Sample records for aerospace structural materials

  1. NASA-UVa light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1991-01-01

    The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.

  2. Recent advances in the development of aerospace materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xuesong; Chen, Yongjun; Hu, Junling

    2018-02-01

    In recent years, much progress has been made on the development of aerospace materials for structural and engine applications. Alloys, such as Al-based alloys, Mg-based alloys, Ti-based alloys, and Ni-based alloys, are developed for aerospace industry with outstanding advantages. Composite materials, the innovative materials, are taking more and more important roles in aircrafts. However, recent aerospace materials still face some major challenges, such as insufficient mechanical properties, fretting wear, stress corrosion cracking, and corrosion. Consequently, extensive studies have been conducted to develop the next generation aerospace materials with superior mechanical performance and corrosion resistance to achieve improvements in both performance and life cycle cost. This review focuses on the following topics: (1) materials requirements in design of aircraft structures and engines, (2) recent advances in the development of aerospace materials, (3) challenges faced by recent aerospace materials, and (4) future trends in aerospace materials.

  3. NASA-UVA light aerospace alloy and structures technology program (LA(sup 2)ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1992-01-01

    The general objective of the Light Aerospace Alloy and Structures Technology (LA(sup 2)ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with Langley researchers. Specific technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanics analyses, measurement advances, and critically, a pool of educated graduate students for aerospace technologies. Four research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  4. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1996-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. Three research areas are being actively investigated, including: (1) Mechanical and environmental degradation mechanisms in advanced light metals, (2) Aerospace materials science, and (3) Mechanics of materials for light aerospace structures.

  5. Structures Technology for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Venneri, Samuel L.; Paul, Donald B.; Hopkins, Mark A.

    2000-01-01

    An overview of structures technology for future aerospace systems is given. Discussion focuses on developments in component technologies that will improve the vehicle performance, advance the technology exploitation process, and reduce system life-cycle costs. The component technologies described are smart materials and structures, multifunctional materials and structures, affordable composite structures, extreme environment structures, flexible load bearing structures, and computational methods and simulation-based design. The trends in each of the component technologies are discussed and the applicability of these technologies to future aerospace vehicles is described.

  6. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1992-01-01

    The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  7. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Here, we report on progress achieved between July I and December 31, 1996. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report are summarized as follows. Three research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures.

  8. Challenges for Insertion of Structural Nanomaterials in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sochi, Emilie J.

    2012-01-01

    In the two decades since Iijima's report on carbon nanotubes (CNT), there has been great interest in realizing the benefits of mechanical properties observed at the nanoscale in large-scale structures. The weight savings possible due to dramatic improvements in mechanical properties relative to state-of-the-art material systems can be game changing for applications like aerospace vehicles. While there has been significant progress in commercial production of CNTs, major aerospace applications that take advantage of properties offered by this material have yet to be realized. This paper provides a perspective on the technical challenges and barriers for insertion of CNTs as an emerging material technology in aerospace applications and proposes approaches that may reduce the typical timeframe for technology maturation and insertion into aerospace structures.

  9. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Research on Materials for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.

  10. High temperature arc-track resistant aerospace insulation

    NASA Technical Reports Server (NTRS)

    Dorogy, William

    1994-01-01

    The topics are presented in viewgraph form and include the following: high temperature aerospace insulation; Foster-Miller approach to develop a 300 C rated, arc-track resistant aerospace insulation; advantages and disadvantages of key structural features; summary goals and achievements of the phase 1 program; performance goals for selected materials; materials under evaluation; molecular structures of candidate polymers; candidate polymer properties; film properties; and a detailed program plan.

  11. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edger A., Jr.

    1996-01-01

    This progress report covers achievements made between January 1 and June 30, 1966 on the NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. . The accomplishments presented in this report are: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures. Collective accomplishments between January and June of 1996 include: 4 journal or proceedings publications, 1 NASA progress report, 4 presentations at national technical meetings, and 2 PhD dissertations published.

  12. Trends in aerospace structures

    NASA Technical Reports Server (NTRS)

    Card, M. F.

    1978-01-01

    Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.

  13. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  14. Mass spectrometry of aerospace materials

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1976-01-01

    Mass spectrometry is used for chemical analysis of aerospace materials and contaminants. Years of analytical aerospace experience have resulted in the development of specialized techniques of sampling and analysis which are required in order to optimize results. This work has resulted in the evolution of a hybrid method of indexing mass spectra which include both the largest peaks and the structurally significant peaks in a concise format. With this system, a library of mass spectra of aerospace materials was assembled, including the materials responsible for 80 to 90 percent of the contamination problems at Goddard Space Flight Center during the past several years.

  15. Hydrogen and advanced aerospace materials

    NASA Technical Reports Server (NTRS)

    Nelson, Howard G.

    1988-01-01

    The hydrogen embrittlement is briefly reviewed and discussed in terms of specific structural materials considered for use on a generic, hydrogen-fueled, hypersonic aerospace vehicle. A few unusual hydrogen-material incompatibility concerns are identified and some solution methodologies are discussed that could potentially lessen these concerns.

  16. NASA's activities in the conservation of strategic aerospace materials

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1980-01-01

    The United States imports 50-100 percent of certain metals critical to the aerospace industry, namely, cobalt, columbium, chromium, and tantalum. In an effort to reduce this dependence on foreign sources, NASA is planning a program called Conservation of Strategic Aerospace Materials (COSAM), which will provide technology minimizing strategic metal content in the components of aerospace structures such as aircraft engines. With a proposed starting date of October 1981, the program will consist of strategic element substitution, process technology development, and alternate materials research. NASA's two-fold pre-COSAM studies center on, first, substitution research involving nickel-base and cobalt-base superalloys (Waspaloy, Udimet-700, MAE-M247, Rene 150, HA-188) used in turbine disks, low-pressure blades, turbine blades, and combustors; and, second, alternate materials research devoted initially to investigating possible structural applications of the intermetallic alloys nickel aluminide and iron aluminide.

  17. Graphene in the Sky and Beyond

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie J.

    2014-01-01

    With the premium placed on strong, lightweight structures, carbon materials have a long history of use in aerospace applications. Graphitized carbon and carbon/carbon composites are used in thermal protection systems and heat shields, carbon fiber composites in aircraft, and more recently, carbon nanotubes have been used on spacecraft. As the newest member of this family of materials, graphene also has a number of interesting properties that intersect with unique aerospace requirements. Despite its many attractive properties, graphene-based structures and systems, like any other material used in aerospace, must clear a number of hurdles before it will be accepted for use in flight structures. Carbon fiber, for example, underwent a development period of several decades between initial discovery and large-scale application in commercial aircraft.

  18. Military handbook: Metallic materials and elements for aerospace vehicle structures, volume 1

    NASA Astrophysics Data System (ADS)

    1994-11-01

    Since many aerospace companies manufacture both commercial and military products, the standardization of metallic materials design data, which are acceptable to government procuring or certification agencies, is very beneficial to those manufacturers as well as governmental agencies. Although the design requirements for military and commercial products may differ greatly, the required design values for the strength of materials and elements and other needed material characteristics are often identical. Therefore this publication is to provide standardized design values and related design information for metallic materials and structural elements used in aerospace structures. The data contained herein or from approved items in the minutes of MIL-RDBK-5 coordination meetings are acceptable to the Air Force, the Navy, the Army, and the Federal Aviation Administration. Approval by the procuring or certificating agency must be obtained for the use of design values for products not contained herein.

  19. The development of aerospace polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1983-01-01

    Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.

  20. Probabilistic material degradation model for aerospace materials subjected to high temperature, mechanical and thermal fatigue, and creep

    NASA Technical Reports Server (NTRS)

    Boyce, L.

    1992-01-01

    A probabilistic general material strength degradation model has been developed for structural components of aerospace propulsion systems subjected to diverse random effects. The model has been implemented in two FORTRAN programs, PROMISS (Probabilistic Material Strength Simulator) and PROMISC (Probabilistic Material Strength Calibrator). PROMISS calculates the random lifetime strength of an aerospace propulsion component due to as many as eighteen diverse random effects. Results are presented in the form of probability density functions and cumulative distribution functions of lifetime strength. PROMISC calibrates the model by calculating the values of empirical material constants.

  1. Polymer and ceramic nanocomposites for aerospace applications

    NASA Astrophysics Data System (ADS)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  2. NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.

  3. NASA-UVA light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1990-01-01

    The objective of the Light Aerospace Alloy and Structures Technology Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. Individual technical objectives are established for each project. Efforts aim to produce basic understanding of material behavior, monolithic and composite alloys, processing methods, solid and mechanics analyses, measurement advances, and a pool of educated graduate students. Progress is reported for 11 areas of study.

  4. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  5. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Astrophysics Data System (ADS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-03-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  6. PREFACE: Trends in Aerospace Manufacturing 2009 International Conference

    NASA Astrophysics Data System (ADS)

    Ridgway, Keith; Gault, Rosemary; Allen, Adrian

    2011-12-01

    The aerospace industry is rapidly changing. New aircraft structures are being developed and aero-engines are becoming lighter and more environmentally friendly. In both areas, innovative materials and manufacturing methods are used in an attempt to get maximum performance for minimum cost. At the same time, the structure of the industry has changed and there has been a move from large companies designing, manufacturing components and assembling aircraft to one of large global supply chains headed by large system integrators. All these changes have forced engineers and managers to bring in innovations in design, materials, manufacturing technologies and supply chain management. In September 2009, the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield held the inaugural Trends in Aerospace Manufacturing conference (TRAM09). This brought together 28 speakers over two days, who presented in sessions on advanced manufacturing trends for the aerospace sector. Areas covered included new materials, including composites, advanced machining, state of the art additive manufacturing techniques, assembly and supply chain issues.

  7. Second Conference on NDE for Aerospace Requirements

    NASA Technical Reports Server (NTRS)

    Woodis, Kenneth W. (Compiler); Bryson, Craig C. (Compiler); Workman, Gary L. (Compiler)

    1990-01-01

    Nondestructive evaluation and inspection procedures must constantly improve rapidly in order to keep pace with corresponding advances being made in aerospace material and systems. In response to this need, the 1989 Conference was organized to provide a forum for discussion between the materials scientists, systems designers, and NDE engineers who produce current and future aerospace systems. It is anticipated that problems in current systems can be resolved more quickly and that new materials and structures can be designed and manufactured in such a way as to be more easily inspected and to perform reliably over the life cycle of the system.

  8. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1991-01-01

    The general objective of the Light Aerospace Alloy and Structures Technology (LA2ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures in close collaboration with Langley researchers. Specific technical objectives are established for each research project. Relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanic analyses, measurement advances, and a pool of educated graduate students are sought.

  9. Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Katnam, K. B.; Da Silva, L. F. M.; Young, T. M.

    2013-08-01

    Advanced composite materials have gained popularity in high-performance structural designs such as aerospace applications that require lightweight components with superior mechanical properties in order to perform in demanding service conditions as well as provide energy efficiency. However, one of the major challenges that the aerospace industry faces with advanced composites - because of their inherent complex damage behaviour - is structural repair. Composite materials are primarily damaged by mechanical loads and/or environmental conditions. If material damage is not extensive, structural repair is the only feasible solution as replacing the entire component is not cost-effective in many cases. Bonded composite repairs (e.g. scarf patches) are generally preferred as they provide enhanced stress transfer mechanisms, joint efficiencies and aerodynamic performance. With an increased usage of advanced composites in primary and secondary aerospace structural components, it is thus essential to have robust, reliable and repeatable structural bonded repair procedures to restore damaged composite components. But structural bonded repairs, especially with primary structures, pose several scientific challenges with the current existing repair technologies. In this regard, the area of structural bonded repair of composites is broadly reviewed - starting from damage assessment to automation - to identify current scientific challenges and future opportunities.

  10. Determining the Mechanical Properties of Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Wilmoth, Nathan

    2013-01-01

    Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.

  11. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1995-01-01

    The NASA-UVa Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. Here, we report on progress achieved between July 1 and December 31, 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.

  12. Real-time Monitoring Of Damage Evolution In Aerospace Materials Using Nonlinear Acoustics

    NASA Astrophysics Data System (ADS)

    Matikas, T. E.; Paipetis, A.; Kostopoulos, V.

    2008-06-01

    This work deals with the development of a novel non-destructive technique based on nonlinear acoustics, enabling real-time monitoring of material degradation in aerospace structures. When a sinusoidal ultrasonic wave of a given frequency and of sufficient amplitude is introduced into a nonlinear or an-harmonic solid, the fundamental wave distorts as it propagates, so that the second and higher harmonics of the fundamental frequency are generated. The measurement of the amplitude of these harmonics provides information on the coefficient of the second and higher order terms of the stress-strain relation for a nonlinear solid. It is demonstrated here that the material bulk nonlinear parameter for titanium alloy samples at different fatigue levels exhibits large changes compared to linear ultrasonic parameters such as velocity and attenuation. However, the use of bulk ultrasonic waves has serious disadvantages for the health monitoring of aerospace structures since it requires the placement of ultrasonic transducers on two, perfectly parallel, opposite sides of the samples. Such a setup is hardly feasible in real field conditions. For this reason, surface acoustic waves (SAW) were used in this study enabling the in-situ characterization of fatigue damage. The experimental setup for measuring the material nonlinear parameter using SAW was realised and the feasibility of the technique for health monitoring of aerospace structures was evaluated.

  13. Computational simulation of coupled material degradation processes for probabilistic lifetime strength of aerospace materials

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.

    1992-01-01

    The research included ongoing development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primative variables. These primative variable may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above described constitutive equation using actual experimental materials data together with linear regression of that data, thereby predicting values for the empirical material constraints for each effect or primative variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from the open literature for materials typically of interest to those studying aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.

  14. Overview and major characteristics of future aeronautical and space systems

    NASA Technical Reports Server (NTRS)

    Venneri, Samuel L.; Noor, Ahmed K.

    1992-01-01

    A systematic projection is made of prospective materials and structural systems' performance requirements in light of emerging applications. The applications encompass high-speed/long-range rotorcraft, advanced subsonic commercial aircraft, high speed (supersonic) commercial transports, hypersonic aircraft and missiles, extremely high-altitude cruise aircraft and missiles, and aerospace craft and launch vehicles. A tabulation is presented of the materials/structures/dynamics requirements associated with future aerospace systems, as well as the further development needs foreseen in each such case.

  15. Interdisciplinary optimum design. [of aerospace structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.

  16. Design and analysis of aerospace structures at elevated temperatures. [aircraft, missiles, and space platforms

    NASA Technical Reports Server (NTRS)

    Chang, C. I.

    1989-01-01

    An account is given of approaches that have emerged as useful in the incorporation of thermal loading considerations into advanced composite materials-based aerospace structural design practices. Sources of structural heating encompass not only propulsion system heat and aerodynamic surface heating at supersonic speeds, but the growing possibility of intense thermal fluxes from directed-energy weapons. The composite materials in question range from intrinsically nonheat-resistant polymer matrix systems to metal-matrix composites, and increasingly to such ceramic-matrix composites as carbon/carbon, which are explicitly intended for elevated temperature operation.

  17. Acoustic emission measurements of aerospace materials and structures

    NASA Technical Reports Server (NTRS)

    Sachse, Wolfgang; Gorman, Michael R.

    1993-01-01

    A development status evaluation is given for aerospace applications of AE location, detection, and source characterization. Attention is given to the neural-like processing of AE signals for graphite/epoxy. It is recommended that development efforts for AE make connections between the material failure process and source dynamics, and study the effects of composite material anisotropy and inhomogeneity on the propagation of AE waves. Broadband, as well as frequency- and wave-mode selective sensors, need to be developed.

  18. Development of methodologies for the estimation of thermal properties associated with aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.

    1993-01-01

    Thermal stress analyses are an important aspect in the development of aerospace vehicles such as the National Aero-Space Plane (NASP) and the High-Speed Civil Transport (HSCT) at NASA-LaRC. These analyses require knowledge of the temperature within the structures which consequently necessitates the need for thermal property data. The initial goal of this research effort was to develop a methodology for the estimation of thermal properties of aerospace structural materials at room temperature and to develop a procedure to optimize the estimation process. The estimation procedure was implemented utilizing a general purpose finite element code. In addition, an optimization procedure was developed and implemented to determine critical experimental parameters to optimize the estimation procedure. Finally, preliminary experiments were conducted at the Aircraft Structures Branch (ASB) laboratory.

  19. Development of methodologies for the estimation of thermal properties associated with aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Scott, Elaine P.

    1993-12-01

    Thermal stress analyses are an important aspect in the development of aerospace vehicles such as the National Aero-Space Plane (NASP) and the High-Speed Civil Transport (HSCT) at NASA-LaRC. These analyses require knowledge of the temperature within the structures which consequently necessitates the need for thermal property data. The initial goal of this research effort was to develop a methodology for the estimation of thermal properties of aerospace structural materials at room temperature and to develop a procedure to optimize the estimation process. The estimation procedure was implemented utilizing a general purpose finite element code. In addition, an optimization procedure was developed and implemented to determine critical experimental parameters to optimize the estimation procedure. Finally, preliminary experiments were conducted at the Aircraft Structures Branch (ASB) laboratory.

  20. Using Aerospace Technology To Design Orthopedic Implants

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Mraz, P. J.; Davy, D. T.

    1996-01-01

    Technology originally developed to optimize designs of composite-material aerospace structural components used to develop method for optimizing designs of orthopedic implants. Development effort focused on designing knee implants, long-term goal to develop method for optimizing designs of orthopedic implants in general.

  1. The development of Nb-based advanced intermetallic alloys for structural applications

    NASA Astrophysics Data System (ADS)

    Subramanian, P. R.; Mendiratta, M. G.; Dimiduk, D. M.

    1996-01-01

    A new generation of refractory material systems with significant increases in temperature capability is required to meet the demands of future aerospace applications. Such materials require a balance of properties such as low-temperature damage tolerance, high-temperature strength, creep resistance, and superior environmental stability for implementation in advanced aerospace systems. Systems incorporating niobium-based beta alloys and intermetallic compounds have the potential for meeting these requirements.

  2. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.

  3. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  4. Probabilistic lifetime strength of aerospace materials via computational simulation

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Keating, Jerome P.; Lovelace, Thomas B.; Bast, Callie C.

    1991-01-01

    The results of a second year effort of a research program are presented. The research included development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic phenomenological constitutive relationship, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects of primitive variables. These primitive variables often originate in the environment and may include stress from loading, temperature, chemical, or radiation attack. This multifactor interaction constitutive equation is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the constitutive equation using actual experimental materials data together with the multiple linear regression of that data.

  5. Ultrasonic Characterization of Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  6. Futurepath: The Story of Research and Technology at NASA Lewis Research Center. Structures for Flight Propulsion, ARC Sprayed Monotape, National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.

  7. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology.

  8. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep, and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    The results of a fourth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA) are presented. The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue, or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation was randomized and is included in the computer program, PROMISC. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.

  9. NASA R and T aerospace plane vehicles: Progress and plans

    NASA Technical Reports Server (NTRS)

    Dixon, S. C.

    1985-01-01

    Progress made in key technologies such as materials, structures, aerothermodynamics, hypersonic aerodynamics, and hypersonic airbreathing propulsion are reported. Advances were made in more generic, areas such as active controls, flight computer hardware and software, and interdisciplinary analytical design methodology. These technology advances coupled with the development of and experiences with the Space Shuttle make feasible aerospace plane-type vehicles that meet the more demanding requirements of various DOD missions and/or an all-weather Shuttle II with reduced launch costs. Technology needs and high payoff technologies, and the technology advancements in propulsion, control-configured-vehicles, aerodynamics, aerothermodynamics, aerothermal loads, and materials and structures were studied. The highest payoff technologies of materials and structures including thermal-structural analysis and high temperature test techniques are emphasized. The high priority technology of propulsion, and plans, of what remains to be done rather than firm program commitments, are briefly discussed.

  10. Graphene-magnesium nanocomposite: An advanced material for aerospace application

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Sarkar, Jit

    2018-02-01

    This work focuses on the analytical study of mechanical and thermal properties of a nanocomposite that can be obtained by reinforcing graphene in magnesium. The estimated mechanical and thermal properties of graphene-magnesium nanocomposite are much higher than magnesium and other existing alloys used in aerospace materials. We also altered the weight percentage of graphene in the composite and observed mechanical and thermal properties of the composite increase with increase in concentration of graphene reinforcement. The Young’s modulus and thermal conductivity of graphene-magnesium nanocomposite are found to be ≥165 GPa and ≥175 W/mK, respectively. Nanocomposite material with desired properties for targeted applications can also be designed by our analytical modeling technique. This graphene-magnesium nanocomposite can be used for designing improved aerospace structure systems with enhanced properties.

  11. Polymer-based composites for aerospace: An overview of IMAST results

    NASA Astrophysics Data System (ADS)

    Milella, Eva; Cammarano, Aniello

    2016-05-01

    This paper gives an overview of technological results, achieved by IMAST, the Technological Cluster on Engineering of Polymeric Composite Materials and Structures, in the completed Research Projects in the aerospace field. In this sector, the Cluster developed different solutions: lightweight multifunctional fiber-reinforced polymer composites for aeronautic structures, advanced manufacturing processes (for the optimization of energy consumption and waste reduction) and multifunctional components (e.g., thermal, electrical, acoustic and fire resistance).

  12. High-Temperature Strain Sensing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.

  13. A Unified Model for Predicting the Open Hole Tensile and Compressive Strengths of Composite Laminates for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Davidson, Paul; Pineda, Evan J.; Heinrich, Christian; Waas, Anthony M.

    2013-01-01

    The open hole tensile and compressive strengths are important design parameters in qualifying fiber reinforced laminates for a wide variety of structural applications in the aerospace industry. In this paper, we present a unified model that can be used for predicting both these strengths (tensile and compressive) using the same set of coupon level, material property data. As a prelude to the unified computational model that follows, simplified approaches, referred to as "zeroth order", "first order", etc. with increasing levels of fidelity are first presented. The results and methods presented are practical and validated against experimental data. They serve as an introductory step in establishing a virtual building block, bottom-up approach to designing future airframe structures with composite materials. The results are useful for aerospace design engineers, particularly those that deal with airframe design.

  14. Finite Element Analysis of Morphing Piezoelectric Structures Studied

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    2002-01-01

    The development of morphing aerospace structures that optimize their shape offers the potential to significantly improve the performance of existing airplanes. These morphing vehicles will operate with new capabilities to reduce noise, damp vibrations, manipulate flow, and monitor damage. Piezoelectric materials represent one of the popular materials currently being investigated for applications in morphing structures.

  15. Collection, processing, and reporting of damage tolerant design data for non-aerospace structural materials

    NASA Technical Reports Server (NTRS)

    Huber, P. D.; Gallagher, J. P.

    1994-01-01

    This report describes the organization, format and content of the NASA Johnson damage tolerant database which was created to store damage tolerant property data for non aerospace structural materials. The database is designed to store fracture toughness data (K(sub IC), K(sub c), J(sub IC) and CTOD(sub IC)), resistance curve data (K(sub R) VS. delta a (sub eff) and JR VS. delta a (sub eff)), as well as subcritical crack growth data (a vs. N and da/dN vs. delta K). The database contains complementary material property data for both stainless and alloy steels, as well as for aluminum, nickel, and titanium alloys which were not incorporated into the Damage Tolerant Design Handbook database.

  16. Study on application of aerospace technology to improve surgical implants

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Youngblood, J. L.

    1982-01-01

    The areas where aerospace technology could be used to improve the reliability and performance of metallic, orthopedic implants was assessed. Specifically, comparisons were made of material controls, design approaches, analytical methods and inspection approaches being used in the implant industry with hardware for the aerospace industries. Several areas for possible improvement were noted such as increased use of finite element stress analysis and fracture control programs on devices where the needs exist for maximum reliability and high structural performance.

  17. Spectroscopic detection and analysis of atomic emissions during industrial pulsed laser-drilling of structural aerospace alloys

    NASA Astrophysics Data System (ADS)

    Bright, Robin Michael

    The ability to adequately cool internal gas-turbine engine components in next-generation commercial and military aircraft is of extreme importance to the aerospace industry as the demand for high-efficiency engines continues to push operating temperatures higher. Pulsed laser-drilling is rapidly becoming the preferred method of creating cooling holes in high temperature components due a variety of manufacturing advantages of laser-drilling over conventional hole-drilling techniques. As cooling requirements become more demanding, the impact of drilling conditions on material removal behavior and subsequent effects on hole quality becomes critical. In this work, the development of emission spectroscopy as a method to probe the laser-drilling process is presented and subsequently applied to the study of material behavior of various structural aerospace materials during drilling. Specifically, emitted photons associated with energy level transitions within excited neutral atoms in material ejected during drilling were detected and analyzed. Systematic spectroscopic studies indicated that electron energy level populations and calculated electron temperatures within ejected material are dependent on both laser pulse energy and duration. Local thermal conditions detected by the developed method were related to the characteristics of ejected material during drilling and to final hole quality. Finally, methods of utilizing the observed relationships for spectroscopic process monitoring and control were demonstrated.

  18. 2016 Summer Series - Kenneth Cheung: Building Blocks for Aerospace Structures

    NASA Image and Video Library

    2016-06-16

    Strong, ultra-lightweight materials are expected to play a key role in the design of future aircraft and space vehicles. Lower structural mass leads to improved performance, maneuverability, efficiency, range and payload capacity. Dr. Kenneth Cheung is developing cellular composite building blocks, or digital materials, to create transformable aerostructures. In his presentation, Dr. Cheung will discuss the implications of the digital materials and morphing structures.

  19. Exploratory Investigation into the Durability of Beneficial Cold Worked Fastener Hole in Aluminum

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Clark, David A.

    1999-01-01

    Cold working fastener holes in aluminum alloys is a widely used technique in the aerospace industry for improving the fatigue performance of structures. A compressive tangential stress introduced in the material during the cold working of the hole reduces the natural tendency of the material to crack at the holes under cyclic tensile loading. It is a lucrative technique for the aerospace industry in that it provides an increase in performance without any weight cost.

  20. Multifunctional Nanotube Polymer Nanocomposites for Aerospace Applications: Adhesion between SWCNT and Polymer Matrix

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Wise, Kristopher E.; Kang, Jin Ho; Kim, Jae-Woo; Sauti, Godfrey; Lowther, Sharon E.; Lillehei, Peter T.; Smith, Michael W.; Siochi, Emilie J.; Harrison, Joycelyn S.; hide

    2008-01-01

    Multifunctional structural materials can enable a novel design space for advanced aerospace structures. A promising route to multifunctionality is the use of nanotubes possessing the desired combination of properties to enhance the characteristics of structural polymers. Recent nanotube-polymer nanocomposite studies have revealed that these materials have the potential to provide structural integrity as well as sensing and/or actuation capabilities. Judicious selection or modification of the polymer matrix to promote donor acceptor and/or dispersion interactions can improve adhesion at the interface between the nanotubes and the polymer matrix significantly. The effect of nanotube incorporation on the modulus and toughness of the polymer matrix will be presented. Very small loadings of single wall nanotubes in a polyimide matrix yield an effective sensor material that responds to strain, stress, pressure, and temperature. These materials also exhibit significant actuation in response to applied electric fields. The objective of this work is to demonstrate that physical properties of multifunctional material systems can be tailored for specific applications by controlling nanotube treatment (different types of nanotubes), concentration, and degree of alignment.

  1. Net Shape Technology in Aerospace Structures. Volume 1.

    DTIC Science & Technology

    1986-11-01

    ofI nIo n- destructive evaluation methods, such a s ult rasonic inspection, in detecting otherwise hidden defects in parts made of the material. Pratt...SCHEDULE 4. PERFORMING ORGANIZATION REPORT NUMBER( S ) 5. MONITORING ORGANIZATION REPORT NUMBER( S ) n/a n/a 6a. NAME OF PERFORMING ORGANIZATION 6b...a n/a n/a 11 TITLE (Include Security Classification) Net Shape Technology in Aerospace Structures, Vol. I (U) 12. PERSONAL AUTHOR( S ) 13a. TYPE OF

  2. Research Developments in Nondestructive Evaluation and Structural Health Monitoring for the Sustainment of Composite Aerospace Structures at NASA

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott

    2016-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable both the use and sustainment of composites in commercial aircraft structures. One key to the sustainment of these large composite structures is the rapid, in-situ characterization of a wide range of potential defects that may occur during the vehicle's life. Additionally, in many applications it is necessary to monitor changes in these materials over their lifetime. Quantitative characterization through Nondestructive Evaluation (NDE) of defects such as reduced bond strength, microcracking, and delamination damage due to impact, are of particular interest. This paper will present an overview of NASA's applications of NDE technologies being developed for the characterization and sustainment of advanced aerospace composites. The approaches presented include investigation of conventional, guided wave, and phase sensitive ultrasonic methods and infrared thermography techniques for NDE. Finally, the use of simulation tools for optimizing and validating these techniques will also be discussed.

  3. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1994. These results were presented at the Fifth Annual NASA LA2ST Grant Review Meeting held at the Langley Research Center in July of 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, lightweight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.

  4. Puncture Self-Healing Polymers for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.

    2011-01-01

    Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.

  5. MIDWEST STRUCTURAL SCIENCES CENTER 2011 ANNUAL REPORT

    DTIC Science & Technology

    2011-10-01

    S. MICHAEL SPOTTSWOOD MICHAEL J. SHEPARD , Chief Senior Aerospace Engineer Analytical Mechanics Branch Analytical...49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Confe- rence, Chicago , IL, Apr. 7-10, 2008. AIAA 2008-2077. Efstathiou C

  6. Light weight, high-speed, and self-powered wireless fiber optic sensor (WiFOS) structural health monitor system for avionics and aerospace environments

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.

  7. Damage Characterization and Real-Time Health Monitoring of Aerospace Materials Using Innovative NDE Tools

    NASA Astrophysics Data System (ADS)

    Matikas, Theodore E.

    2010-07-01

    The objective of this work is to characterize the damage and monitor in real-time aging structural components used in aerospace applications by means of advanced nondestructive evaluation techniques. Two novel experimental methodologies are used in this study, based on ultrasonic microscopy and nonlinear acoustics. It is demonstrated in this work that ultrasonic microscopy can be successfully utilized for local elastic property measurement, crack-size determination as well as for interfacial damage evaluation in high-temperature materials, such as metal matrix composites. Nonlinear acoustics enables real-time monitoring of material degradation in aerospace structures. When a sinusoidal ultrasonic wave of a given frequency and of sufficient amplitude is introduced into a nonharmonic solid, the fundamental wave distorts as it propagates, and therefore the second and higher harmonics of the fundamental frequency are generated. Measurements of the amplitude of these harmonics provide information on the coefficient of second- and higher-order terms of the stress-strain relation for a nonlinear solid. It is shown in this article that the material bulk nonlinear parameter for metallic alloy samples at different fatigue levels exhibits large changes compared to linear ultrasonic parameters, such as velocity and attenuation.

  8. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R.; Wiberley, S. E.

    1986-01-01

    Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

  9. Mechanics of Multifunctional Materials & Microsystems

    DTIC Science & Technology

    2012-03-09

    Mechanics of Materials; Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic...Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic Systems; Multifunctional...release; distribution is unlimited. 7 VISION: EXPANDED • site specific • autonomic AUTONOMIC AEROSPACE STRUCTURES • Sensing & Precognition • Self

  10. Damping in aerospace composite materials

    NASA Astrophysics Data System (ADS)

    Agneni, A.; Balis Crema, L.; Castellani, A.

    Experimental results are presented on specimens of carbon and Kevlar fibers in epoxy resin, materials used in many aerospace structures (control surfaces and wings in aircraft, large antennas in spacecraft, etc.). Some experimental methods of estimating damping ratios are first reviewed, either in the time domain or in the frequency domain. Some damping factor estimates from experimental tests are then shown; in order to evaluate the effects of the aerospace environment, damping factors have been obtained in a typical range of temperature, namely between +120 C and -120 C, and in the pressure range from room pressure to 10 exp -6 torr. Finally, a theoretical approach for predicting the bounds of the damping coefficients is shown, and prediction data are compared with experimental results.

  11. Overview of NASA/OAST efforts related to manufacturing technology

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1976-01-01

    Activities of the Office of Aeronautics and Space Technology (OAST) in a number of areas related to manufacturing technology are considered. In the computer-aided design area improved approaches are developed for the design of specific classes of components or structural subsystems. A generalized approach for the design of a complete aerospace vehicle is also developed. Efforts directed toward an increased use of composite materials in aerospace structures are also discussed and attention is given to projects concerned with the manufacture of turbine engine components.

  12. Midwest Structural Sciences Center 2010 Annual Report

    DTIC Science & Technology

    2011-06-01

    S. MICHAEL SPOTTSWOOD MICHAEL J. SHEPARD , Chief Senior Aerospace Engineer Analytical Mechanics Branch Analytical Mechanics Branch Structures...Structural Dynamics & Materials Confe- rence, Chicago , IL, Apr. 7-10, 2008. AIAA 2008-2077. Efstathiou C., Carroll J., Sehitoglu H., Lambros J

  13. NASA-UVA light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Thornton, Earl A.; Stoner, Glenn E.; Swanson, Robert E.; Wawner, Franklin E., Jr.; Wert, John A.

    1989-01-01

    The report on progress achieved in accomplishing of the NASA-UVA Light Aerospace Alloy and Structures Technology Program is presented. The objective is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys and associated thermal gradient structures in close collaboration with researchers. The efforts will produce basic understanding of material behavior, new monolithic and composite alloys, processing methods, solid and fluid mechanics analyses, measurement advances, and a pool of educated graduate students. The presented accomplishments include: research on corrosion fatigue of Al-Li-Cu alloy 2090; research on the strengthening effect of small In additions to Al-Li-Cu alloys; research on localized corrosion of Al-Li alloys; research on stress corrosion cracking of Al-Li-Cu alloys; research on fiber-matrix reaction studies (Ti-1100 and Ti-15-3 matrices containing SCS-6, SCS-9, and SCS-10 fibers); and research on methods for quantifying non-random particle distribution in materials that has led to generation of a set of computer programs that can detect and characterize clusters in particles.

  14. Directionally Solidified Eutectic Ceramics for Multifunctional Aerospace Applications

    DTIC Science & Technology

    2009-06-01

    Solidified Alumina - Titania Composites", Key Engineering Materials, 290 (2005) pp 199 - 202. PEER REVIEWED CONFERENCE PROCEEDINGS 22. A. Sayir, S...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 1 Progress Report for 2006 For the Grant Directionally Solidified Eutectic Ceramics ...incorporating structural ceramics in future aerospace applications: (1) the challenges associated with ceramics are improving strength, toughness and

  15. Projected progress in the engineering state-of-the-art. [for aerospace

    NASA Technical Reports Server (NTRS)

    Nicks, O. W.

    1978-01-01

    Projected advances in discipline areas associated with aerospace engineering are discussed. The areas examined are propulsion and power, materials and structures, aerothermodynamics, and electronics. Attention is directed to interdisciplinary relationships; one example would be the application of communications technology to the solution of propulsion problems. Examples involving projected technology changes are presented, and technology integration and societal effects are considered.

  16. Chromatography - mass spectrometry in aerospace industry

    NASA Astrophysics Data System (ADS)

    Buryak, A. K.; Serdyuk, T. M.

    2013-01-01

    The applications of chromatography - mass spectrometry in aerospace industry are considered. The primary attention is devoted to the development of physicochemical grounds of the use of various chromatography - mass spectrometry procedures to solve topical problems of this industry. Various methods for investigation of the composition of rocket fuels, surfaces of structural materials and environmental media affected by aerospace activities are compared. The application of chromatography - mass spectrometry for the development and evaluation of processes for decontaminations of equipment, industrial wastes and soils from rocket fuel components is substantiated. The bibliography includes 135 references.

  17. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.

  18. Recent advances in aerospace composite NDE

    NASA Astrophysics Data System (ADS)

    Georgeson, Gary E.

    2002-06-01

    As the aerospace industry continues to advance the design and use of composite structure, the NDE community faces the difficulties of trying to keep up. The challenges lie in manufacturing evaluation of the newest aerospace structures and materials and the in-service inspection and monitoring of damaged or aging composites. This paper provides examples of several promising NDI applications in the world of aerospace composites. Airborne (or non-contact) Ultrasonic Testing (UT) has been available for decades, but recently has generated new interest due to significant improvements in transducer design and low noise electronics. Boeing is developing inspection techniques for composite joints and core blankets using this technology. In-service inspection techniques for thick, multi-layer structures are also being advanced. One effective technique integrates the S-9 Sondicator, a traditional bond testing device, with Boeing's Mobile Automated Scanner (MAUS) platform. Composite patches have seen limited use on-aircraft, due, in part, to the difficulty of determining the quality of a bonded joint. A unique approach using Electronic Speckle Pattern Interferometry (ESPI) is showing promise as a bonded patch-inspection method. Other NDI techniques currently being developed for aerospace application are also briefly discussed.

  19. Evaluation of a Gamma Titanium Aluminide for Hypersonic Structural Applications

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Weeks, Carrell E.

    2005-01-01

    Titanium matrix composites (TMCs) have been extensively evaluated for their potential to replace conventional superalloys in high temperature structural applications, with significant weight-savings while maintaining comparable mechanical properties. New gamma titanium aluminide alloys and an appropriate fiber could offer an improved TMC for use in intermediate temperature applications (400-800 C). The purpose of this investigation is the evaluation of a gamma titanium aluminide alloy with nominal composition Ti-46.5Al-4(Cr,Nb,Ta,B)at.% as a structural material in future aerospace transportation systems, where very light-weight structures are necessary to meet the goals of advanced aerospace programs.

  20. Comparison and analysis of two modern methods in the structural health monitoring techniques in aerospace

    NASA Astrophysics Data System (ADS)

    Riahi, Mohammad; Ahmadi, Alireza

    2016-04-01

    Role of air transport in the development and expansion of world trade leading to economic growth of different countries is undeniable. Continuing the world's trade sustainability without expansion of aerospace is next to impossible. Based on enormous expenses for design, manufacturing and maintenance of different aerospace structures, correct and timely diagnosis of defects in those structures to provide for maximum safety has the highest importance. Amid all this, manufacturers of commercial and even military aircrafts are after production of less expensive, lighter, higher fuel economy and nonetheless, higher safety. As such, two events has prevailed in the aerospace industries: (1) Utilization of composites for the fuselage as well as other airplane parts, (2) using modern manufacturing methods. Arrival of two these points have created the need for upgrading of the present systems as well as innovating newer methods in diagnosing and detection of defects in aerospace structures. Despite applicability of nondestructive testing (NDT) methods in aerospace for decades, due to some limitations in the defect detection's certainty, particularly for composite material and complex geometries, shadow of doubt has fallen on maintaining complete confidence in using NDT. These days, two principal approach are ahead to tackle the above mentioned problems. First, approach for the short range is the creative and combinational mean to increase the reliability of NDT and for the long run, innovation of new methods on the basis of structural health monitoring (SHM) is in order. This has led to new philosophy in the maintenance area and in some instances; field of design has also been affected by it.

  1. Better Finite-Element Analysis of Composite Shell Structures

    NASA Technical Reports Server (NTRS)

    Clarke, Gregory

    2007-01-01

    A computer program implements a finite-element-based method of predicting the deformations of thin aerospace structures made of isotropic materials or anisotropic fiber-reinforced composite materials. The technique and corresponding software are applicable to thin shell structures in general and are particularly useful for analysis of thin beamlike members having open cross-sections (e.g. I-beams and C-channels) in which significant warping can occur.

  2. Environmentally regulated aerospace coatings

    NASA Technical Reports Server (NTRS)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  3. Characterizing the Conductivity and Enhancing the Piezoresistivity of Carbon Nanotube-Polymeric Thin Films

    PubMed Central

    Zhao, Yingjun; Schagerl, Martin; Viechtbauer, Christoph

    2017-01-01

    The concept of lightweight design is widely employed for designing and constructing aerospace structures that can sustain extreme loads while also being fuel-efficient. Popular lightweight materials such as aluminum alloy and fiber-reinforced polymers (FRPs) possess outstanding mechanical properties, but their structural integrity requires constant assessment to ensure structural safety. Next-generation structural health monitoring systems for aerospace structures should be lightweight and integrated with the structure itself. In this study, a multi-walled carbon nanotube (MWCNT)-based polymer paint was developed to detect distributed damage in lightweight structures. The thin film’s electromechanical properties were characterized via cyclic loading tests. Moreover, the thin film’s bulk conductivity was characterized by finite element modeling. PMID:28773084

  4. Development of self-powered strain sensor using mechano-luminescent ZnS:Cu and mechano-optoelectronic P3HT

    NASA Astrophysics Data System (ADS)

    Pulliam, Elias; Hoover, George; Tiparti, Dhruv; Ryu, Donghyeon

    2017-04-01

    Aerospace structural systems are prone to structural damage during their use by vibration, impact, material degradation, and other factors. Due to the harsh environments in which aerospace structures operate, aerospace structures are susceptible to various types of damage and often their structural integrity is jeopardized unless damage onset is detected in timely manner. Yet, current state-of-the-art sensor technologies are still limited for structural health monitoring (SHM) of aerospace structures due to their high power consumption, need for large form factor design, and manageable integration into aerospace structures. This study proposes a design of multilayered self-powered strain sensor by coupling mechano-luminescent (ML) property of copper-doped zinc sulfide (ZnS:Cu) and mechano-optoelectronic (MO) property of poly(3-hexylthiophene) (P3HT). One functional layer of the self-powered strain sensor is ZnS:Cu-based elastomeric composites that emit light in response to mechanical deformation. Another functional layer is P3HT-based thin films that generate direct current (DC) under light illumination and DC magnitude changes with applied strain. First, ML light emission characteristics of ZnS:Cu-based composites are studied under cyclic tensile strain with two various maximum strain up to 10% and 15% at various loading frequencies from 5 Hz to 20 Hz. Second, piezo-optical properties of P3HT-based thin films are investigated by acquiring light absorption of the thin films at various strains from 0% to 2% tensile strain. Last, micro-mechanical properties of the P3HT-based thin films are characterized using nanoindentation.

