

    Photogrammetric techniques have been used for measuring the important physical quantities in both ground and flight testing including aeroelastic deformation, attitude, position, shape and dynamics of objects such as wind tunnel models, flight vehicles, rotating blades and large space structures. The distinct advantage of photogrammetric measurement is that it is a non-contact, global measurement technique. Although the general principles of photogrammetry are well known particularly in topographic and aerial survey, photogrammetric techniques require special adaptation for aerospace applications. This review provides a comprehensive and systematic summary of photogrammetric techniques for aerospace applications based on diverse sources. It is useful mainly for aerospace engineers who want to use photogrammetric techniques, but it also gives a general introduction for photogrammetrists and computer vision scientists to new applications.

  14. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During 1997, the Aerospace Safety Advisory Panel (ASAP) continued its safety reviews of NASA's human space flight and aeronautics programs. Efforts were focused on those areas that the Panel believed held the greatest potential to impact safety. Continuing safe Space Shuttle operations and progress in the manufacture and testing of primary components for the International Space Station (ISS) were noteworthy. The Panel has continued to monitor the safety implications of the transition of Space Shuttle operations to the United Space Alliance (USA). One area being watched closely relates to the staffing levels and skill mix in both NASA and USA. Therefore, a section of this report is devoted to personnel and other related issues that are a result of this change in NASA's way of doing business for the Space Shuttle. Attention will continue to be paid to this important topic in subsequent reports. Even though the Panel's activities for 1997 were extensive, fewer specific recommendations were formulated than has been the case in recent years. This is indicative of the current generally good state of safety of NASA programs. The Panel does, however, have several longer term concerns that have yet to develop to the level of a specific recommendation. These are covered in the introductory material for each topic area in Section 11. In another departure from past submissions, this report does not contain individual findings and recommendations for the aeronautics programs. While the Panel devoted its usual efforts to examining NASA's aeronautic centers and programs, no specific recommendations were identified for inclusion in this report. In lieu of recommendations, a summary of the Panel's observations of NASA's safety efforts in aeronautics and future Panel areas of emphasis is provided. With profound sadness the Panel notes the passing of our Chairman, Paul M. Johnstone, on December 17, 1997, and our Staff Assistant, Ms. Patricia M. Harman, on October 5, 1997. Other

  15. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report presents the results of the Aerospace Safety Advisory Panel (ASAP) activities during 2002. The format of the report has been modified to capture a long-term perspective. Section II is new and highlights the Panel's view of NASA's safety progress during the year. Section III contains the pivotal safety issues facing NASA in the coming year. Section IV includes the program area findings and recommendations. The Panel has been asked by the Administrator to perform several special studies this year, and the resulting white papers appear in Appendix C. The year has been filled with significant achievements for NASA in both successful Space Shuttle operations and International Space Station (ISS) construction. Throughout the year, safety has been first and foremost in spite of many changes throughout the Agency. The relocation of the Orbiter Major Modifications (OMMs) from California to Kennedy Space Center (KSC) appears very successful. The transition of responsibilities for program management of the Space Shuttle and ISS programs from Johnson Space Center (JSC) to NASA Headquarters went smoothly. The decision to extend the life of the Space Shuttle as the primary NASA vehicle for access to space is viewed by the Panel as a prudent one. With the appropriate investments in safety improvements, in maintenance, in preserving appropriate inventories of spare parts, and in infrastructure, the Space Shuttle can provide safe and reliable support for the ISS for the foreseeable future. Indications of an aging Space Shuttle fleet occurred on more than one occasion this year. Several flaws went undetected in the early prelaunch tests and inspections. In all but one case, the problems were found prior to launch. These incidents were all handled properly and with safety as the guiding principle. Indeed, launches were postponed until the problems were fully understood and mitigating action could be taken. These incidents do, however, indicate the need to analyze the

  16. Characterization of a pneumatic balloon actuator for use in refreshable Braille displays.

    PubMed

    Fan, Richard E; Feinman, Adam M; Wottawa, Christopher; King, Chih-Hung; Franco, Miguel L; Dutson, Erik P; Grundfest, Warren S; Culjat, Martin O

    2009-01-01

    Many existing refreshable Braille display technologies are costly or lack robust performance. A process has been developed to fabricate consistent and reliable pneumatic balloon actuators at low material cost, using a novel manufacturing process. This technique has been adapted for use in refreshable Braille displays that feature low power consumption, ease of manufacture and small form factor. A prototype refreshable cell, conforming to American Braille standards, was developed and tested. The cell was fabricated from molded PDMS to form balloon actuators with a spin-coated silicone film, and fast pneumatic driving elements and an electronic control system were developed to drive the Braille dots. Perceptual testing was performed to determine the feasibility of the approach using a single blind human subject. The subject was able to detect randomized Braille letters rapidly generated by the actuator with 100% character detection accuracy.

  17. Center of Excellence in Aerospace Automation

    DTIC Science & Technology

    1986-05-01

    TyPt ANOGOAIRS W.vumm I May 86 I Anc I Q - T ..𔃻o L =1T ANUjg ifl. =J Center of Excellence in Aerospace Automation. F49620.-82- 10...AQWhI1IU5S M0 sSUoftIIMORS" ~~ah~ ~ T IChunoaA&.Mr IAIA 11.geeato intelligentdot2 619 LPogubset oaen adeb TAIL aou versionet of ourS sond UNerations;nc...addition, small development of the AL programming sy stem contin ued . U .4_1 in Ni- t to :.= .u a, tC. Development of control systems for our two-link

  18. Civil Air Patrol and Aerospace Education

    ERIC Educational Resources Information Center

    Sorenson, John V.

    1972-01-01

    Aerospace education is a branch of general education concerned with communicating knowledge, imparting skills, and developing attitudes necessary to interpret aerospace activities and the total impact of air and space vehicles upon society. (Author)

  19. Aerospace Education and the Elementary Teacher

    ERIC Educational Resources Information Center

    Jones, Robert M.

    1978-01-01

    This articles attempts to stimulate otherwise reluctant school teachers to involve aerospace education in their content repertoire. Suggestions are made to aid the teacher in getting started with aerospace education. (MDR)

  20. Accommodation of Nontraditional Aerospace Degree Aspirants

    ERIC Educational Resources Information Center

    Schukert, Michael A.

    1977-01-01

    Presents results of a national survey of institutions offering college level aerospace studies. Primary survey concern is the availability of nontraditional aerospace education programs; however, information pertaining to institution characteristics, program characteristics, and staffing are also included. (SL)

  1. Optical Information Processing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Current research in optical processing is reviewed. Its role in future aerospace systems is determined. The development of optical devices and components demonstrates that system concepts can be implemented in practical aerospace configurations.

  2. Aerospace Education for the Melting Pot.

    ERIC Educational Resources Information Center

    Joels, Kerry M.

    1979-01-01

    Aerospace education is eminently suited to provide a framework for multicultural education. Effective programs accommodating minorities' frames of reference to the rapidly developing disciplines of aerospace studies have been developed. (RE)

  3. Aerospace Education: Is the Sky the Limit?

    ERIC Educational Resources Information Center

    Little Soldier, Lee

    1991-01-01

    Provides suggestions on ways to include aerospace education in an integrated elementary school curriculum that focuses on content from the social and physical sciences and emphasizes process skills. Activities that build understanding of aerospace concepts are described. (BB)

  4. Manually operatable on-chip bistable pneumatic microstructures for microfluidic manipulations.

    PubMed

    Chen, Arnold; Pan, Tingrui

    2014-09-07

    Bistable microvalves are of particular interest because of their distinct nature of requiring energy consumption only during the transition between the open and closed states. This characteristic can be highly advantageous in reducing the number of external inputs and the complexity of control circuitries since microfluidic devices as contemporary lab-on-a-chip platforms are transferring from research settings to low-resource environments with high integrability and a small form factor. In this paper, we first present manually operatable, on-chip bistable pneumatic microstructures (BPMs) for microfluidic manipulation. The structural design and operation of the BPM devices can be readily integrated into any pneumatically powered microfluidic network consisting of pneumatic and fluidic channels. It is mainly composed of a vacuum activation chamber (VAC) and a pressure release chamber (PRC), of which users have direct control through finger pressing to switch either to the bistable vacuum state (VS) or the atmospheric state (AS). We have integrated multiple BPM devices into a 4-to-1 microfluidic multiplexor to demonstrate on-chip digital flow switching from different sources. Furthermore, we have shown its clinical relevance in a point-of-care diagnostic chip that processes blood samples to identify the distinct blood types (A/B/O) on-chip.

