Sample records for aerospace power generation

  1. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Knecht, Sean D.; Thomas, Robert E.; Mead, Franklin B.; Miley, George H.; Froning, David

    2006-01-01

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean ``aneutronic'' dense plasma focus (DPF) fusion power and propulsion technology, with advanced ``lifting body''-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, ɛprop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and ɛprop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.

  2. Power Generation from Nuclear Reactors in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  3. A Survey of Power Electronics Applications in Aerospace Technologies

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Elbuluk, Malik E.

    2001-01-01

    The insertion of power electronics in aerospace technologies is becoming widespread. The application of semiconductor devices and electronic converters, as summarized in this paper, includes the International Space Station, satellite power system, and motor drives in 'more electric' technology applied to aircraft, starter/generators and reusable launch vehicles. Flywheels, servo systems embodying electromechanical actuation, and spacecraft on-board electric propulsion are discussed. Continued inroad by power electronics depends on resolving incompatibility of using variable frequency for 400 Hz-operated aircraft equipment. Dual-use electronic modules should reduce system development cost.

  4. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knecht, Sean D.; Mead, Franklin B.; Thomas, Robert E.

    2006-01-20

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q =more » 3.0 and thruster efficiency, {eta}prop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and {eta}prop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.« less

  5. Automation technology for aerospace power management

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1982-01-01

    The growing size and complexity of spacecraft power systems coupled with limited space/ground communications necessitate increasingly automated onboard control systems. Research in computer science, particularly artificial intelligence has developed methods and techniques for constructing man-machine systems with problem-solving expertise in limited domains which may contribute to the automation of power systems. Since these systems perform tasks which are typically performed by human experts they have become known as Expert Systems. A review of the current state of the art in expert systems technology is presented, and potential applications in power systems management are considered. It is concluded that expert systems appear to have significant potential for improving the productivity of operations personnel in aerospace applications, and in automating the control of many aerospace systems.

  6. Aerospace Power Technology for Potential Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.

    2012-01-01

    Aerospace technology that is being developed for space and aeronautical applications has great potential for providing technical advances for terrestrial power systems. Some recent accomplishments arising from activities being pursued at the National Aeronautics and Space Administration (NASA) Centers is described in this paper. Possible terrestrial applications of the new aerospace technology are also discussed.

  7. Contributions from space technology to central power generation

    NASA Technical Reports Server (NTRS)

    Dicks, J. B., Jr.

    1972-01-01

    The central power crisis, and the present and relatively near-time contributions that aerospace technology is making to help solve this crisis are discussed. The principal emphasis is placed on the prospects of aerospace derived magnetohydrodynamic (MHD) large scale power generation. The strides that the Soviet Union is making in this field with the startup of the new U-25 plant near Moscow, having a total power capability of 75 MW, are reviewed. A much smaller program in the U.S. is outlined, and prospects of future benefits are discussed.

  8. Path generation algorithm for UML graphic modeling of aerospace test software

    NASA Astrophysics Data System (ADS)

    Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Chen, Chao

    2018-03-01

    Aerospace traditional software testing engineers are based on their own work experience and communication with software development personnel to complete the description of the test software, manual writing test cases, time-consuming, inefficient, loopholes and more. Using the high reliability MBT tools developed by our company, the one-time modeling can automatically generate test case documents, which is efficient and accurate. UML model to describe the process accurately express the need to rely on the path is reached, the existing path generation algorithm are too simple, cannot be combined into a path and branch path with loop, or too cumbersome, too complicated arrangement generates a path is meaningless, for aerospace software testing is superfluous, I rely on our experience of ten load space, tailor developed a description of aerospace software UML graphics path generation algorithm.

  9. Electric power processing, distribution and control for advanced aerospace vehicles.

    NASA Technical Reports Server (NTRS)

    Krausz, A.; Felch, J. L.

    1972-01-01

    The results of a current study program to develop a rational basis for selection of power processing, distribution, and control configurations for future aerospace vehicles including the Space Station, Space Shuttle, and high-performance aircraft are presented. Within the constraints imposed by the characteristics of power generation subsystems and the load utilization equipment requirements, the power processing, distribution and control subsystem can be optimized by selection of the proper distribution voltage, frequency, and overload/fault protection method. It is shown that, for large space vehicles which rely on static energy conversion to provide electric power, high-voltage dc distribution (above 100 V dc) is preferable to conventional 28 V dc and 115 V ac distribution per MIL-STD-704A. High-voltage dc also has advantages over conventional constant frequency ac systems in many aircraft applications due to the elimination of speed control, wave shaping, and synchronization equipment.

  10. Loft: An Automated Mesh Generator for Stiffened Shell Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2011-01-01

    Loft is an automated mesh generation code that is designed for aerospace vehicle structures. From user input, Loft generates meshes for wings, noses, tanks, fuselage sections, thrust structures, and so on. As a mesh is generated, each element is assigned properties to mark the part of the vehicle with which it is associated. This property assignment is an extremely powerful feature that enables detailed analysis tasks, such as load application and structural sizing. This report is presented in two parts. The first part is an overview of the code and its applications. The modeling approach that was used to create the finite element meshes is described. Several applications of the code are demonstrated, including a Next Generation Launch Technology (NGLT) wing-sizing study, a lunar lander stage study, a launch vehicle shroud shape study, and a two-stage-to-orbit (TSTO) orbiter. Part two of the report is the program user manual. The manual includes in-depth tutorials and a complete command reference.

  11. Energetic Combustion Devices for Aerospace Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2000-01-01

    Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.

  12. Magnetic Flux Compression Concept for Aerospace Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Robertson, Tony; Hawk, Clark W.; Turner, Matt; Koelfgen, Syri

    2000-01-01

    The objective of this research is to investigate system level performance and design issues associated with magnetic flux compression devices for aerospace power generation and propulsion. The proposed concept incorporates the principles of magnetic flux compression for direct conversion of nuclear/chemical detonation energy into electrical power. Specifically a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stator structure formed from a high temperature superconductor (HTSC). The expanding plasma cloud is entirely confined by the compressed magnetic field at the expense of internal kinetic energy. Electrical power is inductively extracted, and the detonation products are collimated and expelled through a magnetic nozzle. The long-term development of this highly integrated generator/propulsion system opens up revolutionary NASA Mission scenarios for future interplanetary and interstellar spacecraft. The unique features of this concept with respect to future space travel opportunities are as follows: ability to implement high energy density chemical detonations or ICF microfusion bursts as the impulsive diamagnetic plasma source; high power density system characteristics constrain the size, weight, and cost of the vehicle architecture; provides inductive storage pulse power with a very short pulse rise time; multimegajoule energy bursts/terawatt power bursts; compact pulse power driver for low-impedance dense plasma devices; utilization of low cost HTSC material and casting technology to increase magnetic flux conservation and inductive energy storage; improvement in chemical/nuclear-to-electric energy conversion efficiency and the ability to generate significant levels of thrust with very high specific impulse; potential for developing a small, lightweight, low cost, self-excited integrated propulsion and power system suitable for space stations, planetary bases, and interplanetary and interstellar space travel

  13. Aerospace applications of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-01-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  14. Aerospace applications of magnetic bearings

    NASA Astrophysics Data System (ADS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-05-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  15. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Astrophysics Data System (ADS)

    Doychak, J.

    1992-06-01

    Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.

  16. Advantage of resonant power conversion in aerospace applications

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.

    1983-01-01

    An ultrasonic, sinusoidal aerospace power distribution system is shown to have many advantages over other candidate power systems. These advantages include light weight, ease of fault clearing, versatility in handling many loads including motors, and the capability of production within the limits of present technology. References are cited that demonstrate the state of resonant converter technology and support these conclusions.

  17. Recent GRC Aerospace Technologies Applicable to Terrestrial Energy Systems

    NASA Technical Reports Server (NTRS)

    Kankam, David; Lyons, Valerie J.; Hoberecht, Mark A.; Tacina, Robert R.; Hepp, Aloysius F.

    2000-01-01

    This paper is an overview of a wide range of recent aerospace technologies under development at the NASA Glenn Research Center, in collaboration with other NASA centers, government agencies, industry and academia. The focused areas are space solar power, advanced power management and distribution systems, Stirling cycle conversion systems, fuel cells, advanced thin film photovoltaics and batteries, and combustion technologies. The aerospace-related objectives of the technologies are generation of space power, development of cost-effective and reliable, high performance power systems, cryogenic applications, energy storage, and reduction in gas-turbine emissions, with attendant clean jet engines. The terrestrial energy applications of the technologies include augmentation of bulk power in ground power distribution systems, and generation of residential, commercial and remote power, as well as promotion of pollution-free environment via reduction in combustion emissions.

  18. The effect of generation on retention of women engineers in aerospace and industry

    NASA Astrophysics Data System (ADS)

    Kiernan, Kristine Maria

    The purpose of this dissertation was to determine the nature and extent of differences between generational cohorts regarding the effect of family factors on retention of women in engineering, with an emphasis on women in the aerospace industry. While 6% of the aerospace workforce is made up of aeronautical engineers, an additional 11.2% of the aerospace workforce is drawn from other engineering disciplines. Therefore, the analysis included all engineering sub-disciplines. In order to include women who had left the workforce, women in all industries were used as a proxy for women in aerospace. Exits to other fields were modeled separately from exits out of the workforce. The source of data was the National Survey of College Graduates. Women engineers were divided into the Baby Boom cohort (born 1945-1964), the Generation X cohort (born 1965-1980), and the Millennial cohort (born 1981-1997). A time-lag design was used to compare generational cohorts when they were the same age. The results of this study showed that generational cohort did not affect retention of women in engineering. However, generational cohort affected family formation decisions, with Millennial women marrying and having children later than their counterparts in the Generation X and Baby Boom cohorts. Generational cohort also affected the influence of motherhood on retention in the workforce, with Generation X and Millennial mothers more likely to stay in the workforce than their counterparts in the Baby Boom cohort. There was no significant difference between Generation X and Millennial women in the proportion of mothers who stayed in the workforce. Generational cohort influenced the reasons women left the workforce. Women in the Millennial cohort were more likely to cite not needing or wanting to work, while women in the Generation X cohort were more likely to cite family responsibilities. Among mothers in the Millennial cohort who were out of the workforce, the proportion who cited not needing

  19. The Space of Aerospace Power: Why and How

    DTIC Science & Technology

    2000-05-01

    Next Fifty Years, discusses it in simple terms: 13 The Earth -Moon System circumscribes four discrete regions: Earth and Atmosphere... System (GPS) fleet of satellites carried out navigation and positioning efforts in the Gulf. This system provided Coalition forces precise three...transportation systems , and key agricultural areas. Strategic aerospace offense may involve projection of power, with limited or massive application

  20. Reliability Constrained Priority Load Shedding for Aerospace Power System Automation

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Zhu, Jizhong; Kaddah, Sahar S.; Dolce, James L. (Technical Monitor)

    2000-01-01

    The need for improving load shedding on board the space station is one of the goals of aerospace power system automation. To accelerate the optimum load-shedding functions, several constraints must be involved. These constraints include congestion margin determined by weighted probability contingency, component/system reliability index, generation rescheduling. The impact of different faults and indices for computing reliability were defined before optimization. The optimum load schedule is done based on priority, value and location of loads. An optimization strategy capable of handling discrete decision making, such as Everett optimization, is proposed. We extended Everett method to handle expected congestion margin and reliability index as constraints. To make it effective for real time load dispatch process, a rule-based scheme is presented in the optimization method. It assists in selecting which feeder load to be shed, the location of the load, the value, priority of the load and cost benefit analysis of the load profile is included in the scheme. The scheme is tested using a benchmark NASA system consisting of generators, loads and network.

  1. A single-phase axially-magnetized permanent-magnet oscillating machine for miniature aerospace power sources

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Zheng, Ping; Cheng, Luming; Wang, Weinan; Liu, Jiaqi

    2017-05-01

    A single-phase axially-magnetized permanent-magnet (PM) oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA), and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.

  2. Grid Generation for Multidisciplinary Design and Optimization of an Aerospace Vehicle: Issues and Challenges

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    The purpose of this paper is to discuss grid generation issues and to challenge the grid generation community to develop tools suitable for automated multidisciplinary analysis and design optimization of aerospace vehicles. Special attention is given to the grid generation issues of computational fluid dynamics and computational structural mechanics disciplines.

  3. Light weight, high-speed, and self-powered wireless fiber optic sensor (WiFOS) structural health monitor system for avionics and aerospace environments

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.

  4. Weight and power savings shaft encoder interfacing techniques for aerospace applications

    NASA Technical Reports Server (NTRS)

    Breslow, Donald H.

    1986-01-01

    Many aerospace applications for shaft angle digitizers such as optical shaft encoders require special features that are not usually required on commercial products. Among the most important user considerations are the lowest possible weight and power consumption. A variety of mechanical and electrical interface techniques that have large potential weight and power savings are described. The principles to be presented apply to a wide variety of encoders, ranging from 16 to 22 bit resolution and with diameters from 152 to 380 mm (6 to 15 in.).

  5. Development of first generation aerospace NiMH cells

    NASA Technical Reports Server (NTRS)

    Tinker, Lawrence; Dell, Dan; Wu, Tony; Rampel, Guy

    1993-01-01

    Gates Aerospace Batteries in conjunction with Gates Energy Products (GEP) has been developing NiMH technology for aerospace use since 1990. GEP undertook the development of NiMH technology for commercial cell applications in 1987. This program focused on wound cell technology for replacement of current NiCd technology. As an off shoot of this program small, wound cells were used to evaluate initial design options for aerospace prismatic cell designs. Early in 1991, the first aerospace prismatic cell designs were built in a 6 Ah cell configuration. These cells were used to initially characterize performance in prismatic configurations and begin early life cycle testing. Soon after the 6 Ah cells were on test, several 22 Ah cells were built to test other options. The results of testing of these cells were used to identify potential problem areas for long lived cells and develop solutions to those problems. Following these two cell builds, a set of 7 Ah cells was built to evaluate improvements to the technology. To date results from these tests are very promising. Cycle lives in excess of 2,200 LEO cycles at 50 percent DoD were achieved with cells continuing on test. Results from these cell tests are discussed and data presented to demonstrate feasibility of this technology for aerospace programs.

  6. An integrated MEMS infrastructure for fuel processing: hydrogen generation and separation for portable power generation

    NASA Astrophysics Data System (ADS)

    Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.

    2007-09-01

    Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.

  7. High-voltage, high-power, solid-state remote power controllers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1985-01-01

    Two general types of remote power controller (RPC) that combine the functions of a circuit breaker and a switch were developed for use in direct-current (dc) aerospace systems. Power-switching devices used in these designs are the relatively new gate-turnoff thyristor (GTO) and poweer metal-oxide-semiconductor field-effect transistors (MOSFET). The various RPC's can switch dc voltages to 1200 V and currents to 100 A. Seven different units were constructed and subjected to comprehensive laboratory and thermal vacuum testing. Two of these were dual units that switch both positive and negative voltages simultaneously. The RPC's using MOSFET's have slow turnon and turnoff times to limit voltage spiking from high di/dt. The GTO's have much faster transition times. All RPC's have programmable overload tripout and microsecond tripout for large overloads. The basic circuits developed can be used to build switchgear limited only by the ratings of the switching device used.

  8. Solar Thermal Small Power Systems Study. Inventory of US industrial small electric power generating systems. [Less than 10 MW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This inventory of small industrial electric generating systems was assembled by The Aerospace Corporation to provide a data base for analyses being conducted to estimate the potential for displacement of these fossil-fueled systems by solar thermal electric systems no larger than 10 MW in rated capacity. The approximately 2100 megawatts generating capacity of systems in this category constitutes a potential market for small solar thermal and other solar electric power systems. The sources of data for this inventory were the (former) Federal Power Commission (FPC) Form 4 Industrial Ledger and Form 12-C Ledger for 1976. Table 1 alphabetically lists generatingmore » systems located at industrial plants and at Federal government installations in each of the 50 states. These systems are differentiated by type of power plant: steam turbine, diesel generator, or gas turbine. Each listing is designated as a power system rather than a power unit because the FPC Ledgers do not provide a means of determining whether more than one unit is associated with each industrial installation. Hence, the user should consider each listing to be a system capacity rating wherein the system may consist of one or more generating units with less than 10 MW/sub e/ combined rating. (WHK)« less

  9. Polymeric Materials for Aerospace Power and Propulsion-NASA Glenn Overview

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2008-01-01

    Use of lightweight materials in aerospace power and propulsion components can lead to significant reductions in vehicle weight and improvements in performance and efficiency. Polymeric materials are well suited for many of these applications, but improvements in processability, durability and performance are required for their successful use in these components. Polymers Research at NASA Glenn is focused on utilizing a combination of traditional polymer science and engineering approaches and nanotechnology to develop new materials with enhanced processability, performance and durability. An overview of these efforts will be presented.

  10. Improved damage imaging in aerospace structures using a piezoceramic hybrid pin-force wave generation model

    NASA Astrophysics Data System (ADS)

    Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice

    2014-03-01

    In this study, a correlation-based imaging technique called "Excitelet" is used to monitor an aerospace grade aluminum plate, representative of an aircraft component. The principle is based on ultrasonic guided wave generation and sensing using three piezoceramic (PZT) transducers, and measurement of reflections induced by potential defects. The method uses a propagation model to correlate measured signals with a bank of signals and imaging is performed using a roundrobin procedure (Full-Matrix Capture). The formulation compares two models for the complex transducer dynamics: one where the shear stress at the tip of the PZT is considered to vary as a function of the frequency generated, and one where the PZT is discretized in order to consider the shear distribution under the PZT. This method allows taking into account the transducer dynamics and finite dimensions, multi-modal and dispersive characteristics of the material and complex interactions between guided wave and damages. Experimental validation has been conducted on an aerospace grade aluminum joint instrumented with three circular PZTs of 10 mm diameter. A magnet, acting as a reflector, is used in order to simulate a local reflection in the structure. It is demonstrated that the defect can be accurately detected and localized. The two models proposed are compared to the classical pin-force model, using narrow and broad-band excitations. The results demonstrate the potential of the proposed imaging techniques for damage monitoring of aerospace structures considering improved models for guided wave generation and propagation.

  11. Design of high-voltage, high-power, solid state remote power controllers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1985-01-01

    Two general types of remote power controllers (RPC's), which combine the functions of a circuit breaker and a switch, were developed for use in dc aerospace systems. Power-switching devices used in the designs are the gate-turnoff thyristor (GTO) and MOSFET. The RPC's can switch dc voltages to 1200 V and currents to 1000 A. Seven different units were constructed and subjected to laboratory and thermal vacuum testing. Two of these were dual units that switch both positive and negative voltages simultaneously. The RPC's using MOSFET's have slow turnon and turnoff times which limit surge currents and voltage spiking from high di/dt. The GTO's have much faster transition times. All RPC's have programmable overload tripout proportional to I sq T and microsecond tripout for large overloads.

  12. Design of high-voltage, high-power, solid state remote power controllers for aerospace applications

    NASA Astrophysics Data System (ADS)

    Sturman, J. C.

    1985-05-01

    Two general types of remote power controllers (RPC's), which combine the functions of a circuit breaker and a switch, were developed for use in dc aerospace systems. Power-switching devices used in the designs are the gate-turnoff thyristor (GTO) and MOSFET. The RPC's can switch dc voltages to 1200 V and currents to 1000 A. Seven different units were constructed and subjected to laboratory and thermal vacuum testing. Two of these were dual units that switch both positive and negative voltages simultaneously. The RPC's using MOSFET's have slow turnon and turnoff times which limit surge currents and voltage spiking from high di/dt. The GTO's have much faster transition times. All RPC's have programmable overload tripout proportional to I sq T and microsecond tripout for large overloads.

  13. Starter/generator testing

    NASA Astrophysics Data System (ADS)

    Anon

    1994-10-01

    Sundstrand Aerospace and GE Aircraft Engines have studied the switched reluctance machine for use as an integral starter/generator for future aircraft engines. They have conducted an initial, low-power testing of the starter/generator, which is based on power inverters using IGBT-technology semiconductors, to verify its feasibility in the externally mounted version of the integral starter/generator. This preliminary testing of the 250-kW starter/generator reveals favorable results.

  14. Aerospace Communications Technologies in Support of NASA Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2016-01-01

    NASA is endeavoring in expanding communications capabilities to enable and enhance robotic and human exploration of space and to advance aero communications here on Earth. This presentation will discuss some of the research and technology development work being performed at the NASA Glenn Research Center in aerospace communications in support of NASAs mission. An overview of the work conducted in-house and in collaboration with academia, industry, and other government agencies (OGA) to advance radio frequency (RF) and optical communications technologies in the areas of antennas, ultra-sensitive receivers, power amplifiers, among others, will be presented. In addition, the role of these and other related RF and optical communications technologies in enabling the NASA next generation aerospace communications architecture will be also discussed.

  15. Nanotechnology for aerospace: potential transitions from university research

    NASA Astrophysics Data System (ADS)

    Agee, Forrest J.

    2008-04-01

    Nanotechnology is expected to provide the fundamental basis of the next two generations of products and processes. Impacts for applications are already being felt in many fields, and there is interest especially in the aerospace industry, where performance is a major driver of decisions for applications. Four areas are receiving special emphasis in a program aimed at the Air Force's strategic focus on materials. The emphasis includes adaptive coatings and surface engineering, nanoenergetics, electromagnetic sensors, and power generation and storage. Seven universities in Texas have initiated the CONTACT program of focused research including nine projects in the first year, with plans for expansion in subsequent years. This paper discusses the focus, progress, and plans for the second year and opportunities for industry input to the scope and content of the research. A new model for the creation and guidance of research programs for industry is presented. The new approach includes interaction with the aerospace industry and the Air Force that provides a focus for the research. Results to date for the new method and for the research are presented. A discussion of nanoengineering technology transition into the aerospace industry highlights the mechanisms for enhancing the process and for dealing with intellectual property.

  16. Aerospace Training. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Aerospace is an economic powerhouse that generates jobs and fuels our economy. Washington's community and technical colleges produce the world-class employees needed to keep it that way. With about 1,250 aerospace-related firms employing more than 94,000 workers, Washington has the largest concentration of aerospace expertise in the nation. To…

  17. Aerospace Dermatology

    PubMed Central

    Arora, Sandeep

    2017-01-01

    Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry. PMID:28216729

  18. Aerospace Dermatology.

    PubMed

    Arora, Sandeep

    2017-01-01

    Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry.

  19. Generation of Electrical Power from Stimulated Muscle Contractions Evaluated

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David B.

    2004-01-01

    This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.

  20. Aerospace Community. Aerospace Education I.

    ERIC Educational Resources Information Center

    Mickey, V. V.

    This book, one in the series on Aerospace Education I, emphasizes the two sides of aerospace--military aerospace and civilian aerospace. Chapter 1 includes a brief discussion on the organization of Air Force bases and missile sites in relation to their missions. Chapter 2 examines the community services provided by Air Force bases. The topics…

  1. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  2. Unification: An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1991-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace business. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a view toward developing a scenario for establishing an international aerospace data base, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  3. Unification - An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  4. Unification: An international aerospace information opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.; Carroll, Bonnie C.

    1992-01-01

    Science and technology projects are becoming more and more international and interdisciplinary. Other parts of the world, notably Europe, are increasingly powerful players in the aerospace industry. This change has led to the development of various aerospace information initiatives in other countries. With scarce resources in all areas of government and industry, the NASA STI Program is reviewing its current acquisition and exchange practices and policies to factor in the changing requirements and new opportunities within the international community. Current NASA goals and activities are reviewed with a new view toward developing a scenario for establishing an international aerospace database, maintaining compatibility among national aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  5. Development of lightweight structural health monitoring systems for aerospace applications

    NASA Astrophysics Data System (ADS)

    Pearson, Matthew

    This thesis investigates the development of structural health monitoring systems (SHM) for aerospace applications. The work focuses on each aspect of a SHM system covering novel transducer technologies and damage detection techniques to detect and locate damage in metallic and composite structures. Secondly the potential of energy harvesting and power arrangement methodologies to provide a stable power source is assessed. Finally culminating in the realisation of smart SHM structures. 1. Transducer Technology A thorough experimental study of low profile, low weight novel transducers not normally used for acoustic emission (AE) and acousto-ultrasonics (AU) damage detection was conducted. This included assessment of their performance when exposed to aircraft environments and feasibility of embedding these transducers in composites specimens in order to realise smart structures. 2. Damage Detection An extensive experimental programme into damage detection utilising AE and AU were conducted in both composites and metallic structures. These techniques were used to assess different damage mechanism within these materials. The same transducers were used for novel AE location techniques coupled with AU similarity assessment to successfully detect and locate damage in a variety of structures. 3. Energy Harvesting and Power Management Experimental investigations and numerical simulations were undertaken to assess the power generation levels of piezoelectric and thermoelectric generators for typical vibration and temperature differentials which exist in the aerospace environment. Furthermore a power management system was assessed to demonstrate the ability of the system to take the varying nature of the input power and condition it to a stable power source for a system. 4. Smart Structures The research conducted is brought together into a smart carbon fibre wing showcasing the novel embedded transducers for AE and AU damage detection and location, as well as vibration energy

  6. Heat transfer in aerospace propulsion

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

    1988-01-01

    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

  7. Aerospace induction motor actuators driven from a 20-kHz power link

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Aerospace electromechanical actuators utilizing induction motors are under development in sizes up to 40 kW. While these actuators have immediate application to the Advanced Launch System (ALS) program, several potential applications are currently under study including the Advanced Aircraft Program. Several recent advances developed for the Space Station Freedom have allowed induction motors to be selected as a first choice for such applications. Among these technologies are bi-directional electronics and high frequency power distribution techniques. Each of these technologies are discussed with emphasis on their impact upon induction motor operation.

  8. The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian

    2011-01-01

    NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.

  9. Nanotechnology research for aerospace applications

    NASA Astrophysics Data System (ADS)

    Agee, Forrest J.; Lozano, Karen; Gutierrez, Jose M.; Chipara, Mircea; Thapa, Ram; Chow, Alice

    2009-04-01

    Nanotechnology is impacting the future of the military and aerospace. The increasing demands for high performance and property-specific applications are forcing the scientific world to take novel approaches in developing programs and accelerating output. CONTACT or Consortium for Nanomaterials for Aerospace Commerce and Technology is a cooperative nanotechnology research program in Texas building on an infrastructure that promotes collaboration between universities and transitioning to industry. The participants of the program include the US Air Force Research Laboratory (AFRL), five campuses of the University of Texas (Brownsville, Pan American, Arlington, Austin, and Dallas), the University of Houston, and Rice University. Through the various partnerships between the intellectual centers and the interactions with AFRL and CONTACT's industrial associates, the program represents a model that addresses the needs of the changing and competitive technological world. Into the second year, CONTACT has expanded to twelve projects that cover four areas of research: Adaptive Coatings and Surface Engineering, Nano Energetics, Electromagnetic Sensors, and Power Generation and Storage. This paper provides an overview of the CONTACT program and its projects including the research and development of new electrorheological fluids with nanoladen suspensions and composites and the potential applications.

  10. A Tool for Model-Based Generation of Scenario-driven Electric Power Load Profiles

    NASA Technical Reports Server (NTRS)

    Rozek, Matthew L.; Donahue, Kenneth M.; Ingham, Michel D.; Kaderka, Justin D.

    2015-01-01

    Power consumption during all phases of spacecraft flight is of great interest to the aerospace community. As a result, significant analysis effort is exerted to understand the rates of electrical energy generation and consumption under many operational scenarios of the system. Previously, no standard tool existed for creating and maintaining a power equipment list (PEL) of spacecraft components that consume power, and no standard tool existed for generating power load profiles based on this PEL information during mission design phases. This paper presents the Scenario Power Load Analysis Tool (SPLAT) as a model-based systems engineering tool aiming to solve those problems. SPLAT is a plugin for MagicDraw (No Magic, Inc.) that aids in creating and maintaining a PEL, and also generates a power and temporal variable constraint set, in Maple language syntax, based on specified operational scenarios. The constraint set can be solved in Maple to show electric load profiles (i.e. power consumption from loads over time). SPLAT creates these load profiles from three modeled inputs: 1) a list of system components and their respective power modes, 2) a decomposition hierarchy of the system into these components, and 3) the specification of at least one scenario, which consists of temporal constraints on component power modes. In order to demonstrate how this information is represented in a system model, a notional example of a spacecraft planetary flyby is introduced. This example is also used to explain the overall functionality of SPLAT, and how this is used to generate electric power load profiles. Lastly, a cursory review of the usage of SPLAT on the Cold Atom Laboratory project is presented to show how the tool was used in an actual space hardware design application.