  5. A critical review of nanotechnologies for composite aerospace structures

    NASA Astrophysics Data System (ADS)

    Kostopoulos, Vassilis; Masouras, Athanasios; Baltopoulos, Athanasios; Vavouliotis, Antonios; Sotiriadis, George; Pambaguian, Laurent

    2017-03-01

    The past decade extensive efforts have been invested in understanding the nano-scale and revealing the capabilities offered by nanotechnology products to structural materials. Integration of nano-particles into fiber composites concludes to multi-scale reinforced composites and has opened a new wide range of multi-functional materials in industry. In this direction, a variety of carbon based nano-fillers has been proposed and employed, individually or in combination in hybrid forms, to approach the desired performance. Nevertheless, a major issue faced lately more seriously due to the interest of industry is on how to incorporate these nano-species into the final composite structure through existing manufacturing processes and infrastructure. This interest originates from several industrial applications needs that request the development of new multi-functional materials which combine enhanced mechanical, electrical and thermal properties. In this work, an attempt is performed to review the most representative processes and related performances reported in literature and the experience obtained on nano-enabling technologies of fiber composite materials. This review focuses on the two main composite manufacturing technologies used by the aerospace industry; Prepreg/Autoclave and Resin Transfer technologies. It addresses several approaches for nano-enabling of composites for these two routes and reports latest achieved results focusing on performance of nano-enabled fiber reinforced composites extracted from literature. Finally, this review work identifies the gap between available nano-technology integration routes and the established industrial composite manufacturing techniques and the challenges to increase the Technology Readiness Level to reach the demands for aerospace industry applications.

  6. Porous Foam Based Wick Structures for Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Silk, Eric A.

    2012-01-01

    As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.

  7. CNT-based Thermal Interface Materials for Load-Bearing Aerospace Applications

    DTIC Science & Technology

    2012-08-01

    CNT -based Thermal Interface Materials for Load-Bearing Aerospace Applications Michael Bifano, Pankaj Kaul and Vikas Prakash (PI) Department...4. TITLE AND SUBTITLE CNT -based Thermal Interface Materials for Load-Bearing Aerospace Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Z39-18 Objective Develop multifunctional CNT -epoxy Thermal Interface Materials (TIMs) for load bearing aerospace applications. Emphasis - To

  8. Soft impacts on aerospace structures

    NASA Astrophysics Data System (ADS)

    Abrate, Serge

    2016-02-01

    This article provides an overview of the literature dealing with three types of soft impacts of concern for the aerospace applications, namely impacts of rain drops, hailstones and birds against aircraft. It describes the physics of the problem as it has become better understood through experiments, analyses, and numerical simulations. Some emphasis has been placed on the material models and the numerical approaches used in modeling these three types of projectiles.

  9. New developments in aluminum for aircraft and automobiles

    NASA Technical Reports Server (NTRS)

    Petit, Jocelyn I.

    1994-01-01

    A common bond for the aircraft and automobile industry is the need for cost-efficient, lightweight structures such as provided by aluminum based materials. The topics are presented in viewgraph form and cover the following: new developments in aluminum for aircraft and automobiles; forces shaping future automotive materials needs; aluminum strength/weakness versus competitive materials; evolution of aluminum aerospace alloys; forces shaping future aircraft materials needs; fiber/metal structural laminates; and property requirements for jetliner and military transport applications.

  10. Evolution of technologies applied to space and aeronautic structures

    NASA Astrophysics Data System (ADS)

    Abiven, H.

    Advanced materials in aerospace structures and their use in reusable launch vehicles are discussed. It is found that composite materials can be used for structures with temperatures up to 400 C, and for most structures with heat shielding. For structures with temperatures up to 1000 C, metals such as Norsial, based on rene alloys could be used. It is concluded that a combination of silicon and carbon composites with Aerocoat/TH hydrotranspiration heat shielding give a heat flux resistant structure with no thermal dilation problems.

  11. Development of Methodologies for the Estimation of Thermal Properties Associated with Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.

    1996-01-01

    A thermal stress analysis is an important aspect in the design of aerospace structures and vehicles such as the High Speed Civil Transport (HSCT) at the National Aeronautics and Space Administration Langley Research Center (NASA-LaRC). These structures are complex and are often composed of numerous components fabricated from a variety of different materials. The thermal loads on these structures induce temperature variations within the structure, which in turn result in the development of thermal stresses. Therefore, a thermal stress analysis requires knowledge of the temperature distributions within the structures which consequently necessitates the need for accurate knowledge of the thermal properties, boundary conditions and thermal interface conditions associated with the structural materials. The goal of this proposed multi-year research effort was to develop estimation methodologies for the determination of the thermal properties and interface conditions associated with aerospace vehicles. Specific objectives focused on the development and implementation of optimal experimental design strategies and methodologies for the estimation of thermal properties associated with simple composite and honeycomb structures. The strategy used in this multi-year research effort was to first develop methodologies for relatively simple systems and then systematically modify these methodologies to analyze complex structures. This can be thought of as a building block approach. This strategy was intended to promote maximum usability of the resulting estimation procedure by NASA-LARC researchers through the design of in-house experimentation procedures and through the use of an existing general purpose finite element software.

  12. High-Temperature Graphite/Phenolic Composite

    NASA Technical Reports Server (NTRS)

    Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.

    1995-01-01

    Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.

  13. Quantitative NDE of Composite Structures at NASA

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Leckey, Cara A. C.; Howell, Patricia A.; Johnston, Patrick H.; Burke, Eric R.; Zalameda, Joseph N.; Winfree, William P.; Seebo, Jeffery P.

    2015-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable the use and certification of composites in aircraft structures through the Advanced Composites Project (ACP). The rapid, in situ characterization of a wide range of the composite materials and structures has become a critical concern for the industry. In many applications it is necessary to monitor changes in these materials over a long time. The quantitative characterization of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking are of particular interest. The research approaches of NASA's Nondestructive Evaluation Sciences Branch include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on current research activities related to large area NDE for rapidly characterizing aerospace composites.

  14. Unintended Consequences: How Qualification Constrains Innovation

    NASA Technical Reports Server (NTRS)

    Brice, Craig A.

    2011-01-01

    The development and implementation of new materials and manufacturing processes for aerospace application is often hindered by the high cost and long time span associated with current qualification procedures. The data requirements necessary for material and process qualification are extensive and often require millions of dollars and multiple years to complete. Furthermore, these qualification data can become obsolete for even minor changes to the processing route. This burden is a serious impediment to the pursuit of revolutionary new materials and more affordable processing methods for air vehicle structures. The application of integrated computational materials engineering methods to this problem can help to reduce the barriers to rapid insertion of new materials and processes. By establishing predictive capability for the development of microstructural features in relation to processing and relating this to critical property characteristics, a streamlined approach to qualification is possible. This paper critically examines the advantages and challenges to a modeling-assisted qualification approach for aerospace structural materials. An example of how this approach might apply towards the emerging field of additive manufacturing is discussed in detail.

  15. A Survey of Emerging Materials for Revolutionary Aerospace Vehicle Structures and Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Shuart, Mark J.; Gray, Hugh R.

    2002-01-01

    The NASA Strategic Plan identifies the long-term goal of providing safe and affordable space access, orbital transfer, and interplanetary transportation capabilities to enable scientific research, human, and robotic exploration, and the commercial development of space. Numerous scientific and engineering breakthroughs will be required to develop the technology required to achieve this goal. Critical technologies include advanced vehicle primary and secondary structure, radiation protection, propulsion and power systems, fuel storage, electronics and devices, sensors and science instruments, and medical diagnostics and treatment. Advanced materials with revolutionary new capabilities are an essential element of each of these technologies. A survey of emerging materials with applications to aerospace vehicle structures and propulsion systems was conducted to assist in long-term Agency mission planning. The comprehensive survey identified materials already under development that could be available in 5 to 10 years and those that are still in the early research phase and may not be available for another 20 to 30 years. The survey includes typical properties, a description of the material and processing methods, the current development status, and the critical issues that must be overcome to achieve commercial viability.

  16. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  17. 5th Conference on Aerospace Materials, Processes, and Environmental Technology

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Editor); Stanley, D. Cross (Editor)

    2003-01-01

    Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.

  18. Composite Structural Materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1984-01-01

    The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.

  19. Titanium/beryllium laminates: Fabrication, mechanical properties, and potential aerospace applications

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.

    1978-01-01

    The investigation indicated that structural laminates can be made which have: a modulus of elasticity comparable to steel, fracture strength of comparable to the yield strength of titanium, density comparable to aluminum, impact resistance comparable to titanium, and little or no notch sensitivity. These laminates can have stiffness and weight advantages over other materials including advanced fiber composites, in some aerospace applications where buckling resistance, vibration frequencies, and weight considerations control the design.

  20. Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding.

    PubMed

    Yuan, Ye; Sun, Xianxian; Yang, Minglong; Xu, Fan; Lin, Zaishan; Zhao, Xu; Ding, Yujie; Li, Jianjun; Yin, Weilong; Peng, Qingyu; He, Xiaodong; Li, Yibin

    2017-06-28

    Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge. Herein, inspired by the unique structure of natural wood, lightweight and highly anisotropic wood-derived carbon composite EMI shielding materials have been prepared which possess not only high EMI shielding performance and mechanical stable characteristics, but also possess thermally stable properties, outperforming those metals, conductive polymers, and their composites. The newly developed low-cost materials are promising for specific applications in aerospace electronic devices, especially regarding extreme temperatures.

  1. Vacuum investment cast PH13-8Mo corrosion resistant steel. (SAE standard)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-07-01

    An industry-wide interest has arisen with regards to the properties and capabilities of investment cast PH 13-8Mo corrosion resistant steel. Specifically of interest are the structural applications in the aerospace industry for this product heat treated to the H1000 condition. The objective of this AMEC cooperative test program was to generate and compile useful data for aerospace structural evaluation of investment cast PH 13-8Mo heat treated to H1000. The determination was made of overall mechanical properties, fatigue, fracture toughness, and crack growth data along with basic microstructural evaluation of the investment cast material. The evaluation of mechanical property variations betweenmore » cast and machined tensile specimens and evaluation of microstructural constituents. PH 13-8Mo, H1000 investment castings for use in the aerospace industry is included.« less

  2. Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology

    NASA Technical Reports Server (NTRS)

    Griffin, D. E. (Editor); Stanley, D. C. (Editor)

    2001-01-01

    The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.

  3. International SAMPE Symposium and Exhibition, 35th, Anaheim, CA, Apr. 2-5, 1990, Proceedings. Books 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janicki, G.; Bailey, V.; Schjelderup, H.

    The present conference discusses topics in the fields of ultralightweight structures, producibility of thermoplastic composites, innovation in sandwich structures, composite failure processes, toughened materials, metal-matrix composites, advanced materials for future naval systems, thermoplastic polymers, automated composites manufacturers, advanced adhesives, emerging processes for aerospace component fabrication, and modified resin systems. Also discussed are matrix behavior for damage tolerance, composite materials repair, testing for damage tolerance, composite strength analyses, materials workplace health and safety, cost-conscious composites, bismaleimide systems, and issues facing advanced composite materials suppliers.

  4. A Case Study for Probabilistic Methods Validation (MSFC Center Director's Discretionary Fund, Project No. 94-26)

    NASA Technical Reports Server (NTRS)

    Price J. M.; Ortega, R.

    1998-01-01

    Probabilistic method is not a universally accepted approach for the design and analysis of aerospace structures. The validity of this approach must be demonstrated to encourage its acceptance as it viable design and analysis tool to estimate structural reliability. The objective of this Study is to develop a well characterized finite population of similar aerospace structures that can be used to (1) validate probabilistic codes, (2) demonstrate the basic principles behind probabilistic methods, (3) formulate general guidelines for characterization of material drivers (such as elastic modulus) when limited data is available, and (4) investigate how the drivers affect the results of sensitivity analysis at the component/failure mode level.

  5. Characterization of Carbon Nanotube Reinforced Nickel

    NASA Technical Reports Server (NTRS)

    Gill, Hansel; Hudson, Steve; Bhat, Biliyar; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Carbon nanotubes are cylindrical molecules composed of carbon atoms in a regular hexagonal arrangement. If nanotubes can be uniformly dispersed in a supporting matrix to form structural materials, the resulting structures could be significantly lighter and stronger than current aerospace materials. Work is currently being done to develop an electrolyte-based self-assembly process that produces a Carbon Nanotube/Nickel composite material with high specific strength. This process is expected to produce a lightweight metal matrix composite material, which maintains it's thermal and electrical conductivities, and is potentially suitable for applications such as advanced structures, space based optics, and cryogenic tanks.

  6. Ceramic honeycomb structures and the method thereof

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Cagliostro, Domenick E. (Inventor)

    1987-01-01

    The subject invention pertains to a method of producing an improved composite-composite honeycomb structure for aircraft or aerospace use. Specifically, the subject invention relates to a method for the production of a lightweight ceramic-ceramic composite honeycomb structure, which method comprises: (1) pyrolyzing a loosely woven fabric/binder having a honeycomb shape and having a high char yield and geometric integrity after pyrolysis at between about 700 and 1,100 C; (2) substantially evenly depositing at least one layer of ceramic material on the pyrolyzed fabric/binder of step (1); (3) recovering the coated ceramic honeycomb structure; (4) removing the pyrolyzed fabric/binder of the structure of step (3) by slow pyrolysis at between 700 and 1000 C in between about a 2 to 5% by volume oxygen atmosphere for between about 0.5 and 5 hr.; and (5) substantially evenly depositing on and within the rigid hollow honeycomb structure at least one additional layer of the same or a different ceramic material by chemical vapor deposition and chemical vapor infiltration. The honeycomb shaped ceramic articles have enhanced physical properties and are useful in aircraft and aerospace uses.

  7. Molecular dynamics modelling of mechanical properties of polymers for adaptive aerospace structures

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Michail; Drikakis, Dimitris; Asproulis, Nikolaos

    2015-02-01

    The features of adaptive structures depend on the properties of the supporting materials. For example, morphing wing structures require wing skin materials, such as rubbers that can withstand the forces imposed by the internal mechanism while maintaining the required aerodynamic properties of the aircraft. In this study, Molecular Dynamics and Minimization simulations are being used to establish well-equilibrated models of Ethylene-Propylene-Diene Monomer (EPDM) elastomer systems and investigate their mechanical properties.

  8. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 4 - Tribological materials and NDE

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L. (Editor); Achenbach, J. D. (Editor)

    1993-01-01

    The present volume on tribological materials and NDE discusses liquid lubricants for advanced aircraft engines, a liquid lubricant for space applications, solid lubricants for aeronautics, and thin solid-lubricant films in space. Attention is given to the science and technology of NDE, tools for an NDE engineering base, experimental techniques in ultrasonics for NDE and material characterization, and laser ultrasonics. Topics addressed include thermal methods of NDE and quality control, digital radiography in the aerospace industry, materials characterization by ultrasonic methods, and NDE of ceramics and ceramic composites. Also discussed are smart materials and structures, intelligent processing of materials, implementation of NDE technology on flight structures, and solid-state weld evaluation.

  9. Global Failure Modes in High Temperature Composite Structures

    NASA Technical Reports Server (NTRS)

    Knauss, W. G.

    1998-01-01

    Composite materials have been considered for many years as the major advance in the construction of energy efficient aerospace structures. Notable advances have been made in understanding the special design considerations that set composites apart from the usual "isotropic" engineering materials such as the metals. As a result, a number of significant engineering designs have been accomplished. However, one shortcoming of the currently favored composites is their relatively unforgiving behavior with respect to failure (brittleness) under seemingly mild impact conditions and large efforts are underway to rectify that situation, much along the lines of introducing thermoplastic matrix materials. Because of their relatively more pronounced (thermo) viscoelastic behavior these materials respond with "toughness" in fracture situations. From the point of view of applications requiring material strength, this property is highly desirable. This feature impacts several important and distinct engineering problems which have been' considered under this grant and cover the 1) effect of impact damage on structural (buckling) stability of composite panels, the 2) effect of time dependence on the progression of buckling instabilities, and the 3) evolution of damage and fracture at generic thickness discontinuities in structures. The latter topic has serious implications for structural stability problems (buckling failure in reinforced shell structures) as well as failure progression in stringer-reinforced shell structures. This grant has dealt with these issues. Polymer "toughness" is usually associated with uncrosslinked or thermo-plastic polymers. But, by comparison with their thermoset counterparts they tend to exhibit more pronounced time dependent material behavior; also, that time dependence can occur at lower temperatures which places restriction in the high temperature use of these "newer and tougher" materials that are not quite so serious with the thermoset matrix materials. From a structural point of view the implications of this material behavior are potentially severe in that structural failure characteristics are no longer readily observed in short term qualification tests so characteristic for aerospace structures built from typical engineering metals.

  10. Modeling and Analysis of Composite Wing Sections for Improved Aeroelastic and Vibration Characteristics Using Smart Materials

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    1996-01-01

    The objective of this research is to develop analysis procedures to investigate the coupling of composite and smart materials to improve aeroelastic and vibratory response of aerospace structures. The structural modeling must account for arbitrarily thick geometries, embedded and surface bonded sensors and actuators and imperfections, such as delamination. Changes in the dynamic response due to the presence of smart materials and delaminations is investigated. Experiments are to be performed to validate the proposed mathematical model.

  11. Mould design and manufacturing considerations of honeycomb biocomposites with transverse fibre direction for aerospace application

    NASA Astrophysics Data System (ADS)

    Manan, N. H.; Majid, D. L.; Romli, F. I.

    2016-10-01

    Sandwich structures with honeycomb core are known to significantly improve stiffness at lower weight and possess high flexural rigidity. They have found wide applications in aerospace as part of the primary structures, as well as the interior paneling and floors. High performance aluminum and aramid are the typical materials used for the purpose of honeycomb core whereas in other industries, materials such as fibre glass, carbon fibre, Nomex and also Kevlar reinforced with polymer are used. Recently, growing interest in developing composite structures with natural fibre reinforcement has also spurred research in natural fibre honeycomb material. The majority of the researches done, however, have generally emphasized on the usage of random chopped fibre and only a few are reported on development of honeycomb structure using unidirectional fibre as the reinforcement. This is mainly due to its processing difficulties, which often involve several stages to account for the arrangement of fibres and curing. Since the use of unidirectional fibre supports greater strength compared to random chopped fibre, a single-stage process in conjunction with vacuum infusion is suggested with a mould design that supports fibre arrangement in the direction of honeycomb loading.

  12. Self-healing nanocomposite using shape memory polymer and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi

    2013-04-01

    Carbon fiber reinforced composites are used in a wide range of applications in aerospace, mechanical, and civil structures. Due to the nature of material, most damage in composites, such as delaminations, are always barely visible to the naked eye, which makes it difficult to detect and repair. The investigation of biological systems has inspired the development and characterization of self-healing composites. This paper presents the development of a new type of self-healing material in order to impede damage progression and conduct in-situ damage repair in composite structures. Carbon nanotubes, which are highly conductive materials, are mixed with shape memory polymer to develop self-healing capability. The developed polymeric material is applied to carbon fiber reinforced composites to automatically heal the delamination between different layers. The carbon fiber reinforced composite laminates are manufactured using high pressure molding techniques. Tensile loading is applied to double cantilever beam specimens using an MTS hydraulic test frame. A direct current power source is used to generate heat within the damaged area. The application of thermal energy leads to re-crosslinking in shape memory polymers. Experimental results showed that the developed composite materials are capable of healing the matrix cracks and delaminations in the bonded areas of the test specimens. The developed self-healing material has the potential to be used as a novel structural material in mechanical, civil, aerospace applications.

  13. NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr.

    1993-01-01

    This report on the NASA-UVa Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from January 1, 1992 to June 30, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) powder metallurgy 2XXX alloys, (3) rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  14. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  15. Silicon Carbide Technologies for Lightweighted Aerospace Mirrors

    NASA Astrophysics Data System (ADS)

    Matson, L.; Chen, M.; Deblonk, B.; Palusinski, I.

    The use of monolithic glass and beryllium to produce lightweighted aerospace mirror systems has reached its limits due to the long lead times, high processing costs, environmental effects and launch load/weight requirements. New material solutions and manufacturing processes are required to meet DoD's directed energy weapons, reconnaissance/surveillance, and secured communications needs. Over the past several years the Air Force, MDA, and NASA has focused their efforts on the fabrication, lightweighting, and scale-up of numerous silicon carbide (SiC) based materials. It is anticipated that SiC can be utilized for most applications from cryogenic to high temperatures. This talk will focus on describing the SOA for these (near term) SiC technology solutions for making mirror structural substrates, figuring and finishing technologies being investigated to reduce cost time and cost, and non-destructive evaluation methods being investigated to help eliminate risk. Mirror structural substrates made out of advanced engineered materials (far term solutions) such as composites, foams, and microsphere arrays for ultra lightweighting will also be briefly discussed.

  16. NDE of Fiber Reinforced Foam Composite Structures for Future Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, james; Roth, Don; Hopkins, Dale

    2010-01-01

    This slide presentation reviews the complexities of non-destructive evaluation (NDE) of fiber reinforced foam composite structures to be used for aerospace vehicles in the future.Various views of fiber reinforced foam materials are shown and described. Conventional methods of NDE for composites are reviewed such as Micro-computed X-Ray Tomography, Thermography, Shearography, and Phased Array Ultrasonics (PAUT). These meth0ods appear to work well on the face sheet and face sheet ot core bond, they do not provide adequate coverage for the webs. There is a need for additional methods that will examine the webs and web to foam core bond.

  17. Structural health monitoring and impact detection for primary aircraft structures

    NASA Astrophysics Data System (ADS)

    Kosters, Eric; van Els, Thomas J.

    2010-04-01

    The increasing use of thermoplastic carbon fiber-reinforced plastic (CFRP) materials in the aerospace industry for primary aircraft structures, such as wing leading-edge surfaces and fuselage sections, has led to rapid growth in the field of structural health monitoring (SHM). Impact, vibration, and load can all cause failure, such as delamination and matrix cracking, in composite materials. Moreover, the internal material damage can occur without being visible to the human eye, making inspection of and clear insight into structural integrity difficult using currently available evaluation methods. Here, we describe the detection of impact and its localization in materials and structures by high-speed interrogation of multiple-fiber Bragg grating (FBG) sensors mounted on a composite aircraft component.

  18. Bibliography of information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.; Shaffer, R. A.; Smith, D. M.

    1973-01-01

    A bibliography of approximately 1500 reference citations related to six problem areas in the mechanics of failure in aerospace structures is presented. The bibliography represents a search of the literature published in the ten year period 1962-1972 and is largely limited to documents published in the United States. Listings are subdivided into the six problem areas: (1) life prediction of structural materials; (2) fracture toughness data; (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. An author index is included.

  19. Proceedings of USAF Structural Integrity Program (ASIP, ENSIP) conference Held in Sacramento, California on 2-4 December 1986

    DTIC Science & Technology

    1986-12-01

    Reliability Studies ............................................................ 295 NDI for Corrosion .................................................... (Not...available at time of printing) Plastic Bead Blast Materials Characterization Study ................................................ 313 In-Service... Studies Ward Rummel, Martin-Marietta Aerospace AGENDA (Continued) 2. NOI for Corrosion Jeff Rowe, Lockheed-Georgia 3. Plastic Bead Blast Materials R. D

  20. Weight optimization of an aerobrake structural concept for a lunar transfer vehicle

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.; Unal, Resit; Rowell, Lawrence F.; Rehder, John J.

    1992-01-01

    An aerobrake structural concept for a lunar transfer vehicle was weight optimized through the use of the Taguchi design method, finite element analyses, and element sizing routines. Six design parameters were chosen to represent the aerobrake structural configuration. The design parameters included honeycomb core thickness, diameter-depth ratio, shape, material, number of concentric ring frames, and number of radial frames. Each parameter was assigned three levels. The aerobrake structural configuration with the minimum weight was 44 percent less than the average weight of all the remaining satisfactory experimental configurations. In addition, the results of this study have served to bolster the advocacy of the Taguchi method for aerospace vehicle design. Both reduced analysis time and an optimized design demonstrated the applicability of the Taguchi method to aerospace vehicle design.

  1. Hierarchically-driven Approach for Quantifying Materials Uncertainty in Creep Deformation and Failure of Aerospace Materials

    DTIC Science & Technology

    2016-07-01

    characteristics and to examine the sensitivity of using such techniques for evaluating microstructure. In addition to the GUI tool, a manual describing its use has... Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures, Metallurgical and...driven approach for quanti - fying materials uncertainty in creep deformation and failure of aerspace materials, Multi-scale Structural Mechanics and

  2. Multifunctional composites for energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong

    2014-03-01

    Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.

  3. Intercalated graphite fiber composites as EMI shields in aerospace structures

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1990-01-01

    The requirements for electromagnetic interference (EMI) shielding in aerospace structures are complicated over that of ground structures by their weight limitations. As a result, the best EMI shielding materials must blend low density, high strength, and high elastic modulus with high shielding ability. In addition, fabrication considerations including penetrations and joints play a major role. The EMI shielding properties are calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compared to preliminary experimental results and to shields made from aluminum. Calculations indicate that EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding properties alone.

  4. Cost-efficient manufacturing of composite structures

    NASA Technical Reports Server (NTRS)

    Freeman, W. Tom; Davis, John G.; Johnston, Norman J.

    1991-01-01

    The Advanced Composites Technology (ACT) program is seeking research breakthroughs that will allow structures made of graphite epoxy materials to replace metals in the wings and fuselages of future aircrafts. NASA's goals are to reduce acquisition cost by 20 to 25 percent, structural weight for a resized aircraft by 40 to 50 percent, and the number of parts by half compared to current production aluminum aircraft. The innovative structural concepts, materials, and fabrication techniques emerging from the ACT program are described, and the relationship between aerospace developments and industrial, commercial, and sporting goods applications are discussed.

  5. Cyber Technology for Materials and Structures in Aeronautics and Aerospace

    NASA Technical Reports Server (NTRS)

    Pipes, R. Byron

    1999-01-01

    This report summarizes efforts undertaken during the 1998-99 program year and includes a survey of the field of computational mechanics, a discussion of biomimetics and intelligent simulation, a survey of the field of biomimetics, an illustration of biomimetics and computational mechanics through the example of the high performance composite tensile structure. In addition, the preliminary results of a state-of-the art survey of composite materials technology is presented.

  6. Nanowire modified carbon fibers for enhanced electrical energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  7. Polyimide composites: Application histories

    NASA Technical Reports Server (NTRS)

    Poveromo, L. M.

    1985-01-01

    Advanced composite hardware exposed to thermal environments above 127 C (260 F) must be fabricated from materials having resin matrices whose thermal/moisture resistance is superior to that of conventional epoxy-matrix systems. A family of polyimide resins has evolved in the last 10 years that exhibits the thermal-oxidative stability required for high-temperature technology applications. The weight and structural benefits for organic-matrix composites can now be extended by designers and materials engineers to include structures exposed to 316 F (600 F). Polyimide composite materials are now commercially available that can replace metallic or epoxy composite structures in a wide range of aerospace applications.

  8. Activities report in aerospace research, with data concerning the scientific committee NLR-NIVR, international cooperation concerning AGARD, DNW, GARTEUR and cooperation with Indonesia

    NASA Astrophysics Data System (ADS)

    Aerodynamics, flight, structures and materials, space technology and remote sensing, informatics, environment, energy supply, and equipment, were studied. Research for the Fokker-50 and 100 projects and related development of a measuring, recording, and data processing system for aircraft are described. Damage tolerance of aircraft structures and materials such as carbon/epoxy laminates with outer plies of glass, Aramid and carbon fabric, titanium alloys, and carbon fiber composites, were investigated. Fluid physics research, spacecraft attitude control system tests, and thermal vacuum research were carried out. The development of a multispectral CCD scanner, synthetic aperture radar, and side-looking airborne radar, were studied. A program to integrate aerospace informatics disciplines is described. Air traffic noise calculations, and windpower utilization research were executed. A simulation system for the satellite navigation system NAVSAT was developed. A low-speed wind tunnel LST 3x2.25 was commissioned.

  9. Applications of Materials Selection For Joining Composite/Alloy Piping Systems

    NASA Technical Reports Server (NTRS)

    Crosby, Karen E.; Smith, Brett H.; Mensah, Patrick F.; Stubblefield, Michael A.

    2001-01-01

    A study in collaboration between investigators at Southern University and Louisiana State University in Baton Rouge, Louisiana and NASA/MSFC is examining materials for modeling and analysis of heat-activated thermal coupling for joining composite to composite/alloy structures. The short-term objectives of this research are to develop a method for joining composite or alloy structures, as well as to study the effects of thermal stress on composite-to-alloy joints. This investigation will result in the selection of a suitable metallic alloy. Al-Li alloys have potential for this purpose in aerospace applications due to their excellent strength-to-weight ratio. The study of Al-Li and other alloys is of significant importance to this and other aerospace as well as offshore related interests. Further research will incorporate the use of computer aided design and rapid prototype hardware for conceptual design and verification of a potential composite piping delivery system.

  10. NASA-UVa Light Aerospace Alloy and Structures Technology Program: Aluminum-Based Materials for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1996-01-01

    This report is concerned with 'Aluminum-Based Materials for High Speed Aircraft' which was initiated to identify the technology needs associated with advanced, low-cost aluminum base materials for use as primary structural materials. Using a reference baseline aircraft, these materials concept will be further developed and evaluated both technically and economically to determine the most attractive combinations of designs, materials, and manufacturing techniques for major structural sections of an HSCT. Once this has been accomplished, the baseline aircraft will be resized, if applicable, and performance objectives and economic evaluations made to determine aircraft operating costs. The two primary objectives of this study are: (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials, and (2) to assess these materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT.

  11. In-flight fiber optic acoustic emission sensor (FAESense) system for the real time detection, localization, and classification of damage in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian

    2013-05-01

    Acoustic emission sensing is a leading structural health monitoring technique use for the early warning detection of structural damage associated with impacts, cracks, fracture, and delaminations in advanced materials. Current AE systems based on electronic PZT transducers suffer from various limitations that prevent its wide dynamic use in practical avionics and aerospace applications where weight, size and power are critical for operation. This paper describes progress towards the development of a wireless in-flight distributed fiber optic acoustic emission monitoring system (FAESense™) suitable for the onboard-unattended detection, localization, and classification of damage in avionics and aerospace structures. Fiber optic AE sensors offer significant advantages over its counterpart electronic AE sensors by using a high-density array of micron-size AE transducers distributed and multiplex over long lengths of a standard single mode optical fiber. Immediate SHM applications are found in commercial and military aircraft, helicopters, spacecraft, wind mil turbine blades, and in next generation weapon systems, as well as in the petrochemical and aerospace industries, civil structures, power utilities, and a wide spectrum of other applications.

  12. High char yield epoxy curing agents

    NASA Technical Reports Server (NTRS)

    Delvigs, P.; Serafini, T. T.; Vanucci, R. D.

    1981-01-01

    Class of imide-amine curing agents preserves structural integrity, prevents fiber release, and is fully compatible with conventional epoxy resins; agents do not detract from composite properties while greatly reducing char yield. Materials utilizing curing are used in aerospace, automotive, and other structural components where deterioration must be minimized and fiber release avoided in event of fire.

  13. Temperature and humidity dependent performance of FBG-strain sensors embedded in carbon/epoxy composites

    NASA Astrophysics Data System (ADS)

    Frövel, Malte; Carrión, Gabriel; Gutiérrez, César; Moravec, Carolina; Pintado, José María

    2009-03-01

    Fiber Bragg Grating Sensors, FBGSs, are very promising for Structural Health Monitoring, SHM, of aerospace vehicles due to their capacity to measure strain and temperature, their lightweight harnesses, their multiplexing capacities and their immunity to electromagnetic interferences, within others. They can be embedded in composite materials that are increasingly forming an important part of aerospace structures. The use of embedded FBGSs for SHM purposes is advantageous, but their response under all operative environmental conditions of an aerospace structure must be well understood for the necessary flight certification of these sensors. This paper describes the first steps ahead for a possible in future flight certification of FBGSs embedded in carbon fiber reinforced plastics, CFRP. The investigation work was focused on the validation of the dependence of the FBGS's strain sensitivity in tensile and compression load, in dry and humid condition and in a temperature range from -150°C to 120°C. The test conditions try to simulate the in service temperature and humidity range and static load condition of military aircraft. FBGSs with acrylic and with polyimide coating have been tested. The FBGSs are embedded in both, unidirectional and quasi isotropic carbon/epoxy composite material namely M21/T800 and also MTM-45-1/IM7. Conventional extensometers and strain gages have been used as reference strain sensors. The performed tests show an influence of the testing temperatures, the dry or wet specimen condition, the load direction and the coating material on the sensor strain sensitivity that should be taken into account when using these sensors.

  14. Assessment of Titanium Aluminide Alloys for High-Temperature Nuclear Structural Applications

    NASA Astrophysics Data System (ADS)

    Zhu, Hanliang; Wei, Tao; Carr, David; Harrison, Robert; Edwards, Lyndon; Hoffelner, Wolfgang; Seo, Dongyi; Maruyama, Kouichi

    2012-12-01

    Titanium aluminide (TiAl) alloys exhibit high specific strength, low density, good oxidation, corrosion, and creep resistance at elevated temperatures, making them good candidate materials for aerospace and automotive applications. TiAl alloys also show excellent radiation resistance and low neutron activation, and they can be developed to have various microstructures, allowing different combinations of properties for various extreme environments. Hence, TiAl alloys may be used in advanced nuclear systems as high-temperature structural materials. Moreover, TiAl alloys are good materials to be used for fundamental studies on microstructural effects on irradiation behavior of advanced nuclear structural materials. This article reviews the microstructure, creep, radiation, and oxidation properties of TiAl alloys in comparison with other nuclear structural materials to assess the potential of TiAl alloys as candidate structural materials for future nuclear applications.

  15. A Study of Aerospace Education Workshops Which Utilize NASA Materials and Resource Personnel

    ERIC Educational Resources Information Center

    Helton, Robert Dale

    1974-01-01

    Reports findings from two questionnaires administered to participants of aerospace workshops which utilized the National Aeronautics and Space Administration (NASA) materials and resource personnel. The findings gave a broad picture of aerospace workshops across the United States. (BR)

  16. Environmental, Safety, and Health Considerations: Composite Materials in the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Chu, Huai-Pu (Compiler)

    1994-01-01

    The Aerospace Industries Association, Suppliers of Advanced Composite Materials Association, and the National Aeronautics and Space Administration co-sponsored a conference on 'Environmental, Safety, and Health Considerations--Composite Materials in the Aerospace Industry.' The conference was held in Mesa, Arizona, on October 20-21, 1994. Seventeen papers were presented in four sessions including general information, safety, waste, and emissions from composites. Topics range from product stewardship, best work practice, biotransformation of uncured composite materials, to hazardous waste determination and offgassing of composite materials.

  17. Bibliography of information on mechanics of structural failure (hydrogen embrittlement, protective coatings, composite materials, NDE)

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.

    1976-01-01

    This bibliography is comprised of approximately 1,600 reference citations related to four problem areas in the mechanics of failure in aerospace structures. The bibliography represents a search of the literature published in the period 1962-1976, the effort being largely limited to documents published in the United States. Listings are subdivided into the four problem areas: Hydrogen Embrittlement; Protective Coatings; Composite Materials; and Nondestructive Evaluation. An author index is included.

  18. Lamb Wave Response of Fatigued Composite Samples

    NASA Technical Reports Server (NTRS)

    Seale, Michael; Smith, Barry T.; Prosser, William H.; Masters, John E.

    1994-01-01

    Composite materials are being more widely used today by aerospace, automotive, sports equipment, and a number of other commercial industries because of their advantages over conventional metals. Composites have a high strength-to-weight ratio and can be constructed to meet specific design needs. Composite structures are already in use in secondary parts of the Douglas MD-11 and are planned to be used in the new MD-12X. Plans also exist for their use in primary and secondary structures on the Boeing 777. Douglas proposed MD-XX may also incorporate composite materials into primary structures such as the wings and tail. Use of composites in these structures offers weight savings, corrosion resistance, and improved aerodynamics. Additionally, composites have been used to repair cracks in many B-1Bs where traditional repair techniques were not very effective. Plans have also been made to reinforce all of the remaining B-1s with composite materials. Verification of the structural integrity of composite components is needed to insure safe operation of these aerospace vehicles. One aspect of the use of these composites is their response to fatigue. To track this progression of fatigue in aerospace structures, a convenient method to nondestructively monitor this damage needs to be developed. Traditional NDE techniques used on metals are not easily adaptable to composites due to the inhomogeneous and anisotropic nature of these materials. Finding an effective means of nondestructively monitoring fatigue damage is extremely important to the safety and reliability of such structures. Lamb waves offer one method of evaluating these composite materials. As a material is fatigued, the modulus degrades. Since the Lamb wave velocity can be related to the modulus of the material, an effective tool can be developed to monitor fatigue damage in composites by measuring the velocity of these waves. In this work, preliminary studies have been conducted which monitor fatigue damage in composite samples using strain gage measurements as well as Lamb wave velocity measurements. A description of the test samples is followed by the results of two different measurements of Lamb wave velocity. The first technique is a contact measurement done at a single frequency, while the second involves an immersion study of Lamb waves in which dispersion curves are obtained. The results of the Lamb wave monitoring of fatigue damage is compared to the damage progression measured by strain gages. The final section discusses the results and conclusions.

  19. Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Six, Frank (Editor); Karr, Gerald R. (Editor)

    1990-01-01

    Reports on the research projects performed under the NASA/ASEE Summer Faculty Fellowship Program are presented. The program was conducted by The University of Alabama and MSFC during the period from June 4, 1990 through August 10, 1990. Some of the topics covered include: (1) Space Shuttles; (2) Space Station Freedom; (3) information systems; (4) materials and processes; (4) Space Shuttle main engine; (5) aerospace sciences; (6) mathematical models; (7) mission operations; (8) systems analysis and integration; (9) systems control; (10) structures and dynamics; (11) aerospace safety; and (12) remote sensing

  20. CCARES: A computer algorithm for the reliability analysis of laminated CMC components

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Gyekenyesi, John P.

    1993-01-01

    Structural components produced from laminated CMC (ceramic matrix composite) materials are being considered for a broad range of aerospace applications that include various structural components for the national aerospace plane, the space shuttle main engine, and advanced gas turbines. Specifically, these applications include segmented engine liners, small missile engine turbine rotors, and exhaust nozzles. Use of these materials allows for improvements in fuel efficiency due to increased engine temperatures and pressures, which in turn generate more power and thrust. Furthermore, this class of materials offers significant potential for raising the thrust-to-weight ratio of gas turbine engines by tailoring directions of high specific reliability. The emerging composite systems, particularly those with silicon nitride or silicon carbide matrix, can compete with metals in many demanding applications. Laminated CMC prototypes have already demonstrated functional capabilities at temperatures approaching 1400 C, which is well beyond the operational limits of most metallic materials. Laminated CMC material systems have several mechanical characteristics which must be carefully considered in the design process. Test bed software programs are needed that incorporate stochastic design concepts that are user friendly, computationally efficient, and have flexible architectures that readily incorporate changes in design philosophy. The CCARES (Composite Ceramics Analysis and Reliability Evaluation of Structures) program is representative of an effort to fill this need. CCARES is a public domain computer algorithm, coupled to a general purpose finite element program, which predicts the fast fracture reliability of a structural component under multiaxial loading conditions.

  1. Potential Applications of Biotechnology to Aerospace Materials.

    DTIC Science & Technology

    1986-11-01

    sulfate:(1) ms + 202 a msO4 where m is a bivalent metal. In the indirect method of bioleach- ing, the metal sulfide is oxidized by ferric ion: ms + 2Fe...possibility exists of using bioleaching or biosorption for recovery of strategic and precious metals such as cobalt, nickel, zinc, arsenic, gallium ...workshop that could be of significant interest to the Materials Laboratory including acetylene compounds , adhesives, structural materials, lubricants, and

  2. Research requirements to reduce empty weight of helicopters by use of advanced materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffstedt, D.J.

    1976-12-01

    Utilization of the new, lightweight, high-strength, aerospace structural-composite (filament/matrix) materials, when specifically designed into a new aircraft, promises reductions in structural empty weight of 12% at recurring costs competetive with metals. A program of basic and applied research and demonstration is identified with the objective of advancing the state of the art to the point where civil helicopters are confidently designed, produced, certified, and marketed by 1985. A structural empty-weight reduction of 12% was shown to significantly reduce energy consumption in modern high-performance helicopters.

  3. Influence of the Cutting Conditions in the Surface Finishing of Turned Pieces of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Huerta, M.; Arroyo, P.; Sánchez Carrilero, M.; Álvarez, M.; Salguero, J.; Marcos, M.

    2009-11-01

    Titanium is a material that, despite its high cost, is increasingly being introduced in the aerospace industry due to both, its weight, its mechanical properties and its corrosion potential, very close to that of carbon fiber based composite material. This fact allows using Ti to form Fiber Metal Laminates Machining operations are usually used in the manufacturing processes of Ti based aerospace structural elements. These elements must be machined under high surface finish requirements. Previous works have shown the relationship between the surface roughness and the tool changes in the first instants of turning processes. From these results, new tests have been performed in an aeronautical factory, in order to analyse roughness in final pieces.

  4. Permanent magnet design methodology

    NASA Technical Reports Server (NTRS)

    Leupold, Herbert A.

    1991-01-01

    Design techniques developed for the exploitation of high energy magnetically rigid materials such as Sm-Co and Nd-Fe-B have resulted in a revolution in kind rather than in degree in the design of a variety of electron guidance structures for ballistic and aerospace applications. Salient examples are listed. Several prototype models were developed. These structures are discussed in some detail: permanent magnet solenoids, transverse field sources, periodic structures, and very high field structures.

  5. Advanced Aerospace Materials by Design

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu

    2004-01-01

    The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.

  6. Materials Refining for Structural Elements From Lunar Resources

    NASA Astrophysics Data System (ADS)

    Landis, Geoffrey A.