  5. Dynamics of a pneumatic artificial muscle actuation system driving a trailing edge flap

    NASA Astrophysics Data System (ADS)

    Woods, Benjamin K. S.; Kothera, Curt S.; Wang, Gang; Wereley, Norman M.

    2014-09-01

    This study presents a time domain dynamic model of an antagonistic pneumatic artificial muscle (PAM) driven trailing edge flap (TEF) system for next generation active helicopter rotors. Active rotor concepts are currently being widely researched in the rotorcraft community as a means to provide a significant leap forward in performance through primary aircraft control, vibration mitigation and noise reduction. Recent work has shown PAMs to be a promising candidate for active rotor actuation due to their combination of high force, large stroke, light weight, and suitable bandwidth. When arranged into biologically inspired agonist/antagonist muscle pairs they can produce bidirectional torques for effectively driving a TEF. However, there are no analytical dynamic models in the literature that can accurately capture the behavior of such systems across the broad range of frequencies required for this demanding application. This work combines mechanical, pneumatic, and aerodynamic component models into a global flap system model developed for the Bell 407 rotor system. This model can accurately predict pressure, force, and flap angle response to pneumatic control valve inputs over a range of operating frequencies from 7 to 35 Hz (1/rev to 5/rev for the Bell 407) and operating pressures from 30 to 90 psi.

  6. Manually Operatable On-Chip Bistable Pneumatic Microstructures for Microfluidic Manipulations

    PubMed Central

    Chen, A.; Pan, T.

    2014-01-01

    Bistable microvalves are of particular interest because of their distinct nature requiring energy consumption only during the transition between the open and closed states. This characteristic can be highly advantageous in reducing the number of external inputs and the complexity of control circuitries for microfluidic devices as contemporary lab-on-a-chip platforms are transferring from research settings to low-resource environments with high integratability and small form factor. In this paper, we first present manually operatable, on-chip bistable pneumatic microstructures (BPM) for microfluidic manipulation. The structural design and operation of the BPM devices can be readily integrated into any pneumatically powered microfluidic network consisting of pneumatic and fluidic channels. It is mainly comprised of a vacuum activation chamber (VAC) and a pressure release chamber (PRC), which users have direct control through finger pressing to switch between bistable vacuum state (VS) or atmospheric state (AS). We have integrated multiple BPM devices into a 4-to-1 microfluidic multiplexor to demonstrate on-chip digital flow switching from different sources. Furthermore, we have shown its clinical relevance in a point-of-care diagnostic chip that process blood samples to identify the distinct blood types (A/B/O) on chip. PMID:25007840

  7. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)

    1997-01-01

    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  8. Challenges in aerospace medicine education.

    PubMed

    Grenon, S Marlene; Saary, Joan

    2011-11-01

    Aerospace medicine training and research represents a dream for many and a challenge for most. In Canada, although some opportunities exist for the pursuit of education and research in the aerospace medicine field, they are limited despite the importance of this field for enabling safe human space exploration. In this commentary, we aim to identify some of the challenges facing individuals wishing to get involved in the field as well as the causal factors for these challenges. We also explore strategies to mitigate against these.

  9. Computers and the aerospace engineer

    SciTech Connect

    Trego, L.E.

    1990-03-01

    The use of computers in aerospace for design and analysis is described, and examples of project enhancements are presented. NASA is working toward the design of a numerical test cell that will allow integrated, multidisciplinary design, analysis, and optimization of propulsion systems. It is noted that with continuing advances in computer technology, including areas such as three-dimensional computer-aided design, finite element analysis, supercomputers, and artificial intelligence, the possibilities seem limitless for the aerospace engineer. Research projects are currently underway for design and/or reconfiguration of the V-22, B-767, SCRAMJET engines, F-16, and X29A using these techniques.

  10. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Clark-Ingram, M.; Hessler, S. L.

    1997-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  11. Mobile Computing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Swietek, Gregory E. (Technical Monitor)

    1994-01-01

    The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the

  12. TOPICAL REVIEW: Pneumatic and hydraulic microactuators: a review

    NASA Astrophysics Data System (ADS)

    De Volder, Michaël; Reynaerts, Dominiek

    2010-04-01

    The development of MEMS actuators is rapidly evolving and continuously new progress in terms of efficiency, power and force output is reported. Pneumatic and hydraulic are an interesting class of microactuators that are easily overlooked. Despite the 20 years of research, and hundreds of publications on this topic, these actuators are only popular in microfluidic systems. In other MEMS applications, pneumatic and hydraulic actuators are rare in comparison with electrostatic, thermal or piezo-electric actuators. However, several studies have shown that hydraulic and pneumatic actuators deliver among the highest force and power densities at microscale. It is believed that this asset is particularly important in modern industrial and medical microsystems, and therefore, pneumatic and hydraulic actuators could start playing an increasingly important role. This paper shows an in-depth overview of the developments in this field ranging from the classic inflatable membrane actuators to more complex piston-cylinder and drag-based microdevices.

  13. PNEUMATICALLY CLEANING TOP HALF OF LARGE MOLD IN BOX FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PNEUMATICALLY CLEANING TOP HALF OF LARGE MOLD IN BOX FLOOR AREA TO REMOVE ANY EXCESS OR LOOSE SAND. - Stockham Pipe & Fittings Company, Ductile Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  14. 23. CORE WORKER OPERATING A COREBLOWER THAT PNEUMATICALLY FILLED CORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. CORE WORKER OPERATING A CORE-BLOWER THAT PNEUMATICALLY FILLED CORE BOXES WITH RESIGN IMPREGNATED SAND AND CREATED A CORE THAT THEN REQUIRED BAKING, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  15. Detail, north end of console and pneumatic tube message port, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, north end of console and pneumatic tube message port, also showing mirror to reflect view of communications switchboard - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  16. Inline evenflow material distributor for pneumatic material feed systems

    DOEpatents

    Thiry, Michael J.

    2007-02-20

    An apparatus for reducing clogs in a pneumatic material feed line, such as employed in abrasive waterjet machining systems, by providing an evenflow feed of material therethrough. The apparatus preferably includes a hollow housing defining a housing volume and having an inlet capable of connecting to an upstream portion of the pneumatic material feed line, an outlet capable of connecting to a downstream portion of the pneumatic material feed line, and an air vent located between the inlet and outlet for venting excess air pressure out from the housing volume. A diverter, i.e. an impingement object, is located at the inlet and in a path of incoming material from the upstream portion of the pneumatic material feed line, to break up clumps of ambient moisture-ridden material impinging on the diverter. And one or more filter screens is also preferably located in the housing volume to further break up clumps and provide filtering.

  17. Analytical Solution to the Pneumatic Transient Rod System at ACRR

    SciTech Connect

    Fehr, Brandon Michael

    2016-01-08

    The ACRR pulse is pneumatically driven by nitrogen in a system of pipes, valves and hoses up to the connection of the pneumatic system and mechanical linkages of the transient rod (TR). The main components of the TR pneumatic system are the regulator, accumulator, solenoid valve and piston-cylinder assembly. The purpose of this analysis is to analyze the flow of nitrogen through the TR pneumatic system in order to develop a motion profile of the piston during the pulse and be able to predict the pressure distributions inside both the cylinder and accumulators. The predicted pressure distributions will be validated against pressure transducer data, while the motion profile will be compared to proximity switch data. By predicting the motion of the piston, pulse timing will be determined and provided to the engineers/operators for verification. The motion profile will provide an acceleration distribution to be used in Razorback to more accurately predict reactivity insertion into the system.