  11. NASA-UVa light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1991-01-01

    The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.

  12. Aerospace Power Systems Design and Analysis (APSDA) Tool

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1998-01-01

    The conceptual design of space and/or planetary electrical power systems has required considerable effort. Traditionally, in the early stages of the design cycle (conceptual design), the researchers have had to thoroughly study and analyze tradeoffs between system components, hardware architectures, and operating parameters (such as frequencies) to optimize system mass, efficiency, reliability, and cost. This process could take anywhere from several months to several years (as for the former Space Station Freedom), depending on the scale of the system. Although there are many sophisticated commercial software design tools for personal computers (PC's), none of them can support or provide total system design. To meet this need, researchers at the NASA Lewis Research Center cooperated with Professor George Kusic from the University of Pittsburgh to develop a new tool to help project managers and design engineers choose the best system parameters as quickly as possible in the early design stages (in days instead of months). It is called the Aerospace Power Systems Design and Analysis (APSDA) Tool. By using this tool, users can obtain desirable system design and operating parameters such as system weight, electrical distribution efficiency, bus power, and electrical load schedule. With APSDA, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. user interface. It operates on any PC running the MS-DOS (Microsoft Corp.) operating system, version 5.0 or later. A color monitor (EGA or VGA) and two-button mouse are required. The APSDA tool was presented at the 30th Intersociety Energy Conversion Engineering Conference (IECEC) and is being beta tested at several NASA centers. Beta test packages are available for evaluation by contacting the author.

  13. Introduction: Aims and Requirements of Future Aerospace Vehicles. Chapter 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, Pedro I.; Smeltzer, Stanley S., III; McConnaughey, Paul (Technical Monitor)

    2001-01-01

    The goals and system-level requirements for the next generation aerospace vehicles emphasize safety, reliability, low-cost, and robustness rather than performance. Technologies, including new materials, design and analysis approaches, manufacturing and testing methods, operations and maintenance, and multidisciplinary systems-level vehicle development are key to increasing the safety and reducing the cost of aerospace launch systems. This chapter identifies the goals and needs of the next generation or advanced aerospace vehicle systems.

  14. Performance and technological feasibility of rocket powered HTHL-SSTO with take-off assist (aerospace plane/ekranoplane)

    NASA Astrophysics Data System (ADS)

    Tomita, Nobuyuki; Nebylov, Alexander V.; Sokolov, Victor V.; Ohkami, Yoshiaki

    It might be said that it is common understanding that rocket-powered single stage to orbit (SSTO) aerospace planes will become feasible with near-term technology as described in [1] (Koelle, D. E. Survey and comparison of winged launch vehicle options, ISTS 94-g-11 V 1994) and [2] (Bekey, I. Why SSTO rocket launch vehicles are now feasible and practical, IAF-94-V.1.524 1994). Among two methods of launching aerospace planes into orbit, vertical take-off (VT) and horizontal take-off (HT), it seems that VT takes the lead from HT [1, 2]. The decision for the X-33 program by NASA, also, seems to favor VT. In retrospect, almost all of the launch vehicles in the past have been VT, mainly because VT solved the problem of exit from atmosphere to space. However, broadening the range of requirements for space transportation systems from military to commercial and unmanned to manned seems to favor the need for HT. In this paper, the authors are going to prove that aerospace plane/ekranoplane system, which is a reusable launch vehicle system based on the HT concept, with ekranoplane as a take-off and possibly, landing assist, could be competitive with the VT concept from both technological and economical view points. Ekranoplane is a wing-in-ground-effect craft (WIG), which moves at a speed of approximately 0.5 M, carrying heavy loads above the sea surface. Combination of high initial velocity and high performance tri-propellant engine for aerospace plane makes it possible to configure an aerospace plane which is competitive with VT. Other specific features of HT in comparison with VT are discussed.

  15. Surface generation and editing operations applied to structural support of aerospace vehicle fuselages. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Schwartz, Susan K.

    1992-01-01

    The Solid Modeling Aerospace Research Tool (SMART) is a computer aided design tool used in aerospace vehicle design. Modeling of structural components using SMART includes the representation of the transverse or cross-wise elements of a vehicle's fuselage, ringframes, and bulkheads. Ringframes are placed along a vehicle's fuselage to provide structural support and maintain the shape of the fuselage. Bulkheads are also used to maintain shape, but are placed at locations where substantial structural support is required. Given a Bezier curve representation of a cross sectional cut through a vehicle's fuselage and/or an internal tank, this project produces a first-guess Bezier patch representation of a ringframe or bulkhead at the cross-sectional position. The grid produced is later used in the structural analysis of the vehicle. The graphical display of the generated patches allows the user to edit patch control points in real time. Constraints considered in the patch generation include maintaining 'square-like' patches and placement of longitudinal, or lengthwise along the fuselage, structural elements called longerons.

  16. An Overview of Space Power Systems for NASA Missions

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Scott, John H.

    2007-01-01

    Power is a critical commodity for all engineering efforts and is especially challenging in the aerospace field. This paper will provide a broad brush overview of some of the immediate and important challenges to NASA missions in the field of aerospace power, for generation, energy conversion, distribution, and storage. NASA s newest vehicles which are currently in the design phase will have power systems that will be developed from current technology, but will have the challenges of being light-weight, energy-efficient, and space-qualified. Future lunar and Mars "outposts" will need high power generation units for life support and energy-intensive exploration efforts. An overview of the progress in concepts for power systems and the status of the required technologies are discussed.

  17. Sealed aerospace metal-hydride batteries

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  18. Environmentally friendly power sources for aerospace applications

    NASA Astrophysics Data System (ADS)

    Lapeña-Rey, Nieves; Mosquera, Jonay; Bataller, Elena; Ortí, Fortunato; Dudfield, Christopher; Orsillo, Alessandro

    between the two power sources [N. Lapeña-Rey, J. Mosquera, E. Bataller, F. Ortí, SAE 2007 Aerotech Congress & Exhibition, 2007 (Publication number: 2007-01-3906)]. The demonstrator airplane constitutes an example of the successful implementation of novel clean power sources in aviation. The detailed description of the airplane and its subsystems is given elsewhere [N. Lapeña-Rey, J. Mosquera, E. Bataller, F. Ortí, SAE 2007 Aerotech Congress & Exhibition, 2007 (Publication number: 2007-01-3906)]. This paper focuses specially on the power sources design and pre-flight tests giving special attention to those requirements derived from aerospace applications.

  19. Recent advances in the development of aerospace materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xuesong; Chen, Yongjun; Hu, Junling

    2018-02-01

    In recent years, much progress has been made on the development of aerospace materials for structural and engine applications. Alloys, such as Al-based alloys, Mg-based alloys, Ti-based alloys, and Ni-based alloys, are developed for aerospace industry with outstanding advantages. Composite materials, the innovative materials, are taking more and more important roles in aircrafts. However, recent aerospace materials still face some major challenges, such as insufficient mechanical properties, fretting wear, stress corrosion cracking, and corrosion. Consequently, extensive studies have been conducted to develop the next generation aerospace materials with superior mechanical performance and corrosion resistance to achieve improvements in both performance and life cycle cost. This review focuses on the following topics: (1) materials requirements in design of aircraft structures and engines, (2) recent advances in the development of aerospace materials, (3) challenges faced by recent aerospace materials, and (4) future trends in aerospace materials.

  20. 76 FR 81360 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane, Operation Without Normal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. FAA-2011-1172: Special Conditions No. 25-453-SC] Special Conditions: Gulfstream Aerospace LP (GALP) Model G280... is not equipped with a Ram Air Turbine (RAT) generator. The loss of all electrical power to certain...

  1. Thermoelectric power generator for variable thermal power source

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  2. The Aerospace Age. Aerospace Education I.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is written for use only in the Air Force ROTC program and cannot be purchased on the open market. The book describes the historical development of aerospace industry. The first chapter contains a brief review of the aerospace environment and the nature of technological changes brought by the aerospace revolution. The following chapter…

  3. Wireless Sensing Opportunities for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2007-01-01

    Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  4. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 1, Part 2

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume I: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements of the program's operations.

  5. Future trends in power generation cost by power resource

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The Japan Energy Economy Research Institute has been evaluating power generation cost by each power resource every year focusing on nuclear power generation. The Institute is surveying the cost evaluations by power resources in France, Britain and the U.S.A., the nuclear generation advanced nations. The OECD is making power generation cost estimation using a hypothesis which uniforms basically the conditions varying in different member countries. In model power generation cost calculations conducted by the Ministry of International Trade and Industry of Japan, nuclear power generation is the most economical system in any fiscal year. According to recent calculations performed by the Japan Energy Economy Research Institute, the situation is such that it is difficult to distinguish the economical one from others among the power generation systems in terms of generation costs except for thermal power generation. Economic evaluations are given on estimated power generation costs based on construction costs for nuclear and thermal power plants, nuclear fuel cycling cost, and fuel cost data on petroleum, LNG and coal. With regard to the future trends, scenario analyses are made on generation costs, that assume fluctuations in fuel prices and construction costs, the important factors to give economic influence on power generation.

  6. 1998 IEEE Aerospace Conference. Proceedings.

    NASA Astrophysics Data System (ADS)

    The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.

  7. Solid Modeling Aerospace Research Tool (SMART) user's guide, version 2.0

    NASA Technical Reports Server (NTRS)

    Mcmillin, Mark L.; Spangler, Jan L.; Dahmen, Stephen M.; Rehder, John J.

    1993-01-01

    The Solid Modeling Aerospace Research Tool (SMART) software package is used in the conceptual design of aerospace vehicles. It provides a highly interactive and dynamic capability for generating geometries with Bezier cubic patches. Features include automatic generation of commonly used aerospace constructs (e.g., wings and multilobed tanks); cross-section skinning; wireframe and shaded presentation; area, volume, inertia, and center-of-gravity calculations; and interfaces to various aerodynamic and structural analysis programs. A comprehensive description of SMART and how to use it is provided.

  8. Wiring for aerospace applications

    NASA Astrophysics Data System (ADS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-07-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  9. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  10. Aerospace Power: The Case for Indivisible Application

    DTIC Science & Technology

    1986-09-01

    missile, used with such impact by Argentina during the Falklands battle, will be seen as just a modest beginning . The CEP of new weapons will likely be... Argentina to the Soviet Union, to accomplish a spectrum of combat missions with rapidly increasing effectiveness . The mixed nature of the "blessings of...aerospace forces according to their capabilities and the elimination of the rigid strategic and tactical stereotypes . 60 AEROSPACEPOWER These global

  11. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  12. Electrical power generating system

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.

  13. Rapid near-optimal aerospace plane trajectory generation and guidance

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Corban, J. E.; Markopoulos, N.

    1991-01-01

    Effort was directed toward the problems of the real time trajectory optimization and guidance law development for the National Aerospace Plane (NASP) applications. In particular, singular perturbation methods were used to develop guidance algorithms suitable for onboard, real time implementation. The progress made in this research effort is reported.

  14. NSWC Crane Aerospace Cell Test History Database

    NASA Technical Reports Server (NTRS)

    Brown, Harry; Moore, Bruce

    1994-01-01

    The Aerospace Cell Test History Database was developed to provide project engineers and scientists ready access to the data obtained from testing of aerospace cell designs at Naval Surface Warfare Center, Crane Division. The database is intended for use by all aerospace engineers and scientists involved in the design of power systems for satellites. Specifically, the database will provide a tool for project engineers to review the progress of their test at Crane and to have ready access to data for evaluation. Additionally, the database will provide a history of test results that designers can draw upon to answer questions about cell performance under certain test conditions and aid in selection of a cell for a satellite battery. Viewgraphs are included.

  15. Adopting exergy analysis for use in aerospace

    NASA Astrophysics Data System (ADS)

    Hayes, David; Lone, Mudassir; Whidborne, James F.; Camberos, José; Coetzee, Etienne

    2017-08-01

    Thermodynamic analysis methods, based on an exergy metric, have been developed to improve system efficiency of traditional heat driven systems such as ground based power plants and aircraft propulsion systems. However, in more recent years interest in the topic has broadened to include applying these second law methods to the field of aerodynamics and complete aerospace vehicles. Work to date is based on highly simplified structures, but such a method could be shown to have benefit to the highly conservative and risk averse commercial aerospace sector. This review justifies how thermodynamic exergy analysis has the potential to facilitate a breakthrough in the optimization of aerospace vehicles based on a system of energy systems, through studying the exergy-based multidisciplinary design of future flight vehicles.

  16. Aerospace Environment. Aerospace Education I.

    ERIC Educational Resources Information Center

    Savler, D. S.; Smith, J. C.

    This book is one in the series on Aerospace Education I. It briefly reviews current knowledge of the universe, the earth and its life-supporting atmosphere, and the arrangement of celestial bodies in outer space and their physical characteristics. Chapter 1 includes a brief survey of the aerospace environment. Chapters 2 and 3 examine the…

  17. Military Aerospace. Aerospace Education II.

    ERIC Educational Resources Information Center

    Smith, J. C.

    This book is a revised publication in the series on Aerospace Education II. It describes the employment of aerospace forces, their methods of operation, and some of the weapons and equipment used in combat and combat support activities. The first chapter describes some of the national objectives and policies served by the Air Force in peace and…

  18. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 2/Part 2

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume II Appendix A to Part 2 - Volume I.

  19. Power Control of New Wind Power Generation System with Induction Generator Excited by Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Morizane, Toshimitsu; Kimura, Noriyuki; Taniguchi, Katsunori

    This paper investigates advantages of new combination of the induction generator for wind power and the power electronic equipment. Induction generator is popularly used for the wind power generation. The disadvantage of it is impossible to generate power at the lower rotor speed than the synchronous speed. To compensate this disadvantage, expensive synchronous generator with the permanent magnets is sometimes used. In proposed scheme, the diode rectifier is used to convert the real power from the induction generator to the intermediate dc voltage, while only the reactive power necessary to excite the induction generator is supplied from the voltage source converter (VSC). This means that the rating of the expensive VSC is minimized and total cost of the wind power generation system is decreased compared to the system with synchronous generator. Simulation study to investigate the control strategy of proposed system is performed. The results show the reduction of the VSC rating is prospective.

  20. Chapter 11: Marine and Hydrokinetic Power Generation and Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Yu, Yi-Hsiang

    Marine and hydrokinetic (MHK) power generation is a relatively new type of renewable generation. Predecessors such as wind power generation, hydropower plant generation, geothermal generation, photovoltaic generation, and solar thermal generation have gained a lot of attention because of their successful implementation. The successful integration of renewable generation into the electric power grid has energized the power system global communities to take the lessons learned, innovations, and market structure to focus on the large potential of MHK to also contribute to the pool of renewable energy generation. This chapter covers the broad spectrum of MHK generation. The state-of-the-art power takeoffmore » methods will be discussed. Types of electrical generators will be presented, and the options for implementation will be presented.« less

  1. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.

    PubMed

    Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-02-16

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  2. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components

    PubMed Central

    Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-01-01

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites. PMID:29462953

  3. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    NASA Astrophysics Data System (ADS)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-03-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  4. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    NASA Astrophysics Data System (ADS)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-06-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  5. The Russian Perception of the NATO Aerospace Threat: Could It Lead to Preemption

    DTIC Science & Technology

    2016-09-01

    64 | Air & Space Power Journal The Russian Perception of the NATO Aerospace Threat Could It Lead to Preemption? Lt Col Thomas R. McCabe, USAFR...authoritative Russian military writings and spokesmen have repeatedly declared that the aerospace sphere, where air and space combine into a single...air and space capability, especially its airfields, aircraft, and aerospace defenses.36 Another key objective, as previously noted, may be a

  6. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA Langley Aerospace Engineer Jill Lynette Hanna Prince receives the Women in Aerospace Achievement in Aerospace award from North Carolina State Professor Robert Tolson during the Women in Aerospace organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  7. Recent advances in aerospace composite NDE

    NASA Astrophysics Data System (ADS)

    Georgeson, Gary E.

    2002-06-01

    As the aerospace industry continues to advance the design and use of composite structure, the NDE community faces the difficulties of trying to keep up. The challenges lie in manufacturing evaluation of the newest aerospace structures and materials and the in-service inspection and monitoring of damaged or aging composites. This paper provides examples of several promising NDI applications in the world of aerospace composites. Airborne (or non-contact) Ultrasonic Testing (UT) has been available for decades, but recently has generated new interest due to significant improvements in transducer design and low noise electronics. Boeing is developing inspection techniques for composite joints and core blankets using this technology. In-service inspection techniques for thick, multi-layer structures are also being advanced. One effective technique integrates the S-9 Sondicator, a traditional bond testing device, with Boeing's Mobile Automated Scanner (MAUS) platform. Composite patches have seen limited use on-aircraft, due, in part, to the difficulty of determining the quality of a bonded joint. A unique approach using Electronic Speckle Pattern Interferometry (ESPI) is showing promise as a bonded patch-inspection method. Other NDI techniques currently being developed for aerospace application are also briefly discussed.

  8. Aircraft Photovoltaic Power-Generating System.

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.

  9. Summary of aerospace and nuclear engineering activities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.

  10. NASA HPCC Technology for Aerospace Analysis and Design

    NASA Technical Reports Server (NTRS)

    Schulbach, Catherine H.

    1999-01-01

    The Computational Aerosciences (CAS) Project is part of NASA's High Performance Computing and Communications Program. Its primary goal is to accelerate the availability of high-performance computing technology to the US aerospace community-thus providing the US aerospace community with key tools necessary to reduce design cycle times and increase fidelity in order to improve safety, efficiency and capability of future aerospace vehicles. A complementary goal is to hasten the emergence of a viable commercial market within the aerospace community for the advantage of the domestic computer hardware and software industry. The CAS Project selects representative aerospace problems (especially design) and uses them to focus efforts on advancing aerospace algorithms and applications, systems software, and computing machinery to demonstrate vast improvements in system performance and capability over the life of the program. Recent demonstrations have served to assess the benefits of possible performance improvements while reducing the risk of adopting high-performance computing technology. This talk will discuss past accomplishments in providing technology to the aerospace community, present efforts, and future goals. For example, the times to do full combustor and compressor simulations (of aircraft engines) have been reduced by factors of 320:1 and 400:1 respectively. While this has enabled new capabilities in engine simulation, the goal of an overnight, dynamic, multi-disciplinary, 3-dimensional simulation of an aircraft engine is still years away and will require new generations of high-end technology.

  11. Trajectory optimization and guidance law development for national aerospace plane applications

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Flandro, G. A.; Corban, J. E.

    1988-01-01

    The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.

  12. Civil aeromedical standards for general-use aerospace transportation vehicles : the space-shuttle follow-on.

    DOT National Transportation Integrated Search

    1971-07-01

    Second-generation general-use aerospace transportation vehicles will evolve, and aerospace medical specialists must provide timely medical criteria for (a) occupant selection, (b) vehicle design features, and (c) operational guidelines. Incorporation...

  13. Guidelines for the Procurement of Aerospace Nickel Cadmium Cells

    NASA Technical Reports Server (NTRS)

    Thierfelder, Helmut

    1997-01-01

    NASA has been using a Modular Power System containing "standard" nickel cadmium (NiCd) batteries, composed of "standard" NiCd cells. For many years the only manufacturer of the NASA "standard" NiCd cells was General Electric Co. (subsequently Gates Aerospace and now SAFT). This standard cell was successfully used in numerous missions. However, uncontrolled technical changes, and changes in industrial restructuring require a new approach. General Electric (now SAFT Aerospace Batteries) had management changes, new manufacturers entered the market (Eagle-Picher Industries, ACME Electric Corporation, Aerospace Division, Sanyo Electric Co.) and battery technology advanced. New NASA procurements for aerospace NiCd cells will have specifications unique to the spacecraft and mission requirements. This document provides the user/customer guidelines for the new approach to procuring of and specifying performance requirements for highly reliable NiCd cells and batteries. It includes details of key parameters and their importance. The appendices contain a checklist, detailed calculations, and backup information.

  14. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  15. Electrical Power Conversion of River and Tidal Power Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern;more » thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).« less

  16. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Michaud, Vince

    2015-01-01

    NASA Aerospace Medicine overview - Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.

  17. Aerospace Meteorology Lessons Learned Relative to Aerospace Vehicle Design and Operations

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Anderson, B. Jeffrey

    2004-01-01

    Aerospace Meteorology came into being in the 1950s as the development of rockets for military and civilian usage grew in the United States. The term was coined to identify those involved in the development of natural environment models, design/operational requirements, and environment measurement systems to support the needs of aerospace vehicles, both launch vehicles and spacecraft. It encompassed the atmospheric environment of the Earth, including Earth orbit environments. Several groups within the United States were active in this area, including the Department of Defense, National Aeronautics and Space Administration, and a few of the aerospace industry groups. Some aerospace meteorology efforts were similar to those being undertaken relative to aviation interests. As part of the aerospace meteorology activities a number of lessons learned resulted that produced follow on efforts which benefited from these experiences, thus leading to the rather efficient and technologically current descriptions of terrestrial environment design requirements, prelaunch monitoring systems, and forecast capabilities available to support the development and operations of aerospace vehicles.

  18. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA Headquarters Program Planning Specialist Beth Beck speaks after being given the Women in Aerospace's Aerospace Awareness Award at the organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  19. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  20. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bel,; Lon, E [Altadena, CA; Crane, Douglas Todd [Pasadena, CA

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  1. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications.

    PubMed

    Barako, Michael T; Gambin, Vincent; Tice, Jesse

    2018-04-02

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  2. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications

    NASA Astrophysics Data System (ADS)

    Barako, Michael T.; Gambin, Vincent; Tice, Jesse

    2018-04-01

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  3. NASA-UVA light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1990-01-01

    The objective of the Light Aerospace Alloy and Structures Technology Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. Individual technical objectives are established for each project. Efforts aim to produce basic understanding of material behavior, monolithic and composite alloys, processing methods, solid and mechanics analyses, measurement advances, and a pool of educated graduate students. Progress is reported for 11 areas of study.

  4. Ethernet for Aerospace Applications - Ethernet Heads for the Skies

    NASA Technical Reports Server (NTRS)

    Grams, Paul R.

    2015-01-01

    One of the goals of aerospace applications is to reduce the cost and complexity of avionic systems. Ethernet is a highly scalable, flexible, and popular protocol. The aerospace market is large, with a forecasted production of over 50,000 turbine-powered aircraft valued at $1.7 trillion between 2012 and 2022. Boeing estimates demand for commercial aircraft by 2033 to total over 36,000 with a value of over $5 trillion. In 2014 US airlines served over 750 million passengers and this is growing over 2% yearly. Electronic fly-by-wire is now used for all airliners and high performance aircraft. Although Ethernet has been widely used for four decades, its use in aerospace applications is just beginning to become common. Ethernet is the universal solution in commercial networks because of its high bandwidths, lower cost, openness, reliability, maintainability, flexibility, and interoperability. However, when Ethernet was designed applications with time-critical, safety relevant and deterministic requirements were not given much consideration. Many aerospace applications use a variety of communication architectures that add cost and complexity. Some of them are SpaceWire, MIL-STD-1553, Avionics Full Duplex Switched Ethernet (AFDX), and Time-Triggered Ethernet (TTE). Aerospace network designers desire to decrease the number of networks to reduce cost and effort while improving scalability, flexibility, openness, maintainability, and reliability. AFDX and TTE are being considered more for critical aerospace systems because they provide redundancy, failover protection, guaranteed timing, and frame priority and are based on Ethernet IEEE 802.3. This paper explores the use of AFDX and TTE for aerospace applications.

  5. Aerospace Education - An Overview

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Discusses the surge of interest throughout the country in aerospace education and discusses what aerospace education is, the implications in career education and the relevance of aerospace education in the curriculum. (BR)

  6. Basic Aerospace Education Library

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Lists the most significant resource items on aerospace education which are presently available. Includes source books, bibliographies, directories, encyclopedias, dictionaries, audiovisuals, curriculum/planning guides, aerospace statistics, aerospace education statistics and newsletters. (BR)

  7. Enhancing power generation of floating wave power generators by utilization of nonlinear roll-pitch coupling

    NASA Astrophysics Data System (ADS)

    Yerrapragada, Karthik; Ansari, M. H.; Karami, M. Amin

    2017-09-01

    We propose utilization of the nonlinear coupling between the roll and pitch motions of wave energy harvesting vessels to increase their power generation by orders of magnitude. Unlike linear vessels that exhibit unidirectional motion, our vessel undergoes both pitch and roll motions in response to frontal waves. This significantly magnifies the motion of the vessel and thus improves the power production by several orders of magnitude. The ocean waves result in roll and pitch motions of the vessel, which in turn causes rotation of an onboard pendulum. The pendulum is connected to an electric generator to produce power. The coupled electro-mechanical system is modeled using energy methods. This paper investigates the power generation of the vessel when the ratio between pitch and roll natural frequencies is about 2 to 1. In that case, a nonlinear energy transfer occurs between the roll and pitch motions, causing the vessel to perform coupled pitch and roll motion even though it is only excited in the pitch direction. It is shown that co-existence of pitch and roll motions significantly enhances the pendulum rotation and power generation. A method for tuning the natural frequencies of the vessel is proposed to make the energy generator robust to variations of the frequency of the incident waves. It is shown that the proposed method enhances the power output of the floating wave power generators by multiple orders of magnitude. A small-scale prototype is developed for the proof of concept. The nonlinear energy transfer and the full rotation of the pendulum in the prototype are observed in the experimental tests.

  8. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA Deputy Administrator Lori Garver speaks after being given the Women in Aerospace's Outstanding Member Award at the organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  9. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA's Langley Research Center Lesa Roe speaks after being given the Women in Aerospace's Leadership Award at the organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  10. a Low-Power Wireless Sensor Network for Monitoring the Microcrack Initiations in Aerospace Composites

    NASA Astrophysics Data System (ADS)

    Li, Jian; Plotnikov, Yuri; Lin, Wendy W.

    2008-02-01

    A low power wireless sensor network was developed to monitor the microcrack events in aerospace composites. The microcracks in the composites mostly result from a stress loading or temperature and/or humidity cycles. Generally, a single microcrack is too small to be detected by conventional techniques such as X-ray or ultrasonic C-scan. The whole developed sensor network is aimed to capture the released acoustic signals by the microcracking events in real time. It comprises of a receiving station as well as a series of sensor nodes. Each sensor node includes two acoustic emission transducers as well as two signal amplification and data acquisition channels. Much of our development effort has been focused on reducing the power consumption of each node and improving the detection reliability for each event. Each sensor node is battery-powered and works in a sleep mode most of time. Once a microcrack is initiated in the composite, the acoustic signal triggers the node and wakes it up. The node will then react in several microseconds and digitize the signal. The digitized data is sent to the station wirelessly. The developed wireless sensor network system has been validated with microscopy of microcracked samples after temperature and humidity cycling and has proved to be an effective tool for microcracking detection. Furthermore, our low power consumption design and sophisticated wireless transmission mechanism enables a system with great potential for field structural health monitoring applications.

  11. NASA-UVA light aerospace alloy and structures technology program (LA(sup 2)ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1992-01-01

    The general objective of the Light Aerospace Alloy and Structures Technology (LA(sup 2)ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with Langley researchers. Specific technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanics analyses, measurement advances, and critically, a pool of educated graduate students for aerospace technologies. Four research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  12. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  13. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1996-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. Three research areas are being actively investigated, including: (1) Mechanical and environmental degradation mechanisms in advanced light metals, (2) Aerospace materials science, and (3) Mechanics of materials for light aerospace structures.

  14. Sputtering and ion plating for aerospace applications

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3-dimensional coverage are the primary attributes of this technology.