    1998-01-01

    Use of in situ resources for construction on the Moon will require manufacturing structural materials out of lunar resources. Many materials that are currently used for aerospace and construction require materials that have low availability on the Moon. For example, graphite fiber, SiC fiber, and artificial fiber composites (such as Kevlar, Spectra, etc.) are used as advanced lightweight structural materials on Earth, but the low availability of C on the Moon makes these poor choices. Likewise the polymers used as the matrix for these composites, epoxy or polyester, also suffer from the low availability of C. Bulk paving and construction materials such as cement or concrete suffer from the low availability of water on the Moon, while asphalt, a common paving material on Earth, suffers from the low availability of C.

  7. Electrically Reconfigurable Liquid Crystalline Mirrors (Postprint)

    DTIC Science & Technology

    2018-04-24

    preparation of a structurally chiral polymer stabilizing network that enforces anchoring of a low-molar- mass liquid crystalline media with positive...crystals (LCs). The distinctive responses detailed here are enabled by the preparation of a structurally chiral polymer stabilizing network that enforces ...aerospace systems . Dynamic changes to optical material properties including absorption, diffraction, reflection, and scatter have been the subject to

  8. Radiation Exposure Effects and Shielding Analysis of Carbon Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Wilkins, Richard; Armendariz, Lupita (Technical Monitor)

    2002-01-01

    Carbon nanotube materials promise to be the basis for a variety of emerging technologies with aerospace applications. Potential applications to human space flight include spacecraft shielding, hydrogen storage, structures and fixtures and nano-electronics. Appropriate risk analysis on the properties of nanotube materials is essential for future mission safety. Along with other environmental hazards, materials used in space flight encounter a hostile radiation environment for all mission profiles, from low earth orbit to interplanetary space.

  9. Coupling Damage-Sensing Particles to the Digitial Twin Concept

    NASA Technical Reports Server (NTRS)

    Hochhalter, Jacob; Leser, William P.; Newman, John A.; Gupta, Vipul K.; Yamakov, Vesselin; Cornell, Stephen R.; Willard, Scott A.; Heber, Gerd

    2014-01-01

    The research presented herein is a first step toward integrating two emerging structural health management paradigms: digital twin and sensory materials. Digital twin is an emerging life management and certification paradigm whereby models and simulations consist of as-built vehicle state, as-experienced loads and environments, and other vehicle-specific history to enable high-fidelity modeling of individual aerospace vehicles throughout their service lives. The digital twin concept spans many disciplines, and an extensive study on the full domain is out of the scope of this study. Therefore, as it pertains to the digital twin, this research focused on one major concept: modeling specifically the as-manufactured geometry of a component and its microstructure (to the degree possible). The second aspect of this research was to develop the concept of sensory materials such that they can be employed within the digital twin framework. Sensory materials are shape-memory alloys that undergo an audible phase transformation while experiencing sufficient strain. Upon embedding sensory materials with a structural alloy, this audible transformation helps improve the reliability of crack detection especially at the early stages of crack growth. By combining these two early-stage technologies, an automated approach to evidence-based inspection and maintenance of aerospace vehicles is sought.

  10. Aerospace materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dornheim, M.A.

    1991-04-01

    A comprehensive evaluation is made of the development trends in high performance advanced aerospace structural materials applications. It is noted that the anticipated predominance of thermoplastic composite-matrix polymers in the F-22/F-23 ATF propotypes has not materialized, due both to their high materials and processing costs and the emergence of a more tractable high operating temperature thermoset, BMI, whose toughness characteristics are of the order of those associated with thermoplastics. No more than 15 percent of F-22 weight is thermoplastics; the F-23 use of such resins is nill. Throughout the advanced nonmetallics industry, reduced DOD procurements have come to represent slowmore » growth and the prospect of consolidation. Also, such lightweight Al-based metallics as the Al-Li alloys have posed a major market-share challenge to polymeric composites, as in the case of the C-17 airlifter's 6,269 lbs of such Al-Li alloys as 2090, largely in cargo floor and ramp bulkhead structures. The EFA fighter makes frequent use of SPF-DB Ti alloys in combat damage-critical components. Metal-matrix composites employing titanium aluminide matrices will be extensively used in the X-30 hypersonic aircraft program.« less

  11. Workshop on Aerospace Materials for Extreme Environments

    DTIC Science & Technology

    2009-12-01

    Materials for Titanium Alloys Machining Ukraine Volodymyr Filipov Influence of Lattice Parameter Mismatch between Fibers and Matrix on Structure and...on your own 1:00 pm Alina Ievdokymova ZrBi2-Based Tool Materials for Titanium Alloys Machining 1:30 pm Donna Ballard and Don Weaver Processing of...C.K. Gren, T.P. Hanusa, "Deposition of Alumina From Dimethylaluminum Isopropoxide " Ken Sandhage D. Lipke, Y. Zhang, Y. Liu, B. Church, and K

  12. Tensile properties of textile composites

    NASA Technical Reports Server (NTRS)

    Avva, V. Sarma; Sadler, Robert L.; Lyon, Malcolm

    1992-01-01

    The importance of textile composite materials in aerospace structural applications has been gaining momentum in recent years. With a view to better understand the suitability of these materials in aerospace applications, an experimental program was undertaken to assess the mechanical properties of these materials. Specifically, the braided textile preforms were infiltrated with suitable polymeric matrices leading to the fabrication of composite test coupons. Evaluation of the tensile properties and the analyses of the results in the form of strength moduli, Poisson's ratio, etc., for the braided composites are presented. Based on our past experience with the textile coupons, the fabrication techniques have been modified (by incorporating glass microballoons in the matrix and/or by stabilizing the braid angle along the length of the specimen with axial fibers) to achieve enhanced mechanical properties of the textile composites. This paper outlines the preliminary experimental results obtained from testing these composites.

  13. The effect of erosion on the fatigue limit of metallic materials for aerospace applications

    NASA Astrophysics Data System (ADS)

    Kordatos, E. Z.; Exarchos, D. A.; Matikas, T. E.

    2018-03-01

    This work deals with the study of the fatigue behavior of metallic materials for aerospace applications which have undergone erosion. Particularly, an innovative non-destructive methodology based on infrared lock-in thermography was applied on aluminum samples for the rapid determination of their fatigue limit. The effect of erosion on the structural integrity of materials can lead to a catastrophic failure and therefore an efficient assessment of the fatigue behavior is of high importance. Infrared thermography (IRT) as a non-destructive, non-contact, real time and full field method can be employed in order the fatigue limit to be rapidly determined. The basic principle of this method is the detection and monitoring of the intrinsically dissipated energy due to the cyclic fatigue loading. This methodology was successfully applied on both eroded and non-eroded aluminum specimens in order the severity of erosion to be evaluated.

  14. Conservation of Strategic Aerospace Materials (COSAM)

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1981-01-01

    Research efforts to reduce the dependence of the aerospace industry on strategic metals, such as cobalt (Co), columbium (Cb), tantalum (Ta), and chromium (Cr), by providing the materials technology needed to minimize the strategic metal content of critical aerospace components for gas turbine engines are addressed. Thrusts in three technology areas are identified: near term activities in the area of strategic element substitution; intermediate-range activities in the area of materials processing; and long term, high risk activities in the area of 'new classes' of high temprature metallic materials. Specifically, the role of cobalt in nickel-base and cobalt-base superalloys vital to the aerospace industry is examined along with the mechanical and physical properties of intermetallics that will contain a minimum of the stragetic metals.

  15. Optical Characterization of Window Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken K.; Clark, Natalie; Humphreys, William M., Jr.

    2013-01-01

    An optical metrology laboratory has been developed to characterize the optical properties of optical window materials to be used for aerospace applications. Several optical measurement systems have been selected and developed to measure spectral transmittance, haze, clarity, birefringence, striae, wavefront quality, and wedge. In addition to silica based glasses, several optical lightweight polymer materials and transparent ceramics have been investigated in the laboratory. The measurement systems and selected empirical results for non-silica materials are described. These measurements will be used to form the basis of acceptance criteria for selection of window materials for future aerospace vehicle and habitat designs.

  16. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-07-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  17. Structure-property relations and modeling of small crack fatigue behavior of various magnesium alloys

    NASA Astrophysics Data System (ADS)

    Bernard, Jairus Daniel

    Lightweight structural components are important to the automotive and aerospace industries so that better fuel economy can be realized. Magnesium alloys in particular are being examined to fulfill this need due to their attractive stiffness- and strength-to-weight ratios when compared to other materials. However, when introducing a material into new roles, one needs to properly characterize its mechanical properties. Fatigue behavior is especially important considering aerospace and automotive component applications. Therefore, quantifying the structure-property relationships and accurately predicting the fatigue behavior for these materials are vital. This study has two purposes. The first is to quantify the structure-property relationships for the fatigue behavior in an AM30 magnesium alloy. The second is to use the microstructural-based MultiStage Fatigue (MSF) model in order to accurately predict the fatigue behavior of three magnesium alloys: AM30, Elektron 21, and AZ61. While some studies have previously quantified the MSF material constants for several magnesium alloys, detailed research into the fatigue regimes, notably the microstructurally small crack (MSC) region, is lacking. Hence, the contribution of this work is the first of its kind to experimentally quantify the fatigue crack incubation and MSC regimes that are used for the MultiStage Fatigue model. Using a multi-faceted experimental approach, these regimes were explored with a replica method that used a dual-stage silicone based compound along with previously published in situ fatigue tests. These observations were used in calibrating the MultiStage Fatigue model.

  18. Diamondlike flake composites

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1984-01-01

    A carbon coating is vacuum arc deposited on a smooth surface of a target which is simultaneously ion beam sputtered. The bombarding ions have sufficient energy to create diamond bonds. Spalling occurs as the carbon deposit thickens. The resulting diamond-like carbon flakes are mixed with a binder or matrix material to form a composite material having improved thermal, electrical, mechanical, and tribological properties when used in aerospace structures and components.

  19. PMR polyimide composites for aerospace applications

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    Fiber reinforced PMR polyimides are finding increased acceptance as engineering materials for high performance structural applications. Prepreg materials based on this novel class of highly processable, high temperature resistant polyimides, are commercially available and the PMR concept was incorporated in several industrial applications. The status of PMR polyimides is reviewed. Emphasis is given to the chemistry, processing, and applications of the first generation PMR polyimides known as PMR-15.

  20. Literature Review: Materials with Negative Poisson’s Ratios and Potential Applications to Aerospace and Defence

    DTIC Science & Technology

    2006-08-01

    and defence industries. In fact, some materials with such anomalous (i.e. NPR) properties have been used in applications such as pyrolytic graphite...real applications such as pyrolytic graphite with NPR of -0.21 for thermal protection in aerospace (Garber, 1963), large single crystals of Ni3Al with...Foundations of Solid Mechanics, Prentice-Hall, p.353, 1968. Garber, A.M., Pyrolytic materials for thermal protection systems, Aerospace Eng., Vol

  1. Research requirements to reduce empty weight of helicopters by use of advanced materials

    NASA Technical Reports Server (NTRS)

    Hoffstedt, D. J.

    1976-01-01

    Utilization of the new, lightweight, high-strength, aerospace structural-composite (filament/matrix) materials, when specifically designed into a new aircraft, promises reductions in structural empty weight of 12 percent at recurring costs competive with metals. A program of basic and applied research and demonstration is identified with the objective of advancing the state of the art to the point where civil helicopters are confidently designed, produced, certified, and marketed by 1985. A structural empty-weight reduction of 12 percent was shown to significantly reduce energy consumption in modern high-performance helicopters.

  2. Fatigue of titanium alloys in a supersonic-cruise airplane environment

    NASA Technical Reports Server (NTRS)

    Imig, L. A.

    1976-01-01

    The test programs conducted by several aerospace companies and NASA, summarized in this paper, studied several titanium materials previously identified as having high potential for application to supersonic cruise airplane structures. These studies demonstrate that the temperature (560 K) by itself produced no significant degradation of the materials. However, the fatigue resistance of titanium-alloy structures, in which thermal and loading effects are combined, has been studied insufficiently. The predominant topic for future study of fatigue problems in Mach 3 structures should be the influences of thermal stress particularly, the effects of thermal stress on failure location.

  3. Next generation control system for reflexive aerostructures

    NASA Astrophysics Data System (ADS)

    Maddux, Michael R.; Meents, Elizabeth P.; Barnell, Thomas J.; Cable, Kristin M.; Hemmelgarn, Christopher; Margraf, Thomas W.; Havens, Ernie

    2010-04-01

    Cornerstone Research Group Inc. (CRG) has developed and demonstrated a composite structural solution called reflexive composites for aerospace applications featuring CRG's healable shape memory polymer (SMP) matrix. In reflexive composites, an integrated structural health monitoring (SHM) system autonomously monitors the structural health of composite aerospace structures, while integrated intelligent controls monitor data from the SHM system to characterize damage and initiate healing when damage is detected. Development of next generation intelligent controls for reflexive composites were initiated for the purpose of integrating prognostic health monitoring capabilities into the reflexive composite structural solution. Initial efforts involved data generation through physical inspections and mechanical testing. Compression after impact (CAI) testing was conducted on composite-reinforced shape memory polymer samples to induce damage and investigate the effectiveness of matrix healing on mechanical performance. Non-destructive evaluation (NDE) techniques were employed to observe and characterize material damage. Restoration of mechanical performance was demonstrated through healing, while NDE data showed location and size of damage and verified mitigation of damage post-healing. Data generated was used in the development of next generation reflexive controls software. Data output from the intelligent controls could serve as input to Integrated Vehicle Health Management (IVHM) systems and Integrated Resilient Aircraft Controls (IRAC). Reflexive composite technology has the ability to reduce maintenance required on composite structures through healing, offering potential to significantly extend service life of aerospace vehicles and reduce operating and lifecycle costs.

  4. Structural modeling for multicell composite rotor blades

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.

  5. Damage Simulation in Composite Materials: Why It Matters and What Is Happening Currently at NASA in This Area

    NASA Technical Reports Server (NTRS)

    McElroy, Mack; de Carvalho, Nelson; Estes, Ashley; Lin, Shih-yung

    2017-01-01

    Use of lightweight composite materials in space and aircraft structure designs is often challenging due to high costs associated with structural certification. Of primary concern in the use of composite structures is durability and damage tolerance. This concern is due to the inherent susceptibility of composite materials to both fabrication and service induced flaws. Due to a lack of general industry accepted analysis tools applicable to composites damage simulation, a certification procedure relies almost entirely on testing. It is this reliance on testing, especially compared to structures comprised of legacy metallic materials where damage simulation tools are available, that can drive costs for using composite materials in aerospace structures. The observation that use of composites can be expensive due to testing requirements is not new and as such, research on analysis tools for simulating damage in composite structures has been occurring for several decades. A convenient approach many researchers/model-developers in this area have taken is to select a specific problem relevant to aerospace structural certification and develop a model that is accurate within that scope. Some examples are open hole tension tests, compression after impact tests, low-velocity impact, damage tolerance of an embedded flaw, and fatigue crack growth to name a few. Based on the premise that running analyses is cheaper than running tests, one motivation that many researchers in this area have is that if generally applicable and reliable damage simulation tools were available the dependence on certification testing could be lessened thereby reducing overall design cost. It is generally accepted that simulation tools if applied in this manner would still need to be thoroughly validated and that composite testing will never be completely replaced by analysis. Research and development is currently occurring at NASA to create numerical damage simulation tools applicable to damage in composites. The Advanced Composites Project (ACP) at NASA Langley has supported the development of composites damage simulation tools in a consortium of aerospace companies with a goal of reducing the certification time of a commercial aircraft by 30%. And while the scope of ACP does not include spacecraft, much of the methodology and simulation capabilities can apply to spacecraft certification in the Space Launch System and Orion programs as well. Some specific applications of composite damage simulation models in a certification program are (1) evaluation of damage during service when maintenance may be difficult or impossible, (2) a tool for early design iterations, (3) gaining insight into a particular damage process and applying this insight towards a test coupon or structural design, and (4) analysis of damage scenarios that are difficult or impossible to recreate in a test. As analysis capabilities improve, these applications and more will become realized resulting in a reduction in cost for use of composites in aerospace vehicles. NASA is engaged in this process from both research and application perspectives. In addition to the background information discussed previously, this presentation covers a look at recent research at NASA in this area and some current/potential applications in the Orion program.

  6. Technical Note: Some Issues Related to the Selection of Polymers for Aerospace Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Beeson, Harold

    2004-01-01

    Materials intended for use in aerospace oxygen systems are commonly screened for oxygen compatibility following NASA STD 6001. This standard allows qualification of materials based on results provided by only one test method. Potential issues related to this practice are reviewed and recommendations are proposed that would lead to improved aerospace oxygen systems safety.

  7. Bearing and gear steels for aerospace applications

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1990-01-01

    Research in metallurgy and processing for bearing and gear steels has resulted in improvements in rolling-element bearing and gear life for aerospace application by a factor of approximately 200 over that obtained in the early 1940's. The selection and specification of a bearing or gear steel is dependent on the integration of multiple metallurgical and physical variables. For most aerospace bearings, through-hardened VIM-VAR AISI M-50 steel is the material of preference. For gears, the preferential material is case-carburized VAR AISI 9310. However, the VAR processing for this material is being replaced by VIM-VAR processing. Since case-carburized VIM-VAR M-50NiL incorporates the desirable qualities of both the AISI M-50 and AISI 9310 materials, optimal life and reliability can be achieved in both bearings and gears with a single steel. Hence, this material offers the promise of a common steel for both bearings and gears for future aerospace applications.

  8. Leaching kinetics of cobalt from the scraps of spent aerospace magnetic materials.

    PubMed

    Zhou, Xuejiao; Chen, Yongli; Yin, Jianguo; Xia, Wentang; Yuan, Xiaoli; Xiang, Xiaoyan

    2018-06-01

    Based on physicochemical properties of the scraps of spent aerospace magnetic materials, a roasting - magnetic separation followed by sulfuric acid leaching process was proposed to extract cobalt. Roasting was performed at 500 °C to remove organic impurity. Non-magnetic impurities were reduced by magnetic separation and then the raw material was sieved into desired particle sizes. Acid leaching was carried out to extract cobalt from the scraps and experimental parameters included agitation speed, particle size, initial concentration of sulfuric acid and temperature. Agitation speed higher than 300 r/min had a relatively small impact on the cobalt extraction. As the particle size reduced, the content of cobalt in the raw material decreases and the extraction of cobalt by acid leaching increased at first and decreased afterwards. Raising the initial concentration of sulfuric acid and temperature contributed to improve the cobalt extraction and the influence of temperature was more remarkable. SEM image revealed that the spent aerospace magnetic materials mainly existed in the sliced strip flake with a loose surface and porous structure. Under the experimental condition, the leaching rate of cobalt from the scraps in sulfuric acid solution could be expressed as ln(-ln(1 - α)) = lnk + nlnt. The apparent activation energy was found to be 38.33 kJ/mol and it was mainly controlled by the surface chemical reaction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Study of the Influence of Metallurgical Factors on Fatigue and Fracture of Aerospace Structural Materials

    DTIC Science & Technology

    1989-03-01

    11 II. MICROSTRUCTURE/ PROPERTY RELATIONSHIPS IN ADVANCED 12 STRUCTURAL ALLOYS A. Research Objectives 12 B. Summary of Research Efforts 12 1. Fracture...relationship is needed. Figure 5. Correlation between crack growth rates and effective 7 AK for small and large fatigue cracks in a titanium aluminide ...Microstructural/ Property Relationships in Advanced Structural Alloys Table I. Tensile and Fracture Properties of A-Fe-X Alloys in the 13 LT

  10. Probabilistic structural analysis of aerospace components using NESSUS

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Nagpal, Vinod K.; Chamis, Christos C.

    1988-01-01

    Probabilistic structural analysis of a Space Shuttle main engine turbopump blade is conducted using the computer code NESSUS (numerical evaluation of stochastic structures under stress). The goal of the analysis is to derive probabilistic characteristics of blade response given probabilistic descriptions of uncertainties in blade geometry, material properties, and temperature and pressure distributions. Probability densities are derived for critical blade responses. Risk assessment and failure life analysis is conducted assuming different failure models.

  11. Chemical Microsensor Development for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Chen, Liangyu; Biaggi-Labiosa, Azlin M.

    2013-01-01

    Numerous aerospace applications, including low-false-alarm fire detection, environmental monitoring, fuel leak detection, and engine emission monitoring, would benefit greatly from robust and low weight, cost, and power consumption chemical microsensors. NASA Glenn Research Center has been working to develop a variety of chemical microsensors with these attributes to address the aforementioned applications. Chemical microsensors using different material platforms and sensing mechanisms have been produced. Approaches using electrochemical cells, resistors, and Schottky diode platforms, combined with nano-based materials, high temperature solid electrolytes, and room temperature polymer electrolytes have been realized to enable different types of microsensors. By understanding the application needs and chemical gas species to be detected, sensing materials and unique microfabrication processes were selected and applied. The chemical microsensors were designed utilizing simple structures and the least number of microfabrication processes possible, while maintaining high yield and low cost. In this presentation, an overview of carbon dioxide (CO2), oxygen (O2), and hydrogen/hydrocarbons (H2/CxHy) microsensors and their fabrication, testing results, and applications will be described. Particular challenges associated with improving the H2/CxHy microsensor contact wire-bonding pad will be discussed. These microsensors represent our research approach and serve as major tools as we expand our sensor development toolbox. Our ultimate goal is to develop robust chemical microsensor systems for aerospace and commercial applications.

  12. How to Get It: A Guide to Defense - Related Information Resources (Librarians’ Edition, July 1998)

    DTIC Science & Technology

    1998-07-01

    Objective (ADO), Navy (No Longer Published) See: Operational Requirements (OR), Navy Advanced Materials And Process Technology Information Analysis ...Center (AMPTIAC) See also: Information Analysis Centers (IAC) Originator: AMPTIAC 201 Mill Street Rome, NY 13440-6916 Order from: Originator Cost: Yes...Structures Information and Analysis Center (ASIAC) See also: Information Analysis Centers (IAC) Originator: Aerospace Structures Information and

  13. Impact source localisation in aerospace composite structures

    NASA Astrophysics Data System (ADS)

    De Simone, Mario Emanuele; Ciampa, Francesco; Boccardi, Salvatore; Meo, Michele

    2017-12-01

    The most commonly encountered type of damage in aircraft composite structures is caused by low-velocity impacts due to foreign objects such as hail stones, tool drops and bird strikes. Often these events can cause severe internal material damage that is difficult to detect and may lead to a significant reduction of the structure’s strength and fatigue life. For this reason there is an urgent need to develop structural health monitoring systems able to localise low-velocity impacts in both metallic and composite components as they occur. This article proposes a novel monitoring system for impact localisation in aluminium and composite structures, which is able to determine the impact location in real-time without a-priori knowledge of the mechanical properties of the material. This method relies on an optimal configuration of receiving sensors, which allows linearization of well-known nonlinear systems of equations for the estimation of the impact location. The proposed algorithm is based on the time of arrival identification of the elastic waves generated by the impact source using the Akaike Information Criterion. The proposed approach was demonstrated successfully on both isotropic and orthotropic materials by using a network of closely spaced surface-bonded piezoelectric transducers. The results obtained show the validity of the proposed algorithm, since the impact sources were detected with a high level of accuracy. The proposed impact detection system overcomes current limitations of other methods and can be retrofitted easily on existing aerospace structures allowing timely detection of an impact event.

  14. Novel folding device for manufacturing aerospace composite structures

    NASA Astrophysics Data System (ADS)

    Tewfic, Tarik; Sarhadi, M.

    2000-10-01

    A new manufacturing methodology, termed shape-inclusive lay-up has been applied that allows the generation of three-dimensional preforms for the resin transfer molding (RTM) process. A flexible novel folding device for forming dry fabrics including non-crimp fabric (NCF) preform is designed and integrated with a Material Delivery System (MDS) into a robotic cell for manufacturing dry fiber composite aerospace components. The paper describes detailed design, implementation and operational performance of a prototype device. The proposed folding device has been implemented and tested by manufacturing a range of reinforcement structure preforms (C,T,J and I reinforcement preforms), normally used in aerostructure applications. A key advantage of the proposed device is its flexibility. The system is capable of manufacturing a wide range of components of various sizes without the need for reconfiguration.

  15. Advanced Materials Technology

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P. (Compiler); Teichman, L. A. (Compiler)

    1982-01-01

    Composites, polymer science, metallic materials (aluminum, titanium, and superalloys), materials processing technology, materials durability in the aerospace environment, ceramics, fatigue and fracture mechanics, tribology, and nondestructive evaluation (NDE) are discussed. Research and development activities are introduced to the nonaerospace industry. In order to provide a convenient means to help transfer aerospace technology to the commercial mainstream in a systematic manner.

  16. Smart Materials, Structures, and Mathematical Issues for Active Damage Control

    DTIC Science & Technology

    1997-10-01

    composites at both low and high velocities. The effect of low volume fractions (3% and 6%) of embedded Nitinol fibers on the impact-absorbing ability...ICI Wilton Materials Research Center General Dynamics Lockheed-Martin Hercules Aerospace Company U.S. Nitinol Owens-Corning DSB Associates...Reduction in a Plate," submitted to AIAA Journal. Paine, J. S. N., Rogers, C. A. 1993. "Characterization of Interfacial Adhesion of Nitinol Fibers

  17. Improved damage imaging in aerospace structures using a piezoceramic hybrid pin-force wave generation model

    NASA Astrophysics Data System (ADS)

    Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice

    2014-03-01

    In this study, a correlation-based imaging technique called "Excitelet" is used to monitor an aerospace grade aluminum plate, representative of an aircraft component. The principle is based on ultrasonic guided wave generation and sensing using three piezoceramic (PZT) transducers, and measurement of reflections induced by potential defects. The method uses a propagation model to correlate measured signals with a bank of signals and imaging is performed using a roundrobin procedure (Full-Matrix Capture). The formulation compares two models for the complex transducer dynamics: one where the shear stress at the tip of the PZT is considered to vary as a function of the frequency generated, and one where the PZT is discretized in order to consider the shear distribution under the PZT. This method allows taking into account the transducer dynamics and finite dimensions, multi-modal and dispersive characteristics of the material and complex interactions between guided wave and damages. Experimental validation has been conducted on an aerospace grade aluminum joint instrumented with three circular PZTs of 10 mm diameter. A magnet, acting as a reflector, is used in order to simulate a local reflection in the structure. It is demonstrated that the defect can be accurately detected and localized. The two models proposed are compared to the classical pin-force model, using narrow and broad-band excitations. The results demonstrate the potential of the proposed imaging techniques for damage monitoring of aerospace structures considering improved models for guided wave generation and propagation.

  18. Helping Aircraft Engines Lighten Up

    NASA Technical Reports Server (NTRS)

    2004-01-01

    High-temperature polyimide/carbon fiber matrix composites are developed by the Polymers Branch at NASA's Glenn Research Center. These materials can withstand high temperatures and have good processing properties, which make them particularly useful for jet and rocket engines and for components such as fan blades, bushings, and duct segments. Applying polyimide composites as components for aerospace structures can lead to substantial vehicle weight reductions. A typical polyimide composite is made up of layers of carbon or glass fibers glued together by a high-temperature polymer to make the material strong, stiff, and lightweight. Organic molecules containing carbon, nitrogen, oxygen, and hydrogen within the polyimide keep the material s density low, resulting in the light weight. The strength of a component or part made from a polyimide comes mainly from the reinforcing high-strength fibers. The strength of the carbon fibers coupled with the stiffness of polyimides allows engineers to make a very rigid structure without it being massive. Another benefit of a polyimide s suitability for aerospace applications is its reduced need for machining. When polyimide parts are removed from a mold, they are nearly in their final shape. Usually, very little machining is needed before a part is ready for use.

  19. US-Europe Workshop on Impact of Multifunctionality on Damage Evolution in Composite Materials

    DTIC Science & Technology

    2015-09-01

    Inventions (DD882) Scientific Progress See Attachment Technology Transfer Not applicable UNIVERSITY OF ILLINOIS AEROSPACE ENGINEERING...Composite Materials PI: Ioannis Chasiotis Aerospace Engineering University of Illinois at Urbana-Champaign Talbot Lab, 104 S. Wright Street, Urbana, IL...focused on the current state of corporate research in the aerospace industry which is a major potential adopter of multifunctional composites. The two

  20. Environmental effects on composite airframes: A study conducted for the ARM UAV Program (Atmospheric Radiation Measurement Unmanned Aerospace Vehicle)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noguchi, R.A.

    1994-06-01

    Composite materials are affected by environments differently than conventional airframe structural materials are. This study identifies the environmental conditions which the composite-airframe ARM UAV may encounter, and discusses the potential degradation processes composite materials may undergo when subjected to those environments. This information is intended to be useful in a follow-on program to develop equipment and procedures to prevent, detect, or otherwise mitigate significant degradation with the ultimate goal of preventing catastrophic aircraft failure.

  1. Nondestructive Evaluation for Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Cramer, Elliott; Perey, Daniel

    2015-01-01

    Nondestructive evaluation (NDE) techniques are important for enabling NASA's missions in space exploration and aeronautics. The expanded and continued use of composite materials for aerospace components and vehicles leads to a need for advanced NDE techniques capable of quantitatively characterizing damage in composites. Quantitative damage detection techniques help to ensure safety, reliability and durability of space and aeronautic vehicles. This presentation will give a broad outline of NASA's range of technical work and an overview of the NDE research performed in the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center. The presentation will focus on ongoing research in the development of NDE techniques for composite materials and structures, including development of automated data processing tools to turn NDE data into quantitative location and sizing results. Composites focused NDE research in the areas of ultrasonics, thermography, X-ray computed tomography, and NDE modeling will be discussed.

  2. Analytical techniques and instrumentation, a compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Procedures for conducting materials tests and structural analyses of aerospace components are presented as a part of the NASA technology utilization program. Some of the subjects discussed are as follows: (1) failures in cryogenic tank insulation, (2) friction characteristics of graphite and graphite-metal combinations, (3) evaluation of polymeric products in thermal-vacuum environment, (4) erosion of metals by multiple impacts with water, (5) mass loading effects on vibrated ring and shell structures, (6) nonlinear damping in structures, and (7) method for estimating reliability of randomly excited structures.

  3. Proceedings of the Spacecraft Charging Technology Conference: Executive Summary

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Whipple, E. C., Jr.; Stevens, N. J.; Minges, M. L.; Lehn, W. L.; Bunn, M. H.

    1977-01-01

    Aerospace environments are reviewed in reference to spacecraft charging. Modelling, a theoretical scheme which can be used to describe the structure of the sheath around the spacecraft and to calculate the charging currents within, is discussed. Materials characterization is considered for experimental determination of the behavior of typical spacecraft materials when exposed to simulated geomagnetic substorm conditions. Materials development is also examined for controlling and minimizing spacecraft charging or at least for distributing the charge in an equipotential manner, using electrical conductive surfaces for materials exposed to space environment.

  4. Microstructure and properties of cryomilled nickel aluminide extruded with chromium or molybdenum

    NASA Technical Reports Server (NTRS)

    Aikin, Beverly J. M.; Dickerson, Robert M.; Dickerson, Patricia O.

    1995-01-01

    Previous results from high energy, attrition milled NiAl in liquid nitrogen (cryomilled) indicate that this process can produce high temperature, creep resistant AlN particulate reinforced materials. However, the low temperature toughness of such materials is below that preferred for structural applications in aerospace engines. In order to improve the toughness of these materials, prealloyed nickel aluminide (Ni-53 atomic percent Al) powder was cryomilled and mixed with chromium or molybdenum powders. The resulting materials were hot extruded and tested for room temperature toughness and 1300 K compressive strength.

  5. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)

    1997-01-01

    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  6. Second Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Clark-Ingram, M.; Hessler, S. L.

    1997-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  7. An Overview of Innovative Strategies for Fracture Mechanics at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Glaessgen, Edward H.; Ratcliffe, James G.

    2010-01-01

    Engineering fracture mechanics has played a vital role in the development and certification of virtually every aerospace vehicle that has been developed since the mid-20th century. NASA Langley Research Center s Durability, Damage Tolerance and Reliability Branch has contributed to the development and implementation of many fracture mechanics methods aimed at predicting and characterizing damage in both metallic and composite materials. This paper presents a selection of computational, analytical and experimental strategies that have been developed by the branch for assessing damage growth under monotonic and cyclic loading and for characterizing the damage tolerance of aerospace structures

  8. The international aerospace industry - New challenges and opportunities for translation suppliers

    NASA Technical Reports Server (NTRS)

    Rowe, T.

    1986-01-01

    Attention is given to the recent trend toward internationalization in the aerospace industry and its effects on commercial and governmental translation programs. The aerospace industry, once dominated by organizations from a small number of countries, is now widely international in scope. In effect, there has been in increase in the demand for translations from German, Japanese, Chinese, French and Spanish source material while that for translation from Russian source material has remained constant. The impact of the Challenger disaster on aerospace translation programs is discussed as well as the impact of international participation in Space Station research.

  9. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  10. Application of composites to the selective reinforcement of metallic aerospace structures. [application of structural design criteria for weight reduction

    NASA Technical Reports Server (NTRS)

    Brooks, W. A., Jr.; Mathauser, E. E.; Pride, R. A.

    1972-01-01

    The use of composite materials to selectively reinforce metallic structures provides a low-cost way to reduce weight and a means of minimizing the risks usually associated with the introduction of new materials. An overview is presented of the NASA Langley Research Center programs to identify the advantages and to develop the potential of the selective reinforcement approach to the use of composites. These programs have shown that selective reinforcement provides excellent strength and stiffness improvements to metallic structures. Significant weight savings can be obtained in a cost effective manner. Flight service programs which have been initiated to validate further the merits of selective reinforcement are described.

  11. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  12. THE DEFINITION AND INTERPRETATION OF TERRESTRIAL ENVIRONMENT DESIGN INPUTS FOR VEHICLE DESIGN CONSIDERATIONS

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.

    2005-01-01

    The description and interpretation of the terrestrial environment (0-90 km altitude) is an important driver of aerospace vehicle structural, control, and thermal system design. NASA is currently in the process of reviewing the meteorological information acquired over the past decade and producing an update to the 1993 Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, sea state, etc. In addition, the respective engineering design elements will be discussed relative to the importance and influence of terrestrial environment inputs that require consideration and interpretation for design applications. Specific lessons learned that have contributed to the advancements made in the acquisition, interpretation, application and awareness of terrestrial environment inputs for aerospace engineering applications are discussed.

  13. Micromechanical Machining Processes and their Application to Aerospace Structures, Devices and Systems

    NASA Technical Reports Server (NTRS)

    Friedrich, Craig R.; Warrington, Robert O.

    1995-01-01

    Micromechanical machining processes are those micro fabrication techniques which directly remove work piece material by either a physical cutting tool or an energy process. These processes are direct and therefore they can help reduce the cost and time for prototype development of micro mechanical components and systems. This is especially true for aerospace applications where size and weight are critical, and reliability and the operating environment are an integral part of the design and development process. The micromechanical machining processes are rapidly being recognized as a complementary set of tools to traditional lithographic processes (such as LIGA) for the fabrication of micromechanical components. Worldwide efforts in the U.S., Germany, and Japan are leading to results which sometimes rival lithography at a fraction of the time and cost. Efforts to develop processes and systems specific to aerospace applications are well underway.

  14. Efficient, Multi-Scale Designs Take Flight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Engineers can solve aerospace design problems faster and more efficiently with a versatile software product that performs automated structural analysis and sizing optimization. Collier Research Corporation's HyperSizer Structural Sizing Software is a design, analysis, and documentation tool that increases productivity and standardization for a design team. Based on established aerospace structural methods for strength, stability, and stiffness, HyperSizer can be used all the way from the conceptual design to in service support. The software originated from NASA s efforts to automate its capability to perform aircraft strength analyses, structural sizing, and weight prediction and reduction. With a strategy to combine finite element analysis with an automated design procedure, NASA s Langley Research Center led the development of a software code known as ST-SIZE from 1988 to 1995. Collier Research employees were principal developers of the code along with Langley researchers. The code evolved into one that could analyze the strength and stability of stiffened panels constructed of any material, including light-weight, fiber-reinforced composites.

  15. Structural Technology Evaluation and Analysis Program (STEAP). Delivery Order 0045: Progressive Failure Analysis of Translaminar Reinforced Composite Structures

    DTIC Science & Technology

    2011-11-01

    Approved for public release; distribution unlimited. See additional restrictions described on inside pages STINFO COPY AIR...pin density, diameter and length are some of the parameters related to the effectiveness of z-pins for increasing the delamination resistance...has received considerable attention in recent years due to increased use of composite materials in aerospace and related industries. Mainly in the

  16. Metal matrix composite structural panel construction

    NASA Technical Reports Server (NTRS)

    Mcwithey, R. R.; Royster, D. M. (Inventor); Bales, T. T.

    1983-01-01

    Lightweight capped honeycomb stiffeners for use in fabricating metal or metal/matrix exterior structural panels on aerospace type vehicles and the process for fabricating same are disclosed. The stiffener stringers are formed in sheets, cut to the desired width and length and brazed in spaced relationship to a skin with the honeycomb material serving directly as the required lightweight stiffeners and not requiring separate metal encasement for the exposed honeycomb cells.

  17. Adhesive bonded structural repair. II - Surface preparation procedures, tools, equipment and facilities

    NASA Astrophysics Data System (ADS)

    Wegman, Raymond F.; Tullos, Thomas R.

    1993-10-01

    A development status report is presented on the surface preparation procedures, tools, equipment, and facilities used in adhesively-bonded repair of aerospace and similar high-performance structures. These methods extend to both metallic and polymeric surfaces. Attention is given to the phos-anodize containment system, paint removal processes, tools for cutting composite prepreg and fabric materials, autoclaves, curing ovens, vacuum bagging, and controlled atmospheres.

  18. Carbon-Nanotube-Based Epoxy Matrix Thermal Interface Materials for Thermal Management in Load Bearing Aerospace Structures

    DTIC Science & Technology

    2012-01-12

    fabrication of the composite indicate physical deformities and defects, including entanglement of carbon nanotubes and fused contacts, that are understood...working distance, and spot size, 2.5) of MWCNT array batch of which the composite was made and tested: (a) Entanglements of Individual Nanotubes...electron, photon and phonon) in these materials is critical to their reliable and robust performance, thus accommodating denser circuits 2 and higher

  19. Material characterization for morphing purposes in order to match flight requirements

    NASA Astrophysics Data System (ADS)

    Geier, Sebastian; Kintscher, Markus; Heintze, Olaf; Wierach, Peter; Monner, Hans-Peter; Wiedemann, Martin

    2012-04-01

    Natural laminar flow is one of the challenging aims of the current aerospace research. Main reasons for the aerodynamic transition from laminar into turbulent flow focusing on the airfoil-structure is the aerodynamic shape and the surface roughness. The Institute of Composite Structures and Adaptive Systems at the German Aerospace Center in Braunschweig works on the optimization of the aerodynamic-loaded structure of future aircrafts in order to increase their efficiency. Providing wing structures suited for natural laminar flow is a step towards this goal. Regarding natural laminar flow, the structural design of the leading edge of a wing is of special interest. An approach for a gap-less leading edge was developed to provide a gap- and step-less high quality surface suited for natural laminar flow and to reduce slat noise. In a national project the first generation of the 3D full scale demonstrator was successfully tested in 2010. The prototype consists of several new technologies, opening up the issue of matching the long and challenging list of airworthiness requirements simultaneously. Therefore the developed composite structure was intensively tested for further modifications according to meet requirements for abrasion, impact and deicing basically. The former presented structure consists completely of glass-fiber-prepreg (GFRP-prepreg). New functions required the addition of a new material-mix, which has to fit into the manufacturing-chain of the composite structure. In addition the hybrid composites have to withstand high loadings, high bending-induced strains (1%) and environmentally influenced aging. Moreover hot-wet cycling tests are carried out for the basic GFRP-structure in order to simulate the long term behavior of the material under extrem conditions. The presented paper shows results of four-points-bending-tests of the most critical section of the morphing leading edge device. Different composite-hybrids are built up and processed. An experimental based trend towards an optimized material design will be shown.

  20. Optimal Location of Piezoelectric Patch on Composite Structure using Viewing Method

    NASA Astrophysics Data System (ADS)

    Samyal, Rahul; Bagha, Ashok K.

    2017-08-01

    A useful material which is manufactured by mixing of two or three different materials in homogeneous level is termed as composite material. In now day’s composite materials are used in wide area such as aerospace, automobiles, satellite, bullet proof jackets, rotor blades etc. In this paper modal analysis of composite material, mixture of polyester as matrix and glass as fiber, is carried out by using ABAQUS software. The modal analysis of composite material for fiber orientation 450 is carried out. In this paper by viewing the different mode shapes of the composite material, the optimal location of piezoelectric patch is carried out.

  1. Research and Development Activities in Italy in the Field of Aerospace Structures and Materials,

    DTIC Science & Technology

    1979-03-01

    jointly by the Istituto di Tecnologia Aerospaziale of the University of Roma and Selenia, under the sponsorship of the CNR—SAS, is now under way to...satellites bearing antennas requiring very high directivity . The Istituto di Tecnologia Aeroapaziale of the University of Rome was responsable for

  2. Towards a Multi-Scale Understanding of Thermoacoustic Fatigue in Aerospace Materials and Structure

    DTIC Science & Technology

    2016-05-31

    for public release: distribution unlimited. 3.1.3 Pulsed laser Litron Nano This is a commercially available laser (Nano L200-10, Litron, Rugby , England...to disseminate recent research support by AFOSR and EOARD and associated work supported via European Union FP7 grants entitled ‘AD- VISE’ (Grant no

  3. Research and Technology 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A brief but comprehensive review is given of the technical accomplishments of the NASA Lewis Research Center during the past year. Topics covered include instrumentation and controls technology; internal fluid dynamics; aerospace materials, structures, propulsion, and electronics; space flight systems; cryogenic fluids; Space Station Freedom systems engineering, photovoltaic power module, electrical systems, and operations; and engineering and computational support.

  4. Nano-enhanced aerospace composites for increased damage tolerance and service life damage monitoring

    NASA Astrophysics Data System (ADS)

    Paipetis, A.; Matikas, T. E.; Barkoula, N. M.; Karapappas, P.; Vavouliotis, A.; Kostopoulos, V.