  18. Aerospace Training. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Aerospace is an economic powerhouse that generates jobs and fuels our economy. Washington's community and technical colleges produce the world-class employees needed to keep it that way. With about 1,250 aerospace-related firms employing more than 94,000 workers, Washington has the largest concentration of aerospace expertise in the nation. To…

  19. Variable recruitment in bundles of miniature pneumatic artificial muscles.

    PubMed

    DeLaHunt, Sylvie A; Pillsbury, Thomas E; Wereley, Norman M

    2016-09-13

    The natural compliance and force generation properties of pneumatic artificial muscles (PAMs) allow them to operate like human muscles in anthropomorphic robotic manipulators. Traditionally, manipulators use a single PAM or multiple PAMs actuated in unison in place of a human muscle. However, these standard manipulators can experience significant efficiency losses when operated outside their target performance ranges at low actuation pressures. This study considers the application of a variable recruitment control strategy to a parallel bundle of miniature PAMs as an attempt to mimic the selective recruitment of motor units in a human muscle. Bundles of miniature PAMs are experimentally characterized, their actuation behavior is modeled, and the efficiency gains and losses associated with the application of a variable recruitment control strategy are assessed. This bio-inspired control strategy allows muscle bundles to operate the fewest miniature PAMs necessary to achieve a desired performance objective, improving the muscle bundle's operating efficiency over larger ranges of force generation and displacement. The study also highlights the need for improved PAM fabrication techniques to facilitate the production of identical miniature PAMs for inclusion in muscle bundles.

  20. Pneumatic Regolith Transfer Systems for In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Mueller, R. P.; Townsend, I. I.; Mantovani, J. G.; Zacny, Kris A.; Craft, Jack

    2010-01-01

    This slide presentation reviews the testing of a pneumatic system for transfering regolith, to be used for In Situ Resource Utilization (ISRU). Using both the simulated microgravity of parabolic flight and ground testing, the tests demonstrated that lunar regolith can be conveyed pneumatically into a simulated ISRU oxygen production plant reactor. The ground testing also demonstrated that the regolith can be expelled from the ISRU reactor for disposal or for other resource processing.

  1. Intracranial pressure monitoring system with pneumatic capsule sensor

    NASA Astrophysics Data System (ADS)

    Juniewicz, Henryk M.; Werszko, Miroslaw

    1995-06-01

    In the paper, a computer system for measurement, visualization and analysis of intracranial pressure (ICP), medium arterial pressure and cerebral perfusion pressure in one, two, three or four patients simultaneously has been presented. A structure of pneumatic compensatory sensor for intracranial pressure, and a stand for static properties of the sensors testing has been discussed. Conclusions resulting from the period of using the monitoring system with ICP pneumatic sensors have been formulated.

  2. Training of aerospace medicine physicians.

    PubMed

    Mohler, S R

    1985-03-01

    In the U. S. there are 23 recognized medical specialty boards. One of these is preventive medicine. Within preventive medicine there are three areas: Aerospace Medicine, Occupational Medicine, and Public Health/General Preventive Medicine. The preventive medicine specialties have a common core of required training including biostatistics, epidemiology, health services administration and environmental health. These, plus associated topics are covered during year one of training. Year two of training involves clinical rotations specifically tailored to the eye, ear, heart, lungs and brain, plus flight training to the private pilot level, and a Masters Degree research project for the required thesis. During year three the physicians in aerospace medicine practice full-time aerospace medicine in a NASA or other government laboratory or a private facility. To date, more than 40 physicians have received aerospace medicine training through the Wright State University School of Medicine program. Among these are physicians from Japan, Australia, Taiwan, Canada and Mexico. In addition to the civilian program at Wright State University, there are programs conducted by the U. S. Air Force and Navy. The Wright State program has been privileged to have officers from the U. S. Army, Navy and Air Force. A substantial supporter of the Wright State program is the National Aeronautics and Space Administration and a strong space component is contained in the program.

  3. Aerospace Education: A Pilot Program.

    ERIC Educational Resources Information Center

    Gerlovich, Jack; Fagle, David

    1983-01-01

    Describes development of K-12 aerospace education materials. The ninth-grade component, adopted as a pilot program, consists of four parts: history, applications (principles of flight, weather, navigation), spin-offs of research, and careers/organizations. Program evaluation results are reported. (JN)

  4. 33rd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Litty, Edward C. (Compiler); Sevilla, Donald R. (Compiler)

    1999-01-01

    The proceedings of the 33rd Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held at the Pasadena Conference and Exhibition Center, Pasadena, California, on May 19-21, 1999. Lockheed Martin Missiles and Space cosponsored the symposium. Technology areas covered include bearings and tribology; pointing, solar array and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  5. Technology utilization. [aerospace technology transfer

    NASA Technical Reports Server (NTRS)

    Kubokawa, C. C.

    1978-01-01

    NASA developed technologies were used to tackle problems associated with safety, transportation, industry, manufacturing, construction and state and local governments. Aerospace programs were responsible for more innovations for the benefit of mankind than those brought about by either major wars, or peacetime programs. Briefly outlined are some innovations for manned space flight, satellite surveillance applications, and pollution monitoring techniques.

  6. Aerospace for the Very Young.

    ERIC Educational Resources Information Center

    2003

    This packet includes games and activities concerning aerospace education for the very young. It is designed to develop and strengthen basic concepts and skills in a non-threatening atmosphere of fun. Activities include: (1) "The Sun, Our Nearest Star"; (2) "Twinkle, Twinkle, Little Star, How I Wonder Where You Are"; (3) "Shadows"; (4) "The Earth…

  7. Careers in the Aerospace Industry.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Office of General Aviation.

    The document briefly presents career information in the field of aerospace industry. Employment exists in three areas: (1) professional and technical occupations in research and development (engineers, scientists, and technicians); (2) administrative, clerical, and related occupations (engineers, scientists, technicians, clerks, secretaries,…

  8. Job Prospects for Aerospace Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1987-01-01

    Discusses the recent trends in job opportunities for aerospace engineers. Mentions some of the political, technological, and economic factors affecting the overall employment picture. Includes a description of the job prospects created by the general upswing of the large commercial aircraft market. (TW)

  9. Ceramic composites: Enabling aerospace materials

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  10. 35th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler); Doty, Laura W. (Technical Monitor)

    2001-01-01

    The proceedings of the 35th Aerospace Mechanisms Symposium are reported. Ames Research Center hosted the conference, which was held at the Four Points Sheraton, Sunnyvale, California, on May 9-11, 2001. The symposium was sponsored by the Mechanisms Education Association. Technology areas covered included bearings and tribology; pointing, solar array, and deployment mechanisms; and other mechanisms for spacecraft and large space structures.

  11. Aerospace Education: How Children Learn.

    ERIC Educational Resources Information Center

    Roberson, Glenda F.

    Ways children learn are described and related to aerospace education. Discussion focuses on (1) providing activities on the child's level of understanding; (2) considering the whole child; (3) stimulating curiosity; (4) encouraging thinking; (5) presenting varied experiences; and (6) integrating curriculum areas in each learning activity. Ideas…

  12. Graphical simulation for aerospace manufacturing

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Bien, Christopher

    1994-01-01

    Simulation software has become a key technological enabler for integrating flexible manufacturing systems and streamlining the overall aerospace manufacturing process. In particular, robot simulation and offline programming software is being credited for reducing down time and labor cost, while boosting quality and significantly increasing productivity.

  13. Aerospace/Aviation Science Occupations.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Occupational Education.

    The guide was developed to provide secondary students the opportunity to study aviation and aerospace education from the conceptual and career approach coupled with general education specifically related to science. Unit plans were prepared to motivate, develop skills, and offer counseling to the students of aviation science and occupational…

  14. 41st Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor)

    2012-01-01

    The proceedings of the 41st Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held in Pasadena Hilton, Pasadena, California on May 16-18, 2012. Lockheed Martin Space Systems cosponsored the symposium. Technology areas covered include gimbals and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and Mars Science Laboratory mechanisms.

  15. Development of pneumatic actuator with low-wave reflection characteristics

    NASA Astrophysics Data System (ADS)

    Chang, H.; Tsung, T. T.; Jwo, C. S.; Chiang, J. C.