  15. Sputtering and ion plating for aerospace applications

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    Sputtering and ion plating technologies are reviewed in terms of their potential and present uses in the aerospace industry. Sputtering offers great universality and flexibility in depositing any material or in the synthesis of new ones. The sputter deposition process has two areas of interest: thin film and fabrication technology. Thin film sputtering technology is primarily used for aerospace mechanical components to reduce friction, wear, erosion, corrosion, high temperature oxidation, diffusion and fatigue, and also to sputter-construct temperature and strain sensors for aircraft engines. Sputter fabrication is used in intricate aircraft component manufacturing. Ion plating applications are discussed in terms of the high energy evaporant flux and the high throwing power. Excellent adherence and 3 dimensional coverage are the primary attributes of this technology.

  16. Combustion Power Unit--400: CPU-400.

    ERIC Educational Resources Information Center

    Combustion Power Co., Palo Alto, CA.

    Aerospace technology may have led to a unique basic unit for processing solid wastes and controlling pollution. The Combustion Power Unit--400 (CPU-400) is designed as a turboelectric generator plant that will use municipal solid wastes as fuel. The baseline configuration is a modular unit that is designed to utilize 400 tons of refuse per day…

  17. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2004-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  18. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Phillips, Wayne (Inventor); Borshchevsky, Alex (Inventor); Kolawa, Elizabeth A. (Inventor); Ryan, Margaret A. (Inventor); Caillat, Thierry (Inventor); Mueller, Peter (Inventor); Snyder, G. Jeffrey (Inventor); Kascich, Thorsten (Inventor)

    2002-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  19. Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology

    NASA Technical Reports Server (NTRS)

    Griffin, D. E. (Editor); Stanley, D. C. (Editor)

    2001-01-01

    The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.

  20. An Implanted, Stimulated Muscle Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Gustafson, Kenneth; Kilgore, Kevin

    2007-01-01

    A totally implantable piezoelectric generator system able to harness power from electrically activated muscle could be used to augment the power systems of implanted medical devices, such as neural prostheses, by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The features of our generator design are no moving parts and the use of a portion of the generated power for system operation and regulation. A software model of the system has been developed and simulations have been performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces have been experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to approximately 700 W of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 50 W. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and further investigation is underway.

  1. Developing IVHM Requirements for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Rajamani, Ravi; Saxena, Abhinav; Kramer, Frank; Augustin, Mike; Schroeder, John B.; Goebel, Kai; Shao, Ginger; Roychoudhury, Indranil; Lin, Wei

    2013-01-01

    The term Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable sustainable and safe operation of components and subsystems within aerospace platforms. However, very little guidance exists for the systems engineering aspects of design with IVHM in mind. It is probably because of this that designers have to use knowledge picked up exclusively by experience rather than by established process. This motivated a group of leading IVHM practitioners within the aerospace industry under the aegis of SAE's HM-1 technical committee to author a document that hopes to give working engineers and program managers clear guidance on all the elements of IVHM that they need to consider before designing a system. This proposed recommended practice (ARP6883 [1]) will describe all the steps of requirements generation and management as it applies to IVHM systems, and demonstrate these with a "real-world" example related to designing a landing gear system. The team hopes that this paper and presentation will help start a dialog with the larger aerospace community and that the feedback can be used to improve the ARP and subsequently the practice of IVHM from a systems engineering point-of-view.

  2. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA's Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler presents the Women in Aerospace's Lifetime Achievement Award to retired NASA chief astronomer Nancy Grace Roman at the organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

  3. Some contributions to energetics by the Lewis Research Center and a review of their potential non-aerospace applications

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Gutstein, M. U.

    1972-01-01

    The primary technology areas are aerospace propulsion, power and materials. As examples in these technologies, the programs in the fields of cryogenics and liquid metals are reviewed and potential non-aerospace applications for the results of these programs are discussed. These include such possibilities as: hydrogen as a non-polluting industrial fuel; more efficient central power stations; and powerplants for advanced ground transportation.

  4. Aerospace Applications of Non-Equilibrium Plasma

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  5. Multiplexing Technology for Acoustic Emission Monitoring of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, William; Percy, Daniel

    2003-01-01

    The initiation and propagation of damage mechanisms such as cracks and delaminations generate acoustic waves, which propagate through a structure. These waves can be detected and analyzed to provide the location and severity of damage as part of a structural health monitoring (SHM) system. This methodology of damage detection is commonly known as acoustic emission (AE) monitoring, and is widely used on a variety of applications on civil structures. AE has been widely considered for SHM of aerospace vehicles. Numerous successful ground and flight test demonstrations have been performed, which show the viability of the technology for damage monitoring in aerospace structures. However, one significant current limitation for application of AE techniques on aerospace vehicles is the large size, mass, and power requirements for the necessary monitoring instrumentation. To address this issue, a prototype multiplexing approach has been developed and demonstrated in this study, which reduces the amount of AE monitoring instrumentation required. Typical time division multiplexing techniques that are commonly used to monitor strain, pressure and temperature sensors are not applicable to AE monitoring because of the asynchronous and widely varying rates of AE signal occurrence. Thus, an event based multiplexing technique was developed. In the initial prototype circuit, inputs from eight sensors in a linear array were multiplexed into two data acquisition channels. The multiplexer rapidly switches, in less than one microsecond, allowing the signals from two sensors to be acquired by a digitizer. The two acquired signals are from the sensors on either side of the trigger sensor. This enables the capture of the first arrival of the waves, which cannot be accomplished with the signal from the trigger sensor. The propagation delay to the slightly more distant neighboring sensors makes this possible. The arrival time from this first arrival provides a more accurate source location

  6. Oscillating fluid power generator

    DOEpatents

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  7. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edger A., Jr.

    1996-01-01

    This progress report covers achievements made between January 1 and June 30, 1966 on the NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. . The accomplishments presented in this report are: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures. Collective accomplishments between January and June of 1996 include: 4 journal or proceedings publications, 1 NASA progress report, 4 presentations at national technical meetings, and 2 PhD dissertations published.

  8. Formal Safety Certification of Aerospace Software

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Fischer, Bernd

    2005-01-01

    In principle, formal methods offer many advantages for aerospace software development: they can help to achieve ultra-high reliability, and they can be used to provide evidence of the reliability claims which can then be subjected to external scrutiny. However, despite years of research and many advances in the underlying formalisms of specification, semantics, and logic, formal methods are not much used in practice. In our opinion this is related to three major shortcomings. First, the application of formal methods is still expensive because they are labor- and knowledge-intensive. Second, they are difficult to scale up to complex systems because they are based on deep mathematical insights about the behavior of the systems (t.e., they rely on the "heroic proof"). Third, the proofs can be difficult to interpret, and typically stand in isolation from the original code. In this paper, we describe a tool for formally demonstrating safety-relevant aspects of aerospace software, which largely circumvents these problems. We focus on safely properties because it has been observed that safety violations such as out-of-bounds memory accesses or use of uninitialized variables constitute the majority of the errors found in the aerospace domain. In our approach, safety means that the program will not violate a set of rules that can range for the simple memory access rules to high-level flight rules. These different safety properties are formalized as different safety policies in Hoare logic, which are then used by a verification condition generator along with the code and logical annotations in order to derive formal safety conditions; these are then proven using an automated theorem prover. Our certification system is currently integrated into a model-based code generation toolset that generates the annotations together with the code. However, this automated formal certification technology is not exclusively constrained to our code generator and could, in principle, also be

  9. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 2, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This report contains the Appendices to the findings from the first year of the program's operations.

  10. Deployable aerospace PV array based on amorphous silicon alloys

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  11. Deployable aerospace PV array based on amorphous silicon alloys

    NASA Astrophysics Data System (ADS)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-04-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  12. Electrical Power Conversion of a River and Tidal Power Generator: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern;more » thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).« less

  13. Power Converters Secure Electronics in Harsh Environments

    NASA Technical Reports Server (NTRS)

    2013-01-01

    In order to harden power converters for the rigors of space, NASA awarded multiple SBIR contracts to Blacksburg, Virginia-based VPT Inc. The resulting hybrid DC-DC converters have proven valuable in aerospace applications, and as a result the company has generated millions in revenue from the product line and created four high-tech jobs to handle production.

  14. Integrated engine generator for aircraft secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.

  15. Summary of NASA Aerospace Flight Battery Systems Program activities

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; Odonnell, Patricia

    1994-01-01

    A summary of NASA Aerospace Flight Battery Systems Program Activities is presented. The NASA Aerospace Flight Battery Systems Program represents a unified NASA wide effort with the overall objective of providing NASA with the policy and posture which will increase the safety, performance, and reliability of space power systems. The specific objectives of the program are to: enhance cell/battery safety and reliability; maintain current battery technology; increase fundamental understanding of primary and secondary cells; provide a means to bring forth advanced technology for flight use; assist flight programs in minimizing battery technology related flight risks; and ensure that safe, reliable batteries are available for NASA's future missions.

  16. The 2004 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Super NiCd(TradeMark) Energy Storage for Gravity Probe-B Relativity Mission; Hubble Space Telescope 2004 Battery Update; The Development of Hermetically Sealed Aerospace Nickel-Metal Hydride Cell; Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System; Cell Equalization of Lithium-Ion Cells; The Long-Term Performance of Small-Cell Batteries Without Cell-Balancing Electronics; Identification and Treatment of Lithium Battery Cell Imbalance under Flight Conditions; Battery Control Boards for Li-Ion Batteries on Mars Exploration Rovers; Cell Over Voltage Protection and Balancing Circuit of the Lithium-Ion Battery; Lithium-Ion Battery Electronics for Aerospace Applications; Lithium-Ion Cell Charge Control Unit; Lithium Ion Battery Cell Bypass Circuit Test Results at the U.S. Naval Research Laboratory; High Capacity Battery Cell By-Pass Switches: High Current Pulse Testing of Lithium-Ion; Battery By-Pass Switches to Verify Their Ability to Withstand Short-Circuits; Incorporation of Physics-Based, Spatially-Resolved Battery Models into System Simulations; A Monte Carlo Model for Li-Ion Battery Life Projections; Thermal Behavior of Large Lithium-Ion Cells; Thermal Imaging of Aerospace Battery Cells; High Rate Designed 50 Ah Li-Ion Cell for LEO Applications; Evaluation of Corrosion Behavior in Aerospace Lithium-Ion Cells; Performance of AEA 80 Ah Battery Under GEO Profile; LEO Li-Ion Battery Testing; A Review of the Feasibility Investigation of Commercial Laminated Lithium-Ion Polymer Cells for Space Applications; Lithium-Ion Verification Test Program; Panasonic Small Cell Testing for AHPS; Lithium-Ion Small Cell Battery Shorting Study; Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-Time Profiles; Update on Development of Lithium-Ion Cells for Space Applications at JAXA; Foreign Comparative Technology: Launch Vehicle Battery Cell Testing; 20V, 40 Ah Lithium Ion Polymer

  17. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  18. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  19. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  20. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  1. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  2. Magnetohydrodynamic power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

  3. International Access to Aerospace Information.

    DTIC Science & Technology

    1980-04-01

    data that belong into the category ’reproducible" belong here into the category ’conditions controlled by man" " non reproducible data’ belong into the...SESSION IV - NON -LITERATURE DATA IN AEROSPACE RESEARCH AND DEVELOPMENT THE NUMERIC AEROSPACE DATA: PROBLEMS OF EVALUATION, HANDLING AND DISSEMINATION...34. Sessions III and IV, held on 18 October, were entitled "Problems of Utilization of Aerospace Literature" and " Non -Literature Data in Aerospace and

  4. Optimization and guidance of flight trajectories for the national aerospace plane

    NASA Technical Reports Server (NTRS)

    Miele, Angelo

    1990-01-01

    The research on optimal trajectories for the National Aerospace Plane (NASP) performed by the Aero-Astronautics Group of Rice University from June 22, 1989 to December 31, 1990 is summarized. The aerospace plane is assumed to be controlled via the angle of attack and the power setting. The time history of the controls is optimized simultaneously with the switch times from one powerplant to another and the final time. The intent is to arrive at NASP guidance trajectories exhibiting many of the desirable characteristics of NASP optimal trajectories.

  5. Coal and Coal/Biomass-Based Power Generation

    EPA Science Inventory

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  6. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Here, we report on progress achieved between July I and December 31, 1996. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report are summarized as follows. Three research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures.

  7. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  8. Trajectory optimization for the National Aerospace Plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1993-01-01

    The objective of this second phase research is to investigate the optimal ascent trajectory for the National Aerospace Plane (NASP) from runway take-off to orbital insertion and address the unique problems associated with the hypersonic flight trajectory optimization. The trajectory optimization problem for an aerospace plane is a highly challenging problem because of the complexity involved. Previous work has been successful in obtaining sub-optimal trajectories by using energy-state approximation and time-scale decomposition techniques. But it is known that the energy-state approximation is not valid in certain portions of the trajectory. This research aims at employing full dynamics of the aerospace plane and emphasizing direct trajectory optimization methods. The major accomplishments of this research include the first-time development of an inverse dynamics approach in trajectory optimization which enables us to generate optimal trajectories for the aerospace plane efficiently and reliably, and general analytical solutions to constrained hypersonic trajectories that has wide application in trajectory optimization as well as in guidance and flight dynamics. Optimal trajectories in abort landing and ascent augmented with rocket propulsion and thrust vectoring control were also investigated. Motivated by this study, a new global trajectory optimization tool using continuous simulated annealing and a nonlinear predictive feedback guidance law have been under investigation and some promising results have been obtained, which may well lead to more significant development and application in the near future.

  9. Radio-frequency power-assisted performance improvement of a magnetohydrodynamic power generator

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki

    2005-12-01

    We describe a radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic power generation experiment, where an inductively coupled rf field (13.56MHz, 5.2kW) is continuously supplied to the disk generator. The rf power assists the precise plasma ignition, by which the otherwise irregular plasma behavior was stabilized. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions: insufficient, optimum, and excessive seed fractions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  10. Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Richards, W. L.; Tran, Van t.

    2007-01-01

    Displacement theories are developed for a variety of structures with the goal of providing real-time shape predictions for aerospace vehicles during flight. These theories are initially developed for a cantilever beam to predict the deformed shapes of the Helios flying wing. The main structural configuration of the Helios wing is a cantilever wing tubular spar subjected to bending, torsion, and combined bending and torsion loading. The displacement equations that are formulated are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. Displacement theories for other structures, such as tapered cantilever beams, two-point supported beams, wing boxes, and plates also are developed. The accuracy of the displacement theories is successfully validated by finite-element analysis and classical beam theory using input-strains generated by finite-element analysis. The displacement equations and associated strain-sensing system (such as fiber optic sensors) create a powerful means for in-flight deformation monitoring of aerospace structures. This method serves multiple purposes for structural shape sensing, loads monitoring, and structural health monitoring. Ultimately, the calculated displacement data can be visually displayed to the ground-based pilot or used as input to the control system to actively control the shape of structures during flight.

  11. Power generator driven by Maxwell's demon

    NASA Astrophysics Data System (ADS)

    Chida, Kensaku; Desai, Samarth; Nishiguchi, Katsuhiko; Fujiwara, Akira

    2017-05-01

    Maxwell's demon is an imaginary entity that reduces the entropy of a system and generates free energy in the system. About 150 years after its proposal, theoretical studies explained the physical validity of Maxwell's demon in the context of information thermodynamics, and there have been successful experimental demonstrations of energy generation by the demon. The demon's next task is to convert the generated free energy to work that acts on the surroundings. Here, we demonstrate that Maxwell's demon can generate and output electric current and power with individual randomly moving electrons in small transistors. Real-time monitoring of electron motion shows that two transistors functioning as gates that control an electron's trajectory so that an electron moves directionally. A numerical calculation reveals that power generation is increased by miniaturizing the room in which the electrons are partitioned. These results suggest that evolving transistor-miniaturization technology can increase the demon's power output.

  12. Environmentally regulated aerospace coatings

    NASA Technical Reports Server (NTRS)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  13. Aerospace Education. NSTA Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2008

    2008-01-01

    National Science Teachers Association (NSTA) has developed a new position statement, "Aerospace Education." NSTA believes that aerospace education is an important component of comprehensive preK-12 science education programs. This statement highlights key considerations that should be addressed when implementing a high quality aerospace education…

  14. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  15. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  16. Technological Innovation and Technical Communications: Their Place in Aerospace Engineering Curricula. A Survey of European, Japanese and US Aerospace Engineers and Scientists.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    1991-01-01

    Reports on results from 260 aerospace engineers and scientists in United States, Europe, and Japan regarding their opinions about professional importance of technical communications; generation and utilization of technical communications; and relevant content of an undergraduate course in technical communications. The fields of cryogenics,…

  17. Forecasting Electric Power Generation of Photovoltaic Power System for Energy Network

    NASA Astrophysics Data System (ADS)

    Kudo, Mitsuru; Takeuchi, Akira; Nozaki, Yousuke; Endo, Hisahito; Sumita, Jiro

    Recently, there has been an increase in concern about the global environment. Interest is growing in developing an energy network by which new energy systems such as photovoltaic and fuel cells generate power locally and electric power and heat are controlled with a communications network. We developed the power generation forecast method for photovoltaic power systems in an energy network. The method makes use of weather information and regression analysis. We carried out forecasting power output of the photovoltaic power system installed in Expo 2005, Aichi Japan. As a result of comparing measurements with a prediction values, the average prediction error per day was about 26% of the measured power.

  18. Solar power generation system for reducing leakage current

    NASA Astrophysics Data System (ADS)

    Wu, Jinn-Chang; Jou, Hurng-Liahng; Hung, Chih-Yi

    2018-04-01

    This paper proposes a transformer-less multi-level solar power generation system. This solar power generation system is composed of a solar cell array, a boost power converter, an isolation switch set and a full-bridge inverter. A unipolar pulse-width modulation (PWM) strategy is used in the full-bridge inverter to attenuate the output ripple current. Circuit isolation is accomplished by integrating the isolation switch set between the solar cell array and the utility, to suppress the leakage current. The isolation switch set also determines the DC bus voltage for the full-bridge inverter connecting to the solar cell array or the output of the boost power converter. Accordingly, the proposed transformer-less multi-level solar power generation system generates a five-level voltage, and the partial power of the solar cell array is also converted to AC power using only the full-bridge inverter, so the power efficiency is increased. A prototype is developed to validate the performance of the proposed transformer-less multi-level solar power generation system.

  19. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1992-01-01

    The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  20. Development of Structural Health Management Technology for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    2003-01-01

    As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention.

  1. Index of international publications in aerospace medicine.

    DOT National Transportation Integrated Search

    1993-02-01

    The Index of International Publications in Aerospace Medicine is a comprehensive listing of international publications in clinical aerospace medicine, operational aerospace medicine, aerospace physiology, environmental medicine/physiology, diving med...

  2. Index of international publications in aerospace medicine

    DOT National Transportation Integrated Search

    2001-08-01

    The Index of International Publications in Aerospace Medicine is a comprehensive listing of international publications in clinical aerospace medicine, operational aerospace medicine, aerospace physiology, environmental medicine/physiology, diving med...

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  4. Kapton wire concerns for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Vanlaak, J.

    1994-01-01

    This presentation outlines the background to the concern of using Kapton wire for aerospace vehicles and proposes it should not be utilized in new builds for spacecraft power applications. A NASA HQ investigation concluded that the risk of Kapton arc-tracking/flashover is a credible threat to the shuttle orbiter, but rationale is presented for continued flight for the time being. Recommendations for the protection of the shuttle and the build of the space station are given.

  5. Evaluation Of Different Power Conditioning Options For Stirling Generators

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  6. Index of international publications in aerospace medicine.

    DOT National Transportation Integrated Search

    2014-05-01

    The 5th edition of the Index of International Publications in Aerospace Medicine is a comprehensive : listing of international publications in clinical aerospace medicine, operational aerospace medicine, : aerospace physiology, environmental medicine...

  7. Index of International Publications in Aerospace Medicine

    DOT National Transportation Integrated Search

    2007-01-01

    The 3rd edition of theIndex of International Publications in Aerospace Medicine is a comprehensive listing of : international publications in clinical aerospace medicine, operational aerospace medicine, aerospace : physiology, environmental medicine/...

  8. Piezoelectric power generation using friction-induced vibration

    NASA Astrophysics Data System (ADS)

    Tadokoro, Chiharu; Matsumoto, Aya; Nagamine, Takuo; Sasaki, Shinya

    2017-06-01

    In order to examine the feasibility of power generation by using friction-induced vibration with a piezoelectric element, we performed experiments and numerical analysis. In the experiments, the generated power in the piezoelectric element and the displacement of an oscillator were measured by a newly developed apparatus that embodied a single-degree-of-freedom (1-DOF) system with friction. In the numerical analysis, an analytical model of a 1-DOF system with friction and piezoelectric element was proposed to simulate the experiments. The experimental results demonstrated that the power of a few microwatts was generated by sliding between a steel ball and a steel plate lubricated with glycerol. In this study, a maximum power of approximately 10 μW was generated at a driving velocity of 40 mm s-1 and a normal load of 15 N. The numerical results demonstrated good qualitative agreement with the experimental results. This implies that this analytical model can be applied to optimize the oscillator design in piezoelectric power generation using friction-induced vibration.

  9. Off-Design Performance Analysis of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid for Auxiliary Aerospace Power

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Steffen, J., Jr.; Larosiliere, Louis M.

    2005-01-01

    A solid-oxide fuel cell/gas turbine hybrid system for auxiliary aerospace power is analyzed using 0-D and 1-D system-level models. The system is designed to produce 440 kW of net electrical power, sized for a typical long-range 300-passenger civil airplane, at both sea level and cruise flight level (12,500 m). In addition, a part power level of 250 kW is analyzed at the cruise condition, a requirement of the operating power profile. The challenge of creating a balanced system for the three distinct conditions is presented, along with the compromises necessary for each case. A parametric analysis is described for the cruise part power operating point, in which the system efficiency is maximized by varying the air flow rate. The system is compared to an earlier version that was designed solely for cruise operation. The results show that it is necessary to size the turbomachinery, fuel cell, and heat exchangers at sea level full power rather than cruise full power. The resulting estimated mass of the system is 1912 kg, which is significantly higher than the original cruise design point mass, 1396 kg. The net thermal efficiencies with respect to the fuel LHV are calculated to be 42.4 percent at sea level full power, 72.6 percent at cruise full power, and 72.8 percent at cruise part power. The cruise conditions take advantage of pre-compressed air from the on-board Environmental Control System, which accounts for a portion of the unusually high thermal efficiency at those conditions. These results show that it is necessary to include several operating points in the overall assessment of an aircraft power system due to the variations throughout the operating profile.

  10. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 39: The role of computer networks in aerospace engineering

    NASA Technical Reports Server (NTRS)

    Bishop, Ann P.; Pinelli, Thomas E.

    1994-01-01

    This paper presents selected results from an empirical investigation into the use of computer networks in aerospace engineering. Such networks allow aerospace engineers to communicate with people and access remote resources through electronic mail, file transfer, and remote log-in. The study drew its subjects from private sector, government and academic organizations in the U.S. aerospace industry. Data presented here were gathered in a mail survey, conducted in Spring 1993, that was distributed to aerospace engineers performing a wide variety of jobs. Results from the mail survey provide a snapshot of the current use of computer networks in the aerospace industry, suggest factors associated with the use of networks, and identify perceived impacts of networks on aerospace engineering work and communication.

  12. Hydrogen-based power generation from bioethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  13. Ocean Current Power Generator. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Sullivan, G. A.

    2002-07-26

    The Ocean Power Generator is both technically and economically suitable for deployment in the Gulf Stream from the US Navy facility in Dania, Florida. Yet to be completed is the calibration test in the Chesapeake Bay with the prototype dual hydroturbine Underwater Electric Kite. For the production units a revised design includes two ballast tanks mounted as pontoons to provide buoyancy and depth control. The power rating of the Ocean Power Generator has been doubled to 200 kW ready for insertion into the utility grid. The projected cost for a 10 MW installation is $3.38 per watt, a cost thatmore » is consistent with wind power pricing when it was in its deployment infancy, and a cost that is far better than photovoltaics after 25 years of research and development. The Gulf Stream flows 24 hours per day, and water flow is both environmentally and ecologically perfect as a renewable energy source. No real estate purchases are necessary, and you cannot see, hear, smell, or touch an Ocean Power Generator.« less

  14. Combined fuel and air staged power generation system

    DOEpatents

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  15. Aerospace engineering educational program

    NASA Technical Reports Server (NTRS)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  16. MEMS sensing and control: an aerospace perspective

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Arch, David K.; Yang, Wei; Cabuz, Cleopatra; Hocker, Ben; Johnson, Burgess R.; Wilson, Mark L.

    2000-06-01

    Future advanced fixed- and rotary-wing aircraft, launch vehicles, and spacecraft will incorporate smart microsensors to monitor flight integrity and provide flight control inputs. This paper provides an overview of Honeywell's MEMS technologies for aerospace applications of sensing and control. A unique second-generation polysilicon resonant microbeam sensor design is described. It incorporates a micron-level vacuum-encapsulated microbeam to optically sense aerodynamic parameters and to optically excite the sensor pick off: optically excited self-resonant microbeams form the basis for a new class of versatile, high- performance, low-cost MEMS sensors that uniquely combine silicon microfabrication technology with optoelectronic technology that can sense dynamic pressure, acceleration forces, acoustic emission, and many other aerospace parameters of interest. Honeywell's recent work in MEMS tuning fork gyros for inertial sensing and a MEMS free- piston engine are also described.

  17. Performance simulation of a plasma magnetohydrodynamic power generator

    NASA Astrophysics Data System (ADS)

    Huang, Hulin; Li, Linyong; Zhu, Guiping

    2018-05-01

    The performance of magnetohydrodynamic (MHD) power generator is affected by many issues, among which the load coefficient k is of great importance. This paper reveals the relationship between the k and the performance of MHD generator by numerical simulation on Faraday-type MHD power generator using He/Xe as working plasma. The results demonstrate that the power generation efficiency increases with an increment of the load factor. However, the enthalpy extraction firstly increases then decreases with the load factor increasing. The enthalpy extraction rate reaches the maximum when the load coefficient k equals to 0.625, which infers the best performance of the power generator channel with the maximum electricity production.

  18. Electricity generation and transmission planning in deregulated power markets

    NASA Astrophysics Data System (ADS)

    He, Yang

    This dissertation addresses the long-term planning of power generation and transmission facilities in a deregulated power market. Three models with increasing complexities are developed, primarily for investment decisions in generation and transmission capacity. The models are presented in a two-stage decision context where generation and transmission capacity expansion decisions are made in the first stage, while power generation and transmission service fees are decided in the second stage. Uncertainties that exist in the second stage affect the capacity expansion decisions in the first stage. The first model assumes that the electric power market is not constrained by transmission capacity limit. The second model, which includes transmission constraints, considers the interactions between generation firms and the transmission network operator. The third model assumes that the generation and transmission sectors make capacity investment decisions separately. These models result in Nash-Cournot equilibrium among the unregulated generation firms, while the regulated transmission network operator supports the competition among generation firms. Several issues in the deregulated electric power market can be studied with these models such as market powers of generation firms and transmission network operator, uncertainties of the future market, and interactions between the generation and transmission sectors. Results deduced from the developed models include (a) regulated transmission network operator will not reserve transmission capacity to gain extra profits; instead, it will make capacity expansion decisions to support the competition in the generation sector; (b) generation firms will provide more power supplies when there is more demand; (c) in the presence of future uncertainties, the generation firms will add more generation capacity if the demand in the future power market is expected to be higher; and (d) the transmission capacity invested by the

  19. Women in Aerospace Awards

    NASA Image and Video Library

    2010-10-26

    NASA Administrator Charlie Bolden holds up a photograph showing four female Astronauts onboard the Space Station during his presentation at the Women in Aerospace (WIA) organization's annual awards ceremony and banquet at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Bolden presented Women in Aerospace's Outstanding Member Award to NASA Deputy Administrator Lori Garver, noting her ongoing leadership and participation in Women in Aerospace and her passion and dedication to opening the high frontier of space to the everyday person. Photo Credit: (NASA/Bill Ingalls)

  20. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    NASA Technical Reports Server (NTRS)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  1. Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

    NASA Astrophysics Data System (ADS)

    Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro

    In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.

  2. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a... generators which supply both ship's service and propulsion power do not need additional ship's service... 46 Shipping 4 2010-10-01 2010-10-01 false Power requirements, generating sources. 111.10-4 Section...