    2009-03-01

    This study deals with new generation composite systems which apart from the primary reinforcement at the typical fiber scale (~10 μm) are also reinforced at the nanoscale. This is performed via incorporation of nano-scale additives in typical aerospace matrix systems, such as epoxies. Carbon Nanotubes (CNTs) are ideal candidates as their extremely high aspect ratio and mechanical properties render them advantageous to other nanoscale materials. The result is the significant increase in the damage tolerance of the novel composite systems even at very low CNT loadings. By monitoring the resistance change of the CNT network, information both on the real time deformation state of the composite is obtained as a reversible change in the bulk resistance of the material, and the damage state of the material as an irreversible change in the bulk resistance of the material. The irreversible monotonic increase of the electrical resistance can be related to internal damage in the hybrid composite system and may be used as an index of the remaining lifetime of a structural component.

  5. Strain characterization of embedded aerospace smart materials using shearography

    NASA Astrophysics Data System (ADS)

    Anisimov, Andrei G.; Müller, Bernhard; Sinke, Jos; Groves, Roger M.

    2015-04-01

    The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities are used. In case of leading edges made of fibre metal laminates heater elements can be embedded between composite layers. However this local heating causes strains and stresses in the structure due to the different thermal expansion coefficients of the different laminated materials. In order to characterize the structural behaviour during thermal loading full-field strain and shape measurement can be used. In this research, a shearography instrument with three spatially-distributed shearing cameras is used to measure surface displacement gradients which give a quantitative estimation of the in- and out-of-plane surface strain components. For the experimental part, two GLARE (Glass Laminate Aluminum Reinforced Epoxy) specimens with six different embedded copper heater elements were manufactured: two copper mesh shapes (straight and S-shape), three connection techniques (soldered, spot welded and overlapped) and one straight heater element with delaminations. The surface strain behaviour of the specimens due to thermal loading was measured and analysed. The comparison of the connection techniques of heater element parts showed that the overlapped connection has the smallest effect on the surface strain distribution. Furthermore, the possibility of defect detection and defect depth characterisation close to the heater elements was also investigated.

  6. Influence of the Metal Volume Fraction on the maximum deflection and impact load of GLARE plates subjected to low velocity impact

    NASA Astrophysics Data System (ADS)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  7. Influence of the Metal Volume Fraction on the permanent dent depth and energy absorption of GLARE plates subjected to low velocity impact

    NASA Astrophysics Data System (ADS)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  8. NASA-UVA Light Aerospace Alloy and Structures Technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1995-01-01

    The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The general aim is to produce relevant data and basic understanding of material mechanical response, environment/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated students for aerospace technologies. Specific technical objectives are presented for each of the following research projects: time-temperature dependent fracture in advanced wrought ingot metallurgy, and spray deposited aluminum alloys; cryogenic temperature effects on the deformation and fracture of Al-Li-Cu-In alloys; effects of aging and temperature on the ductile fracture of AA2095 and AA2195; mechanisms of localized corrosion in alloys 2090 and 2095; hydrogen interactions in aluminum-lithium alloys 2090 and selected model alloys; mechanisms of deformation and fracture in high strength titanium alloys (effects of temperature and hydrogen and effects of temperature and microstructure); evaluations of wide-panel aluminum alloy extrusions; Al-Si-Ge alloy development; effects of texture and precipitates on mechanical property anisotropy of Al-Cu-Mg-X alloys; damage evolution in polymeric composites; and environmental effects in fatigue life prediction - modeling crack propagation in light aerospace alloys.

  9. Ballistic Fracturing of Carbon Nanotubes.

    PubMed

    Ozden, Sehmus; Machado, Leonardo D; Tiwary, ChandraSekhar; Autreto, Pedro A S; Vajtai, Robert; Barrera, Enrique V; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome.

  10. Reach and its Impact: NASA and US Aerospace Communities

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J.

    2011-01-01

    REACH is a European law that threatens to impact materials used within the US aerospace communities, including NASA. The presentation briefly covers REACH and generally, its perceived impacts to NASA and the aerospace community within the US.

  11. Electron Beam Freeform Fabrication of Titanium Alloy Gradient Structures

    NASA Technical Reports Server (NTRS)

    Brice, Craig A.; Newman, John A.; Bird, Richard Keith; Shenoy, Ravi N.; Baughman, James M.; Gupta, Vipul K.

    2014-01-01

    Historically, the structural optimization of aerospace components has been done through geometric methods. A monolithic material is chosen based on the best compromise between the competing design limiting criteria. Then the structure is geometrically optimized to give the best overall performance using the single material chosen. Functionally graded materials offer the potential to further improve structural efficiency by allowing the material composition and/or microstructural features to spatially vary within a single structure. Thus, local properties could be tailored to the local design limiting criteria. Additive manufacturing techniques enable the fabrication of such graded materials and structures. This paper presents the results of a graded material study using two titanium alloys processed using electron beam freeform fabrication, an additive manufacturing process. The results show that the two alloys uniformly mix at various ratios and the resultant static tensile properties of the mixed alloys behave according to rule-of-mixtures. Additionally, the crack growth behavior across an abrupt change from one alloy to the other shows no discontinuity and the crack smoothly transitions from one crack growth regime into another.

  12. Thermal Expansion Properties of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Green, E. F.

    1969-01-01

    Thermal expansion properties of materials used in aerospace systems are compiled into a single handbook. The data, derived from experimental measurements supplemented by information from literature sources, are presented in charts and tables arranged in two sections, covering cryogenic and elevated temperatures.

  13. Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  14. Metal Matrix Composite Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)

    2001-01-01

    Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.

  15. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    NASA Astrophysics Data System (ADS)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  16. Materials Design for Joinable, High Performance Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Glamm, Ryan James

    An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron microscopy are used to characterize the composition, size, and phase fraction evolution for the automotive alloy strengthening precipitates. It is determined that the dominant precipitate at peak hardness is a metastable T' phase. The automotive alloy is friction stir processed and found to lose hardness in the heat affected zones surrounding the nugget. A post weld heat treatment nearly recovers the heat affected zones to base hardness. The post weld heat treatment is compatible with the current automotive paint bake step, showing design for processability. Tensile tests confirm the base alloy strength meets the automotive strength goal.

  17. Advanced Materials and Coatings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2004-01-01

    In the application area of aerospace tribology, researchers and developers must guarantee the highest degree of reliability for materials, components, and systems. Even a small tribological failure can lead to catastrophic results. The absence of the required knowledge of tribology, as Professor H.P. Jost has said, can act as a severe brake in aerospace vehicle systems-and indeed has already done so. Materials and coatings must be able to withstand the aerospace environments that they encounter, such as vacuum terrestrial, ascent, and descent environments; be resistant to the degrading effects of air, water vapor, sand, foreign substances, and radiation during a lengthy service; be able to withstand the loads, stresses, and temperatures encountered form acceleration and vibration during operation; and be able to support reliable tribological operations in harsh environments throughout the mission of the vehicle. This presentation id divided into two sections: surface properties and technology practice related to aerospace tribology. The first section is concerned with the fundamental properties of the surfaces of solid-film lubricants and related materials and coatings, including carbon nanotubes. The second is devoted to applications. Case studies are used to review some aspects of real problems related to aerospace systems to help engineers and scientists to understand the tribological issues and failures. The nature of each problem is analyzed, and the tribological properties are examined. All the fundamental studies and case studies were conducted at the NASA Glenn Research Center.

  18. Micromechanics of compression failures in open hole composite laminates

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1987-01-01

    The high strength-to-weight ratio of composite materials is ideally suited for aerospace applications where they already are used in commercial and military aircraft secondary structures and will soon be used for heavily loaded primary structures. One area impeding the widespread application of composites is their inherent weakness in compressive strength when compared to the tensile properties of the same material. Furthermore, these airframe designs typically contain many bolted or riveted joints, as well as electrical and hydraulic control lines. These applications produce areas of stress concentration, and thus, further complicate the compression failure problem. Open hole compression failures which represent a typical failure mode for composite materials are addressed.

  19. Structural reliability analysis of laminated CMC components

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Palko, Joseph L.; Gyekenyesi, John P.

    1991-01-01

    For laminated ceramic matrix composite (CMC) materials to realize their full potential in aerospace applications, design methods and protocols are a necessity. The time independent failure response of these materials is focussed on and a reliability analysis is presented associated with the initiation of matrix cracking. A public domain computer algorithm is highlighted that was coupled with the laminate analysis of a finite element code and which serves as a design aid to analyze structural components made from laminated CMC materials. Issues relevant to the effect of the size of the component are discussed, and a parameter estimation procedure is presented. The estimation procedure allows three parameters to be calculated from a failure population that has an underlying Weibull distribution.

  20. Intelligent Multi-scale Sensors for Damage Identification and Mitigation in Woven Composites for Aerospace Structural Applications

    DTIC Science & Technology

    2012-08-15

    Bragg grating ( FBG ) sensors within these composite structures allows one to correlate sensor response features to “critical damage events” within the...material. The unique capabilities of this identification strategy are due to the detailed information obtained from the FBG sensors and the... FBG sensors relate to damage states not merely strain amplitudes. The research objectives of this project were therefore to:  demonstrate FBG

  1. Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.

    2014-01-01

    This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.

  2. Ultra Low Outgassing silicone performance in a simulated space ionizing radiation environment

    NASA Astrophysics Data System (ADS)

    Velderrain, M.; Malave, V.; Taylor, E. W.

    2010-09-01

    The improvement of silicone-based materials used in space and aerospace environments has garnered much attention for several decades. Most recently, an Ultra Low Outgassing™ silicone incorporating innovative reinforcing and functional fillers has shown that silicone elastomers with unique and specific properties can be developed to meet applications requiring stringent outgassing requirements. This paper will report on the next crucial step in qualifying these materials for spacecraft applications requiring chemical and physical stability in the presence of ionizing radiation. As a first step in this process, selected materials were irradiated with Co-60 gamma-rays to simulate the total dose received in near- Earth orbits. The paper will present pre-and post-irradiation response data of Ultra Low Outgassing silicone samples exposed under ambient air environment coupled with measurements of collected volatile condensable material (CVCM) and total mass loss (TML) per the standard conditions in ASTM E 595. The data will show an insignificant effect on the CVCMs and TMLs after exposure to various dosages of gamma radiation. This data may favorably impact new applications for these silicone materials for use as an improved sealant for space solar cell systems, space structures, satellite systems and aerospace systems.

  3. Slotted Waveguide Antenna Stiffened Structures (SWASS) Development for Commercial Off-the-Shelf (COTS) Radar (Briefing Charts)

    DTIC Science & Technology

    2016-10-01

    BRIEFING CHARTS) D. Zeppettella Structures Technology Branch Aerospace Vehicles Division Steve Bucca and Thomas Gage BerrieHill Research...R. WIPPERMAN, Chief Program Manager Structures Technology Branch Structures Technology Branch Aerospace Vehicles Division Aerospace Vehicles...Corporation) 5d. PROJECT NUMBER 4920 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q06A 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

  4. Current Trends on the Applicability of Ground Aerospace Materials Test Data to Space System Environments

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2010-01-01

    This slide presentation discusses the application of testing aerospace materials to the environment of space for flammability. Test environments include use of drop towers, and the parabolic flight to simulate the low gravity environment of space.

  5. Computational Electromagnetic Modeling of SansEC(Trade Mark) Sensors

    NASA Technical Reports Server (NTRS)

    Smith, Laura J.; Dudley, Kenneth L.; Szatkowski, George N.

    2011-01-01

    This paper describes the preliminary effort to apply computational design tools to aid in the development of an electromagnetic SansEC resonant sensor composite materials damage detection system. The computational methods and models employed on this research problem will evolve in complexity over time and will lead to the development of new computational methods and experimental sensor systems that demonstrate the capability to detect, diagnose, and monitor the damage of composite materials and structures on aerospace vehicles.

  6. Developments in metallic materials for aerospace applications

    NASA Astrophysics Data System (ADS)

    Wadsworth, J.; Froes, F. H.

    1989-05-01

    High-performance aerospace systems are creating a demand for new materials, not only for airframe and engine applications, but for missile and space systems as well. Recently, advances have been made in metallic materials systems based on magnesium, aluminum, titanium and niobium using a variety of processing methods, including ingot casting, powder metallurgy, rapid solidification and composite technology.

  7. Metal- matrix composite processing technologies for aircraft engine applications

    NASA Astrophysics Data System (ADS)

    Pank, D. R.; Jackson, J. J.

    1993-06-01

    Titanium metal-matrix composites (MMC) are prime candidate materials for aerospace applications be-cause of their excellent high-temperature longitudinal strength and stiffness and low density compared with nickel- and steel-base materials. This article examines the steps GE Aircraft Engines (GEAE) has taken to develop an induction plasma deposition (IPD) processing method for the fabrication of Ti6242/SiC MMC material. Information regarding process methodology, microstructures, and mechani-cal properties of consolidated MMC structures will be presented. The work presented was funded under the GE-Aircraft Engine IR & D program.

  8. Age and Stress Prediction

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Genoa is a software product that predicts progressive aging and failure in a variety of materials. It is the result of a SBIR contract between the Glenn Research Center and Alpha Star Corporation. Genoa allows designers to determine if the materials they plan on applying to a structure are up to the task or if alternate materials should be considered. Genoa's two feature applications are its progressive failure simulations and its test verification. It allows for a reduction in inspection frequency, rapid design solutions, and manufacturing with low cost materials. It will benefit the aerospace, airline, and automotive industries, with future applications for other uses.

  9. Accelerated lifetime test of vibration isolator made of Metal Rubber material

    NASA Astrophysics Data System (ADS)

    Ao, Hongrui; Ma, Yong; Wang, Xianbiao; Chen, Jianye; Jiang, Hongyuan

    2017-01-01

    The Metal Rubber material (MR) is a kind of material with nonlinear damping characteristics for its application in the field of aerospace, petrochemical industry and so on. The study on the lifetime of MR material is impendent to its application in engineering. Based on the dynamic characteristic of MR, the accelerated lifetime experiments of vibration isolators made of MR working under random vibration load were conducted. The effects of structural parameters of MR components on the lifetime of isolators were studied and modelled with the fitting curves of degradation data. The lifetime prediction methods were proposed based on the models.

  10. Aerospace Resources for Science and Technology Education.

    ERIC Educational Resources Information Center

    Maley, Donald, Ed.; Smith, Kenneth L., Ed.

    This publication on Aerospace Programs is a special edition of "Technology Education" featuring descriptions of 15 select aerospace education programs from diverse localities spanning the full range of instructional levels. Following introductory material, the monograph contains the following largely unedited program descriptions: (1)…

  11. Local Debonding and Fiber Breakage in Composite Materials Modeled Accurately

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2001-01-01

    A prerequisite for full utilization of composite materials in aerospace components is accurate design and life prediction tools that enable the assessment of component performance and reliability. Such tools assist both structural analysts, who design and optimize structures composed of composite materials, and materials scientists who design and optimize the composite materials themselves. NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package (http://www.grc.nasa.gov/WWW/LPB/mac) addresses this need for composite design and life prediction tools by providing a widely applicable and accurate approach to modeling composite materials. Furthermore, MAC/GMC serves as a platform for incorporating new local models and capabilities that are under development at NASA, thus enabling these new capabilities to progress rapidly to a stage in which they can be employed by the code's end users.

  12. Space Vehicle Terrestrial Environment Design Requirements Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.

    2006-01-01

    The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.

  13. Polymer Energy Rechargeable System Battery Being Developed

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2003-01-01

    Long description. Illustrations of discotic liquid crystals, rod-coil polymers, lithium-ion conducting channel dilithium phthalocyanine (Li2Pc) from top and side, novel star polyethylene oxide structures, composite polyethylene oxide materials (showing polyethylene oxide + lithium salt, carbon atoms and oxygen atoms), homopolyrotaxanes, and diblock copolymers In fiscal year 2000, NASA established a program to develop the next generation, lithium-based, polymer electrolyte batteries for aerospace applications. The goal of this program, known as Polymer Energy Rechargeable Systems (PERS), is to develop a space-qualified, advanced battery system embodying polymer electrolyte and lithium-based electrode technologies and to establish world-class domestic manufacturing capabilities for advanced batteries with improved performance characteristics that address NASA s future aerospace battery requirements.

  14. Electroactive Polymers as Artificial Muscles: Capabilities, Potentials and Challenges

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2000-01-01

    The low density and the relative ease of shaping made polymers highly attractive materials and they are increasingly being chosen for aerospace applications. Polymer matrix composite materials significantly impacted the construction of high performance aircraft components and structures. In recent years, the resilience characteristics of polymers made them attractive to the emerging field of inflatable structures. Balloons were used to cushion the deployment of the Mars Pathfinder lander on July 4, 1997, paving the way for the recent large number of related initiatives. Inflatable structures are now being used to construct a rover, aerial vehicles, telescopes, radar antennas, and others. Some of these applications have reached space flight experiments, whereas others are now at advanced stages of development.

  15. X-ray simulation for structural integrity for aerospace components - A case study

    NASA Astrophysics Data System (ADS)

    Singh, Surendra; Gray, Joseph

    2016-02-01

    The use of Integrated Computational Materials Engineering (ICME) has rapidly evolved from an emerging technology to the industry standards in Materials, Manufacturing, Chemical, Civil, and Aerospace engineering. Despite this the recognition of the ICME merits has been somewhat lacking within NDE community. This is due in part to the makeup of NDE practitioners. They are a very diverse but regimented group. More than 80% of NDE experts are trained and certified as NDT Level 3's and auditors in order to perform their daily inspection jobs. These jobs involve detection of attribute of interest, which may be a defect or condition or both, in a material. These jobs are performed in strict compliance with procedures that have been developed over many years by trial-and-error with minimal understanding of the underlying physics and interplay between the NDE methods setup parameters. It is not in the nature of these trained Level 3's experts to look for alternate or out-of-the box, solutions. Instead, they follow the procedures for compliance as required by regulatory agencies. This approach is time-consuming, subjective, and is treated as a bottleneck in today's manufacturing environments. As such, there is a need for new NDE tools that provide rapid, high quality solutions for studying structural and dimensional integrity in parts at a reduced cost. NDE simulations offer such options by a shortening NDE technique development-time, attaining a new level in the scientific understanding of physics of interactions between interrogating energy and materials, and reducing costs. In this paper, we apply NDE simulation (XRSIM as an example) for simulating X-Ray techniques for studying aerospace components. These results show that NDE simulations help: 1) significantly shorten NDE technique development-time, 2) assist in training NDE experts, by facilitating the understanding of the underlying physics, and 3) improve both capability and reliability of NDE methods in terms of coverage maps.

  16. Diels-Alder Trapping of Photochemically Generated o-Xylenols: Application in the Synthesis of Novel Organic Molecules and Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2003-01-01

    Bis(o-xylenol) equivalents are useful synthetic intermediates in the construction of polymers and hydroxyl substituted organic molecules which can organize by hydrogen bonded self-assembly into unique supramolecular structures. These polymers and supramolecular materials have potential use as coatings and thin films in aerospace, electronic and biomedical applications.

  17. 1000539

    NASA Image and Video Library

    2010-04-13

    AYMAN GIRGIS (EM10 MATERIALS TEST ENGINEER, JACOBS ESTS GROUP/JTI) AND ERIC EARHART (AEROSPACE ENGINEER, ER41 PROPULSION STRUCTURAL & DYNAMICS ANALYSIS BRANCH) DISCUSS DATA PRODUCED BY A UNIQUE MECHANICAL TEST SETUP THAT MEASURES STRAIN ON A SINGLE SAMPLE, USING TWO DIFFERENT TECHNIQUES AT THE SAME TIME. THE TEST FIXTURE HOLDS A SPECIMEN THAT REPRESENTS A LIQUID OXYGEN (LOX) BEARING FROM THE J2-X ENGINE.

  18. Solid Oxide Fuel Cell Seal Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Bansal, Narottam P.; Dynys, Fred W.; Lang, Jerry; Daniels, Christopher C.; Palko, Joeseph L.; Choi, S. R.

    2004-01-01

    Researchers at NASA GRC are confronting the seal durability challenges of Solid Oxide Fuel Cells by pursuing an integrated and multidisciplinary development effort incorporating thermo-structural analyses, advanced materials, experimentation, and novel seal design concepts. The successful development of durable hermetic SOFC seals is essential to reliably producing the high power densities required for aerospace applications.

  19. A Novel Probabilistic Multi-Scale Modeling and Sensing Framework for Fatigue Life Prediction of Aerospace Structures and Materials: DCT Project

    DTIC Science & Technology

    2012-08-25

    Accel- erated Crystal Plasticity FEM Simulations (submitted). 5. M. Anahid, M. Samal and S. Ghosh, Dwell fatigue crack nucleation model based on using...4] M. Anahid, M. K. Samal , and S. Ghosh. Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of

  20. Spacecraft materials studies on the Aerospace Corporation tray on EOIM-3

    NASA Technical Reports Server (NTRS)

    Stuckey, Wayne K.; Hemminger, Carol S.; Steckel, Gary L.; Hills, Malina M.; Hilton, Michael R.

    1995-01-01

    A passive tray was flown on the Effects of Oxygen Interaction with Materials experiment on STS-46 (EOIM-3) with 82 samples from The Aerospace Corporation. A variety of advanced materials related to potential uses on future spacecraft were included for evaluation representing optical coatings, lubricants, polymers, composites, carbon-carbon composite protective coatings, graphite protective coatings, thermal-control materials, and some samples of current materials. An overview of the available results from the investigations of these materials is presented.

  1. High Flight. Aerospace Activities, K-12.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  2. National Aerospace Professional Societies and Associations and Organizations

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur J., Jr.

    2000-01-01

    This session will highlight several highly recognized National Technical and Professional Aerospace Societies, Associations and Organizations that are dedicated to the advancement of the theories, practices and unique applications of Science, Engineering and related Aerospace Activities ongoing in the United States. The emphasis will be on at least three (3) Aerospace Organizations, while reference many others. This paper will provide a wealth of educational references, information, opportunities and services available through many of the National and Local Chapter Affiliates, associated with the respective associations. Again, all experience and knowledge levels (K-12) will benefit from this information and reference material. Reference materials and other points of contact will be made available to all attendees.

  3. Studies of molecular properties of polymeric materials

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.

    1990-01-01

    Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.

  4. Aerospace Environmental Technology Conference: Exectutive summary

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The papers from this conference are being published in a separate volume as NASA CP-3298.

  5. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Astrophysics Data System (ADS)

    Doychak, J.

    1992-06-01

    Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.

  6. Out-of-Autoclave Cure Composites

    NASA Technical Reports Server (NTRS)

    Hayes, Brian S.

    2015-01-01

    As the size of aerospace composite parts exceeds that of even the largest autoclaves, the development of new out-of-autoclave processes and materials is necessary to ensure quality and performance. Many out-of-autoclave prepreg systems can produce high-quality composites initially; however, due to long layup times, the resin advancement commonly causes high void content and variations in fiber volume. Applied Poleramic, Inc. (API), developed an aerospace-grade benzoxazine matrix composite prepreg material that offers more than a year out-time at ambient conditions and provides exceptionally low void content when out-of-autoclave cured. When compared with aerospace epoxy prepreg systems, API's innovation offers significant improvements in terms of out-time at ambient temperature and the corresponding tack retention. The carbon fiber composites developed with the optimized matrix technology have significantly better mechanical performance in terms of hot-wet retention and compression when compared with aerospace epoxy matrices. These composites also offer an excellent overall balance of properties. This matrix system imparts very low cure shrinkage, low coefficient of thermal expansion, and low density when compared with most aerospace epoxy prepreg materials.

  7. Recent Advances in Durability and Damage Tolerance Methodology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransom, J. B.; Glaessgen, E. H.; Raju, I. S.; Harris, C. E.

    2007-01-01

    Durability and damage tolerance (D&DT) issues are critical to the development of lighter, safer and more efficient aerospace vehicles. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. Both D&DT methodologies must address the deleterious effects of changes in material properties and the initiation and growth of damage that may occur during the vehicle s service lifetime. The result of unanticipated D&DT response is often manifested in the form of catastrophic and potentially fatal accidents. As such, durability and damage tolerance requirements must be rigorously addressed for commercial transport aircraft and NASA spacecraft systems. This paper presents an overview of the recent and planned future research in durability and damage tolerance analytical and experimental methods for both metallic and composite aerospace structures at NASA Langley Research Center (LaRC).

  8. Study on the Aging Behaviors of Rubber Materials in Tension and Compression Loads

    NASA Astrophysics Data System (ADS)

    Jiang, Can; Wang, Hongyu; Ma, Xiaobing

    Rubber materials are widely used in aviation, aerospace, shipbuilding, automobile and other military field. However, rubber materials are easy to aging, which largely restricts its using life. In working environment, due to the combined effect of heat and oxygen, vulcanized rubber will undergo degradation and crosslinking reaction which will cause elasticity decease and permanent deformation, so mostly rubber products are used under stress state. Due to the asymmetric structure and asymmetric stress distribution, mechanical stress may cause serious damage to molecular structure; therefore, this paper is aimed to analyze the aging behavior of rubber materials under tensile and compressive loadings, through analyzing experiment data, and adopting Gauss function to describe stress relaxation coefficient, to build an aging equation containing compression ratio parameter and aging time.

  9. Excimer-laser-induced surface treatments on metal and ceramic materials: applications to automotive, aerospace, and microelectronic industries

    NASA Astrophysics Data System (ADS)

    Autric, Michel L.

    1999-09-01

    Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.

  10. Research on Advanced NDE Methods for Aerospace Structures

    DTIC Science & Technology

    1989-09-01

    IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING FOREIGN NATIONS...Karpur, M.J. Ruddell, J.A.Fox, E.L. Klosterman and M.L. PaDD 13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT...spaced planes in advanced composite materials. That technique was used to simultaneously generate C-scan images of: (1) material defects in the "dead zones

  11. Cyber Technology for Materials and Structures in Aeronautics and Aerospace

    NASA Technical Reports Server (NTRS)

    Pipes, R. Byron

    2002-01-01

    The evolution of composites applications in aeronautics from 1970 to the present is discussed. The barriers and challenges to economic application and to certification are presented and recommendations for accelerated development are outlined. The potential benefits of emerging technologies to aeronautics and their foundation in composite materials are described and the resulting benefits in vehicle take off gross weight are quantified. Finally, a 21st century vision for aeronautics in which human mobility is increased by an order of magnitude is articulated.

  12. Aerospace Structures Technology Damping Design Guide. Volume 2. Design Guide

    DTIC Science & Technology

    1985-12-01

    pickups, and antenna. 6-51 6.2.7.3 Typical response spectra for undamped antenna. 6-51 6.2.7.4 Damping properties of panacrit-BJ with 25 PHR carbon . 6-54...Temperature and dynamic characteristics are the two prime factors which must be reticulously measured to obtain good d&Aping design results. 4-20 WITHOU’T...The material finally chosen was Panacril-BJ with 25 PIUR super abrasive furnace carbon black added for strength. Without the added carbon the material

  13. Composite Flywheels Assessed Analytically by NDE and FEA

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.

    2000-01-01

    As an alternative to expensive and short-lived lead-acid batteries, composite flywheels are being developed to provide an uninterruptible power supply for advanced aerospace and industrial applications. Flywheels can help prevent irregularities in voltage caused by power spikes, sags, surges, burnout, and blackouts. Other applications include load-leveling systems for wind and solar power facilities, where energy output fluctuates with weather. Advanced composite materials are being considered for these components because they are significantly lighter than typical metallic alloys and have high specific strength and stiffness. However, much more research is needed before these materials can be fully utilized, because there is insufficient data concerning their fatigue characteristics and nonlinear behavior, especially at elevated temperatures. Moreover, these advanced types of structural composites pose greater challenges for nondestructive evaluation (NDE) techniques than are encountered with typical monolithic engineering metals. This is particularly true for ceramic polymer and metal matrix composites, where structural properties are tailored during the processing stages. Current efforts involving the NDE group at the NASA Glenn Research Center at Lewis Field are focused on evaluating many important structural components, including the flywheel system. Glenn's in-house analytical and experimental capabilities are being applied to analyze data produced by computed tomography (CT) scans to help assess the damage and defects of high-temperature structural composite materials. Finite element analysis (FEA) has been used extensively to model the effects of static and dynamic loading on aerospace propulsion components. This technique allows the use of complicated loading schemes by breaking the complex part geometry into many smaller, geometrically simple elements.

  14. Aerospace Bibliography. Seventh Edition.

    ERIC Educational Resources Information Center

    Blashfield, Jean F., Comp.

    Provided for teachers and the general adult reader is an annotated and graded list of books and reference materials dealing with aerospace subjects. Only non-fiction books and pamphlets that need to be purchased from commercial or government sources are included. Free industrial materials and educational aids are not included because they tend to…

  15. An Assessment of the State-of-the-Art in the Design and Manufacturing of Large Composite Structures for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.

    2001-01-01

    The results of an assessment of the state-of-the-art in the design and manufacturing of large composite structures are described. The focus of the assessment is on the use of polymeric matrix composite materials for large airframe structural components. such as those in commercial and military aircraft and space transportation vehicles. Applications of composite materials for large commercial transport aircraft, general aviation aircraft, rotorcraft, military aircraft. and unmanned rocket launch vehicles are reviewed. The results of the assessment of the state-of-the-art include a summary of lessons learned, examples of current practice, and an assessment of advanced technologies under development. The results of the assessment conclude with an evaluation of the future technology challenges associated with applications of composite materials to the primary structures of commercial transport aircraft and advanced space transportation vehicles.

  16. Ultrasonic characterization of the fiber-matrix interfacial bond in aerospace composites.

    PubMed

    Aggelis, D G; Kleitsa, D; Matikas, T E

    2013-01-01

    The properties of advanced composites rely on the quality of the fiber-matrix bonding. Service-induced damage results in deterioration of bonding quality, seriously compromising the load-bearing capacity of the structure. While traditional methods to assess bonding are destructive, herein a nondestructive methodology based on shear wave reflection is numerically investigated. Reflection relies on the bonding quality and results in discernable changes in the received waveform. The key element is the "interphase" model material with varying stiffness. The study is an example of how computational methods enhance the understanding of delicate features concerning the nondestructive evaluation of materials used in advanced structures.

  17. Damage Tolerance Assessment Branch

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2013-01-01

    The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.

  18. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  19. Resources - Supply and availability. [of superalloys for United States aerospace industry

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1989-01-01

    Over the past several decades there have been shortage of strategic materials because of our near total import dependence on such metals as chromium, cobalt, and tantalum. In response to the continued vulnerability of U.S. superalloy producers to disruptions in resource supplies, NASA has undertaken a program to address alternatives to the super-alloys containing significant quantities of the strategic materials such as chromium, cobalt, niobium, and tantalum. The research program called Conservation of Strategic Aerospace Materials (COSAM) focuses on substitution, processing, and alternate materials to achieve its goals. In addition to NASA Lewis Research Center, universities and industry play an important role in the COSAM Program. This paper defines what is meant by strategic materials in the aerospace community, presents a strategic materials index, and reviews the resource supply and availability picture from the U.S. point of view. In addition, research results from the COSAM Program are highlighted and future directions for the use of low strategic material alloys or alternate materials are discussed.

  20. Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hardy, Robin C. (Editor); Simpson, Joycelyn O. (Editor)

    1996-01-01

    The objective of the Fourth Annual Conference on Advances in Smart Materials for Aerospace Applications was to provide a forum for technical dialogue on numerous topics in the area of smart materials. The proceedings presented herein represent the technical contributions of the participants of the workshop. Topics addressed include shape memory alloys, ferroelectrics, fiber optics, finite element simulation, and active control.

  1. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.

    PubMed

    Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-02-16

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.

  2. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components

    PubMed Central

    Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele

    2018-01-01

    Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites. PMID:29462953

  3. Reliability-based econometrics of aerospace structural systems: Design criteria and test options. Ph.D. Thesis - Georgia Inst. of Tech.

    NASA Technical Reports Server (NTRS)

    Thomas, J. M.; Hanagud, S.

    1974-01-01

    The design criteria and test options for aerospace structural reliability were investigated. A decision methodology was developed for selecting a combination of structural tests and structural design factors. The decision method involves the use of Bayesian statistics and statistical decision theory. Procedures are discussed for obtaining and updating data-based probabilistic strength distributions for aerospace structures when test information is available and for obtaining subjective distributions when data are not available. The techniques used in developing the distributions are explained.

  4. Advances in SiC/SiC Composites for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2006-01-01

    In recent years, supported by a variety of materials development programs, NASA Glenn Research Center has significantly increased the thermostructural capability of SiC/SiC composite materials for high-temperature aerospace applications. These state-of-the-art advances have occurred in every key constituent of the composite: fiber, fiber coating, matrix, and environmental barrier coating, as well as processes for forming the fiber architectures needed for complex-shaped components such as turbine vanes for gas turbine engines. This presentation will briefly elaborate on the nature of these advances in terms of performance data and underlying mechanisms. Based on a list of first-order property goals for typical high-temperature applications, key data from a variety of laboratory tests are presented which demonstrate that the NASA-developed constituent materials and processes do indeed result in SiC/SiC systems with the desired thermal and structural capabilities. Remaining process and microstructural issues for further property enhancement are discussed, as well as on-going approaches at NASA to solve these issues. NASA efforts to develop physics-based property models that can be used not only for component design and life modeling, but also for constituent material and process improvement will also be discussed.

  5. Elastic memory composites (EMC) for deployable industrial and commercial applications

    NASA Astrophysics Data System (ADS)

    Arzberger, Steven C.; Tupper, Michael L.; Lake, Mark S.; Barrett, Rory; Mallick, Kaushik; Hazelton, Craig; Francis, William; Keller, Phillip N.; Campbell, Douglas; Feucht, Sara; Codell, Dana; Wintergerst, Joe; Adams, Larry; Mallioux, Joe; Denis, Rob; White, Karen; Long, Mark; Munshi, Naseem A.; Gall, Ken

    2005-05-01

    The use of smart materials and multifunctional components has the potential to provide enhanced performance, improved economics, and reduced safety concerns for applications ranging from outer space to subterranean. Elastic Memory Composite (EMC) materials, based on shape memory polymers and used to produce multifunctional components and structures, are being developed and qualified for commercial use as deployable components and structures. EMC materials are similar to traditional fiber-reinforced composites except for the use of a thermoset shape memory resin that enables much higher packaging strains than traditional composites without damage to the fibers or the resin. This unique capability is being exploited in the development of very efficient EMC structural components for deployable spacecraft systems as well as capability enhancing components for use in other industries. The present paper is intended primarily to describe the transition of EMC materials as smart structure technologies into viable industrial and commercial products. Specifically, the paper discusses: 1) TEMBO EMC materials for deployable space/aerospace systems, 2) TEMBO EMC resins for terrestrial applications, 3) future generation EMC materials.

  6. Technology Base Enhancement Program. Metal Matrix Composites

    DTIC Science & Technology

    1993-08-30

    efficiency, improved structural reliability, and reduced maintenance when compared to carbon fiber reinforced composites . Aerospace engines (in particular...different materials. The composite consists of a metal matrix reinforced with particulates, flakes, whiskers,3 continuous fibers , filaments, wires, or...graphite and carbon to metals. They come in three general forms: particulates (or particles) with a length to diameter ratio of about 1; chopped fibers or

  7. Third Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor); Cross, D. R. (Editor); Caruso, S. V. (Editor); Clark-Ingram, M. (Editor)

    1999-01-01

    The elimination of CFC's, Halons, TCA, other ozone depleting chemicals, and specific hazardous materials is well underway. The phaseout of these chemicals has mandated changes and new developments in aerospace materials and processes. We are beyond discovery and initiation of these new developments and are now in the implementation phase. This conference provided a forum for materials and processes engineers, scientists, and managers to describe, review, and critically assess the evolving replacement and clean propulsion technologies from the standpoint of their significance, application, impact on aerospace systems, and utilization by the research and development community. The use of these new technologies, their selection and qualification, their implementation, and the needs and plans for further developments are presented.

  8. Introduction: Aims and Requirements of Future Aerospace Vehicles. Chapter 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, Pedro I.; Smeltzer, Stanley S., III; McConnaughey, Paul (Technical Monitor)

    2001-01-01

    The goals and system-level requirements for the next generation aerospace vehicles emphasize safety, reliability, low-cost, and robustness rather than performance. Technologies, including new materials, design and analysis approaches, manufacturing and testing methods, operations and maintenance, and multidisciplinary systems-level vehicle development are key to increasing the safety and reducing the cost of aerospace launch systems. This chapter identifies the goals and needs of the next generation or advanced aerospace vehicle systems.

  9. Carbon nanotube: A review on its mechanical properties and application in aerospace industry

    NASA Astrophysics Data System (ADS)

    Raunika, A.; Aravind Raj, S.; Jayakrishna, K.; Sultan, M. T. H.

    2017-12-01

    Carbon nanotube (CNT) is a prominent material that has good potential to be used in numerous aerospace applications. This paper presents a review about CNT on its various aspects such as fabrication methods, mechanical properties and applications in aerospace. The evolution of CNT is discussed to its recent applications. The aim of this review article is to highlight the recent advancements in CNT and its possible applications in aerospace.

  10. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  11. Aerospace Structures Technology Damping Design Guide. Volume 1. Technology Review

    DTIC Science & Technology

    1985-12-01

    AFWAL-TR-84-3089 Volume I AEROSPACE STRUCTURES TECHNOLOGY I DAMPING DESIGN GUIDE VOLUME I - TECHNOLOGY REVIEW J. SOOVERE LOCKHEED CALIFORNIA COMPANY...3089 Volume I AEROSPACE STRUCTURES TECHNOLOGY DAMPING DESIGN GUIDE VOLUME I - TECHNOLOGY REVIEW J. SOOVERE LOCKMD CALIFORNIA COMPANY P.O. BOX 551 BURBANK...PATTERSON AIR FORCE BASE, OHIO 454t33I I ft NOTICE When Government drawings, specifications, or other data are used for any purpose other than in

  12. The structural characteristics of inflatable beams

    NASA Astrophysics Data System (ADS)

    Wicker, William J.

    1992-08-01

    Two inflatable beams are designed and fabricated from polyethylene of ultrahigh molecular weight, and the structures are tested against similar composite and metal-alloy tubes. Specific attention is given to the choice of material that insures material stiffness, good strength-to-weight ratio, creep resistance, and durability. A cloth beam is built from a commercial extended-chain polyethylene fiber, and the inflated beams are tested by means of three- and four-point loading to measure bending and shear deformation. Comparing geometrically similar structures shows that the fabric beams can be about 35 percent as stiff as aluminum for small deflections. The inflatable beams have elastic stiffness coefficients five and two times higher than those for nylon and polyester tubes, respectively. Inflatable structures are concluded to hold promise for lightweight aerospace applications which demand small storage areas.

  13. Truss systems and shape optimization

    NASA Astrophysics Data System (ADS)

    Pricop, Mihai Victor; Bunea, Marian; Nedelcu, Roxana

    2017-07-01

    Structure optimization is an important topic because of its benefits and wide applicability range, from civil engineering to aerospace and automotive industries, contributing to a more green industry and life. Truss finite elements are still in use in many research/industrial codesfor their simple stiffness matrixand are naturally matching the requirements for cellular materials especially considering various 3D printing technologies. Optimality Criteria combined with Solid Isotropic Material with Penalization is the optimization method of choice, particularized for truss systems. Global locked structures areobtainedusinglocally locked lattice local organization, corresponding to structured or unstructured meshes. Post processing is important for downstream application of the method, to make a faster link to the CAD systems. To export the optimal structure in CATIA, a CATScript file is automatically generated. Results, findings and conclusions are given for two and three-dimensional cases.

  14. Review of Literature on Probability of Detection for Magnetic Particle Nondestructive Testing

    DTIC Science & Technology

    2013-01-01

    4 3.2 Offshore welded structures..................................................................................... 8 3.3 Aerospace...presented in Section 6. 2. Overview of Magnetic Particle Testing MPT is used in heavy engineering to inspect welds for surface-breaking... welded structures, and concluding with a summary of reliability information embedded in aerospace standards. 3.1 Aerospace It appears that the

  15. Aerospace and Flight. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This packet of technology learning activity (TLA) materials on aerospace and flight for students in grades 6-10 consists of a technology education overview, information on use, and instructor's and student's sections. The overview discusses the technology education program and materials. Components of the instructor's and student's sections are…

  16. Resin Systems and Chemistry-Degradation Mechanisms and Durability in Long-Term Durability of Polymeric Matrix Composites. Chapter 1

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Connell, John W.

    2012-01-01

    In choosing a polymer-matrix composite material for a particular application, a number of factors need to be weighed. Among these are mechanical requirements, fabrication method (e.g. press-molding, resin infusion, filament winding, tape layup), and use conditions. Primary among the environmental exposures encountered in aerospace structures are moisture and elevated temperatures, but certain applications may require resistance to other fluids and solvents, alkaline agents, thermal cycling, radiation, or rapid, localized heating (for example, lightning strike). In this chapter, the main classes of polymer resin systems found in aerospace composites will be discussed. Within each class, their responses to environmental factors and the associated degradation mechanisms will be reviewed.

  17. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1987-01-01

    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  18. Origami structures for tunable thermal expansion

    NASA Astrophysics Data System (ADS)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  19. Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems

    NASA Technical Reports Server (NTRS)

    Liu, Xuan; Furrer, David; Kosters, Jared; Holmes, Jack

    2018-01-01

    Over the last few decades, advances in high-performance computing, new materials characterization methods, and, more recently, an emphasis on integrated computational materials engineering (ICME) and additive manufacturing have been a catalyst for multiscale modeling and simulation-based design of materials and structures in the aerospace industry. While these advances have driven significant progress in the development of aerospace components and systems, that progress has been limited by persistent technology and infrastructure challenges that must be overcome to realize the full potential of integrated materials and systems design and simulation modeling throughout the supply chain. As a result, NASA's Transformational Tools and Technology (TTT) Project sponsored a study (performed by a diverse team led by Pratt & Whitney) to define the potential 25-year future state required for integrated multiscale modeling of materials and systems (e.g., load-bearing structures) to accelerate the pace and reduce the expense of innovation in future aerospace and aeronautical systems. This report describes the findings of this 2040 Vision study (e.g., the 2040 vision state; the required interdependent core technical work areas, Key Element (KE); identified gaps and actions to close those gaps; and major recommendations) which constitutes a community consensus document as it is a result of over 450 professionals input obtain via: 1) four society workshops (AIAA, NAFEMS, and two TMS), 2) community-wide survey, and 3) the establishment of 9 expert panels (one per KE) consisting on average of 10 non-team members from academia, government and industry to review, update content, and prioritize gaps and actions. The study envisions the development of a cyber-physical-social ecosystem comprised of experimentally verified and validated computational models, tools, and techniques, along with the associated digital tapestry, that impacts the entire supply chain to enable cost-effective, rapid, and revolutionary design of fit-for-purpose materials, components, and systems. Although the vision focused on aeronautics and space applications, it is believed that other engineering communities (e.g., automotive, biomedical, etc.) can benefit as well from the proposed framework with only minor modifications. Finally, it is TTT's hope and desire that this vision provides the strategic guidance to both public and private research and development decision makers to make the proposed 2040 vision state a reality and thereby provide a significant advancement in the United States global competitiveness.