    2010-08-01

    This study aims at the development of a less reflective electromagnetic pneumatic actuator often used in the anechoic chamber. Because a pneumatic actuator on the market is not appropriate for use in such a chamber and a metallic one has high dielectric constant which generates reflective electromagnetic waves to influence test parameters in the chamber. The newly developed pneumatic actuator is made from low dielectric constant plastics with less reflective of electromagnetic. A turbine-type air motor is used to develop the pneumatic actuator and a employ Prony tester is used to run the brake horsepower test for the performance test of pneumatic actuator. Test results indicate that the pneumatic actuator in the minimal starting flow is 17 l/min, and it generates a brake horsepower of 48 mW; in the maximum flow is 26 l/min, it generates a brake horsepower of 108 mW. Therefore, it works with a torque between 0.24 N-m and 0.55 N-m, and such a torque will be sufficient to drive the target button.

  16. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.

    PubMed

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to

  17. Systematic design of a magneto-rheological fluid embedded pneumatic vibration isolator subject to practical constraints

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaocong; Jing, Xingjian; Cheng, Li

    2012-03-01

    A systematic design of a magneto-rheological fluid embedded pneumatic vibration isolator (MrEPI) considering practical constraints and optimal performance is proposed. The design procedure basically consists of three steps, i.e. system level design, component level design and practical realization. The system level design involves synthesizing appropriate non-dimensional system parameters of pneumatic spring and MR damper elements based on parameter sensitivity analysis considering requirements for compact and efficient hardware utilization. The component level design involves optimal design of the MR valve by minimizing an objective function in terms of non-dimensional geometric, material and excitation parameters, and guaranteeing required performance in the worst cases. Then practical realization involves determining actual plant parameters from the non-dimensional analysis in system and component level designs with the considerations of practical requirements/constraints. To verify the effectiveness of this optimization procedure, the semi-active vibration control performance of the optimized MrEPI subject to harmonic disturbances is evaluated, which shows good isolation performance in all tested cases. This study actually provides a systematic method for the optimal analysis and design of all those nonlinear vibration isolators consisting of pneumatic spring and MR damper elements. This is achieved firstly by developing effective sensitivity analysis of dominant design parameters upon the adjustable stiffness and damping capacity irrespective of bulky or small system mass configuration and subsequently via a systematic realization design with the consideration of practical constraints in applications.

  18. Pneumatic compression devices for in-home management of lymphedema: two case reports

    PubMed Central

    2009-01-01

    The two patients in this case series had experienced long-term difficulty controlling lymphedema at home. Both patients had used numerous home therapies, including older-generation intermittent pneumatic compression devices, without success. The Flexitouch® system, an advanced pneumatic device, was prescribed to assist them with in-home efforts by providing therapy to their affected limbs in addition to the lower trunk area for the patient with lymphedema of the lower extremity; and the trunk, chest wall, and shoulder areas for the patient with lymphedema of the upper extremity. Both patients achieved successful home maintenance of lymphedema, as judged by limb volume, clinical observations, and subjective patient impressions, after incorporating the Flexitouch® system. Neither patient experienced the deleterious effects (worsening genital edema; fibrotic cuff development) that they had experienced with the older-generation intermittent pneumatic compression devices they had previously used. Incorporating the Flexitouch® system as part of maintenance may improve success for lymphedema patients who have previously struggled with in-home management. PMID:20184680

  19. A Hazardous Gas Detection System for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. - Y.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Knight, D.

    1998-01-01

    The detection of explosive conditions in aerospace propulsion applications is important for safety and economic reasons. Microfabricated hydrogen, oxygen, and hydrocarbon sensors as well as the accompanying hardware and software are being developed for a range of aerospace safety applications. The development of these sensors is being done using MEMS (Micro ElectroMechanical Systems) based technology and SiC-based semiconductor technology. The hardware and software allows control and interrogation of each sensor head and reduces accompanying cabling through multiplexing. These systems are being applied on the X-33 and on an upcoming STS-95 Shuttle mission. A number of commercial applications are also being pursued. It is concluded that this MEMS-based technology has significant potential to reduce costs and increase safety in a variety of aerospace applications.

  20. A Hazardous Gas Detection System for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Knight, D.

    1998-01-01

    The detection of explosive conditions in aerospace propulsion applications is important for safety and economic reasons. Microfabricated hydrogen, oxygen, and hydrocarbon sensors as well as the accompanying hardware and software are being, developed for a range of aerospace safety applications. The development of these sensors is being done using MEMS (Micro ElectroMechanical Systems) based technology and SiC-based semiconductor technology. The hardware and software allows control and interrocation of each sensor head and reduces accompanying cabling through multiplexing. These systems are being, applied on the X-33 and on an upcoming STS-95 Shuttle mission. A number of commercial applications are also being pursued. It is concluded that this MEMS-based technology has significant potential to reduce costs and increase safety in a variety of aerospace applications.

  1. Lightning Protection Guidelines for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Goodloe, C. C.

    1999-01-01

    This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.

  2. Trajectory optimization for the National aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1993-01-01

    While continuing the application of the inverse dynamics approach in obtaining the optimal numerical solutions, the research during the past six months has been focused on the formulation and derivation of closed-form solutions for constrained hypersonic flight trajectories. Since it was found in the research of the first year that a dominant portion of the optimal ascent trajectory of the aerospace plane is constrained by dynamic pressure and heating constraints, the application of the analytical solutions significantly enhances the efficiency in trajectory optimization, provides a better insight to understanding of the trajectory and conceivably has great potential in guidance of the vehicle. Work of this period has been reported in four technical papers. Two of the papers were presented in the AIAA Guidance, Navigation, and Control Conference (Hilton Head, SC, August, 1992) and Fourth International Aerospace Planes Conference (Orlando, FL, December, 1992). The other two papers have been accepted for publication by Journal of Guidance, Control, and Dynamics, and will appear in 1993. This report briefly summarizes the work done in the past six months and work currently underway.

  3. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement

    PubMed Central

    Fischer, Gregory S.; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; DiMaio, Simon P.; Tempany, Clare M.; Hata, Nobuhiko; Fichtinger, Gabor

    2010-01-01

    Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system. PMID:21057608

  4. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement.

    PubMed

    Fischer, Gregory S; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Dimaio, Simon P; Tempany, Clare M; Hata, Nobuhiko; Fichtinger, Gabor

    2008-06-01

    Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of prostate and surrounding tissue, thus granting potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. However, the benefits cannot be readily harnessed for interventional procedures due to difficulties that surround the use of high-field (1.5T or greater) MRI. The inability to use conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intraprostatic needle placement inside closed high-field MRI scanners. MRI compatibility of the robot has been evaluated under 3T MRI using standard prostate imaging sequences and average SNR loss is limited to 5%. Needle alignment accuracy of the robot under servo pneumatic control is better than 0.94 mm rms per axis. The complete system workflow has been evaluated in phantom studies with accurate visualization and targeting of five out of five 1 cm targets. The paper explains the robot mechanism and controller design, the system integration, and presents results of preliminary evaluation of the system.

  5. Aerospace medicine and biology. A continuing bibliography with indexes

    SciTech Connect

    Not Available

    1982-03-01

    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included.

  6. Public Sector Benefits From Aerospace Research and Development

    ERIC Educational Resources Information Center

    Hamilton, Jeffrey T.

    1973-01-01

    Many benefits from aerospace research have occurred: research on quiet aircraft engines, worldwide news coverage, contributions to the national economy, development of reliable fluid amplifiers and logic systems, attempts to control airport congestion, a low speed air sensor for use on a pulmonary flow meter and even as a flow meter in a large…

  7. A simultaneous spin/eject mechanism for aerospace payloads

    NASA Technical Reports Server (NTRS)

    Palmer, G. D.; Banks, T. N.

    1976-01-01

    A simultaneous spin/eject mechanism was developed for aerospace applications requiring a compact, passive device which would accommodate payload support and controlled-release functions, and which would provide a highly accurate spin-ejection motion to the payload. The mechanism satisfied the requirements and is adaptable to other deployment applications.