  3. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a... generators which supply both ship's service and propulsion power do not need additional ship's service... 46 Shipping 4 2011-10-01 2011-10-01 false Power requirements, generating sources. 111.10-4 Section...

  4. Lightning Protection Guidelines for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Goodloe, C. C.

    1999-01-01

    This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.

  5. Hydrogen-based power generation from bioethanol steam reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S.

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production frommore » renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.« less

  6. Power generation method including membrane separation

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  7. High Temperature Epoxy Nanocomposites for Aerospace Applications

    DTIC Science & Technology

    2009-06-10

    thermal stability (~430°C) can be used for formulation of next generation aerospace nanocomposite matrix materials. 10 Publications: 1. J. Langat ...Properties Evaluation of Thermally Stable Layered Organosilicate Nanocomposites, Polymers for Advanced Technology, 18, 574(2007). 3. J. Langat , M...Properties in Polymer Nanocomposites, edited by Dr. Sergei Nazarenko (MRS Fall Meeting Symposium KK Proceedings) Boston, MA 2008 (in print). 5. J. Langat

  8. Thermoelectric fabrics: toward power generating clothing.

    PubMed

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z; Donelson, Richard; Lin, Tong

    2015-03-23

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace research and development (R/D) and the information seeking behavior of US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    In this paper, the diffusion of federally funded aerospace R&D is explored from the perspective of the information-seeking behavior of U.S. aerospace engineers and scientists. The following three assumptions frame this exploration: (1) knowledge production, transfer, and utilization are equally important components of the aerospace R&D process; (2) the diffusion of knowledge resulting from federally funded aerospace R&D is indispensable for the U.S. to remain a world leader in aerospace; and (3) U.S. government technical reports, produced by NASA and DOD, play an important, but as yet undefined, role in the diffusion of federally funded aerospace R&D. A conceptual model for federally funded aerospace knowledge diffusion, one that emphasizes U.S. goverment technical reports, is presented. Data regarding three research questions concerning the information-seeking behavior of U.S. aerospace engineers and scientists are also presented.

  10. Nuclear power generation and fuel cycle report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to themore » uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.« less

  11. The Feasibility of Linear Motors and High-Energy Thrusters for Massive Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Stull, M. A.

    A combination of two propulsion technologies, superconducting linear motors using ambient magnetic fields and high- energy particle beam thrusters, may make it possible to develop massive aerospace vehicles the size of aircraft carriers. If certain critical thresholds can be attained, linear motors can enable massive vehicles to fly within the atmosphere and can propel them to orbit. Thrusters can do neither, because power requirements are prohibitive. However, unless superconductors having extremely high critical current densities can be developed, the interplanetary magnetic field is too weak for linear motors to provide sufficient acceleration to reach even nearby planets. On the other hand, high-energy thrusters can provide adequate acceleration using a minimal amount of reaction mass, at achievable levels of power generation. If the requirements for linear motor propulsion can be met, combining the two modes of propulsion could enable huge nuclear powered spacecraft to reach at least the inner planets of the solar system, the asteroid belt, and possibly Jupiter, in reasonably short times under continuous acceleration, opening them to exploration, resource development and colonization.

  12. Dual-loop self-optimizing robust control of wind power generation with Doubly-Fed Induction Generator.

    PubMed

    Chen, Quan; Li, Yaoyu; Seem, John E

    2015-09-01

    This paper presents a self-optimizing robust control scheme that can maximize the power generation for a variable speed wind turbine with Doubly-Fed Induction Generator (DFIG) operated in Region 2. A dual-loop control structure is proposed to synergize the conversion from aerodynamic power to rotor power and the conversion from rotor power to the electrical power. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the electric power feedback. The ESC can search for the optimal generator torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. An ℋ(∞) controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. 1988 IEEE Aerospace Applications Conference, Park City, UT, Feb. 7-12, 1988, Digest

    NASA Astrophysics Data System (ADS)

    The conference presents papers on microwave applications, data and signal processing applications, related aerospace applications, and advanced microelectronic products for the aerospace industry. Topics include a high-performance antenna measurement system, microwave power beaming from earth to space, the digital enhancement of microwave component performance, and a GaAs vector processor based on parallel RISC microprocessors. Consideration is also given to unique techniques for reliable SBNR architectures, a linear analysis subsystem for CSSL-IV, and a structured singular value approach to missile autopilot analysis.

  14. Power Generation for River and Tidal Generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Wright, Alan; Gevorgian, Vahan

    Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered onemore » of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.« less

  15. Aircraft photovoltaic power-generating system

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet-engine design modifications incorporating this concept not only save weight (and thus fuel), but are - in themselves - favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project.

  16. Biomedical research and aerospace technology applications

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The accomplishments and activities of an Applications Team for biomedical subjects are presented. The team attempts to couple the technological problems and requirements in medicine with the relevant aerospace technology and, in particular, NASA-generated technology. The team actively engages in identifying these problems through direct contact with medical staffs or problem originators. The identification and specification of medical problems is followed by a search for technology which may be relevant to solutions to these problems.

  17. NASA Aerospace Flight Battery Systems Program: An update

    NASA Astrophysics Data System (ADS)

    Manzo, Michelle A.

    1992-02-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  18. NASA Aerospace Flight Battery Systems Program: An Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1992-01-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  19. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  20. Anechoic Chambers: Aerospace Applications. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The bibliography contains citations concerning the design, development, performance, and applications of anechoic chambers in the aerospace industry. Anechoic chamber testing equipment, techniques for evaluation of aerodynamic noise, microwave and radio antennas, and other acoustic measurement devices are considered. Shock wave studies on aircraft models and components, electromagnetic measurements, jet flow studies, and antenna radiation pattern measurements for industrial and military aerospace equipment are discussed. (Contains 50-250 citations and includes a subject term index and title list.)

  1. First Solar Power Sail Demonstration by IKAROS

    NASA Astrophysics Data System (ADS)

    Mori, Osamu; Sawada, Hirotaka; Funase, Ryu; Morimoto, Mutsuko; Endo, Tatsuya; Yamamoto, Takayuki; Tsuda, Yuichi; Kawakatsu, Yasuhiro; Kawaguchi, Jun'ichiro; Miyazaki, Yasuyuki; Shirasawa, Yoji; Demonstration Team; Solar Sail Working Group, Ikaros

    The Japan Aerospace Exploration Agency (JAXA) will make the world's first solar power sail craft demonstration of photon propulsion and thin film solar power generation during its interplanetary cruise by IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The spacecraft deploys and spans a membrane of 20 meters in diameter taking the advantage of the spin centrifugal force. The spacecraft weighs approximately 310kg, launched together with the agency's Venus Climate Orbiter, AKATSUKI in May 2010. This will be the first actual solar sail flying an interplanetary voyage.

  2. Concentrated solar power generation using solar receivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  3. Welcome to the Ohio Aerospace Institute

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The mission and various programs administered by the Ohio Aerospace Institute, a consortium made up of 9 Ohio Universities, LeRC, and members of the Aerospace Industry are described. The video highlights the following: programs to bring aerospace research to K-12 classrooms; programs to allow graduate students access to laboratory equipment at LeRC; the creation of a statewide television network to link researchers in industry and academia; and focus groups to encourage collaboration between companies in aerospace research.

  4. Piezoelectric devices for generating low power

    NASA Astrophysics Data System (ADS)

    Chilibon, Irinela

    2016-12-01

    This paper reviews concepts and applications in low-power electronics and energy harvesting technologies. Various piezoelectric materials and devices for small power generators useful in renewable electricity are presented. The vibrating piezoelectric device differs from the typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. In general, vibration energy could be converted into electrical energy using one of three techniques: electrostatic charge, magnetic fields and piezoelectric. A low power piezoelectric generator, having a PZT element was realised in order to supply small electronic elements, such as optoelectronic small devices, LEDs, electronic watches, small sensors, interferometry with lasers or Micro-electro-mechanical System (MEMS) array with multi-cantilevers.

  5. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  6. NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.

  7. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  8. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Astrophysics Data System (ADS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-03-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  9. Modular Analysis of Automobile Exhaust Thermoelectric Power Generation System

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Zhang, Y.; Su, C. Q.

    2015-06-01

    In this paper, an automobile exhaust thermoelectric power generation system is packaged into a model with its own operating principles. The inputs are the engine speed and power, and the output is the power generated by the system. The model is divided into two submodels. One is the inlet temperature submodel, and the other is the power generation submodel. An experimental data modeling method is adopted to construct the inlet temperature submodel, and a theoretical modeling method is adopted to construct the power generation submodel. After modeling, simulation is conducted under various engine operating conditions to determine the variation of the power generated by the system. Finally, the model is embedded into a Honda Insight vehicle model to explore the energy-saving effect of the system on the vehicle under Economic Commission for Europe and cyc-constant_60 driving cycles.

  10. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1991-01-01

    The general objective of the Light Aerospace Alloy and Structures Technology (LA2ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures in close collaboration with Langley researchers. Specific technical objectives are established for each research project. Relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanic analyses, measurement advances, and a pool of educated graduate students are sought.

  11. Aerospace management techniques: Commercial and governmental applications

    NASA Technical Reports Server (NTRS)

    Milliken, J. G.; Morrison, E. J.

    1971-01-01

    A guidebook for managers and administrators is presented as a source of useful information on new management methods in business, industry, and government. The major topics discussed include: actual and potential applications of aerospace management techniques to commercial and governmental organizations; aerospace management techniques and their use within the aerospace sector; and the aerospace sector's application of innovative management techniques.

  12. Optimal Output of Distributed Generation Based On Complex Power Increment

    NASA Astrophysics Data System (ADS)

    Wu, D.; Bao, H.

    2017-12-01

    In order to meet the growing demand for electricity and improve the cleanliness of power generation, new energy generation, represented by wind power generation, photovoltaic power generation, etc has been widely used. The new energy power generation access to distribution network in the form of distributed generation, consumed by local load. However, with the increase of the scale of distribution generation access to the network, the optimization of its power output is becoming more and more prominent, which needs further study. Classical optimization methods often use extended sensitivity method to obtain the relationship between different power generators, but ignore the coupling parameter between nodes makes the results are not accurate; heuristic algorithm also has defects such as slow calculation speed, uncertain outcomes. This article proposes a method called complex power increment, the essence of this method is the analysis of the power grid under steady power flow. After analyzing the results we can obtain the complex scaling function equation between the power supplies, the coefficient of the equation is based on the impedance parameter of the network, so the description of the relation of variables to the coefficients is more precise Thus, the method can accurately describe the power increment relationship, and can obtain the power optimization scheme more accurately and quickly than the extended sensitivity method and heuristic method.

  13. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  14. NASA-UVA light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Thornton, Earl A.; Stoner, Glenn E.; Swanson, Robert E.; Wawner, Franklin E., Jr.; Wert, John A.

    1989-01-01

    The report on progress achieved in accomplishing of the NASA-UVA Light Aerospace Alloy and Structures Technology Program is presented. The objective is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys and associated thermal gradient structures in close collaboration with researchers. The efforts will produce basic understanding of material behavior, new monolithic and composite alloys, processing methods, solid and fluid mechanics analyses, measurement advances, and a pool of educated graduate students. The presented accomplishments include: research on corrosion fatigue of Al-Li-Cu alloy 2090; research on the strengthening effect of small In additions to Al-Li-Cu alloys; research on localized corrosion of Al-Li alloys; research on stress corrosion cracking of Al-Li-Cu alloys; research on fiber-matrix reaction studies (Ti-1100 and Ti-15-3 matrices containing SCS-6, SCS-9, and SCS-10 fibers); and research on methods for quantifying non-random particle distribution in materials that has led to generation of a set of computer programs that can detect and characterize clusters in particles.

  15. Bipolar Nickel-hydrogen Batteries for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Koehler, C. W.; Vanommering, G.; Puester, N. H.; Puglisi, V. J.

    1984-01-01

    A bipolar nickel-hydrogen battery which effectively addresses all key requirements for a spacecraft power system, including long-term reliability and low mass, is discussed. The design of this battery is discussed in the context of system requirements and nickel-hydrogen battery technology in general. To achieve the ultimate goal of an aerospace application of a bipolar Ni-H2 battery several objectives must be met in the design and development of the system. These objectives include: maximization of reliability and life; high specific energy and energy density; reasonable cost of manufacture, test, and integration; and ease in scaling for growth in power requirements. These basic objectives translate into a number of specific design requirements, which are discussed.

  16. Robust Power Management Control for Stand-Alone Hybrid Power Generation System

    NASA Astrophysics Data System (ADS)

    Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa

    2017-01-01

    This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method.

  17. Apollo experience report: Power generation system

    NASA Technical Reports Server (NTRS)

    Bell, D., III; Plauche, F. M.

    1973-01-01

    A comprehensive review of the design philosophy and experience of the Apollo electrical power generation system is presented. The review of the system covers a period of 8 years, from conception through the Apollo 12 lunar-landing mission. The program progressed from the definition phase to hardware design, system development and qualification, and, ultimately, to the flight phase. Several problems were encountered; however, a technology evolved that enabled resolution of the problems and resulted in a fully manrated power generation system. These problems are defined and examined, and the corrective action taken is discussed. Several recommendations are made to preclude similar occurrences and to provide a more reliable fuel-cell power system.

  18. Green Power Partnership Top 30 On-site Generation

    EPA Pesticide Factsheets

    EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. These partners are generating and consuming the most green power on-site within the GPP.

  19. Aerospace technology and commercial nuclear power; Proceedings of the Workshop Conference, Williamsburg, VA, November 18-20, 1981

    NASA Technical Reports Server (NTRS)

    Grey, J. (Editor)

    1982-01-01

    An attempt has been made to compare the technologies, institutions and procedures of the aerospace and commercial nuclear power industries, in order to characterize similarities and contrasts as well as to identify the most fruitful means by which to transfer information, technology, and procedures between the two industries. The seven working groups involved in this study took as their topics powerplant design formulation and effectiveness, plant safety and operations, powerplant control technology and integration, economic and financial analyses, public relations, and the management of nuclear waste and spent fuel. Consequential differences are noted between the two industries in matters of certification and licencing procedures, assignment of responsibility for both safety and financial performance, and public viewpoint. Areas for beneficial interaction include systems management and control and safety system technology. No individual items are abstracted in this volume

  20. COMPREHENSIVE STANDARDS: THE POWER GENERATION CASE

    EPA Science Inventory

    This study presents an illustrative data base of material quantities and environmental effluents in the fuel cycles for alternative technologies of thermally generated power. The entire fuel cycle for each of the alternative ten technologies is outlined for a representative power...

  1. Capacity expansion model of wind power generation based on ELCC

    NASA Astrophysics Data System (ADS)

    Yuan, Bo; Zong, Jin; Wu, Shengyu

    2018-02-01

    Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.

  2. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 7:] The NASA/DOD Aerospace Knowledge Diffusion Research Project: The DOD perspective

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    This project will provide descriptive and analytical data regarding the flow of STI at the individual, organizational, national, and international levels. It will examine both the channels used to communicate information and the social system of the aerospace knowledge diffusion process. Results of the project should provide useful information to R and D managers, information managers, and others concerned with improving access to and use of STI. Objectives include: (1) understanding the aerospace knowledge diffusion process at the individual, organizational, and national levels, placing particular emphasis on the diffusion of Federally funded aerospace STI; (2) understanding the international aerospace knowledge diffusion process at the individual and organizational levels, placing particular emphasis on the systems used to diffuse the results of Federally funded aerospace STI; (3) understanding the roles NASA/DoD technical report and aerospace librarians play in the transfer and use of knowledge derived from Federally funded aerospace R and D; (4) achieving recognition and acceptance within NASA, DoD and throughout the aerospace community that STI is a valuable strategic resource for innovation, problem solving, and productivity; and (5) providing results that can be used to optimize the effectiveness and efficiency of the Federal STI aerospace transfer system and exchange mechanism.

  3. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  4. Testing Aerospace Gears for Bending Fatigue, Pitting, and Scuffing

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy; Anderson, Cody; Shareef, Iqbal; Fetty, Jason

    2017-01-01

    This work was motivated by the goal to increase the power to weight ratio of rotorcraft drive systems. Experiments were conducted to establish the performance of gears made from an aerospace alloy used in production aircraft. Bending fatigue, pitting, and scuffing test procedures and results are documented. The data establishes a baseline for evaluation of new technologies. Recommendations are made to improve test procedures for future work.

  5. Secondary electric power generation with minimum engine bleed

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.

    1983-01-01

    Secondary electric power generation with minimum engine bleed is discussed. Present and future jet engine systems are compared. The role of auxiliary power units is evaluated. Details of secondary electric power generation systems with and without auxiliary power units are given. Advanced bleed systems are compared with minimum bleed systems. A cost model of ownership is given. The difference in the cost of ownership between a minimum bleed system and an advanced bleed system is given.

  6. CONSIDERATIONS FOR FAILURE PREVENTION IN AEROSPACE ELECTRICAL POWER SYSTEMS UTILIZING HIGHER VOLTAGES

    DTIC Science & Technology

    2017-07-01

    work , the guideline document (1) provides a basis for identifying high voltage design risks, (2) defines areas of concern as a function of environment ... work , the guideline document 1) provides a basis for identifying high voltage design risks, 2) defines areas of concern as a function of environment ...pressures (y-axis - breakdown voltage [volts-peak]) As an example of the impact of the aerospace environment , consider the calculation of the safe

  7. Unification - An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Scientific and Technical Information (STI) represents the results of large investments in research and development (R&D) and the expertise of a nation and is a valuable resource. For more than four decades, NASA and its predecessor organizations have developed and managed the preeminent aerospace information system. NASA obtains foreign materials through its international exchange relationships, continually increasing the comprehensiveness of the NASA Aerospace Database (NAD). The NAD is de facto the international aerospace database. This paper reviews current NASA goals and activities with a view toward maintaining compatibility among international aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  8. 44th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Compiler)

    2018-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms.

  9. Aerospace Activities and Language Development

    ERIC Educational Resources Information Center

    Jones, Robert M.; Piper, Martha

    1975-01-01

    Describes how science activities can be used to stimulate language development in the elementary grades. Two aerospace activities are described involving liquid nitrogen and the launching of a weather balloon which integrate aerospace interests into the development of language skills. (BR)

  10. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Acting NASA Deputy Administrator Lesa Roe, second from left, and acting NASA Administrator Robert Lightfoot, second from left, are seen with Mike Gazarik, vice president of Engineering at Ball Aerospace, left and Shawn Conley, test operations manager at Ball Aerospace, left, in front of the large semi-anechoic chamber, Thursday, April 6, 2017 during a visit to Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  11. A Non-condensing Thermal Compression Power Generation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, B. P.; Jenks, J. J.; Abrams, W. P.

    Organic Rankine cycle (ORC) systems have attracted interest for more than three decades due to advantages in operation at lower working temperature, low maintenance requirements, and relative simplicity (fewer components). In theory, these advantages should make ORC technology more economically attractive for the small and medium power scales (10 kW to 10 MW). Unfortunately, the theoretical promise of ORC systems for power generation has been realized at only a relatively small fraction of the potential market. Although there are a number of reasons for the low utilization of ORC technology, the root cause is directly tied to the relatively lowmore » heat-to-power conversion efficiency (2 to 7% typically) and high cost of specially designed expander–generator equipment that is up to 60% of total system cost. The resulting high cost of the power produced just does not make economic sense except in very specialized situations where on-site power is needed but unavailable (at any cost) or where local generation costs are well above regional averages. The overarching objective of the work presented here is to break this paradigm by developing and demonstrating a new harmonic adsorption recuperative power cycle (HARP) system that offers 40% more efficient power generation as compared with a standard ORC system and estimated electric power production costs at very competitive rates below $0.10/kWh.« less

  12. A Non-condensing Thermal Compression Power Generation System

    DOE PAGES

    McGrail, B. P.; Jenks, J. J.; Abrams, W. P.; ...

    2017-09-12

    Organic Rankine cycle (ORC) systems have attracted interest for more than three decades due to advantages in operation at lower working temperature, low maintenance requirements, and relative simplicity (fewer components). In theory, these advantages should make ORC technology more economically attractive for the small and medium power scales (10 kW to 10 MW). Unfortunately, the theoretical promise of ORC systems for power generation has been realized at only a relatively small fraction of the potential market. Although there are a number of reasons for the low utilization of ORC technology, the root cause is directly tied to the relatively lowmore » heat-to-power conversion efficiency (2 to 7% typically) and high cost of specially designed expander–generator equipment that is up to 60% of total system cost. The resulting high cost of the power produced just does not make economic sense except in very specialized situations where on-site power is needed but unavailable (at any cost) or where local generation costs are well above regional averages. The overarching objective of the work presented here is to break this paradigm by developing and demonstrating a new harmonic adsorption recuperative power cycle (HARP) system that offers 40% more efficient power generation as compared with a standard ORC system and estimated electric power production costs at very competitive rates below $0.10/kWh.« less

  13. Demonstration of a Nano-Enabled Space Power System

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    The Nano-Enabled Space Power System will demonstrate power systems with nanomaterial-enhanced components as are placement for CubeSat power generation, transmission, and storage. Successful flights of these nano-power systems will accelerate the use of this revolutionary technology in the aerospace industry. The use of nano materials in solar cells, wire harnesses,and lithium ion batteries can increase the device performance without significantly altering the devices physical dimensions or the devices operating range (temperature,voltage, current). In many cases, the use of nanomaterials widens the viable range of operating conditions, such as increased depth of discharge of lithium ion batteries, tunable bandgaps in solar cells, and increased flexure tolerance of wire harnesses.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 19: Computer and information technology and aerospace knowledge diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.; Bishop, Ann P.

    1992-01-01

    To remain a world leader in aerospace, the US must improve and maintain the professional competency of its engineers and scientists, increase the research and development (R&D) knowledge base, improve productivity, and maximize the integration of recent technological developments into the R&D process. How well these objectives are met, and at what cost, depends on a variety of factors, but largely on the ability of US aerospace engineers and scientists to acquire and process the results of federally funded R&D. The Federal Government's commitment to high speed computing and networking systems presupposes that computer and information technology will play a major role in the aerospace knowledge diffusion process. However, we know little about information technology needs, uses, and problems within the aerospace knowledge diffusion process. The use of computer and information technology by US aerospace engineers and scientists in academia, government, and industry is reported.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 45; The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 3 US Aerospace Engineering Educators Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports, present a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the American Institute of Aeronautics and Astronautics (AIAA) and identified themselves as educators.

  16. Thermal energy storage for power generation applications

    NASA Astrophysics Data System (ADS)

    Drost, M. K.; Antoniak, Zen I.; Brown, D. R.

    1990-03-01

    Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s. In many cases, the demand for increased power will occur during peak and intermediate demand periods. While natural gas is currently plentiful and economically attractive for meeting peak and intermediate loads, the development of a coal-fired peaking option would give utilities insurance against unexpected supply shortages or cost increases. This paper discusses a conceptual evaluation of using thermal energy storage (TES) to improve the economics of coal-fired peak and intermediate load power generation. The use of TES can substantially improve the economic attractiveness of meeting peak and intermediate loads with coal-fired power generation. In this case, conventional pulverized coal combustion equipment is continuously operated to heat molten nitrate salt, which is then stored. During peak demand periods, hot salt is withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allows the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The general impact is to decouple the generation of thermal energy from its conversion to electricity. The present study compares a conventional cycling pulverized coal-fired power plant to a pulverized coal-fired plant using nitrate salt TES. The study demonstrates that a coal-fired salt heater is technically feasible and should be less expensive than a similar coal-fired boiler. The results show the use of nitrate salt TES reduced the levelized cost of power by between 5 and 24 percent, depending on the operating schedule.

  17. Wind power generation and dispatch in competitive power markets

    NASA Astrophysics Data System (ADS)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  18. Feasibility Study on a Low Power Vertical Axis Wind-Powered Generator

    DTIC Science & Technology

    1980-09-01

    E A S I B I L I T Y STUDY ON A LOW POWER VERTICAL A X I S WIND -POWERED GENERATOR W.R. Crook, T. Puust, M.L. Robinson and L . J . Vencel S U M M...A R Y This paper describes inves t igat ions ca r r i ed out t o es tab l i sh a design concept fo r a 1 kW wind -powered generator s u i t a b...a b l e configurat ion using a Darrieus S t ra igh t blade r o t o r with a microprocessor based control system and provides information on t

  19. Miniature Gas-Turbine Power Generator

    NASA Technical Reports Server (NTRS)

    Wiberg, Dean; Vargo, Stephen; White, Victor; Shcheglov, Kirill

    2003-01-01

    A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric-power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell. The working gas for the turbine would be Xe containing small quantities of CO2, O2, and H2O as gaseous lubricants. The gas would be contained in an enclosed circulation system, within which the pressure would typically range between 5 and 50 atm (between 0.5 and 5 MPa). The heat for the Brayton cycle could be supplied by any of a number of sources, including a solar concentrator or a combustor burning a hydrocarbon or other fuel. The system would include novel heat-transfer and heat-management components. The turbine would be connected to an electric power generator/starter motor. The system would include a main rotor shaft with gas bearings; the bearing surfaces would be made of a ceramic material coated with nanocrystalline diamond. The shaft could withstand speed of 400,000 rpm or perhaps more, with bearing-wear rates less than 10(exp -)4 those of silicon bearings and 0.05 to 0.1 those of SiC bearings, and with a coefficient of friction about 0.1 that of Si or SiC bearings. The components of the system would be fabricated by a combination of (1) three-dimensional xray lithography and (2) highly precise injection molding of diamond-compatible metals and ceramic materials. The materials and fabrication techniques would be suitable for mass production. The disadvantages of the proposed system are that unlike a battery-based system, it could generate a perceptible amount of sound, and

  20. Frontier Aerospace Opportunities

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2014-01-01

    Discussion and suggested applications of the many ongoing technology opportunities for aerospace products and missions, resulting in often revolutionary capabilities. The, at this point largely unexamined, plethora of possibilities going forward, a subset of which is discussed, could literally reinvent aerospace but requires triage of many possibilities. Such initial upfront homework would lengthen the Research and Development (R&D) time frame but could greatly enhance the affordability and performance of the evolved products and capabilities. Structural nanotubes and exotic energetics along with some unique systems approaches are particularly compelling.

  1. Limitless Horizons: Careers in Aerospace.

    ERIC Educational Resources Information Center

    Lewis, Mary H.

    This is a manual for acquainting students with pertinent information relating to career choices in aerospace science, engineering, and technology. The first chapter presents information about the aerospace industry by describing disciplines typical of this industry. The National Aeronautics and Space Administration's (NASA) classification system…

  2. Automated procedures for sizing aerospace vehicle structures /SAVES/

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Blackburn, C. L.; Dixon, S. C.

    1972-01-01

    Results from a continuing effort to develop automated methods for structural design are described. A system of computer programs presently under development called SAVES is intended to automate the preliminary structural design of a complete aerospace vehicle. Each step in the automated design process of the SAVES system of programs is discussed, with emphasis placed on use of automated routines for generation of finite-element models. The versatility of these routines is demonstrated by structural models generated for a space shuttle orbiter, an advanced technology transport,n hydrogen fueled Mach 3 transport. Illustrative numerical results are presented for the Mach 3 transport wing.

  3. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  4. Aeromedical solutions for aerospace safety.

    PubMed

    Kapoor, Pawan; Gaur, Deepak

    2017-10-01

    All facets of activity in the speciality of Aviation Medicine are essentially aimed at enhancing aerospace safety. This paper highlights some innovative changes brought about by Aerospace Medicine in the three major fields of the speciality namely, medical evaluation, aeromedical training and research. Based on lab and field studies, military aircrew are now permitted flying with Modifinil as 'Go' Pill and Zolpidem as 'No-Go' Pill during sustained operations. Several other drugs for disabilities like Hypertension and CAD are now permitted for aviators. Comprehensive revision of policy permitting early return to flying is an on-going process. OPRAM courses for all three streams of aircrew in IAF have contributed to reduce aircraft accident rates. Human Engineering Consultancy and expert advice is provided by specialists at IAM as well as those in the field. In future, the country needs to provide better post-service opportunities to aerospace medicine specialists. This, in turn, will attract bright young minds to the specialty. The ISRO Humanin-Space programme will be an exciting challenge for all in this unique field. Aerospace Medicine continues to provide aerospace safety solutions to the IAF and the aviation industry. The nation needs to continue to utilize and support this specialty.