  20. Investigation of laser holographic interferometric techniques for structure inspection

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1973-01-01

    The application of laser holographic interferometric techniques for nondestructive inspection of material structures commonly used in aerospace works is investigated. Two types of structures, composite plate and solid fuel rocket engine motor casing, were examined. In conducting the experiments, both CW HeNe gas lasers and Q-switched ruby lasers were used as light sources for holographic recording setups. Different stressing schemes were investigated as to their effectiveness in generating maximum deformation at regions of structural weakness such as flaws and disbonds. Experimental results on stressing schemes such as thermal stressing, pressurized stressing, transducer excitation, and mechanical impact are presented and evaluated.

  1. A structural model for composite rotor blades and lifting surfaces

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently candidates for aerospace structures, primarily for the design flexibiity they offer i.e., it is possible to tailor the material and manufacturing approach to the application. Two notable examples are the wing of the Grumman/USAF/DARPA X-29 and rotor blades under development by the U.S.A. Aerostructures Directorate (AVSCOM), Langley Research Center. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to improve the single-cell beam model for composite rotor blades or lifting surfaces and to demonstrate its usefullness in applications.

  2. Materials Test Laboratory activities at the NASA-Johnson Space Center White Sands Test Facility (WSTF)

    NASA Technical Reports Server (NTRS)

    Stradling, J.; Pippen, D. L.

    1985-01-01

    The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.

  3. Aerospace Materials Process Modelling

    DTIC Science & Technology

    1988-08-01

    development of advanced technologies for the fabrication of close-tolerance parts, in conjunction with the development of advanced materials, plays a key...1883. 17. Gegel, H. L., et al., "Materials Modeling and Intrinsic Workability for Simulation of Bulk Deformiti6n," Advanced Technology of Plasticity, Vol...process in the last three decades. As a result of technological advances gained in aerospace industry there has been an increasing demand for the

  4. Ceramic matrix composites - Forerunners of technological breakthrough in space vehicle hot structures and thermal protection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacombe, A.; Rouges, J.

    1990-01-01

    The current status of carbon-carbon and carbon-silicon carbide composites developed for aerospace applications is reviewed. In particular, attention is given to production facilities and technologies for the manufacture of C-C and C-SiC composites, mechanical and thermal characteristics of carbon-carbon and carbon-silicon carbide materials, applications to thermal structures and protection, and technologies developed to build large C-SiC thermostructural components within the Hermes program. 9 refs.

  5. Porous Shape Memory Polymers

    PubMed Central

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-01-01

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  6. Additive Manufacturing of Composites and Complex Materials

    NASA Astrophysics Data System (ADS)

    Spowart, Jonathan E.; Gupta, Nikhil; Lehmhus, Dirk

    2018-03-01

    Advanced composite materials form an important class of high-performance industrial materials used in weight-sensitive applications such as aerospace structures, automotive structures and sports equipment. In many of these applications, parts are made in small production runs, are highly customized and involve long process development times. Developments in additive manufacturing (AM) methods have helped in overcoming many of these limitations. The special topic of Additive Manufacturing of Composites and Complex Materials captures the state of the art in this area by collecting nine papers that present much novel advancement in this field. The studies under this topic show advancement in the area of AM of carbon fiber and graphene-reinforced composites with high thermal and electrical conductivities, development of new hollow glass particle-filled syntactic foam filaments for printing lightweight structures and integration of sensors or actuators during AM of metallic parts. Some of the studies are focused on process optimization or modification to increase the manufacturing speed or tuning manufacturing techniques to enable AM of new materials.

  7. An Analysis of Nondestructive Evaluation Techniques for Polymer Matrix Composite Sandwich Materials

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Roberts, Gary D.; Binienda, Wieslaw K.; Zheng, Diahua; Averbeck, Timothy; Roth, Donald J.; Jeanneau, Philippe

    2006-01-01

    Structural sandwich materials composed of triaxially braided polymer matrix composite material face sheets sandwiching a foam core are being utilized for applications including aerospace components and recreational equipment. Since full scale components are being made from these sandwich materials, it is necessary to develop proper inspection practices for their manufacture and in-field use. Specifically, nondestructive evaluation (NDE) techniques need to be investigated for analysis of components made from these materials. Hockey blades made from sandwich materials and a flat sandwich sample were examined with multiple NDE techniques including thermographic, radiographic, and shearographic methods to investigate damage induced in the blades and flat panel components. Hockey blades used during actual play and a flat polymer matrix composite sandwich sample with damage inserted into the foam core were investigated with each technique. NDE images from the samples were presented and discussed. Structural elements within each blade were observed with radiographic imaging. Damaged regions and some structural elements of the hockey blades were identified with thermographic imaging. Structural elements, damaged regions, and other material variations were detected in the hockey blades with shearography. Each technique s advantages and disadvantages were considered in making recommendations for inspection of components made from these types of materials.

  8. A review of multifunctional structure technology for aerospace applications

    NASA Astrophysics Data System (ADS)

    Sairajan, K. K.; Aglietti, G. S.; Mani, K. M.

    2016-03-01

    The emerging field of multifunctional structure (MFS) technologies enables the design of systems with reduced mass and volume, thereby improving their overall efficiency. It requires developments in different engineering disciplines and their integration into a single system without degrading their individual performances. MFS is particularly suitable for aerospace applications where mass and volume are critical to the cost of the mission. This article reviews the current state of the art of multifunctional structure technologies relevant to aerospace applications.

  9. Aerospace materials for nonaerospace applications

    NASA Technical Reports Server (NTRS)

    Johnston, R. L.; Dawn, F. S.

    1974-01-01

    Many of the flame-resistant nonmetallic materials that were developed for the Apollo and Skylab programs are discussed for commercial and military applications. Interchanges of information are taking place with the government agencies, industries, and educational institutions, which are interested in applications of fire-safe nonmetallic materials. These materials are particularly applicable to the design of aircraft, mass transit interiors, residential and public building constructions, nursing homes and hospitals, and to other fields of fire safety applications. Figures 22, 23 and 24 show the potential nonaerospace applications of flame-resistant aerospace materials are shown.

  10. Challenges of NDE Simulation Tool Challenges of NDE Simulation Tool

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Juarez, Peter D.; Seebo, Jeffrey P.; Frank, Ashley L.

    2015-01-01

    Realistic nondestructive evaluation (NDE) simulation tools enable inspection optimization and predictions of inspectability for new aerospace materials and designs. NDE simulation tools may someday aid in the design and certification of advanced aerospace components; potentially shortening the time from material development to implementation by industry and government. Furthermore, modeling and simulation are expected to play a significant future role in validating the capabilities and limitations of guided wave based structural health monitoring (SHM) systems. The current state-of-the-art in ultrasonic NDE/SHM simulation cannot rapidly simulate damage detection techniques for large scale, complex geometry composite components/vehicles with realistic damage types. This paper discusses some of the challenges of model development and validation for composites, such as the level of realism and scale of simulation needed for NASA' applications. Ongoing model development work is described along with examples of model validation studies. The paper will also discuss examples of the use of simulation tools at NASA to develop new damage characterization methods, and associated challenges of validating those methods.

  11. Process combinations for the manufacturing of metal-plastic hybrid parts

    NASA Astrophysics Data System (ADS)

    Drossel, W.-G.; Lies, C.; Albert, A.; Haase, R.; Müller, R.; Scholz, P.

    2016-03-01

    The usage of innovative lightweight materials and processing technologies gains importance in manifold industrial scopes. Especially for moving parts and mobility products the weight is decisively. The aerospace and automotive industries use light and high-strength materials to reduce weight and energy consumption and thereby improve the performance of their products. Composites with reinforced plastics are of particular importance. They offer a low density in combination with high specific stiffness and strength. A pure material substitution through reinforced plastics is still not economical. The approach of using hybrid metal-plastic structures with the principle of “using the right material at the right place” is a promising solution for the economical realization of lightweight structures with a high achievement potential. The article shows four innovative manufacturing possibilities for the realization of metal-plastic-hybrid parts.

  12. A Revolution in the Making: Advances in Materials That May Transform Future Exploration Infrastructures and Missions

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Dicus, Dennis L.; Shuart, Mark J.

    2001-01-01

    The NASA Strategic Plan identifies the long-term goal to provide safe and affordable space access, orbital transfer, and interplanetary transportation capabilities to enable research, human exploration, and the commercial development of space; and to conduct human and robotic missions to planets and other bodies in our solar system. Numerous scientific and engineering breakthroughs will be required to develop the technology necessary to achieve this goal. Critical technologies include advanced vehicle primary and secondary structure, radiation protection, propulsion and power systems, fuel storage, electronics and devices, sensors and science instruments, and medical diagnostics and treatment. Advanced materials with revolutionary new capabilities are an essential element of each of these technologies. This paper discusses those materials best suited for aerospace vehicle structure and highlights the enormous potential of one revolutionary new material, carbon nanotubes.

  13. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  14. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  15. Secondary aerospace batteries and battery materials: A bibliography, 1969 - 1974

    NASA Technical Reports Server (NTRS)

    Mcdermott, P.; Halpert, G.; Ekpanyaskun, S.; Nche, P.

    1976-01-01

    This annotated bibliography on the subject of secondary aerospace battery materials and related physical and electrochemical processes was compiled from references to journal articles published between 1969 and 1974. A total of 332 citations are arranged in chronological order under journal titles. Indices by system and component, techniques and processes, and author are included.

  16. Mass Efficiency Considerations for Thermally Insulated Structural Skin of an Aerospace Vehicle

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An approximate equation was derived to predict the mass of insulation required to limit the maximum temperature reached by an insulated structure subjected to a transient heating pulse. In the course of the derivation two figures of merit were identified. One figure of merit correlates to the effectiveness of the heat capacity of the underlying structural material in reducing the amount of required insulation. The second figure of merit provides an indicator of the mass efficiency of the insulator material. An iterative, one dimensional finite element analysis was used to size the external insulation required to protect the structure at a single location on the Space Shuttle Orbiter and a reusable launch vehicle. Required insulation masses were calculated for a range of different materials for both structure and insulator. The required insulation masses calculated using the approximate equation were shown to typically agree with finite element results within 10 to 20 percent over the range of parameters studied. Finite element results closely followed the trends indicated by both figures of merit.

  17. Advanced Control Techniques with Fuzzy Logic

    DTIC Science & Technology

    2014-06-01

    ORGANIZATION Structural Validation Branch ( AFRL /RQVV) Aerospace Vehicles Division Air Force Research Laboratory , Aerospace Systems Directorate......SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING Air Force Research Laboratory Aerospace Systems Directorate Wright

  18. Cost-effective lightweight mirrors for aerospace and defense

    NASA Astrophysics Data System (ADS)

    Woodard, Kenneth S.; Comstock, Lovell E.; Wamboldt, Leonard; Roy, Brian P.

    2015-05-01

    The demand for high performance, lightweight mirrors was historically driven by aerospace and defense (A&D) but now we are also seeing similar requirements for commercial applications. These applications range from aerospace-like platforms such as small unmanned aircraft for agricultural, mineral and pollutant aerial mapping to an eye tracking gimbaled mirror for optometry offices. While aerospace and defense businesses can often justify the high cost of exotic, low density materials, commercial products rarely can. Also, to obtain high performance with low overall optical system weight, aspheric surfaces are often prescribed. This may drive the manufacturing process to diamond machining thus requiring the reflective side of the mirror to be a diamond machinable material. This paper summarizes the diamond machined finishing and coating of some high performance, lightweight designs using non-exotic substrates to achieve cost effective mirrors. The results indicate that these processes can meet typical aerospace and defense requirements but may also be competitive in some commercial applications.

  19. Integrally rigidized acoustic interior spacecraft panel

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A sandwich panel concept is described which utilizes a monolithic I-beam design as the core. The core and skins are integrally bonded with thermosetting resin into a homogeneous structure. In addition to possessing a high strength to weight ratio, the panel resists combustion, delamination, aging due to fatigue, localized stresses, and exhibits good acoustic properties. Since the panel concept has definite potential as a high flame retardant and low smoke emission panel with excellent structural integrity, aerospace materials were used to optimize the construction for highly demanding space shuttle applications. The specific materials of construction were chosen for low flammability and off-gassing properties as well as for strength, light weight, and sound dampening.

  20. Overview of mechanics of materials branch activities in the computational structures area

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1992-01-01

    Base programs and system programs are discussed. The base programs include fundamental research of composites and metals for airframes leading to characterization of advanced materials, models of behavior, and methods for predicting damage tolerance. Results from the base programs support the systems programs, which change as NASA's missions change. The National Aerospace Plane (NASP), Advanced Composites Technology (ACT), Airframe Structural Integrity Program (Aging Aircraft), and High Speed Research (HSR) programs are currently being supported. Airframe durability is one of the key issues in each of these system programs. The base program has four major thrusts, which will be reviewed subsequently. Additionally, several technical highlights will be reviewed for each thrust.

  1. Single Wall Carbon Nanotube-Based Structural Health Sensing Materials

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Ingram, JoAnne L.; Jordan, Jeffrey D.; Wincheski, Russell A.; Smits, Jan M.; Williams, Phillip A.

    2004-01-01

    Single wall carbon nanotube (SWCNT)-based materials represent the future aerospace vehicle construction material of choice based primarily on predicted strength-to-weight advantages and inherent multifunctionality. The multifunctionality of SWCNTs arises from the ability of the nanotubes to be either metallic or semi-conducting based on their chirality. Furthermore, simply changing the environment around a SWCNT can change its conducting behavior. This phenomenon is being exploited to create sensors capable of measuring several parameters related to vehicle structural health (i.e. strain, pressure, temperature, etc.) The structural health monitor is constructed using conventional electron-beam lithographic and photolithographic techniques to place specific electrode patterns on a surface. SWCNTs are then deposited between the electrodes using a dielectrophoretic alignment technique. Prototypes have been constructed on both silicon and polyimide substrates, demonstrating that surface-mountable and multifunctional devices based on SWCNTs can be realized.

  2. Characterization of some selected vulcanized and raw silicon rubber materials

    NASA Astrophysics Data System (ADS)

    Sasikala, A.; Kala, A.

    2017-06-01

    Silicone Rubber is a high need of importance of Medical devices, Implants, Aviation and Aerospace wiring applications. Silicone rubbers are widely used in industry, and there are in multiple formulations. A raw and vulcanized silicone rubber Chemical and Physical structures of particles was confirmed and mechanical strength has been analyzed by FTIR spectroscopy. Thermal properties studied from Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analysis. Activation energy of the rubber materials were calculated using Broido method, Piloyon-Novikova relation and coats-Red fern methods.

  3. Acoustic fatigue: Overview of activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Roussos, Louis A.

    1987-01-01

    A number of aircraft and spacecraft configurations are being considered for future development. These include high-speed turboprop aircraft, advanced vertical take-off and landing fighter aircraft, and aerospace planes for hypersonic intercontinental cruise or flight to orbit and return. Review of the acoustic environment expected for these vehicles indicates levels high enough that acoustic fatigue must be considered. Unfortunately, the sonic fatique design technology used for current aircraft may not be adequate for these future vehicles. This has resulted in renewed emphasis on acoustic fatigue research at the NASA Langley Research Center. The overall objective of the Langley program is to develop methods and information for design of aerospace vehicles that will resist acoustic fatigue. The program includes definition of the acoustic loads acting on structures due to exhaust jets of boundary layers, and subsequent determination of the stresses within the structure due to these acoustic loads. Material fatigue associated with the high frequency structural stress reversal patterns resulting from acoustic loadings is considered to be an area requiring study, but no activity is currently underway.

  4. Technology enablers for improved aerospace x-ray NDE

    NASA Astrophysics Data System (ADS)

    Strabel, George; Ross, Joseph; Graham, Larry; Smith, Kevin

    1996-11-01

    In the current climate of reduced Military spending and lower commercial demand for aerospace products, it is of critical importance to allocate scarce technology development resources to meet projected needs. During the past decade, dramatic advances in x-ray nondestructive evaluation (NDE) technology have results in commercially viable digital radiography (DR) and computed tomography (CT) systems. X-ray CT has become an important NDE technique that not only provides data about material integrity, but also valuable volumetric data which is finding applications in reverse engineering, rapid prototyping, process control and 3D metrology. Industrial DR and CT systems have been available for almost 10 years, but are very costly, generally designed for specific applications and have well known limitations for both process development and final inspection. They have inadequate energy/flux to penetrate many large components and structures. In order to support the US Aerospace Industry in its drive towards global competitiveness, it is imperative that key enabling tools such as DR and CT be improved, made affordable, and implemented to meet the anticipated needs of the next decade of aerospace applications. This paper describes a strategy for a consortium of suppliers and users of x-ray NDE systems, academia and national laboratories to work together to attain this goal.

  5. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  6. Determination of mechanical properties of carbon/epoxy plates by tensile stress test

    NASA Astrophysics Data System (ADS)

    Bere, Paul; Krolczyk, Jolanta B.

    2017-10-01

    The polymeric composite materials used in aerospace, military, medical or racing cars manufacturing end up being used in our daily life Whether we refer to the performing vehicles, subassemblies or parts for aircrafts, wind, telegraph poles, or medical prostheses they all are present in our lives and they are made of composite materials (CM). This paper presents research regarding three different composite materials, plates by carbon fiber, in epoxy matrix. Starting with materials presentation, manufacturing methodology and determination of mechanical properties at carbon fiber/epoxy were done. Vacuum bag technology to obtain the composite structure offer opportunity to get a very compact and homogeny composite structure. For the moment this technology are adequate for high performances pieces. The mechanical characteristics of plates made of composite materials reinforced presented indicates closed value like metal materials. Based on the results, a comparative study between the reinforced materials typically used to manufacture the plates of CM is carried out.

  7. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-29

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validationmore » of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.« less

  8. Advanced bulk processing of lightweight materials for utilization in the transportation sector

    NASA Astrophysics Data System (ADS)

    Milner, Justin L.

    The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of this research. Development and validation of the processing techniques is achieved through wide-ranging experiments along with detailed mechanical and microstructural examination of the processed material. On a broad level, this research will make advancements in processing of bulk lightweight materials facilitating industrial-scale implementation. Where accumulative roll bonding and isolated shear rolling, currently feasible on an industrial scale, processes bulk sheet materials capable of replacing more expensive grades of alloys and enabling low-temperature and high-strain-rate formability. Furthermore, friction stir processing to manufacture lightweight tubes, made from magnesium alloys, has the potential to increase the utilization of these materials in the automotive and aerospace sectors for high strength - high formability applications. With the increased utilization of these advanced processing techniques will significantly reduce the cost associated with lightweight materials for many applications in the transportation sectors.

  9. Custom Machines Advance Composite Manufacturing

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Here is a brief list of materials that NASA will not be using to construct spacecraft: wood, adobe, fiberglass, bone. While it might be obvious why these materials would not make for safe space travel, they do share a common characteristic with materials that may well be the future foundation of spacecraft design: They all are composites. Formed of two or more unlike materials - such as cellulose and lignin in the case of wood, or glass fibers and plastic resin in the case of fiberglass-composites provide enhanced mechanical and physical properties through the combination of their constituent materials. For this reason, composites are used in everything from buildings, bathtubs, and countertops to boats, racecars, and sports equipment. NASA continually works to develop new materials to enable future space missions - lighter, less expensive materials that can still withstand the extreme demands of space travel. Composites such as carbon fiber materials offer promising solutions in this regard, providing strength and stiffness comparable to metals like aluminum but with less weight, allowing for benefits like better fuel efficiency and simpler propulsion system design. Composites can also be made fatigue tolerant and thermally stable - useful in space where temperatures can swing hundreds of degrees. NASA has recently explored the use of composites for aerospace applications through projects like the Composite Crew Module (CCM), a composite-constructed version of the aluminum-lithium Multipurpose Crew Capsule. The CCM was designed to give NASA engineers a chance to gain valuable experience developing and testing composite aerospace structures.

  10. Between Industry and Academia: A Physicist's Experiences at The Aerospace Corporation

    NASA Astrophysics Data System (ADS)

    Camparo, James

    2005-03-01

    The Aerospace Corporation is a nonprofit company whose purposes are exclusively scientific: to provide research, development, and advisory services for space programs that serve the national interest, primarily the Air Force's Space and Missile Systems Center and the National Reconnaissance Office. The corporation's laboratory has a staff of about 150 scientists who conduct research in fields ranging from Space Sciences to Material Sciences and from Analytical Chemistry to Atomic Physics. As a consequence, Aerospace stands midway between an industrial research laboratory, focused on product development, and academic/national laboratories focused on basic science. Drawing from Dr. Camparo's personal experiences, the presentation will discuss advantages and disadvantages of a career at Aerospace, including the role of publishing in peer-reviewed journals and the impact of work on family life. Additionally, the presentation will consider the balance between basic physics, applied physics, and engineering in the work at Aerospace. Since joining Aerospace in 1981, Dr. Camparo has worked as an atomic physicist specializing in the area of atomic clocks, and has had the opportunity to experiment and publish on a broad range of research topics including: the stochastic-field/atom interaction, radiation effects on semiconductor materials, and stellar scintillation.

  11. Register of specialized sources for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Denny, F. J.

    1973-01-01

    Specialized information sources that generate information relative to six problem areas in aerospace mechanics of structural failure are identified. Selection for inclusion was based upon information obtained from the individual knowledge and professional contacts of Martin Marietta Aerospace staff members and the information uncovered by the staff of technical reviewers. Activities listed perform basic or applied research related to the mechanics of structural failure and publish the results of such research. The purpose of the register is to present, in easy reference form, original sources for dependable information regarding failure modes and mechanisms of aerospace structures.

  12. The effect of in-service aerospace contaminants on X-band dielectric properties of a bismaleimide/quartz composite

    NASA Astrophysics Data System (ADS)

    Rodriguez, Luis A.; García, Carla; Grace, Landon R.

    2015-05-01

    The impact of three common aerospace in-service liquid contaminants on the X-band dielectric properties of a polymer composite radar protecting structure (radome) is investigated and quantified. The dielectric properties of the composite laminate are critical to radar transparency, and thus performance, of the radome structure. Further, polymer composites are highly susceptible to absorption of liquids. As such, the effect of common aerospace contaminants on the dielectric properties of composite laminates is crucial. Measurement of relative permittivity and loss tangent via a split-post dielectric resonant technique at 10 GHz is used to determine the effect of water, deicing fluid, and propylene glycol absorption in a three-ply quartz-reinforced bismaleimide laminate. Additionally, fluid uptake kinetics are investigated as a function of liquid type. An approximately linear relationship between fluid content and relative permittivity is observed for all three contaminant types. A 1% increase in contaminant content by weight results in a 7.8%, 4.5%, and 2.5% increase in relative permittivity of the material due to water, deicing fluid, and propylene glycol, respectively. A more significant impact is seen in material loss tangent, where a 1% increase in contaminant content by weight is responsible for a 378.5%, 593.0%, and 441.5% increase in loss tangent due to the aforementioned fluids, respectively. A fluid uptake weight content of 1.31%, 3.41%, and 4.28% is achieved for water, deicing fluid, and propylene glycol respectively, at approximately 1300 hours exposure. Based on the reported observations, the dielectric property degradation of composite laminates due to these commonly used fluids is of significant concern for in-service aircraft radar systems routinely exposed to these contaminants.

  13. Reusable aerospace system with horizontal take-off

    NASA Astrophysics Data System (ADS)

    Lozino-Lozinskii, G. E.; Shkadov, L. M.; Plokhikh, V. P.

    1990-10-01

    An aerospace system (ASS) concept aiming at cost reductions for launching facilities, reduction of ground preparations for start and launch phases, flexibility of use, international inspection of space systems, and emergency rescue operations is presented. The concept suggests the utilization of an AN-225 subsonic carrier aircraft capable of carrying up to 250 ton of the external load, external fuel tank, and orbital spacecraft. It includes a horizontal take-off, full reusable or single-use system, orbital aircraft with hypersonic characteristics, the use of an air-breathing jet engine on the first stage of launch, and the utilization of advanced structural materials. Among possible applications for ASS are satellite launches into low supporting orbits, suborbital cargo and passenger flights, scientific and economic missions, and the technical servicing of orbital vehicles and stations.

  14. Unification - An international aerospace information issue

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Lahr, Thomas F.

    1992-01-01

    Scientific and Technical Information (STI) represents the results of large investments in research and development (R&D) and the expertise of a nation and is a valuable resource. For more than four decades, NASA and its predecessor organizations have developed and managed the preeminent aerospace information system. NASA obtains foreign materials through its international exchange relationships, continually increasing the comprehensiveness of the NASA Aerospace Database (NAD). The NAD is de facto the international aerospace database. This paper reviews current NASA goals and activities with a view toward maintaining compatibility among international aerospace information systems, eliminating duplication of effort, and sharing resources through international cooperation wherever possible.

  15. Polymeric Materials for Aerospace Power and Propulsion-NASA Glenn Overview

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2008-01-01

    Use of lightweight materials in aerospace power and propulsion components can lead to significant reductions in vehicle weight and improvements in performance and efficiency. Polymeric materials are well suited for many of these applications, but improvements in processability, durability and performance are required for their successful use in these components. Polymers Research at NASA Glenn is focused on utilizing a combination of traditional polymer science and engineering approaches and nanotechnology to develop new materials with enhanced processability, performance and durability. An overview of these efforts will be presented.

  16. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Core for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. The present study investigates the use of a sandwich foam fan blade mae up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The resulting structures possesses a high stiffness while being lighter than a similar solid construction. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of sandwich structure for a fan blade application. A vibration analysis for natural frequencies and a detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of kin thickness and core volume are presented with a comparison to a solid titanium blade.

  17. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  18. Structural weights analysis of advanced aerospace vehicles using finite element analysis

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.; Lentz, Christopher A.; Rehder, John J.; Naftel, J. Chris; Cerro, Jeffrey A.

    1989-01-01

    A conceptual/preliminary level structural design system has been developed for structural integrity analysis and weight estimation of advanced space transportation vehicles. The system includes a three-dimensional interactive geometry modeler, a finite element pre- and post-processor, a finite element analyzer, and a structural sizing program. Inputs to the system include the geometry, surface temperature, material constants, construction methods, and aerodynamic and inertial loads. The results are a sized vehicle structure capable of withstanding the static loads incurred during assembly, transportation, operations, and missions, and a corresponding structural weight. An analysis of the Space Shuttle external tank is included in this paper as a validation and benchmark case of the system.

  19. Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2002-01-01

    This document contains the proceedings of the Training Workshop on Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, March 5 - 6, 2002. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in hierarchical approach to material modeling from continuum to atomistics; applications of multiscale modeling to advanced and improved material synthesis; defects, dislocations, and material deformation; fracture and friction; thin-film growth; characterization at nano and micro scales; and, verification and validation of numerical simulations, and to identify their potential for future aerospace systems.

  20. Feasibility of Kevlar 49/PMR-15 Polyimide for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Hanson, M. P.

    1980-01-01

    Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 F to 600 F for the PMR-15 and from 75 F to 450 F for the Kevlar/3501-6 epoxy material. The effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths were also studied.

  1. Feasibility of Kevlar 49/PMR-15 polyimide for high temperature applications

    NASA Technical Reports Server (NTRS)

    Hanson, M. P.

    1980-01-01

    Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 to 600 F for the PMR-15 and from 75 to 450 F for the Kevlar 49/3501-6 epoxy material. The study also included the effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths.

  2. Behavior of thin-walled beams made of advanced composite materials and incorporating non-classical effects

    NASA Astrophysics Data System (ADS)

    Librescu, Liviu; Song, Ohseop

    1991-11-01

    Several results concerning the refined theory of thin-walled beams of arbitrary closed cross-section incorporating nonclassical effects are presented. These effects are related both with the exotic properties characterizing the advanced composite material structures and the nonuniform torsional model. A special case of the general equations is used to study several problems of cantilevered thin-walled beams and to assess the influence of the incorporated effects. The results presented in this paper could be useful toward a more rational design of aeronautical or aerospace constructions, as well as of helicopter or tilt rotor blades constructed of advanced composite materials.

  3. Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials

    NASA Astrophysics Data System (ADS)

    Jothi, Sathiskumar

    Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and to improve the resistance to hydrogen embrittlement in aerospace materials are also suggested. This knowledge can play an important role in the development of new hydrogen embrittlement resistant materials. A novel micro/macro-scale coupled finite element method incorporating multi-scale experimental data is presented with which it is possible to perform full scale component analyses in order to investigate hydrogen embrittlement at the design stage. Finally, some preliminary and very encouraging results of grain boundary engineering based techniques to develop alloys that are resistant to hydrogen induced failure are presented. Keywords: Hydrogen embrittlement; Aerospace materials; Ariane 5 combustion chamber; Pulse plated nickel; Nickel based super alloy 718; SSRT test; Weldability test; TDA; SEM/EBSD; Hydrogen induced hot and cold cracking; Multiscale modelling and experimental methods.

  4. Shell tile thermal protection system

    NASA Technical Reports Server (NTRS)

    Macconochie, I. O.; Lawson, A. G.; Kelly, H. N. (Inventor)

    1984-01-01

    A reusable, externally applied thermal protection system for use on aerospace vehicles subject to high thermal and mechanical stresses utilizes a shell tile structure which effectively separates its primary functions as an insulator and load absorber. The tile consists of structurally strong upper and lower metallic shells manufactured from materials meeting the thermal and structural requirements incident to tile placement on the spacecraft. A lightweight, high temperature package of insulation is utilized in the upper shell while a lightweight, low temperature insulation is utilized in the lower shell. Assembly of the tile which is facilitated by a self-locking mechanism, may occur subsequent to installation of the lower shell on the spacecraft structural skin.

  5. Design of cryogenic tanks for space vehicles shell structures analytical modeling

    NASA Technical Reports Server (NTRS)

    Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.

    1991-01-01

    The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.

  6. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    NASA Technical Reports Server (NTRS)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  7. Thermal structures and materials for high-speed flight; Collection of Papers of the 1st Thermal Structures Conference, University of Virginia, Charlottesville, Nov. 13-15, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, E.A.

    1992-01-01

    The present conference discusses aerobrake-maneuver vehicle aerothermodynamics, aerothermal issues in the structural design of high speed vehicles, laser surface-alloying of superlight metals with ceramic surfaces, high-temperature Al alloys for supersonic and hypersonic vehicles, advanced metallics for high temperature airframes, novel materials for engine applications, and the development status of computational methods for high temperature structural design. Also discussed are a transient thermal-structural analysis using adaptive unstructured remeshing and mesh movement, the FEM thermoviscoplastic analysis of aerospace structures, hot-structures testing techniques, a thermal-structural analysis of a carbon-carbon/refractory metal heat pipe-cooled leading edge, dynamic effects in thermoviscoplastic structures, microlevel thermal effects inmore » metal-matrix composites (MMCs), thermomechanical effects in the plasma spray manufacture of MMC monotapes, and intelligent HIP processing. Most of the presentations at this conference were abstracted previously (see A91-16027 to A91-16047).« less

  8. Nondestructive Evaluation Approaches Developed for Material Characterization in Aeronautics and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2001-01-01

    At the NASA Glenn Research Center, nondestructive evaluation (NDE) approaches were developed or tailored for characterizing advanced material systems. The emphasis was on high-temperature aerospace propulsion applications. The material systems included monolithic ceramics, superalloys, and high-temperature composites. In the aeronautics area, the major applications were cooled ceramic plate structures for turbine applications, gamma-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis for residual stress measurements in titanium-based and nickel-based engine materials, and acousto-ultrasonics for creep damage assessment in nickel-based alloys. In the space area, applications consisted of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon-fiber-reinforced polymer matrix composites for energy storage on the International Space Station.

  9. Two-sided friction stir riveting by extrusion: A process for joining dissimilar materials

    DOE PAGES

    Evans, William T.; Cox, Chase D.; Strauss, Alvin M.; ...

    2016-06-25

    Two-sided friction stir riveting (FSR) by extrusion is an innovative process developed to rapidly, efficiently, and securely join dissimilar materials. This process extends a previously developed one sided friction stir extrusion process to create a strong and robust joint by producing a continuous, rivet-like structure through a preformed hole in one of the materials with a simultaneous, two-sided friction stir spot weld. The two-sided FSR by extrusion process securely joins the dissimilar materials together and effectively locks them in place without the use of any separate materials or fasteners. Lastly, in this paper we demonstrate the process by joining aluminummore » to steel and illustrate its potential application to automotive and aerospace manufacturing processes.« less

  10. Recent advances in AM OLED technologies for application to aerospace and military systems

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.; Roush, Jerry; Chanley, Charles

    2012-06-01

    While initial AM OLED products have been introduced in the market about a decade ago, truly successful commercialization of OLEDs has started only a couple of years ago, by Samsung Mobile Display (SMD), with small high performance displays for smart phone applications. This success by Samsung has catalyzed significant interest in AM OLED technology advancement and commercialization by other display manufacturers. Currently, significant manufacturing capacity for AM OLED displays is being established by the industry to serve the growing demand for these displays. The current development in the AM OLED industry are now focused on the development and commercialization of medium size (~10") AM OLED panels for Tablet PC applications and large size (~55") panels for TV applications. This significant progress in commercialization of AM OLED technology is enabled by major advances in various enabling technologies that include TFT backplanes, OLED materials and device structures and manufacturing know-how. In this paper we will discuss these recent advances, particularly as they relate to supporting high performance applications such as aerospace and military systems, and then discuss the results of the OLED testing for aerospace applications.

  11. Lightning Strike Induced Damage Mechanisms of Carbon Fiber Composites

    NASA Astrophysics Data System (ADS)

    Kawakami, Hirohide

    Composite materials have a wide application in aerospace, automotive, and other transportation industries, because of the superior structural and weight performances. Since carbon fiber reinforced polymer composites possess a much lower electrical conductivity as compared to traditional metallic materials utilized for aircraft structures, serious concern about damage resistance/tolerance against lightning has been rising. Main task of this study is to clarify the lightning damage mechanism of carbon fiber reinforced epoxy polymer composites to help further development of lightning strike protection. The research on lightning damage to carbon fiber reinforced polymer composites is quite challenging, and there has been little study available until now. In order to tackle this issue, building block approach was employed. The research was started with the development of supporting technologies such as a current impulse generator to simulate a lightning strike in a laboratory. Then, fundamental electrical properties and fracture behavior of CFRPs exposed to high and low level current impulse were investigated using simple coupon specimens, followed by extensive parametric investigations in terms of different prepreg materials frequently used in aerospace industry, various stacking sequences, different lightning intensity, and lightning current waveforms. It revealed that the thermal resistance capability of polymer matrix was one of the most influential parameters on lightning damage resistance of CFRPs. Based on the experimental findings, the semi-empirical analysis model for predicting the extent of lightning damage was established. The model was fitted through experimental data to determine empirical parameters and, then, showed a good capability to provide reliable predictions for other test conditions and materials. Finally, structural element level lightning tests were performed to explore more practical situations. Specifically, filled-hole CFRP plates and patch-repaired CFRP plates were selected as structural elements likely to be susceptible to lightning event. This study forms a solid foundation for the understanding of lightning damage mechanism of CFRPs, and become an important first step toward building a practical damage prediction tool of lighting event.

  12. Flight-vehicle structures education in the US: Assessment and recommendations

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1987-01-01

    An assessment is made of the technical contents of flight-vehicle structures curricula at 41 U.S. universities with accredited aerospace engineering programs. The assessment is based on the technical needs for new and projected aeronautical and space systems as well as on the likely characteristics of the aerospace engineering work environment. A number of deficiencies and areas of concern are identified and recommendations are presented for enhancing the effectiveness of flight-vehicle structures education. A number of government supported programs that can help aerospace engineering education are listed in the appendix.

  13. Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp

    2017-01-01

    All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.

  14. Creep of Hi-Nicalon S Fiber Tows at Elevated Temperature in Air and in Steam

    DTIC Science & Technology

    2013-03-01

    materials”[28]. Materials have always been a limiting factor in the advancements of technology. The ever increasing demand for aerospace vehicles that are...matrix composites are designed to have load-carrying capacity at high temperatures in extreme environments. Ceramic matrix composites are prime...engines, gas turbines for electrical power/steam cogeneration , as well as nuclear power plant components. It is recognized that the structural

  15. Unified System Of Data On Materials And Processes

    NASA Technical Reports Server (NTRS)

    Key, Carlo F.

    1989-01-01

    Wide-ranging sets of data for aerospace industry described. Document describes Materials and Processes Technical Information System (MAPTIS), computerized set of integrated data bases for use by NASA and aerospace industry. Stores information in standard format for fast retrieval in searches and surveys of data. Helps engineers select materials and verify their properties. Promotes standardized nomenclature as well as standarized tests and presentation of data. Format of document of photographic projection slides used in lectures. Presents examples of reports from various data bases.

  16. Organization of Workshop on Emerging Technologies for In-Situ Processing

    DTIC Science & Technology

    1992-08-31

    for Atomic Layer Processin H . Helvajian Materials & Mechanics Technology Center Aerospace Corporation Los Angeles, California 90009 USA There exists...Krishna Saraswat (Stanford) $ 750 - Henry Helvajian (Aerospace Corp.) $ 500 - Lloyd Hariott (Bell Labs) $ 500 - Jon Orloff (Oregon Grad. Inst.) $ 750 - Tom...Ablation Deposition of Thin Films and surface Analysis by STM/AFM (Coffee) 3:30 PM Henry Helvajian Laser Material Interaction for Atomic Layer

  17. A Solution to the Small Enrollment Problem in Aerospace Engineering--Self-Paced Materials Used in an Independent Studies Mode.

    ERIC Educational Resources Information Center

    Fowler, Wallace T.; Watkins, R. D.

    With the decline in enrollment in the early 1970's, many aerospace engineering departments had too few students to offer some required courses. At the University of Texas at Austin, a set of personalized system of instruction (PSI) materials for the aircraft performance, stability, and control course was developed. The paper includes a description…

  18. Development of lightweight structural health monitoring systems for aerospace applications

    NASA Astrophysics Data System (ADS)

    Pearson, Matthew

    This thesis investigates the development of structural health monitoring systems (SHM) for aerospace applications. The work focuses on each aspect of a SHM system covering novel transducer technologies and damage detection techniques to detect and locate damage in metallic and composite structures. Secondly the potential of energy harvesting and power arrangement methodologies to provide a stable power source is assessed. Finally culminating in the realisation of smart SHM structures. 1. Transducer Technology A thorough experimental study of low profile, low weight novel transducers not normally used for acoustic emission (AE) and acousto-ultrasonics (AU) damage detection was conducted. This included assessment of their performance when exposed to aircraft environments and feasibility of embedding these transducers in composites specimens in order to realise smart structures. 2. Damage Detection An extensive experimental programme into damage detection utilising AE and AU were conducted in both composites and metallic structures. These techniques were used to assess different damage mechanism within these materials. The same transducers were used for novel AE location techniques coupled with AU similarity assessment to successfully detect and locate damage in a variety of structures. 3. Energy Harvesting and Power Management Experimental investigations and numerical simulations were undertaken to assess the power generation levels of piezoelectric and thermoelectric generators for typical vibration and temperature differentials which exist in the aerospace environment. Furthermore a power management system was assessed to demonstrate the ability of the system to take the varying nature of the input power and condition it to a stable power source for a system. 4. Smart Structures The research conducted is brought together into a smart carbon fibre wing showcasing the novel embedded transducers for AE and AU damage detection and location, as well as vibration energy harvesting. A study into impact damage detection using the techniques showed the successful detection and location of damage. Also the feasibility of the embedded transducers for power generation was assessed..

  19. Mo-Si-B alloys for ultrahigh-temperature structural applications.

    PubMed

    Lemberg, J A; Ritchie, R O

    2012-07-10

    A continuing quest in science is the development of materials capable of operating structurally at ever-increasing temperatures. Indeed, the development of gas-turbine engines for aircraft/aerospace, which has had a seminal impact on our ability to travel, has been controlled by the availability of materials capable of withstanding the higher-temperature hostile environments encountered in these engines. Nickel-base superalloys, particularly as single crystals, represent a crowning achievement here as they can operate in the combustors at ~1100 °C, with hot spots of ~1200 °C. As this represents ~90% of their melting temperature, if higher-temperature engines are ever to be a reality, alternative materials must be utilized. One such class of materials is Mo-Si-B alloys; they have higher density but could operate several hundred degrees hotter. Here we describe the processing and structure versus mechanical properties of Mo-Si-B alloys and further document ways to optimize their nano/microstructures to achieve an appropriate balance of properties to realistically compete with Ni-alloys for elevated-temperature structural applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Low-Frequency Acoustic Noise Mitigation Characteristics of Metamaterials-Inspired Vibro-Impact Structures

    NASA Astrophysics Data System (ADS)

    Rekhy, Anuj

    Acoustic absorbers like foams, fiberglass or liners have been used commonly in structures for infrastructural, industrial, automotive and aerospace applications to mitigate noise. However, these conventional materials have limited effectiveness to mitigate low-frequency (LF) acoustic waves with frequency less than 400 Hz owing to the need for impractically large mass or volume. LF acoustic waves contribute significantly towards environmental noise pollution as well as unwanted structural responses. Therefore, there is a need to develop lightweight, compact, structurally-integrated solutions to mitigate LF noise in several applications. Inspired by metamaterials, which are man-made structural materials that derive their unique dynamic behavior not just from material constituents but more so from engineered configurations, tuned mass-loaded membranes as vibro-impact attachments on a baseline structure are investigated to determine their performance as a LF acoustic barrier. The hypothesis is that the LF incident waves are up-converted via impact to higher modes in the baseline structure which are far more evanescent and may then be effectively mitigated using conventional means. Such Metamaterials-Inspired Vibro-Impact Structures (MIVIS) could be tuned to match the dominant frequency content of LF acoustic sources in specific applications. Prototype MIVIS unit cells were designed and tested to study the energy transfer mechanism via impact-induced frequency up-conversion, and the consequent sound transmission loss. Structural acoustic simulations were done to predict responses using models based on normal incidence transmission loss tests. Experimental proof-of-concept was achieved and further correlations to simulations were utilized to optimize the energy up-conversion mechanism using parametric studies. Up to 36 dB of sound transmission loss increase is obtained at the anti-resonance frequency (326 Hz) within a tunable LF bandwidth of about 200 Hz while impact-induced up-conversion could enable further broadband transmission loss via subsequent dissipation in conventional absorbers. Moreover, this approach while minimizing parasitic mass addition retains or could conceivably augment primary functionalities of the baseline structure. Successful transition to applications could enable new mission capabilities for aerospace and military vehicles and help create quieter built environments.