  8. Aerospace Applications of Magnetic Suspension Technology, part 1

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)

    1991-01-01

    Papers presented at the conference on aerospace applications of magnetic suspension technology are compiled. The following subject areas are covered: pointing and isolation systems; microgravity and vibration isolation; bearing applications; wind tunnel model suspension systems; large gap magnetic suspension systems; control systems; rotating machinery; science and application of superconductivity; and sensors.

  9. Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 474

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This bibliography lists reports, articles and other documents recently introduced into the NASA scientific and technical information database. Subject coverage includes: Aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life and flightcrew behavior and performance.

  10. Aerospace Medicine and Biology. A continuing bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included.

  11. Potential teleoperator applications in manned aerospace systems

    NASA Technical Reports Server (NTRS)

    Johnsen, E. G.

    1973-01-01

    The trend of teleoperator development is toward digital computer controlled systems which utilize local sensor-computer-actuator loops to avoid obstacles and to sense manipulator grip-and-slip. The potential applications of advanced teleoperator technology to manned aerospace systems include long manipulator booms to be mounted on the shuttle. These can transfer cargo from the space shuttle and can acquire and retrieve objects in space. Free-flying teleoperators capable of acquiring, inspecting, repairing or refurbishing satellites in orbit are another space application. Another potential application of teleoperator technology is the concept of using an anthropomorphous teleoperator in lieu of man to control aircraft or spacecraft normally controlled by a human pilot.

  12. Output Feedback M-MRAC Backstepping With Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje Sriniva

    2014-01-01

    The paper presents a certainty equivalence output feedback backstepping adaptive control design method for the systems of any relative degree with unmatched uncertainties without over-parametrization. It uses a fast prediction model to estimate the unknown parameters, which is independent of the control design. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters. The approach is applied to aerospace control problems and tested in numerical simulations.

  13. Hybrid techniques for complex aerospace electromagnetics problems

    NASA Technical Reports Server (NTRS)

    Aberle, Jim

    1993-01-01

    Important aerospace electromagnetics problems include the evaluation of antenna performance on aircraft and the prediction and control of the aircraft's electromagnetic signature. Due to the ever increasing complexity and expense of aircraft design, aerospace engineers have become increasingly dependent on computer solutions. Traditionally, computational electromagnetics (CEM) has relied primarily on four disparate techniques: the method of moments (MoM), the finite-difference time-domain (FDTD) technique, the finite element method (FEM), and high frequency asymptotic techniques (HFAT) such as ray tracing. Each of these techniques has distinct advantages and disadvantages, and no single technique is capable of accurately solving all problems of interest on computers that are available now or will be available in the foreseeable future. As a result, new approaches that overcome the deficiencies of traditional techniques are beginning to attract a great deal of interest in the CEM community. Among these new approaches are hybrid methods which combine two or more of these techniques into a coherent model. During the ASEE Summer Faculty Fellowship Program a hybrid FEM/MoM computer code was developed and applied to a geometry containing features found on many modern aircraft.

  14. Aerospace safety advisory panel

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Data acquired on the actual flight experience with the various subsystems are assessed. These subsystems include: flight control and performance, structural integrity, orbiter landing gear, lithium batteries, EVA and prebreathing, and main engines. Improvements for routine operations are recommended. Policy issues for operations and flight safety for aircraft operations are discussed.

  15. Lattice Structures For Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Del Olmo, E.; Grande, E.; Samartin, C. R.; Bezdenejnykh, M.; Torres, J.; Blanco, N.; Frovel, M.; Canas, J.

    2012-07-01

    The way of mass reduction improving performances in the aerospace structures is a constant and relevant challenge in the space business. The designs, materials and manufacturing processes are permanently in evolution to explore and get mass optimization solutions at low cost. In the framework of ICARO project, EADS CASA ESPACIO (ECE) has designed, manufactured and tested a technology demonstrator which shows that lattice type of grid structures is a promising weight saving solution for replacing some traditional metallic and composite structures for space applications. A virtual testing methodology was used in order to support the design of a high modulus CFRP cylindrical lattice technology demonstrator. The manufacturing process, based on composite Automatic Fiber Placement (AFP) technology developed by ECE, allows obtaining high quality low weight lattice structures potentially applicable to a wide range of aerospace structures. Launcher payload adaptors, satellite platforms, antenna towers or instrument supports are some promising candidates.

  16. Improved Verification for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Powell, Mark A.

    2008-01-01

    Aerospace systems are subject to many stringent performance requirements to be verified with low risk. This report investigates verification planning using conditional approaches vice the standard classical statistical methods, and usage of historical surrogate data for requirement validation and in verification planning. The example used in this report to illustrate the results of these investigations is a proposed mission assurance requirement with the concomitant maximum acceptable verification risk for the NASA Constellation Program Orion Launch Abort System (LAS). This report demonstrates the following improvements: 1) verification planning using conditional approaches vice classical statistical methods results in plans that are more achievable and feasible; 2) historical surrogate data can be used to bound validation of performance requirements; and, 3) incorporation of historical surrogate data in verification planning using conditional approaches produces even less costly and more reasonable verification plans. The procedures presented in this report may produce similar improvements and cost savings in verification for any stringent performance requirement for an aerospace system.

  17. Third Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Cross, D. R. (Editor); Caruso, S. V. (Editor); Clark-Ingram, M. (Editor)

    1999-01-01

    The elimination of CFC's, Halons, TCA, other ozone depleting chemicals, and specific hazardous materials is well underway. The phaseout of these chemicals has mandated changes and new developments in aerospace materials and processes. We are beyond discovery and initiation of these new developments and are now in the implementation phase. This conference provided a forum for materials and processes engineers, scientists, and managers to describe, review, and critically assess the evolving replacement and clean propulsion technologies from the standpoint of their significance, application, impact on aerospace systems, and utilization by the research and development community. The use of these new technologies, their selection and qualification, their implementation, and the needs and plans for further developments are presented.

  18. 34th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2000-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. The National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for organizing the AMS. Now in its 34th year, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 34th AMS, hosted by the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland, was held May 10, 11 and 12, 2000. During these three days, 34 papers were presented. Topics included deployment mechanisms, bearings, actuators, pointing and optical mechanisms, Space Station mechanisms, release mechanisms, and test equipment. Hardware displays during the vendor fair gave attendees an opportunity to meet with developers of current and future mechanism components.

  19. 38th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2006-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 38th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 38th AMs, hosted by the NASA Langley Research Center in Williamsburg, Virginia, was held May 17-19, 2006. During these three days, 34 papers were presented. Topics included gimbals, tribology, actuators, aircraft mechanisms, deployment mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  20. 39th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, E. A. (Compiler)

    2008-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA Marshall Space Flight Center (MSFC) and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 39th symposium, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 39th AMS was held in Huntsville, Alabama, May 7-9, 2008. During these 3 days, 34 papers were presented. Topics included gimbals and positioning mechanisms, tribology, actuators, deployment mechanisms, release mechanisms, and sensors. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  1. 37th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2004-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is reporting problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 37th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 37th AMS, hosted by the Johnson Space Center (JSC) in Galveston, Texas, was held May 19, 20 and 21, 2004. During these three days, 34 papers were presented. Topics included deployment mechanisms, tribology, actuators, pointing and optical mechanisms, Space Station and Mars Rover mechanisms, release mechanisms, and test equipment. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  2. Portable pneumatic biventricular driver for the Thoratec ventricular assist device.

    PubMed

    Farrar, D J; Buck, K E; Coulter, J H; Kupa, E J

    1997-01-01

    As patients with left ventricular (LVAD) and biventricular assist devices are supported for increasingly long durations while awaiting heart transplantation or cardiac recovery, there is a need to facilitate greater patient mobility and ambulation. To meet these needs, the authors have developed the Thoratec TLC-II Portable VAD Driver, which is a small brief-case sized (33 x 34 x 13 cm) pneumatic unit for Thoratec's paracorporeal and implantable VADs. The TLC-II consists of an electric motor driven air compressor for supplying both positive and negative air pressure, solenoid valves for switching between LVAD/RVAD filling and ejection, and microcontroller based electronics and firmware. Four power sources are provided: external power, two rechargeable lithium-ion battery packs, and an emergency battery that drives an independent electronic back-up system. The 8 kg TLC-II can be carried by hand, with a shoulder strap, or pushed on a wheeled mobility cart. Trend information stored in the TLC-II can be accessed by an external system computer with a color touchscreen mounted on a docking station, which also houses the battery charger. Control configurations (univentricular/biventricular operation, beat rates, etc.) are entered on the touchscreen and programmed into the TLC-II. In vitro testing demonstrates the ability to pump VAD outputs up to 7 L/min. By providing improved patient mobility, this small driver will enhance rehabilitation and improve the quality of life of VAD patients.