  5. Optimal generator bidding strategies for power and ancillary services

    NASA Astrophysics Data System (ADS)

    Morinec, Allen G.

    As the electric power industry transitions to a deregulated market, power transactions are made upon price rather than cost. Generator companies are interested in maximizing their profits rather than overall system efficiency. A method to equitably compensate generation providers for real power, and ancillary services such as reactive power and spinning reserve, will ensure a competitive market with an adequate number of suppliers. Optimizing the generation product mix during bidding is necessary to maximize a generator company's profits. The objective of this research work is to determine and formulate appropriate optimal bidding strategies for a generation company in both the energy and ancillary services markets. These strategies should incorporate the capability curves of their generators as constraints to define the optimal product mix and price offered in the day-ahead and real time spot markets. In order to achieve such a goal, a two-player model was composed to simulate market auctions for power generation. A dynamic game methodology was developed to identify Nash Equilibria and Mixed-Strategy Nash Equilibria solutions as optimal generation bidding strategies for two-player non-cooperative variable-sum matrix games with incomplete information. These games integrated the generation product mix of real power, reactive power, and spinning reserve with the generators's capability curves as constraints. The research includes simulations of market auctions, where strategies were tested for generators with different unit constraints, costs, types of competitors, strategies, and demand levels. Studies on the capability of large hydrogen cooled synchronous generators were utilized to derive useful equations that define the exact shape of the capability curve from the intersections of the arcs defined by the centers and radial vectors of the rotor, stator, and steady-state stability limits. The available reactive reserve and spinning reserve were calculated given a

  6. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... of Naval Operations has cognizance of all assistance provided by the Navy to all Aerospace Education...

  7. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... of Naval Operations has cognizance of all assistance provided by the Navy to all Aerospace Education...

  8. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... of Naval Operations has cognizance of all assistance provided by the Navy to all Aerospace Education...

  9. AC/DC Power Systems with Applications for future Lunar/Mars base and Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Chowdhury, Badrul H.

    2005-01-01

    ABSTRACT The Power Systems branch at JSC faces a number of complex issues as it readies itself for the President's initiative on future space exploration beyond low earth orbit. Some of these preliminary issues - those dealing with electric power generation and distribution on board Mars-bound vehicle and that on Lunar and Martian surface may be summarized as follows: Type of prime mover - Because solar power may not be readily available on parts of the Lunar/Mars surface and also during the long duration flight to Mars, the primary source of power will most likely be nuclear power (Uranium fuel rods) with a secondary source of fuel cell (Hydrogen supply). The electric power generation source - With nuclear power being the main prime mover, the electric power generation source will most likely be an ac generator at a yet to be determined frequency. Thus, a critical issue is whether the generator should generate at constant or variable frequency. This will decide what type of generator to use - whether it is a synchronous machine, an asynchronous induction machine or a switched reluctance machine. The type of power distribution system - the distribution frequency, number of wires (3- wire, 4-wire or higher), and ac/dc hybridization. Building redundancy and fault tolerance in the generation and distribution sub-systems so that the system is safe; provides 100% availability to critical loads; continues to operate even with faulted sub-systems; and requires minimal maintenance. This report descril_es results of a summer faculty fellowship spent in the Power Systems Branch with the specific aim of investigating some of the lessons learned in electric power generation and usage from the terrestrial power systems industry, the aerospace industry as well as NASA's on-going missions so as to recommend novel surface and vehicle-based power systems architectures in support of future space exploration initiatives. A hybrid ac/dc architecture with source side and load side

  10. Taming power: Generative historical consciousness.

    PubMed

    Winter, David G

    2016-04-01

    Power is a necessary dimension of all human enterprises. It can inspire and illuminate, but it can also corrupt, oppress, and destroy. Therefore, taming power has been a central moral and political question for most of human history. Writers, theorists, and researchers have suggested many methods and mechanisms for taming power: through affiliation and love, intellect and reason, responsibility, religion and values, democratic political structures, and separation of powers. Historical examples and social science research suggest that each has some success, but also that each is vulnerable to being hijacked by power itself. I therefore introduce generative historical consciousness (GHC) as a concept and measure that might help to secure the benefits of power while protecting against its outrages and excesses. I conclude by discussing the role that GHC may have played in the peaceful resolution of the Cuban Missile Crisis of 1962. (c) 2016 APA, all rights reserved).

  11. Solid state pulsed power generator

    DOEpatents

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  12. A self-sensing magnetorheological damper with power generation

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Liao, Wei-Hsin

    2012-02-01

    Magnetorheological (MR) dampers are promising for semi-active vibration control of various dynamic systems. In the current MR damper systems, a separate power supply and dynamic sensor are required. To enable the MR damper to be self-powered and self-sensing in the future, in this paper we propose and investigate a self-sensing MR damper with power generation, which integrates energy harvesting, dynamic sensing and MR damping technologies into one device. This MR damper has self-contained power generation and velocity sensing capabilities, and is applicable to various dynamic systems. It combines the advantages of energy harvesting—reusing wasted energy, MR damping—controllable damping force, and sensing—providing dynamic information for controlling system dynamics. This multifunctional integration would bring great benefits such as energy saving, size and weight reduction, lower cost, high reliability, and less maintenance for the MR damper systems. In this paper, a prototype of the self-sensing MR damper with power generation was designed, fabricated, and tested. Theoretical analyses and experimental studies on power generation were performed. A velocity-sensing method was proposed and experimentally validated. The magnetic-field interference among three functions was prevented by a combined magnetic-field isolation method. Modeling, analysis, and experimental results on damping forces are also presented.

  13. Italian aerospace company Alenia prepare TSS-1R in O&C

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Employees of the Italian aerospace company Alenia Spazio S.p.A. prepare the Tethered Satellite System-1R (TSS-1R) that is one of two primary payloads scheduled to fly aboard the Orbiter Columbia during the STS-75 mission in early 1996 for a series of tests in the Operations and Checkout (O&C) Building. The TSS program is a joint venture between NASA and the Agenzia Spaziale Italiana, or Italian Space Agency. The 'R' designation indicates a reflight. The TSS-1 flew aboard Atlantis during the STS-46 mission in July 1992 and achieved only a partial success when its tether reel mechanism became jammed after only approximately 840 feet of the 12-mile-long tether had been unwound as the satellite rose from its cradle in the orbiter's payload bay. Once deployed to the 12- mile height on the STS-75 mission, the satellite will be used to validate theories that such a system could possibly be used in the future to generate electrical power to power orbital systems, raise and lower spacecraft, study atmospheric conditions at several different heights and for many other applications.

  14. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    NASA Astrophysics Data System (ADS)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    2014-12-01

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  15. Technical communications in aerospace - An analysis of the practices reported by U.S. and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    The flow of scientific and technical information (STI) at the individual, organizational, national, and international levels is studied. The responses of U.S and European aerospace engineers and scientists to questionnaires concerning technical communications in aerospace are examined. Particular attention is given to the means used to communicate information and the social system of the aerospace knowledge diffusion process. Demographic data about the survey respondents are provided. The methods used to communicate technical data and the sources utilized to solve technical problems are described. The importance of technical writing skills and the use of computer technology in the aerospace field are discussed. The derived data are useful for R&D and information managers in order to improve access to and utilization of aerospace STI.

  16. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  17. Modeling the Ocean Tide for Tidal Power Generation Applications

    NASA Astrophysics Data System (ADS)

    Kawase, M.; Gedney, M.

    2014-12-01

    Recent years have seen renewed interest in the ocean tide as a source of energy for electrical power generation. Unlike in the 1960s, when the tidal barrage was the predominant method of power extraction considered and implemented, the current methodology favors operation of a free-stream turbine or an array of them in strong tidal currents. As tidal power generation moves from pilot-scale projects to actual array implementations, numerical modeling of tidal currents is expected to play an increasing role in site selection, resource assessment, array design, and environmental impact assessment. In this presentation, a simple, coupled ocean/estuary model designed for research into fundamental aspects of tidal power generation is described. The model consists of a Pacific Ocean-size rectangular basin and a connected fjord-like embayment with dimensions similar to that of Puget Sound, Washington, one of the potential power generation sites in the United States. The model is forced by an idealized lunar tide-generating potential. The study focuses on the energetics of a tidal system including tidal power extraction at both global and regional scales. The hyperbolic nature of the governing shallow water equations means consequence of tidal power extraction cannot be limited to the local waters, but is global in extent. Modeling power extraction with a regional model with standard boundary conditions introduces uncertainties of 3 ~ 25% in the power extraction estimate depending on the level of extraction. Power extraction in the model has a well-defined maximum (~800 MW in a standard case) that is in agreement with previous theoretical studies. Natural energy dissipation and tidal power extraction strongly interact; for a turbine array of a given capacity, the higher the level of natural dissipation the lower the power the array can extract. Conversely, power extraction leads to a decrease in the level of natural dissipation (Figure) as well as the tidal range and the

  18. Aerospace Education for the Melting Pot.

    ERIC Educational Resources Information Center

    Joels, Kerry M.

    1979-01-01

    Aerospace education is eminently suited to provide a framework for multicultural education. Effective programs accommodating minorities' frames of reference to the rapidly developing disciplines of aerospace studies have been developed. (RE)

  19. Aerospace Education and the Elementary Teacher

    ERIC Educational Resources Information Center

    Jones, Robert M.

    1978-01-01

    This articles attempts to stimulate otherwise reluctant school teachers to involve aerospace education in their content repertoire. Suggestions are made to aid the teacher in getting started with aerospace education. (MDR)

  20. Nuclear power generation and fuel cycle report 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  1. Generation of sonic power during welding

    NASA Technical Reports Server (NTRS)

    Mc Campbell, W. M.

    1969-01-01

    Generation of intense sonic and ultrasonic power in the weld zone, close to the puddle, reduces the porosity and refinement of the grain. The ac induction brazing power supply is modified with long cables for deliberate addition of resistance to that circuit. The concept is extensible to the molding of metals and plastics.

  2. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1995-01-01

    The NASA-UVa Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. Here, we report on progress achieved between July 1 and December 31, 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.

  3. Limitless Horizons. Careers in Aerospace

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1980-01-01

    A manual is presented for use by counselors in career guidance programs. Pertinent information is provided on choices open in aerospace sciences, engineering, and technology. Accredited institutions awarding degrees in pertinent areas are listed as well as additional sources of aerospace career information. NASA's role and fields of interest are emphasized.

  4. Modulation and control of matrix converter for aerospace application

    NASA Astrophysics Data System (ADS)

    Kobravi, Keyhan

    In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical instruments. These instruments are energized through a fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is required within an aircraft's power system. This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter. To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter. To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix

  5. 76 FR 58776 - U.S. Aerospace Supplier & Investment Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... DEPARTMENT OF COMMERCE International Trade Administration U.S. Aerospace Supplier & Investment... organizing a U.S. Aerospace Supplier & Investment Mission to Montreal, Canada, May 6-9, 2012. This aerospace.... Participation Requirements All parties interested in participating in the U.S. aerospace trade and investment...

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 47: The value of computer networks in aerospace

    NASA Technical Reports Server (NTRS)

    Bishop, Ann Peterson; Pinelli, Thomas E.

    1995-01-01

    This paper presents data on the value of computer networks that were obtained from a national survey of 2000 aerospace engineers that was conducted in 1993. Survey respondents reported the extent to which they used computer networks in their work and communication and offered their assessments of the value of various network types and applications. They also provided information about the positive impacts of networks on their work, which presents another perspective on value. Finally, aerospace engineers' recommendations on network implementation present suggestions for increasing the value of computer networks within aerospace organizations.

  7. Ground Operations Aerospace Language (GOAL). Volume 2: Compiler

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The principal elements and functions of the Ground Operations Aerospace Language (GOAL) compiler are presented. The technique used to transcribe the syntax diagrams into machine processable format for use by the parsing routines is described. An explanation of the parsing technique used to process GOAL source statements is included. The compiler diagnostics and the output reports generated during a GOAL compilation are explained. A description of the GOAL program package is provided.

  8. The hydrogen value chain: applying the automotive role model of the hydrogen economy in the aerospace sector to increase performance and reduce costs

    NASA Astrophysics Data System (ADS)

    Frischauf, Norbert; Acosta-Iborra, Beatriz; Harskamp, Frederik; Moretto, Pietro; Malkow, Thomas; Honselaar, Michel; Steen, Marc; Hovland, Scott; Hufenbach, Bernhard; Schautz, Max; Wittig, Manfred; Soucek, Alexander

    2013-07-01

    Hydrogen will assume a key role in Europe's effort to adopt its energy dependent society to satisfy its needs without releasing vast amounts of greenhouse gases. The paradigm shift is so paramount that one speaks of the "Hydrogen Economy", as the energy in this new and ecological type of economy is to be distributed by hydrogen. However, H2 is not a primary energy source but rather an energy carrier, a means of storing, transporting and distributing energy, which has to be generated by other means. Various H2 storage methods are possible; however industries' favourite is the storage of gaseous hydrogen in high pressure tanks. The biggest promoter of this storage methodology is the automotive industry, which is currently preparing for the generation change from the fossil fuel internal combustion engines to hydrogen based fuel cells. The current roadmaps foresee a market roll-out by 2015, when the hydrogen supply infrastructure is expected to have reached a critical mass. The hydrogen economy is about to take off as being demonstrated by various national mobility strategies, which foresee several millions of electric cars driving on the road in 2020. Fuel cell cars are only one type of "electric car", battery electric as well as hybrid cars - all featuring electric drive trains - are the others. Which type of technology is chosen for a specific application depends primarily on the involved energy storage and power requirements. These considerations are very similar to the ones in the aerospace sector, which had introduced the fuel cell already in the 1960s. The automotive sector followed only recently, but has succeeded in moving forward the technology to a level, where the aerospace sector is starting considering to spin-in terrestrial hydrogen technologies into its technology portfolio. Target areas are again high power/high energy applications like aviation, manned spaceflight and exploration missions, as well as future generation high power telecommunication

  9. Optical Information Processing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Current research in optical processing is reviewed. Its role in future aerospace systems is determined. The development of optical devices and components demonstrates that system concepts can be implemented in practical aerospace configurations.

  10. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Acting NASA Deputy Administrator Lesa Roe, right, speaks with Rob Strain, president of Ball Aerospace, Thursday, April 6, 2017 during a visit to Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  11. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 5: Aerospace librarians and technical information specialists as information intermediaries: A report of phase 2 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The objective of the NASA/DOD Aerospace Knowledge Diffusion Research Project is to provide descriptive and analytical data regarding the flow of scientific and technical information (STI) at the individual, organizational, national, and international levels, placing emphasis on the systems used to diffuse the results of federally funded aerospace STI. An overview of project assumptions, objectives, and design is presented and preliminary results of the phase 2 aerospace library survey are summarized. Phase 2 addressed aerospace knowledge transfer and use within the larger social system and focused on the flow of aerospace STI in government and industry and the role of the information intermediary in knowledge transfer.

  13. The Role of Aerospace Power in U.S. National Security in the Next Quarter Century: Conference Proceedings Held in Arlington, Virginia on 16 March 1993

    DTIC Science & Technology

    1993-04-16

    Kentucky long rifle is an F-15E Strike Eagle with laser -guided munitions). Aerospace power offers the ability for the United States to intervene with...glowing vacuum tubes might overshadow a single, cool microchip in their mids The Gulf War ushered in the era of the very small, very important target...precision, on making it better and better. Use the microchip as the role model. -Focus on forces and ideas which can execute rapidly, and with the minimum of

  14. Development of self-powered strain sensor using mechano-luminescent ZnS:Cu and mechano-optoelectronic P3HT

    NASA Astrophysics Data System (ADS)

    Pulliam, Elias; Hoover, George; Tiparti, Dhruv; Ryu, Donghyeon

    2017-04-01

    Aerospace structural systems are prone to structural damage during their use by vibration, impact, material degradation, and other factors. Due to the harsh environments in which aerospace structures operate, aerospace structures are susceptible to various types of damage and often their structural integrity is jeopardized unless damage onset is detected in timely manner. Yet, current state-of-the-art sensor technologies are still limited for structural health monitoring (SHM) of aerospace structures due to their high power consumption, need for large form factor design, and manageable integration into aerospace structures. This study proposes a design of multilayered self-powered strain sensor by coupling mechano-luminescent (ML) property of copper-doped zinc sulfide (ZnS:Cu) and mechano-optoelectronic (MO) property of poly(3-hexylthiophene) (P3HT). One functional layer of the self-powered strain sensor is ZnS:Cu-based elastomeric composites that emit light in response to mechanical deformation. Another functional layer is P3HT-based thin films that generate direct current (DC) under light illumination and DC magnitude changes with applied strain. First, ML light emission characteristics of ZnS:Cu-based composites are studied under cyclic tensile strain with two various maximum strain up to 10% and 15% at various loading frequencies from 5 Hz to 20 Hz. Second, piezo-optical properties of P3HT-based thin films are investigated by acquiring light absorption of the thin films at various strains from 0% to 2% tensile strain. Last, micro-mechanical properties of the P3HT-based thin films are characterized using nanoindentation.

  15. Civil Air Patrol and Aerospace Education

    ERIC Educational Resources Information Center

    Sorenson, John V.

    1972-01-01

    Aerospace education is a branch of general education concerned with communicating knowledge, imparting skills, and developing attitudes necessary to interpret aerospace activities and the total impact of air and space vehicles upon society. (Author)

  16. 78 FR 1265 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-001] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel..., Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space Administration...

  17. 76 FR 62455 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-088)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel... Burch, Aerospace Safety Advisory Panel Administrative Officer, National Aeronautics and Space...

  18. Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech

    NASA Astrophysics Data System (ADS)

    Murakami, T.; Okuno, Y.; Yamasaki, H.

    2008-02-01

    This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  19. The role of British Aerospace in satellite TV broadcasting

    NASA Astrophysics Data System (ADS)

    Blonstein, J. L.

    DBS spacecraft development (completed, underway, and planned) at British Aerospace is surveyed and illustrated with diagrams, graphs, drawings, maps, and tables. The satellites briefly characterized include OTS, ECS, Olympus, Eurostar, and Unisat. The growth in the number and power of DBS channels available is described, and the design concept of a 15-kW platform combining sun-pointing solar panels and outer structure with a slowly rotating earth-pointing inner antenna structure is presented.

  20. 75 FR 61219 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-116)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel... Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space Administration...

  1. 76 FR 19147 - Aerospace Safety Advisory Panel; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-030)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel.... Kathy Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  2. 78 FR 15976 - Aerospace Safety Advisory Panel; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-023] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel... Space Administration, Washington, DC 20546, (202) 358-1857. SUPPLEMENTARY INFORMATION: The Aerospace...

  3. 78 FR 56941 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-114] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel.... Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  4. 77 FR 58413 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-074] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel.... Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  5. 77 FR 38090 - Aerospace Safety Advisory Panel; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-044] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel.... Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  6. Capital raising of aerospace companies: equities or debts?

    NASA Astrophysics Data System (ADS)

    Hui-Shan, L.; Taw-Onn, Y.; Wai-Mun, H.

    2016-10-01

    Aerospace products enhance national and economic activities, thus maintaining the sustainability of aerospace industry is crucial. One of the perspectives in ensuring sustainability of aerospace companies is expansion of firms by raising funds for research and development in order to provide a reasonable profitability to the firms. This study comprises a sample of 47 aerospace companies from 2009 to 2015 to analyze the impact of raising fund by equities or debts to the profitability of the firms. The result indicates that capital raising through equities is preferable than debts. Moreover, the study also identifies that the profit of aerospace industry is volatile and there is cyclical reduction of the net income in the first quarter of the year. The management needs to make wise decisions in raising fund to ensure a healthy growth of the aerospace company.

  7. The 1990 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Kennedy, Lewis M. (Compiler)

    1991-01-01

    This document contains the proceedings of the 21st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on December 4-6, 1990. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers as well as participation in like kind from the European Space Agency member nations. The subjects covered included nickel-cadmium, nickel-hydrogen, silver-zinc, lithium based chemistries, and advanced technologies as they relate to high reliability operations in aerospace applications.

  8. A US History of Airbreathing/Rocket Combined-Cycle (RBCC) Propulsion for Powering Future Aerospace Transports, with a Look Ahead to the Year 2020

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1999-01-01

    A technohistorical and forward-planning overview of U.S. developments in combined airbreathing/rocket propulsion for advanced aerospace vehicle applications is presented. Such system approaches fall into one of two categories: (1) Combination propulsion systems (separate, non-interacting engines installed), and (2) Combined-Cycle systems. The latter, and main subject, comprises a large family of closely integrated engine types, made up of both airbreathing and rocket derived subsystem hardware. A single vehicle-integrated, multimode engine results, one capable of operating efficiently over a very wide speed and altitude range, atmospherically and in space. While numerous combination propulsion systems have reached operational flight service, combined-cycle propulsion development, initiated ca. 1960, remains at the subscale ground-test engine level of development. However, going beyond combination systems, combined-cycle propulsion potentially offers a compelling set of new and unique capabilities. These capabilities are seen as enabling ones for the evolution of Spaceliner class aerospace transportation systems. The following combined-cycle hypersonic engine developments are reviewed: (1) RENE (rocket engine nozzle ejector), (2) Cryojet and LACE, (3) Ejector Ramjet and its derivatives, (4) the seminal NASA NAS7-377 study, (5) Air Force/Marquardt Hypersonic Ramjet, (6) Air Force/Lockheed-Marquardt Incremental Scramjet flight-test project, (7) NASA/Garrett Hypersonic Research Engine (HRE), (8) National Aero-Space Plane (NASP), (9) all past projects; and such current and planned efforts as (10) the NASA ASTP-ART RBCC project, (11) joint CIAM/NASA DNSCRAM flight test,(12) Hyper-X, (13) Trailblazer,( 14) W-Vehicle and (15) Spaceliner 100. Forward planning programmatic incentives, and the estimated timing for an operational Spaceliner powered by combined-cycle engines are discussed.

  9. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loopmore » of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.« less

  10. Thin film coatings for space electrical power system applications

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.

    1989-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  11. Thin film coatings for space electrical power system applications

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.

    1988-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  12. Accommodation of Nontraditional Aerospace Degree Aspirants

    ERIC Educational Resources Information Center

    Schukert, Michael A.

    1977-01-01

    Presents results of a national survey of institutions offering college level aerospace studies. Primary survey concern is the availability of nontraditional aerospace education programs; however, information pertaining to institution characteristics, program characteristics, and staffing are also included. (SL)

  13. Aerospace Engineering Systems

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: Physics-based analysis tools for filling the design space database; Distributed computational resources to reduce response time and cost; Web-based technologies to relieve machine-dependence; and Artificial intelligence technologies to accelerate processes and reduce process variability. Activities such as the Advanced Design Technologies Testbed (ADTT) project at NASA Ames Research Center study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities will be reported.

  14. Perspectives of the electric power industry amid the transforming global power generation markets

    NASA Astrophysics Data System (ADS)

    Makarov, A. A.; Mitrova, T. A.; Veselov, F. V.; Galkina, A. A.; Kulagin, V. A.

    2017-10-01

    A scenario-based prognosis of the evolution of global power generation markets until 2040, which was developed using the Scaner model-and-information complex, was given. The perspective development of fuel markets, vital for the power generation industry, was considered, and an attempt to predict the demand, production, and prices of oil, gas, coal, and noncarbon resources across various regions of the world was made. The anticipated decline in the growth of the global demand for fossil fuels and their sufficiency with relatively low extraction expenses will maintain the fuel prices (the data hereinafter are given as per 2014 prices) lower than their peak values in 2012. The outrunning growth of demand for electric power is shown in comparison with other power resources by regions and large countries in the world. The conditions of interfuel competition in the electric power industry considering the changes in anticipated fuel prices and cost indicators for various power generation technologies were studied. For this purpose, the ratios of discounted costs of electric power production by new gas and coal TPPs and wind and solar power plants were estimated. It was proven that accounting the system effects (operation modes, necessary duplicating and reserving the power of electric power plants using renewable energy sources) notably reduces the competitiveness of the renewable power industry and is not always compensated by the expected lowering of its capital intensity and growth of fuel for TPPs. However, even with a moderate (in relation to other prognoses) growth of the role of power plants using renewable energy sources, they will triple electric power production. In this context, thermal power plants will preserve their leadership covering up to 60% of the global electric power production, approximately half using gas.

  15. International Conference on Aerospace Trends...2001 - From Aeroplane to Aerospace Plane, Thiruvananthapuram, India, June 27, 28, 1991, Proceedings

    NASA Astrophysics Data System (ADS)

    1991-08-01

    Consideration is given to operational characteristics of future launch vehicles, trends in propulsion technology, technology challenges in the development of cryogenic propulsion systems for future reusable space-launch vehicles, estimation of the overall drag coefficient of an aerospace plane, and self-reliance in aerospace structures. Attention is also given to basic design concepts for smart actuators for aerospace plane control, a software package for the preliminary design of a helicopter, and multiconstraint wing optimization.

  16. NASA's Aero-Space Technology

    NASA Technical Reports Server (NTRS)

    Milstead, Phil

    2000-01-01

    This presentation reviews the three pillars and the associated goals of NASA's Aero-Space Technology Enterprise. The three pillars for success are: (1) Global Civil Aviation, (2) Revolutionary Technology Leaps, (3) Advanced Space Transportation. The associated goals of the first pillar are to reduce accidents, emissions, and cost, and to increase the aviation system capacity. The goals of the second pillar are to reduce transoceanic travel time, revolutionize general aviation aircraft, and improve development capacity. The goals associated with the third pillar are to reduce the launch cost for low earth orbit and to reduce travel time for planetary missions. In order to meet these goals NASA must provide next-generation design capability for new and or experimental craft which enable a balance between reducing components of the design cycle by up to 50% and or increasing the confidence in design by 50%. These next-generation design tools, concepts, and processes will revolutionize vehicle development. The presentation finally reviews the importance of modeling and simulation in achieving the goals.

  17. The development of aerospace polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1983-01-01

    Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.

  18. Pulse Power Applications of Flux Compression Generators

    DTIC Science & Technology

    1981-06-01

    Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources.

  19. Aerospace Technology.

    ERIC Educational Resources Information Center

    Paschke, Jean; And Others

    1991-01-01

    Describes the Sauk Rapids (Minnesota) High School aviation and aerospace curriculum that was developed by Curtis Olson and the space program developed by Gerald Mayall at Philadelphia's Northeast High School. Both were developed in conjunction with NASA. (JOW)

  20. Mini Solar and Sea Current Power Generation System

    NASA Astrophysics Data System (ADS)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  1. Projected progress in the engineering state-of-the-art. [for aerospace

    NASA Technical Reports Server (NTRS)

    Nicks, O. W.

    1978-01-01

    Projected advances in discipline areas associated with aerospace engineering are discussed. The areas examined are propulsion and power, materials and structures, aerothermodynamics, and electronics. Attention is directed to interdisciplinary relationships; one example would be the application of communications technology to the solution of propulsion problems. Examples involving projected technology changes are presented, and technology integration and societal effects are considered.

  2. Coherence-generating power of quantum dephasing processes

    NASA Astrophysics Data System (ADS)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  3. The 42nd Aerospace Mechanism Symposium

    NASA Technical Reports Server (NTRS)

    Boesiger, Edward A. (Editor); Hakun, Claef (Editor)

    2014-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development, and flight certification of new mechanisms.

  4. Nuclear Power as a Basis for Future Electricity Generation

    NASA Astrophysics Data System (ADS)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 6: Aerospace knowledge diffusion in the academic community: A report of phase 3 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    Descriptive and analytical data regarding the flow of aerospace-based scientific and technical information (STI) in the academic community are presented. An overview is provided of the Federal Aerospace Knowledge Diffusion Research Project, illustrating a five-year program on aerospace knowledge diffusion. Preliminary results are presented of the project's research concerning the information-seeking habits, practices, and attitudes of U.S. aerospace engineering and science students and faculty. The type and amount of education and training in the use of information sources are examined. The use and importance ascribed to various information products by U.S. aerospace faculty and students including computer and other information technology is assessed. An evaluation of NASA technical reports is presented and it is concluded that NASA technical reports are rated high in terms of quality and comprehensiveness, citing Engineering Index and IAA as the most frequently used materials by faculty and students.