  1. Experimental Tensile Strength Analysis of Woven-Glass/Epoxy Composite Plates with Central Circular Hole

    NASA Astrophysics Data System (ADS)

    Hadi, Bambang K.; Rofa, Bima K.

    2018-04-01

    The use of composite materials in aerospace engineering, as well as in maritime structure has increased significantly during the recent years. The extensive use of composite materials in industrial applications should make composite structural engineers and scientists more aware of the advantage and disadvantage of this material and provide them with necessary data and certification process. One of the problems in composite structures is the existence of hole. Hole can not be avoided in actual structures, since it may be the necessity of providing access for maintenance or due to impact damage. The presence of hole will weaken the structures. Therefore, in this paper, the effect of hole on the strength of glass-woven/epoxy composite will be discussed. Extensive tests have been carried out to study the effect of hole-diameter on the tensile strengths of these specimens. The results showed that the bigger the hole-diameter compared to the width of the specimens has weakened the structures further, as expected. Further study should be carried in the future to model it with the finite element and theoretical analysis precisely.

  2. NASA CST aids U.S. industry. [computational structures technology

    NASA Technical Reports Server (NTRS)

    Housner, Jerry M.; Pinson, Larry D.

    1993-01-01

    The effect of NASA's computational structures Technology (CST) research on aerospace vehicle design and operation is discussed. The application of this research to proposed version of a high-speed civil transport, to composite structures in aerospace, to the study of crack growth, and to resolving field problems is addressed.

  3. High-temperature, high-frequency fretting fatigue of a single crystal nickel alloy

    NASA Astrophysics Data System (ADS)

    Matlik, John Frederick

    Fretting is a structural damage mechanism arising from a combination of wear, corrosion, and fatigue between two nominally clamped surfaces subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact that could potentially foster crack growth leading to component failure. These contact stresses drive crack nucleation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting fatigue cracks pose to damage tolerance and the ensuing structural integrity of aerospace components, a strong motivation exists to develop a quantitative mechanics based understanding of fretting crack nucleation in advanced aerospace alloys. In response to this need, the objective of this work is to characterize the fretting behavior exhibited by a polycrystalline/single crystal nickel contact subjected to elevated frequency and temperature. The effort to meet this objective is two fold: (1) to develop a well-characterized experimental fretting rig to investigate fretting behavior of advanced aerospace alloys at high frequency and high temperature, and (2) to develop the associated contact modeling tools for calculating contact stresses given in-situ experimentally measured remote contact loads. By coupling the experimental results and stress analysis, this effort aims to correlate the fretting crack nucleation behavior with the local contact stresses calculated from the devised three dimensional, anisotropic, dissimilar material contact model. The experimental effort is first motivated by a survey of recent fretting issues and investigations of aerospace components. A detailed description of the high-frequency, high-temperature fretting rig to be used in this investigation follows. Finally, development of a numerical submodeling technique for calculating the experimental contact traction and near-surface stresses is presented and correlated to the experimental fretting crack nucleation observations.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 6: Aerospace knowledge diffusion in the academic community: A report of phase 3 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    Descriptive and analytical data regarding the flow of aerospace-based scientific and technical information (STI) in the academic community are presented. An overview is provided of the Federal Aerospace Knowledge Diffusion Research Project, illustrating a five-year program on aerospace knowledge diffusion. Preliminary results are presented of the project's research concerning the information-seeking habits, practices, and attitudes of U.S. aerospace engineering and science students and faculty. The type and amount of education and training in the use of information sources are examined. The use and importance ascribed to various information products by U.S. aerospace faculty and students including computer and other information technology is assessed. An evaluation of NASA technical reports is presented and it is concluded that NASA technical reports are rated high in terms of quality and comprehensiveness, citing Engineering Index and IAA as the most frequently used materials by faculty and students.

  5. Design and manufacturing of the CFRP lightweight telescope structure

    NASA Astrophysics Data System (ADS)

    Stoeffler, Guenter; Kaindl, Rainer

    2000-06-01

    Design of earthbound telescopes is normally based on conventional steel constructions. Several years ago thermostable CFRP Telescope and reflector structures were developed and manufacturing for harsh terrestrial environments. The airborne SOFIA TA requires beyond thermostability an excessive stiffness to mass ratio for the structure fulfilling performance and not to exceed mass limitations by the aircraft Boeing 747 SP. Additional integration into A/C drives design of structure subassemblies. Thickness of CFRP Laminates, either filament wound or prepreg manufactured need special attention and techniques to gain high material quality according to aerospace requirements. Sequential shop assembly of the structure subassemblies minimizes risk for assembling TA. Design goals, optimization of layout and manufacturing techniques and results are presented.

  6. International Conference on Aerospace Trends...2001 - From Aeroplane to Aerospace Plane, Thiruvananthapuram, India, June 27, 28, 1991, Proceedings

    NASA Astrophysics Data System (ADS)

    1991-08-01

    Consideration is given to operational characteristics of future launch vehicles, trends in propulsion technology, technology challenges in the development of cryogenic propulsion systems for future reusable space-launch vehicles, estimation of the overall drag coefficient of an aerospace plane, and self-reliance in aerospace structures. Attention is also given to basic design concepts for smart actuators for aerospace plane control, a software package for the preliminary design of a helicopter, and multiconstraint wing optimization.

  7. Enhancing Reactivity in Structural Energetic Materials

    NASA Astrophysics Data System (ADS)

    Glumac, Nick

    2017-06-01

    In many structural energetic materials, only a small fraction of the metal oxidizes, and yet this provides a significant boost in the overall energy release of the system. Different methodologies to enhance this reactivity include alloying and geometric modifications of microstructure of the reactive material (RM). In this presentation, we present the results of several years of systematic study of both chemical (alloy) and mechanical (geometry) effects on reactivity for systems with typical charge to case mass ratios. Alloys of aluminum with magnesium and lithium are considered, as these are common alloys in aerospace applications. In terms of geometric modifications, we consider surface texturing, inclusion of dense additives, and inclusion of voids. In all modifications, a measurable influence on output is observed, and this influence is related to the fragment size distribution measured from the observed residue. Support from DTRA is gratefully acknowledged.

  8. Cryogenic Fracture Toughness Evaluation of an Investment Cast Al-Be Alloy for Structural Applications

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; McGill, P. B.

    2006-01-01

    Aluminum-Beryllium metal matrix composite materials are useful due to their desirable performance characteristics for aerospace applications. Desirable characteristics of this material includes light-weight, dimensional stability, stiffness, good vibration damping characteristics, low coefficient of thermal expansion, and workability, This material is 3.5 times stiffer and 22% lighter than conventional aluminum alloys. electro-optical systems, advanced sensor and guidance components for flight and satellite systems, components for light-weight high-performance aircraft engines, and structural components for helicopters. Aluminum-beryllium materials are now available in the form of near net shape investment castings. In this materials properties characterization study, the cryogenic tensile and fracture properties of an investment casting alloy, Beralcast 363, were determined. Tensile testing was performed at 21 C (70 F), -73.3 C (-100 F), -195.5 C (-320 F) and -252.8 C (-423 F), and fracture (K(sub lc) and da/dN) testing was performed at -73.3 C (-100 F), -195.5 C (-320 F) and -252.8 C (-423 F). Their use is attractive for weight critical structural applications such as advanced

  9. Using Powder Cored Tubular Wire Technology to Enhance Electron Beam Freeform Fabricated Structures

    NASA Technical Reports Server (NTRS)

    Gonzales, Devon; Liu, Stephen; Domack, Marcia; Hafley, Robert

    2016-01-01

    Electron Beam Freeform Fabrication (EBF3) is an additive manufacturing technique, developed at NASA Langley Research Center, capable of fabricating large scale aerospace parts. Advantages of using EBF3 as opposed to conventional manufacturing methods include, decreased design-to-product time, decreased wasted material, and the ability to adapt controls to produce geometrically complex parts with properties comparable to wrought products. However, to fully exploit the potential of the EBF3 process development of materials tailored for the process is required. Powder cored tubular wire (PCTW) technology was used to modify Ti-6Al-4V and Al 6061 feedstock to enhance alloy content, refine grain size, and create a metal matrix composite in the as-solidified structures, respectively.

  10. Quantitative nondestructive evaluation: Requirements for tomorrow's reliability

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1991-01-01

    Quantitative Nondestructive Evaluation (QNDE) is the technology of measurement, analysis, and prediction of the state of material/structural systems for safety, reliability, and mission assurance. QNDE has impact on everyday life from the cars we drive, the planes we fly, the buildings we work or live in, literally to the infrastructure of our world. Here, researchers highlight some of the new sciences and technologies that are part of a safer, cost effective tomorrow. Specific technologies that are discussed are thermal QNDE of aircraft structural integrity, ultrasonic QNDE for materials characterization, and technology spinoffs from aerospace to the medical sector. In each case, examples are given of how new requirements result in enabling measurement technologies, which in turn change the boundaries of design/practice.

  11. International Conference on Superplasticity and Superplastic Forming

    DTIC Science & Technology

    1988-08-09

    aluminides and other intermetallic compounds, as well as certain metal matrix composites. The applications of SPF parts continues to increase both in...aerospace and non-aerospace areas. Titanium continues to be the primary material processed for aerospace, although the development in Al SPF is accelerating...Electrical Technology of SCMI Superplastic Forming of Ti-Alloy Turbine Blade Paper 28 WANG CHENG and LUO YING-SHE, Xiangtan University Nc~’ Advance

  12. Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring

    NASA Technical Reports Server (NTRS)

    Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa

    2010-01-01

    Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.

  13. RTAPS (Research and Technology for Aerospace Propulsion Systems): Simulation of Structural Loads within a Hybrid Gear Resulting From Loading at the Gear Teeth

    NASA Technical Reports Server (NTRS)

    Naffin, Richard K.; Ulun, Umut; Garmel, Charles D.; McManus, Nika; Hu, Zhenning; Ohlerking, Westin B.; Myers, David E.

    2017-01-01

    This report investigates the practical usage of hybrid structures for rotorcraft gearing. The primary driver for utilizing hybrid structures for rotorcraft gearing is to reduce the drive system weight. The hybrid structure concept featured in this study for rotorcraft gearing consists of a metallic gear tooth-rim, a web section manufactured from composite materials, and a metallic hub. The metallic gear tooth-rim is manufactured from conventional gear steel alloys, such as AISI 9310. The gear tooth-rim attaches to the outer diameter of the web section made from composite materials. The inner diameter of the composite web can then attach to a metallic hub, completing the assembly. It is assumed that areas of the shafting or hub where rolling element bearings may ride must remain as gear steel alloys for this study.

  14. Register of experts for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Stuhrke, W. F.

    1975-01-01

    This register is comprised of a list of approximately 300 experts from approximately 90 organizations who have published results of theoretical and/or experimental research related to six problem areas in the mechanics of structural failure: (1) life prediction for structural materials, (2) fracture toughness testing, (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. The criteria for the selection of names for the register are recent contributions to the literature, participation in or support of relevant research programs, and referral by peers. Each author included is listed by organizational affiliation, address, and principal field of expertise. The purpose of the register is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The register includes two indexes; an alphabetical listing of the experts and an alphabetical listing of the organizations with whom they are affiliated.

  15. Assessment of the Flammability of Aircraft Hydraulic Fluids

    DTIC Science & Technology

    1979-07-01

    and C. Y. Ito, Editors, " Thermophysical Properties of Selected Aerospace Materials," Part 1, Thermal Radiation Properties , Purdue University., 1976...34 Thermophysical Properties of Selected Aerospace Materials," Part 1, Thermal Radiation Properties , Purdue University, 1976. 9. J. M. Kuchta, "Summary of...propagation properties , and heats of combustion of a number of aircraft fluids. These included currently used (cont’d) FtORM DD I JAN 7 1473 EDITION

  16. Materials Lifecycle and Environmental Consideration at NASA

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    2010-01-01

    The aerospace community faces tremendous challenges with continued availability of existing material supply chains during the lifecycle of a program. Many obsolescence drivers affect the availability of materials: environmental safety ahd health regulations, vendor and supply economics, market sector demands,and natural disasters. Materials selection has become increasingly more critical when designing aerospace hardware. NASA and DoD conducted a workshop with subject matter experts to discuss issues and define solutions for materials selections during the lifecycle phases of a product/system/component. The three primary lifecycle phases were: Conceptualization/Design, Production & Sustainment, and End of life / Reclamation. Materials obsolescence and pollution prevention considerations were explored for the aforementioned lifecycle phases. The recommended solutions from the workshop are being presented.

  17. Flight-vehicle structures education in the United States Assessment and recommendations

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Dixon, S. C.

    1987-01-01

    An assessment is made of the technical contents of flight-vehicle structures curricula at 41 U.S. universities with accredited aerospace engineering programs. The assessment is based on the technical needs for the new and projected aeronautical and space systems as well as on the likely characteristics of the aerospace engineering work environment. A number of deficiencies and areas of concern are identified and recommendations are presented for enhancing the effectiveness of flight-vehicle structures education. A number of government supported programs that can help aerospace engineering education are listed in the appendix.

  18. Liquid Dynamics in high melting materials studied by inelastic X-ray scattering

    NASA Astrophysics Data System (ADS)

    Sinn, Harald; Alatas, Ahmet; Said, Ayman; Alp, Esen E.; Price, David L.; Saboungi, Marie Louis; Scheunemann, Richard

    2004-03-01

    The transport properties of high melting materials are of interest for a variety of applications, including geo-sciences, nuclear waste confinement and aerospace technology. While traditional methods of measuring transport properties are often extremely difficult due to the high reactivity of the melts, the combination of containerless levitation and inelastic X-ray scattering offers new insights in the microscopic dynamics of these liquids. Data on the dynamic structure factor of liquid aluminum oxide and liquid boron between 2000-2800 degree Celsius are discussed and related to several macroscopic quantities like sound velocity, viscosity and diffusion.

  19. Piezoresistive strain sensing of carbon nanotubes-based composite skin for aeronautical morphing structures

    NASA Astrophysics Data System (ADS)

    Viscardi, Massimo; Arena, Maurizio; Barra, Giuseppina; Vertuccio, Luigi; Ciminello, Monica; Guadagno, Liberata

    2018-03-01

    Nowadays, smart composites based on different nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a more possible alternative solution to conventional smart materials, mainly for their improved electrical properties. Great attention is being given by the research community in designing highly sensitive strain sensors for more and more ambitious challenges: in such context, interest fields related to carbon nanotubes have seen extraordinary development in recent years. The authors aim to provide the most contemporary overview possible of carbon nanotube-based strain sensors for aeronautical application. A smart structure as a morphing wing needs an embedded sensing system in order to measure the actual deformation state as well as to "monitor" the structural conditions. Looking at more innovative health monitoring tools for the next generation of composite structures, a resin strain sensor has been realized. The epoxy resin was first analysed by means of a micro-tension test, estimating the electrical resistance variations as function of the load, in order to demonstrate the feasibility of the sensor. The epoxy dogbone specimen has been equipped with a standard strain gauge to quantify its strain sensitivity. The voltamperometric tests highlight a good linearity of the electrical resistance value as the load increases at least in the region of elastic deformation of the material. Such intrinsic piezoresistive performance is essentially attributable to the re-arrangement of conductive percolating network formed by MWCNT, induced by the deformation of the material due to the applied loads. The specimen has been prepared within this investigation, to demonstrate its performance for a future composite laminate typical of aerospace structures. The future carbon-fiber sensor can replace conventional metal foil strain gauges in aerospace applications. Furthermore, dynamic tests will be carried out to detect any non-reversible changes to the sensing response.

  20. Real-time focus controller for laser welding with fibre optic noninvasive capture of light

    NASA Astrophysics Data System (ADS)

    Cobo, Adolfo; Bardin, F.; Hand, Duncan P.; Jones, Julian D.; Collin, O.; Aubry, P.; Dubois, Thierry; Hoegstroem, M.; Nylen, P.; Jonsson, P.; Lopez-Higuera, Jose M.

    2004-06-01

    Laser welding is being introduced in the aerospace industry due to its many advantages over traditional techniques. However, welding of parts with complex shapes requires precise control of the focal point of the laser in order to achieve full penetration over the entire seam. In this paper, we present an improved control system for real-time adjustment of the correct focal position, which is based on the monitoring of the light emitted by the process in two different spectral bands. The reported system has been optimized for use in a real environment: it is robust, compact, easy to operate, able to adjust itself to different welding conditions, materials and laser setups, and includes a direct connection to an external PC. Results from recent field trials on complex aerospace structures are provided.

  1. Optical Fiber Strain Instrumentation for High Temperature Aerospace Structural Monitoring

    NASA Technical Reports Server (NTRS)

    Wang, A.

    2002-01-01

    The objective of the program is the development and laboratory demonstration of sensors based on silica optical fibers for measurement of high temperature strain for aerospace materials evaluations. A complete fiber strain sensor system based on white-light interferometry was designed and implemented. An experiment set-up was constructed to permit testing of strain measurement up to 850 C. The strain is created by bending an alumina cantilever beam to which is the fiber sensor is attached. The strain calibration is provided by the application of known beam deflections. To ensure the high temperature operation capability of the sensor, gold-coated single-mode fiber is used. Moreover, a new method of sensor surface attachment which permits accurate sensor gage length determination is also developed. Excellent results were obtained at temperatures up to 800-850 C.

  2. Optical Measurements for Intelligent Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    2003-01-01

    There is growing interest in applying intelligent technologies to aerospace propulsion systems to reap expected benefits in cost, performance, and environmental compliance. Cost benefits span the engine life cycle from development, operations, and maintenance. Performance gains are anticipated in reduced fuel consumption, increased thrust-toweight ratios, and operability. Environmental benefits include generating fewer pollutants and less noise. Critical enabling technologies to realize these potential benefits include sensors, actuators, logic, electronics, materials, and structures. For propulsion applications, the challenge is to increase the robustness of these technologies so that they can withstand harsh temperatures, vibrations, and grime while providing extremely reliable performance. This paper addresses the role that optical metrology is playing in providing solutions to these challenges. Optics for ground-based testing (development cycle), flight sensing (operations), and inspection (maintenance) are described. Opportunities for future work are presented.

  3. The effect of fabrication on corrosion in aluminum 2195: Environmental and microstructural considerations

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1994-01-01

    Aluminum alloys containing lithium are particularly attractive to the aerospace structural designer. Lithium's density is only 0.53 g/cc, thus an addition of one weight percent lithium not only increases yield strength, but decreases the density by almost three percent while increasing the modulus by over six percent. The fact that lithium improves these physical properties simultaneously has led to intense study and development of the alloy system. Heretofore, problems in large scale alloy production have retarded commercial development. During the last fifteen years, advances in production technology have rekindled interest in Al-Li alloys, and aluminum suppliers have developed many candidate aerospace materials. However, if these alloys are to be employed successfully, a more complete understanding of their nonequilibrium metallurgy is required. Peel and Starke have each pointed out that an understanding of the weldability of these alloys is a critical step in their implementation. This study addresses the critical lack of information on the environmental compatibility of welded Al 2195 components. Corrosion data for these systems is incomplete, particularly for welded materials exposed to sea water or sea water condensate.

  4. Adaptive wing structures

    NASA Astrophysics Data System (ADS)

    Reed, John L., Jr.; Hemmelgarn, Christopher D.; Pelley, Bryan M.; Havens, Ernie

    2005-05-01

    Cornerstone Research Group, Inc. (CRG) is developing a unique adaptive wing structure intended to enhance the capability of loitering Unmanned Air Vehicles (UAVs). In order to tailor the wing design to a specific application, CRG has developed a wing structure capable of morphing in chord and increasing planform area by 80 percent. With these features, aircraft will be capable of optimizing their flight efficiency throughout the entire mission profile. The key benefit from this morphing design is increased maneuverability, resulting in improved effectiveness over the current design. During the development process CRG has overcome several challenges in the design of such a structure while incorporating advanced materials capable of maintaining aerodynamic shape and transferring aerodynamic loads while enabling crucial changes in planform shape. To overcome some of these challenges, CRG is working on integration of their shape memory polymer materials into the wing skin to enable seamless morphing. This paper will address the challenges associated with the development of a morphing aerospace structure capable of such large shape change, the materials necessary for enabling morphing capabilities, and the current status of the morphing program within CRG.

  5. On the Problems of Cracking and the Question of Structural Integrity of Engineering Composite Materials

    NASA Astrophysics Data System (ADS)

    Beaumont, Peter W. R.

    2014-02-01

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a "fracture safe design" is immense. For example, when human life depends upon structural integrity as an essential design requirement, it takes ten thousand material test coupons per composite laminate configuration to evaluate an airframe plus loading to ultimate failure tails, wing boxes, and fuselages to achieve a commercial aircraft airworthiness certification. Fitness considerations for long-life implementation of aerospace composites include understanding phenomena such as impact, fatigue, creep, and stress corrosion cracking that affect reliability, life expectancy, and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined. Furthermore, SI takes into account service duty. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk.

  6. Advanced Materials and Multifunctional Structures for Aerospace Vehicles

    DTIC Science & Technology

    2006-10-01

    environment and sulfur in fuels, leading to deterioration of engine hot section components, including the turbine and combustor. As such, development and...barrier coatings for high temperature turbine components are in high demand. 3.1 Hard Coatings for Erosion, Wear and Corrosion Protection A coating that...C-N coatings showed that increasing carbon content in the coating reduced the corrosion resistance in 1 N H2SO4 solution102; nevertheless, it was

  7. Hybrid Shape Memory Alloy Composites for Extreme Environments

    DTIC Science & Technology

    2011-10-01

    Shape Memory Alloys in Oil Well Applications,” Sintef Petroleum Research, 1999, Trondheim, Norway. 5. Hartl , D. J., Lagoudas, D., Mabe , J., Calkins...Materials and Structures, Vol. 19, No. 1., 2009. 6. Hartl , D. J., Lagoudas, D., Mabe , J., Calkins, F., and Mooney, J., “Use of Ni60Ti Shape Memory...hydraulic actuators) and can thus be located in environments not previously accessible. SMA actuators can also be found in the aerospace ( Hartl and

  8. Carbon nanotube-embedded advanced aerospace composites for early-stage damage sensing

    NASA Astrophysics Data System (ADS)

    Nataraj, Latha; Coatney, Michael; Cain, Jason; Hall, Asha

    2018-03-01

    Fiber reinforced polymer (FRP) composites featuring outstanding fatigue performance, high specific stiffness and strength, and low density have evolved as critical structural materials in aerospace applications. Microscale damage such as fiber breakage, matrix cracking, and delamination could occur in layered composites compromising structural integrity, emphasizing the critical need to monitor structural health. Early damage detection would lead to enhanced reliability, lifetime, and performance while minimizing maintenance time, leading to enormous scientific and technical interest in realizing physically stable, quick responding, and cost effective strain sensing materials, devices, and techniques with high sensitivity over a broad range of the practical strain spectrum. Today's most commonly used strain sensing techniques are metal foil strain gauges and optical fiber sensors. Metal foil gauges offer high stability and cost-effectiveness but can only be surface-mounted and have a low gauge factor. Optical fibers require expensive instrumentation, are mostly insensitive to cracks parallel to the fiber orientation and may lead to crack initiation as the diameter is larger than that of the reinforcement fibers. Carbon nanotubes (CNTs) have attracted much attention due to high aspect ratio and superior electrical, thermal, and mechanical properties. CNTs embedded in layered composites have improved performance. A variety of CNT architectures and configurations have shown improved piezoresistive behavior and stability for sensing applications. However, scaling up and commercialization remain serious challenges. The current study investigates a simple, cost effective and repeatable technique for highly sensitive, stable, linear and repeatable strain sensing for damage detection by integrating CNT laminates into composites.

  9. The 26th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The proceedings of the 26th Aerospace Mechanisms Symposium, which was held at the Goddard Space Flight Center on May 13, 14, and 15, 1992 are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors and other mechanisms for large space structures.

  10. Fiber Optic Sensor Components and Systems for Smart Materials and Structures

    NASA Technical Reports Server (NTRS)

    Lyons, R.

    1999-01-01

    The general objective of the funded research effort has been the development of discrete and distributed fiber sensors and fiber optic centered opto-electronic networks for the intelligent monitoring of phenomena in various aerospace structures related to NASA Marshall specific applications. In particular, we have proposed and have been developing technologies that we believe to be readily transferrable and which involve new fabrication techniques. The associated sensors developed can be incorporated into the matrix or on the surfaces of structures for the purpose of sensing stress, strain, temperature-both low and high, pressure field variations, phase changes, and the presence of various chemical constituents.

  11. Advanced fusion welding processes, solid state joining and a successful marriage. [production of aerospace structures

    NASA Technical Reports Server (NTRS)

    Miller, F. R.

    1972-01-01

    Joining processes for aerospace systems combine fusion welding and solid state joining during production of metal structures. Detailed characteristics of electron beam welding, plasma arc welding, diffusion welding, inertia welding and weldbond processes are discussed.

  12. Grain neighbour effects on twin transmission in hexagonal close-packed materials

    NASA Astrophysics Data System (ADS)

    Arul Kumar, M.; Beyerlein, I. J.; McCabe, R. J.; Tomé, C. N.

    2016-12-01

    Materials with a hexagonal close-packed (hcp) crystal structure such as Mg, Ti and Zr are being used in the transportation, aerospace and nuclear industry, respectively. Material strength and formability are critical qualities for shaping these materials into parts and a pervasive deformation mechanism that significantly affects their formability is deformation twinning. The interaction between grain boundaries and twins has an important influence on the deformation behaviour and fracture of hcp metals. Here, statistical analysis of large data sets reveals that whether twins transmit across grain boundaries depends not only on crystallography but also strongly on the anisotropy in crystallographic slip. We show that increases in crystal plastic anisotropy enhance the probability of twin transmission by comparing the relative ease of twin transmission in hcp materials such as Mg, Zr and Ti.

  13. Grain neighbour effects on twin transmission in hexagonal close-packed materials.

    PubMed

    Arul Kumar, M; Beyerlein, I J; McCabe, R J; Tomé, C N

    2016-12-19

    Materials with a hexagonal close-packed (hcp) crystal structure such as Mg, Ti and Zr are being used in the transportation, aerospace and nuclear industry, respectively. Material strength and formability are critical qualities for shaping these materials into parts and a pervasive deformation mechanism that significantly affects their formability is deformation twinning. The interaction between grain boundaries and twins has an important influence on the deformation behaviour and fracture of hcp metals. Here, statistical analysis of large data sets reveals that whether twins transmit across grain boundaries depends not only on crystallography but also strongly on the anisotropy in crystallographic slip. We show that increases in crystal plastic anisotropy enhance the probability of twin transmission by comparing the relative ease of twin transmission in hcp materials such as Mg, Zr and Ti.

  14. An Overview of Materials Structures for Extreme Environments Efforts for 2015 SBIR Phases I and II

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency projects. This report highlights innovative SBIR 2015 Phase I and II projects that specifically address areas in Materials and Structures for Extreme Environments, one of six core competencies at NASA Glenn Research Center. Each article describes an innovation, defines its technical objective, and highlights NASA applications as well as commercial and industrial applications. Ten technologies are featured: metamaterials-inspired aerospace structures, metallic joining to advanced ceramic composites, multifunctional polyolefin matrix composite structures, integrated reacting fluid dynamics and predictive materials degradation models for propulsion system conditions, lightweight inflatable structural airlock (LISA), copolymer materials for fused deposition modeling 3-D printing of nonstandard plastics, Type II strained layer superlattice materials development for space-based focal plane array applications, hydrogenous polymer-regolith composites for radiation-shielding materials, a ceramic matrix composite environmental barrier coating durability model, and advanced composite truss printing for large solar array structures. This report serves as an opportunity for NASA engineers, researchers, program managers, and other personnel to learn about innovations in this technology area as well as possibilities for collaboration with innovative small businesses that could benefit NASA programs and projects.

  15. Some contributions to energetics by the Lewis Research Center and a review of their potential non-aerospace applications

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Gutstein, M. U.

    1972-01-01

    The primary technology areas are aerospace propulsion, power and materials. As examples in these technologies, the programs in the fields of cryogenics and liquid metals are reviewed and potential non-aerospace applications for the results of these programs are discussed. These include such possibilities as: hydrogen as a non-polluting industrial fuel; more efficient central power stations; and powerplants for advanced ground transportation.

  16. Assessment of the State of the Art of Ultra High Temperature Ceramics

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead

    2009-01-01

    Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.

  17. Advanced Ceramic Materials for Sharp Hot Structures: Material Development and On-Ground Arc-Jet Qualification Testing on Scaled Demonstrators

    NASA Astrophysics Data System (ADS)

    Scatteia, L.; Tomassetti, G.; Rufolo, G.; De Filippis, F.; Marino, G.

    2005-02-01

    This paper describes the work performed by the Italian Aerospace Research Centre (C.I.R.A. S.c.P.A.) in a technology project focused on the applicability of modified diboride compounds structures to the manufacturing of high performance and slender shaped hot structures for reusable launch vehicles. A prototypal multi-material structure, which couple reinforced diborides to a C/SiC frame, has been built with the aim to demonstrate the applicability of an innovative concept of nose cap to the fabrication of real parts to be installed ant subsequently tested on the flying test bed currently under development at CIRA. Particular relevance is given to the on-ground qualification test of the nose-cap scaled demonstrator which is underway at CIRA Arc-Jet facility SCIROCCO. Considering the specific typology of materials investigated, up to date, a consistent tests campaign at laboratory level has been performed and concluded in order to create a complete materials data base. The measured materials properties have been then used as input for the design phase that also used as inputs the aero-thermal loads associated with a reference re-entry mission. Our major preliminary findings indicate that the structure is thermally fully compliant with the environment requirements and shows local mechanical criticalities in specific areas such as the materials interfaces and hot/cold joining parts.

  18. Friction Stir Welding of Metal Matrix Composites for use in aerospace structures

    NASA Astrophysics Data System (ADS)

    Prater, Tracie

    2014-01-01

    Friction Stir Welding (FSW) is a relatively nascent solid state joining technique developed at The Welding Institute (TWI) in 1991. The process was first used at NASA to weld the super lightweight external tank for the Space Shuttle. Today FSW is used to join structural components of the Delta IV, Atlas V, and Falcon IX rockets as well as the Orion Crew Exploration Vehicle. A current focus of FSW research is to extend the process to new materials which are difficult to weld using conventional fusion techniques. Metal Matrix Composites (MMCs) consist of a metal alloy reinforced with ceramics and have a very high strength to weight ratio, a property which makes them attractive for use in aerospace and defense applications. MMCs have found use in the space shuttle orbiter's structural tubing, the Hubble Space Telescope's antenna mast, control surfaces and propulsion systems for aircraft, and tank armors. The size of MMC components is severely limited by difficulties encountered in joining these materials using fusion welding. Melting of the material results in formation of an undesirable phase (formed when molten Aluminum reacts with the reinforcement) which leaves a strength depleted region along the joint line. Since FSW occurs below the melting point of the workpiece material, this deleterious phase is absent in FSW-ed MMC joints. FSW of MMCs is, however, plagued by rapid wear of the welding tool, a consequence of the large discrepancy in hardness between the steel tool and the reinforcement material. This work characterizes the effect of process parameters (spindle speed, traverse rate, and length of joint) on the wear process. Based on the results of these experiments, a phenomenological model of the wear process was constructed based on the rotating plug model for FSW. The effectiveness of harder tool materials (such as Tungsten Carbide, high speed steel, and tools with diamond coatings) to combat abrasive wear is explored. In-process force, torque, and vibration signals are analyzed to assess the feasibility of on-line monitoring of tool shape changes as a result of wear (an advancement which would eliminate the need for off-line evaluation of tool condition during joining). Monitoring, controlling, and reducing tool wear in FSW of MMCs is essential to the implementation of these materials in structures (such as launch vehicles) where they would be of maximum benefit.

  19. The 27th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    Mancini, Ron (Compiler)

    1993-01-01

    The proceedings of the 27th Aerospace Mechanisms Symposium, which was held at ARC, Moffett Field, California, on 12-14 May 1993, are reported. Technological areas covered include the following: actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, robotic mechanisms, and other mechanisms for large space structures.

  20. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, J.; Pindera, M. J.; Arnold, Steven M.

    2001-01-01

    Functionally graded materials (FGM's) are a new generation of engineered materials wherein the microstructural details are spatially varied through nonuniform distribution of the reinforcement phase(s). Engineers accomplish this by using reinforcements with different properties, sizes, and shapes, as well as by interchanging the roles of the reinforcement and matrix phases in a continuous manner (ref. 1). The result is a microstructure that produces continuously or discretely changing thermal and mechanical properties at the macroscopic or continuum scale. This new concept of engineering the material's microstructure marks the beginning of a revolution both in the materials science and mechanics of materials areas since it allows one, for the first time, to fully integrate the material and structural considerations into the final design of structural components. Functionally graded materials are ideal candidates for applications involving severe thermal gradients, ranging from thermal structures in advanced aircraft and aerospace engines to computer circuit boards. Owing to the many variables that control the design of functionally graded microstructures, full exploitation of the FGM's potential requires the development of appropriate modeling strategies for their response to combined thermomechanical loads. Previously, most computational strategies for the response of FGM's did not explicitly couple the material's heterogeneous microstructure with the structural global analysis. Rather, local effective or macroscopic properties at a given point within the FGM were first obtained through homogenization based on a chosen micromechanics scheme and then subsequently used in a global thermomechanical analysis.

  1. Nondestructive inspection of aerospace composites by a fiber-coupled laser ultrasonics system

    NASA Astrophysics Data System (ADS)

    Vandenrijt, J.-F.; Languy, F.; Thizy, C.; Georges, M. P.

    2017-06-01

    Laser ultrasonics is a technique currently studied for nondestructive inspection of aerospace composite structures based on carbon fibers. It combines a pulsed laser impacting the surface generates an ultrasound inside the material, through the nondestructive thermoelastic effect. Second a detection interferometer probes the impacted point in order to measure the displacement of the surface resulting from the emitted ultrasound wave and the echo coming back from the different interfaces of the structure. Laser ultrasonics is of interest for inspecting complex shaped composites. We have studied the possibility of using frequency doubled YAG laser for the generation and which is fiber-coupled, together with a fibercoupled interferometric probe using a YAG laser in the NIR. Our final system is a lightweight probe attached to a robot arm and which is able to scan complex shapes. The performances of the system are compared for different wavelengths of generations. Also we have studied some experimental parameters of interest such as tolerance to angle and focus distance, and different geometries of generation beams. We show some examples of inspection of reference parts with known defects. In particular C-scans of curved composites structures are presented.

  2. Advanced Space Flight and Environmental Concerns

    NASA Technical Reports Server (NTRS)

    Whitaker, A.

    2001-01-01

    The aerospace industry has conquered numerous environmental challenges during the last decade. The aerospace industry of today has evolved due in part to the environmental challenges, becoming stronger, more robust, learning to push the limits of technology, materials and manufacturing, and performing cutting edge engineering.

  3. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  4. RTM: Cost-effective processing of composite structures

    NASA Technical Reports Server (NTRS)

    Hasko, Greg; Dexter, H. Benson

    1991-01-01

    Resin transfer molding (RTM) is a promising method for cost effective fabrication of high strength, low weight composite structures from textile preforms. In this process, dry fibers are placed in a mold, resin is introduced either by vacuum infusion or pressure, and the part is cured. RTM has been used in many industries, including automotive, recreation, and aerospace. Each of the industries has different requirements of material strength, weight, reliability, environmental resistance, cost, and production rate. These requirements drive the selection of fibers and resins, fiber volume fractions, fiber orientations, mold design, and processing equipment. Research is made into applying RTM to primary aircraft structures which require high strength and stiffness at low density. The material requirements are discussed of various industries, along with methods of orienting and distributing fibers, mold configurations, and processing parameters. Processing and material parameters such as resin viscosity, perform compaction and permeability, and tool design concepts are discussed. Experimental methods to measure preform compaction and permeability are presented.

  5. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 2, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This report contains the Appendices to the findings from the first year of the program's operations.

  6. A Program of Research and Education in Aerospace Structures at the Joint Institute for Advancement of Flight Sciences

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.

    2000-01-01

    The objectives of the cooperative effort with NASA was to conduct research related to aerospace structures and to increase the quality and quantity of highly trained engineers knowledgeable about aerospace structures. The program has successfully met the objectives and has been of significant benefit to NASA LARC, the GWU and the nation. The program was initiated with 3 students in 1994 under the direction of Dr. Robert Tolson as the Principal Investigator. Since initiation, 14 students have been involved in the program, resulting in 11 MS degrees with 2 more expected in 2000. The 11 MS theses and projects are listed. For technology transfer purposes some research is not reported in thesis form. Graduates from the program have been hired at aerospace and other companies across the nation, providing GWU and LARC with important industry and government contacts.

  7. Application and testing of additive manufacturing for mirrors and precision structures

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael; Acreman, Martyn; Vettese, Tom; Myatt, Ray; Thompson, Mike

    2015-09-01

    Additive Manufacturing (aka AM, and 3-D printing) is widely touted in the media as the foundation for the next industrial revolution. Beneath the hype, AM does indeed offer profound advantages in lead-time, dramatically reduced consumption of expensive raw materials, while enabling new and innovative design forms that cannot be produced by other means. General Dynamics and their industry partners have begun to embrace this technology for mirrors and precision structures used in the aerospace, defense, and precision optical instrumentation industries. Aggressively lightweighted, open and closed back test mirror designs, 75-150 mm in size, were first produced by AM from several different materials. Subsequent optical finishing and test experiments have exceeded expectations for density, surface finish, dimensional stability and isotropy of thermal expansion on the optical scale of measurement. Materials currently under examination include aluminum, titanium, beryllium, aluminum beryllium, Inconel 625, stainless steel/bronze, and PEKK polymer.

  8. Finite element analysis of composites materials for aerospace applications

    NASA Astrophysics Data System (ADS)

    Nurhaniza, M.; Ariffin, M. K. A.; Ali, Aidy; Mustapha, F.; Noraini, A. W.

    2010-05-01

    Composites materials are intended to be used more extensively as an alternative of aluminum structure in aircraft and aerospace applications. This is due to their attractive properties as high strength-to-weight ratio and stiffness-to-weight ratio. Besides that it clarifies the growing interest for composites materials due to advantages of lightweight, high strength, high stiffness, superior fatigue life, tremendous corrosion resistance and low cost manufacturing. In this study, a finite element analysis (FEA) of fiberglass unidirectional E-type was analyzed in the framework of ABAQUS finite element commercial software. The analysis was done to quantify the mechanical properties and response of unidirectional E-glass in term of tensile, compression and thermal responses. From the analysis, the maximum and minimum values of stress and strain for E-glass 21xK43 Gevetex and Silenka E-glass 1200tex were obtained and stress-strain curve is presented. The ultimate load of failure, elastic behavior, tensile strength and other properties for each laminated plates under tensile and thermal-stress are determined from stress-strain curves. The simulation will run twice for each material where the first simulation based on orientation angles of 45° for ply-1, -45° for ply-2 and 90° for ply-3 while the second simulation, the orientation angles is 0° for all plies. The simulation is successfully conducted and verified by experimental data.

  9. Verification and Validation Process for Progressive Damage and Failure Analysis Methods in the NASA Advanced Composites Consortium

    NASA Technical Reports Server (NTRS)

    Wanthal, Steven; Schaefer, Joseph; Justusson, Brian; Hyder, Imran; Engelstad, Stephen; Rose, Cheryl

    2017-01-01

    The Advanced Composites Consortium is a US Government/Industry partnership supporting technologies to enable timeline and cost reduction in the development of certified composite aerospace structures. A key component of the consortium's approach is the development and validation of improved progressive damage and failure analysis methods for composite structures. These methods will enable increased use of simulations in design trade studies and detailed design development, and thereby enable more targeted physical test programs to validate designs. To accomplish this goal with confidence, a rigorous verification and validation process was developed. The process was used to evaluate analysis methods and associated implementation requirements to ensure calculation accuracy and to gage predictability for composite failure modes of interest. This paper introduces the verification and validation process developed by the consortium during the Phase I effort of the Advanced Composites Project. Specific structural failure modes of interest are first identified, and a subset of standard composite test articles are proposed to interrogate a progressive damage analysis method's ability to predict each failure mode of interest. Test articles are designed to capture the underlying composite material constitutive response as well as the interaction of failure modes representing typical failure patterns observed in aerospace structures.

  10. Boron/aluminum graphite/resin advanced fiber composite hybrids

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  11. Ceramics and composites for rocket engines and space structures

    NASA Astrophysics Data System (ADS)

    Upadhya, Kamleshwar

    1992-05-01

    The use of ceramic and other nonmetallic composites is considered for engine and structural elements of the National Aerospace Plane (NASP), the Space Shuttle, and space stations. Attention is given to the application of refractory composites with protective coatings for oxidation and hydrogen contamination to the NASP to address the high-temperature environments the vehicle is expected to encounter. Existing applications of metal-matrix composite struts and Gr-Ep cargo-bay doors on the Space Shuttle are reviewed, and the need for more data on the service life and failure modes of the materials is identified.