  3. Development of an Upper Limb Power Assist System Using Pneumatic Actuators for Farming Lift-up Motion

    NASA Astrophysics Data System (ADS)

    Yagi, Eiichi; Harada, Daisuke; Kobayashi, Masaaki

    A power assist system has lately attracted considerable attention to lifting-up an object without low back pain. We have been developing power assist systems with pneumatic actuators for the elbow and shoulder to farming support of lifting-up a bag of rice weighing 30kg. This paper describes the mechanism and control method of this power assist system. The pneumatic rotary actuator supports shoulder motion, and the air cylinder supports elbow motion. In this control method, the surface electromyogram(EMG) signals are used as input information of the controller. The joint support torques of human are calculated based on the antigravity term of necessary joint torques, which are estimated on the dynamics of a human approximated link model. The experimental results show the effectiveness of the proposed mechanism and control method of the power assist system.

  4. Magnetic Gearboxes for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Alvarez-Valenzuela, Marco A.; Sanchez-Garcia-Casarrubios, Juan; Cristache, Christian; Valiente-Blanco, Ignacio

    2014-01-01

    Magnetic gearboxes are contactless mechanisms for torque-speed conversion. They present no wear, no friction and no fatigue. They need no lubricant and can be customized for other mechanical properties as stiffness or damping. Additionally, they can protect structures and mechanisms against overloads, limitting the transmitted torque. In this work, spur, planetary and "magdrive" or "harmonic drive" configurations are compared considering their use in aerospace applications. The most recent test data are summarized to provide some useful help for the design engineer.

  5. 30th Aerospace Mechanisms Symposium

    SciTech Connect

    Bradley, O.H. Jr.; Rogers, J.F.

    1996-05-01

    The proceedings of the 30th Aerospace Mechanisms Symposium are reported. NASA Langley Research Center hosted the proceedings held at the Radisson Hotel in Hampton, Virginia on May 15-17, 1996, and Lockheed Martin Missiles and Space Company, Inc. co-sponsored the symposium. Technological areas covered include bearings and tribology; pointing, solar array, and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft. Separate abstracts have been indexed into the database for some articles from this proceedings.

  6. 30th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Bradley, Obie H., Jr. (Compiler); Rogers, John F. (Compiler)

    1996-01-01

    The proceedings of the 30th Aerospace Mechanisms Symposium are reported. NASA Langley Research Center hosted the proceedings held at the Radisson Hotel in Hampton, Virginia on May 15-17, 1996, and Lockheed Martin Missiles and Space Company, Inc. co-sponsored the symposium. Technological areas covered include bearings and tribology; pointing, solar array, and deployment mechanisms; orbiter/space station; and other mechanisms for spacecraft.

  7. Aerospace Materials for Extreme Environments

    DTIC Science & Technology

    2013-03-07

    AFOSR/RTD Air Force Research Laboratory AEROSPACE MATERIALS FOR EXTREME ENVIRONMENTS Date: 7 March 2013 Report Documentation Page Form...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for...to Washington Headquarters Services, Directorate for Information Operations and Reports , 1215 Jefferson Davis Highway, Suite 1204, Arlington VA

  8. Critical Systems Engineering Accelerator: Aerospace Demonstrator

    NASA Astrophysics Data System (ADS)

    Moreno, Ricardo; Fernandez, Gonzalo; Regada, Raul; Basanta, Luis; Alana, Elena; del Carmen Lomba, Maria

    2014-08-01

    Nowadays, the complexity and functionality of space systems is increasing more and more. Safety critical systems have to guarantee strong safety and dependability constraints. This paper presents CRYSTAL (Critical sYSTem engineering AcceLeration), a cross-domain ARTEMIS project for increasing the efficiency of the embedded software development in the industry through the definition of an integrated tool chain. CRYSTAL involves four major application domains: Aerospace, Automotive, Rail and Medical Healthcare. The impact in the Space Domain will be evaluated through a demonstrator implemented using CRYSTAL framework: the Low Level Software for an Avionics Control Unit, capable to run Application SW for autonomous navigation, image acquisition control, data compression and/or data handling. Finally, the results achieved will be evaluated taking into account the ECSS (European Committee for Space Standardization) standards and procedures.

  9. Aerospace Flywheel Technology Development for IPACS Applications

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry L.; Jansen, Ralph H.; Fausz, Jerry; Bauer, Robert D.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) are cooperating under a space act agreement to sponsor the research and development of aerospace flywheel technologies to address mutual future mission needs. Flywheel technology offers significantly enhanced capability or is an enabling technology. Generally these missions are for energy storage and/or integrated power and attitude control systems (IPACS) for mid-to-large satellites in low earth orbit. These missions require significant energy storage as well as a CMG or reaction wheel function for attitude control. A summary description of the NASA and AFRL flywheel technology development programs is provided, followed by specific descriptions of the development plans for integrated flywheel system tests for IPACS applications utilizing both fixed and actuated flywheel units. These flywheel system development tests will be conducted at facilities at AFRL and NASA Glenn Research Center and include participation by industry participants Honeywell and Lockheed Martin.

  10. KIBO Industry, innovates in aerospace

    NASA Astrophysics Data System (ADS)

    Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on this postulate KIBO in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo industry is the first entomocole production company creat in Europe to human food; it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and various universities in France.

  11. KIBO Industry, innovates in aerospace

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on industry KIBO is postulated in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo entomocole industry is the first production company in Europe to human food, it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and in the universities of Angers, Nantes, Lille.

  12. Pneumatic distortion compensation for aircraft surface pressure sensing devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Leondes, Cornelius T.

    1991-01-01

    In this paper a technique of compensating for pneumatic distortion in aircraft surface pressure sensing devices is developed. The compensation allows conventional pressure sensing technology to obtain improved unsteady pressure measurements. Pressure distortion caused by frictional attenuation and pneumatic resonance within the sensing system makes obtaining unsteady pressure measurements by conventional sensors difficult. Typically, most of the distortion occurs within the pneumatic tubing used to transmit pressure impulses from the surface of the aircraft to the measurement transducer. This paper develops a second-order distortion model that accurately describes the behavior of the primary wave harmonic of the pneumatic tubing. The model is expressed in state-variable form and is coupled with standard results from minimum-variance estimation theory to develop an algorithm to compensate for the effects of pneumatic distortion. Both postflight and real-time algorithms are developed and evaluated using simulated and flight data. Covariance selection and filter-tuning examples are presented. Results presented verify that, given appropriate covariance magnitudes, the algorithms accurately reconstruct surface pressure values from remotely sensed pressure measurements.

  13. Mechanical implications of pneumatic neck vertebrae in sauropod dinosaurs.

    PubMed

    Schwarz-Wings, Daniela; Meyer, Christian A; Frey, Eberhard; Manz-Steiner, Hans-Rudolf; Schumacher, Ralf

    2010-01-07

    The pre-sacral vertebrae of most sauropod dinosaurs were surrounded by interconnected, air-filled diverticula, penetrating into the bones and creating an intricate internal cavity system within the vertebrae. Computational finite-element models of two sauropod cervical vertebrae now demonstrate the mechanical reason for vertebral pneumaticity. The analyses show that the structure of the cervical vertebrae leads to an even distribution of all occurring stress fields along the vertebrae, concentrated mainly on their external surface and the vertebral laminae. The regions between vertebral laminae and the interior part of the vertebral body including thin bony struts and septa are mostly unloaded and pneumatic structures are positioned in these regions of minimal stress. The morphology of sauropod cervical vertebrae was influenced by strongly segmented axial neck muscles, which require only small attachment areas on each vertebra, and pneumatic epithelia that are able to resorb bone that is not mechanically loaded. The interaction of these soft tissues with the bony tissue of the vertebrae produced lightweight, air-filled vertebrae in which most stresses were borne by the external cortical bone. Cervical pneumaticity was therefore an important prerequisite for neck enlargement in sauropods. Thus, we expect that vertebral pneumaticity in other parts of the body to have a similar role in enabling gigantism.