  6. A numerical investigation of a thermodielectric power generation system

    NASA Astrophysics Data System (ADS)

    Sklar, Akiva A.

    The performance of a novel micro-thermodielectric power generation system was investigated in order to determine if thermodielectric power generation can be practically employed and if its performance can compete with current portable power generation technologies. Thermodielectric power generation is a direct energy conversion technology that converts heat directly into high voltage direct current. It requires dielectric (i.e., capacitive) materials whose charge storing capabilities are a function of temperature. This property can be exploited by heating these materials after they are charged; as their temperature increases, their charge storage capability decreases, forcing them to eject a portion of their surface charge. This ejected charge can then be supplied to an appropriate electronic storage device. There are several advantages associated with thermodielectric energy conversion; first, it requires heat addition at relatively low conventional power generation temperatures, i.e., less than 600 °K, and second, devices that utilize it have the potential for excellent power density and device reliability. The predominant disadvantage of using this power generation technique is that the device must operate in an unsteady manner; this can lead to substantial heat transfer losses that limit the device's thermal efficiency. The studied power generation system was designed so that the power generating components of the system (i.e., the thermodielectric materials) are integrated within a micro-scale heat exchange apparatus designed specifically to provide the thermodielectric materials with the unsteady heating and cooling necessary for efficient power generation. This apparatus is designed to utilize a liquid as a working fluid in order to maximize its heat transfer capabilities, minimize the size of the heat exchanger, and maximize the power density of the power generation system. The thermodielectric materials are operated through a power generation cycle that

  7. Aerospace Measurements: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Conway, Bruce A.

    1992-01-01

    New aerospace research initiatives offer both challenges and opportunities to rapidly-emerging electronics and electro-optics technology. Defining and implementing appropriate measurement technology development programs in response to the aeronautical ground facility research and testing needs of the new initiatives poses some particularly important problems. This paper discusses today's measurement challenges along with some of the technological opportunities which offer some hope for meeting the challenges, and describes measurement technology activities currently underway in the Langley Research Center's Instrument Research Division to address modern aerospace research and design engineering requirements. Projected and realized benefits and payoffs from the ongoing measurement and instrumentation efforts will be emphasized. A discussion of future trends in the aerospace measurement technology field will be included.

  8. Photogrammetric techniques for aerospace applications

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu; Burner, Alpheus W.; Jones, Thomas W.; Barrows, Danny A.

    2012-10-01

    Photogrammetric techniques have been used for measuring the important physical quantities in both ground and flight testing including aeroelastic deformation, attitude, position, shape and dynamics of objects such as wind tunnel models, flight vehicles, rotating blades and large space structures. The distinct advantage of photogrammetric measurement is that it is a non-contact, global measurement technique. Although the general principles of photogrammetry are well known particularly in topographic and aerial survey, photogrammetric techniques require special adaptation for aerospace applications. This review provides a comprehensive and systematic summary of photogrammetric techniques for aerospace applications based on diverse sources. It is useful mainly for aerospace engineers who want to use photogrammetric techniques, but it also gives a general introduction for photogrammetrists and computer vision scientists to new applications.

  9. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Acting NASA Administrator Robert Lightfoot, left, views a clean room with Tim Schoenweis, senior project engineer for the Ozone Mapping Profiler Suite (OMPS) at Ball Aerospace, right, Thursday, April 6, 2017 at Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  10. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Acting NASA Deputy Administrator Lesa Roe, center, views a clean room with Tim Schoenweis, senior project engineer for the Ozone Mapping Profiler Suite (OMPS) at Ball Aerospace, left, Thursday, April 6, 2017 at Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  11. Assess and Predict Automatic Generation Control Performances for Thermal Power Generation Units Based on Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yang, Zijiang; Gao, Song; Liu, Jinbiao

    2018-02-01

    Automatic generation control(AGC) is a key technology to maintain real time power generation and load balance, and to ensure the quality of power supply. Power grids require each power generation unit to have a satisfactory AGC performance, being specified in two detailed rules. The two rules provide a set of indices to measure the AGC performance of power generation unit. However, the commonly-used method to calculate these indices is based on particular data samples from AGC responses and will lead to incorrect results in practice. This paper proposes a new method to estimate the AGC performance indices via system identification techniques. In addition, a nonlinear regression model between performance indices and load command is built in order to predict the AGC performance indices. The effectiveness of the proposed method is validated through industrial case studies.

  12. Laser-powered thermoelectric generators operating at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Harutyunyan, S. R.; Vardanyan, V. H.; Kuzanyan, A. S.; Nikoghosyan, V. R.; Kunii, S.; Winzer, K.; Wood, K. S.; Gulian, A. M.

    2005-11-01

    A thermoelectric generator, operating in a cryostat at liquid helium temperatures, is described. Energy to the generator is supplied via an external laser beam. For this prototype device the associated heat load at permanent operation is comparable with the heat load associated with power delivery via metallic wires. Estimates indicate that still better performance can be enabled with existing thermoelectric materials, thereby far exceeding efficiency of traditional cryostat wiring. We used a prototype generator to produce electric power for measuring critical currents in Nb3Sn-films at 4K.

  13. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    PubMed Central

    Sun, Dong; Guo, Sen

    2014-01-01

    As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China's energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA) method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China. PMID:25093209

  14. A modular optically powered floating high voltage generator.

    PubMed

    Antonini, P; Borsato, E; Carugno, G; Pegoraro, M; Zotto, P

    2013-02-01

    The feasibility of fully floating high voltage (HV) generation was demonstrated producing a prototype of a modular HV system. The primary power source is provided by a high efficiency semiconductor power cell illuminated by a laser system ensuring the floating nature of each module. The HV is then generated by dc-dc conversion and a HV multiplier. The possibility of series connection among modules was verified.

  15. L-C Measurement Acquisition Method for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, B. Douglas; Shams, Qamar A.; Fox, Robert L.

    2003-01-01

    This paper describes a measurement acquisition method for aerospace systems that eliminates the need for sensors to have physical connection to a power source (i.e., no lead wires) or to data acquisition equipment. Furthermore, the method does not require the sensors to be in proximity to any form of acquisition hardware. Multiple sensors can be interrogated using this method. The sensors consist of a capacitor, C(p), whose capacitance changes with changes to a physical property, p, electrically connected to an inductor, L. The method uses an antenna to broadcast electromagnetic energy that electrically excites one or more inductive-capacitive sensors via Faraday induction. This method facilitates measurements that were not previously possible because there was no practical means of providing power and data acquisition electrical connections to a sensor. Unlike traditional sensors, which measure only a single physical property, the manner in which the sensing element is interrogated simultaneously allows measurement of at least two unrelated physical properties (e.g., displacement rate and fluid level) by using each constituent of the L-C element. The key to using the method for aerospace applications is to increase the distance between the L-C elements and interrogating antenna; develop all key components to be non-obtrusive and to develop sensing elements that can easily be implemented. Techniques that have resulted in increased distance between antenna and sensor will be presented. Fluid-level measurements and pressure measurements using the acquisition method are demonstrated in the paper.

  16. Complementary power output characteristics of electromagnetic generators and triboelectric generators.

    PubMed

    Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin

    2014-04-04

    Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ∼3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs.

  17. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  18. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  19. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  20. Aerospace engineers: We're tomorrow-minded people

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1981-01-01

    Brief job-related autobiographical sketches of engineers working on NASA aerospace projects are presented. Career and educational guidance is offered to students thinking about entering the aerospace field.

  1. The Need for an Aerospace Pharmacy Residency

    NASA Technical Reports Server (NTRS)

    Bayuse, T.; Schuyler, C.; Bayuse, Tina M.

    2007-01-01

    This viewgraph poster presentation reviews the rationale for a call for a new program in residency for aerospace pharmacy. Aerospace medicine provides a unique twist on traditional medicine, and a specialty has evolved to meet the training for physicians, and it is becoming important to develop such a program for training in pharmacy designed for aerospace. The reasons for this specialist training are outlined and the challenges of developing a program are reviewed.

  2. Hexavalent Chromium Reduction in the Aerospace Industry

    DTIC Science & Technology

    2010-12-01

    1 Hexavalent Chromium Reduction in the Aerospace Industry Unpublished work © 2010 Aerospace Industries Association of America, Inc. Lisa Goldberg...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Hexavalent Chromium Reduction in the Aerospace Industry 5a. CONTRACT NUMBER 5b. GRANT...ABSTRACT AIA and its members have a long history in minimizing the use of hexavalent chromium in the manufacture of its products. Included in that history

  3. Supercomputing in Aerospace

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Yee, Helen

    1987-01-01

    Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics.

  4. Wind power. [electricity generation

    NASA Technical Reports Server (NTRS)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  5. Face Gear Technology for Aerospace Power Transmission Progresses

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The use of face gears in an advanced rotorcraft transmission design was first proposed by the McDonnell Douglas Helicopter Company during their contracted effort with the U.S. Army under the Advanced Rotorcraft Transmission (ART) program. Face gears would be used to turn the corner between the horizontal gas turbine engine and the vertical output rotor shaft--a function currently done by spiral bevel gears. This novel gearing arrangement would substantially lower the drive system weight partly because a face gear mesh would be used to split the input power between two output gears. However, the use of face gears and their ability to operate successfully at the speeds and loads required for an aerospace environment was unknown. Therefore a proof-of-concept phase with an existing test stand at the NASA Lewis Research Center was pursued. Hardware was designed that could be tested in Lewis' Spiral Bevel Gear Test Rig. The initial testing indicated that the face gear mesh was a feasible design that could be used at high speeds and load. Surface pitting fatigue was the typical failure mode, and that could lead to tooth fracture. An interim project was conducted to see if slight modifications to the gear tooth geometry or an alternative heat treating process could overcome the surface fatigue problems. From the initial and interim tests, it was apparent that for the surface fatigue problems to be overcome the manufacturing process used for this component would have to be developed to the level used for spiral bevel gears. The current state of the art for face gear manufacturing required using less than optimal gear materials and manufacturing techniques because the surface of the tooth form does not receive final finishing after heat treatment as it does for spiral bevel gears. This resulted in less than desirable surface hardness and manufacturing tolerances. An Advanced Research and Projects Agency (ARPA) Technology Reinvestment Project has been funded to investigate

  6. Power SEMICONDUCTORS—STATE of Art and Future Trends

    NASA Astrophysics Data System (ADS)

    Benda, Vitezslav

    2011-06-01

    The importance of effective energy conversion control, including power generation from renewable and environmentally clean energy sources, increases due to rising energy demand. Power electronic systems for controlling and converting electrical energy have become the workhorse of modern society in many applications, both in industry and at home. Power electronics plays a very important role in traction and can be considered as brawns of robotics and automated manufacturing systems. Power semiconductor devices are the key electronic components used in power electronic systems. Advances in power semiconductor technology have improved the efficiency, size, weight and cost of power electronic systems. At present, IGCTs, IGBTs, and MOSFETs represent modern switching devices. Power integrated circuits (PIC) have been developed for the use of power converters for portable, automotive and aerospace applications. For advanced applications, new materials (SiC and GaN) have been introduced. This paper reviews the state of these devices and elaborates on their potentials in terms of higher voltages, higher power density, and better switching performance.

  7. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, M.M.

    1993-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  8. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, M.M.

    1995-04-18

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

  9. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, Mark M.

    1995-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  10. Apparatus and method for thermal power generation

    DOEpatents

    Cohen, Paul; Redding, Arnold H.

    1978-01-01

    An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

  11. High Flight. Aerospace Activities, K-12.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  12. [Power generation and ecology: socio-economic collision].

    PubMed

    Belonogova, M V; Davydov, B I

    1999-01-01

    The authors make analysis of the socio-economic collision between power generation and ecology. Russia enters the world market in the period of global and local ecological ill-being. The following eight dimensions of the problem have been reviewed: uncontrolled growth of population, limited earth resources, life standards and ecological crisis, national/ecological interests and power safety, eco- and power regionalism, religion and ethnoses (demography and energy reserves), eco-sitting of power installations, sanitary guidelines and standards and the reality.

  13. Aerospace Technicians: We're Tomorrow-Minded People

    NASA Technical Reports Server (NTRS)

    Lewis, M. H.

    1981-01-01

    Brief job-related autobiographical sketches of technicians working on NASA aerospace projects are presented. Career and educational guidance is offered to students thinking about entering the field of aerospace technology.

  14. Remote-site power generation opportunities for Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M.L.

    1997-03-01

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power,more » reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.« less

  15. "Fly-by-Wireless": A Revolution in Aerospace Vehicle Architecture for Instrumentation and Control

    NASA Technical Reports Server (NTRS)

    Studor, George

    2007-01-01

    Aerospace vehicle programs have always counted on the cables and connectors to provide power, grounding, data and time synchronization throughout a vehicle's life-cycle. Even with numerous improvements, wiring and connector problems and sensors continue to be key failure points, causing many hours of troubleshooting and replacement. Costly flight delays have been precipitated by the need to troubleshoot cables/connections, and/or repair a sensor. Wiring continues to be too expensive to remove once it is installed, even with the weight penalties. Miles of test instrumentation and low flight sensor wires still plague the aerospace industry. New technology options for data connectivity, processing and micro/nano manufacturing are making it possible to retrofit existing vehicles, like the Space Shuttle. New vehicles can now develop architectures that provide for and take advantage of alternatives to wired connectivity. This project motivates the aerospace industry and technology providers to establish: (1) A new emphasis for system engineering approaches to reduce cables and connectors. (2) Provisions for modularity and accessibility in the vehicle architecture. (3) A set of technologies that support alternatives to wired connectivity.

  16. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation.

    PubMed

    Zhan, Tianzhuo; Yamato, Ryo; Hashimoto, Shuichiro; Tomita, Motohiro; Oba, Shunsuke; Himeda, Yuya; Mesaki, Kohei; Takezawa, Hiroki; Yokogawa, Ryo; Xu, Yibin; Matsukawa, Takashi; Ogura, Atsushi; Kamakura, Yoshinari; Watanabe, Takanobu

    2018-01-01

    For harvesting energy from waste heat, the power generation densities and fabrication costs of thermoelectric generators (TEGs) are considered more important than their conversion efficiency because waste heat energy is essentially obtained free of charge. In this study, we propose a miniaturized planar Si-nanowire micro-thermoelectric generator (SiNW-μTEG) architecture, which could be simply fabricated using the complementary metal-oxide-semiconductor-compatible process. Compared with the conventional nanowire μTEGs, this SiNW-μTEG features the use of an exuded thermal field for power generation. Thus, there is no need to etch away the substrate to form suspended SiNWs, which leads to a low fabrication cost and well-protected SiNWs. We experimentally demonstrate that the power generation density of the SiNW-μTEGs was enhanced by four orders of magnitude when the SiNWs were shortened from 280 to 8 μm. Furthermore, we reduced the parasitic thermal resistance, which becomes significant in the shortened SiNW-μTEGs, by optimizing the fabrication process of AlN films as a thermally conductive layer. As a result, the power generation density of the SiNW-μTEGs was enhanced by an order of magnitude for reactive sputtering as compared to non-reactive sputtering process. A power density of 27.9 nW/cm 2 has been achieved. By measuring the thermal conductivities of the two AlN films, we found that the reduction in the parasitic thermal resistance was caused by an increase in the thermal conductivity of the AlN film and a decrease in the thermal boundary resistance.

  17. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation

    PubMed Central

    Zhan, Tianzhuo; Yamato, Ryo; Hashimoto, Shuichiro; Tomita, Motohiro; Oba, Shunsuke; Himeda, Yuya; Mesaki, Kohei; Takezawa, Hiroki; Yokogawa, Ryo; Xu, Yibin; Matsukawa, Takashi; Ogura, Atsushi; Kamakura, Yoshinari; Watanabe, Takanobu

    2018-01-01

    Abstract For harvesting energy from waste heat, the power generation densities and fabrication costs of thermoelectric generators (TEGs) are considered more important than their conversion efficiency because waste heat energy is essentially obtained free of charge. In this study, we propose a miniaturized planar Si-nanowire micro-thermoelectric generator (SiNW-μTEG) architecture, which could be simply fabricated using the complementary metal–oxide–semiconductor–compatible process. Compared with the conventional nanowire μTEGs, this SiNW-μTEG features the use of an exuded thermal field for power generation. Thus, there is no need to etch away the substrate to form suspended SiNWs, which leads to a low fabrication cost and well-protected SiNWs. We experimentally demonstrate that the power generation density of the SiNW-μTEGs was enhanced by four orders of magnitude when the SiNWs were shortened from 280 to 8 μm. Furthermore, we reduced the parasitic thermal resistance, which becomes significant in the shortened SiNW-μTEGs, by optimizing the fabrication process of AlN films as a thermally conductive layer. As a result, the power generation density of the SiNW-μTEGs was enhanced by an order of magnitude for reactive sputtering as compared to non-reactive sputtering process. A power density of 27.9 nW/cm2 has been achieved. By measuring the thermal conductivities of the two AlN films, we found that the reduction in the parasitic thermal resistance was caused by an increase in the thermal conductivity of the AlN film and a decrease in the thermal boundary resistance. PMID:29868148

  18. The 26th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The proceedings of the 26th Aerospace Mechanisms Symposium, which was held at the Goddard Space Flight Center on May 13, 14, and 15, 1992 are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors and other mechanisms for large space structures.

  19. Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines

    NASA Astrophysics Data System (ADS)

    Osipkov, Alexey; Poshekhonov, Roman; Arutyunyan, Georgy; Basov, Andrey; Safonov, Roman

    2017-10-01

    Thermoelectric generation in vehicles such as motorcycles, all-terrain vehicles, and snowmobiles opens the possibility of additional electrical energy generation by means of exhaust heat utilization. This is beneficial because replacing the mechanical generator used in such vehicles with a more powerful one in cases of electrical power deficiency is impossible. This paper proposes a calculation model for the thermoelectric generator (TEG) operational characteristics of the low-capacity internal combustion engines used in these vehicles. Two TEG structures are considered: (1) TEG with air cooling and (2) TEG with water cooling. Modeling consists of two calculation stages. In the first stage, the heat exchange coefficients of the hot and cold exchangers are determined using computational fluid dynamics. In the second stage, the TEG operational characteristics are modeled based on the nonlinear equations of the heat transfer and power balance. On the basis of the modeling results, the dependence of the TEG's major operating characteristics (such as the electrical power generated by the TEG and its efficiency and mass) on operating conditions or design parameters is determined. For example, the electrical power generated by a TEG for a Yamaha WR450F motorcycle engine with a volume of 0.449 × 10-3 m3 was calculated to be as much as 100 W. Use of the TEG arrangements proposed is justified by the additional electrical power generation for small capacity vehicles, without the need for internal combustion engine redesign.

  20. Chemical Microsensor Development for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Chen, Liangyu; Biaggi-Labiosa, Azlin M.

    2013-01-01

    Numerous aerospace applications, including low-false-alarm fire detection, environmental monitoring, fuel leak detection, and engine emission monitoring, would benefit greatly from robust and low weight, cost, and power consumption chemical microsensors. NASA Glenn Research Center has been working to develop a variety of chemical microsensors with these attributes to address the aforementioned applications. Chemical microsensors using different material platforms and sensing mechanisms have been produced. Approaches using electrochemical cells, resistors, and Schottky diode platforms, combined with nano-based materials, high temperature solid electrolytes, and room temperature polymer electrolytes have been realized to enable different types of microsensors. By understanding the application needs and chemical gas species to be detected, sensing materials and unique microfabrication processes were selected and applied. The chemical microsensors were designed utilizing simple structures and the least number of microfabrication processes possible, while maintaining high yield and low cost. In this presentation, an overview of carbon dioxide (CO2), oxygen (O2), and hydrogen/hydrocarbons (H2/CxHy) microsensors and their fabrication, testing results, and applications will be described. Particular challenges associated with improving the H2/CxHy microsensor contact wire-bonding pad will be discussed. These microsensors represent our research approach and serve as major tools as we expand our sensor development toolbox. Our ultimate goal is to develop robust chemical microsensor systems for aerospace and commercial applications.

  1. Research of PV Power Generation MPPT based on GABP Neural Network

    NASA Astrophysics Data System (ADS)

    Su, Yu; Lin, Xianfu

    2018-05-01

    Photovoltaic power generation has become the main research direction of new energy power generation. But high investment and low efficiency of photovoltaic industry arouse concern in some extent. So maximum power point tracking of photovoltaic power generation has been a popular study point. Due to slow response, oscillation at maximum power point and low precision, the algorithm based on genetic algorithm combined with BP neural network are designed detailedly in this paper. And the modeling and simulation are completed by use of MATLAB/SIMULINK. The results show that the algorithm is effective and the maximum power point can be tracked accurately and quickly.

  2. Single crystals and nonlinear process for outstanding vibration-powered electrical generators.

    PubMed

    Badel, Adrien; Benayad, Abdelmjid; Lefeuvre, Elie; Lebrun, Laurent; Richard, Claude; Guyomar, Daniel

    2006-04-01

    This paper compares the performances of vibration-powered electrical generators using a piezoelectric ceramic and a piezoelectric single crystal associated to several power conditioning circuits. A new approach of the piezoelectric power conversion based on a nonlinear voltage processing is presented, leading to three novel high performance power conditioning interfaces. Theoretical predictions and experimental results show that the nonlinear processing technique may increase the power harvested by a factor of 8 compared to standard techniques. Moreover, it is shown that, for a given energy harvesting technique, generators using single crystals deliver 20 times more power than generators using piezoelectric ceramics.

  3. Competition and Cooperation of Distributed Generation and Power System

    NASA Astrophysics Data System (ADS)

    Miyake, Masatoshi; Nanahara, Toshiya

    Advances in distributed generation technologies together with the deregulation of an electric power industry can lead to a massive introduction of distributed generation. Since most of distributed generation will be interconnected to a power system, coordination and competition between distributed generators and large-scale power sources would be a vital issue in realizing a more desirable energy system in the future. This paper analyzes competitions between electric utilities and cogenerators from the viewpoints of economic and energy efficiency based on the simulation results on an energy system including a cogeneration system. First, we examine best response correspondence of an electric utility and a cogenerator with a noncooperative game approach: we obtain a Nash equilibrium point. Secondly, we examine the optimum strategy that attains the highest social surplus and the highest energy efficiency through global optimization.

  4. Green Power Partnership Eligible Generation Dates

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary partnership program designed to reduce the environmental impact of electricity generation by promoting renewable energy. EPA requires that Partners meet GPP's vintage requirement.

  5. Pulsed corona generation using a diode-based pulsed power generator

    NASA Astrophysics Data System (ADS)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  6. Power generation by flagella-propelled Serratia Marcescens

    NASA Astrophysics Data System (ADS)

    Tran, Trung-Hieu; Kim, Min Jun; Byun, Doyoung

    2010-11-01

    In this study, we present electrical power generation by using swimming Serratia marcescens which is a rod shaped bacterium species and has about 10 um long and about 20 nm thin helical filaments. Flow in micro channel is driven by bacteria attached on the wall, which is around 25 to 50 μm/sec. The driven electrolyte solution flow (buffer solution containing high concentration of S. marcescens) may be considered as movement of conductor. If we place permanent magnets on the top and bottom of the micro channel and electrodes on side walls in the micro channel, electrical current could be generated by the principle of Lorentz force acting on the moving charges. The potential between the two electrodes was measured to be up to 10mV and the electrical current was about 10pA with external load 50 Ohm. Even if the energy generated by bacteria swimming is small, it demonstrated the possible generation of power, which requires in-depth further research.

  7. Development of Parametric Mass and Volume Models for an Aerospace SOFC/Gas Turbine Hybrid System

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert; Wang, Xiao-yen; Steffen, Christopher J., Jr.; Freeh, Joshua E.

    2005-01-01

    In aerospace power systems, mass and volume are key considerations to produce a viable design. The utilization of fuel cells is being studied for a commercial aircraft electrical power unit. Based on preliminary analyses, a SOFC/gas turbine system may be a potential solution. This paper describes the parametric mass and volume models that are used to assess an aerospace hybrid system design. The design tool utilizes input from the thermodynamic system model and produces component sizing, performance, and mass estimates. The software is designed such that the thermodynamic model is linked to the mass and volume model to provide immediate feedback during the design process. It allows for automating an optimization process that accounts for mass and volume in its figure of merit. Each component in the system is modeled with a combination of theoretical and empirical approaches. A description of the assumptions and design analyses is presented.

  8. The 27th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Mancini, Ron (Compiler)

    1993-01-01

    The proceedings of the 27th Aerospace Mechanisms Symposium, which was held at ARC, Moffett Field, California, on 12-14 May 1993, are reported. Technological areas covered include the following: actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, robotic mechanisms, and other mechanisms for large space structures.

  9. Power Generator with Thermo-Differential Modules

    NASA Technical Reports Server (NTRS)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  10. 77 FR 74579 - Airworthiness Directives; Gulfstream Aerospace Corporation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... Airworthiness Directives; Gulfstream Aerospace Corporation Airplanes AGENCY: Federal Aviation Administration... directive (AD) for certain Gulfstream Aerospace Corporation Model GIV-X airplanes. This AD requires... Aerospace Corporation, Technical Publications Dept., P.O. Box 2206, Savannah, GA 31402-2206; telephone 800...

  11. Review of NASA programs in applying aerospace technology to energy

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1981-01-01

    NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 10: The NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    The role of the NASA/DOD Aerospace Knowledge DIffusion Research Project in helping to maintain U.S. competitiveness is addressed. The phases of the project are examined in terms of the focus, emphasis, subjects, methods, and desired outcomes. The importance of the project to aerospace R&D is emphasized.

  13. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    PubMed Central

    Lueke, Jonathan; Moussa, Walied A.

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362

  14. MEMS-based power generation techniques for implantable biosensing applications.

    PubMed

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  15. Power Generation by Harvesting Ambient Energy with a Micro-Electromagnetic Generator

    DTIC Science & Technology

    2009-03-01

    more applicable at the micro scale are also being investigated including piezoelectric and electrostatics. Solar energy harvesting is a proven method. It...with IC circuitry. 6.2.7 Piezoelectric Research. In Chapter 2, energy harvesting through the use of piezoelectric materials was briefly discussed. A... piezoelectric harvesters require minimal movement for power generation, whereas an electromagnet generator generally requires significant mechanical motion in

  16. Network integration of distributed power generation

    NASA Astrophysics Data System (ADS)

    Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco

    The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.

  17. NASA/DoD aerospace knowledge diffusion research project. VIII - The role of the information intermediary in the diffusion of aerospace knowledge

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1990-01-01

    The U.S. aerospace industry is experiencing profound changes created by a combination of domestic actions and circumstances such as airline deregulation. Other changes result from external trends such as emerging foreign competition. These circumstances intensify the need to understand the production, transfer, and utilization of knowledge as a precursor to the rapid diffusion of technology. This article presents a conceptual framework for understanding the diffusion of aerospace knowledge. The framework focuses on the information channels and members of the social system associated with the aerospace knowledge diffusion process, placing particular emphasis on aerospace librarians as information intermediaries.

  18. Global analysis of a renewable micro hydro power generation plant

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Shad; Nabil, Imtiaz Muhammed; Alam, M. Mahbubul

    2017-12-01

    Hydroelectric power or Hydropower means the power generated by the help of flowing water with force. It is one the best source of renewable energy in the world. Water evaporates from the earth's surface, forms clouds, precipitates back to earth, and flows toward the ocean. Hydropower is considered a renewable energy resource because it uses the earth's water cycle to generate electricity. As far as Global is concerned, only a small fraction of electricity is generated by hydro-power. The aim of our analysis is to demonstrate and observe the hydropower of the Globe in micro-scale by our experimental setup which is completely new in concept. This paper consists of all the Global and National Scenario of Hydropower. And how we can more emphasize the generation of Hydroelectric power worldwide.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 26: The relationship between technology policy and scientific and technical information within the US and Japanese aerospace industries

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  20. Applications of aerospace technology in biology and medicine

    NASA Technical Reports Server (NTRS)

    Beall, H. C.; Beadles, R. L.; Brown, J. N., Jr.; Clingman, W. H.; Courtney, M. W.; Rouse, D. J.; Scearce, R. W.