  12. Aerospace Concepts at the Elementary Level

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Presents materials compiled to assist the elementary teacher in preparing teaching units in aerospace education. Suggests specific and general objectives and lists important concepts and questions pertaining to areas such as: history of flight, weather and flying, airplanes, jets, rockets, space travel, and the solar system. (MLH)

  13. Ni-Ti Alloys for Aerospace Bearing Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2017-01-01

    Nickel-rich Ni-Ti alloys are emerging candidate materials for aerospace bearing applications. These alloys exhibit a unique combination of physical, chemical, and tribological properties that are highly relevant to challenging aerospace bearings and other mechanical components. Despite being made solely from metals, Ni-Ti alloys are classified as intermetallics with properties akin to both metals and ceramics. For instance, like metals, they are electrically conductive but they tend to be brittle like ceramics. When properly processed, they have high hardness, low elastic modulus and an extensive elastic deformation range that imparts extraordinarily high resilience and resistance to denting. New alloy compositions enable simpler thermal processing and machining and intensive microstructural analyses have helped elucidate the materials science mechanisms governing hardness. In this paper, the application of state-of-art in NiTi alloys for aerospace bearings and mechanical components is explored. In addition to reviewing future trends and remaining challenges, the unique approaches and methods of tailoring bearing design to accommodate NiTis unique properties is discussed.

  14. Integrated Thermal Protection Systems and Heat Resistant Structures

    NASA Technical Reports Server (NTRS)

    Pichon, Thierry; Lacoste, Marc; Barreteau, R.; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop a CMC heatshield, a deployable decelerator, and an ablative heat shield for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled in early FY06. This paper will give an overview of the work that was accomplished prior to cancellation. The Snecma team consisted of MT Aerospace, Germany, and Materials Research & Design (MR&D), NASA Langley, NASA Dryden, and NASA Ames in the United States. An Apollo-type capsule was chosen as the reference vehicle for the work. NASA Langley generated the trajectory and aerothermal loads. Snecma and MT Aerospace began the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield. MR&D led the design of a C/SiC deployable decelerator, NASA Ames led the characterization of several ablators, NASA Dryden led the development of a heath management system and the high temperature structures testing, and NASA Langley led the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  15. NDE standards for high temperature materials

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1991-01-01

    High temperature materials include monolithic ceramics for automotive gas turbine engines and also metallic/intermetallic and ceramic matrix composites for a range of aerospace applications. These are materials that can withstand extreme operating temperatures that will prevail in advanced high-efficiency gas turbine engines. High temperature engine components are very likely to consist of complex composite structures with three-dimensionality interwoven and various intermixed ceramic fibers. The thermomechanical properties of components made of these materials are actually created in-place during processing and fabrication stages. The complex nature of these new materials creates strong incentives for exact standards for unambiguous evaluations of defects and microstructural characteristics. NDE techniques and standards that will ultimately be applicable to production and quality control of high temperature materials and structures are still emerging. The needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in composites. The needs are different depending on the processing stage, fabrication method, and nature of the finished product. The standards are discussed that must be developed in concert with advances in NDE technology, materials processing research, and fabrication development. High temperature materials and structures that fail to meet stringent specifications and standards are unlikely to compete successfully either technologically or in international markets.

  16. Standardization of shape memory alloy test methods toward certification of aerospace applications

    NASA Astrophysics Data System (ADS)

    Hartl, D. J.; Mabe, J. H.; Benafan, O.; Coda, A.; Conduit, B.; Padan, R.; Van Doren, B.

    2015-08-01

    The response of shape memory alloy (SMA) components employed as actuators has enabled a number of adaptable aero-structural solutions. However, there are currently no industry or government-accepted standardized test methods for SMA materials when used as actuators and their transition to commercialization and production has been hindered. This brief fast track communication introduces to the community a recently initiated collaborative and pre-competitive SMA specification and standardization effort that is expected to deliver the first ever regulatory agency-accepted material specification and test standards for SMA as employed as actuators for commercial and military aviation applications. In the first phase of this effort, described herein, the team is working to review past efforts and deliver a set of agreed-upon properties to be included in future material certification specifications as well as the associated experiments needed to obtain them in a consistent manner. Essential for the success of this project is the participation and input from a number of organizations and individuals, including engineers and designers working in materials and processing development, application design, SMA component fabrication, and testing at the material, component, and system level. Going forward, strong consensus among this diverse body of participants and the SMA research community at large is needed to advance standardization concepts for universal adoption by the greater aerospace community and especially regulatory bodies. It is expected that the development and release of public standards will be done in collaboration with an established standards development organization.

  17. Tough, Microcracking-Resistant, High-Temperature Polymer

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Razon, Pert; Smith, Ricky; Working, Dennis; Chang, Alice; Gerber, Margaret

    1990-01-01

    Simultaneous synthesis from thermosetting and thermoplastic components yields polyimide with outstanding properties. Involves process in which one polymer cross-linked in immediate presence of other, undergoing simultaneous linear chain extension. New material, LaRC-RP40 synthesized from high-temperature thermosetting imide prepolymer and from thermoplastic monomer. Three significantly improved properties: toughness, resistance to microcracking, and glass-transition temperature. Shows promise as high-temperature matrix resin for variety of components of aircraft engines and for use in other aerospace structures.

  18. Mechanical Model Development for Composite Structural Supercapacitors

    NASA Technical Reports Server (NTRS)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Santiago, Diana; Bednarcyk, Brett A.

    2016-01-01

    Novel composite structural supercapacitor concepts have recently been developed as a means both to store electrical charge and to provide modest mechanical load carrying capability. Double-layer composite supercapacitors are often fabricated by impregnating a woven carbon fiber fabric, which serves as the electrodes, with a structural polymer electrolyte. Polypropylene or a glass fabric is often used as the separator material. Recent research has been primarily limited to evaluating these composites experimentally. In this study, mechanical models based on the Multiscale Generalized Method of Cells (MSGMC) were developed and used to calculate the shear and tensile properties and response of two composite structural supercapacitors from the literature. The modeling approach was first validated against traditional composite laminate data. MSGMC models for composite supercapacitors were developed, and accurate elastic shear/tensile properties were obtained. It is envisioned that further development of the models presented in this work will facilitate the design of composite components for aerospace and automotive applications and can be used to screen candidate constituent materials for inclusion in future composite structural supercapacitor concepts.

  19. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays

    NASA Technical Reports Server (NTRS)

    Black, Richard J.; Faridian, Ferey; Moslehi, Behzad; Sotoudeh, Vahid

    2012-01-01

    Structural health monitoring (SHM) is one of the most important tools available for the maintenance, safety, and integrity of aerospace structural systems. Lightweight, electromagnetic-interference- immune, fiber-optic sensor-based SHM will play an increasing role in more secure air transportation systems. Manufacturers and maintenance personnel have pressing needs for significantly improving safety and reliability while providing for lower inspection and maintenance costs. Undetected or untreated damage may grow and lead to catastrophic structural failure. Damage can originate from the strain/stress history of the material, imperfections of domain boundaries in metals, delamination in multi-layer materials, or the impact of machine tools in the manufacturing process. Damage can likewise develop during service life from wear and tear, or under extraordinary circumstances such as with unusual forces, temperature cycling, or impact of flying objects. Monitoring and early detection are key to preventing a catastrophic failure of structures, especially when these are expected to perform near their limit conditions.

  20. A model based bayesian solution for characterization of complex damage scenarios in aerospace composite structures.

    PubMed

    Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J

    2018-01-01

    Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Shock and Vibration Bulletin. Part 2. Invited Papers, Structural Dynamics

    DTIC Science & Technology

    1974-08-01

    VIKING LANDER DYNAMICS 41 Mr. Joseph C. Pohlen, Martin Marietta Aerospace, Denver, Colorado Structural Dynamics PERFORMANCE OF STATISTICAL ENERGY ANALYSIS 47...aerospace structures. Analytical prediction of these environments is beyond the current scope of classical modal techniques. Statistical energy analysis methods...have been developed that circumvent the difficulties of high-frequency nodal analysis. These statistical energy analysis methods are evaluated

  2. Braided Composites for Aerospace Applications. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, fabrication, and testing of structural composites formed by braiding machines. Topics include computer aided design and associated computer aided manufacture of braided tubular and flat forms. Applications include aircraft and spacecraft structures, where high shear strength and stiffness are required.

  3. Structures and Materials Experimental Facilities and Capabilities Catalog

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G. (Compiler); Kurtz-Husch, Jeanette D. (Compiler)

    2000-01-01

    The NASA Center of Excellent for Structures and Materials at Langley Research Center is responsible for conducting research and developing useable technology in the areas of advanced materials and processing technologies, durability, damage tolerance, structural concepts, advanced sensors, intelligent systems, aircraft ground operations, reliability, prediction tools, performance validation, aeroelastic response, and structural dynamics behavior for aerospace vehicles. Supporting the research activities is a complementary set of facilities and capabilities documented in this report. Because of the volume of information, the information collected was restricted in most cases to one page. Specific questions from potential customers or partners should be directed to the points of contacts provided with the various capabilities. Grouping of the equipment is by location as opposed to function. Geographical information of the various buildings housing the equipment is also provided. Since this is the first time that such an inventory is ever collected at Langley it is by no means complete. It is estimated that over 90 percent of the equipment capabilities at hand are included but equipment is continuously being updated and will be reported in the future.

  4. IPAD applications to the design, analysis, and/or machining of aerospace structures. [Integrated Program for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    Blackburn, C. L.; Dovi, A. R.; Kurtze, W. L.; Storaasli, O. O.

    1981-01-01

    A computer software system for the processing and integration of engineering data and programs, called IPAD (Integrated Programs for Aerospace-Vehicle Design), is described. The ability of the system to relieve the engineer of the mundane task of input data preparation is demonstrated by the application of a prototype system to the design, analysis, and/or machining of three simple structures. Future work to further enhance the system's automated data handling and ability to handle larger and more varied design problems are also presented.

  5. Artificial intelligence in the materials processing laboratory

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    Materials science and engineering provides a vast arena for applications of artificial intelligence. Advanced materials research is an area in which challenging requirements confront the researcher, from the drawing board through production and into service. Advanced techniques results in the development of new materials for specialized applications. Hand-in-hand with these new materials are also requirements for state-of-the-art inspection methods to determine the integrity or fitness for service of structures fabricated from these materials. Two problems of current interest to the Materials Processing Laboratory at UAH are an expert system to assist in eddy current inspection of graphite epoxy components for aerospace and an expert system to assist in the design of superalloys for high temperature applications. Each project requires a different approach to reach the defined goals. Results to date are described for the eddy current analysis, but only the original concepts and approaches considered are given for the expert system to design superalloys.

  6. NDE for Material Characterization in Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2000-01-01

    This paper describes selected nondestructive evaluation (NDE) approaches that were developed or tailored at the NASA Glenn Research Center for characterizing advanced material systems. The emphasis is on high-temperature aerospace propulsion applications. The material systems include monolithic ceramics, superalloys, and high temperature composites. In the aeronautic area, the highlights are cooled ceramic plate structures for turbine applications, F-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis (TSA) for residual stress measurements in titanium based and nickel based engine materials, and acousto ultrasonics (AU) for creep damage assessment in nickel-based alloys. In the space area, examples consist of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon fiber reinforced polymer matrix composites for energy storage on the international space station (ISS). The role of NDE in solving manufacturing problems, the effect of defects on structural behavior, and the use of NDE-based finite element modeling are discussed. NDE technology needs for improved microelectronic and mechanical systems as well as health monitoring of micro-materials and components are briefly discussed.

  7. Integrated material state awareness system with self-learning symbiotic diagnostic algorithms and models

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Liu, Lie; Liu, S. T.; Yuan, Fuh-Gwo; Beard, Shawn

    2011-04-01

    Materials State Awareness (MSA) goes beyond traditional NDE and SHM in its challenge to characterize the current state of material damage before the onset of macro-damage such as cracks. A highly reliable, minimally invasive system for MSA of Aerospace Structures, Naval structures as well as next generation space systems is critically needed. Development of such a system will require a reliable SHM system that can detect the onset of damage well before the flaw grows to a critical size. Therefore, it is important to develop an integrated SHM system that not only detects macroscale damages in the structures but also provides an early indication of flaw precursors and microdamages. The early warning for flaw precursors and their evolution provided by an SHM system can then be used to define remedial strategies before the structural damage leads to failure, and significantly improve the safety and reliability of the structures. Thus, in this article a preliminary concept of developing the Hybrid Distributed Sensor Network Integrated with Self-learning Symbiotic Diagnostic Algorithms and Models to accurately and reliably detect the precursors to damages that occur to the structure are discussed. Experiments conducted in a laboratory environment shows potential of the proposed technique.

  8. Metal clad aramid fibers for aerospace wire and cable

    NASA Technical Reports Server (NTRS)

    Tokarsky, Edward W.; Dunham, Michael G.; Hunt, James E.; Santoleri, E. David; Allen, David B.

    1995-01-01

    High strength light weight metal clad aramid fibers can provide significant weight savings when used to replace conventional metal wire in aerospace cable. An overview of metal clad aramid fiber materials and information on performance and use in braided electrical shielding and signal conductors is provided.

  9. Resin Transfer Moldable Polyimides Developed for High-Temperature Applications

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann

    2000-01-01

    High-temperature polyimides, such as PMR 15 (which was developed at the NASA Glenn Research Center at Lewis Field), are becoming an increasingly important class of materials for a variety of aerospace applications, such as aircraft engine components and propulsion and airframe components for reusable launch vehicles (RLV s). Because of their high specific strength and low density, use of these materials in place of more traditional aerospace materials, such as titanium, can significantly reduce component and vehicle weight, leading to reductions in fuel consumption (and pollutants), increases in payload and passenger capacity, and improvements in vehicle performance.

  10. Effects of Amine and Anhydride Curing Agents on the VARTM Matrix Processing Properties

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Hubert, Pascal; Song, Xiaolan; Cano, Roberto J.; Loos, Alfred C.; Pipes, R. Byron

    2002-01-01

    To ensure successful application of composite structure for aerospace vehicles, it is necessary to develop material systems that meet a variety of requirements. The industry has recently developed a number of low-viscosity epoxy resins to meet the processing requirements associated with vacuum assisted resin transfer molding (VARTM) of aerospace components. The curing kinetics and viscosity of two of these resins, an amine-cured epoxy system, Applied Poleramic, Inc. VR-56-4 1, and an anhydride-cured epoxy system, A.T.A.R.D. Laboratories SI-ZG-5A, have been characterized for application in the VARTM process. Simulations were carried out using the process model, COMPRO, to examine heat transfer, curing kinetics and viscosity for different panel thicknesses and cure cycles. Results of these simulations indicate that the two resins have significantly different curing behaviors and flow characteristics.

  11. Ceramic susceptor for induction bonding of metals, ceramics, and plastics

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Buckley, John D.

    1991-01-01

    A thin (.005) flexible ceramic susceptor (carbon) was discovered. It was developed to join ceramics, plastics, metals, and combinations of these materials using a unique induction heating process. Bonding times for laboratory specimens comparing state of the art technology to induction bonding were cut by a factor of 10 to 100 times. This novel type of carbon susceptor allows for applying heat directly and only to the bondline without heating the entire structure, supports, and fixtures of a bonding assembly. The ceramic (carbon film) susceptor produces molten adhesive or matrix material at the bond interface. This molten material flows through the perforated susceptor producing a fusion between the two parts to be joined, which in many instances has proven to be stronger than the parent material. Bonding can be accomplished in 2 minutes on areas submitted to the inductive heating. Because a carbon susceptor is used in bonding carbon fiber reinforced plastics and ceramics, there is no radar signature or return making it an ideal process for joining advanced aerospace composite structures.

  12. Numerical modeling of the effect of heat and mass transfer in porous low-temperature heat insulation in composite material structures on the magnitude of stresses which develop

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. V.; Rudzinskaya, N. V.

    1997-05-01

    The stressed state of multilayer low-temperature heat insulation for a cryogenic fuel tank is considered. Account is taken of heat and mass transfer in foam plastic (the main heat insulation material) occurring at cryogenic temperatures. A method is developed for solving a set of differential equations and boundary conditions. Numerical studies of the main features of these processes are performed. It is established that below 200 K the stresses which arise in foam plastic markedly exceed the ultimate strength for this material. Stresses develop as a result of both a reduction in temperature and a drop in pressure in the foam plastic pores connected with material cooling. On the basis of the results obtained it is established that the combination of thermophysical processes which occur in foam plastic during cooling to cryogenic temperatures leads to changes in the stress-strained state of structure, which should be considered in planning aerospace technology.

  13. NASA Composite Materials Development: Lessons Learned and Future Challenges

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Davis, John G., Jr.; Pipes, R. Byron; Johnston, Norman

    2009-01-01

    Composite materials have emerged as the materials of choice for increasing the performance and reducing the weight and cost of military, general aviation, and transport aircraft and space launch vehicles. Major advancements have been made in the ability to design, fabricate, and analyze large complex aerospace structures. The recent efforts by Boeing and Airbus to incorporate composite into primary load carrying structures of large commercial transports and to certify the airworthiness of these structures is evidence of the significant advancements made in understanding and use of these materials in real world aircraft. NASA has been engaged in research on composites since the late 1960 s and has worked to address many development issues with these materials in an effort to ensure safety, improve performance, and improve affordability of air travel for the public good. This research has ranged from synthesis of advanced resin chemistries to development of mathematical analyses tools to reliably predict the response of built-up structures under combined load conditions. The lessons learned from this research are highlighted with specific examples to illustrate the problems encountered and solutions to these problems. Examples include specific technologies related to environmental effects, processing science, fabrication technologies, nondestructive inspection, damage tolerance, micromechanics, structural mechanics, and residual life prediction. The current state of the technology is reviewed and key issues requiring additional research identified. Also, grand challenges to be solved for expanded use of composites in aero structures are identified.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arul Kumar, Mariyappan; Beyerlein, Irene Jane; McCabe, Rodney James

    Materials with a hexagonal close-packed (hcp) crystal structure such as Mg, Ti and Zr are being used in the transportation, aerospace and nuclear industry, respectively. Material strength and formability are critical qualities for shaping these materials into parts and a pervasive deformation mechanism that significantly affects their formability is deformation twinning. The interaction between grain boundaries and twins has an important influence on the deformation behaviour and fracture of hcp metals. Here, statistical analysis of large data sets reveals that whether twins transmit across grain boundaries depends not only on crystallography but also strongly on the anisotropy in crystallographic slip.more » As a result, we show that increases in crystal plastic anisotropy enhance the probability of twin transmission by comparing the relative ease of twin transmission in hcp materials such as Mg, Zr and Ti.« less

  15. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  16. Novel Wiring Technologies for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  17. Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone

    NASA Astrophysics Data System (ADS)

    Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.

    2018-03-01

    Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.

  18. Water-Based Coating Simplifies Circuit Board Manufacturing

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Structures and Materials Division at Glenn Research Center is devoted to developing advanced, high-temperature materials and processes for future aerospace propulsion and power generation systems. The Polymers Branch falls under this division, and it is involved in the development of high-performance materials, including polymers for high-temperature polymer matrix composites; nanocomposites for both high- and low-temperature applications; durable aerogels; purification and functionalization of carbon nanotubes and their use in composites; computational modeling of materials and biological systems and processes; and developing polymer-derived molecular sensors. Essentially, this branch creates high-performance materials to reduce the weight and boost performance of components for space missions and aircraft engine components. Under the leadership of chemical engineer, Dr. Michael Meador, the Polymers Branch boasts world-class laboratories, composite manufacturing facilities, testing stations, and some of the best scientists in the field.

  19. Solid Modeling Aerospace Research Tool (SMART) user's guide, version 2.0

    NASA Technical Reports Server (NTRS)

    Mcmillin, Mark L.; Spangler, Jan L.; Dahmen, Stephen M.; Rehder, John J.

    1993-01-01

    The Solid Modeling Aerospace Research Tool (SMART) software package is used in the conceptual design of aerospace vehicles. It provides a highly interactive and dynamic capability for generating geometries with Bezier cubic patches. Features include automatic generation of commonly used aerospace constructs (e.g., wings and multilobed tanks); cross-section skinning; wireframe and shaded presentation; area, volume, inertia, and center-of-gravity calculations; and interfaces to various aerodynamic and structural analysis programs. A comprehensive description of SMART and how to use it is provided.

  20. The 24th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The proceedings of the symposium are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, latches, connectors, and other mechanisms for large space structures.

  1. Monitoring of Structural Integrity of Composite Structures by Embedded Optical Fiber Sensors

    NASA Technical Reports Server (NTRS)

    Osei, Albert J.

    2002-01-01

    Real time monitoring of the mechanical integrity and stresses on key aerospace composite structures like aircraft wings, walls of pressure vessels and fuel tanks or any other structurally extended components and panels as in space telescopes is very important to NASA. Future military and commercial aircraft as well as NASA space systems such as Space Based Radar and International Space Station will incorporate a monitoring system to sense any degradation to the structure. In the extreme flight conditions of an aerospace vehicle it might be desirable to measure the strain every ten centimeters and thus fully map out the strain field of a composite component. A series of missions and vehicle health management requirements call for these measurements. At the moment thousands of people support a few vehicle launches per year. This number can be significantly reduced by implementing intelligent vehicles with integral nervous systems (smart structures). This would require maintenance to be performed only as needed. Military and commercial aircrafts have an equally compelling case. Maintenance yearly costs are currently reaching astronomical heights. Monitoring techniques are therefore required that allow for maintenance to be performed only when needed. This would allow improved safety by insuring that necessary tasks are performed while reducing costs by eliminating procedures that are costly and not needed. The advantages fiber optical sensors have over conventional electro-mechanical systems like strain gauges have been widely extolled in the research literature. These advantages include their small size, low weight, immunity to electrical resistance, corrosion resistance, compatibility with composite materials and process conditions, and multiplexing capabilities. One fiber optic device which is suitable for distributed sensing is the fiber Bragg grating (FBG). Researchers at NASA MSFC are currently developing techniques for using FBGs for monitoring the integrity of advanced structural materials expected to become the mainstay of the current and future generation space structures. Since carbon-epoxy composites are the materials of choice for the current space structures, the initial study is concentrated on this type of composite. The goals of this activity are to use embedded FBG sensors for measuring strain and temperature of composite structures, and to investigate the effects of various parameters such as composite fiber orientation with respect to the optical sensor, unidirectional fiber composite, fabrication process etc., on the optical performance of the sensor. This paper describes an experiment to demonstrate the use of an embedded FBG for measuring strain in a composite material. The performance of the fiber optic sensor is determined by direct comparison with results from more conventional instrumentation.

  2. NASA/DoD Aerospace Knowledge Diffusion Research Project. Report Number 20. The Use of Selected Information Products and Services by U.S. Aerospace Engineers and Scientists: Results of Two Surveys.

    DTIC Science & Technology

    1994-02-01

    within and between organizations. The technical report has been defined etymologically , according to report content and method (U.S. Department of...number) I AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4 GEOSCIENCES 9 SPACE SCIENCES 5...the application of your work? (Circle ONLY one number) 1 AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3

  3. Photogrammetric Verification of Fiber Optic Shape Sensors on Flexible Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Moore, Jason P.; Rogge, Matthew D.; Jones, Thomas W.

    2012-01-01

    Multi-core fiber (MCF) optic shape sensing offers the possibility of providing in-flight shape measurements of highly flexible aerospace structures and control surfaces for such purposes as gust load alleviation, flutter suppression, general flight control and structural health monitoring. Photogrammetric measurements of surface mounted MCF shape sensing cable can be used to quantify the MCF installation path and verify measurement methods.

  4. Elementary School Aerospace Activities: A Resource for Teachers.

    ERIC Educational Resources Information Center

    Kopp, O. W.; And Others

    This publication is designed for use by elementary school teachers when introducing aerospace developments into classroom programs. Its materials, prepared at the University of Nebraska-Lincoln, are grouped into ten sections: (1) earth characteristics that affect flight; (2) flight in the atmosphere; (3) rockets; (4) technological advances; (5)…

  5. Guidelines for Federal Aviation Administration Regional Aviation Education Coordinators and Aviation Education Facilitators.

    ERIC Educational Resources Information Center

    Strickler, Mervin K., Jr.

    This publication is designed to provide both policy guidance and examples of how to work with various constituencies in planning and carrying out appropriate Federal Aviation Administration (FAA) aviation education activities. Information is provided on the history of aerospace/aviation education, FAA educational materials, aerospace/aviation…

  6. The JPL Cryogenic Dilatometer: Measuring the Thermal Expansion Coefficient of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Halverson, Peter G.; Dudick, Matthew J.; Karlmann, Paul; Klein, Kerry J.; Levine, Marie; Marcin, Martin; Parker, Tyler J.; Peters, Robert D.; Shaklan, Stuart; VanBuren, David

    2007-01-01

    This slide presentation details the cryogenic dilatometer, which is used by JPL to measure the thermal expansion coefficient of materials used in Aerospace. Included is a system diagram, a picture of the dilatometer chamber and the laser source, a description of the laser source, pictures of the interferometer, block diagrams of the electronics and software and a picture of the electronics, and software. Also there is a brief review of the accurace.error budget. The materials tested are also described, and the results are shown in strain curves, JPL measured strain fits are described, and the coefficient of thermal expansion (CTE) is also shown for the materials tested.

  7. Fiber optic sensor technology - An opportunity for smart aerospace structures

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Rogowski, R. S.; Claus, R. O.

    1988-01-01

    Fiber optic sensors provide the opportunity for fabricating materials with internal sensors which can serve as lifetime health monitors, analogous to a central nervous system. The embedded fiber optic sensors can be interrogated by various techniques to measure internal strain, temperature, pressure, acoustic waves and other parameters indicative of structural integrity. Experiments have been conducted with composite samples with embedded sensors to measure strain using optical time domain reflectometry, modal interference and an optical phase locked loop. Fiber optic sensors have been developed to detect acoustic emission and impact damage and have been demonstrated for cure monitoring. These sensors have the potential for lifetime monitoring of structural properties, providing real time nondestructive evaluation.

  8. Multi-Scale Analyses of Three Dimensional Woven Composite 3D Shell With a Cut Out Circle

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc Hai; Wang, Hu

    2018-06-01

    A composite material are made by combining two or more constituent materials to obtain the desired material properties of each product type. The matrix material which can be polymer and fiber is used as reinforcing material. Currently, the polymer matrix is widely used in many different fields with differently designed structures such as automotive structures and aviation, aerospace, marine, etc. because of their excellent mechanical properties; in addition, they possess the high level of hardness and durability together with a significant reduction in weight compared to traditional materials. However, during design process of structure, there will be many interruptions created for the purpose of assembling the structures together or for many other design purposes. Therefore, when this structure is subject to load-bearing, its failure occurs at these interruptions due to stress concentration. This paper proposes multi-scale modeling and optimization strategies in evaluation of the effectiveness of fiber orientation in an E-glass/Epoxy woven composite 3D shell with circular holes at the center investigated by FEA results. A multi-scale model approach was developed to predict the mechanical behavior of woven composite 3D shell with circular holes at the center with different designs of material and structural parameters. Based on the analysis result of laminae, we have found that the 3D shell with fiber direction of 450 shows the best stress and strain bearing capacity. Thus combining several layers of 450 fiber direction in a multi-layer composite 3D shell reduces the stresses concentrated on the cuts of the structures.

  9. The 21st Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1987-01-01

    During the symposium technical topics addressed included deployable structures, electromagnetic devices, tribology, actuators, latching devices, positioning mechanisms, robotic manipulators, and automated mechanisms synthesis. A summary of the 20th Aerospace Mechanisms Symposium panel discussions is included as an appendix. However, panel discussions on robotics for space and large space structures which were held are not presented herein.

  10. Manufacturing Challenges Associated with the Use of Metal Matrix Composites in Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Prater, Tracie

    2014-01-01

    Metal Matrix Composites (MMCs) consist of a metal alloy reinforced with ceramic particles or fibers. These materials possess a very high strength to weight ratio, good resistance to impact and wear, and a number of other properties which make them attractive for use in aerospace and defense applications. MMCs have found use in the space shuttle orbiter's structural tubing, the Hubble Space Telescope's antenna mast, control surfaces and propulsion systems for aircraft, and tank armors. The size of MMC components is severely limited by difficulties encountered in joining these materials using fusion welding. Melting of the material results in formation of an undesirable phase (formed when molten Aluminum reacts with the reinforcement) which leaves a strength depleted region along the joint line. Friction Stir Welding (FSW) is a relatively nascent solid state joining technique developed at The Welding Institute (TWI) in 1991. The process was first used at NASA to weld the super lightweight external tank for the Space Shuttle. Today FSW is used to join structural components of the Delta IV, Atlas V, and Falcon IX rockets as well as NASA's Orion Crew Exploration Vehicle and Space Launch System. A current focus of FSW research is to extend the process to new materials, such as MMCs, which are difficult to weld using conventional fusion techniques. Since Friction Stir Welding occurs below the melting point of the workpiece material, this deleterious phase is absent in FSW-ed MMC joints. FSW of MMCs is, however, plagued by rapid wear of the welding tool, a consequence of the large discrepancy in hardness between the steel tool and the reinforcement material. This chapter summarizes the challenges encountered when joining MMCs to themselves or to other materials in structures. Specific attention is paid to the influence of process variables in Friction Stir Welding on the wear process characterizes the effect of process parameters (spindle speed, traverse rate, and length of joint) on the wear process. A phenomenological model of the wear process was constructed based on the rotating plug model of Friction Stir Welding. The effectiveness of harder tool materials (such as Tungsten Carbide, high speed steel, and tools with diamond coatings) to combat abrasive wear is also explored. In-process force, torque, and vibration signals are analyzed to assess the feasibility of in situ monitoring of tool shape changes as a result of wear (an advancement which would eliminate the need for off-line evaluation of tool condition during joining). Monitoring, controlling, and reducing tool wear in FSW of MMCs is essential to implementation of these materials in structures (such as launch vehicles) where they would be of maximum benefit. The work presented here is extendable to machining of MMCs, where wear of the tool is also a limiting factor.

  11. Thermal Exposure Effects on Properties of Al-Li Alloy Plate Products

    NASA Technical Reports Server (NTRS)

    Shah, Sandeep; Wells, Douglas; Wagner, John; Babel, Henry

    2002-01-01

    Aluminum-Lithium (AL-Li) alloys offer significant performance benefits for aerospace structural applications due to their higher specific properties compared with conventional aluminum alloys. For example, the application of an Al-Li alloy to the space shuttle external cryogenic fuel tank contributed to the weight savings that enabled successful deployment of International Space Station components. The composition and heat treatment of this alloy were optimized specifically for strength-toughness considerations for an expendable cryogenic tank. Time dependent properties related to reliability, such as thermal stability, fatigue, and corrosion, will be of significant interest when materials are evaluated for a reusable cryotank structure. As most aerospace structural hardware is weight sensitive, a reusable cryotank will be designed to the limits of the materials mechanical properties. Therefore, this effort was designed to establish the effects of thermal exposure on the mechanical properties and microstructure of one relatively production mature alloy and two developmental alloys C458 and L277. Tensile and fracture toughness behavior was evaluated after exposure to temperatures as high as 3oooF for up to IO00 hrs. Microstructural changes were also evaluated to correlate with the observed data trends. The ambient temperature parent metal data showed an increase in strength and reduction in elongation after exposure at lower temperatures. Strength reached a peak with intermediate temperature exposure followed by a decrease at highest exposure temperature. Characterizing the effect of thermal exposure on the properties of Al-Li alloys is important to defining a service limiting temperature, exposure time, and end-of-life properties.

  12. Current status and recent research achievements in SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Snead, L. L.; Henager, C. H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S. M.

    2014-12-01

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.

  13. Photonic Bandgap (PBG) Shielding Technology

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.

    2007-01-01

    Photonic Bandgap (PBG) shielding technology is a new approach to designing electromagnetic shielding materials for mitigating Electromagnetic Interference (EM!) with small, light-weight shielding materials. It focuses on ground planes of printed wiring boards (PWBs), rather than on components. Modem PSG materials also are emerging based on planar materials, in place of earlier, bulkier, 3-dimensional PBG structures. Planar PBG designs especially show great promise in mitigating and suppressing EMI and crosstalk for aerospace designs, such as needed for NASA's Constellation Program, for returning humans to the moon and for use by our first human visitors traveling to and from Mars. Photonic Bandgap (PBG) materials are also known as artificial dielectrics, meta-materials, and photonic crystals. General PBG materials are fundamentally periodic slow-wave structures in I, 2, or 3 dimensions. By adjusting the choice of structure periodicities in terms of size and recurring structure spacings, multiple scatterings of surface waves can be created that act as a forbidden energy gap (i.e., a range of frequencies) over which nominally-conductive metallic conductors cease to be a conductor and become dielectrics. Equivalently, PBG materials can be regarded as giving rise to forbidden energy gaps in metals without chemical doping, analogous to electron bandgap properties that previously gave rise to the modem semiconductor industry 60 years ago. Electromagnetic waves cannot propagate over bandgap regions that are created with PBG materials, that is, over frequencies for which a bandgap is artificially created through introducing periodic defects

  14. Workshop on Design Loads for Advanced Fighters: Meeting of the Structures and Materials Panel of AGARD (64th) Held in Madrid (Spain) on 27 April-1 May 1987.

    DTIC Science & Technology

    1988-02-01

    capabilities at the start of a programme. ,Z _ 1. Introduction The flight manoeuvre loads are major design criteria for agile aircraft (aerobatic...E. Van Patten, Ph.D. Armstrong Aerospace Medical Research Laboratory Wright-Patterson AFB, OH 45433-6573 USA INTRODUCTION ~ urrent Fighter...anticipated usage. Also, compliance with each condition mit he verified by analysis, model test, or full scale measurement. INTRODUCTION During the

  15. Aerospace Materials for Extreme Environments

    DTIC Science & Technology

    2013-03-07

    6.0% 8.0% 35.0 45.0 55.0 Zr [at%] Icosahedron Fraction • Chosen Method: Green - Kubo  =  t B t dstPstP Tk V 0 00 )()(lim  Zr Al Ni...1 DISTRIBUTION STATEMENT A – Unclassified, Unlimited Distribution 15 February 2013 Integrity  Service  Excellence Dr. Ali Sayir Program Officer...c) (d) (e) (f) (g) (h) Band structure EELS spectra Kinetic parameters Thermal properties Mechanical prop’s W. Windl (OSU), K. Flores

  16. Effects of Fiber/Matrix Interface and its Composition on Mechanical Properties of Hi Nicalon/Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1998-01-01

    Fiber-reinforced ceramic matrix composites (CMC) are prospective candidate materials for high temperature structural applications in aerospace, energy conservation, power generation, nuclear, petrochemical, and other industries. At NASA Lewis, we are investigating celsian matrix composites reinforced with various types of silicon carbide fibers. The objective of the present study was to investigate the effects of fiber/matrix interface and its composition on the mechanical properties of silicon carbide (Hi-Nicalon) fiber-reinforced celsian matrix composites.

  17. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences

    NASA Astrophysics Data System (ADS)

    Gohardani, Omid; Elola, Maialen Chapartegui; Elizetxea, Cristina

    2014-10-01

    Carbon nanotubes have instigated the interest of many different scientific fields since their authenticated introduction, more than two decades ago. Particularly in aerospace applications, the potential implementations of these advanced materials have been predicted to have a large impact on future aircraft and space vehicles, mainly due to their distinct features, which include superior mechanical, thermal and electrical properties. This article provides the very first consolidated review of the imminent prospects of utilizing carbon nanotubes and nanoparticles in aerospace sciences, based on their recent implementations and predicted future applications. Explicitly, expected carbon nanotube employment in aeronautics and astronautics are identified for commercial aircraft, military aircraft, rotorcraft, unmanned aerial vehicles, satellites, and space launch vehicles. Attention is devoted to future utilization of carbon nanotubes, which may comprise hydrogen storage encapsulation, composite material implementation, lightning protection for aircraft, aircraft icing mitigation, reduced weight of airframes/satellites, and alleviation of challenges related to future space launch. This study further sheds light onto recent actualized implementations of carbon nanotubes in aerospace applications, as well as current and prospective challenges related to their usage in aerospace sciences, encompassing health and safety hazards, large scale manufacturing, achievement of optimum properties, recycling, and environmental impacts.

  18. Design of Inorganic Water Repellent Coatings for Thermal Protection Insulation on an Aerospace Vehicle

    NASA Technical Reports Server (NTRS)

    Fuerstenau, D. W.; Ravikumar, R.

    1997-01-01

    In this report, thin film deposition of one of the model candidate materials for use as water repellent coating on the thermal protection systems (TPS) of an aerospace vehicle was investigated. The material tested was boron nitride (BN), the water-repellent properties of which was detailed in our other investigation. Two different methods, chemical vapor deposition (CVD) and pulsed laser deposition (PLD), were used to prepare the BN films on a fused quartz substrate (one of the components of thermal protection systems on aerospace vehicles). The deposited films were characterized by a variety of techniques including X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The BN films were observed to be amorphous in nature, and a CVD-deposited film yielded a contact angle of 60 degrees with water, similar to the pellet BN samples investigated previously. This demonstrates that it is possible to use the bulk sample wetting properties as a guideline to determine the candidate waterproofing material for the TPS.

  19. High temperature resin matrix composites for aerospace structures

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr.

    1980-01-01

    Accomplishments and the outlook for graphite-polyimide composite structures are briefly outlined. Laminates, skin-stiffened and honeycomb sandwich panels, chopped fiber moldings, and structural components were fabricated with Celion/LARC-160 and Celion/PMR-15 composite materials. Interlaminar shear and flexure strength data obtained on as-fabricated specimens and specimens that were exposed for 125 hours at 589 K indicate that epoxy sized and polyimide sized Celion graphite fibers exhibit essentially the same behavior in a PMR-15 matrix composite. Analyses and tests of graphite-polyimide compression and shear panels indicate that utilization in moderately loaded applications offers the potential for achieving a 30 to 50 percent reduction in structural mass compared to conventional aluminum panels. Data on effects of moisture, temperature, thermal cycling, and shuttle fluids on mechanical properties indicate that both LARC-160 and PMR-15 are suitable matrix materials for a graphite-polyimide aft body flap. No technical road blocks to building a graphite-polyimide composite aft body flap are identified.

  20. Development of Structural Health Management Technology for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    2003-01-01

    As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention.

  1. Silicon Carbide Technologies for Lightweighted Aerospace Mirrors

    DTIC Science & Technology

    2008-09-01

    Silicon Carbide Technologies for Lightweighted Aerospace Mirrors Lawrence E. Matson (1) Ming Y. Chen (1) Brett deBlonk (2) Iwona A...glass and beryllium to produce lightweighted aerospace mirror systems has reached its limits due to the long lead times, high processing costs...for making mirror structural substrates, figuring and finishing technologies being investigated to reduce cost time and cost, and non-destructive

  2. Computational Nanotechnology at NASA Ames Research Center, 1996

    NASA Technical Reports Server (NTRS)

    Globus, Al; Bailey, David; Langhoff, Steve; Pohorille, Andrew; Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Some forms of nanotechnology appear to have enormous potential to improve aerospace and computer systems; computational nanotechnology, the design and simulation of programmable molecular machines, is crucial to progress. NASA Ames Research Center has begun a computational nanotechnology program including in-house work, external research grants, and grants of supercomputer time. Four goals have been established: (1) Simulate a hypothetical programmable molecular machine replicating itself and building other products. (2) Develop molecular manufacturing CAD (computer aided design) software and use it to design molecular manufacturing systems and products of aerospace interest, including computer components. (3) Characterize nanotechnologically accessible materials of aerospace interest. Such materials may have excellent strength and thermal properties. (4) Collaborate with experimentalists. Current in-house activities include: (1) Development of NanoDesign, software to design and simulate a nanotechnology based on functionalized fullerenes. Early work focuses on gears. (2) A design for high density atomically precise memory. (3) Design of nanotechnology systems based on biology. (4) Characterization of diamonoid mechanosynthetic pathways. (5) Studies of the laplacian of the electronic charge density to understand molecular structure and reactivity. (6) Studies of entropic effects during self-assembly. Characterization of properties of matter for clusters up to sizes exhibiting bulk properties. In addition, the NAS (NASA Advanced Supercomputing) supercomputer division sponsored a workshop on computational molecular nanotechnology on March 4-5, 1996 held at NASA Ames Research Center. Finally, collaborations with Bill Goddard at CalTech, Ralph Merkle at Xerox Parc, Don Brenner at NCSU (North Carolina State University), Tom McKendree at Hughes, and Todd Wipke at UCSC are underway.

  3. EDITORIAL: Adaptive and Active Materials: Selected Papers from the ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 08) (Maryland, USA, 28-30 October 2008) Adaptive and Active Materials: Selected Papers from the ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 08) (Maryland, USA, 28-30 October 2008)

    NASA Astrophysics Data System (ADS)

    Lynch, Christopher

    2009-10-01

    The rapid development of the field of Smart Materials, Adaptive Structures, and Materials Systems led the Aerospace Division ASMS TC to launch the new annual SMASIS conference in 2008. The conference focuses on the multi-disciplinary challenges of developing new multifunctional materials and implementing them in advanced systems. The research spans length scales from nano-structured materials to civil, air, and space structures. The first conference consisted of six symposia, each focusing on a different research area. This special issue of Smart Materials and Structures summarizes some of the top research presented at the 2008 SMASIS conference in the materials-focused symposia. These symposia focused on the behavior and mechanics of active materials, on multifunctional materials, and on bio-inspired materials. The behavior and mechanics of active materials is an approach that combines observed material behavior with mechanism-based models that not only give insight into the observed behavior, but guide the development of new materials. This approach has been applied to shape memory metals and polymers, ferroelectrics, ferromagnetics, and recently to multiferroic materials, and has led to considerable improvements in our understanding of multi-field phenomena. Multifunctional materials are the next generation of active materials. These materials include structural, sensing, and actuation components integrated into a material system. A natural extension of multifunctional materials is a new class of bio-inspired materials. Bio-inspired materials range from detailed bio-mimicry of sensing and self healing materials to nano and microstructures that take advantage of features observed in biological systems. The Editors would like to express their sincere thanks to all of the authors for their contributions to this special issue on 'Adaptive and Active Materials' for Smart Materials and Structures. We convey our gratitude to all of the reviewers for their time and dedication. We thank IOP Publishing for their support and encouragement of this special issue and the staff for their special attention and timely response.