  14. Mechanical implications of pneumatic neck vertebrae in sauropod dinosaurs

    PubMed Central

    Schwarz-Wings, Daniela; Meyer, Christian A.; Frey, Eberhard; Manz-Steiner, Hans-Rudolf; Schumacher, Ralf

    2010-01-01

    The pre-sacral vertebrae of most sauropod dinosaurs were surrounded by interconnected, air-filled diverticula, penetrating into the bones and creating an intricate internal cavity system within the vertebrae. Computational finite-element models of two sauropod cervical vertebrae now demonstrate the mechanical reason for vertebral pneumaticity. The analyses show that the structure of the cervical vertebrae leads to an even distribution of all occurring stress fields along the vertebrae, concentrated mainly on their external surface and the vertebral laminae. The regions between vertebral laminae and the interior part of the vertebral body including thin bony struts and septa are mostly unloaded and pneumatic structures are positioned in these regions of minimal stress. The morphology of sauropod cervical vertebrae was influenced by strongly segmented axial neck muscles, which require only small attachment areas on each vertebra, and pneumatic epithelia that are able to resorb bone that is not mechanically loaded. The interaction of these soft tissues with the bony tissue of the vertebrae produced lightweight, air-filled vertebrae in which most stresses were borne by the external cortical bone. Cervical pneumaticity was therefore an important prerequisite for neck enlargement in sauropods. Thus, we expect that vertebral pneumaticity in other parts of the body to have a similar role in enabling gigantism. PMID:19801376

  15. HRA Aerospace Challenges

    NASA Technical Reports Server (NTRS)

    DeMott, Diana

    2013-01-01

    Compared to equipment designed to perform the same function over and over, humans are just not as reliable. Computers and machines perform the same action in the same way repeatedly getting the same result, unless equipment fails or a human interferes. Humans who are supposed to perform the same actions repeatedly often perform them incorrectly due to a variety of issues including: stress, fatigue, illness, lack of training, distraction, acting at the wrong time, not acting when they should, not following procedures, misinterpreting information or inattention to detail. Why not use robots and automatic controls exclusively if human error is so common? In an emergency or off normal situation that the computer, robotic element, or automatic control system is not designed to respond to, the result is failure unless a human can intervene. The human in the loop may be more likely to cause an error, but is also more likely to catch the error and correct it. When it comes to unexpected situations, or performing multiple tasks outside the defined mission parameters, humans are the only viable alternative. Human Reliability Assessments (HRA) identifies ways to improve human performance and reliability and can lead to improvements in systems designed to interact with humans. Understanding the context of the situation that can lead to human errors, which include taking the wrong action, no action or making bad decisions provides additional information to mitigate risks. With improved human reliability comes reduced risk for the overall operation or project.

  16. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An assessment of NASA's safety performance for 1983 affirms that NASA Headquarters and Center management teams continue to hold the safety of manned flight to be their prime concern, and that essential effort and resources are allocated for maintaining safety in all of the development and operational programs. Those conclusions most worthy of NASA management concentration are given along with recommendations for action concerning; product quality and utility; space shuttle main engine; landing gear; logistics and management; orbiter structural loads, landing speed, and pitch control; the shuttle processing contractor; and the safety of flight operations. It appears that much needs to be done before the Space Transportation System can achieve the reliability necessary for safe, high rate, low cost operations.

  17. The Need for an Aerospace Pharmacy Residency

    NASA Technical Reports Server (NTRS)

    Bayuse, T.; Schuyler, C.; Bayuse, Tina M.

    2007-01-01

    This viewgraph poster presentation reviews the rationale for a call for a new program in residency for aerospace pharmacy. Aerospace medicine provides a unique twist on traditional medicine, and a specialty has evolved to meet the training for physicians, and it is becoming important to develop such a program for training in pharmacy designed for aerospace. The reasons for this specialist training are outlined and the challenges of developing a program are reviewed.

  18. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  19. 46 CFR 54.10-15 - Pneumatic test (modifies UG-100).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... first opportunity following the pneumatic test. The tank supports and saddles, connecting piping, and... 46 Shipping 2 2010-10-01 2010-10-01 false Pneumatic test (modifies UG-100). 54.10-15 Section 54.10... VESSELS Inspection, Reports, and Stamping § 54.10-15 Pneumatic test (modifies UG-100). (a)...

  20. 14 CFR 23.1416 - Pneumatic de-icer boot system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Pneumatic de-icer boot system. 23.1416... Safety Equipment § 23.1416 Pneumatic de-icer boot system. If certification with ice protection provisions is desired and a pneumatic de-icer boot system is installed— (a) The system must meet...

  1. 14 CFR 23.1416 - Pneumatic de-icer boot system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pneumatic de-icer boot system. 23.1416... Safety Equipment § 23.1416 Pneumatic de-icer boot system. If certification with ice protection provisions is desired and a pneumatic de-icer boot system is installed— (a) The system must meet...

  2. 14 CFR 23.1416 - Pneumatic de-icer boot system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Pneumatic de-icer boot system. 23.1416... Safety Equipment § 23.1416 Pneumatic de-icer boot system. If certification with ice protection provisions is desired and a pneumatic de-icer boot system is installed— (a) The system must meet...

  3. 14 CFR 23.1416 - Pneumatic de-icer boot system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Pneumatic de-icer boot system. 23.1416... Safety Equipment § 23.1416 Pneumatic de-icer boot system. If certification with ice protection provisions is desired and a pneumatic de-icer boot system is installed— (a) The system must meet...

  4. 78 FR 3843 - Federal Motor Vehicle Safety Standards; New Pneumatic and Certain Specialty Tires

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... Pneumatic Tyres For Passenger-Use Motor Vehicles, Annex, 1-2-5. We believed that existing 60-psi T-type... Standards; New Pneumatic and Certain Specialty Tires AGENCY: National Highway Traffic Safety Administration... Motor Vehicle Safety Standard (FMVSS) No. 109, New pneumatic and certain specialty tires, to change...

  5. Aerospace Activities in the Elementary School

    ERIC Educational Resources Information Center

    Jones, Robert M.; Wiggins, Kenneth E.

    1974-01-01

    Describes 17 activities which are aerospace oriented and yet provide an interdisciplinary approach to learning. Some of the activities described involve paper airplanes, parachutes, model rockets, etc. (BR)

  6. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  7. Microelectronics packaging research directions for aerospace applications

    NASA Technical Reports Server (NTRS)

    Galbraith, L.

    2003-01-01

    The Roadmap begins with an assessment of needs from the microelectronics for aerospace applications viewpoint. Needs Assessment is divided into materials, packaging components, and radiation characterization of packaging.

  8. Unification - An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Scientific and Technical Information (STI) represents the results of large investments in research and development (R&D) and the expertise of a nation and is a valuable resource. For more than four decades, NASA and its predecessor organizations have developed and managed the preeminent aerospace information system. NASA obtains foreign materials through its international exchange relationships, continually increasing the comprehensiveness of the NASA Aerospace Database (NAD). The NAD is de facto the international aerospace database. This paper reviews current NASA goals and activities with a view toward maintaining compatibility among international aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  9. The use of pneumatically generated water pressure signals for aquifer characterization

    NASA Astrophysics Data System (ADS)

    Fort, M.; Roberts, R.; Chace, D.