    1979-01-01

    Medical products utilizing and incorporating aerospace technology were studied. A bipolar donor-recipient model for medical transfer is presented. The model is designed to: (1) identify medical problems and aerospace technology which constitute opportunities for successful medical products; (2) obtain early participation of industry in the transfer process; and (3) obtain acceptance by medical community of new medical products based on aerospace technology.

  1. Solar Power Generation in Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Elliott, Frederick W.; Piszczor, Michael F.

    2016-01-01

    The exploration of space requires power for guidance, navigation, and control; instrumentation; thermal control; communications and data handling; and many subsystems and activities. Generating sufficient and reliable power in deep space through the use of solar arrays becomes even more challenging as solar intensity decreases and high radiation levels begin to degrade the performance of photovoltaic devices. The Extreme Environments Solar Power (EESP) project goal is to develop advanced photovoltaic technology to address these challenges.

  2. Wavelength-Selective Photovoltaics for Power-generating Greenhouses

    NASA Astrophysics Data System (ADS)

    Carter, Sue; Loik, Michael; Shugar, David; Corrado, Carley; Wade, Catherine; Alers, Glenn

    2014-03-01

    While photovoltaic (PV) technologies are being developed that have the potential for meeting the cost target of 0.50/W per module, the cost of installation combined with the competition over land resources could curtail the wide scale deployment needed to generate the Terrawatts per year required to meet the world's electricity demands. To be cost effective, such large scale power generation will almost certainly require PV solar farms to be installed in agricultural and desert areas, thereby competing with food production, crops for biofuels, or the biodiversity of desert ecosystems. This requirement has put the PV community at odds with both the environmental and agricultural groups they would hope to support through the reduction of greenhouse gas emissions. A possible solution to this challenge is the use of wavelength-selective solar collectors, based on luminescent solar concentrators, that transmit wavelengths needed for plant growth while absorbing the remaining portions of the solar spectrum and converting it to power. Costs are reduced through simultaneous use of land for both food and power production, by replacing the PV cells by inexpensive long-lived luminescent materials as the solar absorber, and by integrating the panels directly into existing greenhouse or cold frames. Results on power generation and crop yields for year-long trials done at academic and commercial greenhouse growers in California will be presented.

  3. 75 FR 39911 - Aerospace Supplier Development Mission to China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... DEPARTMENT OF COMMERCE International Trade Administration Aerospace Supplier Development Mission... Commercial Service (CS) is organizing an Aerospace Supplier Development Mission to China from November 7-17, 2010. The 2010 Aerospace Supplier Development Mission to China is being developed due to a successful...

  4. 78 FR 49908 - Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Eclipse Aerospace... Eclipse Aerospace, Inc., 26 East Palatine Road, Wheeling, Illinois 60090; telephone: (877) 373-7978...

  5. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    NASA Deputy Administrator, Lori Garver, gives the keynote address at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  6. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    NASA Deputy Administrator, Lori Garver, far right, gives the keynote address at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  7. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    Marcia Smith, President, spacepolicyonline.com, participates in a panel discussion at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  8. Polyimides: Thermally stable aerospace polymers

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.

    1980-01-01

    An up to date review of available commercial and experimental high temperature polyimide resins which show potential for aerospace applications is presented. Current government research trends involving the use of polyimides as matrix resins for structural composites are discussed. Both the development of polyimides as adhesives for bonding metals and composites, and as films and coatings for use in an aerospace environment are reviewed. In addition, future trends for polyimides are proposed.

  9. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  10. Model for Increasing the Power Obtained from a Thermoelectric Generator Module

    NASA Astrophysics Data System (ADS)

    Huang, Gia-Yeh; Hsu, Cheng-Ting; Yao, Da-Jeng

    2014-06-01

    We have developed a model for finding the most efficient way of increasing the power obtained from a thermoelectric generator (TEG) module with a variety of operating conditions and limitations. The model is based on both thermoelectric principles and thermal resistance circuits, because a TEG converts heat into electricity consistent with these two theories. It is essential to take into account thermal contact resistance when estimating power generation. Thermal contact resistance causes overestimation of the measured temperature difference between the hot and cold sides of a TEG in calculation of the theoretical power generated, i.e. the theoretical power is larger than the experimental power. The ratio of the experimental open-loop voltage to the measured temperature difference, the effective Seebeck coefficient, can be used to estimate the thermal contact resistance in the model. The ratio of the effective Seebeck coefficient to the theoretical Seebeck coefficient, the Seebeck coefficient ratio, represents the contact conditions. From this ratio, a relationship between performance and different variables can be developed. The measured power generated by a TEG module (TMH400302055; Wise Life Technology, Taiwan) is consistent with the result obtained by use of the model; the relative deviation is 10%. Use of this model to evaluate the most efficient means of increasing the generated power reveals that the TEG module generates 0.14 W when the temperature difference is 25°C and the Seebeck coefficient ratio is 0.4. Several methods can be used triple the amount of power generated. For example, increasing the temperature difference to 43°C generates 0.41 W power; improving the Seebeck coefficient ratio to 0.65 increases the power to 0.39 W; simultaneously increasing the temperature difference to 34°C and improving the Seebeck coefficient ratio to 0.5 increases the power to 0.41 W. Choice of the appropriate method depends on the limitations of system, the cost, and

  11. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  12. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  13. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  14. 13. INTERIOR OF POWER PLANT LOOKING EASTNORTHEAST. 1925 GE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF POWER PLANT LOOKING EAST-NORTHEAST. 1925 GE GENERATOR IN FOREGROUND, WITH C. 1910 GENERATOR COVER IN BACKGROUND. STEEL FRAME SUPPORTS HOISTING MECHANISM USED TO MOVE, REPAIR, OR REPLACE GENERATORS. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  15. Resource Management and Contingencies in Aerospace Concurrent Engineering

    NASA Technical Reports Server (NTRS)

    Karpati, Gabe; Hyde, Tupper; Peabody, Hume; Garrison, Matthew

    2012-01-01

    significant concern in designing complex systems implementing new technologies is that while knowledge about the system is acquired incrementally, substantial financial commitments, even make-or-break decisions, must be made upfront, essentially in the unknown. One practice that helps in dealing with this dichotomy is the smart embedding of contingencies and margins in the design to serve as buffers against surprises. This issue presents itself in full force in the aerospace industry, where unprecedented systems are formulated and committed to as a matter of routine. As more and more aerospace mission concepts are generated by concurrent design laboratories, it is imperative that such laboratories apply well thought-out contingency and margin structures to their designs. The first part of this publication provides an overview of resource management techniques and standards used in the aerospace industry. That is followed by a thought provoking treatise on margin policies. The expose presents the actual flight telemetry data recorded by the thermal discipline during several recent NASA Goddard Space Flight Center missions. The margins actually achieved in flight are compared against pre-flight predictions, and the appropriateness and the ramifications of having designed with rigid margins to bounding stacked worst case conditions are assessed. The second half of the paper examines the particular issues associated with the application of contingencies and margins in the concurrent engineering environment. In closure, a discipline-by-discipline disclosure of the contingency and margin policies in use at the Integrated Design Center at NASA s Goddard Space Flight Center is made.

  16. iSTEM: The Aerospace Engineering Challenge

    ERIC Educational Resources Information Center

    English, Lyn D.; King, Donna T.; Hudson, Peter; Dawes, Les

    2014-01-01

    The authors developed The Paper Plane Challenge as one of a three-part response to The Aerospace Engineering Challenge. The Aerospace Engineering Challenge was the second of three multi-part activities that they had developed with the teachers during the year. Their aim was to introduce students to the exciting world of engineering, where they…

  17. 76 FR 1600 - U.S. Aerospace Supplier & Investment Mission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... DEPARTMENT OF COMMERCE International Trade Administration U.S. Aerospace Supplier & Investment... Commercial Service is organizing a U.S. Aerospace Supplier & Investment Mission to Montreal, Canada on May 2... parties interested in participating in the U.S. Aerospace Trade and Investment Mission must complete and...

  18. 78 FR 30243 - Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for all Eclipse Aerospace, Inc. Model EA500 airplanes equipped with Avio, Avio with ETT, or Avio... identified in this proposed AD, contact Eclipse Aerospace, Inc. 26 East Palatine Road, Wheeling, Illinois...

  19. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests ofmore » the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.« less

  20. Microelectromechanical power generator and vibration sensor

    DOEpatents

    Roesler, Alexander W [Tijeras, NM; Christenson, Todd R [Albuquerque, NM

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  2. 76 FR 55614 - Airworthiness Directives; Pacific Aerospace Limited Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ...-0971; Directorate Identifier 2011-CE-030-AD] RIN 2120-AA64 Airworthiness Directives; Pacific Aerospace... (AD) for Pacific Aerospace Limited Models FU24-954 and FU24A-954 airplanes modified with an unapproved... INFORMATION CONTACT: Karl Schletzbaum, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room...

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 8: The role of the information intermediary in the diffusion of aerospace knowledge

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1990-01-01

    The United States aerospace industry is experiencing profound changes created by a combination of domestic actions and circumstances such as airline deregulation. Other changes result from external trends such as emerging foreign competition. These circumstances intensify the need to understand the production, transfer, and utilization of knowledge as a precursor to the rapid diffusion of technology. Presented here is a conceptual framework for understanding the diffusion of technology. A conceptual framework is given for understanding the diffusion of aerospace knowledge. The framework focuses on the information channels and members of the social system associated with the aerospace knowledge diffusion process, placing particular emphasis on aerospace librarians as information intermediaries.

  4. 32nd Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Walker, S. W. (Compiler); Boesiger, Edward A. (Compiler)

    1998-01-01

    The proceedings of the 32nd Aerospace Mechanism Symposium are reported. NASA John F. Kennedy Space Center (KSC) hosted the symposium that was held at the Hilton Oceanfront Hotel in Cocoa Beach, Florida on May 13-15, 1998. The symposium was cosponsored by Lockheed Martin Missiles and Space and the Aerospace Mechanisms Symposium Committee. During these days, 28 papers were presented. Topics included robotics, deployment mechanisms, bearing, actuators, scanners, boom and antenna release, and test equipment.

  5. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    Catherine Didion, Senior Fellow, National Academy of Engineering, participates in a panel discussion at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  6. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    Rebecca Spyke-Keiser, NASA's Associate Deputy Administrator for policy integration, gives opening remarks at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  7. Access to Japanese aerospace-related scientific and technical information: The NASA Aerospace Database

    NASA Technical Reports Server (NTRS)

    Hoetker, Glenn P.; Lahr, Thomas F.

    1993-01-01

    With Japan's growing R&D strength in aerospace-related fields, it is increasingly important for U.S. researchers to be aware of Japanese advances. However, several factors make it difficult to do so. After reviewing the diffusion of aerospace STI in Japan, four factors which make it difficult for U.S. researchers to gather this information are discussed: language, the human network, information scatter, and document acquisition. NASA activities to alleviate these difficulties are described, beginning with a general overview of the NASA STI Program. The effects of the new National Level Agreement between NASA and NASDA are discussed.

  8. Aerospace Nickel-cadmium Cell Verification

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Strawn, D. Michael; Hall, Stephen W.

    2001-01-01

    During the early years of satellites, NASA successfully flew "NASA-Standard" nickel-cadmium (Ni-Cd) cells manufactured by GE/Gates/SAFF on a variety of spacecraft. In 1992 a NASA Battery Review Board determined that the strategy of a NASA Standard Cell and Battery Specification and the accompanying NASA control of a standard manufacturing control document (MCD) for Ni-Cd cells and batteries was unwarranted. As a result of that determination, standards were abandoned and the use of cells other than the NASA Standard was required. In order to gain insight into the performance and characteristics of the various aerospace Ni-Cd products available, tasks were initiated within the NASA Aerospace Flight Battery Systems Program that involved the procurement and testing of representative aerospace Ni-Cd cell designs. A standard set of test conditions was established in order to provide similar information about the products from various vendors. The objective of this testing was to provide independent verification of representative commercial flight cells available in the marketplace today. This paper will provide a summary of the verification tests run on cells from various manufacturers: Sanyo 35 Ampere-hour (Ali) standard and 35 Ali advanced Ni-Cd cells, SAFr 50 Ah Ni-Cd cells and Eagle-Picher 21 Ali Magnum and 21 Ali Super Ni-CdTM cells from Eagle-Picher were put through a full evaluation. A limited number of 18 and 55 Ali cells from Acme Electric were also tested to provide an initial evaluation of the Acme aerospace cell designs. Additionally, 35 Ali aerospace design Ni-MH cells from Sanyo were evaluated under the standard conditions established for this program. Ile test program is essentially complete. The cell design parameters, the verification test plan and the details of the test result will be discussed.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 34: How early career-stage US aerospace engineers and scientists produce and use information

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the production and use of information by U.S. aerospace engineers and scientists who had changed their American Institute of Aeronautics and Astronautics (AIAA) membership from student to professional in the past five years.

  10. VAMP: A computer program for calculating volume, area, and mass properties of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Norton, P. J.; Glatt, C. R.

    1974-01-01

    A computerized procedure developed for analyzing aerospace vehicles evaluates the properties of elemental surface areas with specified thickness by accumulating and combining them with arbitrarily specified mass elements to form a complete evaluation. Picture-like images of the geometric description are capable of being generated.

  11. The Meteosat Second Generation (MSG) power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, J.E.; Levins, D.; Robben, A.

    1997-12-31

    Under the direction of the European Meteorological Satellite Organization (EUMETSAT) and the European Space Agency (ESA), space industries within Europe are in the process of developing a new series of larger and more performant geostationary weather satellites. The initial three spacecraft within this new series, which are known by the name of Meteosat Second Generation (MSG), are due to be progressively launched from the year 2000 onwards. The major objective of this mission is the continuation of the European weather watch and space borne atmospheric sensing services provided by the present series of Meteosat spacecraft. To satisfy this mission requirement,more » the payload compliment to be supported by MSG will consist of a comprehensive earth viewing instrument capable of operating in both the infra-red and visible spectrum, an earth radiation measurement system and a search and rescue facility. In furnishing the power needs for these payloads, the power generating element on the spin stabilized MSG spacecraft consists of a body mounted solar array, capable of providing 628 watts of electrical power at the end of seven years of geosynchronous orbital lifetime. The energy storage elements for the spacecraft consists of two, 29 ampere-hour batteries, while centralized power management is achieved by the Power Control Unit (PCU), which satisfies the payload and battery re-charge demands by controlling the available solar array power. Power distribution for the spacecraft electrical loads and heaters is achieved by the Power Distribution Unit (PDU) and for the pyrotechnic devices by the Pyrotechnic Release Unit.« less

  12. In Vivo Demonstration of a Self-Sustaining, Implantable, Stimulated-Muscle-Powered Piezoelectric Generator Prototype

    PubMed Central

    Lewandowski, B. E.; Kilgore, K. L.; Gustafson, K. J.

    2010-01-01

    An implantable, stimulated-muscle-powered piezoelectric active energy harvesting generator was previously designed to exploit the fact that the mechanical output power of muscle is substantially greater than the electrical power necessary to stimulate the muscle’s motor nerve. We reduced to practice the concept by building a prototype generator and stimulator. We demonstrated its feasibility in vivo, using rabbit quadriceps to drive the generator. The generated power was sufficient for self-sustaining operation of the stimulator and additional harnessed power was dissipated through a load resistor. The prototype generator was developed and the power generating capabilities were tested with a mechanical muscle analog. In vivo generated power matched the mechanical muscle analog, verifying its usefulness as a test-bed for generator development. Generator output power was dependent on the muscle stimulation parameters. Simulations and in vivo testing demonstrated that for a fixed number of stimuli/minute, two stimuli applied at a high frequency generated greater power than single stimuli or tetanic contractions. Larger muscles and circuitry improvements are expected to increase available power. An implanted, self-replenishing power source has the potential to augment implanted battery or transcutaneously powered electronic medical devices. PMID:19657742

  13. An international aerospace information system: A cooperative opportunity

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Blados, Walter R.

    1992-01-01

    Scientific and technical information (STI) is a valuable resource which represents the results of large investments in research and development (R&D), and the expertise of a nation. NASA and its predecessor organizations have developed and managed the preeminent aerospace information system. We see information and information systems changing and becoming more international in scope. In Europe, consistent with joint R&D programs and a view toward a united Europe, we have seen the emergence of a European Aerospace Database concept. In addition, the development of aeronautics and astronautics in individual nations have also lead to initiatives for national aerospace databases. Considering recent technological developments in information science and technology, as well as the reality of scarce resources in all nations, it is time to reconsider the mutually beneficial possibilities offered by cooperation and international resource sharing. The new possibilities offered through cooperation among the various aerospace database efforts toward an international aerospace database initiative which can optimize the cost/benefit equation for all participants are considered.

  14. Aerospace Technology Careers: The Opportunity To Soar. Information Summaries.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This document provides guidelines for the preparation of careers in aerospace, whether with the National Aeronautics and Space Administration (NASA) or private industry. The document discusses the following topics: (1) Preparing for an Aerospace Career; (2) Careers in Aerospace; (3) Employment Requirements; and (4) How To Apply. (ZWH)

  15. Open circuit V-I characteristics of a coreless ironless electric generator for low density wind power generation

    NASA Astrophysics Data System (ADS)

    Razali, Akhtar; Rahman, Fadhlur; Azlan, Syaiful; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The concept is then fabricated and experimentally validated to qualify its no-load characteristics. The rotational torque and power output are measured and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 416VAC at rotational speed of 1762 RPM. Torque required to rotate the generator was at 2Nm for various rotational speed. The generator has shown 30% lesser rotational torque compared to the conventional ironcore type generator due to the absent of cogging torque in the system. Lesser rotational torque required to rotate has made this type of generator has a potential to be used for low wind density wind turbine application.

  16. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  17. NASA/DoD Aerospace Knowledge Diffusion Research Project. Paper 30: The electronic transfer of information and aerospace knowledge diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1992-01-01

    Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a major role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.

  18. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXVI - The relationship between technology policy and scientific and technical information within the U.S. and Japanese aerospace industries

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Lahr, Tom; Hoetker, Glenn

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry, which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  19. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    PubMed

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  20. Development of Sensors for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro

    2005-01-01

    Advances in technology have led to the availability of smaller and more accurate sensors. Computer power to process large amounts of data is no longer the prevailing issue; thus multiple and redundant sensors can be used to obtain more accurate and comprehensive measurements in a space vehicle. The successful integration and commercialization of micro- and nanotechnology for aerospace applications require that a close and interactive relationship be developed between the technology provider and the end user early in the project. Close coordination between the developers and the end users is critical since qualification for flight is time-consuming and expensive. The successful integration of micro- and nanotechnology into space vehicles requires a coordinated effort throughout the design, development, installation, and integration processes

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 11: The Voice of the User: How US Aerospace Engineers and Scientists View DoD Technical Reports

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1991-01-01

    The project examines how the results of NASA/DOD research diffuse into the aerospace R&D process, and empirically analyzes the implications of the aerospace knowledge diffusion process. Specific issues considered are the roles played by government technical reports, the recognition of the value of scientific and technical information (STI), and the optimization of the STI aerospace transfer system. Information-seeking habits are assessed for the U.S. aerospace community, the general community, the academic sector, and the international community. U.S. aerospace engineers and scientists use 65 percent of working time to communicate STI, and prefer 'internal' STI over 'external' STI. The isolation from 'external' information is found to be detrimental to U.S. aerospace R&D in general.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 14: Engineering work and information use in aerospace: Results of a telephone survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists who were on the Society of Automotive Engineers (SAE) mailing list was conducted between August 14-26, 1991. The survey was undertaken to obtain information on the daily work activities of aerospace engineers and scientists, to measure various practices used by aerospace engineers and scientists to obtain STI, and to ask aerospace engineers and scientists about their use of electronic networks. Co-workers were found important sources of information. Co-workers are used to obtain technical information because the information they have is relevant, not because co-workers are accessible. As technical uncertainty increases, so does the need for information internal and external to the organization. Electronic networks enjoy widespread use within the aerospace community. These networks are accessible and they are used to contact people at remote sites. About 80 percent of the respondents used electronic mail, file transfer, and information or data retrieval to commercial or in-house data bases.

  3. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.

    2015-09-01

    The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.

  4. Boronline, a new generation of boron meter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirat, P.

    2011-07-01

    Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions - civil aerospace, defence aerospace, marine and energy Rolls-Royce understands the challenges of design, procurement, manufacture, operation and in-service support of nuclear reactor plants, with over 50 years of experience through the Royal Navy submarine programme. Rolls-Royce can therefore offer full product life-cycle management for new civil nuclear installations, as well as support to existing installations, including plant lifetime extensions. Rolls-Royce produced for 40 years, Instrumentation and Control (I andmore » C) systems of and associated services for nuclear reactors in Europe, including 58 French reactors and others situated in the United States and in others countries, such as China. Rolls-Royce equipped in this domain 200 nuclear reactors in 20 countries. Among all of its nuclear systems, Rolls Royce is presenting to the conference its new generation of on-line boron measurement system, so called Boronline. (authors)« less

  5. The 29th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Editor)

    1995-01-01

    The proceedings of the 29th Aerospace Mechanisms Symposium, which was hosted by NASA Johnson Space Center and held at the South Shore Harbour Conference Facility on May 17-19, 1995, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft.

  6. The 28th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Rohn, Douglas A. (Compiler)

    1994-01-01

    The proceedings of the 28th Aerospace Mechanisms Symposium, which was hosted by the NASA Lewis Research Center and held at the Cleveland Marriott Society Center on May 18, 19, and 20, 1994, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft.

  7. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    Kathy Sullivan, NOAA (National Oceanic and Atmospheric Administration) Deputy Administrator and former NASA astronaut, participates in a panel discussion at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  8. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    Veronica Villalobos, Director, Office of Diversity and Inclusion, Office of Personnel Management, participates in a panel discussion at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  9. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 2, Part 3; Appendices

    NASA Technical Reports Server (NTRS)

    Jung, David S,; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume II Appendices to Part 3 - Volume I.

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  11. Knowledge-based diagnosis for aerospace systems

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.

    1988-01-01

    The need for automated diagnosis in aerospace systems and the approach of using knowledge-based systems are examined. Research issues in knowledge-based diagnosis which are important for aerospace applications are treated along with a review of recent relevant research developments in Artificial Intelligence. The design and operation of some existing knowledge-based diagnosis systems are described. The systems described and compared include the LES expert system for liquid oxygen loading at NASA Kennedy Space Center, the FAITH diagnosis system developed at the Jet Propulsion Laboratory, the PES procedural expert system developed at SRI International, the CSRL approach developed at Ohio State University, the StarPlan system developed by Ford Aerospace, the IDM integrated diagnostic model, and the DRAPhys diagnostic system developed at NASA Langley Research Center.

  12. Conservation of Strategic Aerospace Materials (COSAM)

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    Research efforts to reduce the dependence of the aerospace industry on strategic metals, such as cobalt (Co), columbium (Cb), tantalum (Ta), and chromium (Cr), by providing the materials technology needed to minimize the strategic metal content of critical aerospace components for gas turbine engines are addressed. Thrusts in three technology areas are identified: near term activities in the area of strategic element substitution; intermediate-range activities in the area of materials processing; and long term, high risk activities in the area of 'new classes' of high temprature metallic materials. Specifically, the role of cobalt in nickel-base and cobalt-base superalloys vital to the aerospace industry is examined along with the mechanical and physical properties of intermetallics that will contain a minimum of the stragetic metals.

  13. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 1, Part 3

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume I: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries of the program's operations.

  14. Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  15. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designingmore » a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.« less

  16. 78 FR 32385 - Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-64-000] Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC; Constellation NewEnergy...) Rules of Practice and Procedure, 18 CFR 385.207, Exelon Generation Company, LLC, CER Generation II, LLC...

  17. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... education programs. (b) Appropriate commands are encouraged to provide assistance to educational...

  18. Aerospace Resources for Science and Technology Education.

    ERIC Educational Resources Information Center

    Maley, Donald, Ed.; Smith, Kenneth L., Ed.

    This publication on Aerospace Programs is a special edition of "Technology Education" featuring descriptions of 15 select aerospace education programs from diverse localities spanning the full range of instructional levels. Following introductory material, the monograph contains the following largely unedited program descriptions: (1)…

  19. 32 CFR 705.30 - Aerospace Education Workshop.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... education programs. (b) Appropriate commands are encouraged to provide assistance to educational...

  20. Technology survey of electrical power generation and distribution for MIUS application

    NASA Technical Reports Server (NTRS)

    Gill, W. L.; Redding, T. E.

    1975-01-01

    Candidate electrical generation power systems for the modular integrated utility systems (MIUS) program are described. Literature surveys were conducted to cover both conventional and exotic generators. Heat-recovery equipment associated with conventional power systems and supporting equipment are also discussed. Typical ranges of operating conditions and generating efficiencies are described. Power distribution is discussed briefly. Those systems that appear to be applicable to MIUS have been indicated, and the criteria for equipment selection are discussed.

  1. Medical aspects of power generation, present and future.

    PubMed

    Linnemann, R E

    1979-01-01

    It can be seen that the radiation emissions of nuclear power plants are small indeed, compared to natural background radiation and other man-made sources of radiation. For example, the poulation is exposed to 100 times more radiation from television sets than from nuclear power reactors. The assumed risks to the people in this country from nuclear power reactors are also small compared to the normal risks which are tolerated in this society. The complete elimination of all hazards is a most difficult if not impossible task. If we need and desire a certain level of electrical energy, if we must choose between alternative sourves of the energy, then it is apparent that the total impact on our health from nuclear power generation of electricity, under normal operations and in consideration of catastrophic accident probabilities, is significantly less than that of continuing or increasing use of fossil fuels to generate electricity.

  2. Stationary diesel engines for use with generators to supply electric power

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The procurement of stationary diesel engines for on-site generation of electric power deals with technical criteria and policy relating to federal agency, not electrical components of diesel-generator sets or for the design of electric-power generating plants or their air-pollution or noise control equipment.

  3. Heat Management in Thermoelectric Power Generators

    PubMed Central

    Zebarjadi, M.

    2016-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one. PMID:27033717

  4. Concept Developed for an Implanted Stimulated Muscle-Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David; Gustafson, Kenneth

    2005-01-01

    Implanted electronic devices are typically powered by batteries or transcutaneous power transmission. Batteries must be replaced or recharged, and transcutaneous power sources burden the patient or subject with external equipment prone to failure. A completely self-sustaining implanted power source would alleviate these limitations. Skeletal muscle provides an available autologous power source containing native chemical energy that produces power in excess of the requirements for muscle activation by motor nerve stimulation. A concept has been developed to convert stimulated skeletal muscle power into electrical energy (see the preceding illustration). We propose to connect a piezoelectric generator between a muscle tendon and bone. Electrically stimulated muscle contractions would exert force on the piezoelectric generator, charging a storage circuit that would be used to power the stimulator and other devices.

  5. Engineering in the 21st century. [aerospace technology prospects

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1978-01-01

    A description is presented of the nature of the aerospace technology system that might be expected by the 21st century from a reasonable evolution of the current resources and capabilities. An aerospace employment outlook is provided. The years 1977 and 1978 seem to be marking the beginning of a period of stability and moderate growth in the aerospace industry. Aerospace research and development employment increased to 70,000 in 1977 and is now occupying a near-constant 18% share of the total research and development work force. The changing job environment is considered along with the future of aerospace education. It is found that one trend is toward a more interdisciplinary education. Most trend setters in engineering education recognize that the really challenging engineering problems invariably require the judicious exercise of several disciplines for their solution. Some future trends in aerospace technology are discussed. By the year 2000 space technology will have achieved major advances in four areas, including management of information, transportation, space structures, and energy.

  6. Electric energy production by particle thermionic-thermoelectric power generators

    NASA Technical Reports Server (NTRS)

    Oettinger, P. E.