  4. Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost

    NASA Astrophysics Data System (ADS)

    Shen, A. W.; Guo, J. L.; Wang, Z. J.

    2015-12-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.

  5. Multifunctional shape-memory polymers.

    PubMed

    Behl, Marc; Razzaq, Muhammad Yasar; Lendlein, Andreas

    2010-08-17

    The thermally-induced shape-memory effect (SME) is the capability of a material to change its shape in a predefined way in response to heat. In shape-memory polymers (SMP) this shape change is the entropy-driven recovery of a mechanical deformation, which was obtained before by application of external stress and was temporarily fixed by formation of physical crosslinks. The high technological significance of SMP becomes apparent in many established products (e.g., packaging materials, assembling devices, textiles, and membranes) and the broad SMP development activities in the field of biomedical as well as aerospace applications (e.g., medical devices or morphing structures for aerospace vehicles). Inspired by the complex and diverse requirements of these applications fundamental research is aiming at multifunctional SMP, in which SME is combined with additional functions and is proceeding rapidly. In this review different concepts for the creation of multifunctionality are derived from the various polymer network architectures of thermally-induced SMP. Multimaterial systems, such as nanocomposites, are described as well as one-component polymer systems, in which independent functions are integrated. Future challenges will be to transfer the concept of multifunctionality to other emerging shape-memory technologies like light-sensitive SMP, reversible shape changing effects or triple-shape polymers.

  6. Challenges of NDE simulation tool validation, optimization, and utilization for composites

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Seebo, Jeffrey P.; Juarez, Peter

    2016-02-01

    Rapid, realistic nondestructive evaluation (NDE) simulation tools can aid in inspection optimization and prediction of inspectability for advanced aerospace materials and designs. NDE simulation tools may someday aid in the design and certification of aerospace components; potentially shortening the time from material development to implementation by industry and government. Furthermore, ultrasound modeling and simulation are expected to play a significant future role in validating the capabilities and limitations of guided wave based structural health monitoring (SHM) systems. The current state-of-the-art in ultrasonic NDE/SHM simulation is still far from the goal of rapidly simulating damage detection techniques for large scale, complex geometry composite components/vehicles containing realistic damage types. Ongoing work at NASA Langley Research Center is focused on advanced ultrasonic simulation tool development. This paper discusses challenges of simulation tool validation, optimization, and utilization for composites. Ongoing simulation tool development work is described along with examples of simulation validation and optimization challenges that are more broadly applicable to all NDE simulation tools. The paper will also discuss examples of simulation tool utilization at NASA to develop new damage characterization methods for composites, and associated challenges in experimentally validating those methods.

  7. Exploring the Acoustic Nonlinearity for Monitoring Complex Aerospace Structures

    DTIC Science & Technology

    2008-02-27

    nonlinear elastic waves, embedded ultrasonics, nonlinear diagnostics, aerospace structures, structural joints. 16. SECURITY CLASSIFICATION OF: 17...sampling, 100 MHz bandwidth with noise and anti- aliasing filters, general-purpose alias-protected decimation for all sample rates and quad digital down...conversion ( DDC ) with up to 40 MHz IF bandwidth. Specified resolution of NI PXI 5142 is 14-bits with the noise floor approaching -85 dB. Such a

  8. A heat treatment procedure to produce fine-grained lamellar microstructures in a P/M titanium aluminide alloy

    NASA Astrophysics Data System (ADS)

    Au, Peter

    A process for fabricating advanced aerospace titanium aluminide alloys starting from metal powders (the hot isostatically consolidated P/M process) is presented in this thesis. This process does not suffer the difficulties of chemical inhomogeneities and coarse grain structure of castings. In addition heat treatments which take advantage of the refined structure of HIP processed materials are developed to achieve microstructure control and subsequent mechanical property control. It is shown that a better "property balance" is possible after the heat treatment of HIP consolidated materials than it is with alternative processing. It is well understood that the standard microstructures (near-gamma, duplex, nearly lamellar, and fully lamellar) do not have the balanced mechanical properties (tensile, yield, creep and fatigue strength, ductility and fracture toughness) necessary for optimal performance in aero engine and automotive applications. In this work a fine-grained fully lamellar (FGFL) microstructure is developed for property control and in particular for achieving a much improved property balance. A heat treatment procedure for this purpose which consists of cyclic processing in the alpha transus temperature region to achieve an FGFL structure with grain sizes in the range of 50 mum to 150 mum is presented. Compared with conventional duplex structured materials, the minimum creep rate is an order of magnitude lower with only a 10% loss in tensile yield strength. Moreover, a three-fold increase in tensile elongation is possible by converting to an FGFL structure with only a 30% loss in minimum creep rate. These are attractive trade-offs when considering the use of these alloys for aerospace purposes. A thorough literature review of the mechanisms of formation of standard microstructures and their deformation under mechanical loading is contained in the thesis. In addition, conventional techniques to produce FGFL microstructures in wrought and cast materials are discussed in detail. Beyond the review, the results of experiments are described for determining the alpha transus temperature, the phase transformation kinetics in this region and the effects of heat treatment time and cooling rate on microstructure. Based on this preliminary work, a heat treatment to achieve a FGFL microstructure with grain sizes in the range of 50 mum to 150 mum is proposed and confirmed. The room temperature and high temperature mechanical properties of these materials are compared with those of conventional duplex and fully lamellar structures. The results of this experimentation are discussed in terms of the fundamental mechanisms for controlling microstructure and mechanical properties in these materials. The potential for applying cyclic heat treatments to cast and wrought materials to improve the mechanical property balance in engineering practice is discussed.

  9. REACH Impact on Aerospace Materials - U.S. Perspective

    DTIC Science & Technology

    2012-08-01

    Case of Di-isobutyl Phthalate - OR- How ECHA Can Greatly Accelerate Phase-Out •In 2008, Di-isobutyl Phthalate (DIBP) was not a CMR but was a...Problems • Phthalates – Used to make stuff flexible •Aerospace Uses – sleeving, wire sheath, plastic panels, adhesives, etc, etc •Out of 30 most

  10. Aerospace-Related Life Science Concepts for Use in Life Science Classes Grades 7-12.

    ERIC Educational Resources Information Center

    Williams, Mary H.; Rademacher, Jean

    The purpose of this guide is to provide the teacher of secondary school life science classes with resource materials for activities to familiarize students with recent discoveries in bioastronautics. Each section introduces a life science concept and a related aerospace concept, gives background information, suggested activities, and an annotated…

  11. Aerospace-Oriented Units for Use in Secondary School Classes.

    ERIC Educational Resources Information Center

    Williams, Mary H.; And Others

    This set of nine units is intended to furnish aerospace-oriented resource material to help teachers include recent scientific and technological advances in the secondary school science curriculum. The units provided are as follows: history of astronomy, the solar system, beyond the solar system, history of flight, spaceflight facts, aerology,…

  12. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Care for Lightweight Fan Blade Design

    NASA Technical Reports Server (NTRS)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. Traditionally, these components have been fabricated using expensive materials such as light weight titanium alloys, polymeric composite materials and carbon-carbon composites. The present study investigates the use of P sandwich foam fan blade made up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The stiffness of the sandwich structure is increased by separating the two face sheets by a foam core. The resulting structure possesses a high stiffness while being lighter than a similar solid construction. Since the face sheets carry the applied bending loads, the sandwich architecture is a viable engineering concept. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of the sandwich structure for a fan blade application. A vibration analysis for natural frequencies and P detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of skin thickness and core volume %re presented with a comparison to a solid titanium blade.

  13. NASA technology utilization survey on composite materials

    NASA Technical Reports Server (NTRS)

    Leeds, M. A.; Schwartz, S.; Holm, G. J.; Krainess, A. M.; Wykes, D. M.; Delzell, M. T.; Veazie, W. H., Jr.

    1972-01-01

    NASA and NASA-funded contractor contributions to the field of composite materials are surveyed. Existing and potential non-aerospace applications of the newer composite materials are emphasized. Economic factors for selection of a composite for a particular application are weight savings, performance (high strength, high elastic modulus, low coefficient of expansion, heat resistance, corrosion resistance,), longer service life, and reduced maintenance. Applications for composites in agriculture, chemical and petrochemical industries, construction, consumer goods, machinery, power generation and distribution, transportation, biomedicine, and safety are presented. With the continuing trend toward further cost reductions, composites warrant consideration in a wide range of non-aerospace applications. Composite materials discussed include filamentary reinforced materials, laminates, multiphase alloys, solid multiphase lubricants, and multiphase ceramics. New processes developed to aid in fabrication of composites are given.

  14. Microstructural and Mechanical Property Characterization of Shear Formed Aerospace Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Troeger, Lillianne P.; Domack, Marcia S.; Wagner, John A.

    2000-01-01

    Advanced manufacturing processes such as near-net-shape forming can reduce production costs and increase the reliability of launch vehicle and airframe structural components through the reduction of material scrap and part count and the minimization of joints. The current research is an investigation of the processing-microstructure-property relationships for shear formed cylinders of the Al-Cu-Li-Mg-Ag alloy 2195 for space applications and the Al-Cu-Mg-Ag alloy C415 for airframe applications. Cylinders which had undergone various amounts of shear-forming strain were studied to correlate the grain structure, texture, and mechanical properties developed during and after shear forming.

  15. LDEF: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Gouger, H. Garland (Editor)

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was a free-flying cylindrical structure that housed self-contained experiments in trays mounted on the exterior of the structure. Launched into orbit from the Space Shuttle Challenger in 1984, the LDEF spent almost six years in space before being recovered in 1990. The 57 experiments investigated the effects of the low earth orbit environment on materials, coatings, electronics, thermal systems, seeds, and optics. It also carried experiments that measured crystals growth, cosmic radiation, and micrometeoroids. This bibliography contains 435 selected records from the NASA aerospace database covering the years 1973 through June of 1992. The citations are arranged within subject categories by author and date of publication.

  16. Intelligent Propulsion System Foundation Technology: Summary of Research

    NASA Technical Reports Server (NTRS)

    Williams, James C.

    2004-01-01

    The purpose of this cooperative agreement was to develop a foundation of intelligent propulsion technologies for NASA and industry that will have an impact on safety, noise, emissions and cost. These intelligent engine technologies included sensors, electronics, communications, control logic, actuators, and smart materials and structures. Furthermore this cooperative agreement helped prepare future graduates to develop the revolutionary intelligent propulsion technologies that will be needed to ensure pre-eminence of the U.S. aerospace industry. The program consisted of three primary research areas (and associated work elements at Ohio universities): 1.0 Turbine Engine Prognostics, 2.0 Active Controls for Emissions and Noise Reduction, and 3.0 Active Structural Controls.

  17. Combined electron beam imaging and ab initio modeling of T1 precipitates in Al-Li-Cu alloys

    NASA Astrophysics Data System (ADS)

    Dwyer, C.; Weyland, M.; Chang, L. Y.; Muddle, B. C.

    2011-05-01

    Among the many considerable challenges faced in developing a rational basis for advanced alloy design, establishing accurate atomistic models is one of the most fundamental. Here we demonstrate how advanced imaging techniques in a double-aberration-corrected transmission electron microscope, combined with ab initio modeling, have been used to determine the atomic structure of embedded 1 nm thick T1 precipitates in precipitation-hardened Al-Li-Cu aerospace alloys. The results provide an accurate determination of the controversial T1 structure, and demonstrate how next-generation techniques permit the characterization of embedded nanostructures in alloys and other nanostructured materials.

  18. A Digital Methodology for the Design Process of Aerospace Assemblies with Sustainable Composite Processes & Manufacture

    NASA Astrophysics Data System (ADS)

    McEwan, W.; Butterfield, J.

    2011-05-01

    The well established benefits of composite materials are driving a significant shift in design and manufacture strategies for original equipment manufacturers (OEMs). Thermoplastic composites have advantages over the traditional thermosetting materials with regards to sustainability and environmental impact, features which are becoming increasingly pertinent in the aerospace arena. However, when sustainability and environmental impact are considered as design drivers, integrated methods for part design and product development must be developed so that any benefits of sustainable composite material systems can be assessed during the design process. These methods must include mechanisms to account for process induced part variation and techniques related to re-forming, recycling and decommissioning, which are in their infancy. It is proposed in this paper that predictive techniques related to material specification, part processing and product cost of thermoplastic composite components, be integrated within a Through Life Management (TLM) product development methodology as part of a larger strategy of product system modeling to improve disciplinary concurrency, realistic part performance, and to place sustainability at the heart of the design process. This paper reports the enhancement of digital manufacturing tools as a means of drawing simulated part manufacturing scenarios, real time costing mechanisms, and broader lifecycle performance data capture into the design cycle. The work demonstrates predictive processes for sustainable composite product manufacture and how a Product-Process-Resource (PPR) structure can be customised and enhanced to include design intent driven by `Real' part geometry and consequent assembly. your paper.

  19. Other NASA-developed materials and some industrial applications

    NASA Technical Reports Server (NTRS)

    Radnofsky, M. I.

    1971-01-01

    The characteristics and applications of various materials for fireproofing aerospace vehicles are discussed. Materials described are: (1) fibrous materials, (2) nonflammable paper and paperboard, (3) elastomers, (4) foams, and (5) plastics. The suitability of the various materials for specific applications are investigated.

  20. Shock-Induced Turbulence and Acoustic Loading on Aerospace Structures

    DTIC Science & Technology

    2015-08-22

    aerospace structures. Pulsating flows featuring unsteadiness attributed to SWTBLI can lead to fatigue and structural damages1. Advancing our understanding...transformed system of coordinates in order to minimize scaling effects that appear in stencils consisting of elements of different sizes, as well as to...preceding the separation bubble as the 5th-order MUSCL. An integral length scale of 2Δx in the streamwise direction was chosen for the digital filter

  1. Grain neighbour effects on twin transmission in hexagonal close-packed materials

    DOE PAGES

    Arul Kumar, Mariyappan; Beyerlein, Irene Jane; McCabe, Rodney James; ...

    2016-12-19

    Materials with a hexagonal close-packed (hcp) crystal structure such as Mg, Ti and Zr are being used in the transportation, aerospace and nuclear industry, respectively. Material strength and formability are critical qualities for shaping these materials into parts and a pervasive deformation mechanism that significantly affects their formability is deformation twinning. The interaction between grain boundaries and twins has an important influence on the deformation behaviour and fracture of hcp metals. Here, statistical analysis of large data sets reveals that whether twins transmit across grain boundaries depends not only on crystallography but also strongly on the anisotropy in crystallographic slip.more » As a result, we show that increases in crystal plastic anisotropy enhance the probability of twin transmission by comparing the relative ease of twin transmission in hcp materials such as Mg, Zr and Ti.« less

  2. Advanced Materials and Component Development for Lithium-ion Cells for NASA Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2012-01-01

    Human missions to Near Earth Objects, such as asteroids, planets, moons, libration points, and orbiting structures, will require safe, high specific energy, high energy density batteries to provide new or extended capabilities than are possible with today s state-of-the-art aerospace batteries. The National Aeronautics and Space Administration is developing advanced High Energy and Ultra High Energy lithium-ion cells to address these needs. In order to meet the performance goals, advanced, high-performing materials are required to provide improved performance at the component-level that contributes to performance at the integrated cell level. This paper will provide an update on the performance of experimental materials through the completion of two years of development. The progress of materials development, remaining challenges, and an outlook for the future of these materials in near term cell products will be discussed.

  3. Prototype rigid polyimide components. [application of Apollo technology to commercial nonflammable materials

    NASA Technical Reports Server (NTRS)

    Wykes, D. H.

    1975-01-01

    The activity is reported which was conducted for utilizing spin-off Apollo base technology to fabricate a variety of commercial and aerospace related parts that are nonflammable and resistant to high-temperature degradation. Manufacturing techniques and the tooling used to fabricate each of the polyimide/glass structures is discussed. A brief history, tracing the development of high-temperature polyimide resins, is presented along with a discussion of the properties of DuPont's PI 2501/glass material (later redesignated PI 4701/glass). Mechanical and flammability properties of DuPont's PI 2501/glass laminates are compared with epoxy, phenolic, and silicone high-temperature resin/glass material systems. Offgassing characteristics are also presented. A discussion is included of the current developments in polyimide materials technology and the potential civilian and government applications of polyimide materials to reduce fire hazards and increase the survivability of men and equipment.

  4. Evaluation of Braided Stiffener Concepts for Transport Aircraft Wing Structure Applications

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Dexter, H. Benson (Editor); Markus, Alan; Rohwer, Kim

    1995-01-01

    Braided composite materials have potential for application in aircraft structures. Stiffeners, wing spars, floor beams, and fuselage frames are examples where braided composites could find application if cost effective processing and damage requirements are met. Braiding is an automated process for obtaining near-net shape preforms for fabrication of components for structural applications. Previous test results on braided composite materials obtained at NASA Langley indicate that damage tolerance requirements can be met for some applications. In addition, the braiding industry is taking steps to increase the material through-put to be more competitive with other preform fabrication processes. Data are presented on the compressive behavior of three braided stiffener preform fabric constructions as determined from individual stiffener crippling test and three stiffener wide panel tests. Stiffener and panel fabrication are described and compression data presented for specimens tested with and without impact damage. In addition, data are also presented on the compressive behavior of the stitched stiffener preform construction currently being used by McDonnell Douglas Aerospace in the NASA ACT wing development program.

  5. NASA/DoD Aerospace Knowledge Diffusion Research Project. Report Number 19. The U. S. Government Technical Report and the Transfer of Federally Funded Aerospace R&D: An Analysis of Five Studies

    DTIC Science & Technology

    1994-01-01

    defined etymologically , according to report content and method (U.S. Department of Defense, 1964); behaviorally, according to the influence on the reader...SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4 GEOSCIENCES 9 SPACE SCIENCES 5 LIFE SCIENCES 10 OTHER (specify) 63. IsANYof...YOUR work? (Circle ONLY one number) I AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4

  6. Polyimide Boosts High-Temperature Performance

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Maverick Corporation, of Blue Ash, Ohio, licensed DMBZ-15 polyimide technology from Glenn Research Center. This ultrahigh-temperature material provides substantial weight savings and reduced machining costs compared to the same component made with more traditional metallic materials. DMBZ-15 has a wide range of applications from aerospace (aircraft engine and airframe components, space transportation systems, and missiles) to non-aerospace (oil drilling, rolling mill), and is particularly well-suited to use as face sheets with honey cones or thermal protection systems for reusable launch vehicles, which encounter elevated temperatures during launch and re-entry.

  7. The 20th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Numerous topics related to aerospace mechanisms were discussed. Deployable structures, electromagnetic devices, tribology, hydraulic actuators, positioning mechanisms, electric motors, communication satellite instruments, redundancy, lubricants, bearings, space stations, rotating joints, and teleoperators are among the topics covered.

  8. Lewis Structures Technology, 1988. Volume 2: Structural Mechanics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Lewis Structures Div. performs and disseminates results of research conducted in support of aerospace engine structures. These results have a wide range of applicability to practitioners of structural engineering mechanics beyond the aerospace arena. The engineering community was familiarized with the depth and range of research performed by the division and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive evaluation, constitutive models and experimental capabilities, dynamic systems, fatigue and damage, wind turbines, hot section technology (HOST), aeroelasticity, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics, and structural mechanics computer codes.

  9. Characterizing the Response of Composite Panels to a Pyroshock Induced Environment Using Design of Experiments Methodology

    NASA Technical Reports Server (NTRS)

    Parsons, David S.; Ordway, David; Johnson, Kenneth

    2013-01-01

    This experimental study seeks to quantify the impact various composite parameters have on the structural response of a composite structure in a pyroshock environment. The prediction of an aerospace structure's response to pyroshock induced loading is largely dependent on empirical databases created from collections of development and flight test data. While there is significant structural response data due to pyroshock induced loading for metallic structures, there is much less data available for composite structures. One challenge of developing a composite pyroshock response database as well as empirical prediction methods for composite structures is the large number of parameters associated with composite materials. This experimental study uses data from a test series planned using design of experiments (DOE) methods. Statistical analysis methods are then used to identify which composite material parameters most greatly influence a flat composite panel's structural response to pyroshock induced loading. The parameters considered are panel thickness, type of ply, ply orientation, and pyroshock level induced into the panel. The results of this test will aid in future large scale testing by eliminating insignificant parameters as well as aid in the development of empirical scaling methods for composite structures' response to pyroshock induced loading.

  10. Characterizing the Response of Composite Panels to a Pyroshock Induced Environment using Design of Experiments Methodology

    NASA Technical Reports Server (NTRS)

    Parsons, David S.; Ordway, David O.; Johnson, Kenneth L.

    2013-01-01

    This experimental study seeks to quantify the impact various composite parameters have on the structural response of a composite structure in a pyroshock environment. The prediction of an aerospace structure's response to pyroshock induced loading is largely dependent on empirical databases created from collections of development and flight test data. While there is significant structural response data due to pyroshock induced loading for metallic structures, there is much less data available for composite structures. One challenge of developing a composite pyroshock response database as well as empirical prediction methods for composite structures is the large number of parameters associated with composite materials. This experimental study uses data from a test series planned using design of experiments (DOE) methods. Statistical analysis methods are then used to identify which composite material parameters most greatly influence a flat composite panel's structural response to pyroshock induced loading. The parameters considered are panel thickness, type of ply, ply orientation, and pyroshock level induced into the panel. The results of this test will aid in future large scale testing by eliminating insignificant parameters as well as aid in the development of empirical scaling methods for composite structures' response to pyroshock induced loading.

  11. A Qualitative Program Evaluation of a Structured Leadership Mentoring Program at a Large Aerospace Corporation

    ERIC Educational Resources Information Center

    Teller, Romney P.

    2011-01-01

    The researcher utilized a qualitative approach to conduct a program evaluation of the organization where he is employed. The study intended to serve as a program evaluation for the structured in-house mentoring program at a large aerospace corporation (A-Corp). This program evaluation clarified areas in which the current mentoring program is…

  12. Research and Development of Rapid Design Systems for Aerospace Structure

    NASA Technical Reports Server (NTRS)

    Schaeffer, Harry G.

    1999-01-01

    This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.

  13. Probabilistic structural mechanics research for parallel processing computers

    NASA Technical Reports Server (NTRS)

    Sues, Robert H.; Chen, Heh-Chyun; Twisdale, Lawrence A.; Martin, William R.

    1991-01-01

    Aerospace structures and spacecraft are a complex assemblage of structural components that are subjected to a variety of complex, cyclic, and transient loading conditions. Significant modeling uncertainties are present in these structures, in addition to the inherent randomness of material properties and loads. To properly account for these uncertainties in evaluating and assessing the reliability of these components and structures, probabilistic structural mechanics (PSM) procedures must be used. Much research has focused on basic theory development and the development of approximate analytic solution methods in random vibrations and structural reliability. Practical application of PSM methods was hampered by their computationally intense nature. Solution of PSM problems requires repeated analyses of structures that are often large, and exhibit nonlinear and/or dynamic response behavior. These methods are all inherently parallel and ideally suited to implementation on parallel processing computers. New hardware architectures and innovative control software and solution methodologies are needed to make solution of large scale PSM problems practical.

  14. Tensile properties of nicalon fiber-reinforced carbon following aerospace turbine engine testing

    NASA Astrophysics Data System (ADS)

    Pierce, J. L.; Zawada, L. P.; Srinivasan, R.

    2003-06-01

    The durability of coated Nicalon silicon carbide fiber-reinforced carbon (SiC/C) as the flap and seal exhaust nozzle components in a military aerospace turbine engine was studied. Test specimens machined from both a flap and a seal component were tested for residual strength following extended ground engine testing on a General Electric F414 afterburning turbofan engine. Although small amounts of damage to the protective exterior coating were identified on each component following engine testing, the tensile strengths were equal to the as-fabricated tensile strength of the material. Differences in strength between the two components and variability within the data sets could be traced back to the fabrication process using witness coupon test data from the manufacturer. It was also observed that test specimens machined transversely across the flap and seal components were stronger than those machined along the length. The excellent retained strength of the coated SiC/C material after extended exposure to the severe environment in the afterburner exhaust section of an aerospace turbofan engine has resulted in this material being selected as the baseline material for the F414 exhaust nozzle system.

  15. 76 FR 48045 - Airworthiness Directives; Costruzioni Aeronautiche Tecnam srl Model P2006T Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... material at the FAA, call (816) 329-4148; e-mail: albert.mercado@faa.gov . Examining the AD Docket You may... Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City, Missouri... procedures found in 14 CFR 39.19. Send information to ATTN: Albert Mercado, Aerospace Engineer, FAA, Small...

  16. Ceramic Integration Technologies for Energy and Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Asthana, Ralph N.

    2007-01-01

    Robust and affordable integration technologies for advanced ceramics are required to improve the performance, reliability, efficiency, and durability of components, devices, and systems based on them in a wide variety of energy, aerospace, and environmental applications. Many thermochemical and thermomechanical factors including joint design, analysis, and optimization must be considered in integration of similar and dissimilar material systems.

  17. National Educators' Workshop: Update 2003. Standard Experiments in Engineering, Materials Science, and Technology. Part 2

    NASA Technical Reports Server (NTRS)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Edmonson, William (Compiler); Wilkerson, Amy (Compiler)

    2004-01-01

    The 18th Annual National Educators Workshop [NEW:Update 2003] was a part of NASA Langley s celebration of the Centennial of Controlled, Powered Flight by Orville and Wilbur Wright on December 17, 1903. The conference proceedings from NEW:Update 2003 reflect the Flight 100 theme by first providing a historic perspective on the remarkable accomplishments of the Wright Brothers. The historical perspective set the stag for insights into aeronautics and aerospace structures and materials now and into the future. The NEW:Update 2003 proceedings provide valuable resources to educators and students in the form of visuals, experiments and demonstrations for classes/labs at levels ranging from precollege through college education.

  18. National Educators' Workshop: Update 2003. Standard Experiments in Engineering, Materials Science, and Technology. Part 1

    NASA Technical Reports Server (NTRS)

    Prior, Edwin J. (Compiler); Jacobs, James A. (Compiler); Edmonson, William (Compiler); Wilkerson, Amy (Compiler)

    2004-01-01

    The 18th Annual National Educators Workshop [NEW:Update 2003] was a part of NASA Langley s celebration of the Centennial of Controlled, Powered Flight by Orville and Wilbur Wright on December 17, 1903. The conference proceedings from NEW:Update 2003 reflect the Flight 100 theme by first providing a historic perspective on the remarkable accomplishments of the Wright Brothers. The historical perspective set the stag for insights into aeronautics and aerospace structures and materials now and into the future. The NEW:Update 2003 proceedings provide valuable resources to educators and students in the form of visuals, experiments and demonstrations for classes/labs at levels ranging from precollege through college education.

  19. Premelting hcp to bcc Transition in Beryllium

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Sun, T.; Zhang, Ping; Zhang, P.; Zhang, D.-B.; Wentzcovitch, R. M.

    2017-04-01

    Beryllium (Be) is an important material with wide applications ranging from aerospace components to x-ray equipment. Yet a precise understanding of its phase diagram remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticles. We find that the hcp → bcc transition occurs near the melting curve at 0

  20. Dynamic 3D strain measurements with embedded micro-structured optical fiber Bragg grating sensors during impact on a CFRP coupon

    NASA Astrophysics Data System (ADS)

    Goossens, Sidney; Geernaert, Thomas; De Pauw, Ben; Lamberti, Alfredo; Vanlanduit, Steve; Luyckx, Geert; Chiesura, Gabriele; Thienpont, Hugo; Berghmans, Francis

    2017-04-01

    Composite materials are increasingly used in aerospace applications, owing to their high strength-to-mass ratio. Such materials are nevertheless vulnerable to impact damage. It is therefore important to investigate the effects of impacts on composites. Here we embed specialty microstructured optical fiber Bragg grating based sensors inside a carbon fiber reinforced polymer, providing access to the 3D strain evolution within the composite during impact. We measured a maximum strain of -655 μɛ along the direction of impact, and substantially lower values in the two in-plane directions. Such in-situ characterization can trigger insight in the development of impact damage in composites.

  1. NASA and ESA Collaboration on Hexavalent Chrome Alternatives: Pretreatments Only Final Test Report

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    Hexavalent chromium (hex chrome or CR(VI)) is a widely used element within applied coating systems because of its self-healing and corrosion-resistant properties. The replacement of hex chrome in the processing of aluminum for aviation and aerospace applications remains a goal of great significance. Aluminum is the major manufacturing material of structures and components in the space flight arena. The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) are engaged in a collaborative effort to test and evaluate alternatives to hexavalent chromium containing corrosion coating systems. NASA and ESA share common risks related to material obsolescence associated with hexavalent chromium used in corrosion-resistant coatings.

  2. Space structures insulating material's thermophysical and radiation properties estimation

    NASA Astrophysics Data System (ADS)

    Nenarokomov, A. V.; Alifanov, O. M.; Titov, D. M.

    2007-11-01

    In many practical situations in aerospace technology it is impossible to measure directly such properties of analyzed materials (for example, composites) as thermal and radiation characteristics. The only way that can often be used to overcome these difficulties is indirect measurements. This type of measurement is usually formulated as the solution of inverse heat transfer problems. Such problems are ill-posed in mathematical sense and their main feature shows itself in the solution instabilities. That is why special regularizing methods are needed to solve them. The experimental methods of identification of the mathematical models of heat transfer based on solving the inverse problems are one of the modern effective solving manners. The objective of this paper is to estimate thermal and radiation properties of advanced materials using the approach based on inverse methods.

  3. Residual thermal stress control in composite reinforced metal structures. [by mechanical loading of metal component prior to bonding

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1972-01-01

    Advanced composite materials, composed of boron or graphite fibers and a supporting matrix, make significant structural efficiency improvements available to aircraft and aerospace designers. Residual stress induced during bonding of composite reinforcement to metal structural elements can be reduced or eliminated through suitable modification to the manufacturing processes. The most successful method employed during this program used a steel tool capable of mechanically loading the metal component in compression prior to the adhesive bonding cycle. Compression loading combined with heating to 350 F during the bond cycle can result in creep deformation in aluminum components. The magnitude of the deformation increases with increasing stress level during exposure to 350 F.

  4. Welding, Bonding and Fastening, 1984

    NASA Technical Reports Server (NTRS)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  5. Recent advances in degradable lactide-based shape-memory polymers.

    PubMed

    Balk, Maria; Behl, Marc; Wischke, Christian; Zotzmann, Jörg; Lendlein, Andreas

    2016-12-15

    Biodegradable polymers are versatile polymeric materials that have a high potential in biomedical applications avoiding subsequent surgeries to remove, for example, an implanted device. In the past decade, significant advances have been achieved with poly(lactide acid) (PLA)-based materials, as they can be equipped with an additional functionality, that is, a shape-memory effect (SME). Shape-memory polymers (SMPs) can switch their shape in a predefined manner upon application of a specific external stimulus. Accordingly, SMPs have a high potential for applications ranging from electronic engineering, textiles, aerospace, and energy to biomedical and drug delivery fields based on the perspectives of new capabilities arising with such materials in biomedicine. This study summarizes the progress in SMPs with a particular focus on PLA, illustrates the design of suitable homo- and copolymer structures as well as the link between the (co)polymer structure and switching functionality, and describes recent advantages in the implementation of novel switching phenomena into SMP technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Computational Modeling in Structural Materials Processing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    High temperature materials such as silicon carbide, a variety of nitrides, and ceramic matrix composites find use in aerospace, automotive, machine tool industries and in high speed civil transport applications. Chemical vapor deposition (CVD) is widely used in processing such structural materials. Variations of CVD include deposition on substrates, coating of fibers, inside cavities and on complex objects, and infiltration within preforms called chemical vapor infiltration (CVI). Our current knowledge of the process mechanisms, ability to optimize processes, and scale-up for large scale manufacturing is limited. In this regard, computational modeling of the processes is valuable since a validated model can be used as a design tool. The effort is similar to traditional chemically reacting flow modeling with emphasis on multicomponent diffusion, thermal diffusion, large sets of homogeneous reactions, and surface chemistry. In the case of CVI, models for pore infiltration are needed. In the present talk, examples of SiC nitride, and Boron deposition from the author's past work will be used to illustrate the utility of computational process modeling.

  7. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  8. Computational control of flexible aerospace systems

    NASA Technical Reports Server (NTRS)

    Sharpe, Lonnie, Jr.; Shen, Ji Yao

    1994-01-01

    The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed based on several incomplete versions. The verification of the code had been conducted by comparing the results with those examples for which the exact theoretical solutions can be obtained. The theoretical background of the package and the verification examples has been reported in a technical paper submitted to the Joint Applied Mechanics & Material Conference, ASME. A brief USER'S MANUAL had been compiled, which includes three parts: (1) Input data preparation; (2) Explanation of the Subroutines; and (3) Specification of control variables. Meanwhile, a theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modeling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide an embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes.

  9. Occupational Survey Report. AFSC 4M0X1 Aerospace Physiology

    DTIC Science & Technology

    2002-05-01

    Chamber NCOIC Job Hyperbaric Chamber Specialist Job • Perform Type 2, 4 and 1 chamber flights • Perform inside observer duties during hypobaric ...78% Hyperbaric Chamber Specialist Independent Job 4% Not Grouped 2% U2 Aerospace Physiology Cluster 10% Job Structure Sample size: 168 Aerospace...Altitude Chamber Cluster (N=130) Hypobaric Chamber Instructor/Monitor Job HAAMS Job Altitude Chamber Apprentice Job 78% UPT Parasail Job Altitude

  10. Polyimides: Thermally stable aerospace polymers

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.

    1980-01-01

    An up to date review of available commercial and experimental high temperature polyimide resins which show potential for aerospace applications is presented. Current government research trends involving the use of polyimides as matrix resins for structural composites are discussed. Both the development of polyimides as adhesives for bonding metals and composites, and as films and coatings for use in an aerospace environment are reviewed. In addition, future trends for polyimides are proposed.

  11. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 18:] Scientific and Technical Information (STI) policy and the competitive position of the US aerospace industry

    NASA Technical Reports Server (NTRS)

    Hernon, Peter; Pinelli, Thomas E.

    1992-01-01

    With its contribution to trade, its coupling with national security, and its symbolism of U.S. technological strength, the U.S. aerospace industry holds a unique position in the Nation's industrial structure. Federal science and technology policy and Federal scientific and technical information (STI) policy loom important as strategic contributions to the U.S. aerospace industry's leading competitive position. However, three fundamental policy problems exist. First, the United States lacks a coherent STI policy and a unified approach to the development of such a policy. Second, policymakers fail to understand the relationship of STI to science and technology policy. Third, STI is treated as a part of general information policy, without any recognition of its uniqueness. This paper provides an overview of the Federal information policy structure as it relates to STI and frames the policy issues that require resolution.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 18: Scientific and Technical Information (STI) policy and the competitive position of the US aerospace industry

    NASA Technical Reports Server (NTRS)

    Hernon, Peter; Pinelli, Thomas E.

    1992-01-01

    With its contribution to trade, its coupling with national security, and its symbolism of U.S. technological strength, the U.S. aerospace industry holds a unique position in the Nation's industrial structure. Federal science and technology policy and Federal scientific and technical information (STI) policy loom important as strategic contributions to the U.S. aerospace industry's leading competitive position. However, three fundamental policy problems exist. First, the United States lacks a coherent STI policy and a unified approach to the development of such a policy. Second, policymakers fail to understand the relationship of STI to science and technology policy. Third, STI is treated as a part of general information policy, without any recognition of its uniqueness. This paper provides an overview of the Federal information policy structure as it relates to STI and frames the policy issues that require resolution.

  13. Spacecraft Shielding: An Experimental Comparison Between Open Cell Aluminium Foam Core Sandwich Panel Structures and Whipple Shielding.

    NASA Astrophysics Data System (ADS)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Spacecraft shielding is generally provided by metallic plates in a Whipple shield type configuration [1] where possible. However, mission restrictions such as spacecraft payload mass, can prevent the inclusion of a dedicated protective structure for prevention against impact damage from micrometeoroids. Due to this, often the spacecraft's primary structure will act as the de facto shield. This is commonly an aluminium honeycomb backed with either glass fibre reinforced plastic (GFRP) or aluminium faceplates [2]. Such materials are strong, lightweight and relatively cheap due to their abundance used within the aerospace industry. However, these materials do not offer the best protection (per unit weight) against hypervelocity impact damage. A new material for shielding (porous aluminium foam [3]) is suggested for low risk space missions. Previous studies by NASA [4] have been performed to test this new material against hypervelocity impacts using spherical aluminium projectiles. This showed its potential for protection for satellites in Earth orbit, against metallic space debris. Here we demonstrate the material's protective capabilities against micrometeoroids, using soda-lime glass spheres as projectiles to accurately gauge its potential with relation to silicatious materials, such as micrometeoroids and natural solar system debris. This is useful for spacecraft missions beyond Earth orbit where solar system materials are the dominant threat (via hypervelocity impacts) to the spacecraft, rather than manmade debris.

  14. Engineering in the 21st century. [aerospace technology prospects

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1978-01-01

    A description is presented of the nature of the aerospace technology system that might be expected by the 21st century from a reasonable evolution of the current resources and capabilities. An aerospace employment outlook is provided. The years 1977 and 1978 seem to be marking the beginning of a period of stability and moderate growth in the aerospace industry. Aerospace research and development employment increased to 70,000 in 1977 and is now occupying a near-constant 18% share of the total research and development work force. The changing job environment is considered along with the future of aerospace education. It is found that one trend is toward a more interdisciplinary education. Most trend setters in engineering education recognize that the really challenging engineering problems invariably require the judicious exercise of several disciplines for their solution. Some future trends in aerospace technology are discussed. By the year 2000 space technology will have achieved major advances in four areas, including management of information, transportation, space structures, and energy.

  15. Structural integrity of additive materials: Microstructure, fatigue behavior, and surface processing

    NASA Astrophysics Data System (ADS)

    Book, Todd A.

    Although Additive Manufacturing (AM) offers numerous performance advantages over existing methods, AM structures are not being utilized for critical aerospace and mechanical applications due to uncertainties in their structural integrity as a result of the microstructural variations and defects arising from the AM process itself. Two of these uncertainties are the observed scatter in tensile strength and fatigue lives of direct metal laser sintering (DMLS) parts. With strain localization a precursor for material failure, this research seeks to explore the impact of microstructural variations in DMLS produced materials on strain localization. The first part of this research explores the role of the microstructure in strain localization of DMLS produced IN718 and Ti6Al4V specimens (as-built and post-processed) through the characterization of the linkage between microstructural variations, and the accumulation of plastic strain during monotonic and low cycle fatigue loading. The second part of this research explores the feasibility for the application of select surface processing techniques in-situ during the DMLS build process to alter the microstructure in AlSi10Mg to reduce strain localization and improve material cohesion. This study is based on utilizing experimental observations through the employment of advanced material characterization techniques such as digital image correlation to illustrate the impacts of DMLS microstructural variation.

  16. Current and future translation trends in aeronautics and astronautics

    NASA Technical Reports Server (NTRS)

    Rowe, Timothy

    1986-01-01

    The pattern of translation activity in aeronautics and astronautics is reviewed. It is argued that the international nature of the aerospace industry and the commercialization of space have increased the need for the translation of scientific literature in the aerospace field. Various factors which can affect the quality of translations are examined. The need to translate the activities of the Soviets, Germans, and French in materials science in microgravity, of the Japanese, Germans, and French in the development of industrial ceramics, and of the Chinese in launching and communications satellites is discussed. It is noted that due to increases in multilateral and bilateral relationships in the aerospace industry, the amount of translation from non-English source material into non-English text will increase and the most important languages will be French and German, with an increasing demand for Japanese, Chinese, Spanish, and Italian translations.

  17. Fatigue behavior and life prediction of a SiC/Ti-24Al-11Nb composite under isothermal conditions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    Metal Matrix Composites (MMC) and Intermetallic Matrix Composites (IMC) were identified as potential material candidates for advanced aerospace applications. They are especially attractive for high temperature applications which require a low density material that maintains its structural integrity at elevated temperatures. High temperature fatigue resistance plays an important role in determining the structural integrity of the material. This study attempts to examine the relevance of test techniques, failure criterion, and life prediction as they pertain to an IMC material, specifically, unidirectional SiC fiber reinforced titanium aluminide. A series of strain and load controlled fatigue tests were conducted on unidirectional SiC/Ti-24Al-11Nb composite at 425 and 815 C. Several damage mechanism regimes were identified by using a strain-based representation of the data, Talreja's fatigue life diagram concept. Results of these tests were then used to address issues of test control modes, definition of failure, and testing techniques. Finally, a strain-based life prediction method was proposed for an IMC under tensile cyclic loadings at elevated temperatures.

  18. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Jefferson, Michael

    2015-01-01

    NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  19. NASA aerospace database subject scope: An overview

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Outlined here is the subject scope of the NASA Aerospace Database, a publicly available subset of the NASA Scientific and Technical (STI) Database. Topics of interest to NASA are outlined and placed within the framework of the following broad aerospace subject categories: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences, and general. A brief discussion of the subject scope is given for each broad area, followed by a similar explanation of each of the narrower subject fields that follow. The subject category code is listed for each entry.

  20. The role of light microscopy in aerospace analytical laboratories

    NASA Technical Reports Server (NTRS)

    Crutcher, E. R.

    1977-01-01

    Light microscopy has greatly reduced analytical flow time and added new dimensions to laboratory capability. Aerospace analytical laboratories are often confronted with problems involving contamination, wear, or material inhomogeneity. The detection of potential problems and the solution of those that develop necessitate the most sensitive and selective applications of sophisticated analytical techniques and instrumentation. This inevitably involves light microscopy. The microscope can characterize and often identify the cause of a problem in 5-15 minutes with confirmatory tests generally less than one hour. Light microscopy has and will make a very significant contribution to the analytical capabilities of aerospace laboratories.

Top