    2013-12-01

    The use of pneumatically generated pressure signals for aquifer characterization Hydraulic tests are the most reliable method of obtaining estimates of hydrologic properties, such as conductivity, that are essential for flow and transport modeling. The use of a sinusoidal signal for hydraulic testing is well established, with Streltsova (1988), Rasmussen (2003) and others having developed analytic solutions. Sinusoidal tests provide a unique easily distinguished signal that reduces ambiguity during analysis and we show that a sinusoidal pressure signal propagates farther into the formation than a standard slug-test signal. If a sinusoidal test is combined with a slug and/or a constant rate test, it can further reduce uncertainty in the estimated parameter values. We demonstrate how pneumatic pressure can be used to generate all three of these signals. By positioning pressure transducers both below the water level and in the head space above the water, we can monitor the total pressure acting on the formation and the changes in water level. From the changes in water level, it is possible to calculate the flow rate in and out of the well, assuming that the well diameter and water density are known. Using gas flow controllers with a Supervisory Control And Data Acquisition (SCADA) system we are able to precisely control the pressures in the well. The use of pneumatic pressure has the advantage that it requires less equipment (no pumps) and produces no water. We also show how the numerical well test analysis program nSIGHTS can be used to analyze all three types of tests simultaneously and to assess the relative contribution of each type of test to the parameter estimation. nSIGHTS was recently released as open source by Sandia National Laboratories and is available for free.

  10. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization

    SciTech Connect

    Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.; Agrawal, Nitin; Tang, Keqi; Smith, Richard D.

    2011-04-26

    A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, no sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed.

  11. Aerospace Applications of Magnetic Suspension Technology, part 2

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)

    1991-01-01

    In order to examine the state of technology of all areas of magnetic suspension with potential aerospace applications, and to review related recent developments in sensors and control approaches, superconducting technology, and design/implementation practices, a workshop was held at NASA-Langley. Areas of concern are pointing and isolation systems, microgravity and vibration isolation, bearing applications, wind tunnel model suspension systems, large gap magnetic suspension systems, controls, rotating machinery, science and applications of superconductivity, and sensors. Papers presented are included.

  12. Verification and Validation of Neural Networks for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale; Nelson, Stacy; Schumann, Johann

    2002-01-01

    The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: Overview of Adaptive Systems and V&V Processes/Methods.

  13. Verification and Validation of Neural Networks for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale; Nelson, Stacy; Schumman, Johann; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: 1) Overview of Adaptive Systems; and 2) V&V Processes/Methods.

  14. Evaluation of a pneumatic Martian soil sampler concept

    NASA Technical Reports Server (NTRS)

    Schaefer, John L.; Neathery, James K.; Stencel, John M.

    1994-01-01

    The pneumatic soil sampler concept was successfully demonstrated by penetrating a Martian simulant soil to a depth of 2 meters. Working gas pressure, composition, and pulsing were evaluated with the objective of minimizing gas usage. Also, the probe penetration force was investigated with the objective of minimizing probe weight. Gas and probe penetration force, while not yet optimized, are within the range which make the soil sampler concept feasible. While the tests described in this report did not answer all the questions and address all the variables associated with pneumatic soil sampling, valuable data experience and knowledge were gained which can be used to further develop the concept.

  15. Overall life cycle comprehensive assessment of pneumatic and electric actuator

    NASA Astrophysics Data System (ADS)

    Zhang, Yeming; Cai, Maolin

    2014-05-01

    Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion and some rotating occasions. However, there are very few research results about the advantages and disadvantages of two kinds of actuators under the same working conditions so far. In this paper, a novel comprehensive assessment method, named as overall life cycle comprehensive assessment (OLCCA), is proposed for comparison and assessment of pneumatic and electric actuators. OLCCA contains mechanical properties evaluation (MPE), life cycle cost analysis based on users (LCCABOU) and life cycle environmental impact analysis (LCEIA) algorithm in order to solve three difficult problems: mechanical properties assessment, cost analysis and environmental impact assessment about actuators. The mechanical properties evaluation of actuators is a multi-objective optimization problem. The fuzzy data quantification and information entropy methods are combined to establish MPE algorithm of actuators. Two kinds of pneumatic actuators and electric actuators with similar bearing capacity and similar work stroke were taken for example to verify the correctness of MPE algorithm. The case study of MPE algorithm for actuators verified its correctness. LCCABOU for actuators is also set up. Considering cost complex structure of pneumatic actuators, public device cost even method (PDCEM) is firstly presented to solve cost division of public devices such as compressors, aftercooler, receivers, etc. LCCABOU method is also effective and verified by the three groups of pneumatic actuators and electric actuators. Finally, LCEIA model of actuators is established for the environmental impact assessment of actuators. LCEIA data collection method and model establishment procedure for actuators are also put forward. With Simapro 7, LCEIA comparison results of six actuators can be

  16. Compensating for pneumatic distortion in pressure sensing devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Leondes, Cornelius T.

    1990-01-01

    A general numerical technique for obtaining unsteady pressure measurements using conventional pressure sensing technology has been developed. A pneumatic distortion model, based on the Navier-Stokes equations of momentum and continuity, was reduced to a low-order, state-variable model retaining most of the dynamic characteristics of the full model. The reduced-order model is coupled with results from minimum variance estimation theory to develop an algorithm to compensate the effects of pneumatic distortion. Both postflight and real-time algorithms were developed and evaluated using simulated and flight data.

  17. A pneumatic vibrotactile stimulation device for fMRI.

    PubMed

    Briggs, Richard W; Dy-Liacco, Iona; Malcolm, Matthew P; Lee, Hyunsook; Peck, Kyung K; Gopinath, Kaundinya S; Himes, Nathan C; Soltysik, David A; Browne, Paul; Tran-Son-Tay, Roger

    2004-03-01

    Mapping the functional response of the somatosensory cortex is useful both for characterizing normal brain activity and for determining the functional integrity of damaged cortex compromised by stroke or other neurological insults. A variety of stimulators have been used to produce somatosensory cortex activation in functional brain imaging, including brushes and swabs operated manually, pneumatically and mechanically powered mechanical vibrators, air puffs, and vibrating ceramic piezoelectric wafers and benders. A closed-system, pneumatically driven rubber diaphragm is reported that overcomes many of the limitations of existing vibrotactile devices and produces robust sensory cortex activation in an fMRI experiment.

  18. Artificial Immune System Approaches for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)

    2002-01-01

    Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.

  19. Managing complexity of aerospace systems

    NASA Astrophysics Data System (ADS)

    Tamaskar, Shashank

    Growing complexity of modern aerospace systems has exposed the limits of conventional systems engineering tools and challenged our ability to design them in a timely and cost effective manner. According to the US Government Accountability Office (GAO), in 2009 nearly half of the defense acquisition programs are expecting 25% or more increase in unit acquisition cost. Increase in technical complexity has been identified as one of the primary drivers behind cost-schedule overruns. Thus to assure the affordability of future aerospace systems, it is increasingly important to develop tools and capabilities for managing their complexity. We propose an approach for managing the complexity of aerospace systems to address this pertinent problem. To this end, we develop a measure that improves upon the state-of-the-art metrics and incorporates key aspects of system complexity. We address the problem of system decomposition by presenting an algorithm for module identification that generates modules to minimize integration complexity. We demonstrate the framework on diverse spacecraft and show the impact of design decisions on integration cost. The measure and the algorithm together help the designer track and manage complexity in different phases of system design. We next investigate how complexity can be used as a decision metric in the model-based design (MBD) paradigm. We propose a framework for complexity enabled design space exploration that introduces the idea of using complexity as a non-traditional design objective. We also incorporate complexity with the component based design paradigm (a sub-field of MBD) and demonstrate it on several case studies. The approach for managing complexity is a small but significant contribution to the vast field of complexity management. We envision our approach being used in concert with a suite of complexity metrics to provide an ability to measure and track complexity through different stages of design and development. This will not

  20. ENSAERO - A multidisciplinary program for fluid/structural interaction studies of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Guruswamy, G. P.

    1990-01-01

    A computational procedure is developed that uses a moving zonal grid concept to model complex flexible aerospace vehicles. The Euler/Navier-Stokes equations are used to model the flow, and computations are made using efficient methods based on both central and upwind schemes. The structure is represented by a finite element method which can model general aerospace vehicles. Provisions are made to accommodate other disciplines such as controls and thermal loads. The code is capable of computing unsteady flows on flexible wings with vortical flows. Adaptation of this procedure for parallel processing and validation for complete aerospace configurations is in progress.