    1980-01-01

    Thermionic-thermoelectric power generators, composed of a thin layer of porous, low work function material separating a heated emitter electrode and a cooler collector electrode, have extremely large Seebeck coefficients of over 2 mV/K and can provide significant output power. Preliminary experiments with 20-micron thick (Ba Sr Ca)O coatings, limited by evaporative loss to temperatures below 1400 K, have yielded short circuit current densities of 500 mA/sq cm and power densities of 60 mW/ sq cm. Substantially more output is expected with cesium-coated refractory oxide particle coatings operating at higher temperatures. Practical generators will have thermal-to-electrical efficiencies of 10 to 20%. Further increases can be gained by cascading these high-temperature devices with lower temperature conventional thermoelectric generators.

  7. How large customer direct power transaction mode give consideration to power generation cleaning and power saving

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Zeng, Ming; Liu, Wei; Li, Ran

    2017-05-01

    The so-called Large Customers' Direct Power Transaction, refers to the mode that the users on high voltage level, or being seized of hold the large power or independent power distribution, have the qualification of purchasing electricity directly from the generation companies and pay reasonable electricity transmission and distribution fee to the power network enterprises because the transaction is through its transmission channel. The Direct Purchase promotes the marketization level of electricity trading, but there are some problems in its developing process, especially whether promotes the green optimal allocation of power resources, this paper aims to explore the solution.

  8. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine powermore » generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less

  9. Development of Integrated Programs for Aerospace-vehicle design (IPAD): Integrated information processing requirements

    NASA Technical Reports Server (NTRS)

    Southall, J. W.

    1979-01-01

    The engineering-specified requirements for integrated information processing by means of the Integrated Programs for Aerospace-Vehicle Design (IPAD) system are presented. A data model is described and is based on the design process of a typical aerospace vehicle. General data management requirements are specified for data storage, retrieval, generation, communication, and maintenance. Information management requirements are specified for a two-component data model. In the general portion, data sets are managed as entities, and in the specific portion, data elements and the relationships between elements are managed by the system, allowing user access to individual elements for the purpose of query. Computer program management requirements are specified for support of a computer program library, control of computer programs, and installation of computer programs into IPAD.

  10. NASA Elementary Aerospace Activities Free to Members

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1978

    1978-01-01

    Describes the contents of Elementary School Aerospace Activities: A Resource for Teachers. Activities examine a variety of topics in aerospace education and are intended to be used with children ages 5-11. The book is available from the Government Printing Office (GPO) for $3.00. (CP)

  11. An international aerospace information system - A cooperative opportunity

    NASA Technical Reports Server (NTRS)

    Blados, Walter R.; Cotter, Gladys A.

    1992-01-01

    This paper presents for consideration new possibilities for uniting the various aerospace database efforts toward a cooperative international aerospace database initiative that can optimize the cost-benefit equation for all members. The development of astronautics and aeronautics in individual nations has led to initiatives for national aerospace databases. Technological developments in information technology and science, as well as the reality of scarce resources, makes it necessary to reconsider the mutually beneficial possibilities offered by cooperation and international resource sharing.

  12. GaAs VLSI for aerospace electronics

    NASA Technical Reports Server (NTRS)

    Larue, G.; Chan, P.

    1990-01-01

    Advanced aerospace electronics systems require high-speed, low-power, radiation-hard, digital components for signal processing, control, and communication applications. GaAs VLSI devices provide a number of advantages over silicon devices including higher carrier velocities, ability to integrate with high performance optical devices, and high-resistivity substrates that provide very short gate delays, good isolation, and tolerance to many forms of radiation. However, III-V technologies also have disadvantages, such as lower yield compared to silicon MOS technology. Achieving very large scale integration (VLSI) is particularly important for fast complex systems. At very short gate delays (less than 100 ps), chip-to-chip interconnects severely degrade circuit clock rates. Complex systems, therefore, benefit greatly when as many gates as possible are placed on a single chip. To fully exploit the advantages of GaAs circuits, attention must be focused on achieving high integration levels by reducing power dissipation, reducing the number of devices per logic function, and providing circuit designs that are more tolerant to process and environmental variations. In addition, adequate noise margin must be maintained to ensure a practical yield.

  13. Challenges in aerospace medicine education.

    PubMed

    Grenon, S Marlene; Saary, Joan

    2011-11-01

    Aerospace medicine training and research represents a dream for many and a challenge for most. In Canada, although some opportunities exist for the pursuit of education and research in the aerospace medicine field, they are limited despite the importance of this field for enabling safe human space exploration. In this commentary, we aim to identify some of the challenges facing individuals wishing to get involved in the field as well as the causal factors for these challenges. We also explore strategies to mitigate against these.

  14. Development and Application of Microfabricated Chemical Gas Sensors For Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, A.; Hammond, J.; Makel, D.; hide

    1990-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring and control, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. This paper discusses the needs of space applications and the point-contact sensor technology being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (Nox, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. Demonstration and application these sensor technologies will be described. The demonstrations range from use of a microsystem based hydrogen sensor on the Shuttle to engine demonstration of a nanocrystalline based sensor for NO, detection. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  15. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  16. Probability and Statistics in Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Howell, L. W.

    1998-01-01

    This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

  17. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Michael Dean, senior project engineer for the Joint Polar Satellite System (JPSS) program at Ball Aerospace, right, speaks with acting NASA Deputy Administrator Lesa Roe, second from left, and acting NASA Administrator Robert Lightfoot, center, about the 20ft. by 24 ft. vertical thermal vacuum chamber, Thursday, April 6, 2017 during a visit to Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  18. The 2001 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeff C. (Compiler)

    2002-01-01

    This document contains the proceedings of the 34th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center, November 27-29, 2001. The workshop was attended by scientists and engineers from various agencies of the US Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind. The subjects covered included nickel-hydrogen, nickel-cadmium, lithium-ion, and silver-zinc technologies.

  19. Aero-space plane figures of merit

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Martin, John G.

    1992-01-01

    The design environment of the aerospace plane is variable rich, intricately networked and sensitivity intensive. To achieve a viable design necessitates addressing three principal elements: knowledge of the 'figures of merit' and their relationships, the synthesis procedure, and the synergistic integration of advanced technologies across the discipline spectrum. This paper focuses on the 'figures of merit' that create the design of an aerospace plane.

  20. Development of large wind energy power generation system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  1. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  2. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  3. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  4. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  5. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  6. Binary vapor cycle method of electrical power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humiston, G.F.

    1982-04-13

    A binary vapor cycle method of electrical power generation is disclosed wherein two refrigerant fluids can be used to operate an apparatus for the generation of mechanical power as well as electrical power generation. This method, which is essentially a dual heat pump system, offers an approach to utilizing the advantages of two different refrigerants within a single apparatus. This advantage is particularly advantageous in the ulitization of low specific energy sources, such as two water sources which exist in close proximity to each other, but at different temperatures. Thus, water, which itself is a heat pump fluid, can bemore » used as a means of transmitting heat energy to a second heat pump fluid, or refrigerant, without incurring the disadvantages of water, or water vapors, as a means to produce power, because of its high specific volume and low saturation pressures at low temperatures. Additionally, since the warm water source of energy most commonly available is in the form of reservoirs, such as the ocean waters, and the utilization of barometric legs to bring the warm water into contact with the process, eliminates the use of expensive heat exchangers, which is the case of ocean water, are subject to fouling and loss of efficiency due to clinging microorganisms.« less

  7. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  8. Design and optimization of geothermal power generation, heating, and cooling

    NASA Astrophysics Data System (ADS)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the

  9. Maturing Technologies for Stirling Space Power Generation

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  10. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Deangelis; Rich Depuy; Debashis Dey

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale upmore » strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.« less

  11. Power processing and control requirements of dispersed solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R. L.

    1980-01-01

    Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.

  12. Index of aerospace mechanisms symposia proceedings 1-19

    NASA Technical Reports Server (NTRS)

    Rinaldo, A.; Wilson, J.

    1986-01-01

    This index, organized in five sections (by symposium, by title, by author, by subject, and by project), brings together information on the first 19 Aerospace Mechanisms symposia. Key words are included, cross-referencing all the symposia, and the eighteenth and nineteenth symposia are cross-indexed by project. The Aerospace Mechanisms symposia are devoted to discussions of design, fabrication, test, and operational use of aerospace mechanisms; this is the first index that compiles information on symposia held from 1966 through 1985.

  13. Wind wheel electric power generator

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (Inventor)

    1980-01-01

    Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  14. Guides to Aerospace Research and Development in NATO Countries.

    DTIC Science & Technology

    1984-01-01

    The directory contains worldwide information Administrations et Services Aeroautiques. Designadores de Empresas Explotadoras about aviation/aerospace...ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE L’ATLANTIQUE NORD) AGARD Report No.7 18 * GUIDES TO AEROSPACE RESEARCH...and transport containing also The Tithe and Keyword Index includes titles of all establishments listed in this highly professional photographs received

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 21: Technological innovation and technical communications: Their place in aerospace engineering curricula. A survey of European, Japanese, and US Aerospace Engineers and Scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Holland, Maurita Peterson; Keene, Michael L.; Kennedy, John M.

    1991-01-01

    Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors.

  16. Common Cause Failure Modeling: Aerospace Versus Nuclear

    NASA Technical Reports Server (NTRS)

    Stott, James E.; Britton, Paul; Ring, Robert W.; Hark, Frank; Hatfield, G. Spencer

    2010-01-01

    Aggregate nuclear plant failure data is used to produce generic common-cause factors that are specifically for use in the common-cause failure models of NUREG/CR-5485. Furthermore, the models presented in NUREG/CR-5485 are specifically designed to incorporate two significantly distinct assumptions about the methods of surveillance testing from whence this aggregate failure data came. What are the implications of using these NUREG generic factors to model the common-cause failures of aerospace systems? Herein, the implications of using the NUREG generic factors in the modeling of aerospace systems are investigated in detail and strong recommendations for modeling the common-cause failures of aerospace systems are given.

  17. Machine intelligence and autonomy for aerospace systems

    NASA Technical Reports Server (NTRS)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  18. Development and analysis of insulation constructions for aerospace wiring applications

    NASA Astrophysics Data System (ADS)

    Slenski, George A.; Woodford, Lynn M.

    1993-03-01

    The Wright Laboratory Materials Directorate at WPAFB, Ohio recently completed a research and development program under contract with the McDonnell Douglas Aerospace Company, St. Louis, Missouri. Program objectives were to develop wire insulation performance requirements, evaluate candidate insulations, and prepare preliminary specification sheets on the most promising candidates. Aircraft wiring continues to be a high maintenance item and a major contributor to electrically-related aircraft mishaps. Mishap data on aircraft show that chafing of insulation is the most common mode of wire failure. Improved wiring constructions are expected to increase aircraft performance and decrease costs by reducing maintenance actions. In the laboratory program, new insulation constructions were identified that had overall improved performance in evaluation tests when compared to currently available MIL-W-81381 and MIL-W-22759 wiring. These insulations are principally aromatic polyimide and crosslinked ethylene tetrafluoroethylene (ETFE), respectively. Candidate insulations identified in preliminary specification sheets were principally fluoropolymers with a polyimide inner layer. Examples of insulation properties evaluated included flammability, high temperature mechanical and electrical performance, fluid immersion, and susceptibility to arc propagation under applied power chafing conditions. Potential next generation wire insulation materials are also reviewed.

  19. Women, Innovation and Aerospace Event

    NASA Image and Video Library

    2012-03-08

    Kathy Sullivan, right, NOAA (National Oceanic and Atmospheric Administration) Deputy Administrator and former NASA astronaut, participates in a panel discussion at the Women, Innovation and Aerospace event celebrating Women's History Month at the George Washington University Jack Morton Auditorium, Thursday, March 8, 2012 in Washington. Sullivan is joined by Catherine Didion, Senior Fellow, National Academy of Engineering. The WIA day-long event will help to foster a discussion for students and early career professionals about how to continue to encourage women to enter and succeed in the field of aerospace. Photo Credit: (NASA/Carla Cioffi)

  20. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)

    1997-01-01

    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  1. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Clark-Ingram, M.; Hessler, S. L.

    1997-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  2. Phase Change Material Thermal Power Generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.

  3. Aerospace Applications of Microprocessors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An assessment of the state of microprocessor applications is presented. Current and future requirements and associated technological advances which allow effective exploitation in aerospace applications are discussed.

  4. U.S. Aerospace and Aviation Industry: A State-By-State Analysis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    President George W. Bush and the Congress created the Commission on the Future of the United States Aerospace Industry to evaluate the current and future health of the industry as well as the challenges that lie ahead for the U.S. workforce and the economy. To accomplish our mission, we commissioned a study on the economic impact of the aerospace industry nationally and on a state-by-state basis, using the best available U.S. government data. This study sought to define the core of the aerospace industry. The resulting data represents that very core those jobs specifically tied to commercial and civilian aerospace. U.S. Aerospace and Aviation: A State-by-State Analysis examines the civilian and commercial aerospace and aviation industry by employment, wages, payroll, and establishments. The report found that the U.S. civilian and commercial aerospace and aviation industry employed over 2 million workers in 2001.

  5. The dc power circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A compilation of reports concerning power circuits is presented for the dissemination of aerospace information to the general public as part of the NASA Technology Utilization Program. The descriptions for the electronic circuits are grouped as follows: dc power supplies, power converters, current-voltage power supply regulators, overload protection circuits, and dc constant current power supplies.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 42: An analysis of the transfer of Scientific and Technical Information (STI) in the US aerospace industry

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.; Pinelli, Thomas E.; Hecht, Laura F.; Barclay, Rebecca O.

    1994-01-01

    The U.S. aerospace industry has a long history of federal support for research related to its needs. Since the establishment of the National Advisory Committee for Aeronautics (NACA) in 1915, the federal government has provided continuous research support related to flight and aircraft design. This research has contributed to the international preeminence of the U.S. aerospace industry. In this paper, we present a sociological analysis of aerospace engineers and scientists and how their attitudes and behaviors impact the flow of scientific and technical information (STI). We use a constructivist framework to explain the spotty dissemination of federally funded aerospace research. Our research is aimed towards providing federal policymakers with a clearer understanding of how and when federally funded aerospace research is used. This understanding will help policymakers design improved information transfer systems that will aid the competitiveness of the U.S. aerospace industry.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  8. Aerospace Medicine

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    This abstract describes the content of a presentation for ground rounds at Mt. Sinai School of Medicine. The presentation contains three sections. The first describes the history of aerospace medicine beginning with early flights with animals. The second section of the presentation describes current programs and planning for future missions. The third section describes the medical challenges of exploration missions.

  9. Optical Information Processing for Aerospace Applications 2

    NASA Technical Reports Server (NTRS)

    Stermer, R. L. (Compiler)

    1984-01-01

    Current research in optical processing, and determination of its role in future aerospace systems was reviewed. It is shown that optical processing offers significant potential for aircraft and spacecraft control, pattern recognition, and robotics. It is demonstrated that the development of optical devices and components can be implemented in practical aerospace configurations.

  10. Rankine engine solar power generation. I - Performance and economic analysis

    NASA Technical Reports Server (NTRS)

    Gossler, A. A.; Orrock, J. E.

    1981-01-01

    Results of a computer simulation of the performance of a solar flat plate collector powered electrical generation system are presented. The simulation was configured to include locations in New Mexico, North Dakota, Tennessee, and Massachusetts, and considered a water-based heat-transfer fluid collector system with storage. The collectors also powered a Rankine-cycle boiler filled with a low temperature working fluid. The generator was considered to be run only when excess solar heat and full storage would otherwise require heat purging through the collectors. All power was directed into the utility grid. The solar powered generator unit addition was found to be dependent on site location and collector area, and reduced the effective solar cost with collector areas greater than 400-670 sq m. The sites were economically ranked, best to worst: New Mexico, North Dakota, Massachusetts, and Tennessee.

  11. Meaning and value of cloud manufacturing platform for aerospace enterprises

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Xu, Wei; Xin, Xin

    2017-08-01

    Aerospace manufacturing engineering technology status it is important symbol to measure the comprehensive strength of nation. This paper analyzes the meaning and value of aerospace enterprises, based on the concept of cloud manufacturing to the practical production and application, combined with the characteristics of aerospace enterprises.

  12. Electrodynamic Tethers. 1: Power Generator in LEO. 2: Thrust for Propulsion and Power Storage

    NASA Technical Reports Server (NTRS)

    Mccoy, J. E.

    1984-01-01

    An electrodynamic tether consists of a long insulated wire in space whose orbital motion cuts across lines of magnetic flux to produce an induce voltage that in typical low orbits averages about 200 v/km. Such a system should be capable of generating substantial electrical power, at the expense of IXB drag acting on its orbital energy. If a reverse current is driven against the induced voltage, the system should act as a motor producing IXB thrust. A reference system was designed, capable of generating 20 KW of power into an electrical load located anywhere along the wire at the expense of 2.6N (20,000 J/sec) drag on the wire. In an ideal system, the conversion between mechanical and electrical energy would reach 100% efficiency. In the actual system part of the 20 KW is lost to internal resistance of the wire, plasma and ionosphere, while the drag force is increased by residual air drag. The 20 KW PMG system as designed is estimated to provide 18.7 KW net power to the load at total drag loss of 20.4 KJ/sec, or an overall efficiency of 92%. Similar systems using heavier wire appear capable of producing power levels in excess of 1 Megawatt at voltages of 2-4 KV, with conversion efficiency between mechanical and electrical power better than 95%. The hollow cathode based system should be readily reversible from generator to motor operation by driving a reverse current using onboard power.

  13. The Satellite Nuclear Power Station - An option for future power generation.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.

    1973-01-01

    A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.

  14. Power generation using sugar cane bagasse: A heat recovery analysis

    NASA Astrophysics Data System (ADS)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and

  15. Experiments on H2-O2MHD power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1980-01-01

    Magnetohydrodynamic power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high-field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, axial duct location within the magnetic field, generator loading, B-field strength, and electrode breakdown voltage were investigated. For the operating conditions of these experiments, it is found that the power output increases with the square of the B-field and can be limited by choking of the channel or interelectrode voltage breakdown which occurs at Hall fields greater than 50 volts/insulator. Peak power densities of greater than 100 MW/cu M were achieved.

  16. Aerospace bibliography, seventh edition

    NASA Technical Reports Server (NTRS)

    Blashfield, J. F. (Compiler)

    1983-01-01

    Space travel, planetary probes, applications satellites, manned spaceflight, the impacts of space exploration, future space activities, astronomy, exobiology, aeronautics, energy, space and the humanities, and aerospace education are covered.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: A comparison of the technical communications practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.

  18. A predication model for combustion modes of the scramjet-powered aerospace vehicle based on the nonlinear features of the isolator flow field

    NASA Astrophysics Data System (ADS)

    Yang, Qingchun; Wang, Hongxin; Chetehouna, Khaled; Gascoin, Nicolas

    2017-01-01

    The supersonic combustion ramjet (scramjet) engine remains the most promising airbreathing engine cycle for hypersonic flight, particularly the high-performance dual-mode scramjet in the range of flight Mach number from 4 to 7, because it can operates under different combustion modes. Isolator is a very key component of the dual-mode scramjet engine. In this paper, nonlinear characteristics of combustion mode transition is theoretically analyzed. The discontinuous sudden changes of static pressure and Mach number are obtained as the mode transition occurs, which emphasizing the importance of predication and control of combustion modes. In this paper, a predication model of different combustion modes is developed based on these these nonlinear features in the isolator flow field. it can provide a valuable reference for control system design of the scramjet-powered aerospace vehicle.

  19. Solid-State Power Generating Microdevices for Distributed Space System Architectures

    NASA Technical Reports Server (NTRS)

    Fleurial, J.-P.; Patel, J.; Snyder, G. J.; Huang, C.-K.; Averback, R.; Hill, C.; Chen, G.

    2001-01-01

    Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Conventional power generating devices become inefficient at very low temperatures (temperatures lower than 200 K encountered during Mars missions for example) and rechargeable energy storage devices cannot be operated thereby limiting mission duration. At elevated temperatures (for example for planned solar probe or Venus lander missions), thin film interdiffusion destroys electronic devices used for generating and storing power. Solar power generation strongly depends upon the light intensity, which falls rapidly in deep interplanetary missions (beyond 5 AU), and in planetary missions in the sun shadow or in dusty environments (Mars, for example). Radioisotope thermoelectric generators (RTGs) have been successfully used for a number of deep space missions RTGs. However, their energy conversion efficiency and specific power characteristics are quite low, and this technology has been limited to relatively large systems (more than 100 W). The National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) have been planning the use of much smaller spacecrafts that will incorporate a variety of microdevices and miniature vehicles such as microdetectors, microsensors, and microrovers. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Novel technologies that will function reliably over a long duration mission (ten years and over), in harsh environments (temperature, pressure, and atmosphere) must be developed to enable the success of future space missions. It is also expected that such micropower sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Additional information is contained in the original

  20. NASA Deputy Administrator Tours Bigelow Aerospace

    NASA Image and Video Library

    2011-02-04

    Bigelow Aerospace President Robert Bigelow talks during a press conference shortly after he and NASA Deputy Administrator Lori Garver toured the Bigelow Aerospace facilities on Friday, Feb. 4, 2011, in Las Vegas. NASA has been discussing potential partnership opportunities with Bigelow for its inflatable habitat technologies as part of NASA's goal to develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  1. NASA/DoD Aerospace Knowledge Diffusion Research Project. Report Number 14. Engineering Work and Information Use in Aerospace: Results of a Telephone Survey

    DTIC Science & Technology

    1992-10-01

    and superficial. The results of engineering information studies have not accumulated to form a significant body of knowledge that can be used to...Aerospace Kmowledge Diffits1ion. Studies indicate that timely access to STI can increase productivity and innovation and help aerospace engineers and...scientists maintain and improve their professional skills. These same studies demonstrate, however, how little is known about aerospace knowledge diffusion or

  2. Ceramic Integration Technologies for Aerospace and Energy Systems: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2007-01-01

    Ceramic integration technology has been recognized as an enabling technology for the implementation of advanced ceramic systems in a number of high-temperature applications in aerospace, power generation, nuclear, chemical, and electronic industries. Various ceramic integration technologies (joining, brazing, attachments, repair, etc.) play a role in fabrication and manufacturing of large and complex shaped parts of various functionalities. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Experimental results for bonding and integration of SiC based LDI fuel injector, high conductivity C/C composite based heat rejection system, solid oxide fuel cells system, ultra high temperature ceramics for leading edges, and ceramic composites for thermostructural applications will be presented. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be discussed.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 23: The communications practices of US aerospace engineering faculty and students: Results of the phase 3 survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. aerospace engineering faculty and students.

  4. Solid-State Thermionic Power Generators: An Analytical Analysis in the Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Zebarjadi, M.

    2017-07-01

    Solid-state thermionic power generators are an alternative to thermoelectric modules. In this paper, we develop an analytical model to investigate the performance of these generators in the nonlinear regime. We identify dimensionless parameters determining their performance and provide measures to estimate an acceptable range of thermal and electrical resistances of thermionic generators. We find the relation between the optimum load resistance and the internal resistance and suggest guidelines for the design of thermionic power generators. Finally, we show that in the nonlinear regime, thermionic power generators can have efficiency values higher than the state-of-the-art thermoelectric modules.

  5. 76 FR 36937 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-055)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  6. 77 FR 1955 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-001] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  7. 78 FR 36793 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-068] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  8. 75 FR 36697 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-071)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  9. 77 FR 25502 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-030)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  10. 75 FR 6407 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10- 020)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  11. 76 FR 2923 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-004)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  12. 75 FR 19662 - Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-043)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel...

  13. 75 FR 28547 - Aerospace Supplier Mission to Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... DEPARTMENT OF COMMERCE International Trade Administration Aerospace Supplier Mission to Russia...-users in Russia's aerospace market. Participating U.S. companies will receive market intelligence briefings by Russian industry experts, information on how to do business in Russia, networking opportunities...

  14. Development of Integrated Programs for Aerospace-Vehicle Design (IPAD) - IPAD user requirements

    NASA Technical Reports Server (NTRS)

    Anderton, G. L.

    1979-01-01

    Results of a requirements analysis task for Integrated Programs for Aerospace Vehicle Design (IPAD) are presented. User requirements which, in part, will shape the IPAD system design are given. Requirements considered were: generation, modification, storage, retrieval, communication, reporting, and protection of information. Data manipulation and controls on the system and the information were also considered. Specific needs relative to the product design process are also discussed.

  15. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1994. These results were presented at the Fifth Annual NASA LA2ST Grant Review Meeting held at the Langley Research Center in July of 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, lightweight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.

  16. An Exploratory Study of Thermoelectrostatic Power Generation for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Beam, Benjamin H.

    1960-01-01

    A study has been made of a process in which a solar heating cycle is combined with an electrostatic cycle for generating electrical power for space vehicle applications. The power unit, referred to as a thermoelectrostatic generator, is a thin film, solid dielectric capacitor alternately heated by solar radiation and cooled by radiant emission. The theory of operation to extract electrical power is presented. Results of an experiment to illustrate the principle are described. Estimates of the performance of this type of device in space in the vicinity of earth are included. Values of specific power of several kilowatts per kilogram of generator weight are calculated for such a device employing polyethylene terephthalate dielectric.

  17. Thermoelectrical generator powered by human body

    NASA Astrophysics Data System (ADS)

    Almasyova, Zuzana; Vala, David; Slanina, Zdenek; Idzkowski, Adam

    2017-08-01

    This article deals with the possibility of using alternative energy sources for power of biomedical sensors with low power consumption, especially using the Peltier effect sources. Energy for powering of the target device has been used from the available renewable photovoltaic effect. The work is using of "energy harvesting" or "harvest energy" produced by autonomous generator harvesting accumulate energy. It allows to start working from 0.25 V. Measuring chain consists of further circuit which is a digital monitoring device for monitoring a voltage, current and power with I2C bus interface. Using the Peltier effect was first tested in a thermocontainer with water when the water heating occurred on the basis of different temperature differential between the cold and hot side of the Peltier element result in the production of energy. Realized prototype was also experimentally tested on human skin, specifically on the back, both in idle mode and under load.

  18. Assembly and Testing of a Compact, Lightweight Homopolar Generator Power Supply

    DTIC Science & Technology

    1983-06-01

    ASSEMBLY AND TESTING OF A COMPACT, LIGHTWEIGHT HOMOPOLAR GENERATOR POWER SUPPLY J. H. Gully Center for Electromechanics The University of Texas...portable systems. The initial step in developing the power supply was to design, fabricate and test a prototype homopolar generator, attempting to...levels. SUPPORT STRUCTURE HYDRAULIC Fig. 1. Section through compact homopolar generator ~1 l-oot!:__ __ 63.80 ----~ (25. 12) ~------ 85.88

  19. Maximizing photovoltaic power generation of a space-dart configured satellite

    NASA Astrophysics Data System (ADS)

    Lee, Dae Young; Cutler, James W.; Mancewicz, Joe; Ridley, Aaron J.

    2015-06-01

    Many small satellites are power constrained due to their minimal solar panel area and the eclipse environment of low-Earth orbit. As with larger satellites, these small satellites, including CubeSats, use deployable power arrays to increase power production. This presents a design opportunity to develop various objective functions related to energy management and methods for optimizing these functions over a satellite design. A novel power generation model was created, and a simulation system was developed to evaluate various objective functions describing energy management for complex satellite designs. The model uses a spacecraft-body-fixed spherical coordinate system to analyze the complex geometry of a satellite's self-induced shadowing with computation provided by the Open Graphics Library. As an example design problem, a CubeSat configured as a space-dart with four deployable panels is optimized. Due to the fast computation speed of the solution, an exhaustive search over the design space is used to find the solar panel deployment angles which maximize total power generation. Simulation results are presented for a variety of orbit scenarios. The method is extendable to a variety of complex satellite geometries and power generation systems.

  20. Thermoelectric Power Generation Utilizing the Waste Heat from a Biomass Boiler

    NASA Astrophysics Data System (ADS)

    Brazdil, Marian; Pospisil, Jiri

    2013-07-01

    The objective of the presented work is to test the possibility of using thermoelectric power to convert flue gas waste heat from a small-scale domestic pellet boiler, and to assess the influence of a thermoelectric generator on its function. A prototype of the generator, able to be connected to an existing device, was designed, constructed, and tested. The performance of the generator as well as the impact of the generator on the operation of the boiler was investigated under various operating conditions. The boiler gained auxiliary power and could become a combined heat and power unit allowing self-sufficient operation. The created unit represents an independent source of electricity with effective use of fuel.